Science.gov

Sample records for quark mass function

  1. Quark mass functions and pion structure in Minkowski space

    SciTech Connect

    Biernat, Elmer P.; Gross, Franz L.; Pena, Maria Teresa; Stadler, Alfred

    2014-03-01

    We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.

  2. Heavy quark masses

    NASA Technical Reports Server (NTRS)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  3. Off-shell {rho}-{omega} mixing through quark loops with a nonperturbative meson vertex and quark mass functions

    SciTech Connect

    Mitra, A.N.; Yang, K.

    1995-06-01

    The momentum dependence of the off-shell {rho}-{omega} mixing amplitude is calculated through a two-quark loop diagram, using nonperturbative meson-quark vertex functions for the {rho} and {omega} mesons, as well as nonperturbative quark propagators. Both these quantities are generated self-consistently through an interlinked Bethe-Salpeter equation (BSE) cum Schwinger- Dyson equation (SDE) approach with a 3D support for the BSE kernel with two basic constants that are prechecked against a wide cross section of both meson and baryon spectra within a common structural framework for their respective 3D BSE`s. With the precalibration, the on-shell strength works out at {minus}2.434 {delta}({ital m}{sub {ital q}}{sup 2}) in units of the change in ``constituent mass squared,`` which is consistent with the {ital e}{sup +}{ital e}{sup {minus}} to {pi}{sup +}{pi}{sup {minus}} data for a {ital u}-{ital d} mass difference of 4 MeV, while the relative off-shell strength (0.99{plus_minus}0.01) lies midway between quark-loop and QCD-SR results. We also calculate the photon-mediated {rho}-{omega} propagator whose off-shell structure has an additional pole at {ital q}{sup 2}=0. The implications of these results vis-a-vis related investigations are discussed.

  4. Top Quark Mass Measurements

    SciTech Connect

    Heinson, A.P.; /UC, Riverside

    2006-08-01

    First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and D0 collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass.

  5. Prediction of new Quarks, Generations and Quark Masses

    NASA Astrophysics Data System (ADS)

    Lach, Thedore

    2002-04-01

    The Standard model currently suggests no relationship between the quark and lepton masses. The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an up quark mass of 237.31 MeV/c2 and a dn quark mass of 42.392 MeV/c2. These two new quarks help explain the numerical relationship between all the quark and lepton masses in a single function. The mass of each SNU-P (quark or lepton) is just the geometric mean of two related SNU-Ps, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.743828 (predicted), 117.3520, 1778.38, 26950.08 MeV. The resulting slope of these masses when plotted on semi log paper is "e" to 5 significant figures using the currently accepted mass for Tau. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these quarks, and lepton.

  6. Confinement, quark mass functions, and spontaneous chiral symmetry breaking in Minkowski space

    SciTech Connect

    Biernat, Elmar P.; Gross, Franz L.; Pena, Teresa; Stadler, Alfred

    2014-01-01

    We formulate the covariant equations for quark-antiquark bound states in Minkowski space in the framework of the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We show that these equations are charge conjugation invariant, and that in the chiral limit of vanishing bare quark mass, a massless pseudoscalar bound state is produced in a Nambu--Jona-Lasinio (NJL) mechanism, which is associated with the Goldstone boson of spontaneous chiral symmetry breaking. In this introductory paper we test the formalism by using a simplified kernel consisting of a momentum-space $\\delta$-function with a vector Lorentz structure, to which one adds a mixed scalar and vector confining interaction. The scalar part of the confining interaction is not chirally invariant by itself, but decouples from the equations in the chiral limit and therefore allows the NJL mechanism to work. With this model we calculate the quark mass function, and we compare our Minkowski-space results to LQCD data obtained in Euclidean space. In a companion paper we apply this formalism to a calculation of the pion form factor.

  7. Top quark mass measurements

    SciTech Connect

    Hill, Christopher S.; /UC, Santa Barbara

    2004-12-01

    The top quark, with its extraordinarily large mass (nearly that of a gold atom), plays a significant role in the phenomenology of EWSB in the Standard Model. In particular, the top quark mass when combined with the W mass constrains the mass of the as yet unobserved Higgs boson. Thus, a precise determination of the mass of the top quark is a principal goal of the CDF and D0 experiments. With the data collected thus far in Runs 1 and 2 of the Tevatron, CDF and D0 have measured the top quark mass in both the lepton+jets and dilepton decay channels using a variety of complementary experimental techniques. The author presents an overview of the most recent of the measurements.

  8. Top Quark Mass Measurements

    SciTech Connect

    Heinson, A. P.

    2006-11-17

    First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and DO collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass. It is based on a talk I gave at the Conference on the Intersections of Particle and Nuclear Physics in Puerto Rico, May 2006, which also included discussion of measurements of other top quark properties.

  9. Quark pseudoscalar vertex and quark mass function with clover fermions: Spontaneous symmetry breaking, operator product expansion, symmetry restoration at small volume

    SciTech Connect

    Boucaud, Ph.; Leroy, J.-P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.

    2010-05-01

    We study the quark mass function on hypercubic lattices in a large range of physical volumes and cutoffs. To avoid the very large Wilson term artefact, we exploit the relation between the quark mass function and the pseudoscalar vertex in the continuum. We extrapolate to the chiral limit. In function of the physical volume, we observe a striking discontinuity in the properties of chiral extrapolation around a physical volume L{sub c{approx_equal}}6 GeV{sup -1}=1.2 fm. It is present in the quark mass function, which collapses to zero, as well as in the pion mass and the quark condensate as directly calculated from the pseudoscalar correlator. It is strongly reminiscent of the phenomenon of chiral symmetry restoration observed by Neuberger and Narayanan at N{sub C}={infinity} around the same physical length. In the case of spontaneous symmetry breaking, we confirm that the operator product expansion of the quark mass function, involving the quark condensate, is not operative at the available momenta, even taking into account the unusually large high order corrections to the Wilson coefficient calculated by Chetyrkin and Maier; the gap remains large, around a factor 2, even at the largest momenta available to us (p{approx_equal}6 GeV).

  10. Top quark mass measurements

    SciTech Connect

    L. Cerrito

    2004-07-16

    Preliminary results on the measurement of the top quark mass at the Tevatron Collider are presented. In the dilepton decay channel, the CDF Collaboration measures m{sub t} = 175.0{sub -16.9}{sup +17.4}(stat.){+-}8.4(syst.) GeV/c{sup 2}, using a sample of {approx} 126 pb{sup -1} of proton-antiproton collision data at {radical}s = 1.96 TeV (Run II). In the lepton plus jets channel, the CDF Collaboration measures 177.5{sub -9.4}{sup +12.7}(stat.) {+-} 7.1(syst.) GeV/c{sup 2}, using a sample of {approx} 102 pb{sup -1} at {radical}s = 1.96 TeV. The D0 Collaboration has newly applied a likelihood technique to improve the analysis of {approx} 125 pb{sup -1} of proton-antiproton collisions at {radical}s = 1.8 TeV (Run I), with the result: m{sub t} = 180.1 {+-} 3.6(stat.) {+-}3.9(syst.) GeV/c{sup 2}. The latter is combined with all the measurements based on the data collected in Run I to yield the most recent and comprehensive experimental determination of the top quark mass: m{sub t} = 178.0 {+-} 2.7(stat.) {+-} 3.3(syst.) GeV/c{sup 2}.

  11. Quark mass effect on axial charge dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Er-dong; Lin, Shu

    2016-05-01

    We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.

  12. Viability of carbon-based life as a function of the light quark mass.

    PubMed

    Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Meissner, Ulf-G

    2013-03-15

    The Hoyle state plays a crucial role in the helium burning of stars that have reached the red giant stage. The close proximity of this state to the triple-alpha threshold is needed for the production of carbon, oxygen, and other elements necessary for life. We investigate whether this life-essential condition is robust or delicately fine-tuned by measuring its dependence on the fundamental constants of nature, specifically the light quark mass and the strength of the electromagnetic interaction. We show that there exist strong correlations between the alpha-particle binding energy and the various energies relevant to the triple-alpha process. We derive limits on the variation of these fundamental parameters from the requirement that sufficient amounts of carbon and oxygen be generated in stars. We also discuss the implications of our results for an anthropic view of the Universe. PMID:25166526

  13. Top quark mass and kinematics

    SciTech Connect

    Barberis, Emanuela; /Northeastern U.

    2006-05-01

    A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.

  14. Prediction of new Quarks, Generations & low Mass Quarks

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2003-04-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  15. Quark masses and their hierarchies

    NASA Astrophysics Data System (ADS)

    Ida, M.

    1987-12-01

    Electroweak symmetry breaking is attributed to dynamical generation of quark masses. Quarks q (and leptons l) are assumed to be produced by hypercolor confinement of preons at an intermediate scale Λ hc. Hierarchies observed in the q mass spectra can be explained by a BCS mechanism if the color interaction is enough asymptotically free and if residual ones emerging by the confinement are medium strong. The former assumption claims that N≦4, where N is the family number of q and l. Dynamical equations to determine q masses and mixings are given, but they require knowledge on the physics at Λ hc. A phenomenological approach is also made on the basis of an SU(7)× SU(7) chiral preon model with N=4. The mass ratio m t/ mb is related to ( m c/ m s)ηB with η B≃1.1 and m t'/ mb' to ( m u/ m d)ηA with η A≃1.4. In this scheme the fourth down quark is the heaviest (˜ 110 GeV) and contributes dominantly to F 2, where F is the Fermi scale.

  16. Valence quark spin distribution functions

    SciTech Connect

    Nathan Isgur

    1998-09-01

    The hyperfine interactions of the constituent quark model provide a natural explanation for many nucleon properties, including the {Delta} - N splitting, the charge radius of the neutron, and the observation that the proton's quark distribution function ratio d(x)/u(x) {r_arrow} 0 as x {r_arrow} 1. The hyperfine-perturbed quark model also makes predictions for the nucleon spin-dependent distribution functions. Precision measurements of the resulting asymmetries A{sub 1}{sup p}(x) and A{sub 1}{sup n}(x) in the valence region can test this model and thereby the hypothesis that the valence quark spin distributions are ''normal''.

  17. The anomalous gamma -> pi{sup +} pi{sup 0} pi{sup -} form factor and the light-quark mass functions at low momenta

    SciTech Connect

    Dubravko Klabucar; Bojan Bistrovic

    2000-12-01

    The gamma -> 3 pi form factor was calculated in a simple-minded constituent model with a constant quark mass parameter, as well as in the Schwinger-Dyson approach. The comparison of these and various other theoretical results on this anomalous process, as well as the scarce already available data (hopefully to be supplemented by more accurate CEBAF data), seem to favor Schwinger-Dyson modeling which would yield relatively small low-momentum values of the constituent (dynamically dressed) quark mass function.

  18. Top quark mass measurements at CDF

    SciTech Connect

    Maki, Tuula; /Helsinki U. /Helsinki Inst. of Phys.

    2007-10-01

    The top quark mass is interesting both as a fundamental parameter of the standard model as well as an important input to precision electroweak tests. The CDF Collaboration has measured the top quark mass with high precision in all decay channels with complementary methods. A combination of the results from CDF gives a top quark mass of 170.5{+-}1.3(stat.){+-}1.8(syst.) GeV/c{sup 2}.

  19. Renormalization of quark propagator, vertex functions, and twist-2 operators from twisted-mass lattice QCD at Nf=4

    NASA Astrophysics Data System (ADS)

    Blossier, Benoît.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas

    2015-06-01

    We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.

  20. The NJL Model for Quark Fragmentation Functions

    SciTech Connect

    T. Ito, W. Bentz, I. Cloet, A W Thomas, K. Yazaki

    2009-10-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain the reason why the elementary (lowest order) fragmentation process q → qπ is completely inadequate to describe the empirical data, although the “crossed” process π → qq describes the quark distribution functions in the pion reasonably well. Then, taking into account cascade-like processes in a modified jet-model approach, we show that the momentum and isospin sum rules can be satisfied naturally without introducing any ad-hoc parameters. We present numerical results for the Nambu-Jona-Lasinio model in the invariant mass regularization scheme, and compare the results with the empirical parametrizations. We argue that this NJL-jet model provides a very useful framework to calculate the fragmentation functions in an effective chiral quark theory.

  1. Quark ACM with topologically generated gluon mass

    NASA Astrophysics Data System (ADS)

    Choudhury, Ishita Dutta; Lahiri, Amitabha

    2016-03-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.

  2. Occam's razor in quark mass matrices

    NASA Astrophysics Data System (ADS)

    Tanimoto, Morimitsu; Yanagida, Tsutomu T.

    2016-04-01

    From the standpoint of the Occam's razor approach, we consider the minimum number of parameters in the quark mass matrices needed for successful CKM mixing and CP violation. We impose three zeros in the down-quark mass matrix while taking the diagonal up-quark mass matrix to reduce the number of free parameters. The three zeros are maximal zeros in order to have a CP-violating phase in the quark mass matrix. Then, there remain six real parameters and one CP-violating phase, which is the minimal number needed to reproduce the observed data of the down-quark masses and the CKM parameters. Twenty textures with three zeros are examined. Among these, thirteen textures are viable for the down-quark mass matrix. As a representative of these textures, we discuss a texture Md^{(1)} in detail. By using the experimental data on sin 2β , θ _{13}, and θ _{23}, together with the observed quark masses, the Cabibbo angle is predicted to be close to the experimental data. It is found that this surprising result remains unchanged in all other viable textures. We also investigate the correlations between |V_{ub}/V_{cb}|, sin 2β , and J_CP. For all textures, the maximal value of the ratio |V_{ub}/V_{cb}| is 0.09, which is smaller than the upper bound of the experimental data, 0.094. We hope that this prediction will be tested in future experiments.

  3. Bottom quark mass from {Upsilon} mesons

    SciTech Connect

    Hoang, A.H.

    1999-01-01

    The bottom quark pole mass M{sub b} is determined using a sum rule which relates the masses and the electronic decay widths of the {Upsilon} mesons to large {ital n} moments of the vacuum polarization function calculated from nonrelativistic quantum chromodynamics. The complete set of next-to-next-to-leading order [i.e., O({alpha}{sub s}{sup 2},{alpha}{sub s}v,v{sup 2}) where v is the bottom quark c.m. velocity] corrections is calculated and leads to a considerable reduction of theoretical uncertainties compared to a pure next-to-leading order analysis. However, the theoretical uncertainties remain much larger than the experimental ones. For a two parameter fit for M{sub b}, and the strong M{bar S} coupling {alpha}{sub s}, and using the scanning method to estimate theoretical uncertainties, the next-to-next-to-leading order analysis yields 4.74 GeV {le}M{sub b}{le}4.87 GeV and 0.096{le}{alpha}{sub s}(M{sub z}){le}0.124 if experimental uncertainties are included at the 95{percent} confidence level and if two-loop running for {alpha}{sub s} is employed. M{sub b} and {alpha}{sub s} have a sizable positive correlation. For the running M{bar S} bottom quark mass this leads to 4.09 GeV {le}m{sub b}(M{sub {Upsilon}(1S)}/2){le}4.32 GeV. If {alpha}{sub s} is taken as an input, the result for the bottom quark pole mass reads 4.78 GeV {le}M{sub b}{le}4.98 GeVthinsp[4.08 GeV {le}m{sub b}(M{sub {Upsilon}(1S)}/2){le}4.28 GeV] for 0.114{le}{alpha}{sub s}(M{sub z}){le}0.122. The discrepancies between the results of three previous analyses on the same subject by Voloshin, Jamin, and Pich and K{umlt u}hn {ital et al.} are clarified. A comprehensive review on the calculation of the heavy-quark{endash}antiquark pair production cross section through a vector current at next-to-next-to leading order in the nonrelativistic expansion is presented. {copyright} {ital 1998} {ital The American Physical Society}

  4. Renormalization of the quark mass matrix

    NASA Astrophysics Data System (ADS)

    Chiu, S. H.; Kuo, T. K.

