Sample records for quantum stress tensor

  1. Vacuum quantum stress tensor fluctuations: A diagonalization approach

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Fewster, Christopher J.; Ford, L. H.

    2018-01-01

    Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its probability distribution. Here we focus on stress tensor operators which have been averaged with a sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator, but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous work using the moments of the distribution. Our results lend additional support to the conclusion that large vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have observable effects.

  2. Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration

    NASA Astrophysics Data System (ADS)

    Becattini, F.; Grossi, E.

    2015-08-01

    We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.

  3. Quantum electromagnetic stress tensor in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Li, Yang; Day, Hannah; Guo, Xin; Fulling, Stephen A.; Cavero-Peláez, Inés

    2018-06-01

    Continuing a program of examining the behavior of the vacuum expectation value of the stress tensor in a background which varies only in a single direction, we here study the electromagnetic stress tensor in a medium with permittivity depending on a single spatial coordinate, specifically, a planar dielectric half-space facing a vacuum region. There are divergences occurring that are regulated by temporal and spatial point splitting, which have a universal character for both transverse electric and transverse magnetic modes. The nature of the divergences depends on the model of dispersion adopted. And there are singularities occurring at the edge between the dielectric and vacuum regions, which also have a universal character, depending on the structure of the discontinuities in the material properties there. Remarks are offered concerning renormalization of such models, and the significance of the stress tensor. The ambiguity in separating "bulk" and "scattering" parts of the stress tensor is discussed.

  4. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  5. Fermionic topological quantum states as tensor networks

    NASA Astrophysics Data System (ADS)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  6. Local recovery of lithospheric stress tensor from GOCE gravitational tensor

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi

    2017-04-01

    The sublithospheric stress due to mantle convection can be computed from gravity data and propagated through the lithosphere by solving the boundary-value problem of elasticity for the Earth's lithosphere. In this case, a full tensor of stress can be computed at any point inside this elastic layer. Here, we present mathematical foundations for recovering such a tensor from gravitational tensor measured at satellite altitudes. The mathematical relations will be much simpler in this way than the case of using gravity data as no derivative of spherical harmonics (SHs) or Legendre polynomials is involved in the expressions. Here, new relations between the SH coefficients of the stress and gravitational tensor elements are presented. Thereafter, integral equations are established from them to recover the elements of stress tensor from those of the gravitational tensor. The integrals have no closed-form kernels, but they are easy to invert and their spatial truncation errors are reducible. The integral equations are used to invert the real data of the gravity field and steady-state ocean circulation explorer mission (GOCE), in 2009 November, over the South American plate and its surroundings to recover the stress tensor at a depth of 35 km. The recovered stress fields are in good agreement with the tectonic and geological features of the area.

  7. Electromagnetic stress tensor for an amorphous metamaterial medium

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Wang, Shubo; Ng, Jack

    2018-03-01

    We analytically and numerically investigated the internal optical forces exerted by an electromagnetic wave inside an amorphous metamaterial medium. We derived, by using the principle of virtual work, the Helmholtz stress tensor, which takes into account the electrostriction effect. Several examples of amorphous media are considered, and different electromagnetic stress tensors, such as the Einstein-Laub tensor and Minkowski tensor, are also compared. It is concluded that the Helmholtz stress tensor is the appropriate tensor for such systems.

  8. Theory of electron g-tensor in bulk and quantum-well semiconductors

    NASA Astrophysics Data System (ADS)

    Lau, Wayne H.; Flatte', Michael E.

    2004-03-01

    We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).

  9. Tensor network states in time-bin quantum optics

    NASA Astrophysics Data System (ADS)

    Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl

    2018-06-01

    The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.

  10. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    PubMed

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  11. Polymer stress tensor in turbulent shear flows.

    PubMed

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil

    2005-01-01

    The interaction of polymers with turbulent shear flows is examined. We focus on the structure of the elastic stress tensor, which is proportional to the polymer conformation tensor. We examine this object in turbulent flows of increasing complexity. First is isotropic turbulence, then anisotropic (but homogenous) shear turbulence, and finally wall bounded turbulence. The main result of this paper is that for all these flows the polymer stress tensor attains a universal structure in the limit of large Deborah number De > 1. We present analytic results for the suppression of the coil-stretch transition at large Deborah numbers. Above the transition the turbulent velocity fluctuations are strongly correlated with the polymer's elongation: there appear high-quality "hydroelastic" waves in which turbulent kinetic energy turns into polymer potential energy and vice versa. These waves determine the trace of the elastic stress tensor but practically do not modify its universal structure. We demonstrate that the influence of the polymers on the balance of energy and momentum can be accurately described by an effective polymer viscosity that is proportional to the cross-stream component of the elastic stress tensor. This component is smaller than the streamwise component by a factor proportional to De2. Finally we tie our results to wall bounded turbulence and clarify some puzzling facts observed in the problem of drag reduction by polymers.

  12. Distinguishing and quantifying the torquoselectivity in competitive ring-opening reactions using the stress tensor and QTAIM.

    PubMed

    Guo, Huan; Morales-Bayuelo, Alejandro; Xu, Tianlv; Momen, Roya; Wang, Lingling; Yang, Ping; Kirk, Steven R; Jenkins, Samantha

    2016-12-05

    Currently the theories to explain and predict the classification of the electronic reorganization due to the torquoselectivity of a ring-opening reaction cannot accommodate the directional character of the reaction pathway; the torquoselectivity is a type of stereoselectivity and therefore is dependent on the pathway. Therefore, in this investigation we introduced new measures from quantum theory of atoms in molecules and the stress tensor to clearly distinguish and quantify the transition states of the inward (TSIC) and outward (TSOC) conrotations of competitive ring-opening reactions of 3-(trifluoromethyl)cyclobut-1-ene and 1-cyano-1-methylcyclobutene. We find the metallicity ξ(r b ) of the ring-opening bond does not occur exactly at the transition state in agreement with transition state theory. The vector-based stress tensor response β σ was used to distinguish the effect of the CN, CH 3 , and CF 3 groups on the TSIC and TSOC paths that was consistent with the ellipticity ε, the total local energy density H(r b ) and the stress tensor stiffness S σ . We determine the directional properties of the TSIC and TSOC ring-opening reactions by constructing a stress tensor UσTS space with trajectories TσTS (s) with length l in real space, longer l correlated with the lowest density functional theory-evaluated total energy barrier and hence will be more thermodynamically favored. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    PubMed

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  14. Scalar and tensor perturbations in loop quantum cosmology: high-order corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tao; Wang, Anzhong; Wu, Qiang

    2015-10-01

    Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using the third-order uniform asymptotic approximations, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratiomore » is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are ∼< 0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.« less

  15. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid

    NASA Astrophysics Data System (ADS)

    Kononova, Olga; Maksudov, Farkhad; Marx, Kenneth A.; Barsegov, Valeri

    2018-01-01

    A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and C_α -based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid’s mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.

  16. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Thorne, K.S.

    1989-04-15

    The renormalized expectation value of the stress-energy tensor /sup ren/ of a quantum field in an arbitrary quantum state near the future horizon of a rotating (Kerr) black hole is derived in two very different ways: One derivation (restricted for simplicity to a massless scalar field) makes use of traditional techniques of quantum field theory in curved spacetime, augmented by a variant of the ''eta formalism'' for handling superradiant modes. The other derivation (valid for any quantum field) uses the equivalence principle to infer, from /sup ren/ in flat spacetime, what must be /sup ren/ near the hole's horizon. Themore » two derivations give the same result: a result in accord with a previous conjecture by Zurek and Thorne: /sup ren/, in any quantum state, is equal to that, /sup ZAMO/, which zero-angular-momentum observers (ZAMO's) would compute from their own physical measurements near the horizon, plus a vacuum-polarization contribution T/sub ..mu..//sub ..nu..//sup vac pol/, which is the negative of the stress-energy of a rigidly rotating thermal reservoir with angular velocity equal to that of the horizon ..cap omega../sub H/, and (red-shifted) temperature equal to that of the Hawking temperature T/sub H/.« less

  17. The use of Stress Tensor Discriminator Faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. II. Compressional stress regimes

    NASA Astrophysics Data System (ADS)

    Tranos, Markos D.

    2018-02-01

    Synthetic heterogeneous fault-slip data as driven by Andersonian compressional stress tensors were used to examine the efficiency of best-fit stress inversion methods in separating them. Heterogeneous fault-slip data are separated only if (a) they have been driven by stress tensors defining 'hybrid' compression (R < 0.375), and their σ1 axes differ in trend more than 30° (R = 0) or 50° (R = 0.25). Separation is not feasible if they have been driven by (b) 'real' (R ≥ 0.375) and 'hybrid' compressional tensors having their σ1 axes in similar trend, or (c) 'real' compressional tensors. In case (a), the Stress Tensor Discriminator Faults (STDF) exist in more than 50% of the activated fault slip data while in cases (b) and (c), they exist in percentages of much less than 50% or not at all. They constitute a necessary discriminatory tool for the establishment and comparison of two compressional stress tensors determined by a best-fit stress inversion method. The best-fit stress inversion methods are not able to determine more than one 'real' compressional stress tensor, as far as the thrust stacking in an orogeny is concerned. They can only possibly discern stress differences in the late-orogenic faulting processes, but not between the main- and late-orogenic stages.

  18. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE PAGES

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    2018-03-20

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  19. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  20. Two formalisms, one renormalized stress-energy tensor

    NASA Astrophysics Data System (ADS)

    Barceló, C.; Carballo, R.; Garay, L. J.

    2012-04-01

    We explicitly compare the structure of the renormalized stress-energy tensor of a massless scalar field in a (1+1) curved spacetime as obtained by two different strategies: normal-mode construction of the field operator and one-loop effective action. We pay special attention to where and how the information related to the choice of vacuum state in both formalisms is encoded. By establishing a clear translation map between both procedures, we show that these two potentially different renormalized stress-energy tensors are actually equal, when using vacuum-state choices related by this map. One specific aim of the analysis is to facilitate the comparison of results regarding semiclassical effects in gravitational collapse as obtained within these different formalisms.

  1. Conservation laws and stress-energy-momentum tensors for systems with background fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk; The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD; Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de

    2012-10-15

    This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics inmore » media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.« less

  2. Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups

    NASA Astrophysics Data System (ADS)

    Brannan, Michael; Collins, Benoît

    2018-03-01

    In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.

  3. Reversible and dissipative macroscopic contributions to the stress tensor: active or passive?

    PubMed

    Brand, H R; Pleiner, H; Svenšek, D

    2014-09-01

    The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling ("active term") of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot a priori be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.

  4. Quantum-chemical insights from deep tensor neural networks

    PubMed Central

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221

  5. Quantum-chemical insights from deep tensor neural networks.

    PubMed

    Schütt, Kristof T; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre

    2017-01-09

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol -1 ) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  6. Quantum-chemical insights from deep tensor neural networks

    NASA Astrophysics Data System (ADS)

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  7. QTAIM and Stress Tensor Characterization of Intramolecular Interactions Along Dynamics Trajectories of a Light-Driven Rotary Molecular Motor.

    PubMed

    Wang, Lingling; Huan, Guo; Momen, Roya; Azizi, Alireza; Xu, Tianlv; Kirk, Steven R; Filatov, Michael; Jenkins, Samantha

    2017-06-29

    A quantum theory of atoms in molecules (QTAIM) and stress tensor analysis was applied to analyze intramolecular interactions influencing the photoisomerization dynamics of a light-driven rotary molecular motor. For selected nonadiabatic molecular dynamics trajectories characterized by markedly different S 1 state lifetimes, the electron densities were obtained using the ensemble density functional theory method. The analysis revealed that torsional motion of the molecular motor blades from the Franck-Condon point to the S 1 energy minimum and the S 1 /S 0 conical intersection is controlled by two factors: greater numbers of intramolecular bonds before the hop-time and unusually strongly coupled bonds between the atoms of the rotor and the stator blades. This results in the effective stalling of the progress along the torsional path for an extended period of time. This finding suggests a possibility of chemical tuning of the speed of photoisomerization of molecular motors and related molecular switches by reshaping their molecular backbones to decrease or increase the degree of coupling and numbers of intramolecular bond critical points as revealed by the QTAIM/stress tensor analysis of the electron density. Additionally, the stress tensor scalar and vector analysis was found to provide new methods to follow the trajectories, and from this, new insight was gained into the behavior of the S 1 state in the vicinity of the conical intersection.

  8. Complete stress tensor determination by microearthquake analysis

    NASA Astrophysics Data System (ADS)

    Slunga, R.

    2010-12-01

    Jones 1984 found that half of the shallow strike-slip EQ in California had at least one M>2 foreshock. By the Gutenberg law this means at least 3-20 M>0 (low b-value 0.4-0.8). deformations within the crust. This was confirmed by observations in Iceland after 1990 when anew seismic network in Iceland operated by IMO started. Like the Parkfield project in California the SIL network in Iceland was established in an area predicted (Einarsson et al 1981, Stefansson and Halldorsson 1988) to be struck by major EQs within decades of years. The area of main interest have a detection threshold of M=0. A physical approach was chosen to the earthquake warning problem (Stefansson et al 1993) and therefore all microearthquakes were analyzed for FPS by the spectral amplitude method (Slunga 1981). As the shear slip is caused by the in situ stress it is logical to investigate what bounds the FPS puts on the stress tensor. McKenzie 1969 assumed that the earthquake takes place in a crust containing only one fracture, the fault plane. He found that in s uch a case only very weak constraints could be put on the stress. This was widely accepted t o be valid also for microearthquakes in the real crust and lead to methods (Angelier 1978, G ephart and Forsythe 1984 etc) to put four constraints on the stress tensor by assuming that the same stress tensor is causing the slip on four or more different fractures. Another and more realistic approach is to assume that the crust have frequent fractures with almost all orientations. In such a case one can rely on Coulomb's failure criterion for isotropic mat erial (gives four constraints) instead of the weaker Bolt's criterion (giving only one const raint). One obvious fifth constraint is to require the vertical stress to equal the lithosta tic pressure. A sixth constraint is achieved by requiring that the deviatoric elastic energy is minimized. The water pressure is also needed for the fourth constraint by Coulomb (CFS=0 ). It can be related to

  9. Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ohta, Nobuyoshi

    2018-03-01

    The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.

  10. Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Chan, Garnet Kin-Lic

    2013-04-01

    We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.

  11. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.

    PubMed

    Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles

    2009-01-01

    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.

  12. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity

    NASA Astrophysics Data System (ADS)

    Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia

    2008-11-01

    Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).

  13. Unified Stress Tensor of the Hydration Water Layer

    NASA Astrophysics Data System (ADS)

    Kim, Bongsu; Kim, QHwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-01

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  14. Unified stress tensor of the hydration water layer.

    PubMed

    Kim, Bongsu; Kim, Qhwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-13

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  15. Simplified derivation of the gravitational wave stress tensor from the linearized Einstein field equations.

    PubMed

    Balbus, Steven A

    2016-10-18

    A conserved stress energy tensor for weak field gravitational waves propagating in vacuum is derived directly from the linearized general relativistic wave equation alone, for an arbitrary gauge. In any harmonic gauge, the form of the tensor leads directly to the classical expression for the outgoing wave energy. The method described here, however, is a much simpler, shorter, and more physically motivated approach than is the customary procedure, which involves a lengthy and cumbersome second-order (in wave-amplitude) calculation starting with the Einstein tensor. Our method has the added advantage of exhibiting the direct coupling between the outgoing wave energy flux and the work done by the gravitational field on the sources. For nonharmonic gauges, the directly derived wave stress tensor has an apparent index asymmetry. This coordinate artifact may be straightforwardly removed, and the symmetrized (still gauge-invariant) tensor then takes on its widely used form. Angular momentum conservation follows immediately. For any harmonic gauge, however, the stress tensor found is manifestly symmetric from the start, and its derivation depends, in its entirety, on the structure of the linearized wave equation.

  16. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  17. Model for quantum effects in stellar collapse

    NASA Astrophysics Data System (ADS)

    Arderucio-Costa, Bruno; Unruh, William G.

    2018-01-01

    We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.

  18. Use of non-fault fractures in stress tensor reconstruction using the Mohr Circle with the Win-tensor program

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien

    2016-04-01

    Paleostress inversion of geological fault-slip data is usually done using the directional part of the applied stress tensor on a slip plane and comparing it with the observed slip lines. However, this method do not fully exploit the brittle data sets as those are composed of shear and tension fractures, in addition to faults. Brittle deformation can be decomposed in two steps. An initial fracture/failure in previously intact rock generate extension/tensile fractures or shear fractures, both without visible opening or displacement. This first step may or not be followed by fracture opening to form tension joints, frictional shearing to form shear faults, or a combination of opening and shearing which produces hybrid fractures. Fractured rock outcrop contain information of the stress conditions that acted during both brittle deformation steps. The purpose here is to investigate how the fracture pattern generated during the initial fracture/failure step might be used in paleostress reconstruction. Each fracture is represented on the Mohr Circle by its resolved normal and shear stress magnitudes. We consider the typical domains on the Mohr circle where the different types de fractures nucleate (tension, hybrid, shear and compression fractures), as well the domain which contain reactivated fractures (faults reactivating an initial fracture plane). In function of the fracture type defined in the field, a "distance" is computed on the Mohr circle between each point and its expected corresponding nucleation/reactivation domain. This "Mohr Distance" is then used as function to minimize during the inversion. We implemented this new function in the Win-Tensor program, and tested it with natural and synthetic data sets from different stress regimes. It can be used alone using only the Mohr Distance on each plane (function F10), or combined with the angular misfit between observed striae and resolved shear directions (composite function F11). When used alone (F10), only the 3

  19. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Tenzer, Robert

    2017-07-01

    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  20. Covariant Approach of the Dynamics of Particles in External Gauge Fields, Killing Tensors and Quantum Gravitational Anomalies

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2011-04-01

    We give an overview of the first integrals of motion of particles in the presence of external gauge fields in a covariant Hamiltonian approach. The special role of Stäckel-Killing and Killing-Yano tensors is pointed out. Some nontrivial examples involving Runge-Lenz type conserved quantities are explicitly worked out. A condition of the electromagnetic field to maintain the hidden symmetry of the system is stated. A concrete realization of this condition is given by the Killing-Maxwell system and exemplified with the Kerr metric. Quantum symmetry operators for the Klein-Gordon and Dirac equations are constructed from Killing tensors. The transfer of the classical conserved quantities to the quantum mechanical level is analyzed in connection with quantum anomalies.

  1. High-frequency sum rules for the quasi-one-dimensional quantum plasma dielectric tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genga, R.O.

    A high-frequency sum-rule expansion is derived for all elements of the spinless quasi-one-dimensional quantum plasma response tensor at T = 0 K. As in the magnetized classical plasmas, we find that Omega/sub 4//sup 13/ is the only coefficient of omega/sup -4/ that has no correlational term. Further, we find that the correlations either enhance or reduce the negative quantum dispersion, depending on the direction of propagation. It is also noted that the quantum effect does not exist for the ordinary and the extraordinary modes for perpendicular and parallel propagation, respectively.

  2. Tensor network state correspondence and holography

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder

    2018-01-01

    In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.

  3. A Review of Tensors and Tensor Signal Processing

    NASA Astrophysics Data System (ADS)

    Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.

    Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.

  4. Spectra of eigenstates in fermionic tensor quantum mechanics

    NASA Astrophysics Data System (ADS)

    Klebanov, Igor R.; Milekhin, Alexey; Popov, Fedor; Tarnopolsky, Grigory

    2018-05-01

    We study the O (N1)×O (N2)×O (N3) symmetric quantum mechanics of 3-index Majorana fermions. When the ranks Ni are all equal, this model has a large N limit which is dominated by the melonic Feynman diagrams. We derive an integral formula which computes the number of group invariant states for any set of Ni. It is non-vanishing only when each Ni is even. For equal ranks the number of singlets exhibits rapid growth with N : it jumps from 36 in the O (4 )3 model to 595 354 780 in the O (6 )3 model. We derive bounds on the values of energy, which show that they scale at most as N3 in the large N limit, in agreement with expectations. We also show that the splitting between the lowest singlet and non-singlet states is of order 1 /N . For N3=1 the tensor model reduces to O (N1)×O (N2) fermionic matrix quantum mechanics, and we find a simple expression for the Hamiltonian in terms of the quadratic Casimir operators of the symmetry group. A similar expression is derived for the complex matrix model with S U (N1)×S U (N2)×U (1 ) symmetry. Finally, we study the N3=2 case of the tensor model, which gives a more intricate complex matrix model whose symmetry is only O (N1)×O (N2)×U (1 ). All energies are again integers in appropriate units, and we derive a concise formula for the spectrum. The fermionic matrix models we studied possess standard 't Hooft large N limits where the ground state energies are of order N2, while the energy gaps are of order 1.

  5. Notes on Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Dvoeglazov, V. V.

    Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskiĭ and Polubarinov, Hayashi, and Kalb and Ramond. Ogievetskiĭ and Polubarinov proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity. Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Nöther currents in the electromagnetic theory, the relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in the next few years.

  6. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  7. Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2017-07-01

    The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.

  8. Reduced Stress Tensor and Dissipation and the Transport of Lamb Vector

    NASA Technical Reports Server (NTRS)

    Wu, Jie-Zhi; Zhou, Ye; Wu, Jian-Ming

    1996-01-01

    We develop a methodology to ensure that the stress tensor, regardless of its number of independent components, can be reduced to an exactly equivalent one which has the same number of independent components as the surface force. It is applicable to the momentum balance if the shear viscosity is constant. A direct application of this method to the energy balance also leads to a reduction of the dissipation rate of kinetic energy. Following this procedure, significant saving in analysis and computation may be achieved. For turbulent flows, this strategy immediately implies that a given Reynolds stress model can always be replaced by a reduced one before putting it into computation. Furthermore, we show how the modeling of Reynolds stress tensor can be reduced to that of the mean turbulent Lamb vector alone, which is much simpler. As a first step of this alternative modeling development, we derive the governing equations for the Lamb vector and its square. These equations form a basis of new second-order closure schemes and, we believe, should be favorably compared to that of traditional Reynolds stress transport equation.

  9. Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals

    ERIC Educational Resources Information Center

    Juretschke, H. J.

    1977-01-01

    Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)

  10. Parameterization of subgrid-scale stress by the velocity gradient tensor

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.; Novikov, E. A.

    1993-01-01

    The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.

  11. Loop optimization for tensor network renormalization

    NASA Astrophysics Data System (ADS)

    Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang

    We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.

  12. Unifying neural-network quantum states and correlator product states via tensor networks

    NASA Astrophysics Data System (ADS)

    Clark, Stephen R.

    2018-04-01

    Correlator product states (CPS) are a powerful and very broad class of states for quantum lattice systems whose (unnormalised) amplitudes in a fixed basis can be sampled exactly and efficiently. They work by gluing together states of overlapping clusters of sites on the lattice, called correlators. Recently Carleo and Troyer (2017 Science 355 602) introduced a new type sampleable ansatz called neural-network quantum states (NQS) that are inspired by the restricted Boltzmann model used in machine learning. By employing the formalism of tensor networks we show that NQS are a special form of CPS with novel properties. Diagramatically a number of simple observations become transparent. Namely, that NQS are CPS built from extensively sized GHZ-form correlators making them uniquely unbiased geometrically. The appearance of GHZ correlators also relates NQS to canonical polyadic decompositions of tensors. Another immediate implication of the NQS equivalence to CPS is that we are able to formulate exact NQS representations for a wide range of paradigmatic states, including superpositions of weighed-graph states, the Laughlin state, toric code states, and the resonating valence bond state. These examples reveal the potential of using higher dimensional hidden units and a second hidden layer in NQS. The major outlook of this study is the elevation of NQS to correlator operators allowing them to enhance conventional well-established variational Monte Carlo approaches for strongly correlated fermions.

  13. Quantum gravitational corrections from the Wheeler–DeWitt equation for scalar–tensor theories

    NASA Astrophysics Data System (ADS)

    Steinwachs, Christian F.; van der Wild, Matthijs L.

    2018-07-01

    We perform the canonical quantization of a general scalar–tensor theory and derive the first quantum gravitational corrections following from a semiclassical expansion of the Wheeler–DeWitt equation. The non-minimal coupling of the scalar field to gravity induces a derivative coupling between the scalar field and the gravitational degrees of freedom, which prevents a direct application of the expansion scheme. We address this technical difficulty by transforming the theory from the Jordan frame to the Einstein frame. We find that a large non-minimal coupling can have strong effects on the quantum gravitational correction terms. We briefly discuss these effects in the context of the specific model of Higgs inflation.

  14. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levashov, V. A.

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectorsmore » of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ{sub 1} ≥ λ{sub 2} ≥ λ{sub 3} ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ{sub 2}/λ{sub 1}) and (λ{sub 3}/λ{sub 2}) are essentially identical to each other in the liquids state. We also found that λ{sub 2} tends to be equal to the geometric average of λ{sub 1} and λ{sub 3}. In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.« less

  15. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors.

    PubMed

    Levashov, V A

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.

  16. Ryu-Takayanagi formula for symmetric random tensor networks

    NASA Astrophysics Data System (ADS)

    Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi

    2018-06-01

    We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.

  17. Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2018-05-01

    We propose theoretically a method that allows to measure all the components of the quantum geometric tensor (the metric tensor and the Berry curvature) in a photonic system. The method is based on standard optical measurements. It applies to two-band systems, which can be mapped to a pseudospin, and to four-band systems, which can be described by two entangled pseudospins. We apply this method to several specific cases. We consider a 2D planar cavity with two polarization eigenmodes, where the pseudospin measurement can be performed via polarization-resolved photoluminescence. We also consider the s band of a staggered honeycomb lattice with polarization-degenerate modes (scalar photons), where the sublattice pseudospin can be measured by performing spatially resolved interferometric measurements. We finally consider the s band of a honeycomb lattice with polarized (spinor) photons as an example of a four-band model. We simulate realistic experimental situations in all cases. We find the photon eigenstates by solving the Schrödinger equation including pumping and finite lifetime, and then simulate the measurements to finally extract realistic mappings of the k-dependent tensor components.

  18. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), 1H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1H-1H homonuclear dipolar couplings and narrow 1H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1H-1H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for

  19. Uni10: an open-source library for tensor network algorithms

    NASA Astrophysics Data System (ADS)

    Kao, Ying-Jer; Hsieh, Yun-Da; Chen, Pochung

    2015-09-01

    We present an object-oriented open-source library for developing tensor network algorithms written in C++ called Uni10. With Uni10, users can build a symmetric tensor from a collection of bonds, while the bonds are constructed from a list of quantum numbers associated with different quantum states. It is easy to label and permute the indices of the tensors and access a block associated with a particular quantum number. Furthermore a network class is used to describe arbitrary tensor network structure and to perform network contractions efficiently. We give an overview of the basic structure of the library and the hierarchy of the classes. We present examples of the construction of a spin-1 Heisenberg Hamiltonian and the implementation of the tensor renormalization group algorithm to illustrate the basic usage of the library. The library described here is particularly well suited to explore and fast prototype novel tensor network algorithms and to implement highly efficient codes for existing algorithms.

  20. Tensor and Spin Representations of SO(4) and Discrete Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Lorente, M.; Kramer, P.

    Starting from the defining transformations of complex matrices for the SO(4) group, we construct the fundamental representation and the tensor and spinor representations of the group SO(4). Given the commutation relations for the corresponding algebra, the unitary representations of the group in terms of the generalized Euler angles are constructed. These mathematical results help us to a more complete description of the Barret-Crane model in Quantum Gravity. In particular a complete realization of the weight function for the partition function is given and a new geometrical interpretation of the asymptotic limit for the Regge action is presented.

  1. Method to compute the stress-energy tensor for a quantum field outside a black hole that forms from collapse

    NASA Astrophysics Data System (ADS)

    Anderson, Paul; Evans, Charles

    2017-01-01

    A method to compute the stress-energy tensor for a quantized massless minimally coupled scalar field outside the event horizon of a 4-D black hole that forms from the collapse of a spherically symmetric null shell is given. The method is illustrated in the corresponding 2-D case which is mathematically similar but is simple enough that the calculations can be done analytically. The approach to the Unruh state at late times is discussed. National Science Foundation Grant No. PHY-1505875 to Wake Forest University and National Science Foundation Grant No. PHY-1506182 to the University of North Carolina, Chapel Hill

  2. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias

    DOE PAGES

    Levine, Lyle E.; Okoro, Chukwudi A.; Xu, Ruqing

    2015-09-30

    We report non-destructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 mm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positionsmore » were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.« less

  3. Algorithms for tensor network renormalization

    NASA Astrophysics Data System (ADS)

    Evenbly, G.

