Combinatorial Approach to Modeling Quantum Systems
NASA Astrophysics Data System (ADS)
Kornyak, Vladimir V.
2016-02-01
Using the fact that any linear representation of a group can be embedded into permutations, we propose a constructive description of quantum behavior that provides, in particular, a natural explanation of the appearance of complex numbers and unitarity in the formalism of the quantum mechanics. In our approach, the quantum behavior can be explained by the fundamental impossibility to trace the identity of the indistinguishable objects in their evolution. Any observation only provides information about the invariant relations between such objects. The trajectory of a quantum system is a sequence of unitary evolutions interspersed with observations—non-unitary projections. We suggest a scheme to construct combinatorial models of quantum evolution. The principle of selection of the most likely trajectories in such models via the large numbers approximation leads in the continuum limit to the principle of least action with the appropriate Lagrangians and deterministic evolution equations
Perturbative approach to Markovian open quantum systems
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2014-01-01
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607
Heisenberg picture approach to the stability of quantum Markov systems
Pan, Yu E-mail: zibo.miao@anu.edu.au; Miao, Zibo E-mail: zibo.miao@anu.edu.au; Amini, Hadis; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-06-15
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Characterization of decohering quantum systems: Machine learning approach
NASA Astrophysics Data System (ADS)
Stenberg, Markku P. V.; Köhn, Oliver; Wilhelm, Frank K.
2016-01-01
Adaptive data collection and analysis, where data are being fed back to update the measurement settings, can greatly increase speed, precision, and reliability of the characterization of quantum systems. However, decoherence tends to make adaptive characterization difficult. As an example, we consider two coupled discrete quantum systems. When one of the systems can be controlled and measured, the standard method to characterize another, with an unknown frequency ωr, is swap spectroscopy. Here, adapting measurements can provide estimates whose error decreases exponentially in the number of measurement shots rather than as a power law in conventional swap spectroscopy. However, when the decoherence time is so short that an excitation oscillating between the two systems can only undergo less than a few tens of vacuum Rabi oscillations, this approach can be marred by a severe limit on accuracy unless carefully designed. We adopt machine learning techniques to search for efficient policies for the characterization of decohering quantum systems. We find, for instance, that when the system undergoes more than 2 Rabi oscillations during its relaxation time T1, O (103) measurement shots are sufficient to reduce the squared error of the Bayesian initial prior of the unknown frequency ωr by a factor O (104) or larger. We also develop policies optimized for extreme initial parameter uncertainty and for the presence of imperfections in the readout.
Dissipation equation of motion approach to open quantum systems
NASA Astrophysics Data System (ADS)
Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao
2016-08-01
This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.
A perturbative probabilistic approach to quantum many-body systems
NASA Astrophysics Data System (ADS)
Di Stefano, Andrea; Ostilli, Massimo; Presilla, Carlo
2013-04-01
In the probabilistic approach to quantum many-body systems, the ground-state energy is the solution of a nonlinear scalar equation written either as a cumulant expansion or as an expectation with respect to a probability distribution of the potential and hopping (amplitude and phase) values recorded during an infinitely lengthy evolution. We introduce a perturbative expansion of this probability distribution which conserves, at any order, a multinomial-like structure, typical of uncorrelated systems, but includes, order by order, the statistical correlations provided by the cumulant expansion. The proposed perturbative scheme is successfully tested in the case of pseudo-spin 1/2 hard-core boson Hubbard models also when affected by a phase problem due to an applied magnetic field.
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Ananth, Nandini
2008-01-01
systems is described. We proposed the use of a semiclassical correction term to a preliminary quantum calculation using, for instance, a variational approach. This allows us to increase the accuracy significantly. Modeling Nonadiabatic dynamics has always been a challenge to classical simulations because the multi-state nature of the dynamics cannot be described accurately by the time evolution on a single average surface, as is the classical approach. We show that using the Meyer-Miller-Stock-Thoss (MMST) representation of the exact vibronic Hamiltonian in combination with the IVR allows us to accurately describe dynamics where the non Born-Oppenheimer regime. One final problem that we address is that of extending this method to the long time regime. We propose the use of a time independent sampling function in the Monte Carlo integration over the phase space of initial trajectory conditions. This allows us to better choose the regions of importance at the various points in time; by using more trajectories in the important regions, we show that the integration can be converged much easier. An algorithm based loosely on the methods of Diffusion Monte Carlo is developed that allows us to carry out this time dependent sampling in a most efficient manner.
Using quantum mechanical approaches to study biological systems.
Merz, Kenneth M
2014-09-16
Conspectus Quantum mechanics (QM) has revolutionized our understanding of the structure and reactivity of small molecular systems. Given the tremendous impact of QM in this research area, it is attractive to believe that this could also be brought into the biological realm where systems of a few thousand atoms and beyond are routine. Applying QM methods to biological problems brings an improved representation to these systems by the direct inclusion of inherently QM effects such as polarization and charge transfer. Because of the improved representation, novel insights can be gleaned from the application of QM tools to biomacromolecules in aqueous solution. To achieve this goal, the computational bottlenecks of QM methods had to be addressed. In semiempirical theory, matrix diagonalization is rate limiting, while in density functional theory or Hartree-Fock theory electron repulsion integral computation is rate-limiting. In this Account, we primarily focus on semiempirical models where the divide and conquer (D&C) approach linearizes the matrix diagonalization step with respect to the system size. Through the D&C approach, a number of applications to biological problems became tractable. Herein, we provide examples of QM studies on biological systems that focus on protein solvation as viewed by QM, QM enabled structure-based drug design, and NMR and X-ray biological structure refinement using QM derived restraints. Through the examples chosen, we show the power of QM to provide novel insights into biological systems, while also impacting practical applications such as structure refinement. While these methods can be more expensive than classical approaches, they make up for this deficiency by the more realistic modeling of the electronic nature of biological systems and in their ability to be broadly applied. Of the tools and applications discussed in this Account, X-ray structure refinement using QM models is now generally available to the community in the
On the approach to thermal equilibrium of macroscopic quantum systems
Goldstein, Sheldon; Tumulka, Roderich
2011-03-24
In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zanghi[2, 3, 4], we considered an isolated, macroscopic quantum system. Let H be a micro-canonical 'energy shell', i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+{delta}E. The thermal equilibrium macro-state at energy E corresponds to a subspace H{sub eq} of H such that dimHeq/dimH is close to 1. We say that a system with state vector {psi}{epsilon}H is in thermal equilibrium if {psi} is 'close' to H{sub eq}. We argue that for 'typical' Hamiltonians, all initial state vectors {psi}{sub 0} evolve in such a way that {psi}{sub t} is in thermal equilibrium for most times t. This is closely related to von Neumann's quantum ergodic theorem of 1929.
Numerical approaches to isolated many-body quantum systems
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael H.
Ultracold atoms have revolutionized atomic and condensed matter physics. In addition to having clean, controllable Hamiltonians, ultracold atoms are near-perfect realizations of isolated quantum systems, in which weak environmental coupling can be neglected on experimental time scales. This opens new opportunities to explore these systems not just in thermal equilibrium, but out of equilibrium as well. In this dissertation, we investigate some properties of closed quantum systems, utilizing a combination of numerical and analytical techniques. We begin by applying full configuration-interaction quantum Monte Carlo (FCIQMC) to the Fermi polaron, which we use as a test bed to improve the algorithm. In addition to adapting standard QMC techniques, we introduce novel controlled approximations that allow mitigation of the sign problem and simulation directly in the thermodynamic limit. We also contrast the sign problem of FCIQMC with that of more standard techniques, focusing on FCIQMC's capacity to work in a second quantized determinant space. Next, we discuss nonequilibrium dynamics near a quantum critical point, focusing on the one-dimensional transverse-field Ising (TFI) chain. We show that the TFI dynamics exhibit critical scaling, within which the spin correlations exhibit qualitatively athermal behavior. We provide strong numerical evidence for the universality of dynamic scaling by utilizing time-dependent matrix product states to simulate a non-integrable model in the same equilibrium universality class. As this non-integrable model has been realized experimentally, we investigate the robustness of our predictions against the presence of open boundary conditions and disorder. We find that the qualitatively athermal correlations remain visible, although other phenomena such as even/odd effects become relevant within the finite size scaling theory. Finally, we investigate the properties of the integrable TFI model upon varying the strength of a non
Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.
Budich, Jan C; Trauzettel, Björn
2010-07-01
We investigate entanglement transfer from a system of two spin-entangled electron-hole pairs, each placed in a separate single mode cavity, to the photons emitted due to cavity leakage. Dipole selection rules and a splitting between the light hole and the heavy hole subbands are the crucial ingredients establishing a one-to-one correspondence between electron spins and circular photon polarizations. To account for the measurement of the photons as well as dephasing effects, we choose a stochastic Schrödinger equation and a conditional master equation approach, respectively. The influence of interactions with the environment as well as asymmetries in the coherent couplings on the photon entanglement is analysed for two concrete measurement schemes. The first one is designed to violate the Clauser-Horne-Shimony-Holt (CHSH) inequality, while the second one employs the visibility of interference fringes to prove the entanglement of the photons. Because of the spatial separation of the entangled electronic system over two quantum dots, a successful verification of entangled photons emitted by this system would imply the detection of nonlocal spin entanglement of massive particles in a solid state structure. PMID:20571188
Exact analysis of the response of quantum systems to two-photons using a QSDE approach
NASA Astrophysics Data System (ADS)
Pan, Yu; Dong, Daoyi; Zhang, Guofeng
2016-03-01
We introduce the quantum stochastic differential equation (QSDE) approach to exactly analyze the response of quantum systems to a continuous-mode two-photon input. The QSDE description of the two-photon process allows us to integrate the input-output analysis with the quantum network theory, and so the analytical computability of the output state of a general quantum system can be addressed within this framework. We show that the time-domain two-photon output states can be exactly calculated for a large class of quantum systems including passive linear networks, optomechanical oscillators and two-level emitter in waveguide systems. In particular, we propose to utilise the results for the exact simulation of the stimulated emission as well as the study of the scattering of two-mode photon wave packets.
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Werner, A. H.; Jaschke, D.; Silvi, P.; Kliesch, M.; Calarco, T.; Eisert, J.; Montangero, S.
2016-06-01
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems.
Werner, A H; Jaschke, D; Silvi, P; Kliesch, M; Calarco, T; Eisert, J; Montangero, S
2016-06-10
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies. PMID:27341253
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.
Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation. PMID:27627265
Thermofield-based chain-mapping approach for open quantum systems
NASA Astrophysics Data System (ADS)
de Vega, Inés; Bañuls, Mari-Carmen
2015-11-01
We consider a thermofield approach to analyze the evolution of an open quantum system coupled to an environment at finite temperature. In this approach, the finite-temperature environment is exactly mapped onto two virtual environments at zero temperature. These two environments are then unitarily transformed into two different chains of oscillators, leading to a one-dimensional structure that can be numerically studied using tensor network techniques. Compared to previous approaches using a single chain mapping, our strategy offers the advantage of an exact description of the initial state at arbitrary temperatures, which results in a gain in computational efficiency and a reduced truncation error.
Operational approach to fluctuations of thermodynamic variables in finite quantum systems
Jahnke, T.; Lanery, S.; Mahler, G.
2011-01-15
In this paper we present a quantum approach to the old problem of temperature fluctuations. We start by observing that according to quantum thermodynamics, fluctuations of intensive parameters like temperature cannot exist. Furthermore, such parameters are not observables, so their estimation has to be done indirectly. The respective temperature estimate based on quantum measurements of the energy is shown to fluctuate according to the well-known formula {Delta}T{sup 2}=(k{sub B}T{sup 2}/C), but only within a certain temperature range and if the system is not too small. We also calculate the fourth-order correction term, becoming important at higher temperatures. Finally we illustrate our results with a concrete model of n spins.
Time Scales in the Approach to Equilibrium of Macroscopic Quantum Systems
NASA Astrophysics Data System (ADS)
Goldstein, Sheldon; Hara, Takashi; Tasaki, Hal
2013-10-01
We prove two theorems concerning the time evolution in general isolated quantum systems. The theorems are relevant to the issue of the time scale in the approach to equilibrium. The first theorem shows that there can be pathological situations in which the relaxation takes an extraordinarily long time, while the second theorem shows that one can always choose an equilibrium subspace, the relaxation to which requires only a short time for any initial state.
Quantum chaos: An entropy approach
NASA Astrophysics Data System (ADS)
Sl/omczyński, Wojciech; Życzkowski, Karol
1994-11-01
A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II
When do perturbative approaches accurately capture the dynamics of complex quantum systems?
Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.
2016-01-01
Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176
NASA Astrophysics Data System (ADS)
Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas
2016-06-01
We present the Born-Markov approximated Redfield quantum master equation (RQME) description for an open system of noninteracting particles (bosons or fermions) on an arbitrary lattice of N sites in any dimension and weakly connected to multiple reservoirs at different temperatures and chemical potentials. The RQME can be reduced to the Lindblad equation, of various forms, by making further approximations. By studying the N =2 case, we show that RQME gives results which agree with exact analytical results for steady-state properties and with exact numerics for time-dependent properties over a wide range of parameters. In comparison, the Lindblad equations have a limited domain of validity in nonequilibrium. We conclude that it is indeed justified to use microscopically derived full RQME to go beyond the limitations of Lindblad equations in out-of-equilibrium systems. We also derive closed-form analytical results for out-of-equilibrium time dynamics of two-point correlation functions. These results explicitly show the approach to steady state and thermalization. These results are experimentally relevant for cold atoms, cavity QED, and far-from-equilibrium quantum dot experiments.
Scheme of thinking quantum systems
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Control of noisy quantum systems: Field-theory approach to error mitigation
NASA Astrophysics Data System (ADS)
Hipolito, Rafael; Goldbart, Paul M.
2016-04-01
We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model
Simulation of n-qubit quantum systems: A computer-algebraic approach
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.; Surzhykov, A.
2007-03-01
During the last decade, the field of quantum computation has attracted a lot of interest and motivated many theoretical and experimental studies of n-qubit quantum systems. But apart from the promise of more efficient quantum algorithms, these investigations also revealed a number of obstacles which still have to be overcome in practice. In this context, the use of simulation programs has proved to be an appropriate method. In order to facilitate the simulation of n-qubit quantum systems, we present the Feynman software program to provide the necessary tools to define and to deal with quantum registers as well as the operators acting on them. Using an interactive design within the framework of the computer algebra system Maple, we hope that the Feynman software program will be useful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future.
NASA Astrophysics Data System (ADS)
Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo; Kusakabe, Koichi; Tomita, Norikazu
2013-02-01
We extend the static multireference description (resonant unrestricted Hartree-Fock) to a dynamical system in order to include the correlation effect dynamically. The resulting time-dependent (TD) Schrödinger equation is simplified into the time-developed rate equation (TD-CI), where the TD external field \\hatH‧(t) is taken into account directly in the Hamiltonian without any approximations. This TD-CI approach also has an advantage in that it takes into account the electron correlation by narrowing down the number of employed Slater determinants. We apply our TD-CI approach to the case of two electrons confined in the square quantum dot (QD) having the spin singlet multiplicity, and study theoretically the spatial and temporal fluctuation of the two-electron ground state under photon injection and pulse field application.
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
NASA Astrophysics Data System (ADS)
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
NASA Astrophysics Data System (ADS)
Shnirman, A.; Saha, A.; Burmistrov, I. S.; Kiselev, M. N.; Altland, A.; Gefen, Y.
2016-03-01
There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the Caldeira-Leggett and Ambegaokar-Eckern-Schön approaches. Here, we recall the differences between them and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).
First-Principles Approach to Transient Heat Flow in Quantum Systems
NASA Astrophysics Data System (ADS)
Walczak, Kamil; Yerkes, Kirk; Nanoscale Physics Division Team; Thermal Management Center Collaboration
2015-03-01
We examine heat transfer via quantum advection modes (coherently correlated quantum states) between two thermal baths of different temperatures mediated by quantum system with discrete spectrum of accessible energy levels. Nanoscale transport is treated within the first-principles method by including the superposed wave functions into the quantum expression for heat flux. Our results show the specific modifications of heat transport characteristics due to the dynamics of quantum systems under consideration. Such dynamics is captured by non-steady-state solutions to time-dependent Schrödinger wave equation or by specific solutions of interrelated Pauli rate equations. Since the applicability of Fourier's law is questionable at nanoscale and in the case of transient heat conduction, we pay particular attention to the new physics of post-Fourier heat transport and its further consequences. For instance, the non-equilibrium conditions may establish and maintain certain degree of coherence between correlated quantum states which are involved into the energy conduction process. Understanding and gaining control of coherent manipulations of qubits (two-level quantum systems) is crucial for further development of quantum informatics. This work was supported by Pace University Start-up Grant and the Air Force Office of Scientific Research (AFOSR).
A quantum annealing approach for fault detection and diagnosis of graph-based systems
NASA Astrophysics Data System (ADS)
Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.
2015-02-01
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
Asplund, Erik; Kluener, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.
A unified approach to quantum and classical TTW systems based on factorizations
NASA Astrophysics Data System (ADS)
Celeghini, E.; Kuru, Ş.; Negro, J.; del Olmo, M. A.
2013-05-01
A unifying method based on factorization properties is introduced for finding symmetries of quantum and classical superintegrable systems using the example of the Tremblay-Turbiner-Winternitz (TTW) model. It is shown that the symmetries of the quantum system can be implemented in a natural way to its classical version. Besides, by this procedure we get also other type of constants of motion depending explicitly on time that allow to find directly the motion of the system whose corresponding trajectories coincide with those obtained previously by using its symmetries.
A unified approach to quantum and classical TTW systems based on factorizations
NASA Astrophysics Data System (ADS)
Celeghini, E.; Kuru, Ş.; Negro, J.; del Olmo, M. A.
2012-05-01
A unifying method based on factorization properties is introduced for finding symmetries of quantum and classical superintegrable systems using the example of the Tremblay-Turbiner-Winternitz (TTW) model. It is shown that the symmetries of the quantum system can be implemented in a natural way to its classical version. Besides, by this procedure we get also other type of constants of motion depending explicitly on time that allow to find directly the motion of the system whose corresponding trajectories coincide with those obtained previously by using its symmetries.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
A unified approach to quantum and classical TTW systems based on factorizations
Celeghini, E.; Kuru, Ş.; Negro, J.; Olmo, M.A. del
2013-05-15
A unifying method based on factorization properties is introduced for finding symmetries of quantum and classical superintegrable systems using the example of the Tremblay–Turbiner–Winternitz (TTW) model. It is shown that the symmetries of the quantum system can be implemented in a natural way to its classical version. Besides, by this procedure we get also other type of constants of motion depending explicitly on time that allow to find directly the motion of the system whose corresponding trajectories coincide with those obtained previously by using its symmetries. -- Highlights: ► A unified method is given to find symmetries of classical and quantum systems. ► Ladder–shift operators and functions have analog expressions and relations. ► This method is applied to the TTW system to obtain its symmetries. ► For the classical cases a set of time dependent constants of motion are obtained. ► They allow us to find directly the motion and trajectories.
Soares-Pinto, D. O.; Moussa, M. H. Y.; Azevedo, E. R. de; Bonagamba, T. J.; Maziero, J.; Serra, R. M.; Celeri, L. C.
2011-06-15
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T{sub 1} and T{sub 2} (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T{sub 1}). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
NASA Astrophysics Data System (ADS)
Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira
2016-07-01
We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.
NASA Astrophysics Data System (ADS)
Tosto, Sebastiano
1997-04-01
The presentation aims to show the basic features of an "ab initio" approach to calculate the energy levels of quantum systems. The purpose of the model is not to furtherly increase the accuracy of some already existing computational method or to develop a new mathematical algorithm but rather to examine the consequences of introducing since the beginning the quantum uncertainty in the energy equations of atoms and molecules. Without any hypothesis on the state of motion of the electrons but merely concerning the number of states allowed in the phase space as a function of momentum and space uncertainty ranges, one obtains simple formulae enabling to calculate the enegy levels of multielectron atoms in a good agreement with the experimental data. The same theoretical approach has been also utilized to describe the diatomic molecules in terms of anharmonic oscillators. Also in this case, simple formulae enable to correlate dissociation energy, vibrational frequency and bond length in a good agreement with the experimental data
Natural approach to quantum dissipation
NASA Astrophysics Data System (ADS)
Taj, David; Öttinger, Hans Christian
2015-12-01
The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.
Velocity operator approach to quantum fluid dynamics in a three-dimensional neutron-proton system
NASA Astrophysics Data System (ADS)
Nishiyama, Seiya; da Providência, João
2016-07-01
In the preceeding paper, introducing isospin-dependent density operators and defining exact momenta (collective variables), we could get an exact canonically momenta approach to a one-dimensional (1D) neutron-proton (NP) system. In this paper, we attempt at a velocity operator approach to a 3D NP system. Following Sunakawa, after introducing momentum density operators, we define velocity operators, denoting classical fluid velocities. We derive a collective Hamiltonian in terms of the collective variables.
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
NASA Astrophysics Data System (ADS)
Tiwari, M.; Kenkre, V. M.
2014-04-01
The approach to equilibrium of a nondegenerate quantum system involves the damping of microscopic population oscillations, and, additionally, the bringing about of detailed balance, i.e. the achievement of the correct Boltzmann factors relating the populations. These two are separate effects of interaction with a reservoir. One stems from the randomization of phases and the other from phase space considerations. Even the meaning of the word `phase' differs drastically in the two instances in which it appears in the previous statement. In the first case it normally refers to quantum phases whereas in the second it describes the multiplicity of reservoir states that corresponds to each system state. The generalized master equation theory for the time evolution of such systems is here developed in a transparent manner and both effects of reservoir interactions are addressed in a unified fashion. The formalism is illustrated in simple cases including in the standard spin-boson situation wherein a quantum dimer is in interaction with a bath consisting of harmonic oscillators. The theory has been constructed for application in energy transfer in molecular aggregates and in photosynthetic reaction centers.
Andreev, P. A.; Kuzmenkov, L. S.; Trukhanova, M. I.
2011-12-15
In this paper, we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Although we focused primarily on the two-dimensional (2D) physical systems, the method is valid for three-dimensional (3D) and one-dimensional (1D) systems too. The presented method is based upon the Schroedinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schroedinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimensional ion and hole gas placed into an external electric field, which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D, and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma, and in 2D electron-hole plasma. Generation of waves in 3D-system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.
Sorting quantum systems efficiently
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
NASA Astrophysics Data System (ADS)
Anders, Frithjof B.
2008-08-01
We propose a numerical renormalization group (NRG) approach to steady-state currents through nanodevices. A discretization of the scattering-states continuum ensures the correct boundary condition for an open quantum system. We introduce two degenerate Wilson chains for current carrying left- and right-moving electrons reflecting time-reversal symmetry in the absence of a finite bias V. We employ the time-dependent NRG to evolve the known steady-state density operator for a noninteracting junction into the density operator of the fully interacting nanodevice at finite bias. We calculate the differential conductance as function of V, T, and the external magnetic field.
Time-dependent approach to electron pumping in open quantum systems
NASA Astrophysics Data System (ADS)
Stefanucci, G.; Kurth, S.; Rubio, A.; Gross, E. K. U.
2008-02-01
We use a recently proposed time-dependent approach to investigate the motion of electrons in quantum pump device configurations. The occupied one-particle states are propagated in real time and employed to calculate the local electron density and current. The approach can also be embedded in the framework of time-dependent density functional theory to include electron-electron interactions. An advantage of the present computational scheme is that the same computational effort is required to simulate monochromatic, polychromatic, and nonperiodic drivings. Furthermore, initial-state dependence and history effects are naturally accounted for. We present results for one-dimensional devices exposed to a traveling potential wave. (i) We show that for pumping across a single potential barrier, electrons are transported in pockets and the transport mechanism resembles pumping of water with the Archimedean screw; (ii) we propose a simple model to study pumping through semiconductor nanostructures and we address the phenomenon of the current flowing in the opposite direction to the field propagation; (iii) we present the first numerical evidence of long-lived superimposed oscillations as induced by the presence of bound states and discuss the dependence of their lifetime on the frequency and amplitude of the driving field. By combining Floquet theory with nonequilibrium Green’s functions, we also obtain a general expression for the pumped current in terms of inelastic transmission probabilities. This latter result is used for benchmarking our propagation scheme in the long-time limit. Finally, we discuss the limitations of Floquet-based algorithms and suggest our approach as a possible way to go beyond them.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Measurement understood through the quantum potential approach
NASA Astrophysics Data System (ADS)
Bohm, D.; Hiley, B. J.
1984-03-01
We review briefly the quantum potential approach to quantum theory, and show that it yields a completely consistent account of the measurement process, including especially what has been called the “collapse of the wave function.” This is done with the aid of a new concept of active information, which enables us to describe the evolution of a physical system as a unique actuality, in principle independent of any observer (so that we can, for example, provide a simple and coherent answer to the Schrödinger cat paradox). Finally, we extend this approach to relativistic quantum field theories, and show that it leads to results that are consistent with all the known experimental implications of the theory of relativity, despite the nonlocality which this approach entails.
NASA Astrophysics Data System (ADS)
Shi, Qiang; Geva, Eitan
2003-12-01
The Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system's dynamics. The standard approach is based on using a perturbative treatment of the system-bath coupling for calculating this kernel, and is therefore restricted to systems weakly coupled to the bath. In this paper, we propose a new approach for calculating the memory kernel for an arbitrary system-bath coupling. The memory kernel is obtained by solving a set of two coupled integral equations that relate it to a new type of two-time system-dependent bath correlation functions. The feasibility of the method is demonstrated in the case of an asymetrical two-level system linearly coupled to a harmonic bath.
Quantum electromechanical systems
NASA Astrophysics Data System (ADS)
Milburn, Gerard J.; Polkinghorne, Rodney
2001-11-01
We discuss the conditions under which electromechanical systems, fabricated on a sub micron scale, require a quantum description. We illustrate the discussion with the example of a mechanical electroscope for which the resonant frequency of a cantilever changes in response to a local charge. We show how such devices may be used as a quantum noise limited apparatus for detection of a single charge or spin with applications to quantum computing.
Correlation diagrams: an intuitive approach to correlations in quantum Hall systems
NASA Astrophysics Data System (ADS)
Mulay, S. B.; Quinn, J. J.; Shattuck, M. A.
2016-03-01
A trial wave function Ψ(1, 2,..., N) of an N electron system can always be written as the product of an antisymmetric Fermion factor F{zij } = Π i
NASA Astrophysics Data System (ADS)
Dušek, Miloslav; Haderka, Ondřej; Hendrych, Martin; Myška, Robert
1999-07-01
A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and sequences are ``refueled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.
Quantum pharmacology for infectious diseases: a molecular connectivity approach.
Singh, Shailza
2012-09-01
Infectious diseases are a major cause of global health, economic and social problems. Relationship between the infectious diseases and drugs designed to combat them can be understood by the Quantum Pharmacology approach. Quantum pharmacology which is an amalgamation of chemistry, quantum mechanics and computer modeling aims to understand the structure activity relationship of a drug. As compared to the classical MM, the hybrid QM/MM approach which takes into account the quantum mechanics along with the molecular mechanics facilitates the simulation of biological structures with greater accuracy and speed. This review highlights the importance of quantum mechanics for a better understanding of molecular systems and QSAR studies. PMID:22738083
NASA Astrophysics Data System (ADS)
Srisangyingcharoen, P.; Klinkla, R.; Boonchui, S.
2015-11-01
The quantum history approach is applied to investigate the first-photon emission of a quantum dot induced by propagating surface plasmons. The dynamics of the emission is described through the partitioning dynamics of a quantum system. The extended probability distribution which correspond to the photon emission rate is directly calculated. In the case that the Markov's approximation is satisfied, the well known double decay character of the first-photon emission is obtained accompanying with the analytic expression of decay amplitudes which has never been derived before. This is a merit of our approach which allows us to analytically investigate this interacting quantum system and goes beyond the master equation approach.
Danilov, Viatcheslav; Nagaitsev, Sergei; /Fermilab
2011-11-01
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.
NASA Astrophysics Data System (ADS)
Arrachea, Liliana
2007-01-01
We present an efficient method and a fast algorithm to exactly calculate spectral functions and one-body observables of open quantum systems described by lattice Hamiltonians with harmonically time-dependent terms and without many-body interactions. The theoretical treatment is based in Keldysh nonequilibrium Green’s function formalism. We illustrate the implementation of the technique in a paradigmatic model of a quantum pump driven by local fields oscillating in time with one and two harmonic components.
NASA Astrophysics Data System (ADS)
Khatami, Ehsan; Rigol, Marcos; Relaño, Armando; García-García, Antonio M.
2012-05-01
We study spectral properties and the dynamics after a quench of one-dimensional spinless fermions with short-range interactions and long-range random hopping. We show that a sufficiently fast decay of the hopping term promotes localization effects at finite temperature, which prevents thermalization even if the classical motion is chaotic. For slower decays, we find that thermalization does occur. However, within this model, the latter regime falls in an unexpected universality class, namely, observables exhibit a power-law (as opposed to an exponential) approach to their thermal expectation values.