    2016-05-01

    Using a set of rephasing-invariant variables, it is shown that the renormalization group equations for quark mixing parameters can be written in a form that is compact, in addition to having simple properties under flavor permutation. We also found approximate solutions to these equations if the quark masses are hierarchical or nearly degenerate.

  5. Heavy quark masses from lattice QCD

    NASA Astrophysics Data System (ADS)

    Lytle, Andrew T.

    2016-07-01

    Progress in quark mass determinations from lattice QCD is reviewed, focusing on results for charm and bottom mass. These are of particular interest for precision Higgs studies. Recent determinations have achieved percent-level uncertainties with controlled systematics. Future prospects for these calculations are also discussed.

  6. QCD phase transition with chiral quarks and physical quark masses.

    PubMed

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV. PMID:25192088

  7. Top quark mass measurements at CDF

    SciTech Connect

    Brubaker, Erik; /Chicago U., EFI

    2006-05-01

    The mass of the top quark M{sub top} is interesting both as a fundamental parameter of the standard model and as an important input to precision electroweak tests. The Collider Detector at Fermilab (CDF) has a robust program of top quark mass analyses, including the most precise single measurement, M{sub top} = 173.4 {+-} 2.8 GeV/c{sup 2}, using 680 pb{sup -1} of p{bar p} collision data. A combination of current results from CDF gives M{sub top} = 172.0 {+-} 2.7 GeV/c{sup 2}, surpassing the stated goal of 3 GeV/c{sup 2} precision using 2 fb{sup -1} of data. Finally, a combination with current D0 results gives a world average top quark mass of 172.5 {+-} 2.3 GeV/c{sup 2}.

  8. Measurement of the Top Quark Mass

    SciTech Connect

    Blair, R.E.; Byrum, K.L.; Kovacs, E.; Kuhlmann, S.E.; LeCompte, T.; Nodulman, L.; Breccia, L.; Brunetti, R.; Deninno, M.; Fiori, I.; Mazzanti, P.; Behrends, S.; Bensinger, J.; Blocker, C.; Kirsch, L.; Lamoureux, J.I.; Bonushkin, Y.; Hauser, J.; Lindgren, M.; Amadon, A.; Berryhill, J.; Contreras, M.; Culbertson, R.; Frisch, H.; Grosso-Pilcher, C.; Hohlmann, M.; Cronin-Hennessy, D.; Dittmann, J.R.; Goshaw, A.T.; Khazins, D.; Kowald, W.; Oh, S.H.; Albrow, M.G.; Atac, M.; Beretvas, A.; Berge, J.P.; Biery, K.; Binkley, M.; Buckley-Geer, E.; Byon-Wagner, A.; Chlebana, F.; Cihangir, S.; Cooper, J.; DeJongh, F.; Demina, R.; Derwent, P.F.; Elias, J.E.; Erdmann, W.; Flaugher, B.; Foster, G.W.; Freeman, J.; Geer, S.; Hahn, S.R.; Harris, R.M.; Incandela, J.; Jensen, H.; Joshi, U.; Kennedy, R.D.; Kephart, R.; Lammel, S.; Lewis, J.D.; Limon, P.; Lukens, P.; Maeshima, K.; Marriner, J.P.; Miao, T.; Mukherjee, A.; Nelson, C.; Newman-Holmes, C.; Patrick, J.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Nomerotski, A.; Barone, M.; Bertolucci, S.; Cordelli, M.; DellAgnello, S.; Giromini, P.; Happacher, F.; Miscetti, S.; Parri, A.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Baumann, T.; Franklin, M.; Gordon, A.; Hamilton, R.; Huth, J.; and others

    1998-03-01

    We present a measurement of the top quark mass using a sample of t{bar t} decays into an electron or a muon, a neutrino, and four jets. The data were collected in p{bar p} collisions at {radical}(s)=1.8 TeV with the Collider Detector at Fermilab and correspond to an integrated luminosity of 109 pb{sup {minus}1} . We measure the top quark mass to be 175.9{plus_minus}4.8(stat){plus_minus}4.9( syst) GeV /c{sup 2} . {copyright} {ital 1998} {ital The American Physical Society}

  9. Precision Determination of the Top Quark Mass

    SciTech Connect

    Movilla Fernandez, Pedro A.; /LBL, Berkeley

    2007-05-01

    The CDF and D0 collaborations have updated their measurements of the mass of the top quark using proton-antiproton collisions at {radical}s = 1.96 TeV produced at the Tevatron. The uncertainties in each of the top-antitop decay channels have been reduced. The new Tevatron average for the mass of the top quark based on about 1 fb{sup -1} of data per experiment is 170.9 {+-} 1.8 GeV/c{sup 2}.

  10. Off-forward quark-quark correlation function

    SciTech Connect

    Casanova, Sabrina

    2006-09-01

    The properties of the nonforward quark-quark correlation function are examined. We derive constraints on the correlation function from the transformation properties of the fundamental fields of QCD occurring in its definition. We further develop a method to construct an Ansatz for this correlator. We present the complete leading order set of generalized parton distributions in terms of the amplitudes of the Ansatz. Finally we conclude that the number of independent generalized parton helicity changing distributions is four.

  11. A top quark mass measurement using a matrix element method

    SciTech Connect

    Linacre, Jacob Thomas

    2009-01-01

    A measurement of the mass of the top quark is presented, using top-antitop pair (t$\\bar{t}$) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p$\\bar{p}$ collision data at centre-of-mass energy √s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t$\\bar{t}$) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction (ΔJES) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb -1 of integrated luminosity, the top quark mass is measured to be mt = 172.4± 1.4 (stat+ΔJES) ±1.3 (syst) GeV=c2, one of the most precise single measurements to date.

  12. Variations of nuclear binding with quark masses

    NASA Astrophysics Data System (ADS)

    Carrillo-Serrano, M. E.; Cloët, I. C.; Tsushima, K.; Thomas, A. W.; Afnan, I. R.

    2013-01-01

    We investigate the variation with light quark mass of the mass of the nucleon as well as the masses of the mesons commonly used in a one-boson-exchange model of the nucleon-nucleon force. Care is taken to evaluate the meson mass shifts at the kinematic point relevant to that problem. Using these results, we evaluate the corresponding changes in the energy of the 1S0 antibound state and the binding energies of the deuteron, triton, and selected finite nuclei by using a one-boson exchange model. The results are discussed in the context of possible corrections to the standard scenario for Big Bang nucleosynthesis in the case where, as suggested by recent observations of quasar absorption spectra, the quark masses may have changed over the age of the Universe.

  13. World average top-quark mass

    SciTech Connect

    Glenzinski, D.; /Fermilab

    2008-01-01

    This paper summarizes a talk given at the Top2008 Workshop at La Biodola, Isola d Elba, Italy. The status of the world average top-quark mass is discussed. Some comments about the challanges facing the experiments in order to further improve the precision are offered.

  14. D{O} top quark mass analysis

    SciTech Connect

    Strovink, M.

    1995-07-01

    Based on (44-48 pb{sup -1}) of lepton + jets data, we review D0`s initial analysis of the top quark mass. The result, M{sub top} = 199 {+-} 19/21 (stat.) {+-} 22 (syst.) GeV/c{sup 2}, is insensitive to background normalization. The errors are based on ISAJET top Monte Carlo, with its more severe gluon radiation, and allow for ISAJET/HERWIG differences. Good progress is being made in reducing the systematic error. We present a new study based on two-dimensional distributions of reconstructed top quark vs. dijet mass. With 98.7% confidence we observe a peak in the top mass - dijet mass plane. The peak and its projections are similar both in shape and magnitude to expectations based on the decay sequence 1 {yields} bW, W {yields} jj.

  15. Domain wall QCD with physical quark masses

    NASA Astrophysics Data System (ADS)

    Blum, T.; Boyle, P. A.; Christ, N. H.; Frison, J.; Garron, N.; Hudspith, R. J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R. D.; Lehner, C.; Marinkovic, M.; Mawhinney, R. D.; McGlynn, G.; Murphy, D. J.; Ohta, S.; Portelli, A.; Sachrajda, C. T.; Soni, A.; Rbc; Ukqcd Collaborations

    2016-04-01

    We present results for several light hadronic quantities (fπ , fK, BK, mu d, ms, t01 /2, w0) obtained from simulations of 2 +1 flavor domain wall lattice QCD with large physical volumes and nearly physical pion masses at two lattice spacings. We perform a short, O (3 )%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum "global fit" with a number of other ensembles with heavier pion masses. We use the physical values of mπ, mK and mΩ to determine the two quark masses and the scale—all other quantities are outputs from our simulations. We obtain results with subpercent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including fπ=130.2 (9 ) MeV ; fK=155.5 (8 ) MeV ; the average up/down quark mass and strange quark mass in the MS ¯ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, BK, in the renormalization group invariant scheme, 0.750(15) and the MS ¯ scheme at 3 GeV, 0.530(11).

  16. Top quark mass measurement at the Tevatron

    SciTech Connect

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  17. Quark flavor mixings from hierarchical mass matrices

    NASA Astrophysics Data System (ADS)

    Verma, Rohit; Zhou, Shun

    2016-05-01

    In this paper, we extend the Fritzsch ansatz of quark mass matrices while retaining their hierarchical structures and show that the main features of the Cabibbo-Kobayashi-Maskawa (CKM) matrix V, including |V^{}_{us}| ˜eq |V^{}_{cd}|, |V^{}_{cb}| ˜eq |V^{}_{ts}| and |V^{}_{ub}|/|V^{}_{cb}| < |V^{}_{td}|/|V^{}_{ts}|, can be well understood. This agreement is observed especially when the mass matrices have non-vanishing (1, 3) and (3, 1) off-diagonal elements. The phenomenological consequences of these for the allowed texture content and gross structural features of `hierarchical' quark mass matrices are addressed from a model-independent prospective under the assumption of factorizable phases in these. The approximate and analytical expressions of the CKM matrix elements are derived and a detailed analysis reveals that such structures are in good agreement with the observed quark flavor mixing angles and the CP-violating phase at the 1σ level and call upon a further investigation of the realization of these structures from a top-down prospective.

  18. Statistical understanding of quark and lepton masses in Gaussian landscapes

    SciTech Connect

    Hall, Lawrence J.; Salem, Michael P.; Watari, Taizan

    2007-11-01

    The fundamental theory of nature may allow a large landscape of vacua. Even if the theory contains a unified gauge symmetry, the 22 flavor parameters of the standard model, including neutrino masses, may be largely determined by the statistics of this landscape, and not by any symmetry. Then the measured values of the flavor parameters do not lead to any fundamental symmetries, but are statistical accidents; their precise values do not provide any insights into the fundamental theory, rather the overall pattern of flavor reflects the underlying landscape. We investigate whether random selection from the statistics of a simple landscape can explain the broad patterns of quark, charged lepton, and neutrino masses and mixings. We propose Gaussian landscapes as simplified models of landscapes where Yukawa couplings result from overlap integrals of zero-mode wave functions in higher-dimensional supersymmetric gauge theories. In terms of just five free parameters, such landscapes can account for all gross features of flavor, including the hierarchy of quark and charged-lepton masses; small quark mixing angles in the basis with quarks arranged according to mass, with 13 mixing less than 12 and 23 mixing; very light Majorana neutrino masses, with the solar to atmospheric neutrino mass ratio consistent with data; distributions for leptonic mixings sin2{theta}{sub 12} and sin2{theta}{sub 23} that are peaked at large values, while the distribution for sin2{theta}{sub 13} is peaked at low values; and order unity CP-violating phases in both the quark and lepton sectors. While the statistical distributions for flavor parameters are broad, the distributions are robust to changes in the geometry of the extra dimensions. Constraining the distributions by loose cuts about observed values leads to narrower distributions for neutrino measurements of {theta}{sub 13}, CP violation, and neutrinoless double beta decay.

  19. Modified Fragmentation Function from Quark Recombination

    SciTech Connect

    Majumder, A.; Wang, Enke; Wang, Xin-Nian

    2005-07-26

    Within the framework of the constituent quark model, it isshown that the single hadron fragmentation function of a parton can beexpressed as a convolution of shower diquark or triquark distributionfunction and quark recombination probability, if the interference betweenamplitudes of quark recombination with different momenta is neglected.Therecombination probability is determined by the hadron's wavefunction inthe constituent quark model. The shower diquark or triquark distributionfunctions of a fragmenting jet are defined in terms of overlappingmatrices of constituent quarks and parton field operators. They aresimilar in form to dihadron or trihadron fragmentation functions in termsof parton operator and hadron states. Extending the formalism to thefield theory at finite temperature, we automatically derive contributionsto the effective single hadron fragmentation function from therecombination of shower and thermal constituent quarks. Suchcontributions involve single or diquark distribution functions which inturn can be related to diquark or triquark distribution functions via sumrules. We also derive QCD evolution equations for quark distributionfunctions that in turn determine the evolution of the effective jetfragmentation functions in a thermal medium.

  20. Quark and lepton mass matrices described by charged lepton masses

    NASA Astrophysics Data System (ADS)

    Koide, Yoshio; Nishiura, Hiroyuki

    2016-06-01

    Recently, we proposed a unified mass matrix model for quarks and leptons, in which, mass ratios and mixings of the quarks and neutrinos are described by using only the observed charged lepton mass values as family-number-dependent parameters and only six family-number-independent free parameters. In spite of quite few parameters, the model gives remarkable agreement with observed data (i.e. Cabibbo-Kobayashi-Maskawa (CKM) mixing, Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing and mass ratios). Taking this phenomenological success seriously, we give a formulation of the so-called Yukawaon model in detail from a theoretical aspect, especially for the construction of superpotentials and R charge assignments of fields. The model is considerably modified from the previous one, while the phenomenological success is kept unchanged.

  1. Dynamical generation of the top quark mass

    NASA Astrophysics Data System (ADS)

    Popovic, Marko Berislav

    2002-09-01

    I study new physics theories in which the observed mass of the heaviest elementary particle, the top quark, is a result of a dynamical mechanism at the subatomic level. The same mechanism needs to explain the transition of the effective physical description at the largest space-time scales to that at smaller scales. This large-scale description is characterized by non-zero masses for most of the elementary particles and the existence of the familiar electromagnetic interactions. The description at smaller space-time scales is characterized by the presence of a richer set of fundamental interactions, including weak and hypercharge interactions, as well as no masses for the particles. As a minimal consequence of this transition, particle theories commonly predict the existence of a still unobserved particle, called the Higgs, at the largest scales. New physics considered in this thesis includes the following: (1) Models with new fundamental interactions that select the top quark and give an exclusive role to its dynamical mass generation mechanism. I propose one such model, discuss current experimental constraints, and suggest future tests of this idea. (2) Models with new spin one-half particles, not sensitive to the weak interactions, that mix with ordinary particles, including the top quark. I discuss the phenomenology, i.e., analyze data from particle colliders, and set limits on the parameters of the models. (3) Models with new spin one-half particles, sensitive to the weak interactions, that mix with ordinary particles. I propose the model structure, discuss some of its phenomenology, and suggest further tests of this idea at linear particle accelerators. Finally, I analyze the connection between the Higgs mass (m H) and the space-time scale at which the above-mentioned transition occurs. Without introducing new physics at the smallest scales, I show that due to the very large top mass, the standard description with the Higgs particle fails at small scales

  2. Quark masses, the Dashen phase, and gauge field topology

    SciTech Connect

    Creutz, Michael

    2013-12-15

    The CP violating Dashen phase in QCD is predicted by chiral perturbation theory to occur when the up–down quark mass difference becomes sufficiently large at fixed down-quark mass. Before reaching this phase, all physical hadronic masses and scattering amplitudes are expected to behave smoothly with the up-quark mass, even as this mass passes through zero. In Euclidean space, the topological susceptibility of the gauge fields is positive at positive quark masses but diverges to negative infinity as the Dashen phase is approached. A zero in this susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. I discuss potential ambiguities with this determination. -- Highlights: •The CP violating Dashen phase in QCD occurs when the up quark mass becomes sufficiently negative. •Before reaching this phase, all physical hadronic masses and scattering amplitudes behave smoothly with the up-quark mass. •The topological susceptibility of the gauge fields diverges to negative infinity as the Dashen phase is approached. •A zero in the topological susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. •The universality of this definition remains unproven. Potential ambiguities are discussed.