    2017-01-01

    We discuss in detail algorithms for implementing tensor network renormalization (TNR) for the study of classical statistical and quantum many-body systems. First, we recall established techniques for how the partition function of a 2 D classical many-body system or the Euclidean path integral of a 1 D quantum system can be represented as a network of tensors, before describing how TNR can be implemented to efficiently contract the network via a sequence of coarse-graining transformations. The efficacy of the TNR approach is then benchmarked for the 2 D classical statistical and 1 D quantum Ising models; in particular the ability of TNR to maintain a high level of accuracy over sustained coarse-graining transformations, even at a critical point, is demonstrated.

  4. Elliptic Relaxation of a Tensor Representation for the Redistribution Terms in a Reynolds Stress Turbulence Model

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Gatski, T. B.

    2002-01-01

    A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.

  5. Bimodule structure of the mixed tensor product over Uq sℓ (2 | 1) and quantum walled Brauer algebra

    NASA Astrophysics Data System (ADS)

    Bulgakova, D. V.; Kiselev, A. M.; Tipunin, I. Yu.

    2018-03-01

    We study a mixed tensor product 3⊗m ⊗3 ‾ ⊗ n of the three-dimensional fundamental representations of the Hopf algebra Uq sℓ (2 | 1), whenever q is not a root of unity. Formulas for the decomposition of tensor products of any simple and projective Uq sℓ (2 | 1)-module with the generating modules 3 and 3 ‾ are obtained. The centralizer of Uq sℓ (2 | 1) on the mixed tensor product is calculated. It is shown to be the quotient Xm,n of the quantum walled Brauer algebra qw Bm,n. The structure of projective modules over Xm,n is written down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated the corresponding restriction functors on simple and projective modules over Xm,n. This result forms a crucial step in decomposition of the mixed tensor product as a bimodule over Xm,n ⊠Uq sℓ (2 | 1). We give an explicit bimodule structure for all m , n.

  6. Detailed stress tensor measurements in a centrifugal compressor vaneless diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinarbasi, A.; Johnson, M.W.

    1996-04-01

    Detailed flow measurements have been made in the vaneless diffuser of a large low-speed centrifugal compressor using hot-wire anemometry. The three time mean velocity components and full stress tensor distributions have been determined on eight measurement plans within the diffuser. High levels of Reynolds stress result in the rapid mixing out of the blade wake. Although high levels of turbulent kinetic energy are found in the passage wake, they are not associated with strong Reynolds stresses and hence the passage wake mixes out only slowly. Low-frequency meandering of the wake position is therefore likely to be responsible for the highmore » kinetic energy levels. The anisotropic nature of the turbulence suggests that Reynolds stress turbulence models are required for CFD modeling of diffuser flows.« less

  7. Quantum field theory in spaces with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Boulware, David G.

    1992-11-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  8. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  9. Present-day stress tensors along the southern Caribbean plate boundary zone from inversion of focal mechanism solutions: A successful trial

    NASA Astrophysics Data System (ADS)

    Audemard M., Franck A.; Castilla, Raymi

    2016-11-01

    This paper presents a compilation of 16 present-day stress tensors along the southern Caribbean plate boundary zone (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al. The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the southern Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the southern Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale. The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (

  10. BRST Exactness of Stress-Energy Tensors

    NASA Astrophysics Data System (ADS)

    Miyata, Hideo; Sugimoto, Hiroshi

    BRST commutators in the topological conformal field theories obtained by twisting N=2 theories are evaluated explicitly. By our systematic calculations of the multiple integrals which contain screening operators, the BRST exactness of the twisted stress-energy tensors is deduced for classical simple Lie algebras and general level k. We can see that the paths of integrations do not affect the result, and further, the N=2 coset theories are obtained by deleting two simple roots with Kac-label 1 from the extended Dynkin diagram; in other words, by not performing the integrations over the variables corresponding to the two simple roots of Kac-Moody algebras. It is also shown that a series of N=1 theories are generated in the same way by deleting one simple root with Kac-label 2.

  11. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which rendermore » it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful

  12. Geomechanical simulation of the stress tensor rotation caused by injection of cold water in a deep geothermal reservoir

    DOE PAGES

    Jeanne, Pierre; Rutqvist, Jonny; Dobson, Patrick F.; ...

    2015-11-12

    We present a three-dimensional thermohydromechanical numerical study of the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal reservoir (in California), including a detailed study of the region around one injection well from 2003 to 2012. Initially, after imposing a normal faulting stress regime, we calculated local changes in the stress regime around injection wells. Our results were compared with previously published studies in which the stress state was inferred from inverting the focal plane mechanism of seismic events. Our main finding is that changes in stress tensor orientation are caused by injection-induced progressivemore » cooling of the reservoir, as well as by the seasonal variations in injection rate. Because of the gravity flow and cooling around a liquid zone formed by the injection, the vertical stress reduction is larger and propagates far below the injection well. At the same time, the horizontal stress increases, mostly because of stress redistribution below and above the cooling area. These two phenomena cause the rotation of the stress tensor and the appearance of a strike-slip regime above, inside, and below the cooling area. The cooling and the associated rotation of the stress regime can play a significant role in the observed long-term deepening of the microseismicity below active injection wells.« less

  13. Quantum field theory in spaces with closed time-like curves

    NASA Astrophysics Data System (ADS)

    Boulware, D. G.

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27(pi). A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  14. On the simplest scale invariant tree-tensor-states preserving the quantum symmetries of the antiferromagnetic XXZ chain

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2018-03-01

    For the line of critical antiferromagnetic XXZ chains with coupling J  >  0 and anisotropy 0<Δ ≤slant 1 , we describe how the block-spin renormalization procedure preserving the SU q (2) symmetry introduced by Martin-Delgado and Sierra (1996 Phys. Rev. Lett. 76 1146) can be reformulated as the translation-invariant scale-invariant tree-tensor-state of the smallest dimension that is compatible with the quantum symmetries of the model. The properties of this tree-tensor-state are studied in detail via the ground-state energy, the magnetizations and the staggered magnetizations, as well as the Shannon-Renyi entropies characterizing the multifractality of the components of the wave function.

  15. Quantum Max-flow/Min-cut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com

    2016-06-15

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less

  16. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  17. Tensor Algebra Library for NVidia Graphics Processing Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakh, Dmitry

    This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less

  18. Phase Diagram of Planar Matrix Quantum Mechanics, Tensor, and Sachdev-Ye-Kitaev Models.

    PubMed

    Azeyanagi, Tatsuo; Ferrari, Frank; Massolo, Fidel I Schaposnik

    2018-02-09

    We study the Schwinger-Dyson equations of a fermionic planar matrix quantum mechanics [or tensor and Sachdev-Ye-Kitaev (SYK) models] at leading melonic order. We find two solutions describing a high entropy, SYK black-hole-like phase and a low entropy one with trivial IR behavior. There is a line of first order phase transitions that terminates at a new critical point. Critical exponents are nonmean field and differ on the two sides of the transition. Interesting phenomena are also found in unstable and stable bosonic models, including Kazakov critical points and inconsistency of SYK-like solutions of the IR limit.

  19. Tree tensor network approach to simulating Shor's algorithm

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Eugene

    2017-12-01

    Constructively simulating quantum systems furthers our understanding of qualitative and quantitative features which may be analytically intractable. In this paper, we directly simulate and explore the entanglement structure present in the paradigmatic example for exponential quantum speedups: Shor's algorithm. To perform our simulation, we construct a dynamic tree tensor network which manifestly captures two salient circuit features for modular exponentiation. These are the natural two-register bipartition and the invariance of entanglement with respect to permutations of the top-register qubits. Our construction help identify the entanglement entropy properties, which we summarize by a scaling relation. Further, the tree network is efficiently projected onto a matrix product state from which we efficiently execute the quantum Fourier transform. Future simulation of quantum information states with tensor networks exploiting circuit symmetries is discussed.

  20. Tensor products of process matrices with indefinite causal structure

    NASA Astrophysics Data System (ADS)

    Jia, Ding; Sakharwade, Nitica

    2018-03-01

    Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum gravity and the practical perspective of information processing. In this paper we point out a restriction in forming tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum objects the tensor products of which violate the normalization condition of probabilities, if all local operations are allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the violation of normalization.

  1. Hand-waving and interpretive dance: an introductory course on tensor networks

    NASA Astrophysics Data System (ADS)

    Bridgeman, Jacob C.; Chubb, Christopher T.

    2017-06-01

    The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor networks and algorithms. In particular, we cover: introductory tensor network notation, applications to quantum information, basic properties of matrix product states, a classification of quantum phases using tensor networks, algorithms for finding matrix product states, basic properties of projected entangled pair states, and multiscale entanglement renormalisation ansatz states. The lectures are intended to be generally accessible, although the relevance of many of the examples may be lost on students without a background in many-body physics/quantum information. For each lecture, several problems are given, with worked solutions in an ancillary file.

  2. Renormalized stress-energy tensor for stationary black holes

    NASA Astrophysics Data System (ADS)

    Levi, Adam

    2017-01-01

    We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the t -splitting variant of the method, which was first presented for ⟨ϕ2⟩ren , to compute the RSET in a stationary, asymptotically flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.

  3. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems

    PubMed Central

    2015-01-01

    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072

  4. A Communication-Optimal Framework for Contracting Distributed Tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei

    Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this paper, we characterize distributed tensor contraction algorithms on torus networks. We develop a framework with three fundamental communication operators to generate communication-efficient contraction algorithms for arbitrary tensor contractions. We show that for a given amount of memory per processor, our framework is communication optimal for all tensor contractions. We demonstrate performance and scalability of our frameworkmore » on up to 262,144 cores of BG/Q supercomputer using five tensor contraction examples.« less

  5. Symmetric Topological Phases and Tensor Network States

    NASA Astrophysics Data System (ADS)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  6. Stress Energy tensor in LCFT and the Logarithmic Sugawara construction

    NASA Astrophysics Data System (ADS)

    Kogan, Ian I.; Nichols, Alexander

    2002-01-01

    We discuss the partners of the stress energy tensor and their structure in Logarithmic conformal field theories. In particular we draw attention to the fundamental differences between theories with zero and non-zero central charge. However they are both characterised by at least two independent parameters. We show how, by using a generalised Sugawara construction, one can calculate the logarithmic partner of T. We show that such a construction works in the c = -2 theory using the conformal dimension one primary currents which generate a logarithmic extension of the Kac-Moody algebra.

  7. Killing approximation for vacuum and thermal stress-energy tensor in static space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1987-05-15

    The problem of the vacuum polarization of conformal massless fields in static space-times is considered. A tensor T/sub ..mu..//sub ..nu../ constructed from the curvature, the Killing vector, and their covariant derivatives is proposed which can be used to approximate the average value of the stress-energy tensor /sup ren/ in such spaces. It is shown that if (i) its trace T /sub epsilon//sup epsilon/ coincides with the trace anomaly /sup ren/, (ii) it satisfies the conservation law T/sup ..mu..//sup epsilon/ /sub ;//sub epsilon/ = 0, and (iii) it has the correct behavior under the scale transformations, then it is uniquely definedmore » up to a few arbitrary constants. These constants must be chosen to satisfy the boundary conditions. In the case of a static black hole in a vacuum these conditions single out the unique tensor T/sub ..mu..//sub ..nu../ which provides a good approximation for /sup ren/ in the Hartle-Hawking vacuum. The relation between this approach and the Page-Brown-Ottewill approach is discussed.« less

  8. Random SU(2) invariant tensors

    NASA Astrophysics Data System (ADS)

    Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei

    2018-04-01

    SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n  =  4. In this paper, we show that for n  >  4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.

  9. Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Goya, Andrés; Leston, Mauricio

    2011-09-01

    Chiral gravity admits asymptotically AdS3 solutions that are not locally equivalent to AdS3; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.

  10. Stress Energy Tensor in LCFT and LOGARITHMIC Sugawara Construction

    NASA Astrophysics Data System (ADS)

    Kogan, Ian I.; Nichols, Alexander

    We discuss the partners of the stress energy tensor and their structure in Logarithmic conformal field theories. In particular we draw attention to the fundamental differences between theories with zero and non-zero central charge. However they are both characterised by at least two independent parameters. We show how, by using a generalised Sugawara construction, one can calculate the logarithmic partner of T. We show that such a construction works in the c=-2 theory using the conformal dimension one primary currents which generate a logarithmic extension of the Kac-Moody algebra. This is an expanded version of a talk presented by A. Nichols at the conference on Logarithmic Conformal Field Theory and its Applications in Tehran Iran, 2001.

  11. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Zhengcheng; Wen Xiaogang

    2009-10-15

    We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less

  12. Quantum Stress: Density Functional Theory Formulation and Physical Manifestation

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Liu, Feng

    2012-02-01

    The concept of ``quantum stress (QS)'' is introduced and formulated within density functional theory (DFT), to underlie extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. An explicit expression of QS (σ^Q) is derived in relation to the deformation potential of electronic states (ξ) and the variation of electron density (δn), σ^Q=ξ(δn), as a quantum analog of classical Hook's law. Two distinct QS manifestations are demonstrated quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and (2) in the form of surface stress induced by quantum confinement. QS has broad implications in physical phenomena and technological applications that are based on coupling of electronic structure with lattice strain.

  13. Renormalization group contraction of tensor networks in three dimensions

    NASA Astrophysics Data System (ADS)

    García-Sáez, Artur; Latorre, José I.

    2013-02-01

    We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three-dimensional quantum system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.

  14. Emergent symmetries in the canonical tensor model

    NASA Astrophysics Data System (ADS)

    Obster, Dennis; Sasakura, Naoki

    2018-04-01

    The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.

  15. Corner entanglement as a probe of quantum criticality

    NASA Astrophysics Data System (ADS)

    Witczak-Krempa, William; Bueno, Pablo; Myers, Robert C.

    The entanglement entropy in many gapless quantum systems in 2+1D receives a contribution from corners in the entangling surface. It is characterized by a universal function a (θ) that depends non-trivially on the corner opening angle θ. Focusing on a large family of quantum critical theories with emergent Lorentz invariance (CFTs), we argue that the smooth limit a (θ ~ π) is entirely determined by the energy-density or stress tensor 2-point function coefficient. This explains recent results obtained via cutting edge simulations on the quantum critical Ising, XY and Heisenberg models. We also show how to extract the full thermal entropy of the quantum critical system using corner entanglement of the groundstate alone. ** Bueno, Myers, WK, Phys. Rev. Lett. (2015) Work supported by Perimeter Institute and NSERC.

  16. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    PubMed

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  17. Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers

    NASA Astrophysics Data System (ADS)

    Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla

    2018-02-01

    In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.

  18. Quantum electronic stress: density-functional-theory formulation and physical manifestation.

    PubMed

    Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng

    2012-08-03

    The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.

  19. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.

    PubMed

    Khoromskaia, Venera; Khoromskij, Boris N

    2015-12-21

    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.

  20. Quantum corrections in thermal states of fermions on anti-de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2017-12-01

    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.

  1. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors

    NASA Astrophysics Data System (ADS)

    Cui, S. T.

    The stress-stress correlation function and the viscosity of a united-atom model of liquid decane are studied by equilibrium molecular dynamics simulation using two different formalisms for the stress tensor: the atomic and the molecular formalisms. The atomic and molecular correlation functions show dramatic difference in short-time behaviour. The integrals of the two correlation functions, however, become identical after a short transient period whichis significantly shorter than the rotational relaxation time of the molecule. Both reach the same plateau value in a time period corresponding to this relaxation time. These results provide a convenient guide for the choice of the upper integral time limit in calculating the viscosity by the Green-Kubo formula.

  2. Tensor Network Wavefunctions for Topological Phases

    NASA Astrophysics Data System (ADS)

    Ware, Brayden Alexander

    The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for

  3. Applicability of transfer tensor method for open quantum system dynamics.

    PubMed

    Gelzinis, Andrius; Rybakovas, Edvardas; Valkunas, Leonas

    2017-12-21

    Accurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014)]. It allows one to accurately simulate long time dynamics with a numerical cost of solving a time-convolution master equation, provided many initial system evolution trajectories are obtained from some exact method beforehand. The possible time-savings thus strongly depend on the ratio of total versus initial evolution lengths. In this work, we investigate the parameter regimes where an application of TTM would be most beneficial in terms of computational time. We identify several promising parameter regimes. Although some of them correspond to cases when perturbative theories could be expected to perform well, we find that the accuracy of such approaches depends on system parameters in a more complex way than it is commonly thought. We propose that the TTM should be applied whenever system evolution is expected to be long and accuracy of perturbative methods cannot be ensured or in cases when the system under consideration does not correspond to any single perturbative regime.

  4. Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks

    NASA Astrophysics Data System (ADS)

    Gerster, M.; Rizzi, M.; Silvi, P.; Dalmonte, M.; Montangero, S.

    2017-11-01

    We show via tensor network methods that the Harper-Hofstadter Hamiltonian for hard-core bosons on a square geometry supports a topological phase realizing the ν =1/2 fractional quantum Hall (FQH) effect on the lattice. We address the robustness of the ground-state degeneracy and of the energy gap, measure the many-body Chern number, and characterize the system using Green functions, showing that they decay algebraically at the edges of open geometries, indicating the presence of gapless edge modes. Moreover, we estimate the topological entanglement entropy by taking a combination of lattice bipartitions that reproduces the topological structure of the original proposals by Kitaev and Preskill [Phys. Rev. Lett. 96, 110404 (2006), 10.1103/PhysRevLett.96.110404] and Levin and Wen [Phys. Rev. Lett. 96, 110405 (2006), 10.1103/PhysRevLett.96.110405]. The numerical results show that the topological contribution is compatible with the expected value γ =1/2 . Our results provide extensive evidence that FQH states are within reach of state-of-the-art cold-atom experiments.

  5. ON THE DECOMPOSITION OF STRESS AND STRAIN TENSORS INTO SPHERICAL AND DEVIATORIC PARTS

    PubMed Central

    Augusti, G.; Martin, J. B.; Prager, W.

    1969-01-01

    It is well known that Hooke's law for a linearly elastic, isotropic solid may be written in the form of two relations that involve only the spherical or only the deviatoric parts of the tensors of stress and strain. The example of the linearly elastic, transversely isotropic solid is used to show that this decomposition is not, in general, feasible for linearly elastic, anisotropic solids. The discussion is extended to a large class of work-hardening rigid, plastic solids, and it is shown that the considered decomposition can only be achieved for the incompressible solids of this class. PMID:16591754

  6. The Topology of Symmetric Tensor Fields

    NASA Technical Reports Server (NTRS)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval

    1997-01-01

    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  7. General equilibrium second-order hydrodynamic coefficients for free quantum fields

    NASA Astrophysics Data System (ADS)

    Buzzegoli, M.; Grossi, E.; Becattini, F.

    2017-10-01

    We present a systematic calculation of the corrections of the stress-energy tensor and currents of the free boson and Dirac fields up to second order in thermal vorticity, which is relevant for relativistic hydrodynamics. These corrections are non-dissipative because they survive at general thermodynamic equilibrium with non vanishing mean values of the conserved generators of the Lorentz group, i.e. angular momenta and boosts. Their equilibrium nature makes it possible to express the relevant coefficients by means of correlators of the angular-momentum and boost operators with stress-energy tensor and current, thus making simpler to determine their so-called "Kubo formulae". We show that, at least for free fields, the corrections are of quantum origin and we study several limiting cases and compare our results with previous calculations. We find that the axial current of the free Dirac field receives corrections proportional to the vorticity independently of the anomalous term.

  8. Stress Fields Along Okinawa Trough and Ryukyu Arc Inferred From Regional Broadband Moment Tensors

    NASA Astrophysics Data System (ADS)

    Kubo, A.; Fukuyama, E.

    2001-12-01

    Most shallow earthquakes along Okinawa trough and Ryukyu arc are relatively small (M<5.5). Focal mechanism estimations for such events were difficult due to insufficient dataset. However, this situation is improved by regional broadband network (FREESIA). Lower limit of magnitude of the earthquakes determined becomes 1.5 smaller in M{}w than that of Harvard moment tensors. As a result, we could examine the stress field in more detail than Fournier et al.(2001, JGR, 106, 13751-) did based on surface geology and teleseismic moment tensors. In the NE Okinawa trough, extension axes are oblique to the trough strike, while in SW Okinawa trough, they are perpendicular to the trough. Fault type in SW is normal fault and gradually changes to mixture of normal and strike slip toward NE. In the Ryukyu arc, extension axes are parallel to the arc. Although this feature is not clear in the NW Ryukyu arc, arc parallel extension may be a major property of entire arc. Dominant fault type is normal fault and several strike slips with the same extensional component are included. The volcanic train is located at the edge of arc parallel extension field faced A simple explanation of the arc parallel extension is the response to the opening motion of the Okinawa trough. Another possible mechanism is forearc movement due to oblique subduction which is enhanced in SW. We consider that the Okinawa trough and the Ryukyu arc are independent stress provinces.

  9. Stress tensor and focal mechanisms in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.; Dorbath, L.; Braeuer, B.; Weber, M. H.

    2015-12-01

    We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes that occurred in the Dead Sea basin. The observed seismicity in the Dead Sea basin was divided into 9 regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the good station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes out of the 494 mechanisms we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in good agreement with the Arava fault on the eastern side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of sigma1 and sigma2 or the switching of sigma2 and sigma3as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.

  10. NIED seismic moment tensor catalogue for regional earthquakes around Japan: quality test and application

    NASA Astrophysics Data System (ADS)

    Kubo, Atsuki; Fukuyama, Eiichi; Kawai, Hiroyuki; Nonomura, Ken'ichi

    2002-10-01

    We have examined the quality of the National Research Institute for Earth Science and Disaster Prevention (NIED) seismic moment tensor (MT) catalogue obtained using a regional broadband seismic network (FREESIA). First, we examined using synthetic waveforms the robustness of the solutions with regard to data noise as well as to errors in the velocity structure and focal location. Then, to estimate the reliability, robustness and validity of the catalogue, we compared it with the Harvard centroid moment tensor (CMT) catalogue as well as the Japan Meteorological Agency (JMA) focal mechanism catalogue. We found out that the NIED catalogue is consistent with Harvard and JMA catalogues within the uncertainty of 0.1 in moment magnitude, 10 km in depth, and 15° in direction of the stress axes. The NIED MT catalogue succeeded in reducing to 3.5 the lower limit of moment magnitude above which the moment tensor could be reliably estimated. Finally, we estimated the stress tensors in several different regions by using the NIED MT catalogue. This enables us to elucidate the stress/deformation field in and around the Japanese islands to understand the mode of deformation and applied stress. Moreover, we identified a region of abnormal stress in a swarm area from stress tensor estimates.

  11. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    NASA Astrophysics Data System (ADS)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean

  12. The Constantine (Algeria) seismic sequence of 27 October 1985: a new rupture model from aftershock relocation, focal mechanisms, and stress tensors

    NASA Astrophysics Data System (ADS)

    Ousadou, F.; Dorbath, L.; Dorbath, C.; Bounif, M. A.; Benhallou, H.

    2013-04-01

    The October 27, 1985 Constantine earthquake of magnitude MS 5.9 (NEIC) although moderate is the strongest earthquake recorded in the eastern Tellian Atlas (northeast Algeria) since the beginning of instrumental seismology. The main shock locations given by different institutions are scattered and up to 10 km away northwest from the NE-SW 30 km long elongated aftershocks cloud localized by a dedicated temporary portable network. The focal mechanism indicates left-lateral strike-slip on an almost vertical fault with a small reverse component on the northwest dipping plane. This paper presents relocations of the main shock and aftershocks using TomoDD. One hundred thirty-eight individual focal mechanisms have been built allowing the determination of the stress tensor at different scales. A rupture model has been suggested, which explains the different observations of aftershock distribution and stress tensor rotation.

  13. Virtual quantum subsystems.

    PubMed

    Zanardi, P

    2001-08-13

    The physical resources available to access and manipulate the degrees of freedom of a quantum system define the set A of operationally relevant observables. The algebraic structure of A selects a preferred tensor product structure, i.e., a partition into subsystems. The notion of compoundness for quantum systems is accordingly relativized. Universal control over virtual subsystems can be achieved by using quantum noncommutative holonomies

  14. Computer Tensor Codes to Design the War Drive

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    To address problems in Breakthrough Propulsion Physics (BPP) and design the Warp Drive one needs sheer computing capabilities. This is because General Relativity (GR) and Quantum Field Theory (QFT) are so mathematically sophisticated that the amount of analytical calculations is prohibitive and one can hardly do all of them by hand. In this paper we make a comparative review of the main tensor calculus capabilities of the three most advanced and commercially available “symbolic manipulator” codes. We also point out that currently one faces such a variety of different conventions in tensor calculus that it is difficult or impossible to compare results obtained by different scholars in GR and QFT. Mathematical physicists, experimental physicists and engineers have each their own way of customizing tensors, especially by using different metric signatures, different metric determinant signs, different definitions of the basic Riemann and Ricci tensors, and by adopting different systems of physical units. This chaos greatly hampers progress toward the design of the Warp Drive. It is thus suggested that NASA would be a suitable organization to establish standards in symbolic tensor calculus and anyone working in BPP should adopt these standards. Alternatively other institutions, like CERN in Europe, might consider the challenge of starting the preliminary implementation of a Universal Tensor Code to design the Warp Drive.

  15. Topology in colored tensor models via crystallization theory

    NASA Astrophysics Data System (ADS)

    Casali, Maria Rita; Cristofori, Paola; Dartois, Stéphane; Grasselli, Luigi

    2018-07-01

    The aim of this paper is twofold. On the one hand, it provides a review of the links between random tensor models, seen as quantum gravity theories, and the PL-manifolds representation by means of edge-colored graphs (crystallization theory). On the other hand, the core of the paper is to establish results about the topological and geometrical properties of the Gurau-degree (or G-degree) of the represented manifolds, in relation with the motivations coming from physics. In fact, the G-degree appears naturally in higher dimensional tensor models as the quantity driving their 1 / N expansion, exactly as it happens for the genus of surfaces in the two-dimensional matrix model setting. In particular, the G-degree of PL-manifolds is proved to be finite-to-one in any dimension, while in dimension 3 and 4 a series of classification theorems are obtained for PL-manifolds represented by graphs with a fixed G-degree. All these properties have specific relevance in the tensor models framework, showing a direct fruitful interaction between tensor models and discrete geometry, via crystallization theory.

  16. Tensor hypercontraction. II. Least-squares renormalization.

    PubMed

    Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David

    2012-12-14

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  17. Tensor modes on the string theory landscape

    NASA Astrophysics Data System (ADS)

    Westphal, Alexander

    2013-04-01

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  18. Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate.

    PubMed

    Liu, Haofei; Sun, Wei

    2017-08-01

    Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.

  19. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  20. Calculation of the Maxwell stress tensor and the Poisson-Boltzmann force on a solvated molecular surface using hypersingular boundary integrals

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Hou, Tingjun; McCammon, J. Andrew

    2005-08-01

    The electrostatic interaction among molecules solvated in ionic solution is governed by the Poisson-Boltzmann equation (PBE). Here the hypersingular integral technique is used in a boundary element method (BEM) for the three-dimensional (3D) linear PBE to calculate the Maxwell stress tensor on the solvated molecular surface, and then the PB forces and torques can be obtained from the stress tensor. Compared with the variational method (also in a BEM frame) that we proposed recently, this method provides an even more efficient way to calculate the full intermolecular electrostatic interaction force, especially for macromolecular systems. Thus, it may be more suitable for the application of Brownian dynamics methods to study the dynamics of protein/protein docking as well as the assembly of large 3D architectures involving many diffusing subunits. The method has been tested on two simple cases to demonstrate its reliability and efficiency, and also compared with our previous variational method used in BEM.

  1. Tensor Factorization for Low-Rank Tensor Completion.

    PubMed

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao

    2018-03-01

    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  2. Gaugeon formalism for the second-rank antisymmetric tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru

    2018-02-01

    We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.

  3. Quantum heating as an alternative of reheating

    NASA Astrophysics Data System (ADS)

    Akhmedov, Emil T.; Bascone, Francesco

    2018-02-01

    To model a realistic situation for the beginning we consider massive real scalar ϕ4 theory in a (1 +1 )-dimensional asymptotically static Minkowski spacetime with an intermediate stage of expansion. To have an analytic headway we assume that scalars have a big mass. At past and future infinities of the background we have flat Minkowski regions which are joint by the inflationary expansion region. We use the tree-level Keldysh propagator in the theory in question to calculate the expectation value of the stress-energy tensor which is, thus, due to the excitations of the zero-point fluctuations. Then we show that even for large mass, if the de Sitter expansion stage is long enough, the quantum loop corrections to the expectation value of the stress-energy tensor are not negligible in comparison with the tree-level contribution. That is revealed itself via the excitation of the higher-point fluctuations of the exact modes: during the expansion stage a nonzero particle number density for the exact modes is generated. This density is not Planckian and serves as a quench which leads to a thermalization in the out Minkowski stage.