Ye Jinwu
2008-03-15
We use both Mutual Composite Fermion (MCF) and Composite Boson (CB) approach to study balanced and imbalanced Bi-layer Quantum Hall systems (BLQH) and make critical comparisons between the two approaches. We find the CB approach is superior to the MCF approach in studying ground states with different kinds of broken symmetries. In the phase representation of the CB theory, we first study the Excitonic superfluid (ESF) state. The theory puts spin and charge degree freedoms in the same footing, explicitly bring out the spin-charge connection and classify all the possible excitations in a systematic way. Then in the dual density representation of the CB theory, we study possible intermediate phases as the distance increases. We propose there are two critical distances d{sub c1} < d{sub c2} and three phases as the distance increases. When 0 < d < d{sub c1}, the system is in the ESF state which breaks the internal U(1) symmetry, when d{sub c1} < d < d{sub c2}, the system is in an pseudo-spin density wave (PSDW) state which breaks the translational symmetry, there is a first-order transition at d{sub c1} driven by the collapsing of magneto-roton minimum at a finite wavevector in the pseudo-spin channel. When d{sub c2} < d < {infinity}, the system becomes two weakly coupled {nu} = 1/2 Composite Fermion Fermi Liquid (FL) state. There is also a first-order transition at d = d{sub c2}. We construct a quantum Ginzburg Landau action to describe the transition from ESF to PSDW which break the two completely different symmetries. By using the QGL action, we explicitly show that the PSDW takes a square lattice and analyze in detail the properties of the PSDW at zero and finite temperature. We also suggest that the correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature-dependent drag consistent with the experimental data. Then we study the effects of imbalance on both ESF and PSDW. In the ESF side, the system supports
Quantum information approach to the azurite mineral frustrated quantum magnet
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Abutalib, M.; Farouk, Ahmed; Abdalla, S.
2016-07-01
Quantum correlations are almost impossible to address in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work, we study nonlocality for a cluster of spins belonging to a mineral whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes, and then, we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal nonlocal quantum correlations between individual constituents of the azurite mineral at nonzero temperatures. The critical point beyond which entanglement is zero is found at T_c < 1 K.
Quantum information approach to the azurite mineral frustrated quantum magnet
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Abutalib, M.; Farouk, Ahmed; Abdalla, S.
2016-04-01
Quantum correlations are almost impossible to address in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work, we study nonlocality for a cluster of spins belonging to a mineral whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes, and then, we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal nonlocal quantum correlations between individual constituents of the azurite mineral at nonzero temperatures. The critical point beyond which entanglement is zero is found at T_c < 1 K.
Novel Quantum Monte Carlo Approaches for Quantum Liquids
NASA Astrophysics Data System (ADS)
Rubenstein, Brenda M.
the eventual hope is to apply this algorithm to the exploration of yet unidentified high-pressure, low-temperature phases of hydrogen, I employ this algorithm to determine whether or not quantum hard spheres can form a low-temperature bcc solid if exchange is not taken into account. In the final chapter of this thesis, I use Path Integral Monte Carlo once again to explore whether glassy para-hydrogen exhibits superfluidity. Physicists have long searched for ways to coax hydrogen into becoming a superfluid. I present evidence that, while glassy hydrogen does not crystallize at the temperatures at which hydrogen might become a superfluid, it nevertheless does not exhibit superfluidity. This is because the average binding energy per p-H2 molecule poses a severe barrier to exchange regardless of whether the system is crystalline. All in all, this work extends the reach of Quantum Monte Carlo methods to new systems and brings the power of existing methods to bear on new problems. Portions of this work have been published in Rubenstein, PRE (2010) and Rubenstein, PRA (2012) [167;169]. Other papers not discussed here published during my Ph.D. include Rubenstein, BPJ (2008) and Rubenstein, PRL (2012) [166;168]. The work in Chapters 6 and 7 is currently unpublished. [166] Brenda M. Rubenstein, Ivan Coluzza, and Mark A. Miller. Controlling the folding and substrate-binding of proteins using polymer brushes. Physical Review Letters, 108(20):208104, May 2012. [167] Brenda M. Rubenstein, J.E. Gubernatis, and J.D. Doll. Comparative monte carlo efficiency by monte carlo analysis. Physical Review E, 82(3):036701, September 2010. [168] Brenda M. Rubenstein and Laura J. Kaufman. The role of extracellular matrix in glioma invasion: A cellular potts model approach. Biophysical Journal, 95(12):5661-- 5680, December 2008. [169] Brenda M. Rubenstein, Shiwei Zhang, and David R. Reichman. Finite-temperature auxiliary-field quantum monte carlo for bose-fermi mixtures. Physical Review A, 86
Curtright, Thomas; Mezincescu, Luca
2007-09-15
Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+{nu}){sup 2}+{sigma}{sub k>0}{mu}{sub k} exp(ikx). In some nontrivial cases, equivalent Hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.
Quantum contextuality in N-boson systems
Benatti, Fabio; Floreanini, Roberto; Genovese, Marco; Olivares, Stefano
2011-09-15
Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Tailoring superradiance to design artificial quantum systems
NASA Astrophysics Data System (ADS)
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Nonperturbative approach to relativistic quantum communication channels
NASA Astrophysics Data System (ADS)
Landulfo, André G. S.
2016-05-01
We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver possess some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a nonperturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.
Hidden Statistics Approach to Quantum Simulations
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the
Quantum coherence in multipartite systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Sun, C. P.
2015-08-01
Within the unified framework of exploiting the relative entropy as a distance measure of quantum correlations, we make explicit the hierarchical structure of quantum coherence, quantum discord, and quantum entanglement in multipartite systems. On this basis, we define a basis-independent measure of quantum coherence and prove that it is exactly equivalent to quantum discord. Furthermore, since the original relative entropy of coherence is a basis-dependent quantity, we investigate the local and nonlocal unitary creation of quantum coherence, focusing on the two-qubit unitary gates. Intriguingly, our results demonstrate that nonlocal unitary gates do not necessarily outperform the local unitary gates. Finally, the additivity relationship of quantum coherence in tripartite systems is discussed in detail, where the strong subadditivity of von Neumann entropy plays an essential role.
Equilibration of quantum chaotic systems.
Zhuang, Quntao; Wu, Biao
2013-12-01
The quantum ergordic theorem for a large class of quantum systems was proved by von Neumann [Z. Phys. 57, 30 (1929)] and again by Reimann [Phys. Rev. Lett. 101, 190403 (2008)] in a more practical and well-defined form. However, it is not clear whether the theorem applies to quantum chaotic systems. With a rigorous proof still elusive, we illustrate and verify this theorem for quantum chaotic systems with examples. Our numerical results show that a quantum chaotic system with an initial low-entropy state will dynamically relax to a high-entropy state and reach equilibrium. The quantum equilibrium state reached after dynamical relaxation bears a remarkable resemblance to the classical microcanonical ensemble. However, the fluctuations around equilibrium are distinct: The quantum fluctuations are exponential while the classical fluctuations are Gaussian. PMID:24483425
The quantum Hall effects: Philosophical approach
NASA Astrophysics Data System (ADS)
Lederer, P.
2015-05-01
The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.
Open fermionic quantum systems
Artacho, E.; Falicov, L.M. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )
1993-01-15
A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most important feature is that the dynamics of the exchange of particles between the system and the reservoir is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to fluctuations in the total number of particles in the system. The system is to be considered in its full structure, whereas the reservoir is described only in an effective way, as a source of particles characterized by a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-valence center), and a two-orbital impurity with interorbital repulsive interactions.
Quantum approach to Bertrand duopoly
NASA Astrophysics Data System (ADS)
Fra¸ckiewicz, Piotr; Sładkowski, Jan
2016-06-01
The aim of the paper is to study the Bertrand duopoly example in the quantum domain. We use two ways to write the game in terms of quantum theory. The first one adapts the Li-Du-Massar scheme for the Cournot duopoly. The second one is a simplified model that exploits a two qubit entangled state. In both cases, we focus on finding Nash equilibria in the resulting games. Our analysis allows us to take another look at the classic model of Bertrand.
Number-resolved master equation approach to quantum measurement and quantum transport
NASA Astrophysics Data System (ADS)
Li, Xin-Qi
2016-08-01
In addition to the well-known Landauer-Büttiker scattering theory and the nonequilibrium Green's function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number ( n)-resolved master equation ( n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.
Realist model approach to quantum mechanics
NASA Astrophysics Data System (ADS)
Hájíček, P.
2013-06-01
The paper proves that quantum mechanics is compatible with the constructive realism of modern philosophy of science. The proof is based on the observation that properties of quantum systems that are uniquely determined by their preparations can be assumed objective without the difficulties that are encountered by the same assumption about values of observables. The resulting realist interpretation of quantum mechanics is made rigorous by studying the space of quantum states—the convex set of state operators. Prepared states are classified according to their statistical structure into indecomposable and decomposable instead of pure and mixed. Simple objective properties are defined and showed to form a Boolean lattice.
Universal freezing of quantum correlations within the geometric approach
Cianciaruso, Marco; Bromley, Thomas R.; Roga, Wojciech; Lo Franco, Rosario; Adesso, Gerardo
2015-01-01
Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first principles that freezing of geometric quantum correlations is independent of the adopted distance and therefore universal. This finding paves the way to a deeper physical interpretation and future practical exploitation of the phenomenon for noisy quantum technologies. PMID:26053239
Avoiding irreversible dynamics in quantum systems
NASA Astrophysics Data System (ADS)
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with
Quantum mechanics of open systems
NASA Astrophysics Data System (ADS)
Melikidze, Akakii
In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
NASA Astrophysics Data System (ADS)
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Quantum Effects in Biological Systems
NASA Astrophysics Data System (ADS)
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Optimal approach to quantum communication using dynamic programming.
Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D
2007-10-30
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states. PMID:17959783
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit. PMID:25768745
Marquette, Ian; Quesne, Christiane
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformed oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.
NASA Astrophysics Data System (ADS)
Marquette, Ian; Quesne, Christiane
2015-06-01
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformed oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Entanglement and dephasing of quantum dissipative systems
Stauber, T.; Guinea, F.
2006-04-15
The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.
Decoherence in infinite quantum systems
Blanchard, Philippe; Hellmich, Mario
2012-09-01
We review and discuss a notion of decoherence formulated in the algebraic framework of quantum physics. Besides presenting some sufficient conditions for the appearance of decoherence in the case of Markovian time evolutions we provide an overview over possible decoherence scenarios. The framework for decoherence we establish is sufficiently general to accommodate quantum systems with infinitely many degrees of freedom.
Comparing conductance quantization in quantum wires and quantum Hall systems
NASA Astrophysics Data System (ADS)
Alekseev, Anton Yu.; Cheianov, Vadim V.; Fröhlich, Jürg
1996-12-01
We suggest a means to calculate the dc conductance of a one-dimensional electron system described by the Luttinger model. Our approach is based on the ideas of Landauer and Büttiker on transport in ballistic channels and on the methods of current algebra. We analyze in detail the way in which the system can be coupled to external reservoirs. This determines whether the conductance is renormalized or not. We provide a parallel treatment of a quantum wire and a fractional quantum Hall system on a cylinder with two widely separated edges. Although both systems are described by the same effective theory, the physical electrons are identified with different types of excitations, and hence the coupling to external reservoirs is different. As a consequence, the conductance in the wire is quantized in integer units of e2/h per spin orientation whereas the Hall conductance allows for fractional quantization.
Quantum Resonance Approach to Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.
Kishi, Ryohei; Fujii, Hiroaki; Minami, Takuya; Shigeta, Yasuteru; Nakano, Masayoshi
2015-01-22
In this study, we apply the ab initio molecular orbital - configuration interaction based quantum master equation (MOQME) approach to the calculation and analysis of the dynamic first hyperpolarizabilities (β) of asymmetric π-conjugated molecules. In this approach, we construct the excited state models by the ab initio configuration interaction singles method. Then, time evolutions of system reduced density matrix ρ(t) and system polarization p(t) are calculated by the QME approach. Dynamic β in the second harmonic generation is calculated based on the nonperturbative definition of nonlinear optical susceptibility, using the frequency domain system polarization p(ω). Spatial contributions of electrons to β are analyzed based on the dynamic hyperpolarizability density map, which visualizes the second-order response of charge density oscillating with a frequency of 2ω. We apply the present method to the calculation of the dynamic β of a series of donor/acceptor substituted polyene oligomers, and then discuss the applicability of the MOQME method to the calculation and analysis of dynamic NLO properties of molecular systems.
Coherent control in simple quantum systems
NASA Technical Reports Server (NTRS)
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm. PMID:23829722
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Time-dependent Kohn-Sham approach to quantum electrodynamics
Ruggenthaler, M.; Mackenroth, F.; Bauer, D.
2011-10-15
We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.
NASA Astrophysics Data System (ADS)
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Bosson, Maël; Grudinin, Sergei; Redon, Stephane
2013-03-01
We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer. PMID:23108532
Numerical approach for unstructured quantum key distribution.
Coles, Patrick J; Metodiev, Eric M; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
Numerical approach for unstructured quantum key distribution
NASA Astrophysics Data System (ADS)
Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert
2016-05-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study `unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.
Numerical approach for unstructured quantum key distribution
Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Dynamics of open bosonic quantum systems in coherent state representation
Dalvit, D. A. R.; Berman, G. P.; Vishik, M.
2006-01-15
We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.
Incoherent control of locally controllable quantum systems
Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.
2008-10-21
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.
Quantum walk public-key cryptographic system
NASA Astrophysics Data System (ADS)
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Duality quantum algorithm efficiently simulates open quantum systems
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
The SCOP-formalism: an Operational Approach to Quantum Mechanics
D'Hooghe, Bart
2010-05-04
We present the SCOP-formalism, an operational approach to quantum mechanics. If a State-COntext-Property-System (SCOP) satisfies a specific set of 'quantum axioms,] it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N->infinity the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it. This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context. We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.
The SCOP-formalism: an Operational Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
D'Hooghe, Bart
2010-05-01
We present the SCOP-formalism, an operational approach to quantum mechanics. If a State—COntext—Property—System (SCOP) satisfies a specific set of `quantum axioms,] it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N→∞ the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it. This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context. We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.
Green-function approach for scattering quantum walks
Andrade, F. M.; Luz, M. G. E. da
2011-10-15
In this work a Green-function approach for scattering quantum walks is developed. The exact formula has the form of a sum over paths and always can be cast into a closed analytic expression for arbitrary topologies and position-dependent quantum amplitudes. By introducing the step and path operators, it is shown how to extract any information about the system from the Green function. The method's relevant features are demonstrated by discussing in detail an example, a general diamond-shaped graph.
Quantum energy teleportation in a quantum Hall system
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Quantization and Quantum-Like Phenomena: A Number Amplitude Approach
NASA Astrophysics Data System (ADS)
Robinson, T. R.; Haven, E.
2015-12-01
Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.
Relativistic Quantum Metrology in Open System Dynamics
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-01
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself. PMID:25609187
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Thermalization of field driven quantum systems
Fotso, H.; Mikelsons, K.; Freericks, J. K.
2014-01-01
There is much interest in how quantum systems thermalize after a sudden change, because unitary evolution should preclude thermalization. The eigenstate thermalization hypothesis resolves this because all observables for quantum states in a small energy window have essentially the same value; it is violated for integrable systems due to the infinite number of conserved quantities. Here, we show that when a system is driven by a DC electric field there are five generic behaviors: (i) monotonic or (ii) oscillatory approach to an infinite-temperature steady state; (iii) monotonic or (iv) oscillatory approach to a nonthermal steady state; or (v) evolution to an oscillatory state. Examining the Hubbard model (which thermalizes under a quench) and the Falicov-Kimball model (which does not), we find both exhibit scenarios (i–iv), while only Hubbard shows scenario (v). This shows richer behavior than in interaction quenches and integrability in the absence of a field plays no role. PMID:24736404
Perturbative approach to open circuit QED systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, Francesco; Koch, Jens
2014-03-01
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. The proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system observables, which would otherwise be impractical. This enables us to investigate a variety of open circuit QED systems, including the open Jaynes-Cummings lattice model.
NASA Astrophysics Data System (ADS)
Makino, Hironori; Minami, Nariyuki
2014-07-01
The theory of the quantal level statistics of a classically integrable system, developed by Makino et al. in order to investigate the non-Poissonian behaviors of level-spacing distribution (LSD) and level-number variance (LNV) [H. Makino and S. Tasaki, Phys. Rev. E 67, 066205 (2003); H. Makino and S. Tasaki, Prog. Theor. Phys. Suppl. 150, 376 (2003); H. Makino, N. Minami, and S. Tasaki, Phys. Rev. E 79, 036201 (2009); H. Makino and S. Tasaki, Prog. Theor. Phys. 114, 929 (2005)], is successfully extended to the study of the E(K,L) function, which constitutes a fundamental measure to determine most statistical observables of quantal levels in addition to LSD and LNV. In the theory of Makino et al., the eigenenergy level is regarded as a superposition of infinitely many components whose formation is supported by the Berry-Robnik approach in the far semiclassical limit [M. Robnik, Nonlinear Phenom. Complex Syst. 1, 1 (1998)]. We derive the limiting E(K,L) function in the limit of infinitely many components and elucidate its properties when energy levels show deviations from the Poisson statistics.
Quantum cloning attacks against PUF-based quantum authentication systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Quantum Entanglement and Quantum Discord in Gaussian Open Systems
Isar, Aurelian
2011-10-03
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.
Quantum cloning attacks against PUF-based quantum authentication systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-05-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Biosensing with Quantum Dots: A Microfluidic Approach
Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J.
2011-01-01
Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. PMID:22163723
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
NASA Astrophysics Data System (ADS)
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
-stationary systems, they nonetheless show some general trends. However, readers should remember that these comments represent the personal points of view of their authors. About a third of the comments are devoted to the evolution of quantum systems in the presence of dissipation or other sources of decoherence. This area, started by Landau in 1927, still contains many extremely interesting and unsolved problems. Here they are discussed in view of such different applications as the dynamics of quantum entanglement, cavity QED, optomechanics and the dynamical Casimir effect. Another group of comments deals with different (e.g. geometrical, tomographic, PT-symmetric) approaches to the dynamics of quantum systems, which have been developed in the past two decades. In particular, the problem of transition from quantum to classical description is considered and the inequalities generalizing the standard uncertainty relations are discussed in this connection. Three comments are devoted to the applications of nonclassical states, analytic representations and the algebraic techniques for resolving problems in quantum information and quantum statistical physics. The other contributions are related to different aspects of the dynamics of concrete physical systems, such as the wave-packet approach to the description of transport phenomena in mesoscopic systems, tunneling phenomena in low-dimensional semiconductor structures and resonance states of two-electron quantum dots. We thank all the authors and referees for their efforts in preparing this special issue. We hope that the comments in this collection will be useful for interested readers.
The quantum Hall effect in quantum dot systems
NASA Astrophysics Data System (ADS)
Beltukov, Y. M.; Greshnov, A. A.
2014-12-01
It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given.
Functional renormalization group - a new approach to frustrated quantum magnetism
NASA Astrophysics Data System (ADS)
Reuther, Johannes
The experimental and theoretical investigation of quantum spin systems has become one of the central disciplines of contemporary condensed matter physics. From an experimental viewpoint, the field has been significantly fueled by the recent synthesis of novel strongly correlated materials with exotic magnetic or quantum paramagnetic ground states. From a theoretical perspective, however, the numerical treatment of realistic models for quantum magnetism in two and three spatial dimensions still constitutes a serious challenge. This particularly applies to frustrated systems, which complicate the employment of established methods. This talk intends to propagate the pseudofermion functional renormalization group (PFFRG) as a novel approach to determine large size ground state correlations of a wide class of spin Hamiltonians. Using a diagrammatic pseudofermion representation for quantum spin models, the PFFRG performs systematic summations in all two-particle fermionic interaction channels, capturing the correct balance between classical magnetic ordering and quantum fluctuations. Numerical results for various frustrated spin models on different 2D and 3D lattices are reviewed, and benchmarked against other methods if available.
Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.
2012-04-01
A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared (MIR) external cavity quantum cascade lasers (ECQCLs)and astigmatic Herriott cells, channels using visible or near infrared (NIR) lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, ow-noise signal recovery, failsafe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented.
Alternative algebraic approaches in quantum chemistry
Mezey, Paul G.
2015-01-22
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Novel Numerical Approaches to Loop Quantum Cosmology
NASA Astrophysics Data System (ADS)
Diener, Peter
2015-04-01
Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Investigating non-Markovian dynamics of quantum open systems
NASA Astrophysics Data System (ADS)
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Hybrid quantum systems with ultracold spins and optomechanics
NASA Astrophysics Data System (ADS)
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund
2016-05-01
Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Classical and quantum correlative capacities of quantum systems
Li Nan; Luo Shunlong
2011-10-15
How strongly can one system be correlated with another? In the classical world, this basic question concerning correlative capacity has a very satisfying answer: The ''effective size'' of the marginal system, as quantified by the Shannon entropy, sets a tight upper bound to the correlations, as quantified by the mutual information. Although in the quantum world bipartite correlations, like their classical counterparts, are also well quantified by mutual information, the similarity ends here: The correlations in a bipartite quantum system can be twice as large as the marginal entropy. In the paradigm of quantum discord, the correlations are split into classical and quantum components, and it was conjectured that both the classical and quantum correlations are (like the classical mutual information) bounded above by each subsystem's entropy. In this work, by exploiting the interplay between entanglement of formation, mutual information, and quantum discord, we disprove that conjecture. We further indicate a scheme to restore harmony between quantum and classical correlative capacities. The results illustrate dramatically the asymmetric nature of quantum discord and highlight some subtle and unusual features of quantum correlations.
Adiabaticity in open quantum systems
NASA Astrophysics Data System (ADS)
Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo
2016-03-01
We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.
Supersymmetric biorthogonal quantum systems
Curtright, Thomas; Mezincescu, Luca; Schuster, David
2007-09-15
We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V{sub {+-}}(z)=-U(z){sup 2}{+-}z(d/dz)U(z) where U(z){identical_to}{sigma}{sub k>0}{upsilon}{sub k}z{sup k}. In particular, we consider the cases generated by U(z)=z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.
Exchange fluctuation theorem for correlated quantum systems.
Jevtic, Sania; Rudolph, Terry; Jennings, David; Hirono, Yuji; Nakayama, Shojun; Murao, Mio
2015-10-01
We extend the exchange fluctuation theorem for energy exchange between thermal quantum systems beyond the assumption of molecular chaos, and describe the nonequilibrium exchange dynamics of correlated quantum states. The relation quantifies how the tendency for systems to equilibrate is modified in high-correlation environments. In addition, a more abstract approach leads us to a "correlation fluctuation theorem". Our results elucidate the role of measurement disturbance for such scenarios. We show a simple application by finding a semiclassical maximum work theorem in the presence of correlations. We also present a toy example of qubit-qudit heat exchange, and find that non-classical behaviour such as deterministic energy transfer and anomalous heat flow are reflected in our exchange fluctuation theorem. PMID:26565174
A random walk approach to quantum algorithms.
Kendon, Vivien M
2006-12-15
The development of quantum algorithms based on quantum versions of random walks is placed in the context of the emerging field of quantum computing. Constructing a suitable quantum version of a random walk is not trivial; pure quantum dynamics is deterministic, so randomness only enters during the measurement phase, i.e. when converting the quantum information into classical information. The outcome of a quantum random walk is very different from the corresponding classical random walk owing to the interference between the different possible paths. The upshot is that quantum walkers find themselves further from their starting point than a classical walker on average, and this forms the basis of a quantum speed up, which can be exploited to solve problems faster. Surprisingly, the effect of making the walk slightly less than perfectly quantum can optimize the properties of the quantum walk for algorithmic applications. Looking to the future, even with a small quantum computer available, the development of quantum walk algorithms might proceed more rapidly than it has, especially for solving real problems. PMID:17090467
Note on entropies for quantum dynamical systems.
Watanabe, Noboru
2016-05-28
Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165
Current in open quantum systems.
Gebauer, Ralph; Car, Roberto
2004-10-15
We show that a dissipative current component is present in the dynamics generated by a Liouville-master equation, in addition to the usual component associated with Hamiltonian evolution. The dissipative component originates from coarse graining in time, implicit in a master equation, and needs to be included to preserve current continuity. We derive an explicit expression for the dissipative current in the context of the Markov approximation. Finally, we illustrate our approach with a simple numerical example, in which a quantum particle is coupled to a harmonic phonon bath and dissipation is described by the Pauli master equation. PMID:15524960
Optimal protocols for slowly driven quantum systems.
Zulkowski, Patrick R; DeWeese, Michael R
2015-09-01
The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing. PMID:26465432
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Enhanced Fault-Tolerant Quantum Computing in d -Level Systems
NASA Astrophysics Data System (ADS)
Campbell, Earl T.
2014-12-01
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d -level qudit systems with prime d . The codes use n =d -1 qudits and can detect up to ˜d /3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d .
Maxwell's demons in multipartite quantum correlated systems
NASA Astrophysics Data System (ADS)
Braga, Helena C.; Rulli, Clodoaldo C.; de Oliveira, Thiago R.; Sarandy, Marcelo S.
2014-10-01
We investigate the extraction of thermodynamic work by a Maxwell's demon in a multipartite quantum correlated system. We begin by adopting the standard model of a Maxwell's demon as a Turing machine, either in a classical or quantum setup depending on its ability to implement classical or quantum conditional dynamics. Then, for an n -partite system (A1,A2,⋯,An) , we introduce a protocol of work extraction that bounds the advantage of the quantum demon over its classical counterpart through the amount of multipartite quantum correlation present in the system, as measured by a thermal version of the global quantum discord. This result is illustrated for an arbitrary n -partite pure state of qubits with Schmidt decomposition, where it is shown that the thermal global quantum discord exactly quantifies the quantum advantage. Moreover, we also consider the work extraction via mixed multipartite states, where examples of tight upper bounds can be obtained.
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Green's function approach for quantum graphs: An overview
NASA Astrophysics Data System (ADS)
Andrade, Fabiano M.; Schmidt, A. G. M.; Vicentini, E.; Cheng, B. K.; da Luz, M. G. E.
2016-08-01
Here we review the many aspects and distinct phenomena associated to quantum dynamics on general graph structures. For so, we discuss such class of systems under the energy domain Green's function (G) framework. This approach is particularly interesting because G can be written as a sum over classical-like paths, where local quantum effects are taken into account through the scattering matrix elements (basically, transmission and reflection amplitudes) defined on each one of the graph vertices. Hence, the exact G has the functional form of a generalized semiclassical formula, which through different calculation techniques (addressed in detail here) always can be cast into a closed analytic expression. It allows to solve exactly arbitrary large (although finite) graphs in a recursive and fast way. Using the Green's function method, we survey many properties of open and closed quantum graphs as scattering solutions for the former and eigenspectrum and eigenstates for the latter, also considering quasi-bound states. Concrete examples, like cube, binary trees and Sierpiński-like topologies are presented. Along the work, possible distinct applications using the Green's function methods for quantum graphs are outlined.
Classical versus quantum errors in quantum computation of dynamical systems.
Rossini, Davide; Benenti, Giuliano; Casati, Giulio
2004-11-01
We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the fidelity of quantum motion when the system's parameters are perturbed or when there are unitary errors in the quantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the second one has no classical analog. It is shown that, whereas in the first case ("classical errors") the decay of fidelity is very sensitive to the dynamical regime, in the second case ("quantum errors") it is almost independent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the study of the stability of quantum motion under "classical" perturbations has no correspondence in the fidelity of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov exponent. PMID:15600737
On Mathematical Modeling Of Quantum Systems
Achuthan, P.; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
NASA Astrophysics Data System (ADS)
Cui, Ping
celebrated Marcus' inversion and Kramers' turnover behaviors, the new theory also shows some distinct quantum solvation effects that can alter the ET mechanism. Moreover, the present theory predicts further for the ET reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. In Chapter 6, we discuss the constructed QDTs, in terms of their unified mathematical structure that supports a linear dynamics space, and thus facilitates their applications to various physical problems. The involving details are exemplified with the CODDE form of QDT. As the linear space is concerned, we identify the Schrodinger versus Heisenberg picture and the forward versus backward propagation of the reduced, dissipative Liouville dynamics. For applications we discuss the reduced linear response theory and the optimal control problems, in which the correlated effects of non-Markovian dissipation and field driving are shown to be important. In Chapter 7, we turn to quantum transport, i.e., electric current through molecular or mesoscopic systems under finite applied voltage. By viewing the nonequilibrium transport setup as a quantum open system, we develop a reduced-density-matrix approach to quantum transport. The resulting current is explicitly expressed in terms of the molecular reduced density matrix by tracing out the degrees of freedom of the electrodes at finite bias and temperature. We propose a conditional quantum master equation theory, which is an extension of the conventional (or unconditional) QDT by tracing out the well-defined bath subsets individually, instead of the entire bath degrees of freedom. Both the current and the noise spectrum can be conveniently analyzed in terms of the conditional reduced density matrix dynamics. By far, the QDT (including the conditional one) has only been exploited in second-order form. A self-consistent Born approximation for the system
Global quantum discord in multipartite systems
Rulli, C. C.; Sarandy, M. S.
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics
ERIC Educational Resources Information Center
Pujol, O.; Perez, J. P.