  3. Measurements of the u valence quark distribution function in the proton and u quark fragmentation functions

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; De la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration

    1989-07-01

    A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.

  4. Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking

    NASA Astrophysics Data System (ADS)

    Miransky, Vladimir A.

    2011-05-01

    I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.

  5. Dynamics Behind the Quark Mass Hierarchy and Electroweak Symmetry breaking

    SciTech Connect

    Miransky, Vladimir A.

    2011-05-24

    I review the dynamics in a new class of models describing the quark mass hierarchy, suggested recently by Michio Hashimoto and the author. In this class, the dynamics primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no fine tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A concrete model with the dynamical EWSB with the fourth family is described in detail.

  6. Threshold corrections to the bottom quark mass revisited

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Bryant, B. Charles; Raby, Stuart

    2015-05-01

    Threshold corrections to the bottom quark mass are often estimated under the approximation that tan β enhanced contributions are the most dominant. In this work we revisit this common approximation made to the estimation of the supersymmetric thresh-old corrections to the bottom quark mass. We calculate the full one-loop supersymmetric corrections to the bottom quark mass and survey a large part of the phenomenological MSSM parameter space to study the validity of considering only the tan β enhanced corrections. Our analysis demonstrates that this approximation underestimates the size of the threshold corrections by ˜ 12.5% for most of the considered parameter space. We discuss the consequences for fitting the bottom quark mass and for the effective couplings to Higgses. We find that it is important to consider the additional contributions when fitting the bottom quark mass but the modifications to the effective Higgs couplings are typically (few)% for the majority of the parameter space considered.

  7. Measurement of the top quark mass at D0

    SciTech Connect

    Protopopescu, S.; D0 Collaboration

    1996-12-31

    The mass of the top quark is measured using a sample of 93 lepton + 4 or more jets events collected with the D0 detector at the FNAL Tevatron collider. The authors find the top quark mass is 169 {+-} 8(stat.) {+-} 8(syst.) GeV/c{sup 2}. The analysis assumes that top quarks are produced as t{anti t} pairs that decay to W bosons and b quarks. The final states result when one W decays to e{nu} or {mu}{nu} and the other W to q{anti q}. More than four jets may be present because of final and initial state radiation.

  8. Relativistic quantum model of confinement and the current quark masses

    NASA Astrophysics Data System (ADS)

    Soloviev, L. D.

    1998-08-01

    We consider a relativistic quantum model of confined massive spinning quarks and antiquarks which describes the leading Regge trajectories of mesons. The quarks are described by the Dirac equations and the gluon contribution is approximated by the Nambu-Goto straight-line string. The string tension and the current quark masses are the main parameters of the model. Additional parameters are phenomenological constants which approximate nonstring short-range contributions. A comparison of the measured meson masses with the model predictions allows one to determine the current quark masses (in MeV) to be ms=227+/-5, mc=1440+/-10, and mb=4715+/-20. The chiral SU3 model makes it possible to estimate from here the u- and d-quark masses to be mu=6.2+/-0.2 Mev and md=11.1+/-0.4 Mev.

  9. Light hadron spectroscopy in two-flavor QCD with small sea quark masses

    SciTech Connect

    Namekawa, Y.; Aoki, S.; Iwasaki, Y.; Kanaya, K.; Fukugita, M.; Ishikawa, K.-I.; Ishizuka, N.; Ukawa, A.; Yoshie, T.; Kaneko, T.; Kuramashi, Y.; Lesk, V. I.; Umeda, T.; Okawa, M.

    2004-10-01

    We extend the study of the light hadron spectrum and the quark mass in two-flavor QCD to smaller sea quark mass, corresponding to m{sub PS}/m{sub V}=0.60-0.35. Numerical simulations are carried out using the RG-improved gauge action and the meanfield-improved clover quark action at {beta}=1.8 (a=0.2 fm from {rho} meson mass). We observe that the light hadron spectrum for small sea quark mass does not follow the expectation from chiral extrapolations with quadratic functions made from the region of m{sub PS}/m{sub V}=0.80-0.55. Whereas fits with either polynomial or continuum chiral perturbation theory (ChPT) fail, the Wilson ChPT (WChPT) that includes a{sup 2} effects associated with explicit chiral symmetry breaking successfully fits the whole data: In particular, WChPT correctly predicts the light quark mass spectrum from simulations for medium heavy quark mass, such as m{sub PS}/m{sub V} > or approx. 0.5. Reanalyzing the previous data with the use of WChPT, we find the mean up and down quark mass being smaller than the previous result from quadratic chiral extrapolation by approximately 10%, m{sub ud}{sup MS-bar}({mu}=2 GeV)=3.11(17) [MeV] in the continuum limit.

  10. Lattice investigation of nucleon structure at light quark masses

    SciTech Connect

    Zanotti, James M.

    2010-07-27

    Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes at, e.g. Jefferson Lab, COMPASS/CERN and FAIR/GSI. By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this exciting area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of ordinary parton distribution functions, show some indication of approaching their phenomenological values.

  11. Precise measurement of the top quark mass in the lepton+jets topology at CDF II

    SciTech Connect

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; Antos, J.; /Comenius U. /Tsukuba U.

    2007-03-01

    The authors present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. They analyze events from the single lepton plus jets final state (t{bar t} {yields} W{sup +}bW{sup -}{bar b} {yields} lvbq{bar q}{bar b}). The top quark mass is extracted using a direct calculation of the probability density that each event corresponds to the t{bar t} final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb{sup -1} of integrated luminosity, they achieve the single most precise measurement of the top quark mass, 170.8 {+-} 2.2(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

  12. Simple mass matrices of neutrinos and quarks consistent with observed mixings and masses

    NASA Astrophysics Data System (ADS)

    Nishiura, Hiroyuki; Fukuyama, Takeshi

    2016-02-01

    We propose a simple phenomenological model of quarks-leptons mass matrices having fundamentally universal symmetry structure. These mass matrices consist of democratic and semi-democratic mass matrix terms commonly to the neutrino and the quark sectors and have only eight free parameters. We show that this mass matrix model well reproduces all the observed values of the MNS lepton and the CKM quark mixing angles, the neutrino mass squared difference ratio, and quark mass ratios, with an excellent agreement. The model also predicts δCPℓ = - 94 ° for the leptonic CP violating phase and < m > ≃ 0.0073 eV for the effective Majorana neutrino mass.

  13. Top quark mass measurement from dilepton events at CDF II

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2005-12-01

    We report a measurement of the top quark mass using events collected by the CDF II Detector from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. We calculate a likelihood function for the top mass in events that are consistent with t{bar t} {yields} {bar b}{ell}{sup -}{bar {nu}}{sub {ell}}b{ell}{prime}{sup +}{nu}{sub {ell}}{prime} decays. The likelihood is formed as the convolution of the leading-order matrix element and detector resolution functions. The joint likelihood is the product of likelihoods for each of 33 events collected in 340 pb{sup -1} of integrated luminosity, yielding a top quark mass M{sub t} = 165.2 {+-} 6.1(stat.) {+-} 3.4(syst.) GeV/c{sup 2}. This first application of a matrix-element technique to t{bar t} {yields} b{ell}{sup +}{nu}{sub {ell}}{bar b}{ell}{prime}{sup -}{bar {nu}}{sub {ell}}, decays gives the most precise single measurement of M{sub t} in dilepton events. Combined with other CDF Run II measurements using dilepton events, we measure M{sub t} = 167.9 {+-} 5.2(stat.) {+-} 3.7(syst.) GeV/c{sup 2}.

  14. Debye mass and heavy quark potential in a PNJL quark plasma

    SciTech Connect

    Jankowski, J. Blaschke, D.

    2012-07-15

    We calculate the Debye mass for the screening of the heavy quark potential in a plasma of massless quarks coupled to the temporal gluon background governed by the Polyakov loop potential within the PNJL model in RPA approximation. We give a physical motivation for a recent phenomenological fit of lattice data by applying the calculated Debye mass with its suppression in the confined phase due to the Polyakov loop to a description of the temperature dependence of the singlet free energy for QCD with a heavy quark pair at infinite separation. We compare the result to lattice data.

  15. Measurement of the top quark mass

    SciTech Connect

    Varnes, E.W.

    1997-12-31

    This dissertation describes the measurement of the top quark mass m{sub t} using events recorded during a 125 pb{sup -1} exposure of the D0 detector to {radical}s=1.8 TeV {anti p}p collisions. Six events consistent with the hypothesis t{anti t} {yields} bW{sup +}, {anti b}W{sup -} {yields} b{anti l}{nu}, {anti b}l{anti {nu}} form the dilepton sample. The kinematics of such events may be reconstructed for any assumed mt, and the likelihood of each such solution evaluated. A measurement of m{sub t} based on these relative solution likelihoods gives m{sub t} = 169.9 {+-} 14.8 (stat.) {+-} 3. 8 (syst.) GeV/c{sup 2}. A 2C kinematic fit is performed on a sample of 77 events consistent with t{anti t} {yields} bW{sup +}, {anti b}W{sup -} {yields} b{anti l}{nu}, {anti b}q{anti q} , and this, in combination with an estimate on the likelihood that each event is top, yields m{sub t} = 173.3 {+-} 5.6 (stat.) {+-} 6.2 (syst.) GeV/c{sup 2} . A combination of these two measurements gives m{sub t} = 173.1 {+-} 5.2 (stat.) {+-} 5.7 (syst.) GeV/c{sup 2}.

  16. Charm and beauty quark masses in the MMHT2014 global PDF analysis

    NASA Astrophysics Data System (ADS)

    Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S.

    2016-01-01

    We investigate the variation in the MMHT2014 PDFs when we allow the heavy-quark masses m_c and m_b to vary away from their default values. We make PDF sets available in steps of Δ m_c =0.05 GeV and Δ m_b =0.25 GeV, and present the variation in the PDFs and in the predictions. We examine the comparison to the HERA data on charm and beauty structure functions and note that in each case the heavy-quark data, and the inclusive data, have a slight preference for lower masses than our default values. We provide PDF sets with three and four active quark flavours, as well as the standard value of five flavours. We use the pole mass definition of the quark masses, as in the default MMHT2014 analysis, but briefly comment on the overline{MS} definition.

  17. Hadron energy spectrum in polarized top-quark decays considering the effects of hadron and bottom quark masses

    NASA Astrophysics Data System (ADS)

    Nejad, S. Mohammad Moosavi; Balali, Mahboobe

    2016-03-01

    We present the analytical expressions for the next-to-leading order corrections to the partial decay width t(\\uparrow ) rightarrow bW^+, followed by brightarrow H_bX, for nonzero b-quark mass (m_bne 0) in the fixed-flavor-number scheme (FFNs). To make the predictions for the energy distribution of outgoing hadrons H_b, as a function of the normalized H_b-energy fraction x_H, we apply the general-mass variable-flavor-number scheme (GM-VFNs) in a specific helicity coordinate system where the polarization of top quark is evaluated relative to the b-quark momentum. We also study the effects of gluon fragmentation and finite hadron mass on the hadron energy spectrum so that hadron masses are responsible for the low-x_H threshold. In order to describe both the b-quark and the gluon hadronizations in top decays we apply realistic and nonperturbative fragmentation functions extracted through a global fit to the e^+e^- annihilation data from CERN LEP1 and SLAC SLC by relying on their universality and scaling violations.

  18. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    SciTech Connect

    Fedorko, Wojciech T.

    2008-12-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of √s = 1.96 TeV collisions with integrated luminosity of 1.9 fb-1 collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t$\\bar{t}$ pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: Mtop = 171.9 ± 1.7 (stat. + JES) ± 1.1 (other sys.) GeV/c2 = 171.9 ± 2.0 GeV/c2. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  19. A Precision Measurement of the Top Quark Mass

    SciTech Connect

    Black, Kevin Matthew

    2005-05-01

    This dissertation describes the measurement of the top quark mass using events recorded during a {approx} 230 pb{sup -1} exposure of the D0 detector to proton-anti-proton (p{bar p}) collisions at a center of mass energy of 1.96 TeV. The Standard Model of particle physics predicts that the top quark will decay into a bottom quark and a W boson close to 100% of the time. The bottom quark will hadronize (bind with another quark) and produce a jet of hadronic particles. The W bosons can decay either into a charged lepton and a neutrino or a pair of quarks. this dissertation focuses on the top quark (t{bar t}) events in which one W decays hadronically and the other decays leptonically. Two methods of identifying t{bar t} events from the large number of events produced are used. The first is based on the unique topology of the final state particles of a heavy particle. By using the topological information of the event, the t{bar t} events can be efficiently extracted from the background. The second method relies on the identification of the remnants of the long lived bottom quarks that are expected to be produced in the decay of almost every top quark. Because the largest background processes do not contain bottom quarks, this is an extremely efficient way to select the events retaining about 60% of the t{bar t} events and removing almost 90% of the background. A kinematic fit to the top quark mass is performed on the t{bar t} candidate events using the final state particles that are seen in the detector. A likelihood technique is then used to extract the most likely value of the top quark mass, m{sub t}, and signal fraction. The result for the topological selection is m{sub t} = 169.9 {+-} 5.8(statistical){sub -7.8}{sup +8.0}(systematic) GeV while the results on the sample selected from identification of a b quark in the event is m{sub t} = 170.6 {+-} 4.2(statistical){sub -6.8}{sup +6.3}(systematic) GeV.

  20. Top quark mass measurement using the template method at CDF

    DOE PAGESBeta

    Aaltonen, T

    2011-06-03

    We present a measurement of the top quark mass in the lepton+jets and dilepton channels of tmore » $$\\bar{t}$$ decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb-1 of p$$\\bar{p}$$ collisions at Tevatron with √s = 1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the W decay in the lepton+jets channel, and a reconstructed top quark mass and mT2, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of Mtop = 172.1±1.1 (stat)±0.9 (syst) GeV/c2.« less

  1. Top quark mass measurement using the template method at CDF

    SciTech Connect

    Aaltonen, T

    2011-06-03

    We present a measurement of the top quark mass in the lepton+jets and dilepton channels of t$\\bar{t}$ decays using the template method. The data sample corresponds to an integrated luminosity of 5.6 fb-1 of p$\\bar{p}$ collisions at Tevatron with √s = 1.96 TeV, collected with the CDF II detector. The measurement is performed by constructing templates of three kinematic variables in the lepton+jets and two kinematic variables in the dilepton channel. The variables are two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the W decay in the lepton+jets channel, and a reconstructed top quark mass and mT2, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton+jets and dilepton channels to the data yields a measured top quark mass of Mtop = 172.1±1.1 (stat)±0.9 (syst) GeV/c2.

  2. Schwinger functions, light-quark bound states and sigma terms

    NASA Astrophysics Data System (ADS)

    Höll, A.; Maris, P.; Roberts, C. D.; Wright, S. V.