  4. Complex quantum enveloping algebras as twisted tensor products

    NASA Astrophysics Data System (ADS)

    Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno

    1994-12-01

    We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.

  5. A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam

    In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.

  6. A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Vollant, A.; Balarac, G.; Corre, C.

    2016-02-01

    Large-eddy simulation (LES) solves only the large scales part of turbulent flows by using a scales separation based on a filtering operation. The solution of the filtered Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor to take into account the effect of scales smaller than the filter size. In this work, a new model is proposed for the SGS stress model. The model formulation is based on a regularization procedure of the gradient model to correct its unstable behavior. The model is developed based on a priori tests to improve the accuracy of the modeling for both structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce enough global SGS dissipation, respectively. LES is then performed for a posteriori validation. This work is an extension to the SGS stress tensor of the regularization procedure proposed by Balarac et al. ["A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations," Phys. Fluids 25(7), 075107 (2013)] to model the SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made available for both the momentum and the scalar equations. The second objective of this work is to compare this new set of DRG models with direct numerical simulations (DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral solver and with the standard set of models based on the dynamic Smagorinsky model. Various flow configurations are considered: decaying homogeneous isotropic turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate the stable behavior provided by the regularization procedure, along with substantial improvement for velocity and scalar statistics predictions.

  7. Aspects of the Antisymmetric Tensor Field

    NASA Astrophysics Data System (ADS)

    Lahiri, Amitabha

    1991-02-01

    With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.

  8. Tensor hypercontraction. II. Least-squares renormalization

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David

    2012-12-01

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  9. Quantum phase transitions in a two-dimensional quantum XYX model: ground-state fidelity and entanglement.

    PubMed

    Li, Bo; Li, Sheng-Hao; Zhou, Huan-Qiang

    2009-06-01

    A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin-1/2 antiferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground-state wave functions.

  10. Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results

    NASA Astrophysics Data System (ADS)

    Bertolini, Davide; Tani, Alessandro

    1995-08-01

    The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the

  11. Piezo-optic tensor of crystals from quantum-mechanical calculations.

    PubMed

    Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.

  12. Finite-width Laplacian sum rules for 2++ tensor glueball in the instanton vacuum model

    NASA Astrophysics Data System (ADS)

    Chen, Junlong; Liu, Jueping

    2017-01-01

    The more carefully defined and more appropriate 2++ tensor glueball current is a S Uc(3 ) gauge-invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking the perturbative contribution into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width three resonances is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The values of the mass, decay width, and coupling constants for the 2++ resonance in which the glueball fraction is dominant are obtained.

  13. Spatially Resolved Measurement of the Stress Tensor in Thin Membranes Using Bending Waves

    NASA Astrophysics Data System (ADS)

    Waitz, Reimar; Lutz, Carolin; Nößner, Stephan; Hertkorn, Michael; Scheer, Elke

    2015-04-01

    The mode shape of bending waves in thin silicon and silicon-carbide membranes is measured as a function of space and time, using a phase-shift interferometer with stroboscopic light. The mode shapes hold information about all the relevant mechanical parameters of the samples, including the spatial distribution of static prestress. We present a simple algorithm to obtain a map of the lateral tensor components of the prestress, with a spatial resolution much better than the wavelength of the bending waves. The method is not limited to measuring the stress of bending waves. It is applicable in almost any situation, where the fields determining the state of the system can be measured as a function of space and time.

  14. Tensor network methods for the simulation of open quantum dynamics in multichromophore systems: Application to singlet fission in novel pentacene dimers

    NASA Astrophysics Data System (ADS)

    Chin, Alex

    Singlet fission (SF) is an ultrafast process in which a singlet exciton spontaneously converts into a pair of entangled triplet excitons on neighbouring organic molecules. As a mechanism of multiple exciton generation, it has been suggested as a way to increase the efficiency of organic photovoltaic devices, and its underlying photophysics across a wide range of molecules and materials has attracted significant theoretical attention. Recently, a number of studies using ultrafast nonlinear optics have underscored the importance of intramolecular vibrational dynamics in efficient SF systems, prompting a need for methods capable of simulating open quantum dynamics in the presence of highly structured and strongly coupled environments. Here, a combination of ab initio electronic structure techniques and a new tensor-network methodology for simulating open vibronic dynamics is presented and applied to a recently synthesised dimer of pentacene (DP-Mes). We show that ultrafast (300 fs) SF in this system is driven entirely by symmetry breaking vibrations, and our many-body approach enables the real-time identification and tracking of the ''functional' vibrational dynamics and the role of the ''bath''-like parts of the environment. Deeper analysis of the emerging wave functions points to interesting links between the time at which parts of the environment become relevant to the SF process and the optimal topology of the tensor networks, highlighting the additional insight provided by moving the problem into the natural language of correlated quantum states and how this could lead to simulations of much larger multichromophore systems Supported by The Winton Programme for the Physics of Sustainability.

  15. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress.

    PubMed

    Gong, Ming; Zhang, Weiwei; Guo, Guang-Can; He, Lixin

    2011-06-03

    We derive a general relation between the fine-structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exciton polarization angle and FSS under zero stress. The critical stress can also be determined by monitoring the change in exciton polarization angle. We confirm the theory by performing atomistic pseudopotential calculations for the InAs/GaAs quantum dots. The work provides deep insight into the dot asymmetry and their optical properties and a useful guide in selecting quantum dots with the smallest FSS, which are crucial in entangled photon source applications.

  16. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  17. Synchrotron X-ray microbeam diffraction measurements of full elastic long range internal strain and stress tensors in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    DOE PAGES

    Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; ...

    2016-04-23

    Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less

  18. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  19. Nonlocal elasticity tensors in dislocation and disclination cores

    DOE PAGES

    Taupin, V.; Gbemou, K.; Fressengeas, C.; ...

    2017-01-07

    We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum andmore » moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.« less

  20. Piezo-optic tensor of crystals from quantum-mechanical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R.; Ruggiero, M. T.

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of themore » full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.« less

  1. Electrode-stress-induced nanoscale disorder in Si quantum electronic devices

    DOE PAGES

    Park, J.; Ahn, Y.; Tilka, J. A.; ...

    2016-06-20

    Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

  2. Experimental determination of the carboxylate oxygen electric-field-gradient and chemical shielding tensors in L-alanine and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Asanuma, Miwako; Honda, Hisashi; Nemoto, Takahiro; Yamazaki, Toshio; Hirota, Hiroshi

    2007-10-01

    We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for each carboxylate group in polycrystalline L-alanine and L-phenylalanine. The magic angle spinning (MAS) and stationary 17O NMR spectra of these compounds were obtained at 9.4, 14.1, and 16.4 T. Analyzes of these 17O NMR spectra yielded reliable experimental NMR parameters including 17O CS tensor components, 17O quadrupole coupling parameters, and the relative orientations between the 17O CS and EFG tensors. The extensive quantum chemical calculations at both the restricted Hartree-Fock and density-functional theories were carried out with various basis sets to evaluate the quality of quantum chemical calculations for the 17O NMR tensors in L-alanine. For 17O CS tensors, the calculations at the B3LYP/D95 ∗∗ level could reasonably reproduce 17O CS tensors, but they still showed some discrepancies in the δ11 components by approximately 36 ppm. For 17O EFG calculations, it was advantageous to use calibrated Q value to give acceptable CQ values. The calculated results also demonstrated that not only complete intermolecular hydrogen-bonding networks to target oxygen in L-alanine, but also intermolecular interactions around the NH3+ group were significant to reproduce the 17O NMR tensors.

  3. Viable inflationary evolution from Einstein frame loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Odintsov, S. D.; Oikonomou, V. K.

    2018-04-01

    In this work we construct a bottom-up reconstruction technique for loop quantum cosmology scalar-tensor theories, from the observational indices. Particularly, the reconstruction technique is based on fixing the functional form of the scalar-to-tensor ratio as a function of the e -foldings number. The aim of the technique is to realize viable inflationary scenarios, and the only assumption that must hold true in order for the reconstruction technique to work is that the dynamical evolution of the scalar field obeys the slow-roll conditions. We use two functional forms for the scalar-to-tensor ratio, one of which corresponds to a popular inflationary class of models, the α attractors. For the latter, we calculate the leading order behavior of the spectral index and we demonstrate that the resulting inflationary theory is viable and compatible with the latest Planck and BICEP2/Keck-Array data. In addition, we find the classical limit of the theory, and as we demonstrate, the loop quantum cosmology corrected theory and the classical theory are identical at leading order in the perturbative expansion quantified by the parameter ρc, which is the critical density of the quantum theory. Finally, by using the formalism of slow-roll scalar-tensor loop quantum cosmology, we investigate how several inflationary potentials can be realized by the quantum theory, and we calculate directly the slow-roll indices and the corresponding observational indices. In addition, the f (R ) gravity frame picture is presented.

  4. On the equivalence among stress tensors in a gauge-fluid system

    NASA Astrophysics Data System (ADS)

    Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir

    2017-12-01

    In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.

  5. Spin manipulating vector & tensor polarized deuterons stored in COSY

    NASA Astrophysics Data System (ADS)

    Morozov, V. S.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yonehara, K.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Schnase, A.; Stockhorst, H.; Eversheim, D.; Hinterberger, F.; Rohdjess, H.; Ulbrich, K.

    2006-04-01

    We recently studied the spin manipulation of a simultaneously vector and tensor polarized deuteron beam stored at 1.85 GeV/c in the COSY Cooler Synchrotron. Using the EDDA detector, we first calibrated the vector and tensor analyzing powers, which were earlier unmeasured at 1.85 GeV/c; this allowed us to measure the absolute values of both the vector and tensor polarizations. Then we manipulated the deuteron's polarization by sweeping the frequency of a ferrite rf dipole through an rf-induced spin resonance. We first experimentally determined the resonance's frequency and then varied the rf dipole's frequency sweep range δf and frequency ramp time δt to maximize the spin-flip efficiency. We then obtained a measured vector spin-flip efficiency of 98.5 ± 0.3% [1]. We also studied, in detail, the behavior of the tensor polarization during spin manipulation; these new data may allow a better understanding of the interesting quantum behavior of spin-1 bosons. This research was supported by the German BMBF Science Ministry. [1] V.S. Morozov et al., Phys. Rev. ST Accel. Beams 8, 061001 (2005).

  6. Light-cone distribution amplitudes of light JPC = 2- tensor mesons in QCD

    NASA Astrophysics Data System (ADS)

    Aliev, T. M.; Bilmis, S.; Yang, Kwei-Chou

    2018-06-01

    We present a study for two-quark light-cone distribution amplitudes for the 13D2 light tensor meson states with quantum number JPC =2-. Because of the G-parity, the chiral-even two-quark light-cone distribution amplitudes of this tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark mass correction are shown. We estimate the relevant parameters, the decay constants fT and fT⊥, and first Gegenbauer moment a1⊥ , by using the QCD sum rule method. These parameters play a central role in the investigation of B meson decaying into the 2- tensor mesons.

  7. Two-point function of a quantum scalar field in the interior region of a Reissner-Nordstrom black hole

    NASA Astrophysics Data System (ADS)

    Lanir, Assaf; Levi, Adam; Ori, Amos; Sela, Orr

    2018-01-01

    We derive explicit expressions for the two-point function of a massless scalar field in the interior region of a Reissner-Nordstrom black hole, in both the Unruh and the Hartle-Hawking quantum states. The two-point function is expressed in terms of the standard l m ω modes of the scalar field (those associated with a spherical harmonic Yl m and a temporal mode e-i ω t), which can be conveniently obtained by solving an ordinary differential equation, the radial equation. These explicit expressions are the internal analogs of the well-known results in the external region (originally derived by Christensen and Fulling), in which the two-point function outside the black hole is written in terms of the external l m ω modes of the field. They allow the computation of ⟨Φ2⟩ren and the renormalized stress-energy tensor inside the black hole, after the radial equation has been solved (usually numerically). In the second part of the paper, we provide an explicit expression for the trace of the renormalized stress-energy tensor of a minimally coupled massless scalar field (which is nonconformal), relating it to the d'Alembertian of ⟨Φ2⟩ren . This expression proves itself useful in various calculations of the renormalized stress-energy tensor.

  8. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2015-04-01

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  9. Classification of trivial spin-1 tensor network states on a square lattice

    NASA Astrophysics Data System (ADS)

    Lee, Hyunyong; Han, Jung Hoon

    2016-09-01

    Classification of possible quantum spin liquid (QSL) states of interacting spin-1/2's in two dimensions has been a fascinating topic of condensed matter for decades, resulting in enormous progress in our understanding of low-dimensional quantum matter. By contrast, relatively little work exists on the identification, let alone classification, of QSL phases for spin-1 systems in dimensions higher than one. Employing the powerful ideas of tensor network theory and its classification, we develop general methods for writing QSL wave functions of spin-1 respecting all the lattice symmetries, spin rotation, and time reversal with trivial gauge structure on the square lattice. We find 25 distinct classes characterized by five binary quantum numbers. Several explicit constructions of such wave functions are given for bond dimensions D ranging from two to four, along with thorough numerical analyses to identify their physical characters. Both gapless and gapped states are found. The topological entanglement entropy of the gapped states is close to zero, indicative of topologically trivial states. In D =4 , several different tensors can be linearly combined to produce a family of states within the same symmetry class. A rich "phase diagram" can be worked out among the phases of these tensors, as well as the phase transitions among them. Among the states we identified in this putative phase diagram is the plaquette-ordered phase, gapped resonating valence bond phase, and a critical phase. A continuous transition separates the plaquette-ordered phase from the resonating valence bond phase.

  10. Integrability conditions for Killing-Yano tensors and conformal Killing-Yano tensors

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2015-01-01

    The integrability conditions for the existence of a conformal Killing-Yano tensor of arbitrary order are worked out in all dimensions and expressed in terms of the Weyl tensor. As a consequence, the integrability conditions for the existence of a Killing-Yano tensor are also obtained. By means of such conditions, it is shown that in certain Einstein spaces one can use a conformal Killing-Yano tensor of order p to generate a Killing-Yano tensor of order (p -1 ) . Finally, it is proved that in maximally symmetric spaces the covariant derivative of a Killing-Yano tensor is a closed conformal Killing-Yano tensor and that every conformal Killing-Yano tensor is uniquely decomposed as the sum of a Killing-Yano tensor and a closed conformal Killing-Yano tensor.

  11. Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features

    PubMed Central

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-01-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159

  12. Cosmological footprints of loop quantum gravity.

    PubMed

    Grain, J; Barrau, A

    2009-02-27

    The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.

  13. Spin and pseudospin symmetric Dirac particles in the field of Tietz—Hua potential including Coulomb tensor interaction

    NASA Astrophysics Data System (ADS)

    Sameer, M. Ikhdair; Majid, Hamzavi

    2013-09-01

    Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.

  14. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    DOE PAGES

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  15. Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste

    2013-03-01

    Tensor contractions are generalized multidimensional matrix multiplication operations that widely occur in quantum chemistry. Efficient execution of tensor contractions on Graphics Processing Units (GPUs) requires several challenges to be addressed, including index permutation and small dimension-sizes reducing thread block utilization. Moreover, to apply the same optimizations to various expressions, we need a code generation tool. In this paper, we present our approach to automatically generate CUDA code to execute tensor contractions on GPUs, including management of data movement between CPU and GPU. To evaluate our tool, GPU-enabled code is generated for the most expensive contractions in CCSD(T), a key coupledmore » cluster method, and incorporated into NWChem, a popular computational chemistry suite. For this method, we demonstrate speedup over a factor of 8.4 using one GPU (instead of one core per node) and over 2.6 when utilizing the entire system using hybrid CPU+GPU solution with 2 GPUs and 5 cores (instead of 7 cores per node). Finally, we analyze the implementation behavior on future GPU systems.« less

  16. Discrete gravity on random tensor network and holographic Rényi entropy

    NASA Astrophysics Data System (ADS)

    Han, Muxin; Huang, Shilin

    2017-11-01

    In this paper we apply the discrete gravity and Regge calculus to tensor networks and Anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We construct the boundary many-body quantum state |Ψ〉 using random tensor networks as the holographic mapping, applied to the Wheeler-deWitt wave function of bulk Euclidean discrete gravity in 3 dimensions. The entanglement Rényi entropy of |Ψ〉 is shown to holographically relate to the on-shell action of Einstein gravity on a branch cover bulk manifold. The resulting Rényi entropy S n of |Ψ〉 approximates with high precision the Rényi entropy of ground state in 2-dimensional conformal field theory (CFT). In particular it reproduces the correct n dependence. Our results develop the framework of realizing the AdS3/CFT2 correspondence on random tensor networks, and provide a new proposal to approximate the CFT ground state.

  17. The 1/ N Expansion of Tensor Models with Two Symmetric Tensors

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan

    2018-06-01

    It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.

  18. Tensor network states and algorithms in the presence of a global SU(2) symmetry

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Vidal, Guifre

    2012-11-01

    The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g., with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely, (i) [Singh, Pfeifer, and Vidal, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.050301 82, 050301 (2010)] and (ii) [Singh, Pfeifer, and Vidal, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.115125 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible, and multiplicity free, acting as a global internal symmetry. Then, in (ii) we described the implementation of Abelian group symmetries in much more detail, considering a U(1) symmetry (e.g., conservation of global particle number) as a concrete example. In this paper, we describe the implementation of non-Abelian group symmetries in great detail. For concreteness, we consider an SU(2) symmetry (e.g., conservation of global quantum spin). Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we

  19. Elliptic Relaxation of a Tensor Representation of the Pressure-Strain and Dissipation Rate

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Gatski, Thomas B.

    2002-01-01

    A formulation to include the effects of wall-proximity in a second moment closure model is presented that utilizes a tensor representation for the redistribution term in the Reynolds stress equations. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. DNS data and Reynolds stress solutions using a full differential approach at channel Reynolds number of 590 are compared to the new model.

  20. Emergent gravity from vanishing energy-momentum tensor

    DOE PAGES

    Carone, Christopher D.; Erlich, Joshua; Vaman, Diana

    2017-03-27

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. As a result,more » we comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.« less

  1. Self-adaptive tensor network states with multi-site correlators

    NASA Astrophysics Data System (ADS)

    Kovyrshin, Arseny; Reiher, Markus

    2017-12-01

    We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.

  2. Conformal killing tensors and covariant Hamiltonian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariglia, M., E-mail: marco@iceb.ufop.br; Gibbons, G. W., E-mail: G.W.Gibbons@damtp.cam.ac.uk; LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans

    2014-12-15

    A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector formore » planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.« less

  3. Genuine quantum correlations in quantum many-body systems: a review of recent progress

    NASA Astrophysics Data System (ADS)

    De Chiara, Gabriele; Sanpera, Anna

    2018-07-01

    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.

  4. Group field theory and tensor networks: towards a Ryu–Takayanagi formula in full quantum gravity

    NASA Astrophysics Data System (ADS)

    Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi

    2018-06-01

    We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the Rényi entropy of such states and recover the Ryu–Takayanagi formula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.

  5. Similar Tensor Arrays - A Framework for Storage of Tensor Array Data

    NASA Astrophysics Data System (ADS)

    Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans

    This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.

  6. de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan

    2017-12-01

    We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.

  7. Quantum-metric contribution to the pair mass in spin-orbit-coupled Fermi superfluids

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2018-03-01

    As a measure of the quantum distance between Bloch states in the Hilbert space, the quantum metric was introduced to solid-state physics through the real part of the so-called geometric Fubini-Study tensor, the imaginary part of which corresponds to the Berry curvature measuring the emergent gauge field in momentum space. Here, we first derive the Ginzburg-Landau theory near the critical superfluid transition temperature and then identify and analyze the geometric effects on the effective mass tensor of the Cooper pairs. By showing that the quantum-metric contribution accounts for a sizable fraction of the pair mass in a surprisingly large parameter regime throughout the BCS-Bose-Einstein condensate crossover, we not only reveal the physical origin of its governing role in the superfluid density tensor but also hint at its plausible roles in many other observables.

  8. Non-monotonicity of Trace Distance Under Tensor Products

    NASA Astrophysics Data System (ADS)

    Maziero, Jonas

    2015-10-01

    The trace distance (TD) possesses several of the good properties required for a faithful distance measure in the quantum state space. Despite its importance and ubiquitous use in quantum information science, one of its questionable features, its possible non-monotonicity under taking tensor products of its arguments (NMuTP), has been hitherto unexplored. In this article, we advance analytical and numerical investigations of this issue considering different classes of states living in a discrete and finite dimensional Hilbert space. Our results reveal that although this property of TD does not show up for pure states and for some particular classes of mixed states, it is present in a non-negligible fraction of the regarded density operators. Hence, even though the percentage of quartets of states leading to the NMuTP drawback of TD and its strength decrease as the system's dimension grows, this property of TD must be taken into account before using it as a figure of merit for distinguishing mixed quantum states.

  9. A practical introduction to tensor networks: Matrix product states and projected entangled pair states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orús, Román, E-mail: roman.orus@uni-mainz.de

    This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems aremore » also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.« less

  10. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGES

    Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...

    2016-07-12

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  11. Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media

    NASA Astrophysics Data System (ADS)

    Toptygin, I. N.

    2017-12-01

    Applying a quantum mechanical treatment to a high-frequency macroscopic electromagnetic field and radiative phenomena in a medium, we construct quantum operators for energy-momentum tensor components in dispersive media and find their eigenvalues, which are different in the Minkowski and Abraham representations. It is shown that the photon momentum in a medium resulting from the quantization of the vector potential differs from that defined from Abraham’s symmetric energy-momentum-tensor but is equal to the momentum defined from the Minkowski tensor. A similar result is obtained by calculating the intrinsic angular momentum (spin) of an electro-magnetic field in the medium. Only the Minkowski tensor leads to the experimentally confirmed spin values that are multiples of ħ, providing the grounds for choosing the Minkowski representation as the proper form for the momentum density of a transverse electromagnetic field in a transparent medium, in both classical and quantum descriptions of the field. The Abraham representation is unsuitable for this purpose and leads to contradictions. The conclusion drawn does not apply to quasistatic and static fields.

  12. Dielectric permeability tensor and linear waves in spin-1/2 quantum kinetics with non-trivial equilibrium spin-distribution functions

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Kuz'menkov, L. S.

    2017-11-01

    A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an

  13. The Weyl curvature tensor, Cotton-York tensor and gravitational waves: A covariant consideration

    NASA Astrophysics Data System (ADS)

    Osano, Bob

    1 + 3 covariant approach to cosmological perturbation theory often employs the electric part (Eab), the magnetic part (Hab) of the Weyl tensor or the shear tensor (σab) in a phenomenological description of gravitational waves. The Cotton-York tensor is rarely mentioned in connection with gravitational waves in this approach. This tensor acts as a source for the magnetic part of the Weyl tensor which should not be neglected in studies of gravitational waves in the 1 + 3 formalism. The tensor is only mentioned in connection with studies of “silent model” but even there the connection with gravitational waves is not exhaustively explored. In this study, we demonstrate that the Cotton-York tensor encodes contributions from both electric and magnetic parts of the Weyl tensor and in directly from the shear tensor. In our opinion, this makes the Cotton-York tensor arguably the natural choice for linear gravitational waves in the 1 + 3 covariant formalism. The tensor is cumbersome to work with but that should negate its usefulness. It is conceivable that the tensor would equally be useful in the metric approach, although we have not demonstrated this in this study. We contend that the use of only one of the Weyl tensor or the shear tensor, although phenomenologically correct, leads to loss of information. Such information is vital particularly when examining the contribution of gravitational waves to the anisotropy of an almost-Friedmann-Lamitre-Robertson-Walker (FLRW) universe. The recourse to this loss is the use Cotton-York tensor.

  14. Effect of uniaxial stress on the polarization of light emitted from GaN/AlN quantum dots grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Moshe, O.; Rich, D. H.; Damilano, B.; Massies, J.

    2008-04-01

    Cathodoluminescence (CL) measurements of the ground-state excitonic transition of vertically stacked GaN/AlN quantum dots (QDs) exhibited an in-plane linear polarization anisotropy in close proximity to microcracks. Microcracks form as a result of a mismatch of the thermal expansion coefficient between the GaN/AlN layers and the Si(111) substrate. In close proximity to the cracks, the layers are found to be under uniaxial tensile stress, whereas the film is under biaxial tensile stress for distances greater than ˜3μm from the cracks. The microcracks serve as an excellent stressor through which the strain tensor of the GaN/AlN QDs can be reproducibly modified for studies of strain-induced changes in the optical and electronic properties by using a spatially resolved probe, such as with CL. Changes in the optical properties of the QDs are attributed to stress-dependent variations of the band edges and the electric field along [0001], which is caused by charge polarization. Such changes in the field will subsequently affect the oscillator strength between electrons and holes. Three-dimensional 6×6 kṡp calculations of the QD electron and hole wave functions and eigenstates were performed to examine the influence of biaxial and uniaxial tensile stresses on the polarization-dependent momentum matrix element in varying proximity to the microcracks. The model reveals that a change from biaxial to uniaxial stress alters the admixture of px and py characters of the band edges and the ground-state hole wave function, changes the shape and direction of elongation of the hole isosurfaces, and accounts well for the subsequent anisotropy in the polarization dependent optical transitions.

  15. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    NASA Astrophysics Data System (ADS)

    Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio

    2018-01-01

    Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  16. Genuine quantum correlations in quantum many-body systems: a review of recent progress.

    PubMed

    De Chiara, Gabriele; Sanpera, Anna

    2018-04-19

    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.

  17. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory.

    PubMed

    Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M; Dean, David S

    2018-02-28

    Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.

  18. Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory

    NASA Astrophysics Data System (ADS)

    Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M.; Dean, David S.

    2018-02-01

    Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.

  19. Multiple seismogenic processes for high-frequency earthquakes at Katmai National Park, Alaska: Evidence from stress tensor inversions of fault-plane solutions

    USGS Publications Warehouse

    Moran, S.C.

    2003-01-01

    The volcanological significance of seismicity within Katmai National Park has been debated since the first seismograph was installed in 1963, in part because Katmai seismicity consists almost entirely of high-frequency earthquakes that can be caused by a wide range of processes. I investigate this issue by determining 140 well-constrained first-motion fault-plane solutions for shallow (depth < 9 km) earthquakes occuring between 1995 and 2001 and inverting these solutions for the stress tensor in different regions within the park. Earthquakes removed by several kilometers from the volcanic axis occur in a stress field characterized by horizontally oriented ??1 and ??3 axes, with ??1 rotated slightly (12??) relative to the NUVELIA subduction vector, indicating that these earthquakes are occurring in response to regional tectonic forces. On the other hand, stress tensors for earthquake clusters beneath several Katmai cluster volcanoes have vertically oriented ??1 axes, indicating that these events are occuring in response to local, not regional, processes. At Martin-Mageik, vertically oriented ??1 is most consistent with failure under edifice loading conditions in conjunction with localized pore pressure increases associated with hydrothermal circulation cells. At Trident-Novarupta, it is consistent with a number of possible models, including occurence along fractures formed during the 1912 eruption that now serve as horizontal conduits for migrating fluids and/or volatiles from nearby degassing and cooling magma bodies. At Mount Katmai, it is most consistent with continued seismicity along ring-fracture systems created in the 1912 eruption, perhaps enhanced by circulating hydrothermal fluids and/or seepage from the caldera-filling lake.

  20. Flavour fields in steady state: stress tensor and free energy

    NASA Astrophysics Data System (ADS)

    Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan

    2016-02-01

    The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1-background, for d = 2, 4, and is related to conformal anomaly. For the special case of d = 2, the universal factor has a striking resemblance to the well-known heat current formula in (1 + 1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d = 6.

  1. Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.

    PubMed

    Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N

    2017-05-01

    This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.

  2. FAST TRACK COMMUNICATION The Bel-Robinson tensor for topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Deser, S.; Franklin, J.

    2011-02-01

    We construct, and establish the (covariant) conservation of, a 4-index 'super stress tensor' for topologically massive gravity. Separately, we discuss its invalidity in quadratic curvature models and suggest a generalization.

  3. Holographic spin networks from tensor network states

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.

    2018-01-01

    In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.

  4. Current density tensors

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  5. Quantum games as quantum types

    NASA Astrophysics Data System (ADS)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  6. Some remarks on the genesis of scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Goenner, Hubert

    2012-08-01

    Between 1941 and 1962, scalar-tensor theories of gravitation were suggested four times by different scientists in four different countries. The earliest originator, the Swiss mathematician W. Scherrer, was virtually unknown until now whereas the chronologically latest pair gave their names to a multitude of publications on Brans-Dicke theory. P. Jordan, one of the pioneers of quantum mechanics and quantum field theory, and Y. Thiry, known by his book on celestial mechanics, a student of the mathematician Lichnerowicz, complete the quartet. Diverse motivations for and conceptual interpretations of their theories will be discussed as well as relations among them. Also, external factors like language, citation habits, or closeness to the mainstream are considered. It will become clear why Brans-Dicke theory, although structurally a déjà-vu, superseded all the other approaches.