2007-01-01
The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…
Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola
2013-04-23
The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field. PMID:23572581
New approach to nonperturbative quantum mechanics with minimal length uncertainty
NASA Astrophysics Data System (ADS)
Pedram, Pouria
2012-01-01
The existence of a minimal measurable length is a common feature of various approaches to quantum gravity such as string theory, loop quantum gravity, and black-hole physics. In this scenario, all commutation relations are modified and the Heisenberg uncertainty principle is changed to the so-called Generalized (Gravitational) Uncertainty Principle (GUP). Here, we present a one-dimensional nonperturbative approach to quantum mechanics with minimal length uncertainty relation which implies X=x to all orders and P=p+(1)/(3)βp3 to first order of GUP parameter β, where X and P are the generalized position and momentum operators and [x,p]=iℏ. We show that this formalism is an equivalent representation of the seminal proposal by Kempf, Mangano, and Mann and predicts the same physics. However, this proposal reveals many significant aspects of the generalized uncertainty principle in a simple and comprehensive form and the existence of a maximal canonical momentum is manifest through this representation. The problems of the free particle and the harmonic oscillator are exactly solved in this GUP framework and the effects of GUP on the thermodynamics of these systems are also presented. Although X, P, and the Hamiltonian of the harmonic oscillator all are formally self-adjoint, the careful study of the domains of these operators shows that only the momentum operator remains self-adjoint in the presence of the minimal length uncertainty. We finally discuss the difficulties with the definition of potentials with infinitely sharp boundaries.
Anonymous voting for multi-dimensional CV quantum system
NASA Astrophysics Data System (ADS)
Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee
2016-06-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).
Thermodynamics of Weakly Measured Quantum Systems
NASA Astrophysics Data System (ADS)
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-01
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics. PMID:26967399
The decoupling approach to quantum information theory
NASA Astrophysics Data System (ADS)
Dupuis, Frédéric
2010-04-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and have as corollaries entanglement-assisted and unassisted asymptotic coding theorems. The entanglement-assisted asymptotic versions can, in both cases, be considered as quantum versions of the best coding theorems known for the classical versions of these problems. The last chapter deals with a purely quantum phenomenon called locking. We demonstrate that it is possible to encode a classical message into a quantum state such that, by removing a subsystem of logarithmic size with respect to its total size, no measurement can have significant correlations with the message. The message is therefore "locked" by a logarithmic-size key. This thesis presents the first locking protocol for which the success criterion is that the trace distance between the joint distribution of the message and the measurement result and the product of their marginals be sufficiently small.
Multielectron dynamics in the tunneling ionization of correlated quantum systems
NASA Astrophysics Data System (ADS)
Hollstein, Maximilian; Pfannkuche, Daniela
2015-11-01
The importance of multielectron dynamics during the tunneling ionization of a correlated quantum system is investigated. By comparison of the solution of the time-dependent Schrödinger equation with the time-dependent configuration-interaction singles approach, we demonstrate the importance of a multielectron description of the tunneling ionization process especially for weakly confined quantum systems. Within this context, we observe that adiabatic driving by an intense light field can even enhance the correlations between still trapped electrons.
Geometric phase for open quantum systems and stochastic unravelings
Bassi, Angelo; Ippoliti, Emiliano
2006-06-15
We analyze the geometric phase for an open quantum system when computed by resorting to a stochastic unraveling of the reduced density matrix (quantum jump approach or stochastic Schroedinger equations). We show that the resulting phase strongly depends on the type of unraveling used for the calculations: as such, this phase is not a geometric object since it depends on nonphysical parameters, which are not related to the path followed by the density matrix during the evolution of the system.
Quasiequilibria in open quantum systems
Walls, Jamie D.
2010-03-15
In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian of an open quantum system, L-circumflex-circumflex(t), is investigated. It is shown that differences between the quasiequilibrium and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the instantaneous eigenstates of L-circumflex-circumflex(t) to a fixed basis. These nonadiabatic contributions are shown to result in an additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.
A causal net approach to relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Bateson, R. D.
2012-05-01
In this paper we discuss a causal network approach to describing relativistic quantum mechanics. Each vertex on the causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensions and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrodinger equation and Pauli equation for an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.
A quantum-like approach to the stock market
NASA Astrophysics Data System (ADS)
Aerts, Diederik; D'Hooghe, Bart; Sozzo, Sandro
2012-03-01
Modern approaches to stock pricing in quantitative finance are typically founded on the Black-Scholes model and the underlying random walk hypothesis. Empirical data indicate that this hypothesis works well in stable situations but, in abrupt transitions such as during an economical crisis, the random walk model fails and alternative descriptions are needed. For this reason, several proposals have been recently forwarded which are based on the formalism of quantum mechanics. In this paper we apply the SCoP formalism, elaborated to provide an operational foundation of quantum mechanics, to the stock market. We argue that a stock market is an intrinsically contextual system where agents' decisions globally influence the market system and stocks prices, determining a nonclassical behavior. More specifically, we maintain that a given stock does not generally have a definite value, e.g., a price, but its value is actualized as a consequence of the contextual interactions in the trading process. This contextual influence is responsible of the non-Kolmogorovian quantumlike behavior of the market at a statistical level. Then, we propose a sphere model within our hidden measurement formalism that describes a buying/selling process of a stock and shows that it is intuitively reasonable to assume that the stock has not a definite price until it is traded. This result is relevant in our opinion since it provides a theoretical support to the use of quantum models in finance.
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
Quantum teleportation of composite systems via mixed entangled states
Bandyopadhyay, Somshubhro; Sanders, Barry C.
2006-09-15
We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.
Avoiding degenerate coframes in an affine gauge approach to quantum gravity
Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.
1993-04-01
This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.
Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture
Feng, Wei; Xu, Luting; Li, Xin-Qi; Fang, Weihai; Yan, YiJing
2014-07-15
Mixed-quantum-classical molecular dynamics simulation implies an effective quantum measurement on the electronic states by the classical motion of atoms. Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.
Quantum Logic: Approach a Child's Environment from "Inside."
ERIC Educational Resources Information Center
Rhodes, William C.
1987-01-01
With the advent of quantum mechanics, physics has merged with psychology, and cognitive science has been revolutionized. Quantum logic supports the notion of influencing the environment by increasing the child's capacity for cognitive processing. This special educational approach is theoretically more effective than social and political…
Superconductor-Diamond Hybrid Quantum System
NASA Astrophysics Data System (ADS)
Semba, Kouichi; Yoshihara, Fumiki; Johansson, Jan E. S.; Zhu, Xiaobo; Mizuochi, Norikazu; Munro, William J.; Saito, Shiro; Kakuyanagi, Kosuke; Matsuzaki, Yuichiro
This chapter describes recent progress on research into superconducting flux qubit, NV diamond, and superconductor-diamond hybrid quantum systems. First, we describe important physical properties of superconducting macroscopic artificial atoms i.e., the tunability of the qubit energy level spacing, the coherence property, an example of strong coupling to another quantum system such as an LC harmonic oscillator, and qubit state readout through a Josephson bifurcation amplifier. We then introduce the NV center in diamond as an intriguing candidate for quantum information processing, which offers excellent multiple accessibility via visible light, microwaves and magnetic fields. Finally, we describe the superconducting flux qubit - NV centers in a diamond hybrid quantum system.
Uncertainty Relation for a Quantum Open System
NASA Astrophysics Data System (ADS)
Hu, B. L.; Zhang, Yuhong
We derive the uncertainty relation for a quantum open system consisting of a Brownian particle interacting with a bath of quantum oscillators at finite temperature. We examine how the quantum and thermal fluctuations of the environment contribute to the uncertainty in the canonical variables of the system. We show that upon contact with the bath (assumed to be ohmic in this paper) the system evolves from a quantum-dominated state to a thermal-dominated state in a time which is the same as the decoherence time in similar models in the discussion of quantum to classical transition. This offers some insight into the physical mechanisms involved in the environment-induced decoherence process. We obtain closed analytic expressions for this generalized uncertainty relation under the conditions of high temperature and weak damping, separately. We also consider under these conditions an arbitrarily squeezed initial state and show how the squeeze parameter enters in the generalized uncertainty relation. Using these results we examine the transition of the system from a quantum pure state to a nonequilibrium quantum statistical state and to an equilibrium quantum statistical state. The three stages are marked by the decoherence time and the relaxation time, respectively. With these observations we explicate the physical conditions under which the two basic postulates of quantum statistical mechanics become valid. We also comment on the inappropriate usage of the word “classicality” in many decoherence studies of quantum to classical transition.
The geometric approach to quantum correlations: computability versus reliability
NASA Astrophysics Data System (ADS)
Tufarelli, Tommaso; MacLean, Tom; Girolami, Davide; Vasile, Ruggero; Adesso, Gerardo
2013-07-01
We propose a modified metric based on the Hilbert-Schmidt norm and adopt it to define a rescaled version of the geometric measure of quantum discord. Such a measure is found not to suffer from pathological dependence on state purity. Although the employed metric is still non-contractive under quantum operations, we show that the resulting indicator of quantum correlations is in agreement with other bona fide discord measures in a number of physical examples. We present a critical assessment of the requirements of reliability versus computability when approaching the task of quantifying, or measuring, general quantum correlations in a bipartite state.
Approaching chemical accuracy with quantum Monte Carlo.
Petruzielo, F R; Toulouse, Julien; Umrigar, C J
2012-03-28
A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space. PMID:22462844
Quantum kinetic energy densities: An operational approach
Muga, J.G.; Seidel, D.; Hegerfeldt, G.C.
2005-04-15
We propose and investigate a procedure to measure, at least in principle, a positive quantum version of the local kinetic energy density. This procedure is based, under certain idealized limits, on the detection rate of photons emitted by moving atoms which are excited by a localized laser beam. The same type of experiment, but in different limits, can also provide other non-positive-definite versions of the kinetic energy density. A connection with quantum arrival time distributions is discussed.
Real-time nonequilibrium dynamics of quantum glassy systems
NASA Astrophysics Data System (ADS)
Cugliandolo, Leticia F.; Lozano, Gustavo
1999-01-01
We develop a systematic analytic approach to aging effects in quantum disordered systems in contact with an environment. Within the closed-time path-integral formalism we include dissipation by coupling the system to a set of independent harmonic oscillators that mimic a quantum thermal bath. After integrating over the bath variables and averaging over disorder we obtain an effective action that determines the real-time dynamics of the system. The classical limit yields the Martin-Siggia-Rose generating functional associated to a colored noise. We apply this general formalism to a prototype model related to the p spin glass. We show that the model has a dynamic phase transition separating the paramagnetic from the spin-glass phase and that quantum fluctuations depress the transition temperature until a quantum critical point is reached. We show that the dynamics in the paramagnetic phase is stationary but presents an interesting crossover from a region controlled by the classical critical point to another one controlled by the quantum critical point. The most characteristic property of the dynamics in a glassy phase, namely, aging, survives the quantum fluctuations. In the subcritical region the quantum fluctuation-dissipation theorem is modified in a way that is consistent with the notion of effective temperatures introduced for the classical case. We discuss these results in connection with recent experiments in dipolar quantum spin glasses and the relevance of the effective temperatures with respect to the understanding of the low-temperature dynamics.
Driven harmonic oscillator as a quantum simulator for open systems
Piilo, Jyrki; Maniscalco, Sabrina
2006-09-15
We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.
Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex
NASA Astrophysics Data System (ADS)
Torreão, José R. A.
2016-02-01
It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.
Chebyshev Expansion Applied to Dissipative Quantum Systems.
Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich
2016-05-19
To determine the dynamics of a molecular aggregate under the influence of a strongly time-dependent perturbation within a dissipative environment is still, in general, a challenge. The time-dependent perturbation might be, for example, due to external fields or explicitly treated fluctuations within the environment. Methods to calculate the dynamics in these cases do exist though some of these approaches assume that the corresponding correlation functions can be written as a weighted sum of exponentials. One such theory is the hierarchical equations of motion approach. If the environment, however, is described by a complex spectral density or if its temperature is low, these approaches become very inefficient. Therefore, we propose a scheme based on a Chebyshev decomposition of the bath correlation functions and detail the respective quantum master equations within second-order perturbation theory in the environmental coupling. Similar approaches have recently been proposed for systems coupled to Fermionic reservoirs. The proposed scheme is tested for a simple two-level system and compared to existing results. Furthermore, the advantages and disadvantages of the present Chebyshev approach are discussed. PMID:26845380
Quantum Rotational Effects in Nanomagnetic Systems
NASA Astrophysics Data System (ADS)
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions
Logic of infinite quantum systems
NASA Astrophysics Data System (ADS)
Mundici, Daniele
1993-10-01
Limits of sequences of finite-dimensional (AF) C *-algebras, such as the CAR algebra for the ideal Fermi gas, are a standard mathematical tool to describe quantum statistical systems arising as thermodynamic limits of finite spin systems. Only in the infinite-volume limit one can, for instance, describe phase transitions as singularities in the thermodynamic potentials, and handle the proliferation of physically inequivalent Hilbert space representations of a system with infinitely many degrees of freedom. As is well known, commutative AF C *-algebras correspond to countable Boolean algebras, i.e., algebras of propositions in the classical two-valued calculus. We investigate the noncommutative logic properties of general AF C *-algebras, and their corresponding systems. We stress the interplay between Gödel incompleteness and quotient structures in the light of the “nature does not have ideals” program, stating that there are no quotient structures in physics. We interpret AF C *-algebras as algebras of the infinite-valued calculus of Lukasiewicz, i.e., algebras of propositions in Ulam's “ twenty questions” game with lies.
Reprint of : A computational approach to quantum noise in time-dependent nanoelectronic devices
NASA Astrophysics Data System (ADS)
Gaury, Benoit; Waintal, Xavier
2016-08-01
We derive simple expressions that relate the noise and correlation properties of a general time-dependent quantum conductor to the wave functions of the system. The formalism provides a practical route for numerical calculations of quantum noise in an externally driven system. We illustrate the approach with numerical calculations of the noise properties associated to a voltage pulse applied on a one-dimensional conductor. The methodology is however fully general and can be used for a large class of mesoscopic conductors.
A computational approach to quantum noise in time-dependent nanoelectronic devices
NASA Astrophysics Data System (ADS)
Gaury, Benoit; Waintal, Xavier
2016-01-01
We derive simple expressions that relate the noise and correlation properties of a general time-dependent quantum conductor to the wave functions of the system. The formalism provides a practical route for numerical calculations of quantum noise in an externally driven system. We illustrate the approach with numerical calculations of the noise properties associated to a voltage pulse applied on a one-dimensional conductor. The methodology is however fully general and can be used for a large class of mesoscopic conductors.
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach
Sirjoosingh, Andrew; Pak, Michael V.; Brorsen, Kurt R.; Hammes-Schiffer, Sharon
2015-06-07
The nuclear-electronic orbital (NEO) approach treats select nuclei quantum mechanically on the same level as the electrons and includes nonadiabatic effects between the electrons and the quantum nuclei. The practical implementation of this approach is challenging due to the significance of electron-nucleus dynamical correlation. Herein, we present a general extension of the previously developed reduced NEO explicitly correlated Hartree-Fock (RXCHF) approach, in which only select electronic orbitals are explicitly correlated to each quantum nuclear orbital via Gaussian-type geminal functions. Approximations of the electronic exchange between the geminal-coupled electronic orbitals and the other electronic orbitals are also explored. This general approach enables computationally tractable yet accurate calculations on molecular systems with quantum protons. The RXCHF method is applied to the hydrogen cyanide (HCN) and FHF{sup −} systems, where the proton and all electrons are treated quantum mechanically. For the HCN system, only the two electronic orbitals associated with the CH covalent bond are geminal-coupled to the proton orbital. For the FHF{sup −} system, only the four electronic orbitals associated with the two FH covalent bonds are geminal-coupled to the proton orbital. For both systems, the RXCHF method produces qualitatively accurate nuclear densities, in contrast to mean field-based NEO approaches. The development and implementation of the RXCHF method provide the framework to perform calculations on systems such as proton-coupled electron transfer reactions, where electron-proton nonadiabatic effects are important.
Simulation of n-qubit quantum systems. V. Quantum measurements
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun
Non-Lipschitz Approach to Quantum Mechnics
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
An attempt to reconcile quantum mechanics with Newton's laws represented by the non-Lipschitz formalism has been made. As a Proof-of-concept, a line of equally spaced atoms was studied. It appeared that enforcement of atom incompressibility required relaxation of the lipschitz condition at the points of contact.
Discrete quantum gravity; The Regge calculus approach
Williams, J.W. )
1992-06-01
After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds.
Quantum Supersymmetric Models in the Causal Approach
NASA Astrophysics Data System (ADS)
Grigore, Dan-Radu
2007-04-01
We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.
NASA Technical Reports Server (NTRS)
1975-01-01
The methodology of ECASTAR was presented and a discussion of the application of technology to energy conservation was given. This methodology constitutes an overview and blueprint for the analysis of energy conservation actions, and is subdivided into the following sections: the systems approach, constraints and criteria, application of the method (systems approach display, ECASTAR team, study phases and objectives, requirements and impacts, trade-off, integration, and feedback), an example of the method (technology applications).
Multiparticle correlations in quaternionic quantum systems
NASA Astrophysics Data System (ADS)
Brumby, S. P.; Joshi, G. C.; Anderson, R.
1995-02-01
We investigate the outcome of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. We find that a multiparticle interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements.
Self-assembled quantum dots in a nanowire system for quantum photonics.
Heiss, M; Fontana, Y; Gustafsson, A; Wüst, G; Magen, C; O'Regan, D D; Luo, J W; Ketterer, B; Conesa-Boj, S; Kuhlmann, A V; Houel, J; Russo-Averchi, E; Morante, J R; Cantoni, M; Marzari, N; Arbiol, J; Zunger, A; Warburton, R J; Fontcuberta i Morral, A
2013-05-01
Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells. PMID:23377293
Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.
ERIC Educational Resources Information Center
Pronchik, Jeremy N.; Williams, Brian W.
2003-01-01
Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…
A lattice approach to spinorial quantum gravity
NASA Technical Reports Server (NTRS)
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Interpreting Quantum Mechanics according to a Pragmatist Approach
NASA Astrophysics Data System (ADS)
Bächtold, Manuel
2008-09-01
The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
Optimized probabilistic quantum processors: A unified geometric approach 1
NASA Astrophysics Data System (ADS)
Bergou, Janos; Bagan, Emilio; Feldman, Edgar
Using probabilistic and deterministic quantum cloning, and quantum state separation as illustrative examples we develop a complete geometric solution for finding their optimal success probabilities. The method is related to the approach that we introduced earlier for the unambiguous discrimination of more than two states. In some cases the method delivers analytical results, in others it leads to intuitive and straightforward numerical solutions. We also present implementations of the schemes based on linear optics employing few-photon interferometry
Local shortcut to adiabaticity for quantum many-body systems
NASA Astrophysics Data System (ADS)
Mukherjee, Victor; Montangero, Simone; Fazio, Rosario
2016-06-01
We study the environmentally assisted local transitionless dynamics in closed spin systems driven through quantum critical points. In general the shortcut to adaiabaticity (STA) in quantum critical systems requires highly nonlocal control Hamiltonians. In this work we develop an approach to achieve local shortcuts to adiabaticity (LSTA) in spin chains, using local control fields which scale polynomially with the system size, following universal critical exponents. We relate the control fields to reduced fidelity susceptibility and use the transverse Ising model in one dimension to exemplify our generic results. We also extend our analysis to achieve LSTA in central spin models.
Quantum correlations in a clusterlike system
Chen Yixin; Li Shengwen; Yin Zhi
2010-11-15
We discuss a clusterlike one-dimensional system with triplet interaction. We study the topological properties of this system. We find that the degeneracy depends on the topology of the system and is well protected against external local perturbations. All these facts show that the system is topologically ordered. We also find a string order parameter to characterize the quantum phase transition. Besides, we investigate two-site correlations including entanglement, quantum discord, and mutual information. We study the different divergence behaviors of the correlations. The quantum correlation decays exponentially in both topological and magnetic phases, and diverges in reversed power law at the critical point. And we find that in topological order systems, the global difference of topology induced by dimension can be reflected in local quantum correlations.
Chapter 2 A Single Quantum System
NASA Astrophysics Data System (ADS)
Toschek, Peter E.
The evolution of quantum mechanics has followed the critical analysis of "gedanken" experiments. Many of these concrete speculations can become implemented today in the laboratory--thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: (1) The microphysical measurement by a macroscopic device, (2) the system's temporal evolution, and (3) the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed. An experiment designed to demonstrate this "quantum Zeno effect" and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individual electrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretation.
A synthetic approach to the transfer matrix method in classical and quantum physics
NASA Astrophysics Data System (ADS)
Pujol, O.; Pérez, J. P.
2007-07-01
The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching would benefit by using the abcd-matrix which in addition is easy to implement on a personal computer.
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Versatile microwave-driven trapped ion spin system for quantum information processing.
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof
2016-07-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Quantum entanglement in condensed matter systems
NASA Astrophysics Data System (ADS)
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
Correlation inequalities for quantum spin systems with quenched centered disorder
NASA Astrophysics Data System (ADS)
Contucci, Pierluigi; Lebowitz, Joel L.
2010-02-01
It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved [P. Contucci and J. Lebowitz, Ann. Henri Poincare 8, 1461 (2007)] in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.
Generation of cluster states in optomechanical quantum systems
NASA Astrophysics Data System (ADS)
Houhou, Oussama; Aissaoui, Habib; Ferraro, Alessandro
2015-12-01
We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2 N -tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.
Characteristic Energy Scales of Quantum Systems.
ERIC Educational Resources Information Center
Morgan, Michael J.; Jakovidis, Greg
1994-01-01
Provides a particle-in-a-box model to help students understand and estimate the magnitude of the characteristic energy scales of a number of quantum systems. Also discusses the mathematics involved with general computations. (MVL)
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2013-01-01
We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly
Spectrum analysis with quantum dynamical systems
NASA Astrophysics Data System (ADS)
Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei
2016-04-01
Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
Work, heat and entropy production in bipartite quantum systems
NASA Astrophysics Data System (ADS)
Hossein-Nejad, Hoda; O'Reilly, Edward J.; Olaya-Castro, Alexandra
2015-07-01
In bipartite quantum systems commutation relations between the Hamiltonian of each subsystem and the interaction impose fundamental constraints on the dynamics of each partition. Here we investigate work, heat and entropy production in bipartite systems characterized by particular commutators between their local Hamiltonians and the interaction operator. We consider the formalism of (Weimer et al 2008 Europhys. Lett. 83 30008), in which heat (work) is identified with energy changes that (do not) alter the local von Neumann entropy, as observed in an effective local measurement basis. We demonstrate the consequences of the commutation relations on the work and heat fluxes into each partition, and extend the formalism to open quantum systems where one, or both, partitions are subject to a Markovian thermal bath. We also discuss the relation between heat and entropy in bipartite quantum systems out of thermal equilibrium, and reconcile the aforementioned approach with the second law of thermodynamics.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2014-01-01
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.
Quantum Mechanical Scattering in Nanoscale Systems
NASA Astrophysics Data System (ADS)
Gianfrancesco, A. G.; Ilyashenko, A.; Boucher, C. R.; Ram-Mohan, L. R.
2012-02-01
We investigate quantum scattering using the finite element method. Unlike textbook treatments employing asymptotic boundary conditions (BCs), we use modified BCs, which permits computation close to the near-field region and reduces the Cauchy BCs to Dirichlet BCs, greatly simplifying the analysis. Scattering from any finite quantum mechanical potential can be modeled, including scattering in a finite waveguide geometry and in the open domain. Being numerical, our analysis goes beyond the Born Approximation, and the finite element approach allows us to transcend geometric constraints. Results of the formulation will be presented with several case studies, including spin dependent scattering, demonstrating the high accuracy and flexibility attained in this approach.
Entanglement in algebraic quantum mechanics: Majorana fermion systems
NASA Astrophysics Data System (ADS)
Benatti, F.; Floreanini, R.
2016-07-01
Many-body entanglement is studied within the algebraic approach to quantum physics in systems made of Majorana fermions. In this framework, the notion of separability stems from partitions of the algebra of observables and properties of the associated correlation functions, rather than on particle tensor products. This allows a complete characterization of non-separable Majorana fermion states to be obtained. These results may have direct application in quantum metrology: using Majorana systems, sub-shot-noise accuracy in parameter estimations can be achieved without preliminary resource-consuming, state entanglement operations.
Levy distribution in many-particle quantum systems
Ponomarev, A. V.; Denisov, S.; Haenggi, P.
2010-04-15
The Levy distribution, previously used to describe complex behavior of classical systems, is shown to characterize that of quantum many-body systems. Using two complimentary approaches, the canonical and grand-canonical formalisms, we discovered that the momentum profile of a Tonks-Girardeau gas - a one-dimensional gas of N impenetrable (hard-core) bosons-harmonically confined on a lattice at finite temperatures obeys a Levy distribution. Finally, we extend our analysis to different confinement setups and demonstrate that the tunable Levy distribution properly reproduces momentum profiles in experimentally accessible regions. Our finding allows for calibration of complex many-body quantum states by using a unique scaling exponent.
Superconducting circuitry for quantum electromechanical systems
NASA Astrophysics Data System (ADS)
LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.
2015-05-01
Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.
NASA Astrophysics Data System (ADS)
Blutner, Reinhard
2009-03-01
Recently, Gerd Niestegge developed a new approach to quantum mechanics via conditional probabilities developing the well-known proposal to consider the Lüders-von Neumann measurement as a non-classical extension of probability conditionalization. I will apply his powerful and rigorous approach to the treatment of concepts using a geometrical model of meaning. In this model, instances are treated as vectors of a Hilbert space H. In the present approach there are at least two possibilities to form categories. The first possibility sees categories as a mixture of its instances (described by a density matrix). In the simplest case we get the classical probability theory including the Bayesian formula. The second possibility sees categories formed by a distinctive prototype which is the superposition of the (weighted) instances. The construction of prototypes can be seen as transferring a mixed quantum state into a pure quantum state freezing the probabilistic characteristics of the superposed instances into the structure of the formed prototype. Closely related to the idea of forming concepts by prototypes is the existence of interference effects. Such inference effects are typically found in macroscopic quantum systems and I will discuss them in connection with several puzzles of bounded rationality. The present approach nicely generalizes earlier proposals made by authors such as Diederik Aerts, Andrei Khrennikov, Ricardo Franco, and Jerome Busemeyer. Concluding, I will suggest that an active dialogue between cognitive approaches to logic and semantics and the modern approach of quantum information science is mandatory.
An operational approach to spacetime symmetries: Lorentz transformations from quantum communication
NASA Astrophysics Data System (ADS)
Höhn, Philipp A.; Müller, Markus P.
2016-06-01
In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest, within a much simpler setting, that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distinct laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are ‘enough’ observables that can be measured universally on several different quantum systems, we show that the observers’ descriptions are related by an element of the orthochronous Lorentz group {{{O}}}+(3,1), together with a global scaling factor. Not only does this operational approach predict the Lorentz transformations, but it also accurately describes the behavior of relativistic Stern–Gerlach devices in the WKB approximation, and it correctly predicts that quantum systems carry Lorentz group representations of different spin. This result thus hints at a novel information-theoretic perspective on spacetime.
Quantum algebraic approach to refined topological vertex
NASA Astrophysics Data System (ADS)
Awata, H.; Feigin, B.; Shiraishi, J.
2012-03-01
We establish the equivalence between the refined topological vertex of Iqbal-Kozcaz-Vafa and a certain representation theory of the quantum algebra of type W 1+∞ introduced by Miki. Our construction involves trivalent intertwining operators Φ and Φ* associated with triples of the bosonic Fock modules. Resembling the topological vertex, a triple of vectors ∈ {mathbb{Z}^2} is attached to each intertwining operator, which satisfy the Calabi-Yau and smoothness conditions. It is shown that certain matrix elements of Φ and Φ* give the refined topological vertex C λ μν ( t, q) of Iqbal-Kozcaz-Vafa. With another choice of basis, we recover the refined topological vertex C λ μ ν ( q, t) of Awata-Kanno. The gluing factors appears correctly when we consider any compositions of Φ and Φ*. The spectral parameters attached to Fock spaces play the role of the Kähler parameters.
A geometric approach to quantum state separation
NASA Astrophysics Data System (ADS)
Bagan, E.; Yerokhin, V.; Shehu, A.; Feldman, E.; Bergou, J. A.
2015-12-01
Probabilistic quantum state transformations can be characterized by the degree of state separation they provide. This, in turn, sets limits on the success rate of these transformations. We consider optimum state separation of two known pure states in the general case where the known states have arbitrary a priori probabilities. The problem is formulated from a geometric perspective and shown to be equivalent to the problem of finding tangent curves within two families of conics that represent the unitarity constraints and the objective functions to be optimized, respectively. We present the corresponding analytical solutions in various forms. In the limit of perfect state separation, which is equivalent to unambiguous state discrimination, the solution exhibits a phenomenon analogous to a second order symmetry breaking phase transition. We also propose a linear optics implementation of separation which is based on the dual rail representation of qubits and single-photon multiport interferometry.
Barnes, George L.; Kellman, Michael E.
2013-12-07
Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is “designed” by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of “classicalizing” behavior in the approach to thermal equilibrium are briefly considered.
Barnes, George L; Kellman, Michael E
2013-12-01
Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is "designed" by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of "classicalizing" behavior in the approach to thermal equilibrium are briefly considered. PMID:24320365
Equilibration of quantum systems and subsystems
NASA Astrophysics Data System (ADS)
Short, Anthony J.
2011-05-01
We unify two recent results concerning equilibration in quantum theory. We first generalize a proof of Reimann (2008 Phys. Rev. Lett. 101 190403), that the expectation value of 'realistic' quantum observables will equilibrate under very general conditions, and discuss its implications for the equilibration of quantum systems. We then use this to re-derive an independent result of Linden et al (2009 Phys. Rev. E 79 061103), showing that small subsystems generically evolve to an approximately static equilibrium state. Finally, we consider subspaces in which all initial states effectively equilibrate to the same state.