    2006-11-01

    We explore the viability of using solely spacelike information about a Schwinger function to extract properties of bound states. In a concrete example it is not possible to determine properties of states with masses ≳1.2 GeV. Modern Dyson-Schwinger equation methods supply a well-constrained tool that provides access to hadron masses and σ-terms. We report values of the latter for a range of hadrons. Of interest is an analysis relating to a u,d scalar meson, which is compatible with a picture of the lightest 0 as a bound state of a dressed-quark and -antiquark supplemented by a material pion cloud. A constituent-quark σ-term is defined, which affords a means for assessing the flavour-dependence of dynamical chiral symmetry breaking.

  3. Pion valence-quark parton distribution function

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Thomas, Anthony W.

    2015-10-01

    Within the Dyson-Schwinger equation formulation of QCD, a rainbow ladder truncation is used to calculate the pion valence-quark distribution function (PDF). The gap equation is renormalized at a typical hadronic scale, of order 0.5 GeV, which is also set as the default initial scale for the pion PDF. We implement a corrected leading-order expression for the PDF which ensures that the valence-quarks carry all of the pion's light-front momentum at the initial scale. The scaling behavior of the pion PDF at a typical partonic scale of order 5.2 GeV is found to be (1 - x) ν, with ν ≃ 1.6, as x approaches one.

  4. Running of the bottom quark mass within the MSSM

    SciTech Connect

    Mihaila, L.

    2008-11-23

    We compute the exact two-loop matching coefficient for the bottom-quark mass m{sub b}, within the Minimal Supersymmetric Standard Model (MSSM), taking into account O({alpha}{sub s}{sup 2}) contributions from the Supersymmetric Quantum Chromodynamics (SQCD). We find that the three-loop order corrections to the running bottom-quark mass exceed the uncertainty due to the current experimental accuracy. They can reach up to 30% from the tree-level m{sub b}, for models with large values of tan {beta} and relatively light SUSY mass scale.

  5. Hierarchy plus anarchy in quark masses and mixings

    NASA Astrophysics Data System (ADS)

    Aguilar-Saavedra, J. A.

    2003-04-01

    We introduce a parametrization of the effect of unknown corrections from new physics on quark and lepton mass matrices. This parametrization is used in order to study how the hierarchies of quark masses and mixing angles are modified by random perturbations of the Yukawa matrices. We discuss several examples of flavor relations predicted by different textures, analyzing how these relations are influenced by the random perturbations. We also comment on the unlikely possibility that unknown corrections contribute significantly to the hierarchy of masses and mixings.

  6. Quark-hadron duality in structure functions

    SciTech Connect

    Wally Melnitchouk

    2011-09-01

    We review recent progress in the study of quark-hadron duality in electron–nucleon structure functions. New developments include insights into the local aspects of duality obtained using truncated moments of structure functions, which allow duality-violating higher-twist contributions to be identified in individual resonance regions. Preliminary studies of pion electropro-duction have also showed the first glimpses of duality in semi-inclusive cross sections, which if confirmed would greatly expand the scope of constraining the flavor and spin dependence of parton distributions.

  7. Quark spectral function and deconfinement at nonzero temperature

    NASA Astrophysics Data System (ADS)

    Qin, Si-xue; Rischke, Dirk H.

    2013-09-01

    The maximum entropy method is used to compute the quark spectral function at nonzero temperature. We solve the gap equation of quantum chromodynamics (QCD) self-consistently, employing a rainbow kernel which phenomenologically models results from Dyson-Schwinger equations and lattice QCD. We use the criterion of positivity restoration of the spectral function as a signal for deconfinement. Our calculation indicates that the critical temperature of deconfinement Td is slightly smaller than the one of chiral symmetry restoration Tc: Td˜94%Tc in the chiral limit and Td˜96%Tc with physical light quark masses. Since these deviations are within the systematic error of our approach, it is reasonable to conclude that chiral symmetry restoration and deconfinement coincide at zero chemical potential.

  8. Quark mass variation constraints from Big Bang nucleosynthesis

    SciTech Connect

    Bedaque, P; Luu, T; Platter, L

    2010-12-13

    We study the impact on the primordial abundances of light elements created of a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a model-independent way we use lattice QCD data and an hierarchy of effective field theories. We find that the measured {sup 4}He abundances put a bound of {delta}-1% {approx}< m{sub q}/m{sub 1} {approx}< 0.7%. The effect of quark mass variations on the deuterium abundances can be largely compensated by changes of the baryon-to-photon ratio {eta}. Including the bounds on the variation of {eta} coming from WMAP results and some additional assumptions narrows the range of allowed values of {delta}m{sub q}/m{sub q} somewhat.

  9. Quark-mass dependence of the three-flavor QCD phase diagram at zero and imaginary chemical potential: Model prediction

    SciTech Connect

    Sasaki, Takahiro; Sakai, Yuji; Yahiro, Masanobu; Kouno, Hiroaki

    2011-11-01

    We draw the three-flavor phase diagram as a function of light- and strange-quark masses for both zero and imaginary quark-number chemical potential, using the Polyakov-loop extended Nambu-Jona-Lasinio model with an effective four-quark vertex depending on the Polyakov loop. The model prediction is qualitatively consistent with 2+1 flavor lattice QCD prediction at zero chemical potential and with degenerate three-flavor lattice QCD prediction at imaginary chemical potential.

  10. Measurement of the Top Quark Mass in Dilepton Final States with the Neutrino Weighting Method

    SciTech Connect

    Ilchenko, Yuriy

    2012-12-15

    The top quark is the heaviest fundamental particle observed to date. The mass of the top quark is a free parameter in the Standard Model (SM). A precise measurement of its mass is particularly important as it sets an indirect constraint on the mass of the Higgs boson. It is also a useful constraint on contributions from physics beyond the SM and may play a fundamental role in the electroweak symmetry breaking mechanism. I present a measurement of the top quark mass in the dilepton channel using the Neutrino Weighting Method. The data sample corresponds to an integrated luminosity of 4.3 fb-1 of p$\\bar{p}$ collisions at Tevatron with √s = 1.96 TeV, collected with the DØ detector. Kinematically under-constrained dilepton events are analyzed by integrating over neutrino rapidity. Weight distributions of t$\\bar{t}$ signal and background are produced as a function of the top quark mass for different top quark mass hypotheses. The measurement is performed by constructing templates from the moments of the weight distributions and input top quark mass, followed by a subsequent likelihood t to data. The dominant systematic uncertainties from jet energy calibration is reduced by using a correction from `+jets channel. To replicate the quark avor dependence of the jet response in data, jets in the simulated events are additionally corrected. The result is combined with our preceding measurement on 1 fb-1 and yields mt = 174.0± 2.4 (stat.) ±1.4 (syst.) GeV.

  11. Calibration of the Top-Quark Monte Carlo Mass

    NASA Astrophysics Data System (ADS)

    Kieseler, Jan; Lipka, Katerina; Moch, Sven-Olaf

    2016-04-01

    We present a method to establish, experimentally, the relation between the top-quark mass mtMC as implemented in Monte Carlo generators and the Lagrangian mass parameter mt in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of mtMC and an observable sensitive to mt, which does not rely on any prior assumptions about the relation between mt and mtMC. The measured observable is independent of mtMC and can be used subsequently for a determination of mt. The analysis strategy is illustrated with examples for the extraction of mt from inclusive and differential cross sections for hadroproduction of top quarks.

  12. Properties of color-flavor locked strange quark matter and strange stars in a new quark mass scaling

    NASA Astrophysics Data System (ADS)

    Chang, Qian; Chen, ShiWu; Peng, GuangXiong; Xu, JianFeng

    2013-09-01

    Considering the effect of one-gluon-exchange interaction between quarks, the color-flavor locked strange quark matter and strange stars are investigated in a new quark mass density-dependent model. It is found that the color-flavor locked strange quark matter can be more stable if the one-gluon-exchange effect is included. The lower density behavior of the sound velocity in this model is different from the previous results. Moreover, the new equation of state leads to a heavier acceptable maximum mass, supporting the recent observation of a compact star mass as large as about 2 times the solar mass.

  13. Nucleon structure functions from constituent quark

    NASA Astrophysics Data System (ADS)

    Khorramian, Ali N.; Arash, Firooz

    1999-10-01

    We have used a constituent quarks model to describe the nucleon structure function, F2( χ, Q2), for a wide range of χ=[10 -6,1] and Q2 = [0.5, 5000] GeV2. We have found that although F2 rises as χ decreases, but there exists some χ0 ≤ 10 -4 - 10 -5, below which the rise of F2 subsides drastically and hence, exhibits an almost flat behavior, compatible with the latest results from HERA, at least for low Q2.

  14. Precision Top-Quark Mass Measurements at CDF

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-07-01

    We present a precision measurement of the top-quark mass using the full sample of Tevatron {radical}s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb{sup -1}. Using a sample of t{bar t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, mtop = 172.85 {+-} 0.71 (stat) {+-} 0.85 (syst) GeV/c{sup 2}.

  15. Connecting Fermion Masses and Mixings to BSM Physics - Quarks

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2015-10-01

    The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com

  16. Measurement of the top-quark mass with dilepton events selected using neuroevolution at CDF.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shekhar, R; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Whiteson, S; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-04-17

    We report a measurement of the top-quark mass M_{t} in the dilepton decay channel tt[over ] --> bl;{'+} nu_{l};{'}b[over ]l;{-}nu[over ]_{l}. Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb;{-1} of pp[over ] collisions collected with the CDF II detector, yielding a measurement of M_{t} = 171.2 +/- 2.7(stat) +/- 2.9(syst) GeV / c;{2}. PMID:19518620

  17. Measurement of the top quark mass in lepton+jets events with secondary vertex tagging

    SciTech Connect

    Harrington, Robert Duane; /Northeastern U.

    2007-02-01

    A measurement of the top quark mass with the matrix element method in the lepton + jets final state in D0 Run II is presented. Events with single isolated energetic charged lepton (electron or muon), exactly four calorimeter jets, and significant missing transverse energy are selected. Probabilities used to discriminate between signal and background are assumed to be proportional to differential cross-sections, calculated using event kinematics and folding in object resolutions and parton distribution functions. The event likelihoods constructed using these probabilities are varied with the top quark mass, m{sub t}, and the jet energy scale, JES, to give the smallest possible combined statistical + JES uncertainty.

  18. Quark masses and the meson spectrum: A holographic approach

    NASA Astrophysics Data System (ADS)

    Afonin, S. S.; Pusenkov, I. V.

    2015-09-01

    Based on experimental data, we can assume that the radial spectrum of vector mesons with a hidden quark flavor has a Regge form and propose its concrete form. The parameters of the Regge spectrum turn out to depend strongly on the mass of the quarks forming the mesons. We consider the problem of finding the form of these dependences in the framework of the holographic approach to strong interactions. The obtained results agree well with the phenomenology and with models of Veneziano-like dual amplitudes.

  19. A precision measurement of the mass of the top quark.

    PubMed

    Abazov, V M; Abbott, B; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, T C; Baden, A; Baffioni, S; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Boehnlein, A; Bojko, N I; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Claes, D; Clark, A R; Connolly, B; Cooper, W E; Coppage, D; Crépé-Renaudin, S; Cummings, M A C; Cutts, D; Da Motta, H; Davis, G A; De, K; De Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Ferbel, T; Filthaut, F; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galyaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Ginther, G; Gómez, B; Goncharov, P I; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Han, C; Hansen, S; Hauptman, J M; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Kesisoglou, S; Khanov, A; Kharchilava, A; Klima, B; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Melnitchouk, A; Merkin, A; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mutaf, Y D; Nagy, E; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Oshima, N; Padley, P; Papageorgiou, K; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Pétroff, P; Piegaia, R; Pope, B G; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F; Rockwell, T; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Sirotenko, V; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Trippe, T G; Turcot, A S; Tuts, P M; Van Kooten, R; Vaniev, V; Varelas, N; Villeneuve-Seguier, F; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, Z-M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yip, K; Yu, J; Zanabria, M; Zhang, X; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2004-06-10

    The standard model of particle physics contains parameters--such as particle masses--whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (M(t)) and W boson (M(W)) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of M(t) can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10(-24) s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +/- 5.3 GeV/c2) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for M(t) becomes 178.0 +/- 4.3 GeV/c2. As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117 GeV/c2, which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251 GeV/c2. PMID:15190311

  20. Constituent quark masses obtained from hadron masses with contributions of Fermi-Breit and Glozman-Riska hyperfine interactions

    SciTech Connect

    Borka Jovanovic, V.; Borka, D.; Ignjatovic, S. R.; Jovanovic, P.

    2010-12-01

    We use the color-spin and flavor-spin interaction Hamiltonians with SU(3) flavor symmetry breaking to obtain meson and baryon mass formulas. Adjusting these masses with experimental masses we determine the constituent quark masses. We discuss the constituent quark masses obtained from meson and baryon mass fits. The results for constituent quark masses are very similar in the case of two different phenomenological models: Fermi-Breit and Glozman-Riska hyperfine interactions.

  1. Quark-jet model for transverse momentum dependent fragmentation functions

    NASA Astrophysics Data System (ADS)

    Bentz, W.; Kotzinian, A.; Matevosyan, H. H.; Ninomiya, Y.; Thomas, A. W.; Yazaki, K.

    2016-08-01

    In order to describe the hadronization of polarized quarks, we discuss an extension of the quark-jet model to transverse momentum dependent fragmentation functions. The description is based on a product ansatz, where each factor in the product represents one of the transverse momentum dependent splitting functions, which can be calculated by using effective quark theories. The resulting integral equations and sum rules are discussed in detail for the case of inclusive pion production. In particular, we demonstrate that the three-dimensional momentum sum rules are satisfied naturally in this transverse momentum dependent quark-jet model. Our results are well suited for numerical calculations in effective quark theories and can be implemented in Monte Carlo simulations of polarized quark hadronization processes.

  2. Measurements of the top quark mass at the Tevatron

    SciTech Connect

    Brandt, Oleg; /Gottingen U., II. Phys. Inst.

    2012-04-01

    The mass of the top quark (m{sub top}) is a fundamental parameter of the standard model (SM). Currently, its most precise measurements are performed by the CDF and D0 collaborations at the Fermilab Tevatron p{bar p} collider at a centre-of-mass energy of {radical}s = 1.96 TeV. We review the most recent of those measurements, performed on data samples of up to 8.7 fb{sup -1} of integrated luminosity. The Tevatron combination using up to 5.8 fb{sup -1} of data results in a preliminary world average top quark mass of m{sub top} = 173.2 {+-} 0.9 GeV. This corresponds to a relative precision of about 0.54%. We conclude with an outlook of anticipated precision the final measurement of m{sub top} at the Tevatron.

  3. Measurement of the Top Quark Mass at CDF Using the Template Method in the Lepton + Jets Channel

    SciTech Connect

    Adelman, Jahred A.

    2008-06-01

    A measurement of the top quark mass in p$\\bar{p}$ collisions at √s = 1.96 TeV is presented. The analysis uses a template method, in which the overconstrained kinematics of the Lepton+Jets channel of the t$\\bar{t}$ system are used to measure a single quantity, the reconstructed top quark mass, that is strongly correlated with the true top quark mass. in addition, the dijet mass of the hadronically decaying W boson is used to constrain in situ the uncertain jet energy scale in the CDF detector. Two-dimensional probability density functions are derived using a kernel density estimate-based machinery. Using 1.9 fb-1 of data, the top quark mass is measured to be 171.8$+1.9\\atop{-1.9}$(stat.) ± 1.0(syst.)GeV/c2.