  7. Databases post-processing in Tensoral

    NASA Technical Reports Server (NTRS)

    Dresselhaus, Eliot

    1994-01-01

    The Center for Turbulent Research (CTR) post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, introduced in this document and currently existing in prototype form, is the foundation of this effort. Tensoral provides a convenient and powerful protocol to connect users who wish to analyze fluids databases with the authors who generate them. In this document we introduce Tensoral and its prototype implementation in the form of a user's guide. This guide focuses on use of Tensoral for post-processing turbulence databases. The corresponding document - the Tensoral 'author's guide' - which focuses on how authors can make databases available to users via the Tensoral system - is currently unwritten. Section 1 of this user's guide defines Tensoral's basic notions: we explain the class of problems at hand and how Tensoral abstracts them. Section 2 defines Tensoral syntax for mathematical expressions. Section 3 shows how these expressions make up Tensoral statements. Section 4 shows how Tensoral statements and expressions are embedded into other computer languages (such as C or Vectoral) to make Tensoral programs. We conclude with a complete example program.

  8. Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field

    NASA Astrophysics Data System (ADS)

    Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.

    2018-03-01

    We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.

  9. Seismic moment tensor for anisotropic media: implication for Non-double-couple earthquakes

    NASA Astrophysics Data System (ADS)

    Cai, X.; Chen, X.; Chen, Y.; Cai, M.

    2008-12-01

    It is often found that the inversion results of seismic moment tensor from real seismic recorded data show the trace of seismic moment tensor M is not zero, a phenomenon called non-double-couple earthquake sources mechanism. Recently we have derived the analytical expressions of M in transversely isotropic media with the titled axis of symmetry and the results shows even only pure shear-motion of fault can lead to the implosive components determined by several combined anisotropic elastic constants. Many non-double-couple earthquakes from observations often appear in volcanic and geothermal areas (Julian, 1998), where there exist a mount of stress-aligned fluid-saturated parallel vertical micro-cracks identical to transversely isotropic media (Crampin, 2008), this stress-aligned crack will modify the seismic moment tensor. In another word, non-double-couple earthquakes don't mean to have a seismic failure movement perpendicular to the fault plane, while traditional research of seismic moment tensor focus on the case of isotropy, which cannot provide correct interpretation of seismic source mechanism. Reference: Julian, B.R., Miller, A.D. and Foulger, G.R., 1998. Non-double-couple earthquakes,1. Theory, Rev. Geophys., 36, 525¨C549. Crampin,S., Peacock,S., 2008, A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, wave motion, 45,675-722

  10. Quantum incompatibility of channels with general outcome operator algebras

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  11. The Invar tensor package: Differential invariants of Riemann

    NASA Astrophysics Data System (ADS)

    Martín-García, J. M.; Yllanes, D.; Portugal, R.

    2008-10-01

    the distribution. To obtain the Mathematica and Maple database files click on this link. Classification:1.5, 5 Does the new version supersede the previous version?:Yes. The previous version (1.0) only handled algebraic invariants. The current version (2.0) has been extended to cover differential invariants as well. Nature of problem:Manipulation and simplification of scalar polynomial expressions formed from the Riemann tensor and its covariant derivatives. Solution method:Algorithms of computational group theory to simplify expressions with tensors that obey permutation symmetries. Tables of syzygies of the scalar invariants of the Riemann tensor. Reasons for new version:With this new version, the user can manipulate differential invariants of the Riemann tensor. Differential invariants are required in many physical problems in classical and quantum gravity. Summary of revisions:The database of syzygies has been expanded by a factor of 30. New commands were added in order to deal with the enlarged database and to manipulate the covariant derivative. Restrictions:The present version only handles scalars, and not expressions with free indices. Additional comments:The distribution file for this program is over 53 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time:One second to fully reduce any monomial of the Riemann tensor up to degree 7 or order 10 in terms of independent invariants. The Mathematica notebook included in the distribution takes approximately 5 minutes to run.

  12. Topological Triply Degenerate Points Induced by Spin-Tensor-Momentum Couplings

    NASA Astrophysics Data System (ADS)

    Hu, Haiping; Hou, Junpeng; Zhang, Fan; Zhang, Chuanwei

    2018-06-01

    The recent discovery of triply degenerate points (TDPs) in topological materials has opened a new perspective toward the realization of novel quasiparticles without counterparts in quantum field theory. The emergence of such protected nodes is often attributed to spin-vector-momentum couplings. We show that the interplay between spin-tensor- and spin-vector-momentum couplings can induce three types of TDPs, classified by different monopole charges (C =±2 , ±1 , 0). A Zeeman field can lift them into Weyl points with distinct numbers and charges. Different TDPs of the same type are connected by intriguing Fermi arcs at surfaces, and transitions between different types are accompanied by level crossings along high-symmetry lines. We further propose an experimental scheme to realize such TDPs in cold-atom optical lattices. Our results provide a framework for studying spin-tensor-momentum coupling-induced TDPs and other exotic quasiparticles.

  13. Time Evolution of Modeled Reynolds Stresses in Planar Homogeneous Flows

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Gatski, T. B.

    1997-01-01

    The analytic expression of the time evolution of the Reynolds stress anisotropy tensor in all planar homogeneous flows is obtained by exact integration of the modeled differential Reynolds stress equations. The procedure is based on results of tensor representation theory, is applicable for general pressure-strain correlation tensors, and can account for any additional turbulence anisotropy effects included in the closure. An explicit solution of the resulting system of scalar ordinary differential equations is obtained for the case of a linear pressure-strain correlation tensor. The properties of this solution are discussed, and the dynamic behavior of the Reynolds stresses is studied, including limit cycles and sensitivity to initial anisotropies.

  14. A tensorial description of particle perception in black-hole physics

    NASA Astrophysics Data System (ADS)

    Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.; Jannes, G.

    2016-09-01

    In quantum field theory in curved backgrounds, one typically distinguishes between objective, tensorial quantities such as the renormalized stress-energy tensor (RSET) and subjective, nontensorial quantities such as Bogoliubov coefficients which encode perception effects associated with the specific trajectory of a detector. In this work, we propose a way to treat both objective and subjective notions on an equal tensorial footing. For that purpose, we define a new tensor which we will call the perception renormalized stress-energy tensor (PeRSET). The PeRSET is defined as the subtraction of the RSET corresponding to two different vacuum states. Based on this tensor, we can define perceived energy densities and fluxes. The PeRSET helps us to have a more organized and systematic understanding of various results in the literature regarding quantum field theory in black hole spacetimes. We illustrate the physics encoded in this tensor by working out various examples of special relevance.

  15. Equivalence of restricted Boltzmann machines and tensor network states

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Cheng, Song; Xie, Haidong; Wang, Lei; Xiang, Tao

    2018-02-01

    The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross fertilize both deep learning and quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.

  16. Quantum kinetic theory of the filamentation instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2011-07-15

    The quantum electromagnetic dielectric tensor for a multi-species plasma is re-derived from the gauge-invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate, and the most unstable wave vector.

  17. Asymptotic Representations of Quantum Affine Superalgebras

    NASA Astrophysics Data System (ADS)

    Zhang, Huafeng

    2017-08-01

    We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group.

  18. Development of the Tensoral Computer Language

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel; Dresselhaus, Eliot

    1996-01-01

    The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.

  19. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.

    PubMed

    Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben

    2017-08-02

    It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.

  20. Consistent scalar and tensor perturbation power spectra in single fluid matter bounce with dark energy era

    NASA Astrophysics Data System (ADS)

    Bacalhau, Anna Paula; Pinto-Neto, Nelson; Vitenti, Sandro Dias Pinto

    2018-04-01

    We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, in which the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine-tuned exception) must have one and only one dark energy phase, occurring either in the contracting era or in the expanding era. Hence, these bounce solutions are necessarily asymmetric. Naturally, the more convenient solution is the one in which the dark energy phase happens in the expanding era, in order to be a possible explanation for the current accelerated expansion indicated by cosmological observations. In this case, one has the picture of a Universe undergoing a classical dust contraction from very large scales, the initial repeller of the model, moving to a classical stiff-matter contraction near the singularity, which is avoided due to the quantum bounce. The Universe is then launched to a dark energy era, after passing through radiation- and dust-dominated phases, finally returning to the dust expanding phase, the final attractor of the model. We calculate the spectral indices and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation nor using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model in which the presence of dark energy behavior in the Universe does not turn the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models problematic. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine-tunings, to yield the observed amplitude for scalar

  1. Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication

    NASA Astrophysics Data System (ADS)

    Cooney, Tom; Mosonyi, Milán; Wilde, Mark M.

    2016-06-01

    This paper studies the difficulty of discriminating between an arbitrary quantum channel and a "replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein's lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel {mathcal{N}} as the optimal Type II error exponent when discriminating between a large number of independent instances of {mathcal{N}} and an arbitrary "worst-case" replacer channel chosen from the set of all replacer channels.

  2. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    PubMed

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  3. Full paleostress tensor reconstruction: case study of the Panasqueira Mine, Portugal.

    NASA Astrophysics Data System (ADS)

    Pascal, C.; Jaques Ribeiro, L. M.

    2017-12-01

    Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal 3D exposures of mineralised quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To further constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of 300 MPa and formation depths of 10 km. As a second step, we measured 600 subhorizontal quartz veins in all the levels of the mine. The inversion of the attitudes of the veins allowed for reconstructing the orientations of the principal axes of stress, the unscaled Mohr circle and the relative pore pressure. After merging these results with the previously obtained absolute pore pressure we reconstructed the six parameters of the paleostress tensor.

  4. Quantum Fluctuations and Thermodynamic Processes in the Presence of Closed Timelike Curves

    NASA Astrophysics Data System (ADS)

    Tanaka, Tsunefumi

    1997-10-01

    A closed timelike curve (CTC) is a closed loop in spacetime whose tangent vector is everywhere timelike. A spacetime which contains CTC's will allow time travel. One of these spacetimes is Grant space. It can be constructed from Minkowski space by imposing periodic boundary conditions in spatial directions and making the boundaries move toward each other. If Hawking's chronology protection conjecture is correct, there must be a physical mechanism preventing the formation of CTC's. Currently the most promising candidate for the chronology protection mechanism is the back reaction of the metric to quantum vacuum fluctuations. In this thesis the quantum fluctuations for a massive scalar field, a self-interacting field, and for a field at nonzero temperature are calculated in Grant space. The stress-energy tensor is found to remain finite everywhere in Grant space for the massive scalar field with sufficiently large field mass. Otherwise it diverges on chronology horizons like the stress-energy tensor for a massless scalar field. If CTC's exist they will have profound effects on physical processes. Causality can be protected even in the presence of CTC's if the self-consistency condition is imposed on all processes. Simple classical thermodynamic processes of a box filled with ideal gas in the presence of CTC's are studied. If a system of boxes is closed, its state does not change as it travels through a region of spacetime with CTC's. But if the system is open, the final state will depend on the interaction with the environment. The second law of thermodynamics is shown to hold for both closed and open systems. A similar problem is investigated at a statistical level for a gas consisting of multiple selves of a single particle in a spacetime with CTC's.

  5. Local Random Quantum Circuits are Approximate Polynomial-Designs

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-09-01

    We prove that local random quantum circuits acting on n qubits composed of O( t 10 n 2) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are ∞-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O( t 10 n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O( n k ) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O( n ( k-9)/11) that are given oracle access to U.

  6. On the geometry of mixed states and the Fisher information tensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, I., E-mail: icontrer@illinois.edu; Ercolessi, E., E-mail: ercolessi@bo.infn.it; Schiavina, M., E-mail: michele.schiavina@math.uzh.ch

    2016-06-15

    In this paper, we will review the co-adjoint orbit formulation of finite dimensional quantum mechanics, and in this framework, we will interpret the notion of quantum Fisher information index (and metric). Following previous work of part of the authors, who introduced the definition of Fisher information tensor, we will show how its antisymmetric part is the pullback of the natural Kostant–Kirillov–Souriau symplectic form along some natural diffeomorphism. In order to do this, we will need to understand the symmetric logarithmic derivative as a proper 1-form, settling the issues about its very definition and explicit computation. Moreover, the fibration of co-adjointmore » orbits, seen as spaces of mixed states, is also discussed.« less

  7. Moment tensor clustering: a tool to monitor mining induced seismicity

    NASA Astrophysics Data System (ADS)

    Cesca, Simone; Dahm, Torsten; Tolga Sen, Ali

    2013-04-01

    Automated moment tensor inversion routines have been setup in the last decades for the analysis of global and regional seismicity. Recent developments could be used to analyse smaller events and larger datasets. In particular, applications to microseismicity, e.g. in mining environments, have then led to the generation of large moment tensor catalogues. Moment tensor catalogues provide a valuable information about the earthquake source and details of rupturing processes taking place in the seismogenic region. Earthquake focal mechanisms can be used to discuss the local stress field, possible orientations of the fault system or to evaluate the presence of shear and/or tensile cracks. Focal mechanism and moment tensor solutions are typically analysed for selected events, and quick and robust tools for the automated analysis of larger catalogues are needed. We propose here a method to perform cluster analysis for large moment tensor catalogues and identify families of events which characterize the studied microseismicity. Clusters include events with similar focal mechanisms, first requiring the definition of distance between focal mechanisms. Different metrics are here proposed, both for the case of pure double couple, constrained moment tensor and full moment tensor catalogues. Different clustering approaches are implemented and discussed. The method is here applied to synthetic and real datasets from mining environments to demonstrate its potential: the proposed cluserting techniques prove to be able to automatically recognise major clusters. An important application for mining monitoring concerns the early identification of anomalous rupture processes, which is relevant for the hazard assessment. This study is funded by the project MINE, which is part of the R&D-Programme GEOTECHNOLOGIEN. The project MINE is funded by the German Ministry of Education and Research (BMBF), Grant of project BMBF03G0737.

  8. Vector and tensor contributions to the curvature perturbation at second order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrilho, Pedro; Malik, Karim A., E-mail: p.gregoriocarrilho@qmul.ac.uk, E-mail: k.malik@qmul.ac.uk

    2016-02-01

    We derive the evolution equation for the second order curvature perturbation using standard techniques of cosmological perturbation theory. We do this for different definitions of the gauge invariant curvature perturbation, arising from different splits of the spatial metric, and compare the expressions. The results are valid at all scales and include all contributions from scalar, vector and tensor perturbations, as well as anisotropic stress, with all our results written purely in terms of gauge invariant quantities. Taking the large-scale approximation, we find that a conserved quantity exists only if, in addition to the non-adiabatic pressure, the transverse traceless part ofmore » the anisotropic stress tensor is also negligible. We also find that the version of the gauge invariant curvature perturbation which is exactly conserved is the one defined with the determinant of the spatial part of the inverse metric.« less

  9. Observational constraints on loop quantum cosmology.

    PubMed

    Bojowald, Martin; Calcagni, Gianluca; Tsujikawa, Shinji

    2011-11-18

    In the inflationary scenario of loop quantum cosmology in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to compare with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background and other cosmological experiments, we place bounds on the quantum corrections.

  10. The black hole quantum atmosphere

    NASA Astrophysics Data System (ADS)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  11. Transversely Isotropic Hyperelastic Constitutive Model of Short Fiber Reinforced EPDM Based on Tensor Function

    NASA Astrophysics Data System (ADS)

    Feng, Q. L.; Li, C.; Liao, Y. F.

    2017-12-01

    Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.

  12. Universal photonic quantum computation via time-delayed feedback

    PubMed Central

    Pichler, Hannes; Choi, Soonwon; Zoller, Peter; Lukin, Mikhail D.

    2017-01-01

    We propose and analyze a deterministic protocol to generate two-dimensional photonic cluster states using a single quantum emitter via time-delayed quantum feedback. As a physical implementation, we consider a single atom or atom-like system coupled to a 1D waveguide with a distant mirror, where guided photons represent the qubits, while the mirror allows the implementation of feedback. We identify the class of many-body quantum states that can be produced using this approach and characterize them in terms of 2D tensor network states. PMID:29073057

  13. Consequences of theory level choice evaluated with new tools from QTAIM and the stress tensor for a dipeptide conformer

    NASA Astrophysics Data System (ADS)

    Li, Jiahui; Xu, Tianlv; Ping, Yang; van Mourik, Tanja; Früchtl, Herbert; Kirk, Steven R.; Jenkins, Samantha

    2018-03-01

    QTAIM and the stress tensor were used to provide a detailed analysis of the topology of the molecular graph, BCP and bond-path properties, including the new introduced helicity length H, of a Tyr-Gly dipeptide conformer subjected to a torsion with four levels of theory; MP2, M06-2X, B3LYP-D3 and B3LYP and a modest-sized basis set, 6-31+G(d). Structural effects and bonding properties are quantified and reflect differences in the BSSE and lack of inclusion of dispersion effects in the B3LYP calculations. The helicity length H demonstrated that MP2 produced a unique response to the torsion suggesting future use as a diagnostic tool.

  14. Monograph On Tensor Notations

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.

    1993-01-01

    Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.

  15. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. I. Dielectric permeability tensor for magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2017-02-01

    The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived for the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.

  16. Stochastic Gravity: Theory and Applications.

    PubMed

    Hu, Bei Lok; Verdaguer, Enric

    2004-01-01

    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation

  17. A tensor product state approach to spin-1/2 square J1-J2 antiferromagnetic Heisenberg model: evidence for deconfined quantum criticality

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang

    We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.

  18. Tensor sufficient dimension reduction

    PubMed Central

    Zhong, Wenxuan; Xing, Xin; Suslick, Kenneth

    2015-01-01

    Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we propose a tensor dimension reduction model, a model assuming the nonlinear dependence between a response and a projection of all the tensor predictors. The tensor dimension reduction models are estimated in a sequential iterative fashion. The proposed method is applied to a CSA data collected for 150 pathogenic bacteria coming from 10 bacterial species and 14 bacteria from one control species. Empirical performance demonstrates that our proposed method can greatly improve the sensitivity and specificity of the CSA technique. PMID:26594304

  19. Tensorial analysis of Eshelby stresses in 3D supercooled liquids

    NASA Astrophysics Data System (ADS)

    Lemaître, Anaël

    2015-10-01

    It was recently proposed that the local rearrangements governing relaxation in supercooled liquids impress on the liquid medium long-ranged (Eshelby) stress fluctuations that accumulate over time. From this viewpoint, events must be characterized by elastic dipoles, which are second order tensors, and Eshelby fields are expected to show up in stress and stress increment correlations, which are fourth order tensor fields. We construct here an analytical framework that permits analyzing such tensorial correlations in isotropic media in view of accessing Eshelby fields. Two spherical bases are introduced, which correspond to Cartesian and spherical coordinates for tensors. We show how they can be used to decompose stress correlations and thus test such properties as isotropy and power-law scalings. Eshelby fields and the predicted stress correlations in an infinite medium are shown to belong to an algebra that can conveniently be described using the spherical tensor bases. Using this formalism, we demonstrate that the inherent stress field of 3D supercooled liquids is power law correlated and carries the signature of Eshelby fields, thus supporting the idea that relaxation events give rise to Eshelby stresses that accumulate over time.

  20. Power loss of a single electron charge distribution confined in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Department of Physics, Faculty of Science, I. K. Int'l University, Qazvin 34149-16818; Mahmoodi, J.

    2011-05-15

    The dielectric tensor for a quantum plasma is derived by using a linearized quantum hydrodynamic theory. The wave functions for a nanostructure bound system have been investigated. Finally, the power loss for an oscillating charge distribution of a mixed state will be calculated, using the dielectric function formalism.

  1. Early universe with modified scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  2. Collapsing shells and black holes: a quantum analysis

    NASA Astrophysics Data System (ADS)

    Leal, P.; Bernardini, A. E.; Bertolami, O.

    2018-06-01

    The quantization of a spherically symmetric null shells is performed and extended to the framework of phase-space noncommutative (NC) quantum mechanics. This shell is considered to be inside a black hole event horizon. The encountered properties are investigated making use of the Israel junction conditions on the shell, considering that it is the boundary between two spherically symmetric spacetimes. Using this method, and considering two different Kantowski–Sachs spacetimes as a representation for the Schwarzschild spacetime, the relevant quantities on the shell are computed, such as its stress-energy tensor and the action for the whole spacetime. From the obtained action, the Wheeler–deWitt equation is deduced in order to provide the quantum framework for the system. Solutions for the wave function of the system are found on both the commutative and NC scenarios. It is shown that, on the commutative version, the wave function has a purely oscillatory behavior in the interior of the shell. In the NC setting, it is shown that the wave function vanishes at the singularity, as well as, at the event horizon of the black hole.

  3. Tensor calculus: unlearning vector calculus

    NASA Astrophysics Data System (ADS)

    Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita

    2018-02-01

    Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can serve as a bridge for vector calculus into tensor calculus.

  4. Approximation method for a spherical bound system in the quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.

    2010-08-15

    A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.

  5. Tensor-based spatiotemporal saliency detection

    NASA Astrophysics Data System (ADS)

    Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen

    2018-03-01

    This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.

  6. Anisotropic tensor power spectrum at interferometer scales induced by tensor squeezed non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Ricciardone, Angelo; Tasinato, Gianmassimo

    2018-02-01

    We develop a scenario of inflation with spontaneously broken time and space diffeomorphisms, with distinctive features for the primordial tensor modes. Inflationary tensor fluctuations are not conserved outside the horizon, and can acquire a mass during the inflationary epoch. They can evade the Higuchi bound around de Sitter space, thanks to interactions with the fields driving expansion. Correspondingly, the primordial stochastic gravitational wave background (SGWB) is characterised by a tuneable scale dependence, and can be detectable at interferometer scales. In this set-up, tensor non-Gaussianity can be parametrically enhanced in the squeezed limit. This induces a coupling between long and short tensor modes, leading to a specific quadrupolar anisotropy in the primordial SGWB spectrum, which can be used to build estimators for tensor non-Gaussianity. We analyse how our inflationary system can be tested with interferometers, also discussing how an interferometer can be sensitive to a primordial anisotropic SGWB.

  7. Mid-Crustal Stress Magnitude and Rotation Transients Related to the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Ellis, S.

    2008-12-01

    Seismic slip causes a stress drop in the upper crust, and a major stress increase at the lower termination of the fault in the middle crust. Previous numerical models show how these stresses relax during an episode of postseismic creep. Natural evidence for postseismic stress and strain transients at depth is provided by 1) the geological record of exhumed metamorphic rocks, and 2) from postseismic surface deformation transients. In the present study, we use numerical models to investigate the changes in the geometry of the mid-crustal stress field caused by seismic slip along normal faults within an extensional tectonic setting. We model a 100x30km crustal section, with a fault reaching down to 20km and dipping at 60°. A non-linear thermal gradient and constant elastic parameters are applied. Thermally activated creep is described by values derived from laboratory creep experiments on wet quartzite. The crust is loaded by horizontal extension at a constant rate, and earthquakes are triggered by a short term decrease in the frictional coefficient of the fault. During the interseismic period, this coefficient is set to high values to lock the fault. A sequence of 30 earthquakes with a constant recurrence interval of 500y is simulated, and the results for the last seismic cycle are analyzed. In such a tectonic setting, the Anderson theory predicts that the maximum principal stress is vertical. A stress field consistent to this theory is reached after an initial stage of 15ka extension without earthquake activity. The results for the 30th seismic cycle imply that seismic slip causes a major stress increase of at least 50MPa at a depth level below the brittle ductile transition, which is in accordance to reports on seismic stress increase derived from the record of metamorphic rocks. In the hanging wall, the stress increase results mainly from an increase in the maximum principal stress and the stress tensor rotates counter-clockwise by 10-30°. In the footwall the

  8. Sparse alignment for robust tensor learning.

    PubMed

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  9. Symmetry classes of the anisotropy tensors of quasielastic materials and a generalized Kelvin approach

    NASA Astrophysics Data System (ADS)

    Ostrosablin, N. I.

    2017-05-01

    The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke's law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.

  10. Normal stress differences and beyond-Navier-Stokes hydrodynamics

    NASA Astrophysics Data System (ADS)

    Alam, Meheboob; Saha, Saikat

    2017-06-01

    A recently proposed beyond-Navier-Stokes order hydrodynamic theory for dry granular fluids is revisited by focussing on the behaviour of the stress tensor and the scaling of related transport coefficients in the dense limit. For the homogeneous shear flow, it is shown that the eigen-directions of the second-moment tensor and those of the shear tensor become co-axial, thus making the first normal stress difference (N1) to zero in the same limit. In contrast, the origin of the second normal stress difference (N2) is tied to the `excess' temperature along the mean-vorticity direction and the imposed shear field, respectively, in the dilute and dense flows. The scaling relations for transport coefficients are suggested based on the present theory.

  11. Mean template for tensor-based morphometry using deformation tensors.

    PubMed

    Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M

    2007-01-01

    Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.

  12. Notes on super Killing tensors

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Lindström, U.

    2016-03-01

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  13. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  14. Tensor Train Neighborhood Preserving Embedding

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin

    2018-05-01

    In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.

  15. Strain distribution and band structure of InAs/GaAs quantum ring superlattice

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, Vram; Kirakosyan, Albert

    2017-12-01

    The elastic strain distribution and the band structure of InAs/GaAs one-layer quantum ring superlattice with square symmetry has been considered in this work. The Green's function formalism based on the method of inclusions has been implied to calculate the components of the strain tensor, while the combination of Green's function method with the Fourier transformation to momentum space in Pikus-Bir Hamiltonian has been used for obtaining the miniband energy dispersion surfaces via the exact diagonalization procedure. The dependencies of the strain tensor components on spatial coordinates are compared with ones for single quantum ring and are in good agreement with previously obtained results for cylindrical quantum disks. It is shown that strain significantly affects the miniband structure of the superlattice and has contribution to the degeneracy lifting effect due to heavy hole-light hole coupling. The demonstrated method is simple and provides reasonable results for comparatively small Hamiltonian matrix. The obtained results may be useful for further investigation and construction of novel devices based on quantum ring superlattices.

  16. Can a quantum state over time resemble a quantum state at a single time?

    NASA Astrophysics Data System (ADS)

    Horsman, Dominic; Heunen, Chris; Pusey, Matthew F.; Barrett, Jonathan; Spekkens, Robert W.

    2017-09-01

    The standard formalism of quantum theory treats space and time in fundamentally different ways. In particular, a composite system at a given time is represented by a joint state, but the formalism does not prescribe a joint state for a composite of systems at different times. If there were a way of defining such a joint state, this would potentially permit a more even-handed treatment of space and time, and would strengthen the existing analogy between quantum states and classical probability distributions. Under the assumption that the joint state over time is an operator on the tensor product of single-time Hilbert spaces, we analyse various proposals for such a joint state, including one due to Leifer and Spekkens, one due to Fitzsimons, Jones and Vedral, and another based on discrete Wigner functions. Finding various problems with each, we identify five criteria for a quantum joint state over time to satisfy if it is to play a role similar to the standard joint state for a composite system: that it is a Hermitian operator on the tensor product of the single-time Hilbert spaces; that it represents probabilistic mixing appropriately; that it has the appropriate classical limit; that it has the appropriate single-time marginals; that composing over multiple time steps is associative. We show that no construction satisfies all these requirements. If Hermiticity is dropped, then there is an essentially unique construction that satisfies the remaining four criteria.

  17. Moment tensor inversion of ground motion from mining-induced earthquakes, Trail Mountain, Utah

    USGS Publications Warehouse

    Fletcher, Joe B.; McGarr, A.

    2005-01-01

    A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop groundmotion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes Mc. Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4 ?? 105 to 2.4 ?? 106 J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.

  18. Spherical Tensor Calculus for Local Adaptive Filtering

    NASA Astrophysics Data System (ADS)

    Reisert, Marco; Burkhardt, Hans

    In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.

  19. A Local Fast Marching-Based Diffusion Tensor Image Registration Algorithm by Simultaneously Considering Spatial Deformation and Tensor Orientation

    PubMed Central

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.

    2010-01-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  20. Killing(-Yano) tensors in string theory

    NASA Astrophysics Data System (ADS)

    Chervonyi, Yuri; Lunin, Oleg

    2015-09-01

    We construct the Killing(-Yano) tensors for a large class of charged black holes in higher dimensions and study general properties of such tensors, in particular, their behavior under string dualities. Killing(-Yano) tensors encode the symmetries beyond isometries, which lead to insights into dynamics of particles and fields on a given geometry by providing a set of conserved quantities. By analyzing the eigenvalues of the Killing tensor, we provide a prescription for constructing several conserved quantities starting from a single object, and we demonstrate that Killing tensors in higher dimensions are always associated with ellipsoidal coordinates. We also determine the transformations of the Killing(-Yano) tensors under string dualities, and find the unique modification of the Killing-Yano equation consistent with these symmetries. These results are used to construct the explicit form of the Killing(-Yano) tensors for the Myers-Perry black hole in arbitrary number of dimensions and for its charged version.