ERIC Educational Resources Information Center
British Gas, London (England). Training and Development Dept.
This pamphlet is intended to assist managers and professional trainers alike in using a systems approach to training. Addressed in the individual sections of the guide are the following topics: identifying the training need (the main job objectives, the conditions under which the job is performed, and the responsibilities it involves); analyzing…
Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions
NASA Astrophysics Data System (ADS)
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-11-01
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Note on quantum groups and integrable systems
NASA Astrophysics Data System (ADS)
Popolitov, A.
2016-01-01
The free-field formalism for quantum groups [preprint ITEP-M3/94, CRM-2202 hep-th/9409093] provides a special choice of coordinates on a quantum group. In these coordinates the construction of associated integrable system [arXiv:1207.1869] is especially simple. This choice also fits into general framework of cluster varieties [math.AG/0311245]—natural changes in coordinates are cluster mutations.
Quantum coherence and entanglement control for atom-cavity systems
NASA Astrophysics Data System (ADS)
Shu, Wenchong
consistently solved the control dynamics of open quantum systems using this stochastic QSD approach. By implementing the QSD equation, our numerical results have revealed that how the control efficacy depends on the designed time points and shapes of the applied control pulses, and the environment memory time scale.
The consistent histories approach to loop quantum cosmology
NASA Astrophysics Data System (ADS)
Craig, David A.
2016-06-01
We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on “measurements” to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories — as determined by the system’s decoherence functional — that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with scalar matter. We show how the theory may be used to make definite physical predictions in the absence of “observers”. As an application, we demonstrate how the theory predicts that loop quantum models “bounce” from large volume to large volume, while conventional “Wheeler-DeWitt”-quantized universes are invariably singular. We also briefly indicate the relation to other work.
New Results in the Quantum Statistical Approach to Parton Distributions
NASA Astrophysics Data System (ADS)
Soffer, Jacques; Bourrely, Claude; Buccella, Franco
2015-02-01
We will describe the quantum statistical approach to parton distributions allowing to obtain simultaneously the unpolarized distributions and the helicity distributions. We will present some recent results, in particular related to the nucleon spin structure in QCD. Future measurements are challenging to check the validity of this novel physical framework.
Quantum Information with Continuous Variable systems
NASA Astrophysics Data System (ADS)
Rodó, Carles
2010-05-01
This thesis deals with the study of quantum communication protocols with Continuous Variable (CV) systems. Continuous Variable systems are those described by canonical conjugated coordinates x and p endowed with infinite dimensional Hilbert spaces, thus involving a complex mathematical structure. A special class of CV states, are the so-called Gaussian states. With them, it has been possible to implement certain quantum tasks as quantum teleportation, quantum cryptography and quantum computation with fantastic experimental success. The importance of Gaussian states is two-fold; firstly, its structural mathematical description makes them much more amenable than any other CV system. Secondly, its production, manipulation and detection with current optical technology can be done with a very high degree of accuracy and control. Nevertheless, it is known that in spite of their exceptional role within the space of all Continuous Variable states, in fact, Gaussian states are not always the best candidates to perform quantum information tasks. Thus non-Gaussian states emerge as potentially good candidates for communication and computation purposes.
NASA Astrophysics Data System (ADS)
Collins, Robert J.; Donaldon, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2014-10-01
Classical digital signatures are commonly used in e-mail, electronic financial transactions and other forms of electronic communications to ensure that messages have not been tampered with in transit, and that messages are transferrable. The security of commonly used classical digital signature schemes relies on the computational difficulty of inverting certain mathematical functions. However, at present, there are no such one-way functions which have been proven to be hard to invert. With enough computational resources certain implementations of classical public key cryptosystems can be, and have been, broken with current technology. It is nevertheless possible to construct information-theoretically secure signature schemes, including quantum digital signature schemes. Quantum signature schemes can be made information theoretically secure based on the laws of quantum mechanics, while classical comparable protocols require additional resources such as secret communication and a trusted authority. Early demonstrations of quantum digital signatures required quantum memory, rendering them impractical at present. Our present implementation is based on a protocol that does not require quantum memory. It also uses the new technique of unambiguous quantum state elimination, Here we report experimental results for a test-bed system, recorded with a variety of different operating parameters, along with a discussion of aspects of the system security.
Systems Biology Approach to Developing “Systems Therapeutics”
2014-01-01
The standard drug development model uses reductionist approaches to discover small molecules targeting one pathway. Although systems biology analyzes multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. Similar to that in physics where a departure from the old reductionist “Copenhagen View” of quantum physics to a new and predictive systems based, collective model has emerged yielding new breakthroughs such as the LASER, a new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics.” PMID:24900858
NASA Astrophysics Data System (ADS)
Onorato, P.
2011-03-01
An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P Feynman and developed by E F Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of propagation amplitude is discussed for unbounded systems. These semiclassical results are obtained when the SOP is limited to the trajectories classically allowed. EBK semiclassical quantization and the topological Maslov index are used to deduce the correct quantum mechanical results for systems which live in a two-dimensional world as quantum dots and quantum rings. In the latter systems, the semiclassical propagation amplitude is used to discuss the Aharonov-Bohm effect. The development involves only elementary calculus and also provides a theoretical introduction to the quantum nature of low-dimensional nanostructures.
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range. PMID:18518481
Superconducting Quantum Arrays for Broadband RF Systems
NASA Astrophysics Data System (ADS)
Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.
2014-05-01
Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.
Locality, entanglement, and thermalization of isolated quantum systems
NASA Astrophysics Data System (ADS)
Khlebnikov, S.; Kruczenski, M.
2014-11-01
A way to understand thermalization in an isolated system is to interpret it as an increase in entanglement between subsystems. Here we test this idea through a combination of analytical and Krylov-subspace-based numerical methods applied to a quantum gas of bosons. We find that the entanglement entropy of a subsystem is rapidly generated at the initial state of the evolution, to quickly approach the thermal value. Our results also provide an accurate numerical test of the eigenstate thermalization hypothesis (ETH), according to which a single energy eigenstate of an isolated system behaves in certain respects as a thermal state. In the context of quantum black holes, we propose that the ETH is a quantum version of the classical no-hair theorem.
Locality, entanglement, and thermalization of isolated quantum systems.
Khlebnikov, S; Kruczenski, M
2014-11-01
A way to understand thermalization in an isolated system is to interpret it as an increase in entanglement between subsystems. Here we test this idea through a combination of analytical and Krylov-subspace-based numerical methods applied to a quantum gas of bosons. We find that the entanglement entropy of a subsystem is rapidly generated at the initial state of the evolution, to quickly approach the thermal value. Our results also provide an accurate numerical test of the eigenstate thermalization hypothesis (ETH), according to which a single energy eigenstate of an isolated system behaves in certain respects as a thermal state. In the context of quantum black holes, we propose that the ETH is a quantum version of the classical no-hair theorem. PMID:25493719
Quantum Bound States in a C-C60 System
NASA Astrophysics Data System (ADS)
Adam, R. M.; Sofianos, S. A.
2015-03-01
We investigate the quantum mechanical system of a carbon "test atom" in the proximity of a C60 molecule, both inside and outside the fullerene "cage". Two sets of bound states are found to exist, a deeply bound set inside the cage and another weakly bound set outside it. Tunnelling between these regions is highly unlikely to happen because of the extreme height and width of the potential barrier. However, we predict that a layer of atoms could be adsorbed onto C60 by forming a quantum mechanical bound state, with the adsorbed atoms being concentrated above the "panels" of the buckyball, consistent with "bucky onions" observed experimentally. Until now analysis of such fullerene systems has been via classical mechanics, but a quantum approach reveals new insights.
Double-Slit Interference Pattern for a Macroscopic Quantum System
NASA Astrophysics Data System (ADS)
Naeij, Hamid Reza; Shafiee, Afshin
2016-07-01
In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.
Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.
Kantardjiev, Alexander A
2012-07-01
Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html. PMID:22669908
Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Gullans, Michael John
Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. The first system we consider is the nuclear spin environment of GaAs double quantum dots containing two electrons. We show that the through appropriate control of dynamic nuclear polarization one can prepare the nuclear spin environment in three distinct collective quantum states which are useful for quantum information processing with electron spin qubits. We then investigate a hybrid system in which an optical lattice is formed in the near field scattering off an array of metallic nanoparticles by utilizing the plasmonic resonance of the nanoparticles. We show that such a system would realize new regimes of dense, ultra-cold quantum matter and can be used to create a quantum network of atoms and plasmons. Finally we investigate quantum nonlinear optical systems. We show that the intrinsic nonlinearity for plasmons in graphene can be large enough to make a quantum gate for single photons. We also consider two nonlinear optical systems based on ultracold gases of atoms. In one case, we demonstrate an all-optical single photon switch using cavity quantum electrodynamics (QED) and slow light. In the second case, we study few photon physics in strongly interacting Rydberg polariton systems, where we demonstrate the existence of two and three photon bound states and study their properties.
Distribution of Quantum Coherence in Multipartite Systems.
Radhakrishnan, Chandrashekar; Parthasarathy, Manikandan; Jambulingam, Segar; Byrnes, Tim
2016-04-15
The distribution of coherence in multipartite systems is examined. We use a new coherence measure with entropic nature and metric properties, based on the quantum Jensen-Shannon divergence. The metric property allows for the coherence to be decomposed into various contributions, which arise from local and intrinsic coherences. We find that there are trade-off relations between the various contributions of coherence, as a function of parameters of the quantum state. In bipartite systems the coherence resides on individual sites or is distributed among the sites, which contribute in a complementary way. In more complex systems, the characteristics of the coherence can display more subtle changes with respect to the parameters of the quantum state. In the case of the XXZ Heisenberg model, the coherence changes from a monogamous to a polygamous nature. This allows us to define the shareability of coherence, leading to monogamy relations for coherence. PMID:27127948
Distribution of Quantum Coherence in Multipartite Systems
NASA Astrophysics Data System (ADS)
Radhakrishnan, Chandrashekar; Parthasarathy, Manikandan; Jambulingam, Segar; Byrnes, Tim
2016-04-01
The distribution of coherence in multipartite systems is examined. We use a new coherence measure with entropic nature and metric properties, based on the quantum Jensen-Shannon divergence. The metric property allows for the coherence to be decomposed into various contributions, which arise from local and intrinsic coherences. We find that there are trade-off relations between the various contributions of coherence, as a function of parameters of the quantum state. In bipartite systems the coherence resides on individual sites or is distributed among the sites, which contribute in a complementary way. In more complex systems, the characteristics of the coherence can display more subtle changes with respect to the parameters of the quantum state. In the case of the X X Z Heisenberg model, the coherence changes from a monogamous to a polygamous nature. This allows us to define the shareability of coherence, leading to monogamy relations for coherence.
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Quantum cognition: a new theoretical approach to psychology.
Bruza, Peter D; Wang, Zheng; Busemeyer, Jerome R
2015-07-01
What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach. PMID:26058709
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new
Quantum temporal probabilities in tunneling systems
NASA Astrophysics Data System (ADS)
Anastopoulos, Charis; Savvidou, Ntina
2013-09-01
We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines 'classical' time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems.
Quantum sweeps, synchronization, and Kibble-Zurek physics in dissipative quantum spin systems
NASA Astrophysics Data System (ADS)
Henriet, Loïc; Le Hur, Karyn
2016-02-01
We address dissipation effects on the nonequilibrium quantum dynamics of an ensemble of spins-1/2 coupled via an Ising interaction. Dissipation is modeled by a (Ohmic) bath of harmonic oscillators at zero temperature and correspond either to the sound modes of a one-dimensional Bose-Einstein (quasi-)condensate or to the zero-point fluctuations of a long transmission line. We consider the dimer comprising two spins and the quantum Ising chain with long-range interactions and develop an (mathematically and numerically) exact stochastic approach to address nonequilibrium protocols in the presence of an environment. For the two-spin case, we first investigate the dissipative quantum phase transition induced by the environment through quantum quenches and study the effect of the environment on the synchronization properties. Then we address Landau-Zener-Stueckelberg-Majorana protocols for two spins and for the spin array. In this latter case, we adopt a stochastic mean-field point of view and present a Kibble-Zurek-type argument to account for interaction effects in the lattice. Such dissipative quantum spin arrays can be realized in ultracold atoms, trapped ions, and mesoscopic systems and are related to Kondo lattice models.
Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2005-12-01
During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible
Molecular dynamics of large systems with quantum corrections for the nuclei
NASA Astrophysics Data System (ADS)
Gu, Bing; Garashchuk, Sophya
2015-12-01
This paper describes an approximate approach to quantum dynamics based on the quantum trajectory formulation of the Schrödinger equation. The quantum-mechanical effects are incorporated through the quantum potential of the mean-field type, acting on a trajectory ensemble in addition to the classical potential. Efficiency for large systems is achieved by using the quantum corrections for selected degrees of freedom and introduction of empirical friction into the ground-state energy calculations. The classical potential, if needed, can be computed on-the-fly using the Density Functional Tight Binding method of electronic structure merged with the quantum trajectory dynamics code. The approach is practical for a few hundred atoms. Applications include a study of adsorption of quantum hydrogen colliding with the graphene model, C37H15 and a calculation of the ground state of solid 4He simulated by a cell 180-atoms.
Molecular dynamics of large systems with quantum corrections for the nuclei
Gu, Bing; Garashchuk, Sophya
2015-12-31
This paper describes an approximate approach to quantum dynamics based on the quantum trajectory formulation of the Schrödinger equation. The quantum-mechanical effects are incorporated through the quantum potential of the mean-field type, acting on a trajectory ensemble in addition to the classical potential. Efficiency for large systems is achieved by using the quantum corrections for selected degrees of freedom and introduction of empirical friction into the ground-state energy calculations. The classical potential, if needed, can be computed on-the-fly using the Density Functional Tight Binding method of electronic structure merged with the quantum trajectory dynamics code. The approach is practical for a few hundred atoms. Applications include a study of adsorption of quantum hydrogen colliding with the graphene model, C{sub 37}H{sub 15} and a calculation of the ground state of solid {sup 4}He simulated by a cell 180-atoms.
Quantum Hall effect in semiconductor systems with quantum dots and antidots
Beltukov, Ya. M.; Greshnov, A. A.
2015-04-15
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
Nonequilibrium quantum dynamics in optomechanical systems
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Non-perturbative approach to the quantum Hall bilayer
NASA Astrophysics Data System (ADS)
Milovanovic, Milica; Papic, Zlatko
2008-03-01
We study the disordering of the superfluid phase in the quantum Hall bilayer at the filling factor one with increasing distance between the layers. We find that the possibilities for ground state wave functions that describe the superfluid at an arbitrary distance fall into two universality classes. They correspond to (1) Berezinskii-Kosterlitz-Thouless (BKT) (2D XY) model of superfluid disordering in the presence of charged impurities and (2) λ transition (3D XY) model in a translatory invariant quantum Hall bilayer system. The BKT type of disordering likely ends with unbinding of created pairs of neutral fermionic vortices (in a transition reminiscent of the one reported in Champagne et al.). In the translatory invariant system the ensuing quantum phase transition proceeds via condensation of loops of elementary charged vortices - merons into a topological phase associated with the toric code model.
Quantum Discord for d⊗2 Systems
Ma, Zhihao; Chen, Zhihua; Fanchini, Felipe Fernandes; Fei, Shao-Ming
2015-01-01
We present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 106 two-qubit random density matrices, we obtain an average deviation of order 10−4. Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel. PMID:26036771
Quantum Discord for d⊗2 Systems.
Ma, Zhihao; Chen, Zhihua; Fanchini, Felipe Fernandes; Fei, Shao-Ming
2015-01-01
We present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary d⊗2 systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 10(6) two-qubit random density matrices, we obtain an average deviation of order 10(-4). Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel. PMID:26036771
Quartz-superconductor quantum electromechanical system
NASA Astrophysics Data System (ADS)
Woolley, M. J.; Emzir, M. F.; Milburn, G. J.; Jerger, M.; Goryachev, M.; Tobar, M. E.; Fedorov, A.
2016-06-01
We propose and analyze a quantum electromechanical system composed of a monolithic quartz bulk acoustic wave oscillator coupled to a superconducting transmon qubit via an intermediate L C electrical circuit. Monolithic quartz oscillators offer unprecedentedly high effective masses and quality factors for the investigation of mechanical oscillators in the quantum regime. Ground-state cooling of such mechanical modes via resonant piezoelectric coupling to an L C circuit, which is itself sideband cooled via coupling to a transmon qubit, is shown to be feasible. The fluorescence spectrum of the qubit, containing motional sideband contributions due to the couplings to the oscillator modes, is obtained and the imprint of the electromechanical steady state on the spectrum is determined. This allows the qubit to function both as a cooling resource for, and transducer of, the mechanical oscillator. The results described are relevant to any hybrid quantum system composed of a qubit coupled to two (coupled or uncoupled) thermal oscillator modes.
Novel approaches to high fidelity qubit state measurement in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Ginossar, Eran
2011-03-01
Qubit state measurement (`readout') in solid state systems is an open problem, which is currently the subject of intensive experimental and theoretical research. Achieving high fidelity in a single-shot measurement is an interesting quantum control problem, as well as an important component for the successful implementation of quantum information protocols. For superconducting qubits we can distinguish between linear dispersive and nonlinear methods, the latter relying on the bistability of a nonlinear resonator. In the context of circuit quantum electrodynamics, the transmon qubit is strongly coupled to a linear resonator and described by a generalized Jaynes-Cummings model (JCM) with external drive and dissipation. Recent novel approaches to achieve high-fidelity readout in the dispersive regime rely on the intrinsic nonlinearity of the JCM and its ultimate linearity in the high excitation regime. In the degenerate regime we rely on the photon blockade and precise transient dynamics of the system. This regime presents a theoretical challenge and the driven damped JCM model exhibits a dynamical phase transition. Another proposed approach extends the Josephson Bifurcation Amplifier and employs the dynamical effects of frequency chirping of the drive on the coupled qubit-resonator system. We will discuss the physics of these different regimes and describe the readout schemes which have been demonstrated by recent experiments and quantum simulations, as well as the role of quantum fluctuations and optimal control.
Quantum harmonic Brownian motion in a general environment: A modified phase-space approach
NASA Astrophysics Data System (ADS)
Yeh, L.
1993-06-01
After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations are shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.
Quantum Harmonic Brownian Motion in a General Environment: a Modified Phase-Space Approach.
NASA Astrophysics Data System (ADS)
Yeh, Leehwa
After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, I propose an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations are shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented. With the help of this theorem, the mechanism of this model is examined and the
Quantum harmonic Brownian motion in a general environment: A modified phase-space approach
Yeh, L. |
1993-06-23
After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.
Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices
NASA Astrophysics Data System (ADS)
Xu, Yu-Liang; Zhang, Xin; Liu, Zhong-Qiang; Kong, Xiang-Mu; Ren, Ting-Qi
2014-06-01
We investigate the quantum correlation measured by quantum discord (QD) for thermalized ferromagnetic Heisenberg spin systems in one-dimensional chains and on fractal lattices using the decimation renormalization group approach. It is found that the QD between two non-nearest-neighbor end spins exhibits some interesting behaviors which depend on the anisotropic parameter Δ, the temperature T, and the size of system L. With increasing Δ continuously, the QD possesses a cuspate change at Δ = 0 which is a critical point of quantum phase transition (QPT). There presents the "regrowth" tendency of QD with increasing T at Δ < 0, in contrast to the "growth" of QD at Δ > 0. As the size of the system L becomes large, there still exists considerable thermal QD between long-distance end sites in spin chains and on the fractal lattices even at unentangled states, and the long-distance QD can spotlight the presence of QPT. The robustness of QD on the diamond-type hierarchical lattices is stronger than that in spin chains and Koch curves, which indicates that the fractal can affect the behaviors of quantum correlation.
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Lambert, Neill; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent “quantumness” still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two “quantum witnesses” to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems. PMID:23185690
Quantum temporal probabilities in tunneling systems
Anastopoulos, Charis Savvidou, Ntina
2013-09-15
We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling.
Conditional independence in quantum many-body systems
NASA Astrophysics Data System (ADS)
Kim, Isaac Hyun
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Cavity optomechanics mediated by a quantum two-level system
NASA Astrophysics Data System (ADS)
Pirkkalainen, J.-M.; Cho, S. U.; Massel, F.; Tuorila, J.; Heikkilä, T. T.; Hakonen, P. J.; Sillanpää, M. A.
2015-04-01
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum-mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation-pressure interaction by six orders of magnitude, allowing to approach the strong coupling regime. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping attributed to the qubit. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
Quantum statistical ensemble for emissive correlated systems.
Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems. PMID:27415223
Quantum statistical ensemble for emissive correlated systems
NASA Astrophysics Data System (ADS)
Shakirov, Alexey M.; Shchadilova, Yulia E.; Rubtsov, Alexey N.
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N -particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.
Representations for a spins-first approach to quantum mechanics
NASA Astrophysics Data System (ADS)
Manogue, Corinne; Gire, Elizabeth; McIntyre, David; Tate, Janet
2012-02-01
In the Paradigms in Physics Curriculum at Oregon State University, we take a spins-first approach to quantum mechanics using a java simulation of successive Stern-Gerlach experiments to explore the postulates. The experimental schematic is a diagrammatic representation that we use throughout our discussion of quantum measurements. With a spins-first approach, it is natural to start with Dirac bra-ket language for states, observables, and projection operators. We also use explicit matrix representations of operators and ask students to translate between the Dirac and matrix languages. The projection of the state onto a basis is represented with a histogram. When we subsequently introduce wave functions, the wave function attains a natural interpretation as the continuous limit of these discrete histograms or a projection of a Dirac ket onto position or momentum eigenstates. We are able to test the students' facility with moving between these representations in later modules.
Quantum cluster approach to the spinful Haldane-Hubbard model
NASA Astrophysics Data System (ADS)
Wu, Jingxiang; Faye, Jean Paul Latyr; Sénéchal, David; Maciejko, Joseph
2016-02-01
We study the spinful fermionic Haldane-Hubbard model at half-filling using a combination of quantum cluster methods: cluster perturbation theory, the variational cluster approximation, and cluster dynamical mean-field theory. We explore possible zero-temperature phases of the model as a function of onsite repulsive interaction strength and next-nearest-neighbor hopping amplitude and phase. Our approach allows us to access the regime of intermediate interaction strength, where charge fluctuations are significant and effective spin model descriptions may not be justified. Our approach also improves upon mean-field solutions of the Haldane-Hubbard model by retaining local quantum fluctuations and treating them nonperturbatively. We find a correlated topological Chern insulator for weak interactions and a topologically trivial Néel antiferromagnetic insulator for strong interactions. For intermediate interactions, we find that topologically nontrivial Néel antiferromagnetic insulating phases and/or a topologically nontrivial nonmagnetic insulating phase may be stabilized.
Thermal Phase Transitions in Finite Quantum Systems
Dean, D.J.
2001-10-18
In this Proceedings, the author will describe the behavior of two different quantum-mechanical systems as a function of increasing temperature. While these systems are somewhat different, the questions addressed are very similar, namely, how does one describe transitions in phase of a finite many-body system; how does one recognize these transitions in practical calculations; and how may one obtain the order of the transition.
Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Local thermoelectric probes of nonequilibrium quantum systems
NASA Astrophysics Data System (ADS)
Stafford, Charles
A theory of local temperature and voltage measurement in an interacting quantum system far from equilibrium is developed. We prove that a steady-state measurement by a floating thermoelectric probe is unique if it exists. Furthermore, we show that a solution exists provided there is no net local population inversion. In the case of population inversion, the system may be assigned a (unique) negative temperature. An expression for the local entropy of a nonequilibrium quantum system is introduced that, together with the local temperature and voltage, allows for a complete analysis of the local thermodynamics of the thermoelectric processes in the system. The Clausius form of the second law and the third law are shown to hold exactly locally, while the zeroth and first laws are shown to be valid to leading order in the Sommerfeld expansion. The local quantum thermodynamics underlying the enhancement of thermoelectricity by quantum interference is discussed. Work supported by the U.S. Department of Energy, Office of Science, Award No. DE-SC0006699.
Nonseparability and noncommutativity in quantum systems
NASA Astrophysics Data System (ADS)
de La Torre, A. C.; Catuogno, P.; Ferrando, S.
1991-02-01
The quantum covariance function is calculated in some EPR-like systems for commuting observables in order to illustrate the nonseparability contribution to the incompatibility between commuting operators. It is shown that an attempt to eliminate the noncommutativity contribution to incompatibility fails in finite-dimensional cases and would require a nonseparable Hilbert space (nonseparable in the mathematical sense).
Energy Cost of Controlling Mesoscopic Quantum Systems
NASA Astrophysics Data System (ADS)
Horowitz, Jordan M.; Jacobs, Kurt
2015-09-01
We determine the minimum energy required to control the evolution of any mesoscopic quantum system in the presence of arbitrary Markovian noise processes. This result provides the mesoscopic equivalent of the fundamental cost of refrigeration, sets the minimum power consumption of mesoscopic devices that operate out of equilibrium, and allows one to calculate the efficiency of any control protocol, whether it be open-loop or feedback control. As examples, we calculate the energy cost of maintaining a qubit in the ground state and the efficiency of resolved-sideband cooling of nano-mechanical resonators, and discuss the energy cost of quantum information processing.
Symmetry of quantum phase space in a degenerate Hamiltonian system
NASA Astrophysics Data System (ADS)
Berman, G. P.; Demikhovskii, V. Ya.; Kamenev, D. I.
2000-09-01
The structure of the global "quantum phase space" is analyzed for the harmonic oscillator perturbed by a monochromatic wave in the limit when the perturbation amplitude is small. Usually, the phenomenon of quantum resonance was studied in nondegenerate [G. M. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic, Chur, 1985)] and degenerate [Demikhovskii, Kamenev, and Luna-Acosta, Phys. Rev. E 52, 3351 (1995)] classically chaotic systems only in the particular regions of the classical phase space, such as the center of the resonance or near the separatrix. The system under consideration is degenerate, and even an infinitely small perturbation generates in the classical phase space an infinite number of the resonant cells which are arranged in the pattern with the axial symmetry of the order 2μ (where μ is the resonance number). We show analytically that the Husimi functions of all Floquet states (the quantum phase space) have the same symmetry as the classical phase space. This correspondence is demonstrated numerically for the Husimi functions of the Floquet states corresponding to the motion near the elliptic stable points (centers of the classical resonance cells). The derived results are valid in the resonance approximation when the perturbation amplitude is small enough, and the stochastic layers in the classical phase space are exponentially thin. The developed approach can be used for studying a global symmetry of more complicated quantum systems with chaotic behavior.
Quantum cryptographic system with reduced data loss
Lo, H.K.; Chau, H.F.
1998-03-24
A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.
Quantum cryptographic system with reduced data loss
Lo, Hoi-Kwong; Chau, Hoi Fung
1998-01-01
A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.
Open systems dynamics for propagating quantum fields
NASA Astrophysics Data System (ADS)
Baragiola, Ben Quinn
In this dissertation, I explore interactions between matter and propagating light. The electromagnetic field is modeled as a Markovian reservoir of quantum harmonic oscillators successively streaming past a quantum system. Each weak and fleeting interaction entangles the light and the system, and the light continues its course. In the context of quantum tomography or metrology one attempts, using measure- ments of the light, to extract information about the quantum state of the system. An inevitable consequence of these measurements is a disturbance of the system's quantum state. These ideas focus on the system and regard the light as ancillary. It serves its purpose as a probe or as a mechanism to generate interesting dynamics or system states but is eventually traced out, leaving the reduced quantum state of the system as the primary mathematical subject. What, then, when the state of light itself harbors intrinsic self-entanglement? One such set of states, those where a traveling wave packet is prepared with a defi- nite number of photons, is a focal point of this dissertation. These N-photon states are ideal candidates as couriers in quantum information processing device. In con- trast to quasi-classical states, such as coherent or thermal fields, N-photon states possess temporal mode entanglement, and local interactions in time have nonlocal consequences. The reduced state of a system probed by an N-photon state evolves in a non-Markovian way, and to describe its dynamics one is obliged to keep track of the field's evolution. I present a method to do this for an arbitrary quantum system using a set of coupled master equations. Many models set aside spatial degrees of freedom as an unnecessary complicating factor. By doing so the precision of predictions is limited. Consider a ensemble of cold, trapped atomic spins dispersively probed by a paraxial laser beam. Atom-light coupling across the ensemble is spatially inhomogeneous as is the radiation pattern of
Simulation of Ginger EPR Spectra Obtained by X-Irradiation:Quantum Approach
NASA Astrophysics Data System (ADS)
Laachir, S.; Moussetad, M.; Adhiri, R.; Fahli, A.; Aboulfatah, M.; Mikou, M.
2005-08-01
The ginger sample has been exposed to X-rays at cumulative doses. The foodstuffs irradiation is used in particular to improve their hygienic qualities and increase their shelf lives. This process has been approved by various international organizations: FAO -- AIEA -- WHO. In the present work, we propose to reproduce by simulation, based on a quantum approach, of the ESR (Electron Spin Resonance) spectra. The semi-classical approach is valid for a simple system, but not for a complex system such as an atom with hyperfine structure. In this case a quantum approach, based on spin Hamiltonian, is essential to interpret the ESR spectra. The main result is that the simulated spectra are in good agreement with the experimental ones obtained before and after irradiation.