  4. Precise measurement of the top-quark mass in the lepton+jets topology at CDF II.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-01

    We present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. We analyze events from the single lepton plus jets final state (tt-->W(+)bW(-)b-->lnubqq'b). The top-quark mass is extracted using a direct calculation of the probability density that each event corresponds to the tt final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb(-1) of integrated luminosity, we achieve the single most precise measurement of the top-quark mass, 170.8+/-2.2(stat.)+/-1.4(syst.) GeV/c(2). PMID:17995397

  5. Measurements of the top quark mass and decay width with the D0 detector

    SciTech Connect

    Ilchenko, Yuriy

    2011-11-01

    The top quark discovery in 1995 at Fermilab is one of the major proofs of the standard model (SM). Due to its unique place in SM, the top quark is an important particle for testing the theory and probing for new physics. This article presents most recent measurements of top quark properties from the D0 detector. In particular, the measurement of the top quark mass, the top antitop mass difference and the top quark decay width. The discovery of the top quark in 1995 confirmed the existence of a third generation of quarks predicted in the standard model (SM). Being the heaviest elementary particle known, the top quark appears to become an important particle in our understanding of the standard model and physics beyond it. Because of its large mass the top quark has a very short lifetime, much shorter than the hadronization time. The predicted lifetime is only 3.3 {center_dot} 10{sup -25}s. Top quark is the only quark whose properties can be studied in isolation. A Lorentz-invariant local Quantum Field Theory, the standard model is expected to conserve CP. Due to its unique properties, the top quark provides a perfect test of CPT invariance in the standard model. An ability to look at the quark before being hadronized allows to measure directly mass of the top quark and its antiquark. An observation of a mass difference between particle and antiparticle would indicate violation of CPT invariance. Top quark through its radiative loop correction to the W mass constrains the mass of the Higgs boson. A precise measurement of the top quark mass provides useful information to the search of Higgs boson by constraining its region of possible masses. Another interesting aspect is that the top quark's Yukawa coupling to the Higgs boson is very close to unity (0.996 {+-} 0.006). That implies it may play a special role in the electroweak symmetry breaking mechanism.

  6. Top quark and Higgs boson masses from wormhole physics

    SciTech Connect

    Harris, B.A.; Joshi, G.C. )

    1994-11-01

    We bring together quantum field theory on [ital S][sub 4] with the Coleman wormhole hypothesis, which imposes constraints on terms in the gravitational Lagrangian. In particular, we investigate the effect of matter fields on the trace anomaly, which is related to the (curvature)[sup 2] terms, by the use of the renormalization group equations. We consider a toy model of a nonconformally coupled Higgs boson to a single top'' quark. By numerically solving the renormalization group equations for the couplings of the model, we can find preferred values of the particle masses for various values of the bare nonconformal coupling. By making the [ital ad] [ital hoc] assumption that the tree-level, Higgs boson treace anomaly vanishes on shell, a unique prediction can be made within this model for the masses of both the Higgs boson and the top quark.

  7. Heavy-quark mass effects in Higgs plus jets production

    NASA Astrophysics Data System (ADS)

    Frederix, R.; Frixione, S.; Vryonidou, E.; Wiesemann, M.

    2016-08-01

    We study the production of a Standard Model Higgs boson in the gluon-fusion channel at the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, bar for the lack of some two-loop amplitudes, for up to two extra jets and are matched to the P ythia8 Monte Carlo. We address the impact, at the level of inclusive rates and of differential distributions, of the merging of samples characterised by different final-state multiplicities, and of the effects induced by top and bottom masses through heavy-quark loop diagrams. We find that both the merging and the heavy-quark masses must be included in the calculation in order to realistically predict observables of experimental interest.

  8. Measurement of the Top Quark Mass at CDF II

    SciTech Connect

    Kovalev, Andrew N

    2003-11-01

    The authors describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II Detector from p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron. The posterior probability distribution of the top quark pole mass is calculated using the differential cross-section for the t{bar t} production and decay expressed with respect to observed leptons and jets momenta. The presence of background events in the collected sample is modeled using calculations of the differential cross-sections for major background processes. This measurement represents the first application of this method to events with two charged leptons. In a data sample with integrated luminosity of 340 pb{sup -1}, they observe 33 candidate events and measure M{sub top} = 165.2 {+-} 61.{sub stat} {+-} 3.4{sub syst} GeV/c{sup 2}.

  9. The First measurement of the top quark mass at CDF II in the lepton+jets and dilepton channels simultaneously

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; /Fermilab /Purdue U.

    2008-09-01

    The authors present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9 fb{sup -1} of p{bar p} collisions collected at {radical}s = 1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. They reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the diletpon channel. They perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. using 332 lepton + jets candidate events and 144 diletpon candidate events, they measure the top quark mass to be m{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}.

  10. Dilepton production as a useful probe of quark gluon plasma with temperature dependent chemical potential quark mass

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Singh, S. Somorendro

    2016-07-01

    We extend the previous study of dilepton production using [S. Somorendro Singh and Y. Kumar, Can. J. Phys. 92 (2014) 31] based on a simple quasiparticle model of quark-gluon plasma (QGP). In this model, finite value of quark mass uses temperature dependent chemical potential the so-called Temperature Dependent Chemical Potential Quark Mass (TDCPQM). We calculate dilepton production in the relevant range of mass region. It is observed that the production rate is marginally enhanced from the earlier work. This is due to the effect of TDCPQM and its effect is highly significant in the production of dilepton.

  11. QUARK ANTIQUARK ENERGIES AND THE SCREENING MASS IN A QUARK-GLUON PLASMA AT LOW AND HIGH TEMPERATURES.

    SciTech Connect

    ZANTOW, F.; KACZMAREK, O.

    2005-08-02

    We discuss quark antiquark energies and the screening mass in hot QCD using the non-perturbative lattice approach. For this purpose we analyze properties of quark antiquark energies and entropies at infinitely large separation of the quark antiquark pair at low and high temperatures. In the limit of high temperatures these energies and entropies can be related perturbatively to the temperature dependence of the Debye mass and the coupling. On the one hand our analysis thus suggests that the quark antiquark energies at (infinite) large distances are rather related to the Debye screening mass and the coupling than to the temperature dependence of heavy-light meson masses. On the other hand we find no or only little differences in all mass scales introduced by us when changing from quenched to 2-flavor QCD at temperatures which are only moderately above the phase transition.

  12. Quark and Lepton Masses from Gaussian Landscapes

    SciTech Connect

    Hall, Lawrence J.; Salem, Michael P.; Watari, Taizan

    2008-04-11

    The flavor structure of the standard model (SM) might arise from random selection on a landscape. We propose a class of simple models, 'Gaussian landscapes', where Yukawa couplings derive from overlap integrals of Gaussian wave functions on extra-dimensions. Statistics of vacua are generated by scanning the peak positions of these zero-modes, giving probability distributions for all flavor observables. Gaussian landscapes can account for all observed flavor patterns with few free parameters. Although they give broad probability distributions, the predictions are correlated and accounting for measured parameters sharpens the distributions of future neutrino measurements.

  13. Top quark mass measurement at CDF Run-II

    SciTech Connect

    T. Maruyama

    2004-05-11

    CDF has resumed the top quark mass measurement with upgraded detectors and Tevatron complex. High statistics should allow us to determine the top mass with an uncertainty of a few GeV/c{sup 2} by the end of Run II. The current measured value, using an integrated luminosity of {approx} 108 pb{sup -1}, is 177.5{sub -9.4}{sup +12.7} (stat.) {+-} 7.1(syst.) GeV/c{sup 2} (lepton + jets with one b-jet tagged mode: the current best mode), which is consistent with RunI measurements.

  14. Measurement of the top quark mass at D0

    SciTech Connect

    Petrillo, Gianluca

    2010-01-01

    The most recent measurements of the mass of the quark top at D0 are reviewed. The analysis methods include the direct measurement by Matrix Element and Weighting method and the indirect measurement from t{bar t} production cross section. They have been applied on different experimental signatures, all including at least one electron or muon. Measurements include from 1 to 3.6 fb{sup -1} of D0 data. The most recent combination of mass measurements from D0 and from CDF are also quoted.

  15. Magnetic moments of JP=3/2+ decuplet baryons using effective quark masses in a chiral constituent quark model

    NASA Astrophysics Data System (ADS)

    Girdhar, Aarti; Dahiya, Harleen; Randhawa, Monika

    2015-08-01

    The magnetic moments of JP=3/2+ decuplet baryons have been calculated in the chiral constituent quark model (χ CQM ) with explicit results for the contribution coming from the valence quark polarizations, sea quark polarizations, and their orbital angular momentum. Since the JP=3/2+ decuplet baryons have short lifetimes, the experimental information about them is limited. The χ CQM has important implications for chiral symmetry breaking as well as SU(3) symmetry breaking since it works in the region between the QCD confinement scale and the chiral symmetry breaking scale. The predictions in the model not only give a satisfactory fit when compared with the experimental data but also show improvement over the other models. The effect of the confinement on quark masses has also been discussed in detail and the results of χ CQM are found to improve further with the inclusion of effective quark masses.

  16. Many Masses on One Stroke:. Economic Computation of Quark Propagators

    NASA Astrophysics Data System (ADS)

    Frommer, Andreas; Nöckel, Bertold; Güsken, Stephan; Lippert, Thomas; Schilling, Klaus

    The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients). Based on the decomposition M/κ = 1/κ-D of the Wilson mass matrix, using QMR, one can carry out inversions on a whole trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage. Moreover, the symmetry γ5M = M†γ5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become — in the critical regime of small quark masses — competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.

  17. Universal form for quark and lepton mass matrices

    NASA Astrophysics Data System (ADS)

    Gu, Zheng-Cheng; Preskill, John

    2015-12-01

    We propose a universal form for quark and lepton mass matrices, which applies in a "leading order" approximation where C P -violating phases are ignored. Down-quark mass ratios are successfully predicted in our scheme using the measured Cabibbo-Kobayashi-Maskawa mixing angles as input. Assuming an additional discrete symmetry in the neutrino sector, we obtain the "golden ratio" pattern in the leading-order Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix; in addition we predict an inverted neutrino mass hierarchy with m1≃m2≃74 meV , m3≃55 meV , and neutrinoless double beta decay mass parameter m0 ν β β≃33 meV . When C P -violating phases are included, our scheme suggests a residual Z 2 antiunitary symmetry of the neutrino mass matrix, in which the interchange of μ and τ neutrinos is accompanied by a time reversal transformation, thus predicting that the C P -violating angle in the neutrino sector is close to the maximal value δ =±π /2 , and that the diagonal phases in the PMNS matrix are α1≃0 , α2≃π .

  18. Infrared Renormalization-Group Flow for Heavy-Quark Masses

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2008-10-10

    A short-distance heavy-quark mass depends on two parameters: the renormalization scale {mu} and a scale R controlling the absorption of infrared fluctuations. The radius for perturbative corrections that build up the mass beyond its pointlike definition in the pole scheme is {approx}1/R. Treating R as a variable gives a renormalization-group equation. R evolution improves the stability of conversion between short-distance mass schemes, allowing us to avoid large logs and the renormalon. R evolution can also be used to study IR renormalons without using bubble chains, yielding a convergent sum rule for the coefficient of the O({lambda}{sub QCD}) renormalon ambiguity of the pole mass.

  19. Pion and Kaon Masses and Pion Form Factors from Dynamical Chiral-Symmetry Breaking with Light Constituent Quarks

    SciTech Connect

    Scadron, Michael D.; Kleefeld, Frieder; Rupp, George

    2007-02-27

    Light constituent quark masses and the corresponding dynamical quark masses are determined by data, the quark-level linear {sigma} model, and infrared QCD. This allows to define effective nonstrange and strange current quark masses, which reproduce the experimental pion and kaon masses very accurately, by simple additivity. In contrast, the usual nonstrange and strange current quarks employed by the Particle Data Group and Chiral Perturbation Theory do not allow a straightforward quantitative explanation of the pion and kaon masses.

  20. Top Quark Mass from the Tevatron and LHC Colliders

    NASA Astrophysics Data System (ADS)

    Brigliadori, Luca

    2015-03-01

    The discovery of the top quark in 1995 has been one of the great successes of the CDF and D0 experiments at the Fermilab Tevatron collider. Since then, many measurements of the top quark properties have been performed in different channels and using many methods. The importance of measuring its mass lies in the possibility of verifying the predictions and the consistency of the Standard Model as well as in setting constraints on possible, still unobserved, physics. In 2010, the new CERN experiments, ATLAS and CMS, started to measure the top quark properties exploiting the large amount of data collected at the Large Hadron Collider. In March 2014, the very first combination of measurements from all the four experiments has been performed yielding Mtop = 173.34 ± 0.76 GeV, with a precision below 0.5%. In these proceedings a selected review of the most recent or relevant results obtained by the Tevatron and LHC Collaborations is presented.

  1. GUT predictions for quark and lepton mass ratios

    SciTech Connect

    Antusch, S.; Spinrath, M.

    2010-02-10

    Group theoretical factors from GUT symmetry breaking can lead to predictions for the ratios of quark and lepton masses at the unification scale. Due to supersymmetric (SUSY) threshold corrections the viability of such predictions can depend strongly on the SUSY parameters. We derive possible new predictions for the GUT scale ratios m{sub m}u/m{sub s}, ytau/y{sub b} and y{sub t}/y{sub b} and compare them with the experimentally allowed ranges for three common SUSY breaking scenarios.

  2. Measurement of the top quark mass at D0

    SciTech Connect

    Varnes, E.W.; D0 Collaboration

    1996-11-01

    D{null} has measured the top quark mass using a sample of 32 single- lepton events selected from approximately 115 pb{sup -1} of {radical}s = 1.8 TeV {ital p}{ital {anti p}} collisions collected from 1992-1996. The result is {ital m}{sub t} = 169 {+-} 8({ital stat}){+-} 8 ({ital syst}) GeV/c{sup 2}. Using a sample of 3 {ital e{mu}} events, D{null} measures {ital m}{sub t} = 158 {+-} 24({ital stat}) {+-} 10({ital syst}) GeV/c{sup 2}.

  3. Valence-quark distribution functions in the kaon and pion

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Chang, Lei; Roberts, Craig D.; Wan, Shaolong; Zong, Hong-Shi

    2016-04-01

    We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson's momentum at a characteristic hadronic scale and vanish as (1 -x )2 when Bjorken-x →1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U (3 ) -flavor symmetry breaking in meson parton distribution functions is modulated by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion's light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.

  4. General structure of democratic mass matrix of quark sector in E6 model

    NASA Astrophysics Data System (ADS)

    Ciftci, R.; ćiftci, A. K.

    2016-03-01

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  5. Up, down, strange and charm quark masses with Nf=2+1+1 twisted mass lattice QCD

    NASA Astrophysics Data System (ADS)

    Carrasco, N.; Deuzeman, A.; Dimopoulos, P.; Frezzotti, R.; Giménez, V.; Herdoiza, G.; Lami, P.; Lubicz, V.; Palao, D.; Picca, E.; Reker, S.; Riggio, L.; Rossi, G. C.; Sanfilippo, F.; Scorzato, L.; Simula, S.; Tarantino, C.; Urbach, C.; Wenger, U.

    2014-10-01

    We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210-450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI‧-MOM method. The results for the quark masses converted to the MSbar scheme are: mud(2 GeV)=3.70(17) MeV, ms(2 GeV)=99.6(4.3) MeV and mc(mc)=1.348(46) GeV. We obtain also the quark mass ratios ms/mud=26.66(32) and mc/ms=11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56), leading to mu=2.36(24) MeV and md=5.03(26) MeV.

  6. Integral equation for gauge invariant quark Green's function

    SciTech Connect

    Sazdjian, H.