  1. Tensor Calculus: Unlearning Vector Calculus

    ERIC Educational Resources Information Center

    Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita

    2018-01-01

    Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…

  2. Tensor Toolbox for MATLAB v. 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kola, Tamara; Bader, Brett W.; Acar Ataman, Evrim NMN

    Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors using MATLAB's object-oriented features. It also provides algorithms for tensor decomposition and factorization, algorithms for computing tensor eigenvalues, and methods for visualization of results.

  3. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.

    PubMed

    Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  4. Yang-Baxter maps, discrete integrable equations and quantum groups

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Sergeev, Sergey M.

    2018-01-01

    For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang-Baxter equation. This map allows one to define an integrable discrete quantum evolution system on quadrilateral lattices, where local degrees of freedom (dynamical variables) take values in a tensor power of the quantized Lie algebra. The corresponding equations of motion admit the zero curvature representation. The commuting Integrals of Motion are defined in the standard way via the Quantum Inverse Problem Method, utilizing Baxter's famous commuting transfer matrix approach. All elements of the above construction have a meaningful quasi-classical limit. As a result one obtains an integrable discrete Hamiltonian evolution system, where the local equation of motion are determined by a classical Yang-Baxter map and the action functional is determined by the quasi-classical asymptotics of the universal R-matrix of the underlying quantum algebra. In this paper we present detailed considerations of the above scheme on the example of the algebra Uq (sl (2)) leading to discrete Liouville equations, however the approach is rather general and can be applied to any quantized Lie algebra.

  5. FAST TRACK COMMUNICATION Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    2010-11-01

    The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved.

  6. Fast and accurate 3D tensor calculation of the Fock operator in a general basis

    NASA Astrophysics Data System (ADS)

    Khoromskaia, V.; Andrae, D.; Khoromskij, B. N.

    2012-11-01

    The present paper contributes to the construction of a “black-box” 3D solver for the Hartree-Fock equation by the grid-based tensor-structured methods. It focuses on the calculation of the Galerkin matrices for the Laplace and the nuclear potential operators by tensor operations using the generic set of basis functions with low separation rank, discretized on a fine N×N×N Cartesian grid. We prove the Ch2 error estimate in terms of mesh parameter, h=O(1/N), that allows to gain a guaranteed accuracy of the core Hamiltonian part in the Fock operator as h→0. However, the commonly used problem adapted basis functions have low regularity yielding a considerable increase of the constant C, hence, demanding a rather large grid-size N of about several tens of thousands to ensure the high resolution. Modern tensor-formatted arithmetics of complexity O(N), or even O(logN), practically relaxes the limitations on the grid-size. Our tensor-based approach allows to improve significantly the standard basis sets in quantum chemistry by including simple combinations of Slater-type, local finite element and other basis functions. Numerical experiments for moderate size organic molecules show efficiency and accuracy of grid-based calculations to the core Hamiltonian in the range of grid parameter N3˜1015.

  7. A new Weyl-like tensor of geometric origin

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Ram Gopal

    2018-04-01

    A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.

  8. Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2016-10-01

    We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.

  9. Inflationary tensor perturbations after BICEP2.

    PubMed

    Caligiuri, Jerod; Kosowsky, Arthur

    2014-05-16

    The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.

  10. Gravitoelectromagnetic analogy based on tidal tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, L. Filipe O.; Herdeiro, Carlos A. R.

    2008-07-15

    We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third wemore » show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.« less

  11. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  12. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  13. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE PAGES

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; ...

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  14. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD.

    PubMed

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S; Orginos, Kostas; Savage, Martin J; Shanahan, Phiala E; Wagman, Michael L; Winter, Frank

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806  MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  15. The method of planes pressure tensor for a spherical subvolume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, D. M., E-mail: d.heyes@imperial.ac.uk; Smith, E. R., E-mail: edward.smith05@imperial.ac.uk; Dini, D., E-mail: d.dini@imperial.ac.uk

    2014-02-07

    Various formulas for the local pressure tensor based on a spherical subvolume of radius, R, are considered. An extension of the Method of Planes (MOP) formula of Todd et al. [Phys. Rev. E 52, 1627 (1995)] for a spherical geometry is derived using the recently proposed Control Volume formulation [E. R. Smith, D. M. Heyes, D. Dini, and T. A. Zaki, Phys. Rev. E 85, 056705 (2012)]. The MOP formula for the purely radial component of the pressure tensor is shown to be mathematically identical to the Radial Irving-Kirkwood formula. Novel offdiagonal elements which are important for momentum conservation emergemore » naturally from this treatment. The local pressure tensor formulas for a plane are shown to be the large radius limits of those for spherical surfaces. The radial-dependence of the pressure tensor computed by Molecular Dynamics simulation is reported for virtual spheres in a model bulk liquid where the sphere is positioned randomly or whose center is also that of a molecule in the liquid. The probability distributions of angles relating to pairs of atoms which cross the surface of the sphere, and the center of the sphere, are presented as a function of R. The variance in the shear stress calculated from the spherical Volume Averaging method is shown to converge slowly to the limiting values with increasing radius, and to be a strong function of the number of molecules in the simulation cell.« less

  16. Electronic and optical properties of GaN/AlN quantum dots on Si(111) subject to in-plane uniaxial stresses and variable excitation

    NASA Astrophysics Data System (ADS)

    Moshe, O.; Rich, D. H.; Birner, S.; Povolotskyi, M.; Damilano, B.; Massies, J.

    2010-10-01

    We have studied the excitation- and polarization-dependent optical properties of GaN/AlN self-assembled quantum dots (QDs) grown on Si(111) substrates. Ensembles of QDs were subject to various external stress configurations that resulted from the thermal expansion coefficient mismatch between the GaN/AlN layers and the Si(111) substrate and ranged from in-plane uniaxial stress, primarily along the ⟨112¯0⟩ directions, to in-plane biaxial stress, having magnitudes ranging from 20-30 kbar. Limited regions of uniaxial stress were obtained by exploiting naturally occurring microcracks that form during the postgrowth cooling. These microcracks act as stressors in order to create the highly localized regions of uniaxial stress. The local strain tensors for such QDs, which are subject to an interfacial stress perturbation, have been determined by modeling the dependence of the QD excitonic transition energy on the interfacial stress. Cathodoluminescence (CL) measurements of the excitonic transitions exhibit an in-plane linear polarization anisotropy in close proximity to microcracks. The polarization anisotropy is strongly dependent on the sample temperature and the electron beam excitation conditions used to excite the QD ensemble. Localized CL spectroscopy of the QDs exhibits emissions from both the ground and excited states, whose relative contributions depend on the level of excitation and temperature. Experimental results indicate that the polarization anisotropy vanishes at high temperatures (˜300 K) with an increasing excitation of the QDs, while the anisotropy decreases more slowly with excitation at low temperatures (˜60 K). A theoretical modeling of the effect of carrier filling on the polarization anisotropy and the excitonic transition energy was performed, as based on three-dimensional self-consistent solutions of the Schrödinger and Poisson equations using the 6×6 kṡp and effective mass methods for calculations of the e-h wave functions and

  17. Visualizing second order tensor fields with hyperstreamlines

    NASA Technical Reports Server (NTRS)

    Delmarcelle, Thierry; Hesselink, Lambertus

    1993-01-01

    Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.

  18. Antisymmetric tensor generalizations of affine vector fields.

    PubMed

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  19. Quantum Structure of Space and Time

    NASA Astrophysics Data System (ADS)

    Duff, M. J.; Isham, C. J.

    2012-07-01

    Foreword Abdus Salam; Preface; List of participants; Part I. Quantum Gravity, Fields and Topology: 1. Some remarks on gravity and quantum mechanics Roger Penrose; 2. An experimental test of quantum gravity Don N. Page and C. D. Geilker; 3. Quantum mechanical origin of the sandwich theorem in classical gravitation theory Claudio Teitelboim; 4. θ-States induced by the diffeomorphism group in canonically quantized gravity C. J. Isham; 5. Strong coupling quantum gravity: an introduction Martin Pilati; 6. Quantizing fourth order gravity theories S. M. Christensen; 7. Green's functions, states and renormalisation M. R. Brown and A. C. Ottewill; 8. Introduction to quantum regge calculus Martin Roček and Ruth Williams; 9. Spontaneous symmetry breaking in curved space-time D. J. Toms; 10. Spontaneous symmetry breaking near a black hole M. S. Fawcett and B. F. Whiting; 11. Yang-Mills vacua in a general three-space G. Kunstatter; 12. Fermion fractionization in physics R. Jackiw; Part II. Supergravity: 13. The new minimal formulation of N=1 supergravity and its tensor calculus M. F. Sohnius and P. C. West; 14. A new deteriorated energy-momentum tensor M. J. Duff and P. K. Townsend; 15. Off-shell N=2 and N=4 supergravity in five dimensions P. Howe; 16. Supergravity in high dimensions P. van Niewenhuizen; 17. Building linearised extended supergravities J. G. Taylor; 18. (Super)gravity in the complex angular momentum plane M. T. Grisaru; 19. The multiplet structure of solitons in the O(2) supergravity theory G. W. Gibbons; 20. Ultra-violet properties of supersymmetric gauge theory S. Ferrara; 21. Extended supercurrents and the ultra-violet finiteness of N=4 supersymmetric Yang-Mills theories K. S. Stelle; 22. Duality rotations B. Zumino; Part III. Cosmology and the Early Universe: 23. Energy, stability and cosmological constant S. Deser; 24. Phase transitions in the early universe T. W. B. Kibble; 25. Complete cosmological theories L. P. Grishchuk and Ya. B. Zeldovich; 26. The

  20. Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains

    PubMed Central

    Kazeev, Vladimir; Khammash, Mustafa; Nip, Michael; Schwab, Christoph

    2014-01-01

    The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to “lift” this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging -discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our method automatically adapts the “basis” of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude

  1. Quantum Bianchi identities via DG categories

    NASA Astrophysics Data System (ADS)

    Beggs, Edwin J.; Majid, Shahn

    2018-01-01

    We use DG categories to derive analogues of the Bianchi identities for the curvature of a connection in noncommutative differential geometry. We also revisit the Chern-Connes pairing but following the line of Chern's original derivation. We show that a related DG category of extendable bimodule connections is a monoidal tensor category and in the metric compatible case obtain an analogue of a classical antisymmetry of the Riemann tensor. The monoidal structure implies the existence of a cup product on noncommutative sheaf cohomology. Another application shows that the curvature of a line module reduces to a 2-form on the base algebra. We illustrate the theory on the q-sphere, the permutation group S3 and the bicrossproduct quantum spacetime [ r , t ] = λr.

  2. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less

  3. The tensor hierarchy algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmkvist, Jakob, E-mail: palmkvist@ihes.fr

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of ourmore » Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.« less

  4. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  5. Black holes as quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2018-03-01

    We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-dimensional triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.

  6. Vacuum stress energy density and its gravitational implications

    NASA Astrophysics Data System (ADS)

    Estrada, Ricardo; Fulling, Stephen A.; Kaplan, Lev; Kirsten, Klaus; Liu, Zhonghai; Milton, Kimball A.

    2008-04-01

    In nongravitational physics the local density of energy is often regarded as merely a bookkeeping device; only total energy has an experimental meaning—and it is only modulo a constant term. But in general relativity the local stress-energy tensor is the source term in Einstein's equation. In closed universes, and those with Kaluza-Klein dimensions, theoretical consistency demands that quantum vacuum energy should exist and have gravitational effects, although there are no boundary materials giving rise to that energy by van der Waals interactions. In the lab there are boundaries, and in general the energy density has a nonintegrable singularity as a boundary is approached (for idealized boundary conditions). As pointed out long ago by Candelas and Deutsch, in this situation there is doubt about the viability of the semiclassical Einstein equation. Our goal is to show that the divergences in the linearized Einstein equation can be renormalized to yield a plausible approximation to the finite theory that presumably exists for realistic boundary conditions. For a scalar field with Dirichlet or Neumann boundary conditions inside a rectangular parallelepiped, we have calculated by the method of images all components of the stress tensor, for all values of the conformal coupling parameter and an exponential ultraviolet cutoff parameter. The qualitative features of contributions from various classes of closed classical paths are noted. Then the Estrada-Kanwal distributional theory of asymptotics, particularly the moment expansion, is used to show that the linearized Einstein equation with the stress-energy near a plane boundary as source converges to a consistent theory when the cutoff is removed. This paper reports work in progress on a project combining researchers in Texas, Louisiana and Oklahoma. It is supported by NSF Grants PHY-0554849 and PHY-0554926.

  7. EDITORIAL: Focus on Quantum Information and Many-Body Theory

    NASA Astrophysics Data System (ADS)

    Eisert, Jens; Plenio, Martin B.

    2010-02-01

    Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac

  8. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  9. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    NASA Astrophysics Data System (ADS)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-07-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  10. Wigner tomography of multispin quantum states

    NASA Astrophysics Data System (ADS)

    Leiner, David; Zeier, Robert; Glaser, Steffen J.

    2017-12-01

    We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.

  11. Mathematics of Quantization and Quantum Fields

    NASA Astrophysics Data System (ADS)

    Dereziński, Jan; Gérard, Christian

    2013-03-01

    Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.

  12. Spatial and Temporal Variations in the Moment Tensor Solutions of the 2008 Wenchuan Earthquake Aftershocks and Their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Lin, X.; Dreger, D.; Ge, H.; Xu, P.; Wu, M.; Chiang, A.; Zhao, G.; Yuan, H.

    2018-03-01

    Following the mainshock of the 2008 M8 Wenchuan Earthquake, there were more than 300 ML ≥ 4.0 aftershocks that occurred between 12 May 2008 and 8 September 2010. We analyzed the broadband waveforms for these events and found 160 events with sufficient signal-to-noise levels to invert for seismic moment tensors. Considering the length of the activated fault and the distances to the recording stations, four velocity models were employed to account for variability in crustal structure. The moment tensor solutions show considerable variations with a mixture of mainly reverse and strike-slip mechanisms and a small number of normal events and ambiguous events. We analyzed the spatial and temporal distribution of the aftershocks and their mechanism types to characterize the structure and the deformation occurring in the Longmen Shan fold and thrust belt. Our results suggest that the stress is very complex at the Longmen Shan fault zone. The moment tensors have both a spatial segmentation with two major categories of the moment tensor of thrust and strike slip; and a temporal pattern that the majority of the aftershocks gradually migrated to thrust-type events. The variability of aftershock mechanisms is a strong indication of significant tectonic release and stress reorganization that activated numerous small faults in the system.

  13. Dictionary-Based Tensor Canonical Polyadic Decomposition

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  14. Moment Tensor Analysis of Shallow Sources

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.; Yoo, S. H.

    2015-12-01

    A potential issue for moment tensor inversion of shallow seismic sources is that some moment tensor components have vanishing amplitudes at the free surface, which can result in bias in the moment tensor solution. The effects of the free-surface on the stability of the moment tensor method becomes important as we continue to investigate and improve the capabilities of regional full moment tensor inversion for source-type identification and discrimination. It is important to understand these free surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have shallow seismicity such as volcanoes and geothermal systems. In this study, we apply the moment tensor based discrimination method to the HUMMING ALBATROSS quarry blasts. These shallow chemical explosions at approximately 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of vanishing traction issues. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first motion method enables the unique discrimination of these events. Recovering the correct yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique.

  15. Octupolar tensors for liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yannan; Qi, Liqun; Virga, Epifanio G.

    2018-01-01

    A third-rank three-dimensional symmetric traceless tensor, called the octupolar tensor, has been introduced to study tetrahedratic nematic phases in liquid crystals. The octupolar potential, a scalar-valued function generated on the unit sphere by that tensor, should ideally have four maxima (on the vertices of a tetrahedron), but it was recently found to possess an equally generic variant with three maxima instead of four. It was also shown that the irreducible admissible region for the octupolar tensor in a three-dimensional parameter space is bounded by a dome-shaped surface, beneath which is a separatrix surface connecting the two generic octupolar states. The latter surface, which was obtained through numerical continuation, may be physically interpreted as marking a possible intra-octupolar transition. In this paper, by using the resultant theory of algebraic geometry and the E-characteristic polynomial of spectral theory of tensors, we give a closed-form, algebraic expression for both the dome-shaped surface and the separatrix surface. This turns the envisaged intra-octupolar transition into a quantitative, possibly observable prediction.

  16. Quantum Sets and Clifford Algebras

    NASA Astrophysics Data System (ADS)

    Finkelstein, David

    1982-06-01

    The mathematical language presently used for quantum physics is a high-level language. As a lowest-level or basic language I construct a quantum set theory in three stages: (1) Classical set theory, formulated as a Clifford algebra of “ S numbers” generated by a single monadic operation, “bracing,” Br = {…}. (2) Indefinite set theory, a modification of set theory dealing with the modal logical concept of possibility. (3) Quantum set theory. The quantum set is constructed from the null set by the familiar quantum techniques of tensor product and antisymmetrization. There are both a Clifford and a Grassmann algebra with sets as basis elements. Rank and cardinality operators are analogous to Schroedinger coordinates of the theory, in that they are multiplication or “ Q-type” operators. “ P-type” operators analogous to Schroedinger momenta, in that they transform the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and the creator of X, represented by Grassmann multiplication c( X) by the set X. Br and its adjoint Br* form a Bose-Einstein canonical pair, and c( X) and its adjoint c( X)* form a Fermi-Dirac or anticanonical pair. Many coefficient number systems can be employed in this quantization. I use the integers for a discrete quantum theory, with the usual complex quantum theory as limit. Quantum set theory may be applied to a quantum time space and a quantum automaton.

  17. Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations in Dimension d≥2

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin

    2016-07-01

    We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d≥ 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubbles which are pseudo-manifolds with boundaries. Bubbles can in turn be glued together to form triangulations. The main challenge is to classify the triangulations built from a given set of bubbles with respect to their numbers of bubbles and simplices of codimension two. While the colored triangulations which maximize the number of simplices of codimension two at fixed number of simplices are series-parallel objects called melonic triangulations, this is not always true anymore when restricting attention to colored triangulations built from specific bubbles. This opens up the possibility of new universality classes of colored triangulations. We present three existing strategies to find those universality classes. The first two strategies consist in building new bubbles from old ones for which the problem can be solved. The third strategy is a bijection between those colored triangulations and stuffed, edge-colored maps, which are some sort of hypermaps whose hyperedges are replaced with edge-colored maps. We then show that the present approach can lead to enumeration results and identification of universality classes, by working out the example of quartic tensor models. They feature a tree-like phase, a planar phase similar to two-dimensional quantum gravity and a phase transition between them which is interpreted as a proliferation of baby universes. While this work is written in the context of random tensors, it is almost exclusively of combinatorial nature and we hope it is accessible to interested readers who are not familiar with random matrices, tensors and quantum

  18. Quantum gravity and renormalization

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2015-02-01

    The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of non-renormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which also can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions d>3. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.

  19. Visualization of geologic stress perturbations using Mohr diagrams.

    PubMed

    Crossno, Patricia; Rogers, David H; Brannon, Rebecca M; Coblentz, David; Fredrich, Joanne T

    2005-01-01

    Huge salt formations, trapping large untapped oil and gas reservoirs, lie in the deepwater region of the Gulf of Mexico. Drilling in this region is high-risk and drilling failures have led to well abandonments, with each costing tens of millions of dollars. Salt tectonics plays a central role in these failures. To explore the geomechanical interactions between salt and the surrounding sand and shale formations, scientists have simulated the stresses in and around salt diapirs in the Gulf of Mexico using nonlinear finite element geomechanical modeling. In this paper, we describe novel techniques developed to visualize the simulated subsurface stress field. We present an adaptation of the Mohr diagram, a traditional paper-and-pencil graphical method long used by the material mechanics community for estimating coordinate transformations for stress tensors, as a new tensor glyph for dynamically exploring tensor variables within three-dimensional finite element models. This interactive glyph can be used as either a probe or a filter through brushing and linking.

  20. Quantum noise in the mirror-field system: A field theoretic approach

    NASA Astrophysics Data System (ADS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-02-01

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror.

  1. Frustrated Magnetism of Dipolar Molecules on a Square Optical Lattice: Prediction of a Quantum Paramagnetic Ground State

    NASA Astrophysics Data System (ADS)

    Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent

    2017-08-01

    Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.

  2. Tensor network method for reversible classical computation

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.

    2018-03-01

    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.

  3. Ward identity and basis tensor gauge theory at one loop

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.

    2018-06-01

    Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalism requires a continuous symmetry that we call the BTGT symmetry in addition to the ordinary gauge symmetry. After classically interpreting the BTGT symmetry, we construct using the BTGT formalism the Ward identities associated with the BTGT symmetry and the ordinary gauge symmetry. For a way of testing the quantum stability and the consistency of the Ward identities with a known regularization method, we explicitly renormalize the scalar QED at one loop using dimensional regularization using the BTGT formalism.

  4. Classical Field Theory and the Stress-Energy Tensor

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2015-09-01

    This book is a concise introduction to the key concepts of classical field theory for beginning graduate students and advanced undergraduate students who wish to study the unifying structures and physical insights provided by classical field theory without dealing with the additional complication of quantization. In that regard, there are many important aspects of field theory that can be understood without quantizing the fields. These include the action formulation, Galilean and relativistic invariance, traveling and standing waves, spin angular momentum, gauge invariance, subsidiary conditions, fluctuations, spinor and vector fields, conservation laws and symmetries, and the Higgs mechanism, all of which are often treated briefly in a course on quantum field theory. The variational form of classical mechanics and continuum field theory are both developed in the time-honored graduate level text by Goldstein et al (2001). An introduction to classical field theory from a somewhat different perspective is available in Soper (2008). Basic classical field theory is often treated in books on quantum field theory. Two excellent texts where this is done are Greiner and Reinhardt (1996) and Peskin and Schroeder (1995). Green's function techniques are presented in Arfken et al (2013).

  5. Robust estimation of adaptive tensors of curvature by tensor voting.

    PubMed

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  6. Seamless Warping of Diffusion Tensor Fields

    PubMed Central

    Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425

  7. Tensoral for post-processing users and simulation authors

    NASA Technical Reports Server (NTRS)

    Dresselhaus, Eliot

    1993-01-01

    The CTR post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, which provides the foundation for this effort, is introduced here in the form of a user's guide. The Tensoral user's guide is presented in two main sections. Section one acts as a general introduction and guides database users who wish to post-process simulation databases. Section two gives a brief description of how database authors and other advanced users can make simulation codes and/or the databases they generate available to the user community via Tensoral database back ends. The two-part structure of this document conforms to the two-level design structure of the Tensoral language. Tensoral has been designed to be a general computer language for performing tensor calculus and statistics on numerical data. Tensoral's generality allows it to be used for stand-alone native coding of high-level post-processing tasks (as described in section one of this guide). At the same time, Tensoral's specialization to a minute task (namely, to numerical tensor calculus and statistics) allows it to be easily embedded into applications written partly in Tensoral and partly in other computer languages (here, C and Vectoral). Embedded Tensoral, aimed at advanced users for more general coding (e.g. of efficient simulations, for interfacing with pre-existing software, for visualization, etc.), is described in section two of this guide.

  8. Visualization of 3-D tensor fields

    NASA Technical Reports Server (NTRS)

    Hesselink, L.

    1996-01-01

    Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.

  9. Geometric decomposition of the conformation tensor in viscoelastic turbulence

    NASA Astrophysics Data System (ADS)

    Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.

    2018-05-01

    This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.

  10. Optical properties of hybrid spherical nanoclusters containing quantum emitters and metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yannopapas, V.; Paspalakis, E.

    2018-05-01

    We study theoretically the optical response of a hybrid spherical cluster containing quantum emitters and metallic nanoparticles. The quantum emitters are modeled as two-level quantum systems whose dielectric function is obtained via a density matrix approach wherein the modified spontaneous emission decay rate at the position of each quantum emitter is calculated via the electromagnetic Green's tensor. The problem of light scattering off the hybrid cluster is solved by employing the coupled-dipole method. We find, in particular, that the presence of the quantum emitters in the cluster, even in small fractions, can significantly alter the absorption and extinction spectra of the sole cluster of the metallic nanoparticles, where the corresponding electromagnetic modes can have a weak plexcitonic character under suitable conditions.

  11. On Lovelock analogs of the Riemann tensor

    NASA Astrophysics Data System (ADS)

    Camanho, Xián O.; Dadhich, Naresh

    2016-03-01

    It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.

  12. The simplicial Ricci tensor

    NASA Astrophysics Data System (ADS)

    Alsing, Paul M.; McDonald, Jonathan R.; Miller, Warner A.

    2011-08-01

    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincarè conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area—an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.

  13. Assessing the Uncertainties on Seismic Source Parameters: Towards Realistic Estimates of Moment Tensor Determinations

    NASA Astrophysics Data System (ADS)

    Magnoni, F.; Scognamiglio, L.; Tinti, E.; Casarotti, E.

    2014-12-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Moment tensor catalogues are ordinarily used by geoscientists, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their own analysis. The 2012 May 20 Emilia mainshock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. An uncertainty of ~0.5 units in magnitude leads to a controversial knowledge of the real size of the event. The possible uncertainty associated to this estimate could be critical for the inference of other seismological parameters, suggesting caution for seismic hazard assessment, coulomb stress transfer determination and other analyses where self-consistency is important. In this work, we focus on the variability of the moment tensor solution, highlighting the effect of four different velocity models, different types and ranges of filtering, and two different methodologies. Using a larger dataset, to better quantify the source parameter uncertainty, we also analyze the variability of the moment tensor solutions depending on the number, the epicentral distance and the azimuth of used stations. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, cannot be considered an absolute value and requires to come out with the related uncertainties and in a reproducible framework characterized by disclosed assumptions and explicit processing workflows.

  14. Bridging scales of crustal stress patterns using the new World Stress Map

    NASA Astrophysics Data System (ADS)

    Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K. W.; Mueller, B.; Reinecker, J.; Reiter, K.; Tingay, M. R. P.; Wenzel, F.; Xie, F.; Ziegler, M.; Zoback, M. D.; Zoback, M. L.

    2017-12-01

    Knowledge of the contemporary crustal stress field is a key parameter for the understanding of geodynamic processes such as global plate tectonics and the earthquake cycle. It is also an essential parameter for our sustainable and safe usage of Earth's resources, which is a major challenge for energy security in the 21st century. Since 1986, the World Stress Map (WSM) project has systematically compiled present-day stress information and provides a unique public domain global database. It is a long-term project based on an international network of partners from academia and industry. All data are public and available on the project website at world-stress-map.org. For the 30th anniversary of the project a new database has been compiled, containing double the amount of data records (n=42,870) including new data records from almost 4,000 deep boreholes. The new compilation focused on areas with previously sparse data coverage in order to resolve the stress pattern on different spatial scales. The significantly higher data density can now be used to resolve stress pattern heterogeneities on regional and local scales, as well as with depth in some regions. We present three results derived from the new WSM compilation: 1.) The global comparison between absolute plate motion and the mean of the orientation of maximum horizontal stress SHmax on a regular grid shows that there is still a correlation for the North and South America plate, but deviations from this general trend are now also clearly resolved. 2.) The variability of the crustal stress pattern changes when zooming in from plate-wide scale down to basin scale at 100 km. We show examples for Eastern Australia, Oklahoma and Central Europe. This regional and local variability of the stress pattern can be used as a proxy to identify and quantify regional and local stress sources by means of geomechanical-numerical models of the 3D stress tensor. 3.) Finally we present briefly the general concept of a multi-stage 3D

  15. Stress field models from Maxwell stress functions: southern California

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    2017-08-01

    The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp

  16. C%2B%2B tensor toolbox user manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plantenga, Todd D.; Kolda, Tamara Gibson

    2012-04-01

    The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.

  17. Quantum quenches in two spatial dimensions using chain array matrix product states

    DOE PAGES

    A. J. A. James; Konik, R.

    2015-10-15

    We describe a method for simulating the real time evolution of extended quantum systems in two dimensions (2D). The method combines the benefits of integrability and matrix product states in one dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In particular, it can be extended to infinitely long cylinders. As an example application we present results for quantum quenches in the 2D quantum [(2+1)-dimensional] Ising model. As a result, in quenches that cross a phase boundary we find that the return probability shows nonanalyticities in time.