Periodic thermodynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. PMID:27415235
An impurity-induced gap system as a quantum data bus for quantum state transfer
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
Approach to non-equilibrium behaviour in quantum field theory
Kripfganz, J.; Perlt, H.
1989-05-01
We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.
The quantum human central neural system.
Alexiou, Athanasios; Rekkas, John
2015-01-01
In this chapter we present Excess Entropy Production for human aging system as the sum of their respective subsystems and electrophysiological status. Additionally, we support the hypothesis of human brain and central neural system quantumness and we strongly suggest the theoretical and philosophical status of human brain as one of the unknown natural Dirac magnetic monopoles placed in the center of a Riemann sphere. PMID:25416114
Optimization Approaches for Designing Quantum Reversible Arithmetic Logic Unit
NASA Astrophysics Data System (ADS)
Haghparast, Majid; Bolhassani, Ali
2016-03-01
Reversible logic is emerging as a promising alternative for applications in low-power design and quantum computation in recent years due to its ability to reduce power dissipation, which is an important research area in low power VLSI and ULSI designs. Many important contributions have been made in the literatures towards the reversible implementations of arithmetic and logical structures; however, there have not been many efforts directed towards efficient approaches for designing reversible Arithmetic Logic Unit (ALU). In this study, three efficient approaches are presented and their implementations in the design of reversible ALUs are demonstrated. Three new designs of reversible one-digit arithmetic logic unit for quantum arithmetic has been presented in this article. This paper provides explicit construction of reversible ALU effecting basic arithmetic operations with respect to the minimization of cost metrics. The architectures of the designs have been proposed in which each block is realized using elementary quantum logic gates. Then, reversible implementations of the proposed designs are analyzed and evaluated. The results demonstrate that the proposed designs are cost-effective compared with the existing counterparts. All the scales are in the NANO-metric area.
Uncertainty relation for non-Hamiltonian quantum systems
Tarasov, Vasily E.
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
One-qubit quantum gates in a circular graphene quantum dot: genetic algorithm approach
NASA Astrophysics Data System (ADS)
Amparán, Gibrán; Rojas, Fernando; Pérez-Garrido, Antonio
2013-05-01
The aim of this work was to design and control, using genetic algorithm (GA) for parameter optimization, one-charge-qubit quantum logic gates σ x, σ y, and σ z, using two bound states as a qubit space, of circular graphene quantum dots in a homogeneous magnetic field. The method employed for the proposed gate implementation is through the quantum dynamic control of the qubit subspace with an oscillating electric field and an onsite (inside the quantum dot) gate voltage pulse with amplitude and time width modulation which introduce relative phases and transitions between states. Our results show that we can obtain values of fitness or gate fidelity close to 1, avoiding the leakage probability to higher states. The system evolution, for the gate operation, is presented with the dynamics of the probability density, as well as a visualization of the current of the pseudospin, characteristic of a graphene structure. Therefore, we conclude that is possible to use the states of the graphene quantum dot (selecting the dot size and magnetic field) to design and control the qubit subspace, with these two time-dependent interactions, to obtain the optimal parameters for a good gate fidelity using GA.
Correlated wavefunction quantum Monte Carlo approach to solids
Louie, S.G.
1992-10-01
A method for calculating the electronic and structural properties of solids using correlated wavefunctions together with quantum Monte Carlo techniques is described. The approach retains the exact Coulomb interaction between the electrons and employs a many-electron wavefunction of the Jastrow-Slater form. Several examples are given to illustrate the utility of the method. Topics discussed include the cohesive properties of bulk semiconductors, the magnetic-field- induced Wigner crystal in two dimensions, and the magnetic structure of bcc hydrogen. Landau level mixing is shown to be important in determining the transition between the fractional quantum Hall liquid and the Wigner crystal. Information on electron correlations such as the pair correlation functions which are not accessible to one- electron theories is also obtained. 24 refs, 5 figs, 1 tab.
Focus on coherent control of complex quantum systems
NASA Astrophysics Data System (ADS)
Whaley, Birgitta; Milburn, Gerard
2015-10-01
The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes. PMID:25379903
Mesoscopic systems: classical irreversibility and quantum coherence.
Barbara, Bernard
2012-09-28
Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Nonlinear resonant phenomena in multilevel quantum systems
NASA Astrophysics Data System (ADS)
Hicke, Christian
We study nonlinear resonant phenomena in two-level and multilevel quantum systems. Our results are of importance for applications in the areas of quantum control, quantum computation, and quantum measurement. We present a method to perform fault-tolerant single-qubit gate operations using Landau-Zener tunneling. In a single Landau-Zoner pulse, the qubit transition frequency is varied in time so that it passes through the frequency of a radiation field. We show that a simple three-pulse sequence allows eliminating errors in the gate up to the third order in errors in the qubit energies or the radiation frequency. We study the nonlinear transverse response of a spin S > 1/2 with easy-axis anisotropy. The coherent transverse response displays sharp dips or peaks when the modulation frequency is adiabatically swept through multiphoton resonance. The effect is a consequence of a certain conformal property of the spin dynamics in a magnetic field for the anisotropy energy ∝ S2z . The occurrence of the dips or peaks is determined by the spin state. Their shape strongly depends on the modulation amplitude. Higher-order anisotropy breaks the symmetry, leading to sharp steps in the transverse response as function of frequency. The results bear on the dynamics of molecular magnets in a static magnetic field. We show that a modulated large-spin system has special symmetry. In the presence of dissipation it leads to characteristic nonlinear effects. They include abrupt switching between transverse magnetization branches with varying modulating field without hysteresis and a specific pattern of switching in the presence of multistability and hysteresis. Along with steady forced vibrations the transverse spin components can display transient vibrations at a combination of the Larmor frequency and a slower frequency determined by the anisotropy energy. The analysis is based on a microscopic theory that takes into account relaxation mechanisms important for single
An exactly solvable system from quantum optics
NASA Astrophysics Data System (ADS)
Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz
2015-07-01
We investigate a generalisation of the Rabi system in the Bargmann-Fock representation. In this representation the eigenproblem of the considered quantum model is described by a system of two linear differential equations with one independent variable. The system has only one irregular singular point at infinity. We show how the quantisation of the model is related to asymptotic behaviour of solutions in a vicinity of this point. The explicit formulae for the spectrum and eigenfunctions of the model follow from an analysis of the Stokes phenomenon. An interpretation of the obtained results in terms of differential Galois group of the system is also given.
Quantum networks reveal quantum nonlocality.
Cavalcanti, Daniel; Almeida, Mafalda L; Scarani, Valerio; Acín, Antonio
2011-01-01
The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information-processing tasks, for example, quantum communication, quantum key distribution, quantum state estimation or randomness extraction. Still, deciding whether a quantum state is nonlocal remains a challenging problem. Here, we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. We show, using our framework, how any one-way entanglement distillable state leads to nonlocal correlations and prove that quantum nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of them. Our results imply that the nonlocality of quantum states strongly depends on the measurement context. PMID:21304513
Quantum phase transitions in frustrated magnetic systems
NASA Astrophysics Data System (ADS)
Wölfle, P.; Schmitteckert, P.
2015-07-01
We review our recent work on quantum phase transitions in frustrated magnetic systems. In the first part a Pseudo Fermion Functional Renormalization Group (PFFRG) method is presented. By using an exact representation of spin 1/2 operators in terms of pseudofermions a quantum spin Hamiltonian may be mapped onto an interacting fermion system. For the latter an FRG treatment is employed. The results for the J1-J2 model and similar models of frustrated interaction show phase diagrams in agreement with those obtained by other methods, but give more detailed information on the nature of correlations, in particular in the non-magnetic phases. Applications of PFFRG to geometrically frustrated systems and to highly anisotropic Kitaev type models are also reported. In the second part the derivation of quantum spin models from the microscopic many-body Hamiltonian is discussed. The results for multiband systems with strong spin-orbit interaction encountered in the iridates class of compounds are shown to resolve some of the questions posed by experiment.
Vibrational modes in the quantum Hall system
NASA Astrophysics Data System (ADS)
Wooten, Rachel; Yan, Bin; Daily, Kevin; Greene, Chris H.
The hyperspherical adiabatic technique is more familiar to atomic and nuclear few-body systems, but can also be applied with high accuracy to the many-body quantum Hall problem. This technique reformulates the Schrödinger equation for N electrons into hyperspherical coordinates, which, after extracting the trivial center of mass, describes the system in terms of a single global size coordinate known as the hyperradius R, and 2 N - 3 remaining internal angular coordinates. The solutions are approximately separable in the hyperradial coordinate, and solutions in the system are found by treating the hyperradius as an adiabatic coordinate. The approximate separability of the wave functions in this coordinate suggests the presence of hyperradial vibrational modes which are not described in conventional theories. The vibrationally excited states share the internal geometry of their quantum Hall ground states, and their excitation frequencies may vary with the number of participating particles or the strength of the confinement. We plan to discuss the features of these vibrational modes and their possible detection in quantum Hall systems. NSF.
Floquet approach to bichromatically driven cavity-optomechanical systems
NASA Astrophysics Data System (ADS)
Malz, Daniel; Nunnenkamp, Andreas
2016-08-01
We develop a Floquet approach to solve time-periodic quantum Langevin equations in the steady state. We show that two-time correlation functions of system operators can be expanded in a Fourier series and that a generalized Wiener-Khinchin theorem relates the Fourier transform of their zeroth Fourier component to the measured spectrum. We apply our framework to bichromatically driven cavity optomechanical systems, a setting in which mechanical oscillators have recently been prepared in quantum-squeezed states. Our method provides an intuitive way to calculate the power spectral densities for time-periodic quantum Langevin equations in arbitrary rotating frames.
One-Way Quantum Deficit for 2 ⊗ d Systems
NASA Astrophysics Data System (ADS)
Ye, Biao-Liang; Fei, Shao-Ming
2016-08-01
We investigate one-way quantum deficit for 2 ⊗ d systems. Analytical expressions of one-way quantum deficit under both von Neumann measurement and weak measurement are presented. As an illustration, qubit-qutrit systems are studied in detail. It is shown that there exists non-zero one-way quantum deficit even quantum entanglement vanishes. Moreover, one-way quantum deficit via weak measurement turns out to be weaker than that via von Neumann measurement. The dynamics of entanglement and one-way quantum deficit under dephasing channels is also investigated.
Dynamics of incompatibility of quantum measurements in open systems
NASA Astrophysics Data System (ADS)
Addis, Carole; Heinosaari, Teiko; Kiukas, Jukka; Laine, Elsi-Mari; Maniscalco, Sabrina
2016-02-01
The nonclassical nature of quantum states, often illustrated using entanglement measures or quantum discord, constitutes a resource for quantum information protocols. However, the nonclassicality of a quantum system cannot be seen as a property of the state alone, as the set of available measurements used to extract information on the system is typically restricted. In this work we study how the nonclassicality of quantum measurements, quantified via their incompatibility, is influenced by quantum noise and how a non-Markovian environment can be useful for maintaining the measurement resources.
Energy Exchange in Driven Open Quantum Systems at Strong Coupling.
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-17
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K=1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2. PMID:27367367
Hilbert-space localization in closed quantum systems
NASA Astrophysics Data System (ADS)
Cohen, Doron; Yukalov, Vyacheslav I.; Ziegler, Klaus
2016-04-01
Quantum localization within an energy shell of a closed quantum system stands in contrast to the ergodic assumption of Boltzmann, and to the corresponding eigenstate thermalization hypothesis. The familiar case is the real-space Anderson localization and its many-body Fock-space version. We use the term Hilbert-space localization in order to emphasize the more general phase-space context. Specifically, we introduce a unifying picture that extends the semiclassical perspective of Heller, which relates the localization measure to the probability of return. We illustrate our approach by considering several systems of experimental interest, referring in particular to the bosonic Josephson tunneling junction. We explore the dependence of the localization measure on the initial state and on the strength of the many-body interactions using a recursive projection method.
Energy Exchange in Driven Open Quantum Systems at Strong Coupling
NASA Astrophysics Data System (ADS)
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-01
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .
Thermodynamic signatures of an underlying quantum phase transition: A grand canonical approach
NASA Astrophysics Data System (ADS)
Jimenez, Kevin; Reslen, Jose
2016-08-01
The grand canonical formalism is employed to study the thermodynamic structure of a model displaying a quantum phase transition when studied with respect to the canonical formalism. A numerical survey shows that the grand partition function diverges following a power law when the interaction parameter approaches a limiting constant. The power-law exponent takes a distinctive value when such limiting constant coincides with the critical point of the subjacent quantum phase transition. An approximated expression for the grand partition function is derived analytically implementing a mean field scheme and a number of thermodynamic observables are obtained. The system observables show signatures that can be used to track the critical point of the underlying transition. This result provides a simple fact that can be exploited to verify the existence of a quantum phase transition avoiding the zero temperature regime.
Tomographic Approach in Three-Orthogonal-Basis Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Liang, Wen-Ye; Wen, Hao; Yin, Zhen-Qiang; Chen, Hua; Li, Hong-Wei; Chen, Wei; Han, Zheng-Fu
2015-09-01
At present, there is an increasing awareness of some three-orthogonal-basis quantum key distribution protocols, such as, the reference-frame-independent (RFI) protocol and the six-state protocol. For secure key rate estimations of these protocols, there are two methods: one is the conventional approach, and another is the tomographic approach. However, a comparison between these two methods has not been given yet. In this work, with the general model of rotation channel, we estimate the key rate using conventional and tomographic methods respectively. Results show that conventional estimation approach in RFI protocol is equivalent to tomographic approach only in the case of that one of three orthogonal bases is always aligned. In other cases, tomographic approach performs much better than the respective conventional approaches of the RFI protocol and the six-state protocol. Furthermore, based on the experimental data, we illustrate the deep connections between tomography and conventional RFI approach representations. Supported by the National Basic Research Program of China under Grant Nos. 2011CBA00200 and 2011CB921200 and the National Natural Science Foundation of China under Grant Nos. 60921091, 61475148, and 61201239 and Zhejiang Natural Science Foundation under Grant No. LQ13F050005
General Properties of Overlap Operators in Disordered Quantum Spin Systems
NASA Astrophysics Data System (ADS)
Itoi, C.
2016-04-01
We study short-range quantum spin systems with Gaussian disorder. We obtain quantum mechanical extensions of the Ghirlanda-Guerra identities. We discuss properties of overlap spin operators with these identities.
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
3D Lorentzian loop quantum gravity and the spinor approach
NASA Astrophysics Data System (ADS)
Girelli, Florian; Sellaroli, Giuseppe
2015-12-01
We consider the generalization of the "spinor approach" to the Lorentzian case, in the context of three-dimensional loop quantum gravity with cosmological constant Λ =0 . The key technical tool that allows this generalization is the recoupling theory between unitary infinite-dimensional representations and nonunitary finite-dimensional ones, obtained in the process of generalizing the Wigner-Eckart theorem to SU(1,1). We use SU(1,1) tensor operators to build observables and a solvable quantum Hamiltonian constraint, analogous to the one introduced by V. Bonzom and his collaborators in the Euclidean case (with both Λ =0 and Λ ≠0 ). We show that the Lorentzian Ponzano-Regge amplitude is the solution of the quantum Hamiltonian constraint by recovering the Biedenharn-Elliott relation [generalized to the case where unitary and nonunitary SU(1,1) representations are coupled to each other]. Our formalism is sufficiently general that both the Lorentzian and the Euclidean case can be recovered (with Λ =0 ).
Preparing ground states of quantum many-body systems on a quantum computer
NASA Astrophysics Data System (ADS)
Poulin, David
2009-03-01
The simulation of quantum many-body systems is a notoriously hard problem in condensed matter physics, but it could easily be handled by a quantum computer [4,1]. There is however one catch: while a quantum computer can naturally implement the dynamics of a quantum system --- i.e. solve Schr"odinger's equation --- there was until now no general method to initialize the computer in a low-energy state of the simulated system. We present a quantum algorithm [5] that can prepare the ground state and thermal states of a quantum many-body system in a time proportional to the square-root of its Hilbert space dimension. This is the same scaling as required by the best known algorithm to prepare the ground state of a classical many-body system on a quantum computer [3,2]. This provides strong evidence that for a quantum computer, preparing the ground state of a quantum system is in the worst case no more difficult than preparing the ground state of a classical system. 1 D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theo. Comp., (2003), p. 20. F. Barahona, On the computational complexity of ising spin glass models, J. Phys. A. Math. Gen., 15 (1982), p. 3241. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknessess of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510--1523, quant-ph/9701001. S. Lloyd, Universal quantum simulators, Science, 273 (1996), pp. 1073--1078. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, 2008, arXiv:0809.2705.
Preface of the special issue quantum foundations: information approach.
D'Ariano, Giacomo Mauro; Khrennikov, Andrei
2016-05-28
This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161
Preface of the special issue quantum foundations: information approach
2016-01-01
This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161
Quantum entanglement in multiparticle systems of two-level atoms
Deb, Ram Narayan
2011-09-15
We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.
ERIC Educational Resources Information Center
Onorato, P.
2011-01-01
An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P. Feynman and developed by E. F. Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of…
Quantum jump model for a system with a finite-size environment
NASA Astrophysics Data System (ADS)
Suomela, S.; Kutvonen, A.; Ala-Nissila, T.
2016-06-01
Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied.
Boundary driven open quantum many-body systems
Prosen, Tomaž
2014-01-08
In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new
Quartz-superconductor quantum electromechanical system
NASA Astrophysics Data System (ADS)
Woolley, Matt; Emzir, Muhammad; Milburn, Gerard; Jerger, Markus; Goryachev, Maxim; Tobar, Mike; Fedorov, Arkady
Quartz bulk acoustic wave oscillators support mechanical modes with very high resonance frequencies and extremely high quality factors. As such, they provide an appealing platform for quantum optics experiments with phonons, gravitational wave detection, and tests of quantum mechanics. We propose to cool and measure the motion of a quartz oscillator using a transmon, with the coupling mediated by a tuneable superconducting LC circuit. The mechanical motion (~250MHz) is resonantly coupled to the LC circuit (~250MHz) by a piezoelectric interaction, the LC circuit is coupled to the transmon (~8GHz) via sideband transitions, and there is a smaller direct coupling between the quartz oscillator and the transmon. By driving the transmon on its red sideband, the mechanical and electrical oscillators may be cooled close to their quantum ground state. By observing the fluorescence of the qubit, the occupations of the oscillators may be determined via the motional sidebands they induce. A minimal model of this system consists of a qubit coupled to two oscillators, which are themselves mutually coupled. The steady-state of the system and the qubit fluorescence spectrum are evaluated analytically using a perturbative projection operator technique, and verified numerically.
Ramsey interference in a multilevel quantum system
NASA Astrophysics Data System (ADS)
Lee, J. P.; Bennett, A. J.; Skiba-Szymanska, J.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2016-02-01
We report Ramsey interference in the excitonic population of a negatively charged quantum dot measured in resonant fluorescence. Our experiments show that the decay time of the Ramsey interference is limited by the spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be addressed by changing the laser detuning to reveal two-, three-, and four-level system behavior. We show that under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both population and spin states simultaneously. We also demonstrate the coherent optical manipulation of a trapped spin in a quantum dot in a Faraday geometry magnetic field.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Split kinetic energy method for quantum systems with competing potentials
Mineo, H.; Chao, Sheng D.
2012-09-15
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into 'unperturbed' and 'perturbed' terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double {delta}-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: Black-Right-Pointing-Pointer A new basis set expansion method is proposed. Black-Right-Pointing-Pointer Split kinetic energy method is proposed to solve quantum eigenvalue problems. Black-Right-Pointing-Pointer Significant improvement has been obtained in converging to exact results. Black-Right-Pointing-Pointer Extension of such methods is promising and discussed.
A Recurrence Relation Approach to Higher Order Quantum Superintegrability
NASA Astrophysics Data System (ADS)
Kalnins, Ernie G.; Kress, Jonathan M.; Miller, Willard
2011-03-01
We develop our method to prove quantum superintegrability of an integrable 2D system, based on recurrence relations obeyed by the eigenfunctions of the system with respect to separable coordinates. We show that the method provides rigorous proofs of superintegrability and explicit constructions of higher order generators for the symmetry algebra. We apply the method to 5 families of systems, each depending on a parameter k, including most notably the caged anisotropic oscillator, the Tremblay, Turbiner and Winternitz system and a deformed Kepler-Coulomb system, and we give proofs of quantum superintegrability for all rational values of k, new for 4 of these systems. In addition, we show that the explicit information supplied by the special function recurrence relations allows us to prove, for the first time in 4 cases, that the symmetry algebra generated by our lowest order symmetries closes and to determine the associated structure equations of the algebras for each k. We have no proof that our generating symmetries are of lowest possible order, but we have no counterexamples, and we are confident we can can always find any missing generators from our raising and lowering operator recurrences. We also get for free, one variable models of the action of the symmetry algebra in terms of difference operators. We describe how the Stäckel transform acts and show that it preserves the structure equations.
Deconstructing the Liouvillian approach to the quantum Hall plateau transition
NASA Astrophysics Data System (ADS)
Oganesyan, Vadim; Chalker, J. T.; Sondhi, S. L.
2003-07-01
We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B 62, 2008 (2000)] and developed by Moore, Zee, and Sinova [Phys. Rev. Lett. 87, 046801 (2001)]. We show that, despite appearances to the contrary, the Liouvillian approach is not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian perturbation theory and conventional calculations of disorder-averaged products of Green functions and show that each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green function. As a consequence, any Liouvillian approximation scheme may be reexpressed in the language of Green functions. We illustrate these ideas by applying Liouvillian methods (including their extension to NL>1 Liouvillian flavors) to random matrix ensembles, using numerical calculations for small integer NL and an analytical analysis for large NL. We find that the behavior at NL>1 is different in qualitative ways from that at NL=1. In particular, the NL=∞ limit expressed using Green functions generates a pathological approximation, in which two-particle correlation functions fail to factorize correctly at large separations of their energy, and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large-NL treatment of the quantum Hall plateau transition, showing that the same undesirable features are present there, too. We suggest that failings of this kind are likely to be generic in Liouvillian approximation schemes.
Topological characterization of periodically driven quantum systems
NASA Astrophysics Data System (ADS)
Kitagawa, Takuya; Berg, Erez; Rudner, Mark; Demler, Eugene
2010-12-01
Topological properties of physical systems can lead to robust behaviors that are insensitive to microscopic details. Such topologically robust phenomena are not limited to static systems but can also appear in driven quantum systems. In this paper, we show that the Floquet operators of periodically driven systems can be divided into topologically distinct (homotopy) classes and give a simple physical interpretation of this classification in terms of the spectra of Floquet operators. Using this picture, we provide an intuitive understanding of the well-known phenomenon of quantized adiabatic pumping. Systems whose Floquet operators belong to the trivial class simulate the dynamics generated by time-independent Hamiltonians, which can be topologically classified according to the schemes developed for static systems. We demonstrate these principles through an example of a periodically driven two-dimensional hexagonal lattice tight-binding model which exhibits several topological phases. Remarkably, one of these phases supports chiral edge modes even though the bulk is topologically trivial.
Propagation of disturbances in degenerate quantum systems
NASA Astrophysics Data System (ADS)
Chancellor, Nicholas; Haas, Stephan
2011-07-01
Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit and study how couplings away from the Majumdar-Ghosh point affect the propagation of disturbances. We find that even in the case of approximate degeneracy, a disturbance can be propagated throughout a finite system.
Quantum Random Access Codes Using Single d -Level Systems
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Hameedi, Alley; Marques, Breno; Bourennane, Mohamed
2015-05-01
Random access codes (RACs) are used by a party to, with limited communication, access an arbitrary subset of information held by another party. Quantum resources are known to enable RACs that break classical limitations. Here, we study quantum and classical RACs with high-level communication. We derive average performances of classical RACs and present families of high-level quantum RACs. Our results show that high-level quantum systems can significantly increase the advantage of quantum RACs over their classical counterparts. We demonstrate our findings in an experimental realization of a quantum RAC with four-level communication.
Teaching the environment to control quantum systems
Pechen, Alexander; Rabitz, Herschel
2006-06-15
A nonequilibrium, generally time-dependent, environment whose form is deduced by optimal learning control is shown to provide a means for incoherent manipulation of quantum systems. Incoherent control by the environment (ICE) can serve to steer a system from an initial state to a target state, either mixed or in some cases pure, by exploiting dissipative dynamics. Implementing ICE with either incoherent radiation or a gas as the control is explicitly considered, and the environmental control is characterized by its distribution function. Simulated learning control experiments are performed with simple illustrations to find the shape of the optimal nonequilibrium distribution function that best affects the posed dynamical objectives.
Evolution of Quantum Entanglement in Open Systems
Isar, A.
2010-08-04
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.
Precision and the approach to optimality in quantum annealing processors
NASA Astrophysics Data System (ADS)
Johnson, Mark W.
The last few years have seen both a significant technological advance towards the practical application of, and a growing scientific interest in the underlying behaviour of quantum annealing (QA) algorithms. A series of commercially available QA processors, most recently the D-Wave 2XTM 1000 qubit processor, have provided a valuable platform for empirical study of QA at a non-trivial scale. From this it has become clear that misspecification of Hamiltonian parameters is an important performance consideration, both for the goal of studying the underlying physics of QA, as well as that of building a practical and useful QA processor. The empirical study of the physics of QA requires a way to look beyond Hamiltonian misspecification.Recently, a solver metric called 'time-to-target' was proposed as a way to compare quantum annealing processors to classical heuristic algorithms. This approach puts emphasis on analyzing a solver's short time approach to the ground state. In this presentation I will review the processor technology, based on superconducting flux qubits, and some of the known sources of error in Hamiltonian specification. I will then discuss recent advances in reducing Hamiltonian specification error, as well as review the time-to-target metric and empirical results analyzed in this way.
Supersymmetric Quantum Mechanics For Atomic Electronic Systems
NASA Astrophysics Data System (ADS)
Markovich, Thomas; Biamonte, Mason; Kouri, Don
2012-02-01
We employ our new approach to non-relativistic supersymmetric quantum mechanics (SUSY-QM), (J. Phys. Chem. A 114, 8202(2010)) for any number of dimensions and distinguishable particles, to treat the hydrogen atom in full three-dimensional detail. In contrast to the standard one-dimensional radial equation SUSY-QM treatment of the hydrogen atom, where the superpotential is a scalar, in a full three-dimensional treatment, it is a vector which is independent of the angular momentum quantum number. The original scalar Schr"odinger Hamiltonian operator is factored into vector ``charge'' operators: Q and Q^. Using these operators, the first sector Hamiltonian is written as H1= Q^.Q + E0^1. The second sector Hamiltonian is a tensor given by H2= Q Q^ + E0^11 and is isospectral with H1. The second sector ground state, ψ0^(2), can be used to obtain the excited state wave functions of the first sector by application of the adjoint charge operator. We then adapt the aufbau principle to show this approach can be applied to treat the helium atom.
Quantum confined stark effect in wide parabolic quantum wells: real density matrix approach
NASA Astrophysics Data System (ADS)
Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David
2015-12-01
We show how to compute the optical functions of wide parabolic quantum wells (WPQWs) exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken into account in the cylindrical approximation. The role of the interaction potential and of the applied electric field, which mix the energy states according to different quantum numbers and create symmetry forbidden transitions, is stressed. We use the real density matrix approach (RDMA) and an effective e-h potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have obtained a red shift of the absorption maxima (quantum confined Stark effect), asymmetric upon the change of the direction of the applied field ( F → - F), parabolic for the ground state and strongly dependent on the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to the states with different parity for electron and hole.
NASA Astrophysics Data System (ADS)
Ge, Rong-Chun; Hughes, Stephen
2015-11-01
We study the quantum dynamics of two quantum dots (QDs) or artificial atoms coupled through the fundamental localized plasmon of a gold nanorod resonator. We derive an intuitive and efficient time-local master equation, in which the effect of the metal nanorod is taken into consideration self-consistently using a quasinormal mode (QNM) expansion technique of the photon Green function. Our efficient QNM technique offers an alternative and more powerful approach over the standard Jaynes-Cummings model, where the radiative decay, nonradiative decay, and spectral reshaping effect of the electromagnetic environment is rigorously included in a clear and transparent way. We also show how one can use our approach to compliment the approximate Jaynes-Cummings model in certain spatial regimes where it is deemed to be valid. We then present a study of the quantum dynamics and photoluminescence spectra of the two plasmon-coupled QDs. We first explore the non-Markovian regime, which is found to be important only on the ultrashort time scale of the plasmon mode which is about 40 fs. For the field free evolution case of excited QDs near the nanorod, we demonstrate how spatially separated QDs can be effectively coupled through the plasmon resonance and we show how frequencies away from the plasmon resonance can be more effective for coherently coupling the QDs. Despite the strong inherent dissipation of gold nanoresonators, we show that qubit entanglements as large as 0.7 can be achieved from an initially separate state, which has been limited to less than 0.5 in previous work for weakly coupled reservoirs. We also study the superradiance and subradiance decay dynamics of the QD pair. Finally, we investigate the rich quantum dynamics of QDs that are incoherently pumped, and study the polarization dependent behavior of the emitted photoluminescence spectrum where a double-resonance structure is observed due to the strong photon exchange interactions. Our general quantum plasmonics
Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots
NASA Astrophysics Data System (ADS)
Citro, Roberta; Romeo, Francesco
2016-03-01
We review a time-dependent slave bosons approach within the non-equilibrium Green's function technique to analyze the charge and spin pumping in a strongly interacting quantum dot. We study the pumped current as a function of the pumping phase and of the dot energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and discuss its relevance for spintronics applications.