    2008-08-29

    We consider gauge invariant quark two-point Green's functions in which the gluonic phase factor follows a skew-polygonal line. Using a particular representation for the quark propagator in the presence of an external gluon field, functional relations between Green's functions with different numbers of segments of the polygonal lines are established. An integral equation is obtained for the Green's function having a phase factor along a single straight line. The related kernels involve Wilson loops with skew-polygonal contours and with functional derivatives along the sides of the contours.

  7. Measurements of the top-quark mass and properties at CMS

    NASA Astrophysics Data System (ADS)

    Dünser, Marc; CMS Collaboration

    2015-06-01

    Measurements of the top-quark mass and other top-quark properties are presented, obtained from the CMS data collected in 2011 and 2012 at centre-of-mass energies of 7 and 8 TeV. The mass of the top quark is measured using several methods and decay channels. The measurements of the top-quark properties include the W helicity in top-quark decays, the search for anomalous couplings, and the ratio of top-quarks decaying to bW over qW in order to gain information on |Vtb| using both t\\bar t and single-top quark event samples. The results are compared with predictions from the standard model as well as new physics models. The cross section of t\\bar t events produced in association with a W, Z boson or a photon is also measured.

  8. A measurement of the top quark mass with a matrix element method

    SciTech Connect

    Gibson, Adam Paul; /UC, Berkeley

    2006-12-01

    The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb{sup -1} dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t{bar t} and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb{sup -1} dataset they extract a top quark mass of 172.0 {+-} 2.6(stat) {+-} 3.3(syst) GeV/c{sup 2} from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c{sup 2} for m{sub t} = 178 GTeV/c{sup 2} and 3.1 GeV/c{sup 2} for m{sub t} = 172.5 GeV/c{sup 2}. The systematic error is dominated by the uncertainty of the jet energy scale.

  9. Measurement of the mass difference between top and antitop quarks

    SciTech Connect

    Chatrchyan, Serguei; et al.

    2012-06-01

    A measurement of the mass difference between the top and the antitop quark (Delta m(t) = m(t) - m(anti-t)) is performed using events with a muon or an electron and at least four jets in the final state. The analysis is based on data collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.96 +/- 0.11 inverse femtobarns, and yields the value of Delta m(t) = -0.44 +/- 0.46 (stat) +/- 0.27 (syst) GeV. This result is consistent with equality of particle and antiparticle masses required by CPT invariance, and provides a significantly improved precision relative to existing measurements.

  10. Hadron Spectra and Quark Mass Dependence in Holographic QCD

    NASA Astrophysics Data System (ADS)

    Hashimoto, K.

    Hadron masses and their quark-mass dependence are imporatant observablesin strongly coupled QCD. We apply holography, a string theory technique, to this problem, and find a qualitative coincidence with observed data of baryon spectra. This talk, presented on 9th Feruary 2010 in ``NFQCD'' workshop at YITP, is based on three papers written with my collaborators [K.~Hashimoto, T.~Hirayama, F.~L.~Lin and H.~U.~Yee, J. High Energy Phys. 07 (2008), 089, arXiv:0803.4192. K.~Hashimoto, T.~Hirayama and D.~K.~Hong, Phys. Rev. D 81 (2010), 045016, arXiv:0906.0402. K.~Hashimoto, N.~Iizuka, T.~Ishii and D.~Kadoh, Phys. Lett. B 691 (2010), 65, arXiv:0910.1179.

  11. The Cosmological Mass Function

    NASA Astrophysics Data System (ADS)

    Monaco, Pierluigi

    1997-10-01

    This thesis aims to review the cosmological mass function problem, both from the theoretical and the observational point of view, and to present a new mass function theory, based on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a complete review of the mass function theory. Chapters 3 and 4 present the ``dynamical'' mass function theory, based on truncated Lagrangian dynamics and on the excursion set approach. Chapter 5 reviews the observational state-of-the-art and the main applications of the mass function theories described before. Finally, Chapter 6 gives conclusions and future prospects.

  12. 1{sup -+} exotic meson at light quark masses

    SciTech Connect

    Hedditch, J.N.; Kamleh, W.; Lasscock, B.G.; Leinweber, D.B.; Williams, A.G.; Zanotti, J.M.

    2005-12-01

    The mass of the 1{sup -+} exotic meson, created with hybrid interpolating fields, is explored in numerical simulations of quenched QCD on large (20{sup 3}x40) lattices to obtain good control of statistical and finite volume errors. Using the Fat-Link Irrelevant Clover (FLIC) fermion action, the properties of the 1{sup -+} are investigated at light quark masses approaching 25 MeV (m{sub {pi}}/m{sub {rho}}{approx_equal}1/3). Under the standard assumption that the coupling to the quenched a{sub 1}{eta}{sup '} channel comes with a negative metric, our results indicate that the 1{sup -+} exotic exhibits significant curvature close to the chiral limit, suggesting previous linear extrapolations have overestimated the mass of the 1{sup -+}. We find for the first time in lattice studies a 1{sup -+} mass consistent with the {pi}{sub 1}(1600) candidate. We also find a strangeness {+-}1 J{sup P}=1{sup -} state with a mass close to 2 GeV.

  13. Quark and lepton masses and mixing in the landscape

    SciTech Connect

    Donoghue, John F.; Dutta, Koushik; Ross, Andreas

    2006-06-01

    Even if quark and lepton masses are not uniquely predicted by the fundamental theory, as may be the case in the string theory landscape, nevertheless their pattern may reveal features of the underlying theory. We use statistical techniques to show that the observed masses appear to be representative of a scale-invariant distribution, {rho}(m){approx}1/m. If we extend this distribution to include all the Yukawa couplings, we show that the resulting Cabibbo-Kobayashi-Maskawa matrix elements typically show a hierarchical pattern similar to observations. The Jarlskog invariant measuring the amount of CP violation is also well reproduced in magnitude. We also apply this framework to neutrinos using the seesaw mechanism. The neutrino results are ambiguous, with the observed pattern being statistically allowed even though the framework does not provide a natural explanation for the observed two large mixing angles. Our framework highly favors a normal hierarchy of neutrino masses. We also are able to make statistical predictions in the neutrino sector when we specialize to situations consistent with the known mass differences and two large mixing angles. Within our framework, we show that with 95% confidence the presently unmeasured Maki-Nakagawa-Sakata mixing angle sin{theta}{sub 13} is larger than 0.04 and typically of order 0.1. The leptonic Jarlskog invariant is found to be typically of order 10{sup -2} and the magnitude of the effective Majorana mass m{sub ee} is typically of order 0.001 eV.

  14. Quark fragmentation functions in NJL-jet model

    NASA Astrophysics Data System (ADS)

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  15. Relativistic and binding energy corrections to heavy quark fragmentation functions

    SciTech Connect

    Yusuf, M.A.; Bashir, A.

    1997-11-01

    We calculate the fragmentation function for a charm quark to decay inclusively into S-wave charmonium states, including relativistic and binding energy corrections in powers of the quark relative velocity v. We also use these fragmentation functions to estimate their contribution to the production rate of {eta}{sub c} and J/{psi} in Z{sup 0} decay. These corrections contribute about 38{percent} to the integrated c{r_arrow}J/{psi}+X fragmentation. For {eta}{sub c}, these corrections are found to be small. {copyright} {ital 1997} {ital The American Physical Society}

  16. Pion and kaon valence-quark parton distribution functions

    NASA Astrophysics Data System (ADS)

    Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.

    2011-06-01

    A rainbow-ladder truncation of QCD’s Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to π-N Drell-Yan data for the pion’s u-quark distribution and to Drell-Yan data for the ratio uK(x)/uπ(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  17. Pion and kaon valence-quark parton distribution functions.

    SciTech Connect

    Nguyen, T.; Bashir, A.; Roberts, C. D.; Tandy, P. C.

    2011-06-16

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  18. Pion and kaon valence-quark parton distribution functions

    SciTech Connect

    Nguyen, Trang; Bashir, Adnan; Roberts, Craig D.; Tandy, Peter C.

    2011-06-15

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations, constrained by existing applications to hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon. Comparison is made to {pi}-N Drell-Yan data for the pion's u-quark distribution and to Drell-Yan data for the ratio u{sub K}(x)/u{sub {pi}}(x): the environmental influence of this quantity is a parameter-free prediction, which agrees well with existing data. Our analysis unifies the computation of distribution functions with that of numerous other properties of pseudoscalar mesons.

  19. Isgur-Wise function within a modified heavy-light chiral quark model

    SciTech Connect

    Eeg, Jan O.; Kumericki, Kresimir

    2010-04-01

    We consider the Isgur-Wise function {xi}({omega}) within a new modified version of a heavy-light chiral quark model. While early versions of such models gave an absolute value of the slope that was too small, namely {xi}{sup '}(1){approx_equal}-0.4 to -0.3, we show how extended version(s) may lead to values around -1, in better agreement with recent measurements. This is obtained by introducing a new mass parameter in the heavy-quark propagator. We also shortly comment on the consequences for the decay modes B{yields}DD.

  20. Quark mass relations to four-loop order in perturbative QCD.

    PubMed

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses. PMID:25910112

  1. Scalar K{pi} form factor and light-quark masses

    SciTech Connect

    Jamin, Matthias; Oller, Jose Antonio; Pich, Antonio

    2006-10-01

    Recent experimental improvements on K-decay data allow for a precise extraction of the strangeness-changing scalar K{pi} form factor and the related strange scalar spectral function. On the basis of this scalar as well as the corresponding pseudoscalar spectral function, the strange quark mass is determined to be m{sub s}(2 GeV)=92{+-}9 MeV. Further taking into account chiral perturbation theory mass ratios, the light up and down quark masses turn out to be m{sub u}(2 GeV)=2.7{+-}0.4 MeV as well as m{sub d}(2 GeV)=4.8{+-}0.5 MeV. As a by-product, we also find a value for the Cabibbo angle |V{sub us}|=0.2236(29) and the ratio of meson decay constants F{sub K}/F{sub {pi}}=1.203(16). Performing a global average of the strange mass by including extractions from other channels as well as lattice QCD results yields m{sub s}(2 GeV)=94{+-}6 MeV.

  2. Quark and gluon decay functions in QCD and recombination model

    SciTech Connect

    Change, V.; Hwa, R.C.

    1980-04-01

    Inclusive longitudinal-momentum distributions of pions in jets initiated by quarks and gluons are determined in perturbative QCD and recombination model. The quark and antiquark joint distributions in jets are first calculated in the leading-order approximation at high Q/sup 2/. Gluons in the jets are completely converted to quark pairs. From the overall distribution q anti q pairs with definite quantum numbers then recombine to form pions. The recombination function for the process is well determined in the valon model. No adjustable parameters are involved in these calculations, and no data at low Q/sup 2/ are used as phenomenological input. The result for the quark decay functions can be compared with data on e/sup +/e/sup -/ annihilation, and the agreement is very good in both shape and normalization. Predictions for the gluon decay functions are presented, but they cannot yet be checked by experiments. The x and Q/sup 2/ dependences of both types of decay functions have been parametrized in simple form suitable for use in theoretical and experimental applications. 17 figures, 1 table.

  3. Spin Structure Functions in a Covariant Spectator Quark Model

    SciTech Connect

    G. Ramalho, Franz Gross and M. T. Peña

    2010-12-01

    We apply the covariant spectator quark–diquark model, already probed in the description of the nucleon elastic form factors, to the calculation of the deep inelastic scattering (DIS) spin-independent and spin-dependent structure functions of the nucleon. The nucleon wave function is given by a combination of quark–diquark orbital states, corresponding to S, D and P-waves. A simple form for the quark distribution function associated to the P and D waves is tested.

  4. Mass of the b quark and B -meson decay constants from Nf=2 +1 +1 twisted-mass lattice QCD

    NASA Astrophysics Data System (ADS)

    Bussone, A.; Carrasco, N.; Dimopoulos, P.; Frezzotti, R.; Lami, P.; Lubicz, V.; Picca, E.; Riggio, L.; Rossi, G. C.; Simula, S.; Tarantino, C.; ETM Collaboration

    2016-06-01

    We present precise lattice computations for the b -quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B -decay constants. We employ gauge configurations with four dynamical quark flavors, up-down, strange and charm, at three values of the lattice spacing (a ˜0.06 - 0.09 fm ) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated to the physical pion mass and to the continuum limit and read mb(MS ¯ ,mb)=4.26 (10 ) GeV , mb/mc=4.42 (8 ), mb/ms=51.4 (1.4 ), fB s=229 (5 ) MeV , fB=193 (6 ) MeV , fB s/fB=1.184 (25 ) and (fB s/fB)/(fK/fπ)=0.997 (17 ).

  5. Measurement of the top quark mass using the template method in the lepton plus jets channel with in situ W ---> j j calibration at CDF-II

    SciTech Connect

    Adelman, Jahred A.; Arguin, J.F.; Bellettini, G.; Brubaker, E.; Budagov, J.; Chlachidze, G.; Demortier, L.; Gibson, A.; Kim, S.; Kim, Y.K.; Maruyama, T.; Sato, K.; Shochet, M.; Sinervo, P.; Tomura, T.; Velev, G.; Xie, S.; Yang, U.K.; /Chicago U. /Toronto U. /INFN, Pisa /Dubna, JINR /Rockefeller U. /LBL, Berkeley /Tsukuba U. /Fermilab

    2006-05-01

    We report an updated measurement of the top quark mass in the lepton plus jets channel of t{bar t} events from p{bar p} collisions at {radical}s = 1.96 TeV. This measurement uses a dataset with integrated luminosity of 680 pb{sup -1}, containing 360 t{bar t} candidates separated into four subsamples. A top quark mass is reconstructed for each event by using energy and momentum constraints on the top quark pair decay products. We also employ the reconstructed mass of hadronic W boson decays W {yields} jj to constrain in situ the largest systematic uncertainty of the top quark mass measurement: the jet energy scale. Monte Carlo templates of the reconstructed top quark and W boson mass are produced as a function of the true top quark mass and the jet energy scale. The distribution of reconstructed top quark and W boson mass in the data are compared to the Monte Carlo templates using a likelihood fit to obtain: M{sub top} = 173.4 {+-} 2.8 GeV/c{sup 2}.

  6. Evolution of heavy quark distribution function on quark-gluon plasma: Using the Iterative Laplace Transform Method

    NASA Astrophysics Data System (ADS)

    Mehrabi Pari, Sharareh; Javidan, Kurosh; Taghavi Shahri, Fatemeh

    2016-05-01

    The "Laplace Transform Method" is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.

  7. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes

    SciTech Connect

    Almeida, Leandro G.; Sturm, Christian

    2010-09-01

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients of the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.

  8. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the RI/SMOM schemes

    SciTech Connect

    Sturm, C.; Almeida, L.

    2010-04-26

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the {ovr MS} scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{mu}} schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients of the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f} = 3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.

  9. Di-lepton Top Quark Mass Measurement with the Neutrino Weighting Algorithm

    NASA Astrophysics Data System (ADS)

    Sabik, Simon

    2005-04-01

    We report a measurement of the Top Quark Mass using approximately 340 pb-1 of data from pp collisions at √s = 1.96 GeV at CDF Run II. We select tt candidates that are consistent with two W bosons decaying leptonically. Only one of the two charged leptons is required to be identified as an electron or a muon candidate, while the other is simply a well measured track. Using the Neutrino Weighting Algorithm to reconstruct a top quark mass in each event and comparing the resulting distribution to Monte Carlo templates, we measure the top quark mass.

  10. Quark masses and mixings in the RS1 model with a condensing 4th generation

    NASA Astrophysics Data System (ADS)

    Hernández, A. E. Cárcamo; Dib, Claudio O.; Neill, Nicolás A.; Zerwekh, Alfonso R.