  18. A d-dimensional stress tensor for Minkd+2 gravity

    NASA Astrophysics Data System (ADS)

    Kapec, Daniel; Mitra, Prahar

    2018-05-01

    We consider the tree-level scattering of massless particles in ( d+2)-dimensional asymptotically flat spacetimes. The S -matrix elements are recast as correlation functions of local operators living on a space-like cut ℳ d of the null momentum cone. The Lorentz group SO( d + 1 , 1) is nonlinearly realized as the Euclidean conformal group on ℳ d . Operators of non-trivial spin arise from massless particles transforming in non-trivial representations of the little group SO( d), and distinguished operators arise from the soft-insertions of gauge bosons and gravitons. The leading soft-photon operator is the shadow transform of a conserved spin-one primary operator J a , and the subleading soft-graviton operator is the shadow transform of a conserved spin-two symmetric traceless primary operator T ab . The universal form of the soft-limits ensures that J a and T ab obey the Ward identities expected of a conserved current and energy momentum tensor in a Euclidean CFT d , respectively.

  19. Experimental Measurement of In Situ Stress

    NASA Astrophysics Data System (ADS)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  20. Turbulent fluid motion 2: Scalars, vectors, and tensors

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    The author shows that the sum or difference of two vectors is a vector. Similarly the sum of any two tensors of the same order is a tensor of that order. No meaning is attached to the sum of tensors of different orders, say u(sub i) + u(sub ij); that is not a tensor. In general, an equation containing tensors has meaning only if all the terms in the equation are tensors of the same order, and if the same unrepeated subscripts appear in all the terms. These facts will be used in obtaining appropriate equations for fluid turbulence. With the foregoing background, the derivation of appropriate continuum equations for turbulence should be straightforward.

  1. Entropy production of doubly stochastic quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Hermes, Alexander, E-mail: muellerh@posteo.net; Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen; Stilck França, Daniel, E-mail: dsfranca@mytum.de

    2016-02-15

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an applicationmore » we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.« less

  2. A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.

    We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less

  3. Tensor Galileons and gravity

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios; Khoo, Fech Scen; Roest, Diederik; Schupp, Peter

    2017-03-01

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  4. Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion

    NASA Astrophysics Data System (ADS)

    Babadjian, Jean-François; Mora, Maria Giovanna

    2018-04-01

    This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic linearly elastic - perfectly plastic materials obeying a Drucker-Prager or Mohr-Coulomb yield criterion. Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong form using the quasi-continuous representative of the stress.

  5. Decomposition of a symmetric second-order tensor

    NASA Astrophysics Data System (ADS)

    Heras, José A.

    2018-05-01

    In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.

  6. Killing-Yano tensors of order n - 1

    NASA Astrophysics Data System (ADS)

    Batista, Carlos

    2014-08-01

    The properties of a Killing-Yano tensor of order n-1 in an n-dimensional manifold are investigated. The integrability conditions are worked out and all metrics admitting a Killing-Yano tensor of order n-1 are found. A connection between such tensors and a generalization of the concept of angular momentum is pointed out. A theorem on how to generate closed conformal Killing vectors using the symmetries of a manifold is proved and used to find all Killing-Yano tensors of order n-1 of a maximally symmetric space.

  7. Bulk locality and quantum error correction in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Almheiri, Ahmed; Dong, Xi; Harlow, Daniel

    2015-04-01

    We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.

  8. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    NASA Astrophysics Data System (ADS)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So

    2017-09-01

    A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss-Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm-1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

  9. On improving the efficiency of tensor voting.

    PubMed

    Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim

    2011-11-01

    This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.

  10. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. © 2015 SETAC.

  11. The Twist Tensor Nuclear Norm for Video Completion.

    PubMed

    Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui

    2017-12-01

    In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.

  12. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations.

    PubMed

    Vanegas, Juan M; Torres-Sánchez, Alejandro; Arroyo, Marino

    2014-02-11

    Local stress fields are routinely computed from molecular dynamics trajectories to understand the structure and mechanical properties of lipid bilayers. These calculations can be systematically understood with the Irving-Kirkwood-Noll theory. In identifying the stress tensor, a crucial step is the decomposition of the forces on the particles into pairwise contributions. However, such a decomposition is not unique in general, leading to an ambiguity in the definition of the stress tensor, particularly for multibody potentials. Furthermore, a theoretical treatment of constraints in local stress calculations has been lacking. Here, we present a new implementation of local stress calculations that systematically treats constraints and considers a privileged decomposition, the central force decomposition, that leads to a symmetric stress tensor by construction. We focus on biomembranes, although the methodology presented here is widely applicable. Our results show that some unphysical behavior obtained with previous implementations (e.g. nonconstant normal stress profiles along an isotropic bilayer in equilibrium) is a consequence of an improper treatment of constraints. Furthermore, other valid force decompositions produce significantly different stress profiles, particularly in the presence of dihedral potentials. Our methodology reveals the striking effect of unsaturations on the bilayer mechanics, missed by previous stress calculation implementations.

  13. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.

    PubMed

    Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik

    2007-01-01

    In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.

  14. Scale-invariant curvature fluctuations from an extended semiclassical gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it; INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova; Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it

    2015-02-15

    We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.

  15. Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach.

    PubMed

    Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir

    2016-08-01

    In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.

  16. Measuring Nematic Susceptibilities from the Elastoresistivity Tensor

    NASA Astrophysics Data System (ADS)

    Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian

    The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  17. Photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Mosman, Elena A.

    2017-12-01

    In this article, we provide analytical expressions for the photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian laser beams. Our results are based on a locally constant field approximation of the one-loop Heisenberg-Euler effective Lagrangian for quantum electrodynamics. Hence, by construction they are limited to slowly varying electromagnetic fields, varying on spatial and temporal scales significantly larger than the Compton wavelength/time of the electron. The latter criterion is fulfilled by all laser beams currently available in the laboratory. Our findings will, e.g., be relevant for the study of vacuum birefringence experienced by probe photons brought into collision with a high-intensity laser pulse which can be represented as a superposition of either Hermite- or Laguerre-Gaussian modes.

  18. Simultaneous determination of mean pressure and deviatoric stress based on numerical tensor analysis: a case study for polycrystalline x-ray diffraction of gold enclosed in a methanol-ethanol mixture.

    PubMed

    Yoneda, A; Kubo, A

    2006-06-28

    It is known that the {100} and {111} planes of cubic crystals subjected to uniaxial deviatoric stress conditions have strain responses that are free from the effect of lattice preferred orientation. By utilizing this special character, one can unambiguously and simultaneously determine the mean pressure and deviatoric stress from polycrystalline diffraction data of the cubic sample. Here we introduce a numerical tensor calculation method based on the generalized Hooke's law to simultaneously determine the hydrostatic component of the stress (mean pressure) and deviatoric stress in the sample. The feasibility of this method has been tested by examining the experimental data of the Au pressure marker enclosed in a diamond anvil cell using a pressure medium of methanol-ethanol mixture. The results demonstrated that the magnitude of the deviatoric stress is ∼0.07 GPa at the mean pressure of 10.5 GPa, which is consistent with previous results of Au strength under high pressure. Our results also showed that even a small deviatoric stress (∼0.07 GPa) could yield a ∼0.3 GPa mean pressure error at ∼10 GPa.

  19. Obtaining orthotropic elasticity tensor using entries zeroing method.

    NASA Astrophysics Data System (ADS)

    Gierlach, Bartosz; Danek, Tomasz

    2017-04-01

    A generally anisotropic elasticity tensor obtained from measurements can be represented by a tensor belonging to one of eight material symmetry classes. Knowledge of symmetry class and orientation is helpful for describing physical properties of a medium. For each non-trivial symmetry class except isotropic this problem is nonlinear. A common method of obtaining effective tensor is a choosing its non-trivial symmetry class and minimizing Frobenius norm between measured and effective tensor in the same coordinate system. Global optimization algorithm has to be used to determine the best rotation of a tensor. In this contribution, we propose a new approach to obtain optimal tensor, with the assumption that it is orthotropic (or at least has a similar shape to the orthotropic one). In orthotropic form tensor 24 out of 36 entries are zeros. The idea is to minimize the sum of squared entries which are supposed to be equal to zero through rotation calculated with optimization algorithm - in this case Particle Swarm Optimization (PSO) algorithm. Quaternions were used to parametrize rotations in 3D space to improve computational efficiency. In order to avoid a choice of local minima we apply PSO several times and only if we obtain similar results for the third time we consider it as a correct value and finish computations. To analyze obtained results Monte-Carlo method was used. After thousands of single runs of PSO optimization, we obtained values of quaternion parts and plot them. Points concentrate in several points of the graph following the regular pattern. It suggests the existence of more complex symmetry in the analyzed tensor. Then thousands of realizations of generally anisotropic tensor were generated - each tensor entry was replaced with a random value drawn from normal distribution having a mean equal to measured tensor entry and standard deviation of the measurement. Each of these tensors was subject of PSO based optimization delivering quaternion for optimal

  20. Stress geomechanical model application: Stress tensor evaluation in recent Nankai subduction zone, SW Japan

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Chan, C. H.

    2016-12-01

    Nowadays, IODP keeps investigating the scientific drilling in Nakai of southwest Japan from 2006. During this decade, we collected the massive logging data and core samples in this area for determining the stress evolution in this interseimic period after 1944 Tonakai earthquake. One of key assumption in Nankai seismogenic zone is the stress accumulation on the plate boundary should be the thrust-fault stress regime (SHmax>Shmin> Sv). In this research, the slip-deficit model is used to determine the wide scale stress field. The drilled IODP well sites are designed to be the fine control points. Based on the multiple ICDP expeditions near the Nankai trough (C0002A, F, and P) in different depths, the three dimensional stress estimation can be confirmed with the lateral boreholes loggings. Even the recently drilling did not reach the subduction zone, our model provides the considerable results by the reliable boundary conditions. This model simulated the stress orientation and magnitude generated by the slip-deficit model, area seismicity, and borehole loggings. Our results indicated that the stress state keeps in normal-faulting stress regime in our research area, even near the Nankai trough. Although the stress magnitude is increasing with the depth, one of horizontal principal stresses (Shmin) is hardly greater than the vertical stress (over-burden weight) in the reachable depth (>10km). This result implies the pore-pressure anomaly would happen during the slip and the stress state would be varied in different stages when event occurred

  1. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    PubMed

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  2. Topics in quantum cryptography, quantum error correction, and channel simulation

    NASA Astrophysics Data System (ADS)

    Luo, Zhicheng

    In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50]. For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms. For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length. For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol. For the fourth topic, we study and solve the problem of classical channel

  3. Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT

    NASA Astrophysics Data System (ADS)

    Caputa, Pawel; Kundu, Nilay; Miyaji, Masamichi; Takayanagi, Tadashi; Watanabe, Kento

    2017-11-01

    We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational complexity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.

  4. Conformal Yano-Killing Tensors in General Relativity

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek

    2011-09-01

    How CYK tensors appear in General Relativity? Geometric definition of the asymptotic flat spacetime: strong asymptotic flatness, which guarantees well defined total angular momentum [2, 3, 4] Conserved quantities - asymptotic charges (ℐ, 𝓲0) [2, 3, 4, 5, 6, 9] Quasi-local mass and "rotational energy" for Kerr black hole [5] Constants of motion along geodesics and symmetric Killing tensors [5, 6] Spacetimes possessing CYK tensor [10]: Minkowski (quadratic polynomials) [5] (Anti-)deSitter (natural construction) [7, 8, 9] Kerr (type D spacetime) [5] Taub-NUT (new symmetric conformal Killing tensors) [6] Other applications: Symmetries of Dirac operator Symmetries of Maxwell equations

  5. Quantum Strategies and Local Operations

    NASA Astrophysics Data System (ADS)

    Gutoski, Gus

    2010-02-01

    This thesis is divided into two parts. In Part I we introduce a new formalism for quantum strategies, which specify the actions of one party in any multi-party interaction involving the exchange of multiple quantum messages among the parties. This formalism associates with each strategy a single positive semidefinite operator acting only upon the tensor product of the input and output message spaces for the strategy. We establish three fundamental properties of this new representation for quantum strategies and we list several applications, including a quantum version of von Neumann's celebrated 1928 Min-Max Theorem for zero-sum games and an efficient algorithm for computing the value of such a game. In Part II we establish several properties of a class of quantum operations that can be implemented locally with shared quantum entanglement or classical randomness. In particular, we establish the existence of a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. The existence of this ball is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. We also provide characterizations of local operations in terms of linear functionals that are positive and "completely" positive on a certain cone of Hermitian operators, under a natural notion of complete positivity appropriate to that cone. We end the thesis with a discussion of the properties of no-signaling quantum operations.

  6. Joint eigenvector estimation from mutually anisotropic tensors improves susceptibility tensor imaging of the brain, kidney, and heart.

    PubMed

    Dibb, Russell; Liu, Chunlei

    2017-06-01

    To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  8. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    PubMed Central

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  9. Diffusion tensor analysis with invariant gradients and rotation tangents.

    PubMed

    Kindlmann, Gordon; Ennis, Daniel B; Whitaker, Ross T; Westin, Carl-Fredrik

    2007-11-01

    Guided by empirically established connections between clinically important tissue properties and diffusion tensor parameters, we introduce a framework for decomposing variations in diffusion tensors into changes in shape and orientation. Tensor shape and orientation both have three degrees-of-freedom, spanned by invariant gradients and rotation tangents, respectively. As an initial demonstration of the framework, we create a tunable measure of tensor difference that can selectively respond to shape and orientation. Second, to analyze the spatial gradient in a tensor volume (a third-order tensor), our framework generates edge strength measures that can discriminate between different neuroanatomical boundaries, as well as creating a novel detector of white matter tracts that are adjacent yet distinctly oriented. Finally, we apply the framework to decompose the fourth-order diffusion covariance tensor into individual and aggregate measures of shape and orientation covariance, including a direct approximation for the variance of tensor invariants such as fractional anisotropy.

  10. Asymptotic safety of quantum gravity beyond Ricci scalars

    NASA Astrophysics Data System (ADS)

    Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph

    2018-04-01

    We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.

  11. Projective limits of state spaces II. Quantum formalism

    NASA Astrophysics Data System (ADS)

    Lanéry, Suzanne; Thiemann, Thomas

    2017-06-01

    In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013), which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). After discussing the formalism at the classical level in a first paper (Lanéry, 2017), the present second paper is devoted to the quantum theory. In particular, we inspect in detail how such quantum projective state spaces relate to inductive limit Hilbert spaces and to infinite tensor product constructions (Lanéry, 2016, subsection 3.1) [1]. Regarding the quantization of classical projective structures into quantum ones, we extend the results by Okołów (2013), that were set up in the context of linear configuration spaces, to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of complex phase spaces (Lanéry, 2016, subsection 2.2) [1].

  12. Automatic deformable diffusion tensor registration for fiber population analysis.

    PubMed

    Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V

    2008-01-01

    In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.

  13. Quantum groups, Yang-Baxter maps and quasi-determinants

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo

    2018-01-01

    For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq (gl (n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.

  14. Influence of seismic anisotropy on the cross correlation tensor: numerical investigations

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J. P.; Roux, P.; Cupillard, P.; Durand, S.; Brenguier, F.

    2015-05-01

    Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.

  15. MRI diffusion tensor reconstruction with PROPELLER data acquisition.

    PubMed

    Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T

    2004-02-01

    MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.

  16. Connes' embedding problem and winning strategies for quantum XOR games

    NASA Astrophysics Data System (ADS)

    Harris, Samuel J.

    2017-12-01

    We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.

  17. Surface‐wave Green’s tensors in the near field

    USGS Publications Warehouse

    Haney, Matt; Nakahara, Hisashi

    2014-01-01

    We demonstrate the connection between theoretical expressions for the correlation of ambient noise Rayleigh and Love waves and the exact surface‐wave Green’s tensors for a point force. The surface‐wave Green’s tensors are well known in the far‐field limit. On the other hand, the imaginary part of the exact Green’s tensors, including near‐field effects, arises in correlation techniques such as the spatial autocorrelation (SPAC) method. Using the imaginary part of the exact Green’s tensors from the SPAC method, we find the associated real part using the Kramers–Kronig relations. The application of the Kramers–Kronig relations is not straightforward, however, because the causality properties of the different tensor components vary. In addition to the Green’s tensors for a point force, we also derive expressions for a general point moment tensor source.

  18. Kitaev honeycomb tensor networks: Exact unitary circuits and applications

    NASA Astrophysics Data System (ADS)

    Schmoll, Philipp; Orús, Román

    2017-01-01

    The Kitaev honeycomb model is a paradigm of exactly solvable models, showing nontrivial physical properties such as topological quantum order, Abelian and non-Abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely, Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear understanding of several properties of the model. In particular, we show how the fidelity diagram is straightforward both at zero temperature and at finite temperature in the vortex-free sector. We also show how the properties of two-point correlation functions follow easily. Finally, we also discuss the pros and cons of contracting of our 3d TN down to a 2d projected entangled pair state (PEPS) with finite bond dimension. The results in this paper can be extended to generalizations of the Kitaev model, e.g., to other lattices, spins, and dimensions.

  19. An Adaptive Spectrally Weighted Structure Tensor Applied to Tensor Anisotropic Nonlinear Diffusion for Hyperspectral Images

    ERIC Educational Resources Information Center

    Marin Quintero, Maider J.

    2013-01-01

    The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…

  20. Symmetry breaking in tensor models

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario; Gurau, Razvan

    2015-11-01

    In this paper we analyze a quartic tensor model with one interaction for a tensor of arbitrary rank. This model has a critical point where a continuous limit of infinitely refined random geometries is reached. We show that the critical point corresponds to a phase transition in the tensor model associated to a breaking of the unitary symmetry. We analyze the model in the two phases and prove that, in a double scaling limit, the symmetric phase corresponds to a theory of infinitely refined random surfaces, while the broken phase corresponds to a theory of infinitely refined random nodal surfaces. At leading order in the double scaling limit planar surfaces dominate in the symmetric phase, and planar nodal surfaces dominate in the broken phase.

  1. Electrical and mechanical tuning of a silicon vacancy defect in SiC for quantum information technology

    NASA Astrophysics Data System (ADS)

    Soykal, Oney O.; Reinecke, Thomas L.

    We develop coherent control via Stark effect over the optical transition energies of silicon monovacancy deep center in hexagonal silicon carbide. We show that this defect's unique asymmetry properties of its piezoelectric tensor and Kramer's degenerate high-spin ground/excited state configurations can be used to create new possibilities in quantum information technology ranging from photonic networks to quantum key distribution. We also give examples of its qubit implementations via precise electric field control. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.

  2. Cross-scale efficient tensor contractions for coupled cluster computations through multiple programming model backends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel

    Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less

  3. Cross-scale efficient tensor contractions for coupled cluster computations through multiple programming model backends

    DOE PAGES

    Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel; ...

    2017-03-08

    Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less

  4. New algorithm for tensor contractions on multi-core CPUs, GPUs, and accelerators enables CCSD and EOM-CCSD calculations with over 1000 basis functions on a single compute node.

    PubMed

    Kaliman, Ilya A; Krylov, Anna I

    2017-04-30

    A new hardware-agnostic contraction algorithm for tensors of arbitrary symmetry and sparsity is presented. The algorithm is implemented as a stand-alone open-source code libxm. This code is also integrated with general tensor library libtensor and with the Q-Chem quantum-chemistry package. An overview of the algorithm, its implementation, and benchmarks are presented. Similarly to other tensor software, the algorithm exploits efficient matrix multiplication libraries and assumes that tensors are stored in a block-tensor form. The distinguishing features of the algorithm are: (i) efficient repackaging of the individual blocks into large matrices and back, which affords efficient graphics processing unit (GPU)-enabled calculations without modifications of higher-level codes; (ii) fully asynchronous data transfer between disk storage and fast memory. The algorithm enables canonical all-electron coupled-cluster and equation-of-motion coupled-cluster calculations with single and double substitutions (CCSD and EOM-CCSD) with over 1000 basis functions on a single quad-GPU machine. We show that the algorithm exhibits predicted theoretical scaling for canonical CCSD calculations, O(N 6 ), irrespective of the data size on disk. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. On physical property tensors invariant under line groups.

    PubMed

    Litvin, Daniel B

    2014-03-01

    The form of physical property tensors of a quasi-one-dimensional material such as a nanotube or a polymer can be determined from the point group of its symmetry group, one of an infinite number of line groups. Such forms are calculated using a method based on the use of trigonometric summations. With this method, it is shown that materials invariant under infinite subsets of line groups have physical property tensors of the same form. For line group types of a family of line groups characterized by an index n and a physical property tensor of rank m, the form of the tensor for all line group types indexed with n > m is the same, leaving only a finite number of tensor forms to be determined.

  6. Local White Matter Geometry from Diffusion Tensor Gradients

    PubMed Central

    Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik

    2009-01-01

    We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:19896542

  7. Local White Matter Geometry from Diffusion Tensor Gradients

    PubMed Central

    Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik

    2010-01-01

    We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:20426006

  8. Moment tensor inversion with three-dimensional sensor configuration of mining induced seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-06-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). A stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double-couple and full moment tensor with high frequency data, is very challenging. Moreover, the application to underground mining system requires accounting for the 3-D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3-D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in the presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to eight events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double-couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip and rake configurations of the double-couple term were obtained

  9. Moment Tensor Inversion with 3D sensor configuration of Mining Induced Seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-03-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations

  10. APPROXIMATING SYMMETRIC POSITIVE SEMIDEFINITE TENSORS OF EVEN ORDER*

    PubMed Central

    BARMPOUTIS, ANGELOS; JEFFREY, HO; VEMURI, BABA C.

    2012-01-01

    Tensors of various orders can be used for modeling physical quantities such as strain and diffusion as well as curvature and other quantities of geometric origin. Depending on the physical properties of the modeled quantity, the estimated tensors are often required to satisfy the positivity constraint, which can be satisfied only with tensors of even order. Although the space P02m of 2mth-order symmetric positive semi-definite tensors is known to be a convex cone, enforcing positivity constraint directly on P02m is usually not straightforward computationally because there is no known analytic description of P02m for m > 1. In this paper, we propose a novel approach for enforcing the positivity constraint on even-order tensors by approximating the cone P02m for the cases 0 < m < 3, and presenting an explicit characterization of the approximation Σ2m ⊂ Ω2m for m ≥ 1, using the subset Ω2m⊂P02m of semi-definite tensors that can be written as a sum of squares of tensors of order m. Furthermore, we show that this approximation leads to a non-negative linear least-squares (NNLS) optimization problem with the complexity that equals the number of generators in Σ2m. Finally, we experimentally validate the proposed approach and we present an application for computing 2mth-order diffusion tensors from Diffusion Weighted Magnetic Resonance Images. PMID:23285313

  11. What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs

    NASA Astrophysics Data System (ADS)

    Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin

    2017-11-01

    Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.

  12. Estimation of Uncertainties of Full Moment Tensors

    DTIC Science & Technology

    2017-10-06

    Nevada Test Site (tab. 1 of Ford et al., 2009). Figure 1 shows the three regions and the stations used within the moment tensor inversions . For the...and additional bandpass filtering, were applied during the moment tensor inversions . We use high-frequency P waves for the Uturuncu and NTS events...reliable when we align the P waves on the observed P arrival time. 3.2 Methods Seismic moment tensor inversion requires specifying a misfit function

  13. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib

    Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrationalmore » zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.« less

  14. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    DOE PAGES

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; ...

    2017-03-07

    Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrationalmore » zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.« less

  15. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also

  16. Tensor Rank Preserving Discriminant Analysis for Facial Recognition.

    PubMed

    Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo

    2017-10-12

    Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.

  17. Potentials for transverse trace-free tensors

    NASA Astrophysics Data System (ADS)

    Conboye, Rory; Murchadha, Niall Ó.

    2014-04-01

    In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space.

  18. Using Perturbation Theory to Reduce Noise in Diffusion Tensor Fields

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Liu, Jun; Peterson, Bradley S.

    2009-01-01

    We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive-definite, 3 × 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor

  19. PREFACE: 1st Tensor Polarized Solid Target Workshop

    NASA Astrophysics Data System (ADS)

    2014-10-01

    These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.

  20. Altered brain structural connectivity in post-traumatic stress disorder: a diffusion tensor imaging tractography study.

    PubMed

    Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu

    2013-09-25

    Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.

  1. Prescribed curvature tensor in locally conformally flat manifolds

    NASA Astrophysics Data System (ADS)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  2. The Kummer tensor density in electrodynamics and in gravity

    NASA Astrophysics Data System (ADS)

    Baekler, Peter; Favaro, Alberto; Itin, Yakov; Hehl, Friedrich W.

    2014-10-01

    Guided by results in the premetric electrodynamics of local and linear media, we introduce on 4-dimensional spacetime the new abstract notion of a Kummer tensor density of rank four, K. This tensor density is, by definition, a cubic algebraic functional of a tensor density of rank four T, which is antisymmetric in its first two and its last two indices: T=-T=-T. Thus, K∼T3, see Eq. (46). (i) If T is identified with the electromagnetic response tensor of local and linear media, the Kummer tensor density encompasses the generalized Fresnel wave surfaces for propagating light. In the reversible case, the wave surfaces turn out to be Kummer surfaces as defined in algebraic geometry (Bateman 1910). (ii) If T is identified with the curvature tensor R of a Riemann-Cartan spacetime, then K∼R3 and, in the special case of general relativity, K reduces to the Kummer tensor of Zund (1969). This K is related to the principal null directions of the curvature. We discuss the properties of the general Kummer tensor density. In particular, we decompose K irreducibly under the 4-dimensional linear group GL(4,R) and, subsequently, under the Lorentz group SO(1,3).

  3. Scalewise invariant analysis of the anisotropic Reynolds stress tensor for atmospheric surface layer and canopy sublayer turbulent flows

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Katul, Gabriel G.; De Roo, Frederik; Kröniger, Konstantin; Rotenberg, Eyal; Rohatyn, Shani; Mauder, Matthias

    2018-05-01

    Anisotropy in the turbulent stress tensor, which forms the basis of invariant analysis, is conducted using velocity time series measurements collected in the canopy sublayer (CSL) and the atmospheric surface layer (ASL). The goal is to assess how thermal stratification and surface roughness conditions simultaneously distort the scalewise relaxation towards isotropic state from large to small scales when referenced to homogeneous turbulence. To achieve this goal, conventional invariant analysis is extended to allow scalewise information about relaxation to isotropy in physical (instead of Fourier) space to be incorporated. The proposed analysis shows that the CSL is more isotropic than its ASL counterpart at large, intermediate, and small (or inertial) scales irrespective of the thermal stratification. Moreover, the small (or inertial) scale anisotropy is more prevalent in the ASL when compared to the CSL, a finding that cannot be fully explained by the intensity of the mean velocity gradient acting on all scales. Implications to the validity of scalewise Rotta and Lumley models for return to isotropy as well as advantages to using barycentric instead of anisotropy invariant maps for such scalewise analysis are discussed.

  4. Curvature tensors unified field equations on SEXn

    NASA Astrophysics Data System (ADS)

    Chung, Kyung Tae; Lee, Il Young

    1988-09-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.

  5. Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition.

    PubMed

    Liu, Yuanyuan; Shang, Fanhua; Fan, Wei; Cheng, James; Cheng, Hong

    2016-12-01

    Low-rank tensor completion (LRTC) has successfully been applied to a wide range of real-world problems. Despite the broad, successful applications, existing LRTC methods may become very slow or even not applicable for large-scale problems. To address this issue, a novel core tensor trace-norm minimization (CTNM) method is proposed for simultaneous tensor learning and decomposition, and has a much lower computational complexity. In our solution, first, the equivalence relation of trace norm of a low-rank tensor and its core tensor is induced. Second, the trace norm of the core tensor is used to replace that of the whole tensor, which leads to two much smaller scale matrix TNM problems. Finally, an efficient alternating direction augmented Lagrangian method is developed to solve our problems. Our CTNM formulation needs only O((R N +NRI)log(√{I N })) observations to reliably recover an N th-order I×I×…×I tensor of n -rank (r,r,…,r) , compared with O(rI N-1 ) observations required by those tensor TNM methods ( I > R ≥ r ). Extensive experimental results show that CTNM is usually more accurate than them, and is orders of magnitude faster.