Cavity optomechanics mediated by a quantum two-level system
Pirkkalainen, J.-M.; Cho, S.U.; Massel, F.; Tuorila, J.; Heikkilä, T.T.; Hakonen, P.J.; Sillanpää, M.A.
2015-01-01
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum–mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation–pressure interaction by six orders of magnitude, allowing to approach the strong coupling regime. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping attributed to the qubit. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion. PMID:25912295
Quantum tomography meets dynamical systems and bifurcations theory
NASA Astrophysics Data System (ADS)
Goyeneche, D.; de la Torre, A. C.
2014-06-01
A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ⩽ 32.
A quantum theoretical approach to information processing in neural networks
NASA Astrophysics Data System (ADS)
Barahona da Fonseca, José; Barahona da Fonseca, Isabel; Suarez Araujo, Carmen Paz; Simões da Fonseca, José
2000-05-01
A reinterpretation of experimental data on learning was used to formulate a law on data acquisition similar to the Hamiltonian of a mechanical system. A matrix of costs in decision making specifies values attributable to a barrier that opposed to hypothesis formation about decision making. The interpretation of the encoding costs as frequencies of oscillatory phenomena leads to a quantum paradigm based in the models of photoelectric effect as well as of a particle against a potential barrier. Cognitive processes are envisaged as complex phenomena represented by structures linked by valence bounds. This metaphor is used to find some prerequisites to certain types of conscious experience as well as to find an explanation for some pathological distortions of cognitive operations as they are represented in the context of the isolobal model. Those quantum phenomena are understood as representing an analogue programming for specific special purpose computations. The formation of complex chemical structures within the context of isolobal theory is understood as an analog quantum paradigm for complex cognitive computations.
Comparison of quantum discord and relative entropy in some bipartite quantum systems
NASA Astrophysics Data System (ADS)
Mahdian, M.; Arjmandi, M. B.
2016-04-01
The study of quantum correlations in high-dimensional bipartite systems is crucial for the development of quantum computing. We propose relative entropy as a distance measure of correlations may be measured by means of the distance from the quantum state to the closest classical-classical state. In particular, we establish relations between relative entropy and quantum discord quantifiers obtained by means of orthogonal projection measurements. We show that for symmetrical X-states density matrices the quantum discord is equal to relative entropy. At the end of paper, various examples of X-states such as two-qubit and qubit-qutrit have been demonstrated.
Quantum arrival time for open systems
Yearsley, J. M.
2010-07-15
We extend previous work on the arrival time problem in quantum mechanics, in the framework of decoherent histories, to the case of a particle coupled to an environment. The usual arrival time probabilities are related to the probability current, so we explore the properties of the current for general open systems that can be written in terms of a master equation of the Lindblad form. We specialize to the case of quantum Brownian motion, and show that after a time of order the localization time of the current becomes positive. We show that the arrival time probabilities can then be written in terms of a positive operator-valued measure (POVM), which we compute. We perform a decoherent histories analysis including the effects of the environment and show that time-of-arrival probabilities are decoherent for a generic state after a time much greater than the localization time, but that there is a fundamental limitation on the accuracy {delta}t, with which they can be specified which obeys E{delta}t>>({h_bar}/2{pi}). We confirm that the arrival time probabilities computed in this way agree with those computed via the current, provided there is decoherence. We thus find that the decoherent histories formulation of quantum mechanics provides a consistent explanation for the emergence of the probability current as the classical arrival time distribution, and a systematic rule for deciding when probabilities may be assigned.
Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
The origins of quantum interference and uncertainty broadening. A linear ribbon model approach
Tang, J.
1996-02-01
As an alternative to the orthodox Schroedinger wave mechanics or Heisenberg matrix mechanics approach, a simple linear ribbon model for quantum theory is presented. A different perspective and better physical insights into the origins of quantum interference and the mechanisms for uncertainty broadening are offered. Quantum interference in the atomic scale and superconducting behaviour in the macroscopic scale are compared.
Approximation, Proof Systems, and Correlations in a Quantum World
NASA Astrophysics Data System (ADS)
Gharibian, Sevag
2013-01-01
This thesis studies three topics in quantum computation and information: The approximability of quantum problems, quantum proof systems, and non-classical correlations in quantum systems. In the first area, we demonstrate a polynomial-time (classical) approximation algorithm for dense instances of the canonical QMA-complete quantum constraint satisfaction problem, the local Hamiltonian problem. In the opposite direction, we next introduce a quantum generalization of the polynomial-time hierarchy, and define problems which we prove are not only complete for the second level of this hierarchy, but are in fact hard to approximate. In the second area, we study variants of the interesting and stubbornly open question of whether a quantum proof system with multiple unentangled quantum provers is equal in expressive power to a proof system with a single quantum prover. Our results concern classes such as BellQMA(poly), and include a novel proof of perfect parallel repetition for SepQMA(m) based on cone programming duality. In the third area, we study non-classical quantum correlations beyond entanglement, often dubbed "non-classicality". Among our results are two novel schemes for quantifying non-classicality: The first proposes the new paradigm of exploiting local unitary operations to study non-classical correlations, and the second introduces a protocol through which non-classical correlations in a starting system can be "activated" into distillable entanglement with an ancilla system. An introduction to all required linear algebra and quantum mechanics is included.
Controlled Population Transfer in a Double Quantum Dot System
Fountoulakis, Antonios; Terzis, Andreas F.; Paspalakis, Emmanuel
2007-12-26
We study the potential for controlled population transfer between the ground states of two anharmonic coupled quantum dots. We propose a method based on the interaction of the quantum dot structure with external electromagnetic fields. The interaction of the quantum dot system with the electromagnetic fields is studied with the use of the time-dependent Schroedinger equation. We present numerical results for an asymmetric quantum dot structure.
Quantum dot-ring nanostructure — A comparison of different approaches
NASA Astrophysics Data System (ADS)
Janus-Zygmunt, Iwona; Kȩdzierska, Barbara; Gorczyca-Goraj, Anna; Zipper, Elżbieta; Maśka, Maciej M.
2016-03-01
It has been shown recently that a nanostructure composed of a quantum dot (QD) surrounded by a quantum ring (QR) possesses a set of very unique characteristics that make it a good candidate for future nanoelectronic devices. Its main advantage is the ability to easily tune transport properties on demand by so-called “wavefunction engineering”. In practice, the distribution of the electron wavefunction in the nanostructure can be controlled by, e.g., electrical gating. In order to predict some particular properties of the system, one has to know the exact wavefunctions for different shapes of the confining potential that defines the structure. In this paper, we compare three different methods that can be used to determine the energy spectrum, electron wavefunctions and transport properties of the system under investigation. In the first approach, we utilize the cylindrical symmetry of the confining potential and solve only the radial part of the Schrödinger equation; in the second approach, we discretize the Schrödinger equation in two dimensions and find the eigenstates with the help of the Lanczös method; in the third approach, we use package Kwant to solve a tight-binding approximation of the original system. To study the transport properties in all these approaches, we calculate microscopically the strength of the coupling between the nanosystem and leads. In the first two approaches, we use the Bardeen method, in the third one calculations are performed with the help of package Kwant.
Complex flows in granular and quantum systems
NASA Astrophysics Data System (ADS)
Herrera, Mark Richard
In this thesis we investigate three problems involving complex flows in granular and quantum systems. (a) We first study the dynamics of granular particles in a split-bottom shear cell experiment. We utilize network theory to quantify the dynamics of the granular system at the mesoscopic scale. We find an apparent phase transition in the formation of a giant component of broken links as a function of applied shear. These results are compared to a numerical model where breakages are based on the amount of local stretching in the granular pile. (b) Moving to quantum mechanical systems, we study revival and echo phenomena in systems of anharmonically confined atoms, and find a novel phenomena we call the "pre-revival echo". We study the effect of size and symmetry of the perturbations on the various echoes and revivals, and form a perturbative model to describe the phenomena. We then model the effect of interactions using the Gross-Pitaevskii Equation and study interactions' effect on the revivals. (c) Lastly, we continue to study the effect of interactions on particles in weakly anharmonic traps. We numerically observe a "dynamical localization" phenomena in the presence of both anharmonicity and interactions. States may remain localized or become spread out in the potential depending on the strength and sign of the anharmonicity and interactions. We formulate a model for this phenomena in terms of a classical phase space.
Geodesic paths for quantum many-body systems
NASA Astrophysics Data System (ADS)
Tomka, Michael; Souza, Tiago; Rosenberg, Steve; Kolodrubetz, Michael; Polkovnikov, Anatoli
The quantum length is a distance between parameter-dependent eigenstates of an adiabatically driven quantum system. Its associated metric has many intriguing properties, for example it is related to the fidelity susceptibility, an important quantity in the study of quantum phase transitions. The metric also appears as the leading adiabatic correction of the energy fluctuations of a quantum system and gives rise to a time-energy uncertainty principle and a geometric interpretation of time. The adiabatic response of an open quantum system can as well be expressed through this metric. Further, the quantum length introduces the notion of Riemannian geometry to the manifold of eigenstates and hence allows one to define geodesics in parameter space. We study the geodesics in parameter space of certain quantum many-body systems, emerging from this quantum distance. These geodesic paths provide a well-defined optimal control protocol on how to drive the system's parameters in time, to get from one eigenstate to another. Generating optimal evolution plays a central role in quantum information technology, adiabatic quantum computing and quantum metrology. Swiss National Science Foundation (SNSF).
Systems Approach to Environmental Pollution.
ERIC Educational Resources Information Center
Chacko, George K., Ed.
The objective of a two-day Symposium on Systems Approach to Environmental Pollution of the Operations Research Society of America at the 137th Annual Meeting of the American Association for the Advancement of Science, December 27-28, 1970 in Chicago, Illinois, was not to raise the litany of a systems approach as the answer to all environmental…
Coarse grained open system quantum dynamics
Thanopulos, Ioannis; Brumer, Paul; Shapiro, Moshe
2008-11-21
We show that the quantum dynamics of a system comprised of a subspace Q coupled to a larger subspace P can be recast as a reduced set of 'coarse grained' ordinary differential equations with constant coefficients. These equations can be solved by a single diagonalization of a general complex matrix. The method makes no assumptions about the strength of the couplings between the Q and the P subspaces, nor is there any limitation on the initial population in P. The utility of the method is demonstrated via computations in three following areas: molecular compounds, photonic materials, and condensed phases.
Partitioning technique for discrete quantum systems
Jin, L.; Song, Z.
2011-06-15
We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-11-15
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M.; Eric Tai, M.; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems. PMID:26632587
Detecting relay attacks on RFID communication systems using quantum bits
NASA Astrophysics Data System (ADS)
Jannati, Hoda; Ardeshir-Larijani, Ebrahim
2016-08-01
RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.
Position-dependent mass quantum Hamiltonians: general approach and duality
NASA Astrophysics Data System (ADS)
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
On the consistent histories approach to quantum mechanics
Dowker, F. |; Kent, A.
1996-03-01
We review the consistent histories formulations of quantum mechanics developed by Griffiths, Omnes, Gell-Man, and Hartle, and we describe the classifications of consistent sets. We illustrate some general features of consistent sets by a few lemmas and examples. We also consider various interpretations of the formalism, and we examine the new problems which arise in reconstructing the past and predicting the future. It is shown that Omnes characterization of true statements---statements that can be deduced unconditionally in his interpretation---is incorrect. We examine critically Gell-Mann and Hartle`s interpretation of the formalism, and in particular, their discussions of communication, prediction, and retrodiction, and we conclude that their explanation of the apparent persistence of quasiclassicality relies on assumptions about an as-yet-unknown theory of experience. Our overall conclusion is that the consistent histories approach illustrates the need to supplement quantum mechanics by some selection principle in order to produce a fundamental theory capable of unconditional predictions.
Simulation of Strongly Correlated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Bilgin, Ersen
In this thesis, we address the problem of solving for the properties of interacting quantum many-body systems in thermal equilibrium. The complexity of this problem increases exponentially with system size, limiting exact numerical simulations to very small systems. To tackle more complex systems, one needs to use heuristic algorithms that approximate solutions to these systems. Belief propagation is one such algorithm that we discuss in chapters 2 and 3. Using belief propagation, we demonstrate that it is possible to solve for static properties of highly correlated quantum many-body systems for certain geometries at all temperatures. In chapter 4, we generalize the multiscale renormalization ansatz to the anyonic setting to solve for the ground state properties of anyonic quantum many-body systems. The algorithms we present in chapters 2, 3, and 4 are very successful in certain settings, but they are not applicable to the most general quantum mechanical systems. For this, we propose using quantum computers as we discuss in chapter 5. The dimension reduction algorithm we consider in chapter 5 enables us to prepare thermal states of any quantum many-body system on a quantum computer faster than any previously known algorithm. Using these thermal states as the initialization of a quantum computer, one can study both static and dynamic properties of quantum systems without any memory overhead.
An Adynamical, Graphical Approach to Quantum Gravity and Unification
NASA Astrophysics Data System (ADS)
Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy
We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum
Locally Compact Quantum Groups. A von Neumann Algebra Approach
NASA Astrophysics Data System (ADS)
Van Daele, Alfons
2014-08-01
In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique
NASA Astrophysics Data System (ADS)
Bahrami, M.; Donadi, S.; Ferialdi, L.; Bassi, A.; Curceanu, C.; di Domenico, A.; Hiesmayr, B. C.
2013-06-01
Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.
Bahrami, M; Donadi, S; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C
2013-01-01
Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models. PMID:23739609
Quantum revivals and magnetization tunneling in effective spin systems
NASA Astrophysics Data System (ADS)
Krizanac, M.; Altwein, D.; Vedmedenko, E. Y.; Wiesendanger, R.
2016-03-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump-probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins.
Revealing electronic open quantum systems with subsystem TDDFT.
Krishtal, Alisa; Pavanello, Michele
2016-03-28
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT. PMID:27036438
Revealing electronic open quantum systems with subsystem TDDFT
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Pavanello, Michele
2016-03-01
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.
On a quantum algebraic approach to a generalized phase space
NASA Astrophysics Data System (ADS)
Bohm, D.; Hiley, B. J.
1981-04-01
We approach the relationship between classical and quantum theories in a new way, which allows both to be expressed in the same mathematical language, in terms of a matrix algebra in a phase space. This makes clear not only the similarities of the two theories, but also certain essential differences, and lays a foundation for understanding their relationship. We use the Wigner-Moyal transformation as a change of representation in phase space, and we avoid the problem of “negative probabilities” by regarding the solutions of our equations as constants of the motion, rather than as statistical weight factors. We show a close relationship of our work to that of Prigogine and his group. We bring in a new nonnegative probability function, and we propose extensions of the theory to cover thermodynamic processes involving entropy changes, as well as the usual reversible processes.
On the no-signaling approach to quantum nonlocality
Méndez, J. M. Urías, Jesús
2015-03-15
The no-signaling approach to nonlocality deals with separable and inseparable multiparty correlations in the same set of probability states without conflicting causality. The set of half-spaces describing the polytope of no-signaling probability states that are admitted by the most general class of Bell scenarios is formulated in full detail. An algorithm for determining the skeleton that solves the no-signaling description is developed upon a new strategy that is partially pivoting and partially incremental. The algorithm is formulated rigorously and its implementation is shown to be effective to deal with the highly degenerate no-signaling descriptions. Several applications of the algorithm as a tool for the study of quantum nonlocality are mentioned. Applied to a large set of bipartite Bell scenarios, we found that the corresponding no-signaling polytopes have a striking high degeneracy that grows up exponentially with the size of the Bell scenario.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration. PMID:22243147
Exploiting quantum parallelism to simulate quantum random many-body systems.
Paredes, B; Verstraete, F; Cirac, J I
2005-09-30
We present an algorithm that exploits quantum parallelism to simulate randomness in a quantum system. In our scheme, all possible realizations of the random parameters are encoded quantum mechanically in a superposition state of an auxiliary system. We show how our algorithm allows for the efficient simulation of dynamics of quantum random spin chains with known numerical methods. We propose an experimental realization based on atoms in optical lattices in which disorder could be simulated in parallel and in a controlled way through the interaction with another atomic species. PMID:16241634
A Green's-Function Approach to Exchange Spin Coupling As a New Tool for Quantum Chemistry.
Steenbock, Torben; Tasche, Jos; Lichtenstein, Alexander I; Herrmann, Carmen
2015-12-01
Exchange spin coupling is usually evaluated in quantum chemistry from the energy difference between a high-spin determinant and a Broken-Symmetry (BS) determinant in combination with Kohn-Sham density functional theory (KS-DFT), based on the work of Noodleman. As an alternative, an efficient approximate approach relying on Green's functions has been developed by one of the authors. This approach stems from solid-state physics and has never been systematically tested for molecular systems. We rederive a version of the Green's-function approach originally suggested by Han, Ozaki, and Yu. This new derivation employs local projection operators as common in quantum chemistry for defining local properties such as partial charges, rather than using a dual basis as in the Han-Ozaki-Yu approach. The result is a simple postprocessing procedure for KS-DFT calculations, which in contrast to the BS energy-difference approach requires the electronic structure of only one spin state. We show for several representative small molecules, diradicals, and dinuclear transition metal complexes that this method gives qualitatively consistent results with the BS energy-difference approach as long as it is applied to high-spin determinants and as long as structural relaxation effects in different spin states do not play an important role. PMID:26579585
NASA Astrophysics Data System (ADS)
Zhang, Yong; Zhang, Kun; Pang, Jinglong
2016-01-01
This paper focuses on the study of topological features in teleportation-based quantum computation and aims at presenting a detailed review on teleportation-based quantum computation (Gottesman and Chuang in Nature 402: 390, 1999). In the extended Temperley-Lieb diagrammatical approach, we clearly show that such topological features bring about the fault-tolerant construction of both universal quantum gates and four-partite entangled states more intuitive and simpler. Furthermore, we describe the Yang-Baxter gate by its extended Temperley-Lieb configuration and then study teleportation-based quantum circuit models using the Yang-Baxter gate. Moreover, we discuss the relationship between the extended Temperley-Lieb diagrammatical approach and the Yang-Baxter gate approach. With these research results, we propose a worthwhile subject, the extended Temperley-Lieb diagrammatical approach, for physicists in quantum information and quantum computation.
FPGA based digital phase-coding quantum key distribution system
NASA Astrophysics Data System (ADS)
Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu
2015-12-01
Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.
Systems Science Approach to Data
NASA Astrophysics Data System (ADS)
Kadirkamanathan, Visakan
Behaviours of many complex systems of interest cannot be adequately described since the underlying science has not advanced enough to be able to tease out the mathematical relationships. There is a need therefore to use methods and tools that capture the structure in the data that is representative of the systems behaviour. The subject of system identification allows us to deduce mathematical relations that govern the dynamics of systems based on the observed data. In addition, it can also be used to understand the system from basic principles. In this brief talk, the main approaches of systems science to data are reviewed identifying their strengths and limitations. The approaches include computational intelligence methods such as neural networks, genetic algorithms and fuzzy logic, as well as system identification methods in both time and frequency domains. Examples from physical science, neuroscience and social science serve to highlight achievements of the systems science approach to data.
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
NASA Astrophysics Data System (ADS)
Milburn, T. J.; Kim, M. S.; Vanner, M. R.
2016-05-01
Nonclassical-state generation is an important component throughout experimental quantum science for quantum information applications and probing the fundamentals of physics. Here, we investigate permutations of quantum nondemolition quadrature measurements and single quanta addition or subtraction to prepare quantum superposition states in bosonic systems. The performance of each permutation is quantified and compared using several different nonclassicality criteria including Wigner negativity, nonclassical depth, and optimal fidelity with a coherent-state superposition. We also compare the performance of our protocol using squeezing instead of a quadrature measurement and find that the purification provided by the quadrature measurement can significantly increase the nonclassicality generated. Our approach is ideally suited for implementation in light-matter systems such as quantum optomechanics and atomic spin ensembles, and offers considerable robustness to initial thermal occupation.
Theory of activated transport in bilayer quantum Hall systems.
Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H
2008-07-25
We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment. PMID:18764355
Theory of Activated Transport in Bilayer Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Roostaei, Bahman; Fertig, Herbert; Mullen, Kieran; Simon, Steven
2008-03-01
We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν= 1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern- Simons theory that in drag geometries, current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment. We conclude with predictions for future experiments.
Theory of Activated Transport in Bilayer Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Roostaei, B.; Mullen, K. J.; Fertig, H. A.; Simon, S. H.
2008-07-01
We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
Coulomb crystallization in classical and quantum systems
NASA Astrophysics Data System (ADS)
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
Holonomic Quantum Control with Continuous Variable Systems
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.; Jiang, Liang
2016-04-01
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.
NASA Astrophysics Data System (ADS)
Tasaki, Hal
2016-04-01
Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems.
Tasaki, Hal
2016-04-29
Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems. PMID:27176507
On microstates counting in many body polymer quantum systems
Chacon-Acosta, Guillermo; Morales-Tecotl, Hugo A.; Dagdug, Leonardo
2011-10-14
Polymer quantum systems are mechanical models quantized in a similar way as loop quantum gravity but in which loops/graphs resembling polymers are replaced by discrete sets of points. Such systems have allowed to study in a simpler context some novel aspects of loop quantum gravity. Although thermal aspects play a crucial role in cosmology and black hole physics little attention has been given to the thermostatistics of many body polymer quantum systems. In this work we explore how the features of a one-dimensional effective polymer gas, affect its microstate counting and hence the corresponding thermodynamical quantities.
A new approach to shortest paths on networks based on the quantum bosonic mechanism
NASA Astrophysics Data System (ADS)
Jiang, Xin; Wang, Hailong; Tang, Shaoting; Ma, Lili; Zhang, Zhanli; Zheng, Zhiming
2011-01-01
This paper presents quantum bosonic shortest path searching (QBSPS), a natural, practical and highly heuristic physical algorithm for reasoning about the recognition of network structure via quantum dynamics. QBSPS is based on an Anderson-like itinerant bosonic system in which a boson's Green function is used as a navigation pointer for one to accurately approach the terminals. QBSPS is demonstrated by rigorous mathematical and physical proofs and plenty of simulations, showing how it can be used as a greedy routing to seek the shortest path between different locations. In methodology, it is an interesting and new algorithm rooted in the quantum mechanism other than combinatorics. In practice, for the all-pairs shortest-path problem in a random scale-free network with N vertices, QBSPS runs in O(μ(N) ln ln N) time. In application, we suggest that the corresponding experimental realizations are feasible by considering path searching in quantum optical communication networks; in this situation, the method performs a pure local search on networks without requiring the global structure that is necessary for current graph algorithms.
An excited-state approach within full configuration interaction quantum Monte Carlo
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-10-07
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.
Single Electron in Systems of Two and Three Quantum Dots
NASA Astrophysics Data System (ADS)
Filikhin, Igor; Vlahovic, Branislav
We consider the single electron confinement states in the system of two and three quantum dots (QDs). The InAs/GaAs QDs are modeled as laterally distributed dots, using single sub-band effective mass approach with effective potential simulating the strain effect. Electron localization in double quantum dots (DQDs) and in triple quantum dots (TQDs) is studied over the entire electron energy spectrum by varying the geometry parameters of these QDs arrays. It is shown that a small violation of the DQD shape symmetry drastically affects tunneling. This effect also appears as a numerical instability in calculations of spectral distribution of localized/delocalized electron states for small variations of the input parameters of numerical procedure. The effect of adding a third dot to a DQD is investigated. We show that the presence of a third dot increases the tunneling in the initial DQD. The spectral distribution of localized/delocalized states appears sensitive to the violation of the mirror symmetry of TQDs. This work was supported by the NSF (HRD-1345219).
A Systems Approach to Teaching.
ERIC Educational Resources Information Center
Kelly, Robert E.
The systematic approach to teaching provides a method for the functional organization and development of instruction. This method applies to preparation of materials for classroom use, as well as for print and non-print media. Inputs to the systems approach include well defined objectives, analysis of the intended audience, special criteria…
Matrix operator approach to the quantum evolution operator and the geometric phase
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo; Kim, Jewan; Soh, Kwang Sup
2013-11-01
The Moody-Shapere-Wilczek's adiabatic effective Hamiltonian and Lagrangian method is developed further into the matrix effective Hamiltonian (MEH) and Lagrangian (MEL) approach to a parameter-dependent quantum system. The matrix-operator approach formulated in the product integral (PI) provides not only a method to find the wave function efficiently in the MEH approach but also higher order corrections to the effective action systematically in the MEL approach, a la the Magnus expansion and the Kubo cumulant expansion. A coupled quantum system of a light particle of a harmonic oscillator is worked out, and as a by-product, a new kind of gauge potential (Berry's connection) is found even for nondegenerate cases (real eigenfunctions). Moreover, in the PI formulation the holonomy of the induced gauge potential is related to Schlesinger's exact formula for the gauge field tensor. A superadiabatic expansion is also constructed, and a generalized Dykhne formula, depending on the contour integrals of the homotopy class of complex degenerate points, is rephrased in the PI formulation.
Strain-Driven Approach to Quantum Criticality in A Fe2 As2 with A =K , Rb, and Cs
NASA Astrophysics Data System (ADS)
Eilers, Felix; Grube, Kai; Zocco, Diego A.; Wolf, Thomas; Merz, Michael; Schweiss, Peter; Heid, Rolf; Eder, Robert; Yu, Rong; Zhu, Jian-Xin; Si, Qimiao; Shibauchi, Takasada; Löhneysen, Hilbert v.
2016-06-01
The iron-based superconductors A Fe2 As2 with A =K , Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconducting state.
Strain-Driven Approach to Quantum Criticality in AFe_{2}As_{2} with A=K, Rb, and Cs.
Eilers, Felix; Grube, Kai; Zocco, Diego A; Wolf, Thomas; Merz, Michael; Schweiss, Peter; Heid, Rolf; Eder, Robert; Yu, Rong; Zhu, Jian-Xin; Si, Qimiao; Shibauchi, Takasada; Löhneysen, Hilbert V
2016-06-10
The iron-based superconductors AFe_{2}As_{2} with A=K, Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconducting state. PMID:27341252
Performance comparison between classical and quantum control for a simple quantum system
NASA Astrophysics Data System (ADS)
Xi, Zairong; Jin, Guangsheng
2008-02-01
Brańczyk et al. pointed out that the quantum control scheme is superior to the classical control scheme for a simple quantum system using simulation [A.M. Brańczyk, P.E.M.F. Mendonca, A. Gilchrist, A.C. Doherty, S.D. Barlett, Quantum control theory of a single qubit, Physical Review A 75 (2007) 012329 or arXiv e-print quant-ph/0608037]. Here we rigorously prove the result. Furthermore we will show that any quantum operation does not universally “correct” the dephasing noise.
Computable measure of total quantum correlations of multipartite systems
NASA Astrophysics Data System (ADS)
Behdani, Javad; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen
2016-04-01
Quantum discord as a measure of the quantum correlations cannot be easily computed for most of density operators. In this paper, we present a measure of the total quantum correlations that is operationally simple and can be computed effectively for an arbitrary mixed state of a multipartite system. The measure is based on the coherence vector of the party whose quantumness is investigated as well as the correlation matrix of this part with the remainder of the system. Being able to detect the quantumness of multipartite systems, such as detecting the quantum critical points in spin chains, alongside with the computability characteristic of the measure, makes it a useful indicator to be exploited in the cases which are out of the scope of the other known measures.
Experimental observation of saddle points over the quantum control landscape of a two-spin system
NASA Astrophysics Data System (ADS)
Sun, Qiuyang; Pelczer, István; Riviello, Gregory; Wu, Re-Bing; Rabitz, Herschel
2015-04-01
The growing successes in performing quantum control experiments motivated the development of control landscape analysis as a basis to explain these findings. When a quantum system is controlled by an electromagnetic field, the observable as a functional of the control field forms a landscape. Theoretical analyses have predicted the existence of critical points over the landscapes, including saddle points with indefinite Hessians. This paper presents a systematic experimental study of quantum control landscape saddle points. Nuclear magnetic resonance control experiments are performed on a coupled two-spin system in a 13C-labeled chloroform (13CHCl3) sample. We address the saddles with a combined theoretical and experimental approach, measure the Hessian at each identified saddle point, and study how their presence can influence the search effort utilizing a gradient algorithm to seek an optimal control outcome. The results have significance beyond spin systems, as landscape saddles are expected to be present for the control of broad classes of quantum systems.
Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System
Tang, Jing; Geng, Weidong; Xu, Xiulai
2015-01-01
We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay g(2)(0) in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum interference mechanism does not require a strong coupling strength between the cavity and the quantum dot, even with the pure dephasing of the system. This simple proposal provides an effective way for potential applications in solid state quantum computation and quantum information processing. PMID:25783560
Temperature of a small quantum system as an internal property
NASA Astrophysics Data System (ADS)
Wang, Jiaozi; Wang, Wenge
Equilibration of small quantum systems is a topic of current interest both theoretically and experimentally. In this work, we study the extent to which a temperature can be assigned to a small quantum (chaotic) system as an internal property, but not as a property of any large environment. Specifically, we study a total system, which is composed of an Ising chain in a nonhomogeneous transverse field and an additional spin coupled to one of the spins in the chain. The additional spin can be used as a probe to detect local temperature of the chain. The total system lies in a pure state under unitary evolution and initial state of the chain is prepared in a typical state within an energy shell. Our numerical simulations show that the reduced density matrix of the probe spin approaches canonical states with similar temperatures at different locations of the chain beyond a relaxation time, and the results are close to the theoretical prediction given by the statistical mechanics in the thermodynamic limit, namely β =∂lnρ/(E) ∂E with ρ (E) being the density of states. We also study effects due to finite size of the chain, including the dependence on initial state of the probe and difference of numerically-obtain temperature from theoretical results.