    2012-02-01

    We study the hierarchy of quark masses and mixings in a model based on a 5-dimensional spacetime with constant curvature of Randall-Sundrum type with two branes, where the Electroweak Symmetry Breaking is caused dynamically by the condensation of a 4th generation of quarks, due to underlying physics from the 5D bulk and the first KK gluons. We first study the hierarchy of quark masses and mixings that can be obtained from purely adjusting the profile localizations, finding that realistic masses are not reproduced unless non trivial hierarchies of underlying 4-fermion interactions from the bulk are included. Then we study global U(1) symmetries that can be imposed in order to obtain non-symmetric modified Fritzsch-like textures in the mass matrices that reproduce reasonably well quark masses and CKM mixings.

  11. Measurement of the Top Quark Mass in the Di-lepton Channel using the Dalitz-Goldstein Method

    SciTech Connect

    Hare, Matthew Frederick

    2010-10-01

    This dissertation describes a measurement of the mass of the top quark using a method developed by G. Goldstein and R.H. Dalitz. It is based on 2.0 fb-1 of data collected by the Collider Detector Facility at Fermi National Accelerator Laboratories. Di-lepton events were observed from colliding protons with anti-protons with √s = 1.96 TeV in the Tevatron Collider. A total of 145 candidate events were observed with 49 expected to be from background. These events include two neutrinos which elude detection. The method begins by assuming an initial top quark mass and solves for the neutrino momenta using a geometrical construction. The method samples over a range of likely top quark masses choosing the most consistent mass via a likelihood function. An important distinguishing feature of this method from others is its lack of dependence on the missing transverse energy, a quantity that is poorly measured by the experiment. This analysis determines the top quark mass to be Mtop = 172.3 ± 3.4(stat.) ± 2.0(syst.) GeV/c2 (Mtop = 170.5 ± 3.7(stat.) ± 1.8(syst.) GeV/c2 with b-tagging).

  12. Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons

    SciTech Connect

    Souchlas, N.; Stratakis, D.

    2010-06-01

    The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV ({Lambda}{sub {chi}{approx}1} GeV) or with the scale {Lambda}{sub QCD{approx}}0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.

  13. Measurement of the top quark mass in the dilepton channel at CDF and D0

    SciTech Connect

    Maki, Tuula; /Helsinki U. /Helsinki Inst. of Phys.

    2005-10-01

    We present recent analyses of the top quark mass measurement in dileptonic channel. The measurements use 200-360 pb{sup -1} of data collected by CDF and D0 experiments. The future prospects are discussed as well.

  14. Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons

    NASA Astrophysics Data System (ADS)

    Souchlas, N.; Stratakis, D.

    2010-06-01

    The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Λχ˜1GeV) or with the scale ΛQCD˜0.2GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.

  15. Top quark mass measurement from dilepton events at CDF II with the matrix-element method

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-05-01

    We describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II detector from p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convoluting the leading order matrix element describing q{bar q} {yields} t{bar t} {yields} b{ell}{nu}{sub {ell}}{bar b}{ell}{prime} {nu}{sub {ell}}, with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 340 pb{sup -1}, we observe 33 candidate events and measure M{sub top} = 165.2 {+-} 6.1(stat.) {+-} 3.4(syst.) GeV/c{sup 2}. This measurement represents the first application of this method to events with two charged leptons and is the most precise single measurement of the top quark mass in this channel.

  16. Broken S flavor symmetry of leptons and quarks: Mass spectra and flavor mixing patterns

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Yang, Deshan; Zhou, Shun

    2010-06-01

    We apply the discrete S3 flavor symmetry to both lepton and quark sectors of the Standard Model extended by introducing one Higgs triplet and realizing the type-II seesaw mechanism for finite neutrino masses. The resultant mass matrices of charged leptons (Ml), neutrinos (Mν), up-type quarks (Mu) and down-type quarks (Md) have a universal form consisting of two terms: one is proportional to the identity matrix I and the other is proportional to the democracy matrix D. We argue that the textures of Ml, Mu and Md are dominated by the D term, while that of Mν is dominated by the I term. This hypothesis implies a near mass degeneracy of three neutrinos and can naturally explain why the mass matrices of charged fermions are strongly hierarchical, why the quark mixing matrix is close to I and why the lepton mixing matrix contains two large angles. We discuss a rather simple perturbation ansatz to break the S3 symmetry and obtain more realistic mass spectra of leptons and quarks as well as their flavor mixing patterns. We stress that the I term, which used to be ignored from Ml, Mu and Md, is actually important because it can significantly modify the smallest lepton flavor mixing angle θ13 or three quark flavor mixing angles.

  17. Analysis of the QCD spectrum and chiral symmetry breaking with varying quark masses

    SciTech Connect

    Simonov, Yu. A.

    2013-04-15

    The meson spectrum of QCD is studied in the framework of nonperturbative QCD as a function of varying quark masses m{sub q}. It is shown that the total spectrum consists of two branches: 1) the standard one, which may be called the flux-tube spectrum, depending approximately linearly on m{sub q}, and 2) the chiral symmetry breaking (CSB) spectrum for pseudoscalar (PS) flavor nonsinglet mesons with mass dependence {radical}m{sub q}. The formalism for PS mesons is derived from the QCD Lagrangian with m{sub q} corrections, and a unified form of the PS propagator was derived. It is shown that the CSB branch of PS mesons joins to the flux-tube branch at around m{sub q} = 200 MeV. All these results are in close correspondence with recent numerical data on large lattices.

  18. Top-quark mass measurement using events with missing transverse energy and jets at CDF

    SciTech Connect

    Aaltonen, T.

    2011-11-30

    We present a measurement of the top-quark mass with tt events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp collisions at the Fermilab Tevatron with √s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt decay channel, including events that contain tau leptons, which are usually not included in the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 ± 2.4 (stat) ± 1.0 (syst) GeV/c2.

  19. Top-quark mass measurement using events with missing transverse energy and jets at CDF

    DOE PAGESBeta

    Aaltonen, T.

    2011-11-30

    We present a measurement of the top-quark mass with tt events using a data sample corresponding to an integrated luminosity of 5.7 fb -1 of pp collisions at the Fermilab Tevatron with √s = 1.96 TeV and collected by the CDF II Detector. We select events having no identified charged leptons, large missing transverse energy, and four, five, or six jets with at least one jet containing a secondary vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic tt decay channel, including events that contain tau leptons, which are usually not included inmore » the top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet combinations. We fit the data to signal templates of varying top-quark masses and background templates, and measure a top-quark mass of Mtop = 172.3 ± 2.4 (stat) ± 1.0 (syst) GeV/c2.« less

  20. Top Quark Mass in Events with two Charged Leptons at the D0 Experiment

    SciTech Connect

    Boline, Daniel Dooley

    2010-01-01

    The top quark is the most massive observed fundamental subatomic particle, and at the Tevatron accelerator is produced mostly in top-antitop (t$\\bar{t}$) quark pairs from the collisions of protons and anti-protons. Each top quark decays into a bottom quark and a W boson. The W boson can then decay into a pair of quarks, or into a charged lepton and a neutrino. The various decays can be broken up into three different channels based on the number of leptons from the decay of the W bosons: all-jets (with no leptons), lepton+jets (with one lepton), and dilepton (with two leptons). This dissertation will present a measurement of the top quark mass in the dilepton channel. The dilepton channel is characterized by two leptons, two neutrinos and two b-quarks. The neutrinos are not directly observed, but their absence is felt as missing transverse momentum (pT) in the detector. The combination of two leptons and large pT produces an easily isolated signal, giving the dilepton channel a high signal over background ratio. Having two neutrinos means that we cannot know what the transverse momenta of either neutrino is. This means that even if we knew the momenta of the leptons and b-quarks perfectly, we would be unable to reconstruct the mass of the top quark. This measurement gets around this problem by scanning over all possible values of the top mass, finding all consistent t{bar t} combinations, assigning a kinematic weight to each, and then adding the weights for each combination at a given possible top mass. The lepton momenta, jet momenta, and pT are only known to within some finite precision, so for a given top mass, I also vary each of these momenta within their resolutions and add the weights for a given possible top mass. After scanning over possible top masses, I choose the top mass with the largest sum of weights mtmax as an observable for the event. I then perform a template based likelihood fit of m

  1. Top quark mass in events with two charged leptons at the D0 experiment

    NASA Astrophysics Data System (ADS)

    Boline, Daniel

    The top quark is the most massive observed fundamental subatomic particle, and at the Tevatron accelerator is produced mostly in top-antitop ( tt¯) quark pairs from the collisions of protons and anti-protons. Each top quark decays into a bottom quark and a W boson. The W boson can then decay into a pair of quarks, or into a charged lepton and a neutrino. The various decays can be broken up into three different channels based on the number of leptons from the decay of the W bosons: all-jets (with no leptons), lepton+jets (with one lepton), and dilepton (with two leptons). This dissertation will present a measurement of the top quark mass in the dilepton channel. The dilepton channel is characterized by two leptons, two neutrinos and two b-quarks. The neutrinos are not directly observed, but their absence is felt as missing transverse momentum ( pT / ) in the detector. The combination of two leptons and large pT / produces an easily isolated signal, giving the dilepton channel a high signal over background ratio. Having two neutrinos means that we cannot know what the transverse momenta of either neutrino is. This means that even if we knew the momenta of the leptons and b-quarks perfectly, we would be unable to reconstruct the mass of the top quark. This measurement gets around this problem by scanning over all possible values of the top mass, finding all consistent tt¯ combinations, assigning a kinematic weight to each, and then adding the weights for each combination at a given possible top mass. The lepton momenta, jet momenta, and pT / are only known to within some finite precision, so for a given top mass, I also vary each of these momenta within their resolutions and add the weights for a given possible top mass. After scanning over possible top masses, I choose the top mass with the largest sum of weights mmaxt as an observable for the event. I then perform a template based likelihood fit of mt using mmaxt . I analyze 322 candidate events collected by the

  2. Bottom-Hadron Mass Splittings from Static-Quark Action on 2+1-Flavor Lattices

    SciTech Connect

    Huey-Wen Lin, Saul D. Cohen, Nilmani Mathur, Kostas Orginos

    2009-09-01

    We calculate bottom-baryon mass splittings using full QCD with 2+1 flavors of dynamical Kogut-Susskind sea quarks and domain-wall valence quarks along with a static heavy quark on a lattice of spatial volume of $(\\sim 2.5\\mbox{ fm})^3$ with lattice spacing of about 0.124~fm over a range of pion masses as low as 291~MeV. We calculate the mass splittings of bottom hadrons with respect to $B_d$ and $\\Lambda_b$. Our results are in agreement with experimental observations and other lattice calculations, within our statistical and systematic errors. In particular, we find the mass of the $\\Omega_b$ to be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved $\\Xi^\\prime_b$ to be 5955(27)~MeV.

  3. Quark-lepton mass relation in a realistic A4 extension of the Standard Model

    NASA Astrophysics Data System (ADS)

    King, S. F.; Morisi, S.; Peinado, E.; Valle, J. W. F.

    2013-07-01

    We propose a realistic A4 extension of the Standard Model involving a particular quark-lepton mass relation, namely that the ratio of the third family mass to the geometric mean of the first and second family masses are equal for down-type quarks and charged leptons. This relation, which is approximately renormalization group invariant, is usually regarded as arising from the Georgi-Jarlskog relations, but in the present model there is no unification group or supersymmetry. In the neutrino sector we propose a simple modification of the so-called Zee-Wolfenstein mass matrix pattern which allows an acceptable reactor angle along with a deviation of the atmospheric and solar angles from their bi-maximal values. Quark masses, mixing angles and CP violation are well described by a numerical fit.

  4. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5 mass-to-light ratio and its GSMF data. Results: Assuming ℳg0 ≈ 1011ℳ⊙ as the local value of the average galactic mass, the LF approach results in LB ∝ (1 + z)(2.40 ± 0.03) and ℳg ∝ (1 + z)(1.1 ± 0.2). However, using the GSMF results to calculate the average galactic mass produces ℳg ∝ (1 + z)(- 0.58 ± 0.22). We chose the latter result because it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to finally calculate the GCMF, which can be fitted by a Schechter function, but whose fitted parameter values are different from the values found in the literature for the GSMF. Conclusions: This GCMF behavior follows the theoretical predictions from the cold dark matter models in which the less massive objects form first, followed later by more massive ones. In the range 0.5

  5. SUSY Threshold Effects on Quark and Lepton Masses at the GUT Scale

    SciTech Connect

    Antusch, Stefan

    2008-11-23

    We discuss the impact of supersymmetric (SUSY) threshold corrections on the values of the running quark and charged lepton masses at the GUT scale within the large tan{beta} regime of the MSSM. In addition to the typically dominant SUSY QCD contributions for the quarks, we also include the electroweak contributions for quarks and leptons which can have significant effects. We provide the GUT scale ranges of quark and charged lepton Yukawa couplings as well as of the ratios m{sub {mu}}/m{sub s}, m{sub e}/m{sub d}, y{sub {tau}}/y{sub b} and y{sub t}/y{sub b} for three example ranges of SUSY parameters and discuss how the enlarged ranges due to threshold effects might open up new possibilities for constructing GUT models of fermion masses and mixings. This is a brief summary of the work of Ref. [1].

  6. Quark and lepton masses at the GUT scale including supersymmetric threshold corrections

    SciTech Connect

    Antusch, S.; Spinrath, M.

    2008-10-01

    We investigate the effect of supersymmetric (SUSY) threshold corrections on the values of the running quark and charged lepton masses at the grand unified theory (GUT) scale within the large tan{beta} regime of the minimal supersymmetric standard model. In addition to the typically dominant SUSY QCD contributions for the quarks, we also include the electroweak contributions for quarks and leptons and show that they can have significant effects. We provide the GUT scale ranges of quark and charged lepton Yukawa couplings as well as of the ratios m{sub {mu}}/m{sub s}, m{sub e}/m{sub d}, y{sub {tau}}/y{sub b} and y{sub t}/y{sub b} for three example ranges of SUSY parameters. We discuss how the enlarged ranges due to threshold effects might open up new possibilities for constructing GUT models of fermion masses and mixings.

  7. Quark Spectral Function above T{sub c}

    SciTech Connect

    Qin Sixue; Chang Lei; Liu Yuxin; Roberts, Craig D.

    2011-05-24

    The maximum entropy method is used to calculate the dressed-quark spectral density from the self-consistent solution of the rainbow-truncated gap equation of QCD at temperatures above T{sub c}, the critical temperature for chiral symmetry restoration. We find that, besides the normal and plasmino modes, the spectral function exhibits an essentially nonperturbative zero mode at the temperatures above but near T{sub c}. In the vicinity of T{sub c}, this long-wavelength mode contains the bulk of the spectral strength. So long as this mode persists, the system may reasonably be described as a strongly-coupled state of matter.

  8. Hierarchy and anarchy in quark mass matrices, or can hierarchy tolerate anarchy?

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Rogerio; Rosner, Jonathan L.

    2001-09-01

    The consequences of adding random perturbations (anarchy) to a baseline hierarchical model of quark masses and mixings are explored. Even small perturbations of the order of 5% of the smallest non-zero element can already give deviations significantly affecting parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, so any process generating the anarchy should in general be limited to this order of magnitude. The regularities of quark masses and mixings thus appear to be far from a generic feature of randomness in the mass matrices, and more likely indicate an underlying order.