  6. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  7. Tensor-GMRES method for large sparse systems of nonlinear equations

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  8. Volume in moment tensor space in terms of distance

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2017-07-01

    Suppose that we want to assess the extent to which some large collection of moment tensors is concentrated near a fixed moment tensor m. We are naturally led to consider the distribution of the distances of the moment tensors from m. This distribution, however, can only be judged in conjunction with the distribution of distances from m for randomly chosen moment tensors. In cumulative form, the latter distribution is the same as the fractional volume \\hat{V}(ω ) of the set of all moment tensors that are within distance ω of m. This definition of \\hat{V}(ω ) assumes that a reasonable universe {M} of moment tensors has been specified at the outset and that it includes the original collection as a subset. Our main goal in this article is to derive a formula for \\hat{V}(ω ) when {M} is the set [Λ]_{U} of all moment tensors having a specified eigenvalue triple Λ. We find that \\hat{V}(ω ) depends strongly on Λ, and we illustrate the dependence by plotting the derivative curves \\hat{V}^' }(ω ) for various seismologically relevant Λs. The exotic and unguessable shapes of these curves underscores the futility of interpreting the distribution of distances for the original moment tensors without knowing \\hat{V}(ω ) or \\hat{V}^' }(ω ). The derivation of the formula for \\hat{V}(ω ) relies on a certain ϕ σz coordinate system for [Λ]_{U}, which we treat in detail. Our underlying motivation for the paper is the estimation of uncertainties in moment tensor inversion.

  9. On the magnetic polarizability tensor of US coinage

    NASA Astrophysics Data System (ADS)

    Davidson, John L.; Abdel-Rehim, Omar A.; Hu, Peipei; Marsh, Liam A.; O'Toole, Michael D.; Peyton, Anthony J.

    2018-03-01

    The magnetic dipole polarizability tensor of a metallic object gives unique information about the size, shape and electromagnetic properties of the object. In this paper, we present a novel method of coin characterization based on the spectroscopic response of the absolute tensor. The experimental measurements are validated using a combination of tests with a small set of bespoke coin surrogates and simulated data. The method is applied to an uncirculated set of US coins. Measured and simulated spectroscopic tensor responses of the coins show significant differences between different coin denominations. The presented results are encouraging as they strongly demonstrate the ability to characterize coins using an absolute tensor approach.

  10. The Topology of Three-Dimensional Symmetric Tensor Fields

    NASA Technical Reports Server (NTRS)

    Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus

    1994-01-01

    We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.

  11. Causal localizations in relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a meremore » consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.« less

  12. Causal localizations in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  13. Hilbert space structure in quantum gravity: an algebraic perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steven B.

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  14. Hilbert space structure in quantum gravity: an algebraic perspective

    DOE PAGES

    Giddings, Steven B.

    2015-12-16

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  15. Seismotectonics and crustal stress across the northern Arabian plate

    NASA Astrophysics Data System (ADS)

    yassminh, R.; Gomez, F. G.; Sandvol, E. A.; Ghalib, H. A.; Daoud, M.

    2013-12-01

    The region encompassing the collision of northern Arabia with Eurasia is a tectonically heterogeneous region of distributed deformation. The northern Arabia plate is bounded to the west by the subducting Sinai plate and the left-lateral Dead Sea transform. This complexity suggests that there are, multiple competing processes that may influence regional tectonics in northern Arabia and adjacent areas. Earthquake mechanisms provide insight into crustal kinematics and stress; however, reliable determination of earthquake source parameters can be challenging in a complex geological region, such as the continental collision zone between the Arabian and Eurasian plates. The goal of this study is to investigate spatial patterns of the crustal stress in the northern Arabian plate and surrounding area. The focal mechanisms used in this study are based on (1) first-motion polarities for earthquakes recorded by Syrian earthquake center during 2000-2011, and (2) regional moment tensors from broadband seismic data, from Turkey and Iraq. First motion focal mechanisms were assigned quality classifications based on the variation of both nodal planes. Regional moment tensor analysis can be significantly influenced by seismic velocity structure; thus, we have divided the study area into regions based on tectonic units. For each region, a specific velocity model is defined using waveform-modeling technique prior to the regional moment tensor inversion. The resulting focal mechanisms, combined with other previously published focal mechanisms for the study area, provide a basis for stress inversion analysis. The resulting deviatoric stress tensors show the spatial distribution of the maximum horizontal stress varies from NW-SE along the Dead Sea Fault to the N-S toward the east. We interpret this to reflect the eastward change from the transform to collision processes in northern Arabia. Along the Dead Sea Fault, transposition of the sigma-1 and sigma-2 to vertical and horizontal

  16. Correlators in tensor models from character calculus

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.

    2017-11-01

    We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz) character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.

  17. Probing Earth's State of Stress

    NASA Astrophysics Data System (ADS)

    Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.

    2016-12-01

    The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.

  18. Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Tang, Jing-Wu; Zhao, Guan-Xiang; He, Xiong-Hui

    2011-05-01

    Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4>1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.

  19. On the energy-momentum tensor in Moyal space

    DOE PAGES

    Balasin, Herbert; Blaschke, Daniel N.; Gieres, François; ...

    2015-06-26

    We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another starproduct. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the latter two procedures are incompatible with each other if couplings of gaugemore » fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice-versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line.« less

  20. Quantum gravity and the holographic principle

    NASA Astrophysics Data System (ADS)

    de Haro Ollé, S.

    2001-06-01

    In this thesis we study two different approaches to holography, and comment on the possible relation between them. The first approach is an analysis of the high-energy regime of quantum gravity in the eikonal approximation, where the theory reduces to a topological field theory. This is the regime where particles interact at high energies but with small momentum transfer. We do this for the cases of asymptotically dS and AdS geometries and find that in both cases the theory is topological. We discuss the relation of our solutions in AdS to those of Horowitz and Itzhaki. We also consider quantum gravity away from the extreme eikonal limit and explain the sense in which the covariance of the theory is equivalent to taking into account transfer of momentum. The second approach we pursue is the AdS/CFT correspondence. We provide a holographic reconstruction of the bulk space-time metric and of bulk fields on this space-time, out of conformal field theory data. Knowing which sources are turned on is sufficient in order to obtain an asymptotic expansion of the bulk metric and of bulk fields near the boundary to high enough order so that all infrared divergences of the on-shell action are obtained. We provide explicit formulae for the holographic stress-energy tensors associated with an arbitrary asymptotically AdS geometry. We also study warped compactifications, where our d-dimensional world is regarded as a slice of a (d+1)-dimensional space-time, and analyse in detail the question as to where the d-dimensional observer can find the information about the extra dimension.

  1. Diagonal couplings of quantum Markov chains

    NASA Astrophysics Data System (ADS)

    Kümmerer, Burkhard; Schwieger, Kay

    2016-05-01

    In this paper we extend the coupling method from classical probability theory to quantum Markov chains on atomic von Neumann algebras. In particular, we establish a coupling inequality, which allow us to estimate convergence rates by analyzing couplings. For a given tensor dilation we construct a self-coupling of a Markov operator. It turns out that the coupling is a dual version of the extended dual transition operator studied by Gohm et al. We deduce that this coupling is successful if and only if the dilation is asymptotically complete.

  2. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  3. Quantum κ-deformed differential geometry and field theory

    NASA Astrophysics Data System (ADS)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  4. Predictions of the quantum landscape multiverse

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2017-02-01

    The 2015 Planck data release has placed tight constraints on the class of inflationary models allowed. The current best fit region favors concave downwards inflationary potentials, since they produce a suppressed tensor to scalar index ratio r. Concave downward potentials have a negative curvature {{V}\\prime \\prime} , therefore a tachyonic mass square that drives fluctuations. Furthermore, their use can become problematic if the field rolls in a part of the potential away from the extrema, since the semiclassical approximation of quantum cosmology, used for deriving the most probable wavefunction of the universe from the landscape and for addressing the quantum to classical transition, breaks down away from the steepest descent region. We here propose a way of dealing with such potentials by inverting the metric signature and solving for the wavefunction of the universe in the Euclidean sector. This method allows us to extend our theory of the origin of the universe from a quantum multiverse, to a more general class of concave inflationary potentials where a straightforward application of the semiclassical approximation fails. The work here completes the derivation of modifications to the Newtonian potential and to the inflationary potential, which originate from the quantum entanglement of our universe with all others in the quantum landscape multiverse, leading to predictions of observational signatures for both types of inflationary models, concave and convex potentials.

  5. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE

    PubMed Central

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S.

    2017-01-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order-k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k}. We derive general inequalities between the lp-norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm (p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations. PMID:28286347

  6. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.

    PubMed

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S

    2017-05-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.

  7. Energy-momentum tensor of perturbed tachyon matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokela, Niko; Department of Mathematics and Physics, University of Haifa at Oranim, Tivon 36006; Jaervinen, Matti

    2009-05-15

    We add an initial nonhomogeneous perturbation to an otherwise homogeneous condensing tachyon background and compute its spacetime energy-momentum tensor from world-sheet string theory. We show that in the far future the energy-momentum tensor corresponds to nonhomogeneous pressureless tachyon matter.

  8. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    NASA Astrophysics Data System (ADS)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  9. Entangled scalar and tensor fluctuations during inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Hael; Vardanyan, Tereza

    2016-11-29

    We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with amore » simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.« less

  10. Unsupervised Tensor Mining for Big Data Practitioners.

    PubMed

    Papalexakis, Evangelos E; Faloutsos, Christos

    2016-09-01

    Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social network are the different types of communication between people, the time stamp of each interaction, and the location associated to each individual. How can we jointly model all those aspects and leverage the additional information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to popularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlining challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that can be easily and broadly adopted by practitioners in academia and industry.

  11. Tensor scale: An analytic approach with efficient computation and applications☆

    PubMed Central

    Xu, Ziyue; Saha, Punam K.; Dasgupta, Soura

    2015-01-01

    Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as “tensor scale” using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D using several novel differential geometric approaches is presented and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is derived facilitating several operations including tensor field smoothing to capture larger contextual knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented and the performance of their results is examined in comparison with respective state-of-art methods. Specifically, the performance of tensor scale based image filtering is compared with gradient and Weickert’s structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sinc interpolation methods. PMID:26236148

  12. Impact of stress relaxation in GaAsSb cladding layers on quantum dot creation in InAs/GaAsSb structures grown on GaAs (001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremner, S. P.; Ban, K.-Y.; Faleev, N. N.

    2013-09-14

    We describe InAs quantum dot creation in InAs/GaAsSb barrier structures grown on GaAs (001) wafers by molecular beam epitaxy. The structures consist of 20-nm-thick GaAsSb barrier layers with Sb content of 8%, 13%, 15%, 16%, and 37% enclosing 2 monolayers of self-assembled InAs quantum dots. Transmission electron microscopy and X-ray diffraction results indicate the onset of relaxation of the GaAsSb layers at around 15% Sb content with intersected 60° dislocation semi-loops, and edge segments created within the volume of the epitaxial structures. 38% relaxation of initial elastic stress is seen for 37% Sb content, accompanied by the creation of amore » dense net of dislocations. The degradation of In surface migration by these dislocation trenches is so severe that quantum dot formation is completely suppressed. The results highlight the importance of understanding defect formation during stress relaxation for quantum dot structures particularly those with larger numbers of InAs quantum-dot layers, such as those proposed for realizing an intermediate band material.« less

  13. Loop quantum cosmology scalar field models

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Oikonomou, V. K.

    In this work, we use the Loop Quantum Cosmology (LQC) modified scalar-tensor reconstruction techniques in order to investigate how bouncing and inflationary cosmologies can be realized. With regard to the inflationary cosmologies, we shall be interested in realizing the intermediate inflation and the Type IV singular inflation, while with regard to bouncing cosmologies, we shall realize the superbounce and the symmetric bounce. In all the cases, we shall find the kinetic term of the LQC holonomy corrected scalar-tensor theory and the corresponding scalar potential. In addition, we shall include a study of the effective Equation of State (EoS), emphasizing at the early- and late-time eras. As we demonstrate, in some cases it is possible to have a nearly de Sitter EoS at the late-time era, a result that could be interpreted as the description of a late-time acceleration era. Also, in all cases we shall examine the dynamical stability of the LQC holonomy corrected scalar-tensor theory, and we shall confront the results with those coming from the corresponding classical dynamical stability theory. The most appealing cosmological scenario is that of a Type IV singular inflationary scenario, in which the singularity may occur at the late-time era. As we demonstrate, for this model, during the dark energy era, a transition from non-phantom to a phantom dark energy era occurs.

  14. Genten: Software for Generalized Tensor Decompositions v. 1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel

    Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.

  15. Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components

    NASA Astrophysics Data System (ADS)

    Šprlák, Michal; Novák, Pavel

    2017-02-01

    New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.

  16. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  17. Quantum transport in antidot arrays in magnetic fields

    NASA Astrophysics Data System (ADS)

    Ishizaka, Satoshi; Nihey, Fumiyuki; Nakamura, Kazuo; Sone, Jun' Ichi; Ando, Tsuneya

    1995-04-01

    Transport in antidot arrays in magnetic fields is studied numerically. We calculate the density of states and conductivity tensor by the self-consistent Born approximation. Although peak positions of the density of states agree well with the quantization condition for several short periodic orbits, the behavior of the conductivity tensor is very complicated. Coupling among the periodic orbits causes an oscillation in the Hall conductivity in magnetic fields around the localized peak. In low magnetic fields, the skipping orbit, which runs from an antidot to its neighboring antidot, plays a crucial role for diagonal conductivity, and its coupling with the periodic orbits causes an oscillation in the diagonal conductivity. The resulting magnetoresistance oscillates with a period near one magnetic flux quantum as observed in recent experiments. Furthermore, the oscillation due to the manifestation of Hofstadter's butterfly is present in both the diagonal conductivity and the Hall conductivity.

  18. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  19. Relativistic interpretation of the nature of the nuclear tensor force

    NASA Astrophysics Data System (ADS)

    Zong, Yao-Yao; Sun, Bao-Yuan

    2018-02-01

    The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components, revealing clearly the nature of the tensor force. Supported by National Natural Science Foundation of China (11375076, 11675065) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)

  20. Physical stress, mass, and energy for non-relativistic matter

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  1. Relativistic symmetries in the Rosen—Morse potential and tensor interaction using the Nikiforov—Uvarov method

    NASA Astrophysics Data System (ADS)

    Sameer, M. Ikhdair; Majid, Hamzavi

    2013-04-01

    Approximate analytical bound-state solutions of the Dirac particle in the fields of attractive and repulsive Rosen—Morse (RM) potentials including the Coulomb-like tensor (CLT) potential are obtained for arbitrary spin-orbit quantum number κ. The Pekeris approximation is used to deal with the spin-orbit coupling terms κ (κ± 1)r-2. In the presence of exact spin and pseudospin (p-spin) symmetries, the energy eigenvalues and the corresponding normalized two-component wave functions are found by using the parametric generalization of the Nikiforov—Uvarov (NU) method. The numerical results show that the CLT interaction removes degeneracies between the spin and p-spin state doublets.

  2. Rigidity of quantum steering and one-sided device-independent verifiable quantum computation

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Alexandru; Wallden, Petros; Kashefi, Elham

    2017-02-01

    The relationship between correlations and entanglement has played a major role in understanding quantum theory since the work of Einstein et al (1935 Phys. Rev. 47 777-80). Tsirelson proved that Bell states, shared among two parties, when measured suitably, achieve the maximum non-local correlations allowed by quantum mechanics (Cirel’son 1980 Lett. Math. Phys. 4 93-100). Conversely, Reichardt et al showed that observing the maximal correlation value over a sequence of repeated measurements, implies that the underlying quantum state is close to a tensor product of maximally entangled states and, moreover, that it is measured according to an ideal strategy (Reichardt et al 2013 Nature 496 456-60). However, this strong rigidity result comes at a high price, requiring a large number of entangled pairs to be tested. In this paper, we present a significant improvement in terms of the overhead by instead considering quantum steering where the device of the one side is trusted. We first demonstrate a robust one-sided device-independent version of self-testing, which characterises the shared state and measurement operators of two parties up to a certain bound. We show that this bound is optimal up to constant factors and we generalise the results for the most general attacks. This leads us to a rigidity theorem for maximal steering correlations. As a key application we give a one-sided device-independent protocol for verifiable delegated quantum computation, and compare it to other existing protocols, to highlight the cost of trust assumptions. Finally, we show that under reasonable assumptions, the states shared in order to run a certain type of verification protocol must be unitarily equivalent to perfect Bell states.

  3. Determination of stress glut moments of total degree 2 from teleseismic surface wave amplitude spectra

    NASA Astrophysics Data System (ADS)

    Bukchin, B. G.

    1995-08-01

    A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.

  4. Probabilistic low-rank factorization accelerates tensor network simulations of critical quantum many-body ground states

    NASA Astrophysics Data System (ADS)

    Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone

    2018-01-01

    We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.

  5. Probabilistic low-rank factorization accelerates tensor network simulations of critical quantum many-body ground states.

    PubMed

    Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B; Tamascelli, Dario; Montangero, Simone

    2018-01-01

    We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.

  6. Features of Relaxation of a Stress Tensor in the Microscopic Volume of Nematic Phase under the Action of a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Zakharov, A. V.

    2018-02-01

    A numerical study of new regimes of reorientation of director field n̂, velocity v, and components of stress tensor σ ij ( ij = x, y, z) of nematic liquid crystal (LC) encapsulated in a rectangular channel under the action of a strong electric field E directed at angle α ( {˜{π }/{2}} ) to the horizontal surfaces bounding the LC channel is proposed. The numerical calculations performed in the framework of nonlinear generalization of the classical Eriksen-Leslie theory have shown that at certain relations between the torques and momenta affecting the unit LC volume and E ≫ E th, transition periodic structures can emerge during reorientation of n̂, if the corresponding distortion mode has the fastest response, and, thus, suppress all other modes. Rotating domains originating within this process decrease the energy dissipation rate and create more favorable regimes of the director field reorientation, as compared with the uniform rotational displacement.

  7. Atomic-batched tensor decomposed two-electron repulsion integrals

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  8. Atomic-batched tensor decomposed two-electron repulsion integrals.

    PubMed

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-07

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  9. Tensor products of U{sub q}{sup Prime }sl-caret(2)-modules and the big q{sup 2}-Jacobi function transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gade, R. M.

    2013-01-15

    Four tensor products of evaluation modules of the quantum affine algebra U{sub q}{sup Prime }sl-caret(2) obtained from the negative and positive series, the complementary and the strange series representations are investigated. Linear operators R(z) satisfying the intertwining property on finite linear combinations of the canonical basis elements of the tensor products are described in terms of two sets of infinite sums {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} and {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} involving big q{sup 2}-Jacobi functions or related nonterminating basic hypergeometric series. Inhomogeneous recurrence relations can be derived for both sets. Evaluations of the simplestmore » sums provide the corresponding initial conditions. For the first set of sums the relations entail a big q{sup 2}-Jacobi function transform pair. An integral decomposition is obtained for the sum {tau}{sup (r,t)}. A partial description of the relation between the decompositions of the tensor products with respect to U{sub q}sl(2) or with respect to its complement in U{sub q}{sup Prime }sl-caret(2) can be formulated in terms of Askey-Wilson function transforms. For a particular combination of two tensor products, the occurrence of proper U{sub q}{sup Prime }sl-caret(2)-submodules is discussed.« less

  10. Inflationary tensor fossils in large-scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Jeong, Donghui

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to bemore » satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.« less

  11. Scalar-tensor linear inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artymowski, Michał; Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead tomore » linear inflation in the strong coupling limit.« less

  12. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro; Lazanu, Sorina, E-mail: ciurea@infim.ro

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increasemore » of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.« less

  13. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    NASA Astrophysics Data System (ADS)

    Ciurea, Magdalena Lidia; Lazanu, Sorina

    2014-10-01

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  14. Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.

    PubMed

    Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2018-07-13

    Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  15. Physics behind the oscillation of pressure tensor autocorrelation function for nanocolloidal dispersions.

    PubMed

    Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa

    2008-08-01

    In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.

  16. The tensor distribution function.

    PubMed

    Leow, A D; Zhu, S; Zhan, L; McMahon, K; de Zubicaray, G I; Meredith, M; Wright, M J; Toga, A W; Thompson, P M

    2009-01-01

    Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.

  17. Quantum non-objectivity from performativity of quantum phenomena

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei; Schumann, Andrew

    2014-12-01

    We analyze the logical foundations of quantum mechanics (QM) by stressing non-objectivity of quantum observables, which is a consequence of the absence of logical atoms in QM. We argue that the matter of quantum non-objectivity is that, on the one hand, the formalism of QM constructed as a mathematical theory is self-consistent, but, on the other hand, quantum phenomena as results of experimenters’ performances are not self-consistent. This self-inconsistency is an effect of the language of QM differing greatly from the language of human performances. The former is the language of a mathematical theory that uses some Aristotelian and Russellian assumptions (e.g., the assumption that there are logical atoms). The latter language consists of performative propositions that are self-inconsistent only from the viewpoint of conventional mathematical theory, but they satisfy another logic that is non-Aristotelian. Hence, the representation of quantum reality in linguistic terms may be different: the difference between a mathematical theory and a logic of performative propositions. To solve quantum self-inconsistency, we apply the formalism of non-classical self-referent logics.

  18. First integrals of motion in a gauge covariant framework, Killing-Maxwell system and quantum anomalies

    NASA Astrophysics Data System (ADS)

    Visinescu, M.

    2012-10-01

    Hidden symmetries in a covariant Hamiltonian framework are investigated. The special role of the Stackel-Killing and Killing-Yano tensors is pointed out. The covariant phase-space is extended to include external gauge fields and scalar potentials. We investigate the possibility for a higher-order symmetry to survive when the electromagnetic interactions are taken into account. Aconcrete realization of this possibility is given by the Killing-Maxwell system. The classical conserved quantities do not generally transfer to the quantized systems producing quantum gravitational anomalies. As a rule the conformal extension of the Killing vectors and tensors does not produce symmetry operators for the Klein-Gordon operator.

  19. Susceptibility Tensor Imaging (STI) of the Brain

    PubMed Central

    Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu

    2016-01-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169

  20. Geometry of Lax pairs: Particle motion and Killing-Yano tensors

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2013-01-01

    A geometric formulation of the Lax pair equation on a curved manifold is studied using the phase-space formalism. The corresponding (covariantly conserved) Lax tensor is defined and the method of generation of constants of motion from it is discussed. It is shown that when the Hamilton equations of motion are used, the conservation of the Lax tensor translates directly to the well-known Lax pair equation, with one matrix identified with components of the Lax tensor and the other matrix constructed from the (metric) connection. A generalization to Clifford objects is also discussed. Nontrivial examples of Lax tensors for geodesic and charged particle motion are found in spacetimes admitting a hidden symmetry of Killing-Yano tensors.

  1. Full paleostress tensor reconstruction using quartz veins of Panasqueira Mine, central Portugal; part I: Paleopressure determination

    NASA Astrophysics Data System (ADS)

    Jaques, Luís; Pascal, Christophe

    2017-09-01

    Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal exposures of mineralized quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. The present contribution focuses specifically on the determination of pore pressure. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of ∼300 MPa and formation depths of ∼10 km. Such formation depths are in good agreement with the regional geological evolution. The obtained pore pressure will be merged with vein inversion results, in order to achieve full paleostress tensor restoration, in a forthcoming companion paper.

  2. BOOK REVIEW: The Scalar-Tensor Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori; Maeda, Kei-ichi

    2003-10-01

    Since the scalar-tensor theory of gravitation was proposed almost 50 years ago, it has recently become a robust alternative theory to Einstein's general relativity due to the fact that it appears to represent the lower level of a more fundamental theory and can serve both as a phenomenological theory to explain the recently observed acceleration of the universe, and to solve the cosmological constant problem. To my knowledge The Scalar-Tensor Theory of Gravitation by Y Fujii and K Maeda is the first book to develop a modern view on this topic and is one of the latest titles in the well-presented Cambridge Monographs on Mathematical Physics series. This book is an excellent readable introduction and up-to-date review of the subject. The discussion is well organized; after a comprehensible introduction to the Brans-Dicke theory and the important role played by conformal transformations, the authors review cosmologies with the cosmological constant and how the scalar-tensor theory can serve to explain the accelerating universe, including discussions on dark energy, quintessence and braneworld cosmologies. The book ends with a chapter devoted to quantum effects. To make easy the lectures of the book, each chapter starts with a summary of the subject to be dealt with. As the book proceeds, important issues like conformal frames and the weak equivalence principle are fully discussed. As the authors warn in the preface, the book is not encyclopedic (from my point of view the list of references is fairly short, for example, but this is a minor drawback) and the choice of included topics corresponds to the authors' interests. Nevertheless, the book seems to cover a broad range of the most essential aspects of the subject. Long and 'boring' mathematical derivations are left to appendices so as not to interrupt the flow of the reasoning, allowing the reader to focus on the physical aspects of each subject. These appendices are a valuable help in entering into the mathematical

  3. Implicit constitutive models with a thermodynamic basis: a study of stress concentration

    NASA Astrophysics Data System (ADS)

    Bridges, C.; Rajagopal, K. R.

    2015-02-01

    Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.

  4. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reuter, Martin, E-mail: reuter@thep.physik.uni-mainz.de; Schollmeyer, Gregor M., E-mail: schollmeyer@thep.physik.uni-mainz.de

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modifiedmore » FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.« less

  5. Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity

    NASA Astrophysics Data System (ADS)

    Kugo, T.; Ohashi, K.

    2002-12-01

    An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.

  6. Spatial distribution of F-net moment tensors for the 2005 West Off Fukuoka Prefecture Earthquake determined by the extended method of the NIED F-net routine

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takumi; Ito, Yoshihiro; Matsubayashi, Hirotoshi; Sekiguchi, Shoji

    2006-01-01

    The 2005 West Off Fukuoka Prefecture Earthquake with a Japan Meteorological Agency (JMA) magnitude (MJMA) of 7.0 occurred on March 20, 2005. We determined moment tensor solutions, using a surface wave with an extended method of the NIED F-net routine processing. The horizontal distance to the station is rounded to the nearest interval of 1 km, and the variance reduction approach is applied to a focal depth from 2 km with an interval of 1 km. We obtain the moment tensors of 101 events with (MJMA) exceeding 3.0 and spatial distribution of these moment tensors. The focal mechanism of aftershocks is mainly of the strike-slip type. The alignment of the epicenters in the rupture zone of the main-shock is oriented between N110°E and N130°E, which is close to the strike of the main-shock's moment tensor solutions (N122°E). These moment tensor solutions of intermediatesized aftershocks around the focal region represent basic and important information concerning earthquakes in investigating regional tectonic stress fields, source mechanisms and so on.

  7. Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.

    2013-12-01

    In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate

  8. Tensor completion for estimating missing values in visual data.

    PubMed

    Liu, Ji; Musialski, Przemyslaw; Wonka, Peter; Ye, Jieping

    2013-01-01

    In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependent relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between FaLRTC an

  9. Inference of segmented color and texture description by tensor voting.

    PubMed

    Jia, Jiaya; Tang, Chi-Keung

    2004-06-01

    A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach.

  10. Ward identities and combinatorics of rainbow tensor models

    NASA Astrophysics Data System (ADS)

    Itoyama, H.; Mironov, A.; Morozov, A.

    2017-06-01

    We discuss the notion of renormalization group (RG) completion of non-Gaussian Lagrangians and its treatment within the framework of Bogoliubov-Zimmermann theory in application to the matrix and tensor models. With the example of the simplest non-trivial RGB tensor theory (Aristotelian rainbow), we introduce a few methods, which allow one to connect calculations in the tensor models to those in the matrix models. As a byproduct, we obtain some new factorization formulas and sum rules for the Gaussian correlators in the Hermitian and complex matrix theories, square and rectangular. These sum rules describe correlators as solutions to finite linear systems, which are much simpler than the bilinear Hirota equations and the infinite Virasoro recursion. Search for such relations can be a way to solving the tensor models, where an explicit integrability is still obscure.

  11. Stresses in curved nematic membranes.

    PubMed

    Santiago, J A

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  12. Stresses in curved nematic membranes

    NASA Astrophysics Data System (ADS)

    Santiago, J. A.

    2018-05-01

    Ordering configurations of a director field on a curved membrane induces stress. In this work, we present a theoretical framework to calculate the stress tensor and the torque as a consequence of the nematic ordering; we use the variational principle and invariance of the energy under Euclidean motions. Euler-Lagrange equations of the membrane as well as the corresponding boundary conditions also appear as natural results. The stress tensor found includes attraction-repulsion forces between defects; likewise, defects are attracted to patches with the same sign in Gaussian curvature. These forces are mediated by the Green function of the Laplace-Beltrami operator of the surface. In addition, we find nonisotropic forces that involve derivatives of the Green function and the Gaussian curvature, even in the normal direction to the membrane. We examine the case of axial membranes to analyze the spherical one. For spherical vesicles we find the modified Young-Laplace law as a consequence of the nematic texture. In the case of spherical cap with defect at the north pole, we find that the force is repulsive with respect to the north pole, indicating that it is an unstable equilibrium point.

  13. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  14. Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems

    NASA Technical Reports Server (NTRS)

    Reifler, Frank; Morris, Randall

    1994-01-01

    Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.