Automated drawing system of quantum energy levels
NASA Astrophysics Data System (ADS)
Stampoultzis, M.; Sinatkas, J.; Tsakstara, V.; Kosmas, T. S.
2014-03-01
The purpose of this work is to derive an automated system that provides advantageous drawings of energy spectra for quantum systems (nuclei, atoms, molecules, etc.) required in various physical sciences. The automation involves the development of appropriate computational code and graphical imaging system based on raw data insertion, theoretical calculations and experimental or bibliographic data insertion. The system determines the appropriate scale to depict graphically with the best possible way in the available space. The presently developed code operates locally and the results are displayed on the screen and can be exported to a PostScript file. We note its main features to arrange and visualize in the available space the energy levels with their identity, taking care the existence in the final diagram the least auxiliary deviations. Future improvements can be the use of Java and the availability on the Internet. The work involves the automated plotting of energy levels in molecules, atoms, nuclei and other types of quantized energy spectra. The automation involves the development of an appropriate computational code and graphical imaging system.
Quantum Mechanics and the Role of Time:. are Quantum Systems Markovian?
NASA Astrophysics Data System (ADS)
Durt, Thomas
2013-06-01
The predictions of the Quantum Theory have been verified so far with astonishingly high accuracy. Despite of its impressive successes, the theory still presents mysterious features such as the border line between the classical and quantum world, or the deep nature of quantum nonlocality. These open questions motivated in the past several proposals of alternative and/or generalized approaches. We shall discuss in the present paper alternative theories that can be infered from a reconsideration of the status of time in quantum mechanics. Roughly speaking, quantum mechanics is usually formulated as a memory free (Markovian) theory at a fundamental level, but alternative, nonMarkovian, formulations are possible, and some of them can be tested in the laboratory. In our paper we shall give a survey of these alternative proposals, describe related experiments that were realized in the past and also formulate new experimental proposals.
Quantum number theoretic transforms on multipartite finite systems.
Vourdas, A; Zhang, S
2009-06-01
A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed. PMID:19488175
Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems
ERIC Educational Resources Information Center
Sun, Kai
2009-01-01
This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…
Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model
Cui Jian; Cao Junpeng; Fan Heng
2010-08-15
The Kitaev honeycomb model with a topological phase transition at zero temperature is studied using the quantum-information method. Based on the exact solution of the ground state, the mutual information between two nearest sites and between two bonds with the greatest distance are obtained. It is found that the mutual information shows some singularities at the critical point where the system transits from the gapless phase to the gapped phase. Finite-size effects and scaling behavior are also studied. Our results indicate that the mutual information can serve as a good indicator of the topological phase transition. This is because the mutual information is believed to be able to catch some global correlation properties of the system. Meanwhile, this method has the advantages that the phase transition can be determined easily and the order parameters, which are hard to obtain for some topological phase transitions, are not necessarily known.
Epilogue: Systems Approaches and Systems Practice
NASA Astrophysics Data System (ADS)
Reynolds, Martin; Holwell, Sue
Each of the five systems approaches discussed in this volume: system dynamics (SD), the viable systems model (VSM), strategic options development and analysis (SODA), soft systems methodology (SSM) and critical systems heuristics (CSH) has a pedigree. Not in the sense of the sometimes absurd spectacle of animals paraded at dog shows. Rather, their pedigree derives from their systems foundations, their capacity to evolve and their flexibility in use. None of the five approaches has developed out of use in restricted and controlled contexts of either low or high levels of complicatedness. Neither has any one of them evolved as a consequence of being applied only to situations with either presumed stakeholder agreement on purpose, or courteous disagreement amongst stakeholders, or stakeholder coercion. The compilation is not a celebration of abstract ‘methodologies', but of theoretically robust approaches that have a genuine pedigree in practice.
NASA Astrophysics Data System (ADS)
Carr, Lincoln; Maeda, Kenji; Wall, Michael L.
2015-03-01
Ultracold molecules trapped in optical lattices present a new regime of physical chemistry and a new state of matter: complex dipolar matter. Such systems open up the prospect of tunable quantum complexity. We present models for the quantum many-body statics and dynamics of present experiments on polar bi-alkali dimer molecules. We are developing Hamiltonians and simulations for upcoming experiments on dimers beyond the alkali metals, including biologically and chemically important naturally occurring free radicals like the hydroxyl free radical (OH), as well as symmetric top polyatomic molecules like methyl fluoride (CH3F). These systems offer surprising opportunities in modeling and design of new materials. For example, symmetric top polyatomics can be used to study quantum molecular magnets and quantum liquid crystals. We use matrix-product-state (MPS) algorithms, supplemented by exact diagonalization, variational, perturbative, and other approaches. MPS algorithms not only produce experimentally measurable quantum phase diagrams but also explore the dynamical interplay between internal and external degrees of freedom inherent in complex dipolar matter. We maintain open source code (openTEBD and openMPS) available freely and used widely. Funded by NSF and AFOSR.
Quantum-classical correspondence in steady states of nonadiabatic systems
Fujii, Mikiya; Yamashita, Koichi
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Measures of Quantum Synchronization in Continuous Variable Systems
NASA Astrophysics Data System (ADS)
Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.
2013-09-01
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.
Measures of quantum synchronization in continuous variable systems.
Mari, A; Farace, A; Didier, N; Giovannetti, V; Fazio, R
2013-09-01
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems. PMID:25166668
Process tomography via sequential measurements on a single quantum system
NASA Astrophysics Data System (ADS)
Bassa, Humairah; Goyal, Sandeep K.; Choudhary, Sujit K.; Uys, Hermann; Diósi, Lajos; Konrad, Thomas
2015-09-01
We utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters is encoded into a continuous-variable classical system which is coupled to the two-level quantum system via a generalized Hamiltonian. This combined estimate of the quantum state and dynamical parameters is updated by using the information obtained from sequential measurements on the quantum system and, after a sufficient waiting period, faithful state monitoring and parameter determination is obtained. Numerical evidence is used to demonstrate the convergence of the state estimate to the true state of the hybrid system.
Fate of classical solitons in one-dimensional quantum systems.
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Strong polygamy of quantum correlations in multi-party quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2014-10-01
We propose a new type of polygamy inequality for multi-party quantum entanglement. We first consider the possible amount of bipartite entanglement distributed between a fixed party and any subset of the rest parties in a multi-party quantum system. By using the summation of these distributed entanglements, we provide an upper bound of the distributed entanglement between a party and the rest in multi-party quantum systems. We then show that this upper bound also plays as a lower bound of the usual polygamy inequality, therefore the strong polygamy of multi-party quantum entanglement. For the case of multi-party pure states, we further show that the strong polygamy of entanglement implies the strong polygamy of quantum discord.
Numerical simulation of quantum systems using the Particle-In-Cell method
NASA Astrophysics Data System (ADS)
Dirkmann, Sven; Youssef, Ziad; Hemke, Torben; Mussenbrock, Thomas
2014-10-01
The Particle-In-Cell (PIC) method is a very powerful method for studying the dynamics of plasmas. It has been primarily developed for tracking the charged particle trajectories subject to selfconsistent and external electromagnetic fields. Exploiting the power of modern computers, one is able to track the classical paths of tens of millions of particles at the same time. In the late 1980th, it was Dawson (and later Dauger) who had the idea to apply the PIC method to the classical part in the semiclassical approach to quantum systems via path integral methods. One could estimate that if a thousands of classical paths are sufficient to describe the dynamics of one quantum particle, then millions classical paths could describe the dynamics of a quantum particle system. A PIC code in the frame of a semiclassical approach would therefore enable the investigation of a number of quantum phenomena, e.g., optical properties, electrical properties, and, ultimately, chemical reactions. In this contribution we explain the use of the PIC code yapic (developed by the authors) in the frame of the path integral method and discuss the numerical results for simple quantum phenomena, i.e., the quantum harmonic oscillator and quantum tunneling. This work is supported by the German Research Foundation in the frame of FOR 2093.
Description of non-Markovian effect in open quantum system with the discretized environment method
NASA Astrophysics Data System (ADS)
Lacroix, Denis; Sargsyan, Vazgen; Adamian, Gurgen; Antonenko, Nikolai
2015-04-01
An approach, called discretized environment method, is used to treat exactly non-Markovian effects in open quantum systems. In this approach, a complex environment described by a spectral function is mapped into a finite set of discretized states with an appropriate coupling to the system of interest. The finite set of system plus environment degrees of freedom are then explicitly followed in time leading to a quasi-exact description. The present approach is anticipated to be particularly accurate in the low temperature and strongly non-Markovian regime. The discretized environment method is validated on a two-level system (qubit) coupled to a bosonic or fermionic heat-bath. A perfect agreement with the quantum Langevin approach is found. Further illustrations are made on a three-level system (qutrit) coupled to a bosonic heat-bath. Emerging processes due to strong memory effects are discussed.
Quantum interference in an electron-hole graphene ring system
Smirnov, D.; Schmidt, H.; Haug, R. J.
2013-12-04
Quantum interference is observed in a graphene ring system via the Aharonov Bohm effect. As graphene is a gapless semiconductor, this geometry allows to study the unique situation of quantum interference between electrons and holes in addition to the unipolar quantum interference. The period and amplitude of the observed Aharonov-Bohm oscillations are independent of the sign of the applied gate voltage showing the equivalence between unipolar and dipolar interference.
Hexagonal-shaped monolayer-bilayer quantum disks in graphene: A tight-binding approach
NASA Astrophysics Data System (ADS)
da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.; Peeters, F. M.
2016-07-01
Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.
NASA Astrophysics Data System (ADS)
Szymański, S.
2012-07-01
Proton spin-lattice relaxation of the methyl group in solids had been one of the most thoroughly addressed theoretical problems in nuclear magnetic resonance (NMR) spectroscopy, considered at different levels of sophistication. For systems with substantial quantum tunneling effects, several quantum mechanical treatments were reported, although in practical applications the quantum models were always augmented with or replaced by the classical jump model. However, the latter has recently proved invalid in the description of NMR line shape effects in variable-temperature spectra of hindered methyl groups, while the competing theory of damped quantum rotation (DQR) was shown to be adequate. In this work, the spin-lattice relaxation issue for the methyl protons is readdressed using the latter theory. The main outcome is that, while the existing formulas for the relaxation rates remain unchanged, the crucial parameter entering them, the correlation time of the relevant random process, need to be reinterpreted. It proves to be the inverse of one of the two quantum-rate constants entering the DQR model, neither of which, when taken separately, can be related to the jump process. It can be identified with one describing the life-time broadening of the tunnel peaks in inelastic neutron scattering (INS) spectra of the methyl groups. Such a relationship between the relaxation and INS effects was reported from another laboratory long ago, but only for the low-temperature limit where thermal population of the excited torsional levels of the methyl group can be neglected. The whole spectrum of cases encountered in practical relaxation studies on protonated methyl groups is addressed for the first time. Preliminary experimental confirmation of this novel approach is reported, based on already published NMR data for a single crystal of methylmalonic acid. The once extensively debated issues of quenching of the coherent tunneling and of the classical limit in the dynamics of the
Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Rigol, M.
2010-05-01
The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and
Approaching the quantum limit for plasmonics: linear atomic chains
NASA Astrophysics Data System (ADS)
Bryant, Garnett W.
2016-07-01
Optical excitations in atomic-scale materials can be strongly mixed, with contributions from both single-particle transitions and collective response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To develop a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective excitations can be identified. Linear atomic chains, such as atom chains on surfaces, linear arrays of dopant atoms in semiconductors, or linear molecules, provide ideal testbeds for studying collective excitations in small atomic-scale systems. We use exact diagonalization to study the many-body excitations of finite (10 to 25) linear atomic chains described by a simplified model Hamiltonian. Exact diagonalization results can be very different from the density functional theory (DFT) results usually obtained. Highly correlated, multiexcitonic states, strongly dependent on the electron–electron interaction strength, dominate the exact spectral and optical response but are not present in DFT excitation spectra. The ubiquitous presence of excitonic many-body states in the spectra makes it hard to identify plasmonic excitations. A combination of criteria involving a many-body state’s transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution do strongly suggest which many-body states should be considered as plasmonic. This analysis can be used to reveal the few plasmonic many-body states hidden in the dense spectrum of low-energy single-particle-like states and many higher-energy excitonic-like states. These excitonic states are the predominant excitation because of the many possible ways to develop local correlations.
Persistent Hall response after a quantum quench in Dirac systems
NASA Astrophysics Data System (ADS)
Wilson, Justin; Song, Justin; Refael, Gil
The geometry and topology of quantum states play a central role in producing novel types of responses, such as the quantum anomalous Hall effect. These have featured prominently in topological materials in equilibrium as well as driven systems in the steady state. Here we unveil how quantum geometry yields radically new types of responses in systems far from equilibrium such as that realized in a quantum quench. To illustrate this, we consider quenches of two-band systems with spin-orbit coupling (e.g. Dirac systems). We find that quenching a time-reversal broken gap gives a Hall-type response that persists even at long times. Intimately tied to the quantum geometry of the underlying Hilbert space, the unconventional persistent Hall response yield clear signatures in quench protocols that can be implemented in cold atoms set-ups.
Measuring the quantum state of a single system with minimum state disturbance
NASA Astrophysics Data System (ADS)
Schlosshauer, Maximilian
2016-01-01
Conventionally, unknown quantum states are characterized using quantum-state tomography based on strong or weak measurements carried out on an ensemble of identically prepared systems. By contrast, the use of protective measurements offers the possibility of determining quantum states from a series of weak, long measurements performed on a single system. Because the fidelity of a protectively measured quantum state is determined by the amount of state disturbance incurred during each protective measurement, it is crucial that the initial quantum state of the system is disturbed as little as possible. Here we show how to systematically minimize the state disturbance in the course of a protective measurement, thus enabling the maximization of the fidelity of the quantum-state measurement. Our approach is based on a careful tuning of the time dependence of the measurement interaction and is shown to be dramatically more effective in reducing the state disturbance than the previously considered strategy of weakening the measurement strength and increasing the measurement time. We describe a method for designing the measurement interaction such that the state disturbance exhibits polynomial decay to arbitrary order in the inverse measurement time 1 /T . We also show how one can achieve even faster, subexponential decay, and we find that it represents the smallest possible state disturbance in a protective measurement. In this way, our results show how to optimally measure the state of a single quantum system using protective measurements.
Perturbative approach to continuous-time quantum error correction
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Mazza, Leonardo; Rizzi, Matteo; Giovannetti, Vittorio
2015-04-01
We present a discussion of the continuous-time quantum error correction introduced by J. P. Paz and W. H. Zurek [Proc. R. Soc. A 454, 355 (1998), 10.1098/rspa.1998.0165]. We study the general Lindbladian which describes the effects of both noise and error correction in the weak-noise (or strong-correction) regime through a perturbative expansion. We use this tool to derive quantitative aspects of the continuous-time dynamics both in general and through two illustrative examples: the three-qubit and five-qubit stabilizer codes, which can be independently solved by analytical and numerical methods and then used as benchmarks for the perturbative approach. The perturbatively accessible time frame features a short initial transient in which error correction is ineffective, followed by a slow decay of the information content consistent with the known facts about discrete-time error correction in the limit of fast operations. This behavior is explained in the two case studies through a geometric description of the continuous transformation of the state space induced by the combined action of noise and error correction.
Illustrating the quantum approach with an Earth magnetic field MRI
NASA Astrophysics Data System (ADS)
Pars Benli, Kami; Dillmann, Baudouin; Louelh, Ryma; Poirier-Quinot, Marie; Darrasse, Luc
2015-05-01
Teaching imaging of magnetic resonance (MR) today is still as challenging as it has always been, because it requires admitting that we cannot express fundamental questions of quantum mechanics with straightforward language or without using extensive theory. Here we allow students to face a real MR setup based on the Earth's magnetic field. We address the applied side of teaching MR using a device that is affordable and that proves to be sufficiently robust, at universities in Orsay, France, and San Sebastian, Spain, in experimental practicals at undergraduate and graduate levels. We specifically present some of the advantages of low field for measuring R2 relaxation rates, reaching a power of separation of 1.5 μmol on Mn(II) ions between two water bottles each of half a liter. Finally we propose key approaches for the lecturers to adopt when they are asked to pass from theoretical knowledge to teachable knowhow. The outcomes are fast calibration and the MR acquisition protocols, demonstrating the reproducibility of energy transfer during the saturation pulses, and the quantitative nature of MR, with water protons and a helium-3 sample.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Adiabatic response and quantum thermoelectrics for ac-driven quantum systems
NASA Astrophysics Data System (ADS)
Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana
2016-02-01
We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.
Quench dynamics in one-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Lancaster, Jarrett L.
The possibility of simulating non-equilibrium physics using cold atomic systems motivates many open questions regarding the dynamics of systems whose equilibrium properties are well understood. We first consider the non-equilibrium dynamics in a one-dimensional quantum spin chain by arranging the spins in an inhomogeneous initial state by application of a spatially varying magnetic field and rapidly switching off the field, also allowing for a sudden change in the interaction strength. The non-interacting case is treated exactly. To treat interactions, we employ a low-energy bosonization approach which correctly reproduces the long-time behavior in the non-interacting case. Depending on the strength of interactions, we find two different types of behavior. In the gapless region, expansion of the domain wall is ballistic. In the gapped phase, time evolution is substantially more complicated. To explore the time evolution within a gapped system, we turn our attention to a numerical investigation of a more general, low-energy theory: the quantum sine-Gordon model. Beginning with a domain wall density configuration, we study dynamics using the semi-classical truncated Wigner approximation. The numerical study is complemented by an analytical investigation of how an initial current-carrying state evolves when an energy gap is suddenly switched on. Both approaches reveal the persistence of some part of the initial current in the long-time limit. Finally, we apply the random phase approximation to treat weak interactions in a system of fermions after an interaction quench. We study how collective modes are modified by the quench. Compared to equilibrium, we find an enhanced particle-hole continuum which damps the collective mode for attractive interactions, while a single undamped mode survives for repulsive interactions. The situation is also investigated in the presence of a current.
The transfer matrix approach to circular graphene quantum dots
NASA Astrophysics Data System (ADS)
Chau Nguyen, H.; Nguyen, Nhung T. T.; Nguyen, V. Lien
2016-07-01
We adapt the transfer matrix (T-matrix) method originally designed for one-dimensional quantum mechanical problems to solve the circularly symmetric two-dimensional problem of graphene quantum dots. Similar to one-dimensional problems, we show that the generalized T-matrix contains rich information about the physical properties of these quantum dots. In particular, it is shown that the spectral equations for bound states as well as quasi-bound states of a circular graphene quantum dot and related quantities such as the local density of states and the scattering coefficients are all expressed exactly in terms of the T-matrix for the radial confinement potential. As an example, we use the developed formalism to analyse physical aspects of a graphene quantum dot induced by a trapezoidal radial potential. Among the obtained results, it is in particular suggested that the thermal fluctuations and electrostatic disorders may appear as an obstacle to controlling the valley polarization of Dirac electrons.
Discrete-time quantum walk approach to state transfer
Kurzynski, Pawel; Wojcik, Antoni
2011-06-15
We show that a quantum-state transfer, previously studied as a continuous-time process in networks of interacting spins, can be achieved within the model of discrete-time quantum walks with a position-dependent coin. We argue that, due to additional degrees of freedom, discrete-time quantum walks allow one to observe effects which cannot be observed in the corresponding continuous-time case. First, we study a discrete-time version of the engineered coupling protocol due to Christandl et al. [Phys. Rev. Lett. 92, 187902 (2004)] and then we discuss the general idea of conversion between continuous-time quantum walks and discrete-time quantum walks.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074
A path integral approach to fractional quantum Hall effect
Kvale, M.N.
1989-01-01
In this paper the author reformulates and further develops the cooperative-ring-exchange (CRE) theory of the fractional quantum Hall effect. Initially, a classical two-dimensional electron gas is considered and a guiding-center approximation is made for strong magnetic fields. The resulting Lagrangian is quantized via path integration and the integral is evaluated using the semiclassical approximation. By considering the CRE processes and a time discretization procedure, the 2DEG is mapped to two different lattice models that bracket the behavior of the system. Analysis of the behavior of the system shows an underlying modular symmetry and allows one to made some new experimental predictions. By interpreting the CRE processes as a loop-space formulation of a lattice gauge field theory, a Landau-Ginzburg action is derived that contains most of the important physics associated with the FQHE and chose ground state can be identified with the Laughlin wave function. Finally, the Laughlin wave function is derived directly from the partition function in the FQHE regime.
Systems biology approach to bioremediation
Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.
2012-06-01
Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.
Kruse, J.; Gierl, C.; Schlosser, M.; Birkl, G.
2010-06-15
We trap atoms in versatile two-dimensional (2D) arrays of optical potentials, prepare flexible 2D spin configurations, perform site-selective coherent manipulation, and demonstrate the implementation of simultaneous measurements of different system properties, such as dephasing and decoherence. This approach for the flexible manipulation of atomic quantum systems is based on the combination of 2D arrays of microlenses and 2D arrays of liquid crystal light modulators. This offers extended types of control for the investigation of quantum degenerate gases, quantum information processing, and quantum simulations.
Quantum correlations in B and K meson systems
NASA Astrophysics Data System (ADS)
Banerjee, Subhashish; Alok, Ashutosh Kumar; MacKenzie, Richard
2016-05-01
The interplay between the various measures of quantum correlations is well known in stable optical and electronic systems. Here we study such foundational issues in unstable quantum systems. Specifically we study meson-antimeson systems ( Kbar{K}, Bd bar{B}d and Bsbar{B}s, which are produced copiously in meson factories. In particular, the nonclassicality of quantum correlations which can be characterized in terms of nonlocality (which is the strongest condition), entanglement, teleportation fidelity or weaker nonclassicality measures like quantum discord are analyzed. We also study the impact of decoherence on these measures of quantum correlations, using the semigroup formalism. A comparison of these measures brings out the fact that the relations between them can be nontrivially different from those of their stable counterparts such as neutrinos.
Moiseev, S. A.; Tittel, W.
2010-07-15
We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.
NASA Astrophysics Data System (ADS)
Moiseev, S. A.; Tittel, W.
2010-07-01
We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.
NANONIS TRAMEA - A Quantum Transport Measurement System
NASA Astrophysics Data System (ADS)
Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro
Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.
Quantum transport and dynamics of phonons in mesoscopic systems
NASA Astrophysics Data System (ADS)
Santamore, Deborah Hannah
approaches a quantum non-demolition measurement of the phonon number of the system oscillator. As a result it should be possible to monitor jumps between Fock states caused by the coupling of the system to the thermal reservoirs.
Quantum-Classical Connection for Hydrogen Atom-Like Systems
ERIC Educational Resources Information Center
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Security proof for quantum key distribution using qudit systems
Sheridan, Lana; Scarani, Valerio
2010-09-15
We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use d-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with d. The finite key corrections are found to be almost insensitive to d < or approx. 20.
Classical and thermodynamic limits for generalised quantum spin systems
NASA Astrophysics Data System (ADS)
Duffield, N. G.
1990-01-01
We prove that the rescaled upper and lower symbols for arbitrary generalised quantum spin systems converge in the classical limit. For a large class of models this enables us to derive the asyptotics of quantum free energies in the classical and in the thermodynamic limit.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach.
Lee, Myeong H; Troisi, Alessandro
2016-06-01
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems. PMID:27276944
Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system.
Rouxinol, F; Hao, Y; Brito, F; Caldeira, A O; Irish, E K; LaHaye, M D
2016-09-01
Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection. PMID:27483428
Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system
NASA Astrophysics Data System (ADS)
Rouxinol, F.; Hao, Y.; Brito, F.; Caldeira, A. O.; Irish, E. K.; LaHaye, M. D.
2016-09-01
Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection.
Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories
NASA Astrophysics Data System (ADS)
Wiese, U.-J.
2013-11-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.
Quantum refrigeration cycles using spin-1/2 systems as the working substance.
He, Jizhou; Chen, Jincan; Hua, Ben
2002-03-01
The cycle model of a quantum refrigerator composed of two isothermal and two isomagnetic field processes is established. The working substance in the cycle consists of many noninteracting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semigroup approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. Especially, the case at high temperatures is analyzed in detail. The results obtained are further generalized and discussed, so that they may be directly used to describe the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot refrigerator are derived simply. PMID:11909203
Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.
2012-01-01
One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.
Motional stability of the quantum kicked rotor: A fidelity approach
Haug, F.; Bienert, M.; Schleich, W.P.; Seligman, T.H.; Raizen, M.
2005-04-01
We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to determine the overlap integral in amplitude and phase. A numerical analysis of the kicked rotor in various regimes shows that the quantum signatures of specific classical properties can be detected experimentally.
A novel quantum field approach to photoexcited insulators
NASA Astrophysics Data System (ADS)
Klotins, E.
2016-07-01
In order to predict optical properties of insulating materials under intensive laser excitation, we generalized methods of quantum electrodynamics, allowing us to simulate excitation of electrons and holes, interacting with each other and acoustic phonons. The prototypical model considers a two-band dielectric material characterized by the dispersion relations for electron and hole states. We developed a universal description of excited electrons, holes and acoustic phonons within joint quantum kinetics formalism. Illustrative solutions for the quasiparticle birth-annihilation operators, applicable at short laser pulses at 0 K, are obtained by the transition from the macroscopic description to the quantum field formalism.
Building America Systems Engineering Approach
2011-12-15
The Building America Research Teams use a systems engineering approach to achieve higher quality and energy savings in homes. Using these techniques, the energy consumption of new houses can be reduced by 40% or more with little or no impact on the cost of ownership.
A SYSTEM APPROACH FOR EDUCATION.
ERIC Educational Resources Information Center
STEWART, DONALD
TECHNIQUES IN EDUCATION MUST BE DEVELOPED WHICH ARE IN KEEPING WITH TECHNOLOGICAL ADVANCE. A DOCTRINE OF "CONCURRENCY" IS NECESSARY SO THAT EDUCATION WILL COINCIDE WITH NEW DEVELOPMENTS IN SOCIETY. A SYSTEM APPROACH IN EDUCATION CAN DO THIS BY PROVIDING A CONCEPTUAL FRAMEWORK FOR PLANNING, ORDERLY CONSIDERATION OF FUNCTIONS AND RESOURCES, AND A…
Average diagonal entropy in nonequilibrium isolated quantum systems.
Giraud, Olivier; García-Mata, Ignacio
2016-07-01
The diagonal entropy was introduced as a good entropy candidate especially for isolated quantum systems out of equilibrium. Here we present an analytical calculation of the average diagonal entropy for systems undergoing unitary evolution and an external perturbation in the form of a cyclic quench. We compare our analytical findings with numerical simulations of various quantum systems. Our calculations elucidate various heuristic relations proposed recently in the literature. PMID:27575092
Certifying single-system steering for quantum-information processing
NASA Astrophysics Data System (ADS)
Li, Che-Ming; Chen, Yueh-Nan; Lambert, Neill; Chiu, Ching-Yi; Nori, Franco
2015-12-01
Einstein-Podolsky-Rosen (EPR) steering describes how different ensembles of quantum states can be remotely prepared by measuring one particle of an entangled pair. Here, we investigate quantum steering for single quantum d -dimensional systems (qudits) and devise efficient conditions to certify the steerability therein, which we find are applicable both to single-system steering and EPR steering. In the single-system case our steering conditions enable the unambiguous ruling out of generic classical means of mimicking steering. Ruling out "false-steering" scenarios has implications for securing channels against both cloning-based individual attack and coherent attacks when implementing quantum key distribution using qudits. We also show that these steering conditions also have applications in quantum computation, in that they can serve as an efficient criterion for the evaluation of quantum logic gates of arbitrary size. Finally, we describe how the nonlocal EPR variant of these conditions also function as tools for identifying faithful one-way quantum computation, secure entanglement-based quantum communication, and genuine multipartite EPR steering.
The Power of Quantum Systems on a Line
NASA Astrophysics Data System (ADS)
Aharonov, Dorit; Gottesman, Daniel; Irani, Sandy; Kempe, Julia
2009-04-01
We study the computational strength of quantum particles (each of finite dimensionality) arranged on a line. First, we prove that it is possible to perform universal adiabatic quantum computation using a one-dimensional quantum system (with 9 states per particle). This might have practical implications for experimentalists interested in constructing an adiabatic quantum computer. Building on the same construction, but with some additional technical effort and 12 states per particle, we show that the problem of approximating the ground state energy of a system composed of a line of quantum particles is QMA-complete; QMA is a quantum analogue of NP. This is in striking contrast to the fact that the analogous classical problem, namely, one-dimensional MAX-2-SAT with nearest neighbor constraints, is in P. The proof of the QMA-completeness result requires an additional idea beyond the usual techniques in the area: Not all illegal configurations can be ruled out by local checks, so instead we rule out such illegal configurations because they would, in the future, evolve into a state which can be seen locally to be illegal. Our construction implies (assuming the quantum Church-Turing thesis and that quantum computers cannot efficiently solve QMA-complete problems) that there are one-dimensional systems which take an exponential time to relax to their ground states at any temperature, making them candidates for being one-dimensional spin glasses.