  15. Ab initio and DFT studies of the spin-orbit and spin-spin contributions to the zero-field splitting tensors of triplet nitrenes with aryl scaffolds.

    PubMed

    Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji

    2011-04-21

    Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the

  16. Erratum to Surface‐wave green’s tensors in the near field

    USGS Publications Warehouse

    Haney, Matthew M.; Hisashi Nakahara,

    2016-01-01

    Haney and Nakahara (2014) derived expressions for surface‐wave Green’s tensors that included near‐field behavior. Building on the result for a force source, Haney and Nakahara (2014) further derived expressions for a general point moment tensor source using the exact Green’s tensors. However, it has come to our attention that, although the Green’s tensors were correct, the resulting expressions for a general point moment tensor source were missing some terms. In this erratum, we provide updated expressions with these missing terms. The inclusion of the missing terms changes the example given in Haney and Nakahara (2014).

  17. Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement.

    PubMed

    Tang, Jinhui; Shu, Xiangbo; Qi, Guo-Jun; Li, Zechao; Wang, Meng; Yan, Shuicheng; Jain, Ramesh

    2017-08-01

    Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

  18. A defect in holographic interpretations of tensor networks

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej; Nguyen, Phuc H.; Swaminathan, Sivaramakrishnan

    2017-03-01

    We initiate the study of how tensor networks reproduce properties of static holographic space-times, which are not locally pure anti-de Sitter. We consider geometries that are holographically dual to ground states of defect, interface and boundary CFTs and compare them to the structure of the requisite MERA networks predicted by the theory of minimal updates. When the CFT is deformed, certain tensors require updating. On the other hand, even identical tensors can contribute differently to estimates of entanglement entropies. We interpret these facts holographically by associating tensor updates to turning on non-normalizable modes in the bulk. In passing, we also clarify and complement existing arguments in support of the theory of minimal updates, propose a novel ansatz called rayed MERA that applies to a class of generalized interface CFTs, and analyze the kinematic spaces of the thin wall and AdS3-Janus geometries.

  19. Empirical Performance Model-Driven Data Layout Optimization and Library Call Selection for Tensor Contraction Expressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Qingda; Gao, Xiaoyang; Krishnamoorthy, Sriram

    Empirical optimizers like ATLAS have been very effective in optimizing computational kernels in libraries. The best choice of parameters such as tile size and degree of loop unrolling is determined by executing different versions of the computation. In contrast, optimizing compilers use a model-driven approach to program transformation. While the model-driven approach of optimizing compilers is generally orders of magnitude faster than ATLAS-like library generators, its effectiveness can be limited by the accuracy of the performance models used. In this paper, we describe an approach where a class of computations is modeled in terms of constituent operations that are empiricallymore » measured, thereby allowing modeling of the overall execution time. The performance model with empirically determined cost components is used to perform data layout optimization together with the selection of library calls and layout transformations in the context of the Tensor Contraction Engine, a compiler for a high-level domain-specific language for expressing computational models in quantum chemistry. The effectiveness of the approach is demonstrated through experimental measurements on representative computations from quantum chemistry.« less

  20. Phasic action of the tensor muscle modulates the calling song in cicadas

    PubMed

    Fonseca; Hennig

    1996-01-01

    The effect of tensor muscle contraction on sound production by the tymbal was investigated in three species of cicadas (Tettigetta josei, Tettigetta argentata and Tympanistalna gastrica). All species showed a strict time correlation between the activity of the tymbal motoneurone and the discharge of motor units in the tensor nerve during the calling song. Lesion of the tensor nerve abolished the amplitude modulation of the calling song, but this modulation was restored by electrical stimulation of the tensor nerve or by mechanically pushing the tensor sclerite. Electrical stimulation of the tensor nerve at frequencies higher than 30­40 Hz changed the sound amplitude. In Tett. josei and Tett. argentata there was a gradual increase in sound amplitude with increasing frequency of tensor nerve stimulation, while in Tymp. gastrica there was a sudden reduction in sound amplitude at stimulation frequencies higher than 30 Hz. This contrasting effect in Tymp. gastrica was due to a bistable tymbal frame. Changes in sound pulse amplitude were positively correlated with changes in the time lag measured from tymbal motoneurone stimulation to the sound pulse. The tensor muscle acted phasically because electrical stimulation of the tensor nerve during a time window (0­10 ms) before electrical stimulation of the tymbal motoneurone was most effective in eliciting amplitude modulations. In all species, the tensor muscle action visibly changed the shape of the tymbal. Despite the opposite effects of the tensor muscle on sound pulse amplitude observed between Tettigetta and Tympanistalna species, the tensor muscle of both acts by modulating the shape of the tymbal, which changes the force required for the tymbal muscle to buckle the tymbal.

  1. The Nature of Residual Stress and Its Measurement.

    DTIC Science & Technology

    1981-07-16

    that stress can relax due to microplasticity in the near- surface region (see the chapter by James). As the surface is ini- tially in compression, the...material by boring or electro- polishing and to determine the stress from measurements of strain on the surface opposite to the one where material is...Naval Research, particularly Dr. B. A. MacDcnald. APPENDIX We consider the determination by diffraction of the three-di- mensional stress tensor for a

  2. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, T.; Kapec, D.; Raclariu, A.

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  3. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE PAGES

    He, T.; Kapec, D.; Raclariu, A.; ...

    2017-08-16

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  4. A closed-form solution to tensor voting: theory and applications.

    PubMed

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard

    2012-08-01

    We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.

  5. The role of tensor force in heavy-ion fusion dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Lu; Simenel, Cédric; Shi, Long; Yu, Chong

    2018-07-01

    The tensor force is implemented into the time-dependent Hartree-Fock (TDHF) theory so that both exotic and stable collision partners, as well as their dynamics in heavy-ion fusion, can be described microscopically. The role of tensor force on fusion dynamics is systematically investigated for 40Ca +40Ca , 40Ca +48Ca , 48Ca +48Ca , 48Ca +56Ni , and 56Ni +56Ni reactions which vary by the total number of spin-unsaturated magic numbers in target and projectile. A notable effect on fusion barriers and cross sections is observed by the inclusion of tensor force. The origin of this effect is analyzed. The influence of isoscalar and isovector tensor terms is investigated with the TIJ forces. These effects of tensor force in fusion dynamics are essentially attributed to the shift of low-lying vibration states of colliding partners and nucleon transfer in the asymmetric reactions. Our calculations of above-barrier fusion cross sections also show that tensor force does not significantly affect the dynamical dissipation at near-barrier energies.

  6. Mean-intercept anisotropy analysis of porous media. II. Conceptual shortcomings of the MIL tensor definition and Minkowski tensors as an alternative.

    PubMed

    Klatt, Michael A; Schröder-Turk, Gerd E; Mecke, Klaus

    2017-07-01

    Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors to quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, e.g., of trabecular bone in medical physics. Yet, in this series of two papers we demonstrate that it has conceptual shortcomings that limit the validity of its results. We test the validity of general assumptions regarding the properties of the mean-intercept length tensor using analytical formulas for the mean-intercept lengths in anisotropic Boolean models (derived in part I of this series), augmented by numerical simulations. We discuss in detail the functional form of the mean intercept length as a function of the test line orientations. As the most prominent result, we find that, at least for the example of overlapping grains modeling porous media, the polar plot of the mean intercept length is in general not an ellipse and hence not represented by a second-rank tensor. This is in stark contrast to the common understanding that for a large collection of grains the mean intercept length figure averages to an ellipse. The standard mean intercept length tensor defined by a least-square fit of an ellipse is based on a model mismatch, which causes an intrinsic lack of accuracy. Our analysis reveals several shortcomings of the mean intercept length tensor analysis that pose conceptual problems and limitations on the information content of this commonly used analysis method. We suggest the Minkowski tensors from integral geometry as alternative sensitive measures of anisotropy. The Minkowski tensors allow for a robust, comprehensive, and systematic approach to quantify various aspects of structural anisotropy. We show the Minkowski tensors to be more sensitive, in the sense, that they can

  7. Simultaneous Tensor Decomposition and Completion Using Factor Priors.

    PubMed

    Chen, Yi-Lei; Hsu, Chiou-Ting Candy; Liao, Hong-Yuan Mark

    2013-08-27

    Tensor completion, which is a high-order extension of matrix completion, has generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called Simultaneous Tensor Decomposition and Completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data, and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.

  8. A unified tensor level set for image segmentation.

    PubMed

    Wang, Bin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2010-06-01

    This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt- and pepper-type noise. Second, considering the local geometrical features, e.g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.

  9. Binocular stereo matching method based on structure tensor

    NASA Astrophysics Data System (ADS)

    Song, Xiaowei; Yang, Manyi; Fan, Yubo; Yang, Lei

    2016-10-01

    In a binocular visual system, to recover the three-dimensional information of the object, the most important step is to acquire matching points. Structure tensor is the vector representation of each point in its local neighborhood. Therefore, structure tensor performs well in region detection of local structure, and it is very suitable for detecting specific graphics such as pedestrians, cars and road signs in the image. In this paper, the structure tensor is combined with the luminance information to form the extended structure tensor. The directional derivatives of luminance in x and y directions are calculated, so that the local structure of the image is more prominent. Meanwhile, the Euclidean distance between the eigenvectors of key points is used as the similarity determination metric of key points in the two images. By matching, the coordinates of the matching points in the detected target are precisely acquired. In this paper, experiments were performed on the captured left and right images. After the binocular calibration, image matching was done to acquire the matching points, and then the target depth was calculated according to these matching points. By comparison, it is proved that the structure tensor can accurately acquire the matching points in binocular stereo matching.

  10. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinacker, Harold

    1997-05-23

    Quantum groups in general and the quantum Anti-de Sitter group U q(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, "naive" representations are unitarizable only after factoring out a subspace of "pure gauges", as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore,more » the author identifies a remarkable element Q in the center of U q(g), which plays the role of a BRST operator in the case of U q(so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard "truncated" tensor product as well as many-particle representations.« less

  11. Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration

    NASA Astrophysics Data System (ADS)

    Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.

    2003-10-01

    The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.

  12. Matrix product states for su(2) invariant quantum spin chains

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas

    2016-08-01

    A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.

  13. Tensor perturbations during inflation in a spatially closed Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu

    2017-05-01

    In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited tomore » the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.« less

  14. Federated Tensor Factorization for Computational Phenotyping

    PubMed Central

    Kim, Yejin; Sun, Jimeng; Yu, Hwanjo; Jiang, Xiaoqian

    2017-01-01

    Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy. PMID:29071165

  15. Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.

    PubMed

    Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai

    2016-03-01

    Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.

  16. Group field theories for all loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  17. Intrinsic Decomposition of The Stretch Tensor for Fibrous Media

    NASA Astrophysics Data System (ADS)

    Kellermann, David C.

    2010-05-01

    This paper presents a novel mechanism for the description of fibre reorientation based on the decomposition of the stretch tensor according to a given material's intrinsic constitutive properties. This approach avoids the necessity for fibre directors, structural tensors or specialised model such as the ideal fibre reinforced model, which are commonly applied to the analysis of fibre kinematics in the finite deformation of fibrous media for biomechanical problems. The proposed approach uses Intrinsic-Field Tensors (IFTs) that build upon the linear orthotropic theory presented in a previous paper entitled Strongly orthotropic continuum mechanics and finite element treatment. The intrinsic decomposition of the stretch tensor therein provides superior capacity to represent the intermediary kinematics driven by finite orthotropic ratios, where the benefits are predominantly expressed in cases of large deformation as is typical in the biomechanical studies. Satisfaction of requirements such as Material Frame-Indifference (MFI) and Euclidean objectivity are demonstrated here—these factors being necessary for the proposed IFTs to be valid tensorial quantities. The resultant tensors, initially for the simplest case of linear elasticity, are able to describe the same fibre reorientation as would the contemporary approaches such as with use of structural tensors and the like, while additionally being capable of showing results intermediary to classical isotropy and the infinitely orthotropic representations. This intermediary case is previously unreported.

  18. The total position-spread tensor: Spin partition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Khatib, Muammar, E-mail: elkhatib@irsamc.ups-tlse.fr; Evangelisti, Stefano, E-mail: stefano@irsamc.ups-tlse.fr; Leininger, Thierry, E-mail: Thierry.Leininger@irsamc.ups-tlse.fr

    2015-03-07

    The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interactionmore » (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H{sub n} (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system.« less

  19. Generalized Rainich conditions, generalized stress-energy conditions, and the Hawking-Ellis classification

    NASA Astrophysics Data System (ADS)

    Martín–Moruno, Prado; Visser, Matt

    2017-11-01

    The (generalized) Rainich conditions are algebraic conditions which are polynomial in the (mixed-component) stress-energy tensor. As such they are logically distinct from the usual classical energy conditions (NEC, WEC, SEC, DEC), and logically distinct from the usual Hawking-Ellis (Segré-Plebański) classification of stress-energy tensors (type I, type II, type III, type IV). There will of course be significant inter-connections between these classification schemes, which we explore in the current article. Overall, we shall argue that it is best to view the (generalized) Rainich conditions as a refinement of the classical energy conditions and the usual Hawking-Ellis classification.

  20. Tensor modes in pure natural inflation

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Yamazaki, Masahito

    2018-05-01

    We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.

  1. Quantum geometric phase in Majorana's stellar representation: mapping onto a many-body Aharonov-Bohm phase.

    PubMed

    Bruno, Patrick

    2012-06-15

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  2. Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase

    NASA Astrophysics Data System (ADS)

    Bruno, Patrick

    2012-06-01

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  3. Traffic speed data imputation method based on tensor completion.

    PubMed

    Ran, Bin; Tan, Huachun; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  4. An eigenvalue localization set for tensors and its applications.

    PubMed

    Zhao, Jianxing; Sang, Caili

    2017-01-01

    A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li et al . (Linear Algebra Appl. 481:36-53, 2015) and Huang et al . (J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the minimum eigenvalue of [Formula: see text]-tensors are established and proved to be sharper than some known results. Compared with the results obtained by Huang et al ., the advantage of our results is that, without considering the selection of nonempty proper subsets S of [Formula: see text], we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of [Formula: see text]-tensors. Finally, numerical examples are given to verify the theoretical results.

  5. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    PubMed Central

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  6. Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dan; Dou, Xiuming; Wu, Xuefei

    2016-04-15

    Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots (QDs) have been continuously tuned in situ in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled andmore » indistinguishable photons.« less

  7. The Multi-Orientable Random Tensor Model, a Review

    NASA Astrophysics Data System (ADS)

    Tanasa, Adrian

    2016-06-01

    After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N expansion and of the large N limit (N being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.

  8. Robust photometric invariant features from the color tensor.

    PubMed

    van de Weijer, Joost; Gevers, Theo; Smeulders, Arnold W M

    2006-01-01

    Luminance-based features are widely used as low-level input for computer vision applications, even when color data is available. The extension of feature detection to the color domain prevents information loss due to isoluminance and allows us to exploit the photometric information. To fully exploit the extra information in the color data, the vector nature of color data has to be taken into account and a sound framework is needed to combine feature and photometric invariance theory. In this paper, we focus on the structure tensor, or color tensor, which adequately handles the vector nature of color images. Further, we combine the features based on the color tensor with photometric invariant derivatives to arrive at photometric invariant features. We circumvent the drawback of unstable photometric invariants by deriving an uncertainty measure to accompany the photometric invariant derivatives. The uncertainty is incorporated in the color tensor, hereby allowing the computation of robust photometric invariant features. The combination of the photometric invariance theory and tensor-based features allows for detection of a variety of features such as photometric invariant edges, corners, optical flow, and curvature. The proposed features are tested for noise characteristics and robustness to photometric changes. Experiments show that the proposed features are robust to scene incidental events and that the proposed uncertainty measure improves the applicability of full invariants.

  9. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  10. Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding.

    PubMed

    Westin, Carl-Fredrik; Szczepankiewicz, Filip; Pasternak, Ofer; Ozarslan, Evren; Topgaard, Daniel; Knutsson, Hans; Nilsson, Markus

    2014-01-01

    In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).

  11. Inflationary spectra with inverse-volume corrections in loop quantum cosmology and their observational constraints from Planck 2015 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tao; Wang, Anzhong; Wu, Qiang

    We first derive the primordial power spectra, spectral indices and runnings of both scalar and tensor perturbations of a flat inflationary universe to the second-order approximations of the slow-roll parameters, in the framework of loop quantum cosmology with the inverse-volume quantum corrections. This represents an extension of our previous work in which the parameter σ was assumed to be an integer, where σ characterizes the quantum corrections and in general can take any of values from the range σ  element of  (0, 6]. Restricting to the first-order approximations of the slow-roll parameters, we find corrections to the results obtained previously inmore » the literature, and point out the causes for such errors. To our best knowledge, these represent the most accurate calculations of scalar and tensor perturbations given so far in the literature. Then, fitting the perturbations to the recently released data by Planck (2015), we obtain the most severe constraints for various values of σ. Using these constraints as our referring point, we discuss whether these quantum gravitational corrections can lead to measurable signatures in the future cosmological observations. We show that, depending on the value of σ, the scale-dependent contributions to the relativistic inflationary spectra due to the inverse-volume corrections could be well within the range of the detectability of the forthcoming generations of experiments, such as the Stage IV experiments.« less

  12. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  13. Non-convex Statistical Optimization for Sparse Tensor Graphical Model

    PubMed Central

    Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang

    2016-01-01

    We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459

  14. Traffic Speed Data Imputation Method Based on Tensor Completion

    PubMed Central

    Ran, Bin; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches. PMID:25866501

  15. Reducing tensor magnetic gradiometer data for unexploded ordnance detection

    USGS Publications Warehouse

    Bracken, Robert E.; Brown, Philip J.

    2005-01-01

    We performed a survey to demonstrate the effectiveness of a prototype tensor magnetic gradiometer system (TMGS) for detection of buried unexploded ordnance (UXO). In order to achieve a useful result, we designed a data-reduction procedure that resulted in a realistic magnetic gradient tensor and devised a simple way of viewing complicated tensor data, not only to assess the validity of the final resulting tensor, but also to preview the data at interim stages of processing. The final processed map of the surveyed area clearly shows a sharp anomaly that peaks almost directly over the target UXO. This map agrees well with a modeled map derived from dipolar sources near the known target locations. From this agreement, it can be deduced that the reduction process is valid, making the prototype TMGS a foundation for development of future systems and processes.

  16. A General Sparse Tensor Framework for Electronic Structure Theory

    DOE PAGES

    Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I.; ...

    2017-01-24

    Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. But, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We then avoid cumbersome machine-generatedmore » code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.« less

  17. Spacetime encodings. III. Second order Killing tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Jeandrew

    2010-01-15

    This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship between the components of the Killing equations and metric functions are given explicitly. The origin of the four separable coordinate systems found by Carter is explained and classified in terms of the analytic structure associated with the Killing equations. A geometric picture ofmore » what the orbital invariants may represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive, selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to the fact that the consistency conditions associated with the Killing equations require that the field variables obey a second-order differential equation, as opposed to a fourth-order differential equation that imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the explicit computation of more general orbital invariants in the form of higher-order Killing tensors.« less

  18. Exploring extra dimensions through inflationary tensor modes

    NASA Astrophysics Data System (ADS)

    Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas

    2018-03-01

    Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.

  19. Killing-Yano tensors in spaces admitting a hypersurface orthogonal Killing vector

    NASA Astrophysics Data System (ADS)

    Garfinkle, David; Glass, E. N.

    2013-03-01

    Methods are presented for finding Killing-Yano tensors, conformal Killing-Yano tensors, and conformal Killing vectors in spacetimes with a hypersurface orthogonal Killing vector. These methods are similar to a method developed by the authors for finding Killing tensors. In all cases one decomposes both the tensor and the equation it satisfies into pieces along the Killing vector and pieces orthogonal to the Killing vector. Solving the separate equations that result from this decomposition requires less computing than integrating the original equation. In each case, examples are given to illustrate the method.

  20. Diffusion tensor optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  1. Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress

    NASA Astrophysics Data System (ADS)

    Huang, Xuanqi; Fu, Houqiang; Chen, Hong; Lu, Zhijian; Baranowski, Izak; Montes, Jossue; Yang, Tsung-Han; Gunning, Brendan P.; Koleske, Dan; Zhao, Yuji

    2017-12-01

    We investigate the thermal stability of InGaN solar cells under thermal stress at elevated temperatures from 400 °C to 500 °C. High Resolution X-Ray Diffraction analysis reveals that material quality of InGaN/GaN did not degrade after thermal stress. The external quantum efficiency characteristics of solar cells were well-maintained at all temperatures, which demonstrates the thermal robustness of InGaN materials. Analysis of current density-voltage (J-V) curves shows that the degradation of conversion efficiency of solar cells is mainly caused by the decrease in open-circuit voltage (Voc), while short-circuit current (Jsc) and fill factor remain almost constant. The decrease in Voc after thermal stress is attributed to the compromised metal contacts. Transmission line method results further confirmed that p-type contacts became Schottky-like after thermal stress. The Arrhenius model was employed to estimate the failure lifetime of InGaN solar cells at different temperatures. These results suggest that while InGaN solar cells have high thermal stability, the degradation in the metal contact could be the major limiting factor for these devices under high temperature operation.

  2. Steps to reconcile inflationary tensor and scalar spectra

    NASA Astrophysics Data System (ADS)

    Miranda, Vinícius; Hu, Wayne; Adshead, Peter

    2014-05-01

    The recent BICEP2 B-mode polarization determination of an inflationary tensor-scalar ratio r=0.2-0.05+0.07 is in tension with simple scale-free models of inflation due to a lack of a corresponding low multipole excess in the temperature power spectrum which places a limit of r0.002<0.11 (95% C.L.) on such models. Single-field inflationary models that reconcile these two observations, even those where the tilt runs substantially, introduce a scale into the scalar power spectrum. To cancel the tensor excess, and simultaneously remove the excess already present without tensors, ideally the model should introduce this scale as a relatively sharp transition in the tensor-scalar ratio around the horizon at recombination. We consider models which generate such a step in this quantity and find that they can improve the joint fit to the temperature and polarization data by up to 2ΔlnL≈-14 without changing cosmological parameters. Precision E-mode polarization measurements should be able to test this explanation.

  3. An optimization approach for fitting canonical tensor decompositions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunlavy, Daniel M.; Acar, Evrim; Kolda, Tamara Gibson

    Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methodsmore » have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.« less

  4. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  5. Quantum control and measurement of atomic spins in polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan H.; Jessen, Poul S.

    2010-03-01

    Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-designed time-dependent control fields must be applied to the system of interest. To read out the quantum state, information about the system must be transferred to a probe field. We study a particular example of this dual action in the context of quantum control and measurement of atomic spins through the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decomposition, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin state. This shows how polarization spectroscopy can be used for continuous weak measurement of atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering. Based on this formalism, we review applications to quantum control, including the design of state-to-state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically controlled ensemble.

  6. Tachyon warm inflation with the effects of loop quantum cosmology in the light of Planck 2015

    NASA Astrophysics Data System (ADS)

    Kamali, Vahid; Basilakos, Spyros; Mehrabi, Ahmad; Motaharfar, Meysam; Massaeli, Erfan

    We investigate the observational signatures of quantum cosmology in the Cosmic Microwave Background data provided by Planck collaboration. We apply the warm inflationary paradigm with a tachyon scalar field to the loop quantum cosmology. In this context, we first provide the basic cosmological functions in terms of the tachyon field. We then obtain the slow-roll parameters and the power spectrum of scalar and tensor fluctuations, respectively. Finally, we study the performance of various warm inflationary scenarios against the latest Planck data and we find a family of models which are in agreement with the observations.

  7. Interpolation Environment of Tensor Mathematics at the Corpuscular Stage of Computational Experiments in Hydromechanics

    NASA Astrophysics Data System (ADS)

    Bogdanov, Alexander; Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Yulia

    2018-02-01

    Stages of direct computational experiments in hydromechanics based on tensor mathematics tools are represented by conditionally independent mathematical models for calculations separation in accordance with physical processes. Continual stage of numerical modeling is constructed on a small time interval in a stationary grid space. Here coordination of continuity conditions and energy conservation is carried out. Then, at the subsequent corpuscular stage of the computational experiment, kinematic parameters of mass centers and surface stresses at the boundaries of the grid cells are used in modeling of free unsteady motions of volume cells that are considered as independent particles. These particles can be subject to vortex and discontinuous interactions, when restructuring of free boundaries and internal rheological states has place. Transition from one stage to another is provided by interpolation operations of tensor mathematics. Such interpolation environment formalizes the use of physical laws for mechanics of continuous media modeling, provides control of rheological state and conditions for existence of discontinuous solutions: rigid and free boundaries, vortex layers, their turbulent or empirical generalizations.

  8. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  9. Extended vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Procamore » theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.« less

  10. Entropy Flow Through Near-Critical Quantum Junctions

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  11. Simultaneous tensor decomposition and completion using factor priors.

    PubMed

    Chen, Yi-Lei; Hsu, Chiou-Ting; Liao, Hong-Yuan Mark

    2014-03-01

    The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.

  12. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    PubMed Central

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  13. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    NASA Astrophysics Data System (ADS)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  14. Global moment tensor computation at GFZ Potsdam

    NASA Astrophysics Data System (ADS)

    Saul, J.; Becker, J.; Hanka, W.

    2011-12-01

    As part of its earthquake information service, GFZ Potsdam has started to provide seismic moment tensor solutions for significant earthquakes world-wide. The software used to compute the moment tensors is a GFZ-Potsdam in-house development, which uses the framework of the software SeisComP 3 (Hanka et al., 2010). SeisComP 3 (SC3) is a software package for seismological data acquisition, archival, quality control and analysis. SC3 is developed by GFZ Potsdam with significant contributions from its user community. The moment tensor inversion technique uses a combination of several wave types, time windows and frequency bands depending on magnitude and station distance. Wave types include body, surface and mantle waves as well as the so-called 'W-Phase' (Kanamori and Rivera, 2008). The inversion is currently performed in the time domain only. An iterative centroid search can be performed independently both horizontally and in depth. Moment tensors are currently computed in a semi-automatic fashion. This involves inversions that are performed automatically in near-real time, followed by analyst review prior to publication. The automatic results are quite often good enough to be published without further improvements, sometimes in less than 30 minutes from origin time. In those cases where a manual interaction is still required, the automatic inversion usually does a good job at pre-selecting those traces that are the most relevant for the inversion, keeping the work required for the analyst at a minimum. Our published moment tensors are generally in good agreement with those published by the Global Centroid-Moment-Tensor (GCMT) project for earthquakes above a magnitude of about Mw 5. Additionally we provide solutions for smaller earthquakes above about Mw 4 in Europe, which are normally not analyzed by the GCMT project. We find that for earthquakes above Mw 6, the most robust automatic inversions can usually be obtained using the W-Phase time window. The GFZ earthquake

  15. Tensor tomography on Cartan–Hadamard manifolds

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jere; Railo, Jesse; Salo, Mikko

    2018-04-01

    We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.

  16. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Tretyakova, Daria; Latosh, Boris

    2018-02-01

    In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.

  17. Transverse magnetic focussing of heavy holes in a (100) GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Rendell, M.; Klochan, O.; Srinivasan, A.; Farrer, I.; Ritchie, D. A.; Hamilton, A. R.

    2015-10-01

    We perform magnetic focussing of high mobility holes confined in a shallow GaAs/Al0.33Ga0.67As quantum well grown on a (100) GaAs substrate. We observe ballistic focussing of holes over a path length of up to 4.9 μm with a large number of focussing peaks. We show that additional structure on the focussing peaks can be caused by a combination of the finite width of the injector quantum point contact and Shubnikov-de Haas oscillations. These results pave the way to studies of spin-dependent magnetic focussing and spin relaxation lengths in two-dimentional hole systems without complications of crystal anisotropies and anisotropic g-tensors.

  18. Tensor Basis Neural Network v. 1.0 (beta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Julia; Templeton, Jeremy

    This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.

  19. Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.

    PubMed

    Zhao, Qibin; Zhang, Liqing; Cichocki, Andrzej

    2015-09-01

    CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.

  20. Scalar quantum electrodynamics via Duffin-Kemmer-Petiau gauge theory in the Heisenberg picture: Vacuum polarization

    NASA Astrophysics Data System (ADS)

    Beltran, J.; Maia, N. T.; Pimentel, B. M.

    2018-04-01

    Scalar Quantum Electrodynamics is investigated in the Heisenberg picture via the Duffin-Kemmer-Petiau gauge theory. On this framework, a perturbative method is used to compute the vacuum polarization tensor and its corresponding induced current for the case of a charged scalar field in the presence of an external electromagnetic field. Charge renormalization is brought into discussion for the interpretation of the results for the vacuum polarization.