Valence atom with bohmian quantum potential: the golden ratio approach
2012-01-01
Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework). PMID:23146157
Detecting quantum speedup in closed and open systems
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu
2016-07-01
We construct a general measure for detecting the quantum speedup in both closed and open systems. The speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of dynamical speedup. To clarify the mechanisms for quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup: the former stems from the time evolution process itself with fixed initial conditions, while the latter is a result of adjusting initial conditions. We then apply the proposed measure to several typical closed and open quantum systems, illustrating that quantum coherence (or entanglement) and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under specific conditions and assumptions.
Universal quantum gates for atomic systems assisted by Faraday rotation
NASA Astrophysics Data System (ADS)
Song, Guo-Zhu; Zhang, Mei
2015-08-01
Both cavity quantum electrodynamics and photons are promising candidates for quantum information processing. Here we present two efficient schemes for universal quantum gates, that is, Fredkin gates and \\sqrt{\\text{SWAP}} gates on atomic systems, assisted by Faraday rotation catalyzed by an auxiliary single photon. These gates are achieved by successfully reflecting an auxiliary single photon from an optical cavity with a single-trapped atom. They do not require additional qubits and they only need some linear-optical elements besides the nonlinear interaction between the flying photon and the atoms in the optical cavities. Moreover, these two universal quantum gates are robust. A high fidelity can be achieved in our schemes with current experimental technology. They may be very useful in quantum information processing in future, with the great progress on controlling atomic systems.
An algorithm for constructing polynomial systems whose solution space characterizes quantum circuits
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.; Severyanov, Vasily M.
2006-05-01
An algorithm and its first implementation in C# are presented for assembling arbitrary quantum circuits on the base of Hadamard and Toffoli gates and for constructing multivariate polynomial systems over the finite field Z II arising when applying the Feynman's sum-over-paths approach to quantum circuits. The matrix elements determined by a circuit can be computed by counting the number of common roots in Z II for the polynomial system associated with the circuit. To determine the number of solutions in Z II for the output polynomial system, one can use the Grobner bases method and the relevant algorithms for computing Grobner bases.
The Dalton quantum chemistry program system
Aidas, Kestutis; Angeli, Celestino; Bak, Keld L; Bakken, Vebjørn; Bast, Radovan; Boman, Linus; Christiansen, Ove; Cimiraglia, Renzo; Coriani, Sonia; Dahle, Pål; Dalskov, Erik K; Ekström, Ulf; Enevoldsen, Thomas; Eriksen, Janus J; Ettenhuber, Patrick; Fernández, Berta; Ferrighi, Lara; Fliegl, Heike; Frediani, Luca; Hald, Kasper; Halkier, Asger; Hättig, Christof; Heiberg, Hanne; Helgaker, Trygve; Hennum, Alf Christian; Hettema, Hinne; Hjertenæs, Eirik; Høst, Stinne; Høyvik, Ida-Marie; Iozzi, Maria Francesca; Jansík, Branislav; Jensen, Hans Jørgen Aa; Jonsson, Dan; Jørgensen, Poul; Kauczor, Joanna; Kirpekar, Sheela; Kjærgaard, Thomas; Klopper, Wim; Knecht, Stefan; Kobayashi, Rika; Koch, Henrik; Kongsted, Jacob; Krapp, Andreas; Kristensen, Kasper; Ligabue, Andrea; Lutnæs, Ola B; Melo, Juan I; Mikkelsen, Kurt V; Myhre, Rolf H; Neiss, Christian; Nielsen, Christian B; Norman, Patrick; Olsen, Jeppe; Olsen, Jógvan Magnus H; Osted, Anders; Packer, Martin J; Pawlowski, Filip; Pedersen, Thomas B; Provasi, Patricio F; Reine, Simen; Rinkevicius, Zilvinas; Ruden, Torgeir A; Ruud, Kenneth; Rybkin, Vladimir V; Sałek, Pawel; Samson, Claire C M; de Merás, Alfredo Sánchez; Saue, Trond; Sauer, Stephan P A; Schimmelpfennig, Bernd; Sneskov, Kristian; Steindal, Arnfinn H; Sylvester-Hvid, Kristian O; Taylor, Peter R; Teale, Andrew M; Tellgren, Erik I; Tew, David P; Thorvaldsen, Andreas J; Thøgersen, Lea; Vahtras, Olav; Watson, Mark A; Wilson, David J D; Ziolkowski, Marcin; Ågren, Hans
2014-01-01
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. PMID:25309629
The Dalton quantum chemistry program system.
Aidas, Kestutis; Angeli, Celestino; Bak, Keld L; Bakken, Vebjørn; Bast, Radovan; Boman, Linus; Christiansen, Ove; Cimiraglia, Renzo; Coriani, Sonia; Dahle, Pål; Dalskov, Erik K; Ekström, Ulf; Enevoldsen, Thomas; Eriksen, Janus J; Ettenhuber, Patrick; Fernández, Berta; Ferrighi, Lara; Fliegl, Heike; Frediani, Luca; Hald, Kasper; Halkier, Asger; Hättig, Christof; Heiberg, Hanne; Helgaker, Trygve; Hennum, Alf Christian; Hettema, Hinne; Hjertenæs, Eirik; Høst, Stinne; Høyvik, Ida-Marie; Iozzi, Maria Francesca; Jansík, Branislav; Jensen, Hans Jørgen Aa; Jonsson, Dan; Jørgensen, Poul; Kauczor, Joanna; Kirpekar, Sheela; Kjærgaard, Thomas; Klopper, Wim; Knecht, Stefan; Kobayashi, Rika; Koch, Henrik; Kongsted, Jacob; Krapp, Andreas; Kristensen, Kasper; Ligabue, Andrea; Lutnæs, Ola B; Melo, Juan I; Mikkelsen, Kurt V; Myhre, Rolf H; Neiss, Christian; Nielsen, Christian B; Norman, Patrick; Olsen, Jeppe; Olsen, Jógvan Magnus H; Osted, Anders; Packer, Martin J; Pawlowski, Filip; Pedersen, Thomas B; Provasi, Patricio F; Reine, Simen; Rinkevicius, Zilvinas; Ruden, Torgeir A; Ruud, Kenneth; Rybkin, Vladimir V; Sałek, Pawel; Samson, Claire C M; de Merás, Alfredo Sánchez; Saue, Trond; Sauer, Stephan P A; Schimmelpfennig, Bernd; Sneskov, Kristian; Steindal, Arnfinn H; Sylvester-Hvid, Kristian O; Taylor, Peter R; Teale, Andrew M; Tellgren, Erik I; Tew, David P; Thorvaldsen, Andreas J; Thøgersen, Lea; Vahtras, Olav; Watson, Mark A; Wilson, David J D; Ziolkowski, Marcin; Agren, Hans
2014-05-01
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. PMID:25309629
Effective quantum dynamics of interacting systems with inhomogeneous coupling
Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.
2007-03-15
We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.
Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach
Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini
2015-05-14
We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.
Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach
NASA Astrophysics Data System (ADS)
Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini
2015-05-01
We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.
Does an onlooker stop an evolving quantum system?
NASA Astrophysics Data System (ADS)
Toschek, P. E.
2007-10-01
The evolution of quantum mechanics has followed the critical analysis of "gedanken" experiments. Many of these concrete speculations can become implemented today in the laboratory - thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: 1. The microphysical measurement by a macroscopic device, 2. the system's temporal evolution, and 3. the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed.An experiment designed to demonstrate this "quantum Zeno effect" and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individualelectrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretation.
Who is afraid of POV measures? Unified approach to quantum phase observables
Busch, P. |; Grabowski, M.; Lahti, P.J.
1995-01-01
It is shown that introducing phase observables as shift-covariant positive-operator-valued measures yields a coherent unification of various conceptually different approaches to the phase in quantum theory. {copyright} 1995 Academic Press, Inc.
Fusion at near-barrier energies within the quantum diffusion approach
NASA Astrophysics Data System (ADS)
Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.
2014-04-01
Within the quantum diffusion approach, the role of neutron transfer in fusion (capture) reactions with tightly and weakly bound nuclei is discussed. The breakup process is analyzed. New methods for the study of the breakup probability are suggested.
Exact quantum dynamics of spin systems using the positive-P representation
NASA Astrophysics Data System (ADS)
Ng, Ray; Sorensen, Erik
2011-03-01
We discuss a scheme for simulating the exact real time quantum dynamics of interacting quantum spin systems within the positive-P formalism. As model systems we study the transverse field Ising model as well as the Heisenberg model undergoing a quench away from the classical ferromagnetic ordered state. In using the positive-P representation (PPR), the dynamics of the interacting quantum spin system is mapped onto a set of stochastic differential equations (SDEs). The number of which scales linearly with the number of spins, N, compared to an exact solution through diagonalization that in the case of the Heisenberg model would require matrices exponentially large in N. This mapping is exact and can in principle be extended to higher dimensional interacting systems as well as to systems with an explicit coupling to the environment. We compare the results from using a PPR approach based on both the optical coherent states as well as SU(2) Radcliff coherent states.
Quantum modeling of nonlinear dynamics of stock prices: Bohmian approach
NASA Astrophysics Data System (ADS)
Choustova, O.
2007-08-01
We use quantum mechanical methods to model the price dynamics in the financial market mathematically. We propose describing behavioral financial factors using the pilot-wave (Bohmian) model of quantum mechanics. The real price trajectories are determined (via the financial analogue of the second Newton law) by two financial potentials: the classical-like potential V (q) (“hard” market conditions) and the quantumlike potential U(q) (behavioral market conditions).
Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems
NASA Technical Reports Server (NTRS)
Belenov, E.; Isakov, V.; Nazarkin, A.
1994-01-01
Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.
Enabling Systems Biology Approaches Through Microfabricated Systems
Zhan, Mei; Chingozha, Loice; Lu, Hang
2014-01-01
With the experimental tools and knowledge that have accrued from a long history of reductionist biology, we can now start to put the pieces together and begin to understand how biological systems function as an integrated whole. Here, we describe how microfabricated tools have demonstrated promise in addressing experimental challenges in throughput, resolution and sensitivity to support systems-based approaches to biological understanding. PMID:23984862
Mascarenhas, E.; Marques, B.; Santos, M. Franca; Cavalcanti, D.; Cunha, M. Terra
2010-03-15
We study how to protect quantum information in quantum systems subjected to local dissipation. We show that combining the use of three-level systems, environment monitoring, and local feedback can fully and deterministically protect any available quantum information, including entanglement initially shared by different parties. These results can represent a gain in resources and/or distances in quantum communication protocols such as quantum repeaters and teleportation as well as time for quantum memories. Finally, we show that monitoring local environments physically implements the optimum singlet conversion protocol, which is essential for classical entanglement percolation.
Evolution of Quantum Systems from Microscopic to Macroscopic Scales
Ovchinnikov, Serguei Yurevich; Macek, Joseph H; Sternberg, James; Lee, Teck G; Schultz, David Robert
2009-01-01
Even though the static properties of quantum systems have been known since the early days of quantum mechanics, accurate simulation of dynamical break-up or ionization remains a theoretical challenge despite our complete knowledge of the relevant interactions. The simulations are challenging because of highly oscillatory exponential phase factors in the electronic wave function and the infinitesimally small values of the continuum components of electronic probability density at large times after the collision. The approach we recently developed, so-called, the regularized time-dependent Schrodinger equation method, has addressed these difficulties by removing the diverging phase factors and transforming the time-dependent Schrodinger equation to an expanding space. The evolution of the electronic wave function was followed to internuclear distances of R = 1000,000 a.u. or 5 microns, which is of the order of the diameter of a human hair. Our calculations also revealed unexpected presence of free vortices in the electronic wave function. The discovered vortices also bring new light on the mechanism of transferring of the angular momentum from an external to internal motion. The connection between the observable momentum distribution and the time-dependent wave function implies that vortices in the wave function at large times are imaged in the momentum distribution.
The Bistable Potential:. AN Archetype for Classical and Quantum Systems
NASA Astrophysics Data System (ADS)
Spagnolo, B.; Caldara, P.; La Cognata, A.; Valenti, D.; Fiasconaro, A.; Dubkov, A. A.; Falci, G.
In this work we analyze the transient dynamics of three different classical and quantum systems. First, we consider a classical Brownian particle moving in an asymmetric bistable potential, subject to a multiplicative and additive noise source. We investigate the role of these two noise sources on the life time of the metastable state. A nonmonotonic behavior of the lifetime as a function of both additive and multiplicative noise intensities is found, revealing the phenomenon of noise enhanced stability. Afterward, by using a Lotka-Volterra model, the dynamics of two competing species in the presence of Lévy noise sources is analyzed. Quasiperiodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species are found. Finally the dynamics of a quantum particle subject to an asymmetric bistable potential and interacting with a thermal reservoir is investigated. We use the Caldeira-Leggett model and the approach of the Feynman-Vernon functional in discrete variable representation. We obtain the time evolution of the population distributions in energy eigenstates of the particle, for different values of the coupling strength with the thermal bath.
Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms
ERIC Educational Resources Information Center
Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria
2012-01-01
A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…
Environmental management: A system approach
NASA Astrophysics Data System (ADS)
Petak, William J.
1981-05-01
This paper presents a system framework whose purpose is to improve understanding of environmental management. By analyzing the links between elements of the environmental management system, it is possible to construct a model that aids thinking systematically about the decision-making subsystem, and other subsystems, of the entire environmental management system. Through a multidisciplinary environmental approach, each of the individual subsystems is able to adapt to threats and opportunities. The fields of government, market economics, social responsibility and ecology, for example, are so complex that it is extremely difficult to develop a framework that gives full consideration to all aspects. This paper, through the application of a highly idealized system framework, attempts to show the general relationships that exist between complex system elements.
Construction and Implementation of NMR Quantum Logic Gates for Two Spin Systems
NASA Astrophysics Data System (ADS)
Price, M. D.; Somaroo, S. S.; Tseng, C. H.; Gore, J. C.; Fahmy, A. F.; Havel, T. F.; Cory, D. G.
1999-10-01
The implementation of small prototype quantum computers has been studied through ensemble quantum computing via NMR measurements. In such laboratory studies it is convenient to have access to a wide array of logic gates. Here a systematic approach to reduce the logic gate to an NMR pulse sequence is introduced. This approach views the truth table for a quantum logic operation as a permutation matrix that corresponds to a propagator for an NMR transition. This propagator is then used as the starting point for the derivation of a pulse sequence. Pulse sequences for all the permutations of a four level system are reported along with implementations of representative examples on a two spin-{1}/{2} system, 13C-labeled chloroform.
Information Theory Density Matrix for a Simple Quantum System.
ERIC Educational Resources Information Center
Titus, William J.
1979-01-01
Derives the density matrix that best describes, according to information theory, a one-dimensional single particle quantum system when the only information available is the values for the linear and quadratic position-momentum moments. (Author/GA)
Quantum Brayton cycle with coupled systems as working substance.
Huang, X L; Wang, L C; Yi, X X
2013-01-01
We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by F(x)) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by F(y)). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by F(x)), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by F(y)). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by F(y), the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance. PMID:23410319
Quantum Brayton cycle with coupled systems as working substance
NASA Astrophysics Data System (ADS)
Huang, X. L.; Wang, L. C.; Yi, X. X.
2013-01-01
We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by Fx) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by Fy). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by Fx), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by Fy). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by Fy, the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.
Godsi, Oded; Peskin, Uri; Collins, Michael A.
2010-03-28
A quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions, and the accurate quantum mechanical description of nonadiabatic transitions. The increased complexity associated with running quantum dynamics is reduced by using approximate low order expansions of the nuclear wave function within a Multi-configuration time-dependent Hartree scheme during the Grow process. The sampling algorithm is formulated and applied for three representative test cases, demonstrating the recovery of analytic potentials by the interpolated ones, and the convergence of a dynamic observable.
Entropies and correlations in classical and quantum systems
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe
2016-09-01
We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.
Invisibility of quantum systems to tunneling of matter waves
Cordero, Sergio; Garcia-Calderon, Gaston
2009-05-15
We show that an appropriate choice of the potential parameters in one-dimensional quantum systems allows for unity transmission of the tunneling particle at all incident tunneling energies, except at controllable exceedingly small incident energies. The corresponding dwell time and the transmission amplitude are indistinguishable from those of a free particle in the unity-transmission regime. This implies the possibility of designing quantum systems that are invisible to tunneling by a passing wave packet.
Computational approaches for systems metabolomics.
Krumsiek, Jan; Bartel, Jörg; Theis, Fabian J
2016-06-01
Systems genetics is defined as the simultaneous assessment and analysis of multi-omics datasets. In the past few years, metabolomics has been established as a robust tool describing an important functional layer in this approach. The metabolome of a biological system represents an integrated state of genetic and environmental factors and has been referred to as a 'link between genotype and phenotype'. In this review, we summarize recent progresses in statistical analysis methods for metabolomics data in combination with other omics layers. We put a special focus on complex, multivariate statistical approaches as well as pathway-based and network-based analysis methods. Moreover, we outline current challenges and pitfalls of metabolomics-focused multi-omics analyses and discuss future steps for the field. PMID:27135552
Dynamics of quantum correlation of four qubits system
NASA Astrophysics Data System (ADS)
Gebremariam, Tesfay; Li, Wenlin; Li, Chong
2016-09-01
In the present report, we investigate the dynamics of quantum correlation of four qubits system, and we characterize this kind of dynamics by quantum consonance and concurrence as measurement of quantum correlation and entanglement, respectively. By this measurement, one can easily study if non-entangled quantum correlation can transfer to entanglement. In our model, we find that this case cannot be realized. In addition, we constructed a four qubits swapping gate, which is made up of two bipartite swapping gates. Under this composite gate the quantum correlation is exchanged between two entangled pairs. The influence of the physical parameters like the purity and the amount of entanglement of the initial states is also examined.
Neutron interferometry for precise characterization of quantum systems
NASA Astrophysics Data System (ADS)
Sarenac, Dusan; Shahi, Chandra; Mineeva, Taisiya; Wood, Christopher J.; Huber, Michael G.; Arif, Muhammad; Clark, Charles W.; Cory, David G.; Pushin, Dmitry A.
Neutron interferometry (NI) is among the most precise techniques used to test the postulates of quantum mechanics. It has demonstrated coherent spinor rotation and superposition, gravitationally induced quantum interference, the Aharonov-Casher effect, violation of a Bell-like inequality, and generation of a single-neutron entangled state. As massive, penetrating and neutral particles neutrons now provide unique capabilities in classical imaging applications that we seek to extend to the quantum domain. We present recent results on NI measurements of quantum discord in a bipartite quantum system and neutron orbital angular momentum multiplexing, and review progress on our commissioning of a decoherence-free-subspace NI user facility at the NIST Center for Neutron Research. Supported in part by CERC, CIFAR, NSERC and CREATE.
Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Auffèves, Alexia; Grangier, Philippe
2016-02-01
In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.
Dynamical renormalization group approach to relaxation in quantum field theory
NASA Astrophysics Data System (ADS)
Boyanovsky, D.; de Vega, H. J.
2003-10-01
The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths.
Dreuw, Andreas
2006-11-13
With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented. PMID:17009357
Classical simulation of infinite-size quantum lattice systems in two spatial dimensions.
Jordan, J; Orús, R; Vidal, G; Verstraete, F; Cirac, J I
2008-12-19
We present an algorithm to simulate two-dimensional quantum lattice systems in the thermodynamic limit. Our approach builds on the projected entangled-pair state algorithm for finite lattice systems [F. Verstraete and J. I. Cirac, arxiv:cond-mat/0407066] and the infinite time-evolving block decimation algorithm for infinite one-dimensional lattice systems [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)10.1103/PhysRevLett.98.070201]. The present algorithm allows for the computation of the ground state and the simulation of time evolution in infinite two-dimensional systems that are invariant under translations. We demonstrate its performance by obtaining the ground state of the quantum Ising model and analyzing its second order quantum phase transition. PMID:19113687
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language. PMID:27088565
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems
NASA Astrophysics Data System (ADS)
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Manure management. A systems approach.
Grusenmeyer, D C; Cramer, T N
1997-10-01
Traditionally, the management of manure nutrients has focused primarily on the production, collection, storage, and field application of manure. By contrast, a total systems approach expands this focus to include concerns about human and animal health, odor and fly control, nutrient import and handling, ration balancing and feeding management to optimize dietary nutrient utilization, management of crop harvest and storage to maximize feed palatability and nutrient digestibility, manure processing for export, farm economics of nutrient management, and the broader economic impacts of environmental regulation and enforcement. In the future, the focus of manure and nutrient management must be to optimize nutrient flow and utilization at every point within the total dairy farm system. A total systems approach to nutrient management is vital to the future of the dairy industry. This approach requires a broad spectrum of scientific expertise that includes multidisciplinary teams involving agronomists, dairy scientists, economists, engineers, microbiologists, soil scientists, veterinarians, and regulators to deal successfully with the complex issues pertaining to dairy nutrient management. PMID:9361237
Microscopic approach to second harmonic generation in quantum cascade lasers.
Winge, David O; Lindskog, Martin; Wacker, Andreas
2014-07-28
Second harmonic generation is analyzed from a microscopical point of view using a non-equilibrium Green's function formalism. Through this approach the complete on-state of the laser can be modeled and results are compared to experiment with good agreement. In addition, higher order current response is extracted from the calculations and together with waveguide properties, these currents provide the intensity of the second harmonic in the structure considered. This power is compared to experimental results, also with good agreement. Furthermore, our results, which contain all coherences in the system, allow to check the validity of common simplified expressions. PMID:25089458
Analytic solution of the approach of quantum vortices towards reconnection.
Boué, Laurent; Khomenko, Dmytro; L'vov, Victor S; Procaccia, Itamar
2013-10-01
Experimental and simulational studies of the dynamics of vortex reconnections in quantum fluids showed that the distance d between the reconnecting vortices is close to a universal time dependence d=D[κ|t(0)-t|](α) with α fluctuating around 1/2 and κ=h/m is the quantum of circulation. Dimensional analysis, based on the assumption that the quantum of circulation κ=h/m is the only relevant parameter in the problem, predicts α=1/2. The theoretical calculation of the dimensionless coefficient D in this formula remained an open problem. In this Letter we present an analytic calculation of D in terms of the given geometry of the reconnecting vortices. We start from the numerically observed generic geometry on the way to vortex reconnection and demonstrate that the dynamics is well described by a self-similar analytic solution which provides the wanted information. PMID:24138249
Phase-space approach to continuous variable quantum teleportation
Ban, Masashi
2004-05-01
The phase-space method is applied for considering continuous variable quantum teleportation. It is found that the continuous variable quantum teleportation transforms the s-parametrized phase-space function of an input state into the (s+{delta})-parametrized phase-space function, where the parameter {delta} is determined by the shared quantum entanglement. It is shown from this result that the Wigner function of the teleported state is always non-negative for F{sub c}{<=}2/3 and the Glauber-Sudarshan P function non-negative for F{sub c}{<=}1/2, where F{sub c} is the fidelity of the coherent-state teleportation. Furthermore the fidelity between input and output states is calculated when Gaussian states are teleported.
Imaginary time integration method using a quantum lattice gas approach
NASA Astrophysics Data System (ADS)
Oganesov, Armen; Flint, Christopher; Vahala, George; Vahala, Linda; Yepez, Jeffrey; Soe, Min
2016-02-01
By modifying the collision operator in the quantum lattice gas (QLG) algorithm one can develop an imaginary time (IT) integration to determine the ground state solutions of the Schrödinger equation and its variants. These solutions are compared to those found by other methods (in particular the backward-Euler finite-difference scheme and the quantum lattice Boltzmann). In particular, the ground state of the quantum harmonic oscillator is considered as well as bright solitons in the one-dimensional (1D) non-linear Schrödinger equation. The dark solitons in an external potential are then determined. An advantage of the QLG IT algorithm is the avoidance of any real/complex matrix inversion and that its extension to arbitrary dimensions is straightforward.
NASA Astrophysics Data System (ADS)
Yilmaz, Bulent; Lacroix, Denis; Curebal, Resul
2014-11-01
In the stochastic mean-field (SMF) approach, an ensemble of initial values for a selected set of one-body observables is formed by stochastic sampling from a phase-space distribution that reproduces the initial quantum fluctuations. Independent mean-field evolutions are performed with each set of initial values followed by averaging over the resulting ensemble. This approach has been recently shown to be rather versatile and accurate in describing the correlated dynamics beyond the independent particle picture. In the original formulation of SMF, it was proposed to use a Gaussian assumption for the phase-space distribution. This assumption turns out to be rather effective when the dynamics of an initially uncorrelated state is considered, which was the case in all applications of this approach up to now. Using the Lipkin-Meshkov-Glick (LMG) model, we show that such an assumption might not be adequate if the quantum system under interest is initially correlated and presents configuration mixing between several Slater determinants. In this case, a more realistic description of the initial phase-space is necessary. We show that the SMF approach can be advantageously combined with standard methods to describe phase-space in quantum mechanics. As an illustration, the Husimi distribution function is used here to obtain a realistic representation of the phase-space of a quantum many-body system. This method greatly improves the description of initially correlated fermionic many-body states. In the LMG model, while the Gaussian approximation failed to describe these systems in all interaction strength range, the novel approach gives a perfect agreement with the exact evolution in the weak coupling regime and significantly improves the description of correlated systems in the strong coupling regime.
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system
NASA Astrophysics Data System (ADS)
Schanz, Holger; Esser, Bernd
1997-05-01
The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system
NASA Astrophysics Data System (ADS)
Chen, Xiongwen; Chen, Baoju; Song, Kehui; Zhou, Guanghui
2016-05-01
Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov-Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage Vg applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.
Galois quantum systems, irreducible polynomials and Riemann surfaces
Vourdas, A.
2006-09-15
Finite quantum systems in which the position and momentum take values in the Galois field GF(p{sup l}), are studied. Ideas from the subject of field extension are transferred in the context of quantum mechanics. The Frobenius automorphisms in Galois fields lead naturally to the 'Frobenius formalism' in a quantum context. The Hilbert space splits into 'Frobenius subspaces' which are labeled with the irreducible polynomials associated with the y{sup p{sup l-y}}. The Frobenius maps transform unitarily the states of a Galois quantum system and leave fixed all states in some of its Galois subsystems (where the position and momentum take values in subfields of GF(p{sup l})). An analytic representation of these systems in the l-sheeted complex plane shows deeper links between Galois theory and Riemann surfaces.
Tampering detection system using quantum-mechanical systems
Humble, Travis S.; Bennink, Ryan S.; Grice, Warren P.
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Approximate locality for quantum systems on graphs.
Osborne, Tobias J
2008-10-01
In this Letter we make progress on a long-standing open problem of Aaronson and Ambainis [Theory Comput. 1, 47 (2005)]: we show that if U is a sparse unitary operator with a gap Delta in its spectrum, then there exists an approximate logarithm H of U which is also sparse. The sparsity pattern of H gets more dense as 1/Delta increases. This result can be interpreted as a way to convert between local continuous-time and local discrete-time quantum processes. As an example we show that the discrete-time coined quantum walk can be realized stroboscopically from an approximately local continuous-time quantum walk. PMID:18851512
Modeling approaches for active systems
NASA Astrophysics Data System (ADS)
Herold, Sven; Atzrodt, Heiko; Mayer, Dirk; Thomaier, Martin
2006-03-01
To solve a wide range of vibration problems with the active structures technology, different simulation approaches for several models are needed. The selection of an appropriate modeling strategy is depending, amongst others, on the frequency range, the modal density and the control target. An active system consists of several components: the mechanical structure, at least one sensor and actuator, signal conditioning electronics and the controller. For each individual part of the active system the simulation approaches can be different. To integrate the several modeling approaches into an active system simulation and to ensure a highly efficient and accurate calculation, all sub models must harmonize. For this purpose, structural models considered in this article are modal state-space formulations for the lower frequency range and transfer function based models for the higher frequency range. The modal state-space formulations are derived from finite element models and/or experimental modal analyses. Consequently, the structure models which are based on transfer functions are directly derived from measurements. The transfer functions are identified with the Steiglitz-McBride iteration method. To convert them from the z-domain to the s-domain a least squares solution is implemented. An analytical approach is used to derive models of active interfaces. These models are transferred into impedance formulations. To couple mechanical and electrical sub-systems with the active materials, the concept of impedance modeling was successfully tested. The impedance models are enhanced by adapting them to adequate measurements. The controller design strongly depends on the frequency range and the number of modes to be controlled. To control systems with a small number of modes, techniques such as active damping or independent modal space control may be used, whereas in the case of systems with a large number of modes or with modes that are not well separated, other control
Quantum algorithm for simulating the dynamics of an open quantum system
Wang Hefeng; Ashhab, S.; Nori, Franco
2011-06-15
In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment, and their interaction: One basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.
Discrimination of physical states in quantum systems
NASA Astrophysics Data System (ADS)
Shingu-Yano, Mayumi; Shibata, Fumiaki
2001-04-01
Quantum mechanical relaxation and decoherence processes are studied from a view point of discrimination problem of physical states. This is based on an information statistical mechanical method, where concept of a probability density and an entropy is to be generalized. We use a quasi-probability density of Q-function (Husimi function) and the corresponding entropy (Wehrl-Lieb entropy) and apply the method to a Brownian motion of an oscillator and a non-linear spin relaxation process. Our main concern lies in obtaining a discrimination probability Pd as a function of time and temperature. Quantum mechanical fluctuation causes profound effects than the thermal fluctuation.