  9. Cross-section-constrained top-quark mass measurement from dilepton events at the Tevatron.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; DeCecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-02-15

    We report the first top-quark mass measurement that uses a cross-section constraint to improve the mass determination. This measurement is made with a dilepton tt event candidate sample collected with the Collider Detector II at Fermilab. From a data sample corresponding to an integrated luminosity of 1.2 fb(-1), we measure a top-quark mass of 170.7(-3.9)(+4.2)(stat)+/-2.6(syst)+/-2.4(theory) GeV/c(2). The measurement without the cross-section constraint is 169.7(-4.9)(+5.2)(stat)+/-3.1(syst) GeV/c(2). PMID:18352461

  10. Top Quark Mass Measurement in the Lepton plus Jets Channel Using a Modified Matrix Element Method

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2008-12-01

    The authors report a measurement of the top quark mass, m{sub t}, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. They analyze a sample corresponding to an integrated luminosity of 1.9 rfb{sup -1}. They select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. They calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. The event likelihood is a function of m{sub t} and a parameter JES that determines in situ the calibration of the jet energies. They use a neural network discriminant to distinguish signal from background events. They also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, they find m{sub t} = 172.7 {+-} 1.8 (stat. + JES) {+-} 1.2(syst.) GeV/c{sup 2}.

  11. Precision measurement of the top quark mass from dilepton events at CDF II

    SciTech Connect

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-12-01

    We report a measurement of the top quark mass, M{sub t}, in the dilepton decay channel of t{bar t} {yields} b{ell}{prime}{sup +} {nu}{sub {ell}}, {bar b}{ell}{sup -}{bar {nu}}{sub {ell}} using an integrated luminosity of 1.0 fb{sup -1} of p{bar p} collisions collected with the CDF II detector. We apply a method that convolutes a leading-order matrix element with detector resolution functions to form event-by-event likelihoods; we have enhanced the leading-order description to describe the effects of initial-state radiation. The joint likelihood is the product of the likelihoods from 78 candidate events in this sample, which yields a measurement of M{sub t} = 164.5 {+-} 3.9(stat.) {+-} 3.9(syst.) GeV/c{sup 2}, the most precise measurement of M{sub t} in the dilepton channel.

  12. First results from $2+1$ dynamical quark flavors on an anisotropic lattice: light-hadron spectroscopy and setting the strange-quark mass

    SciTech Connect

    Lin, Huey-Wen; Cohen, Saul; Dudek, Jozef; Edwards, Robert; Joo, Balint; Richards, David; Bulava, John; Foley, Justin; Morningstar, Colin; Engelson, Eric; Wallace, Stephen; Juge, Jimmy; Mathur, Nilmani; Peardon, Michael; Ryan, Sinead

    2009-02-01

    We present the first light-hadron spectroscopy on a set of $N_f=2+1$ dynamical, anisotropic lattices. A convenient set of coordinates that parameterize the two-dimensional plane of light and strange-quark masses is introduced. These coordinates are used to extrapolate data obtained at the simulated values of the quark masses to the physical light and strange-quark point. A measurement of the Sommer scale on these ensembles is made and the performance of the hybrid Monte Carlo algorithm used for generating the ensembles is estimated.

  13. Precise measurement of the top-quark mass from lepton+jets events at D0

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2011-08-09

    We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; → tt̄ data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of Γ + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, we measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.

  14. Precise measurement of the top-quark mass from lepton+jets events at D0

    DOE PAGESBeta

    Abazov, Victor Mukhamedovich

    2011-08-09

    We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; → tt̄ data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of Γ + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, wemore » measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.« less

  15. Top-quark mass measurement in the dilepton channel using in situ jet energy scale calibration

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Su

    2012-09-01

    We employ a top-quark mass measurement technique in the dilepton channel with in situ jet energy scale calibration. Three variables having different jet energy scale dependences are used simultaneously to extract not only the top-quark mass but also the energy scale of the jet from a single likelihood fit. Monte Carlo studies with events corresponding to an integrated luminosity of 5fb-1 proton-proton collisions at the Large Hadron Collider s=7TeV are performed. Our analysis suggests that the overall jet energy scale uncertainty can be significantly reduced and the top-quark mass can be determined with a precision of less than 1GeV/c2, including jet energy scale uncertainty, at the Large Hadron Collider.

  16. Sensitivity of hyperfine structure to nuclear radius and quark mass variation

    SciTech Connect

    Dinh, T. H.; Dunning, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-05-15

    To search for the temporal variation in the fundamental constants, one needs to know dependence of atomic transition frequencies on these constants. We study the dependence of the hyperfine structure of atomic s levels on nuclear radius and, via radius, on quark masses. An analytical formula has been derived and tested by the numerical relativistic Hartree-Fock calculations for Rb, Cd{sup +}, Cs, Yb{sup +}, and Hg{sup +}. The results of this work allow the use of the results of past and future atomic clock experiments and quasar spectra measurements to put constraints on time variation in the quark masses.

  17. Unitarity triangle and quark mass matrices on the nearest-neighbor interaction basis

    NASA Astrophysics Data System (ADS)

    Ito, Toshiaki; Tanimoto, Morimitsu

    1997-02-01

    We examine the unitarity triangle of the KM matrix, which is derived from the general quark mass matrices in the NNI basis. The Fritzsch Ansätze are modified by introducing four additional parameters. The KM matrix elements are expressed in terms of quark mass ratios, two phases, and four additional parameters. It is found that the vertex of the unitarity triangle is predicted to be almost in the second quadrant on the ρ-η plane as far as Vus~=-md/mseip+mu/mceiq.

  18. Determination of the top-quark pole mass using tt¯ + 1-jet events collected with the ATLAS experiment in 7TeV pp collisions

    SciTech Connect

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.

    2015-10-19

    In this study, the normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt¯ + 1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton-proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb–1 . The selected events were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, mpolet , is: mpolet = 173.7 ± 1.5(stat.) ± 1.4(syst.)+1.0–0.5(theory) GeV.

  19. Determination of the top-quark pole mass using tt¯ + 1-jet events collected with the ATLAS experiment in 7TeV pp collisions

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-10-19

    In this study, the normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt¯ + 1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton-proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb–1 . The selected events were identified using themore » lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, mpolet , is: mpolet = 173.7 ± 1.5(stat.) ± 1.4(syst.)+1.0–0.5(theory) GeV.« less

  20. Measurements of the Top Quark Mass in the Dilepton Decay Channel at the D0 Experiment

    SciTech Connect

    Grohsjean, Alexander

    2008-10-01

    We present the most recent measurements of the top quark mass in the dilepton decay channel at the D0 experiment using proton-antiproton collisions with a center-of-mass energy of 1.96 TeV at the Tevatron collider. Two different methods have been used: the Neutrino Weighting and the Matrix Element method. The combined results yield a top mass of 174.4 +-3.8 GeV.

  1. Measurements of the top-quark mass using charged particle tracking

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-10-01

    We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb{sup -1} of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9{sub -8.5}{sup +9.5} (stat) {+-} 2.9 (syst) GeV/c{sup 2}, and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5{sub -8.9}{sup +8.8} (stat) {+-} 3.8 (syst) GeV/c{sup 2}. These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 {+-} 6.3 (stat) {+-} 2.6 (syst) GeV/c{sup 2}.

  2. Estimating the unquenched strange quark mass from the lattice axial Ward identity

    SciTech Connect

    Goeckeler, M.; Horsley, R.; Zanotti, J.M.; Irving, A.C.; Rakow, P.E.L.; Pleiter, D.; Schierholz, G.; Stueben, H.

    2006-03-01

    We present a determination of the strange quark mass for two flavors (n{sub f}=2) of light dynamical quarks using the axial Ward identity. The calculations are performed on the lattice using O(a) improved Wilson fermions and include a fully nonperturbative determination of the renormalization constant. In the continuum limit we find m{sub s}{sup MS}(2 GeV)=111(6)(4)(6) MeV, using the force scale r{sub 0}=0.467 fm, where the first error is statistical, the second and third are systematic due to the fit and scale uncertainties, respectively. Results are also presented for the light quark mass and the chiral condensate. The corresponding results are also given for r{sub 0}=0.5 fm.

  3. Quark propagators in confinement and deconfinement phases

    SciTech Connect

    Hamada, Masatoshi; Yahiro, Masanobu; Kouno, Hiroaki; Nakamura, Atsushi; Saito, Takuya

    2010-05-01

    We study quark propagators near the confinement/deconfinement phase transition temperature in quenched-lattice simulation of QCD. We find that there is no qualitative change for the quark propagators in both phases. In the confinement phase, those effective quark masses in units of the critical temperature behave as a constant as a function of the temperature, while above the critical temperature, the value of the effective quark mass drops to circa half value.

  4. The effect of meson wave function on heavy-quark fragmentation function

    NASA Astrophysics Data System (ADS)

    Moosavi Nejad, S. Mohammad

    2016-05-01

    We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We shall present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c -quark to split into S -wave D^0 -meson and compare our results with experimental data from BELLE and CLEO.

  5. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    DOE PAGESBeta

    Aaltonen, T.

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy √s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt̄ pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and amore » correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ΔJES) ± 1.3 (syst) GeV/c2.« less

  6. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    SciTech Connect

    Aaltonen, T.

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy √s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt̄ pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ΔJES) ± 1.3 (syst) GeV/c2.

  7. PQChPT with Staggered Sea and Valence Ginsparg-Wilson Quarks: Vector Meson Masses

    SciTech Connect

    Hovhannes R. Grigoryan; Anthony W. Thomas

    2005-09-16

    We consider partially quenched, mixed chiral perturbation theory with staggered sea and Ginsparg-Wilson valence quarks in order to extract a chiral-continuum extrapolation expression for the vector meson mass up to order O(a{sup 2}), at one-loop level. Based on general principles, we accomplish the task without explicitly constructing a sophisticated, heavy vector meson chiral Lagrangian.

  8. A measurement of the mass of the top quark using the ideogram technique

    SciTech Connect

    Houben, Pieter Willem Huib

    2009-06-03

    This thesis describes a measurement of the mass of the top quark on data collected with the D0 detector at the Tevatron collider in the period from 2002 until 2006. The first chapter describes the Standard Model and the prominent role of the top quark mass. The second chapter gives a description of the D0 detector which is used for this measurement. After the p$\\bar{p}$ collisions have been recorded, reconstruction of physics objects is required, which is described in Chapter 3. Chapter 4 describes how the interesting collisions in which top quarks are produced are separated from the `uninteresting' ones with a set of selection criteria. The method to extract the top quark mass from the sample of selected collisions (also called events), which is based on the ideogram technique, is explained in Chapter 5, followed in Chapter 6 by the description of the calibration of the method using simulation of our most precise knowledge of nature. Chapter 7 shows the result of the measurement together with some cross checks and an estimation of the uncertainty on this measurement. This thesis concludes with a constraint on the Higgs boson mass.

  9. Inclusive photoproduction of bottom quarks for low and medium pT in the general-mass variable-flavour-number scheme

    NASA Astrophysics Data System (ADS)

    Kramer, G.; Spiesberger, H.

    2016-02-01

    We present predictions for b-quark production in photoproduction and compare with experimental data from HERA. Our theoretical predictions are obtained at next-to-leading-order in the general-mass variable-flavor-number scheme, an approach which takes into account the finite mass of the b quarks. We use realistic evolved nonperturbative fragmentation functions obtained from fits to e+e- data. We find in general good agreement of data with both the GM-VFNS and the FFNS calculations, while the more precise ZEUS data seem to prefer the GM-VFNS predictions.

  10. Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab

    SciTech Connect

    Kubo, Taichi

    2008-02-01

    We have measured the top quark mass with the dynamical likelihood method. The data corresponding to an integrated luminosity of 1.7fb-1 was collected in proton antiproton collisions at a center of mass energy of 1.96 TeV with the CDF detector at Fermilab Tevatron during the period March 2002-March 2007. We select t$\\bar{t}$ pair production candidates by requiring one high energy lepton and four jets, in which at least one of jets must be tagged as a b-jet. In order to reconstruct the top quark mass, we use the dynamical likelihood method based on maximum likelihood method where a likelihood is defined as the differential cross section multiplied by the transfer function from observed quantities to parton quantities, as a function of the top quark mass and the jet energy scale(JES). With this method, we measure the top quark mass to be 171.6 ± 2.0 (stat.+ JES) ± 1.3(syst.) = 171.6 ± 2.4 GeV/c2.

  11. Precision measurement of the top-quark mass in lepton+jets final states

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2014-07-17

    We measure the mass of the top quark in lepton$+$jets final states using the full sample of $p\\bar{p}$ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at $\\sqrt s=1.96 $TeV, corresponding to $9.7 {\\rm fb}^{-1}$ of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from $t\\bar t$ production or background. The overall jet energy scale is constrained in situ by the mass of the $W$ boson. We measure $m_t=174.98\\pm0.76$ GeV. In conclusion, this constitutes the most precise single measurement of the top-quark mass.

  12. Precision measurement of the top-quark mass in lepton+jets final states

    DOE PAGESBeta

    Abazov, Victor Mukhamedovich

    2014-07-17

    We measure the mass of the top quark in leptonmore » $+$jets final states using the full sample of $$p\\bar{p}$$ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at $$\\sqrt s=1.96 $$TeV, corresponding to $$9.7 {\\rm fb}^{-1}$$ of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from $$t\\bar t$$ production or background. The overall jet energy scale is constrained in situ by the mass of the $W$ boson. We measure $$m_t=174.98\\pm0.76$$ GeV. In conclusion, this constitutes the most precise single measurement of the top-quark mass.« less

  13. Precision measurement of the top-quark mass in lepton$+$jets final states

    DOE PAGESBeta

    Abazov, Victor Mukhamedovich

    2015-06-04

    We measure the mass of the top quark in lepton þ jets final states using the full sample of pp¯ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at √s = 1.96 TeV, corresponding to 9.7 fb-1 of integrated luminosity. We also use a matrix element technique that calculates the probabilities for each event to result from tt¯ production or background. Furthermore, the overall jet energy scale is constrained in situ by the mass of the W boson. We measure mt = 174.98 ± 0.76 GeV. As a result, this constitutes the mostmore » precise single measurement of the top-quark mass.« less

  14. Precision measurement of the top quark mass in lepton + jets final States.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Borysova, M; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Fauré, A; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Gogota, O; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Savitskyi, M; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2014-07-18

    We measure the mass of the top quark in lepton+jets final states using the full sample of pp collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at sqrt[s] = 1.96 TeV, corresponding to 9.7 fb(-1) of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from tt production or background. The overall jet energy scale is constrained in situ by the mass of the W boson. We measure m(t) = 174.98 ± 0.76 GeV. This constitutes the most precise single measurement of the top-quark mass. PMID:25083634

  15. Precision measurement of the top-quark mass in lepton$+$jets final states

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2015-06-04

    We measure the mass of the top quark in lepton þ jets final states using the full sample of pp¯ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at √s = 1.96 TeV, corresponding to 9.7 fb-1 of integrated luminosity. We also use a matrix element technique that calculates the probabilities for each event to result from tt¯ production or background. Furthermore, the overall jet energy scale is constrained in situ by the mass of the W boson. We measure mt = 174.98 ± 0.76 GeV. As a result, this constitutes the most precise single measurement of the top-quark mass.

  16. Measurement of the top quark mass using the matrix element technique in dilepton final states

    DOE PAGESBeta

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; et al

    2016-08-18

    Here, we present a measurement of the top quark mass in pp collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to tt events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain amore » top quark mass of mt = 173.93±1.84 GeV.« less

  17. Measurement of the top quark mass in the all hadronic final state at the D0 experiment

    SciTech Connect

    Jayasinghe, Ayesh

    2013-01-01

    The top quark is the heaviest fermion observed to date. A precise measurement of its mass and W boson mass is important to indirect measurements of Higgs boson mass. Furthermore, the top quark mass, W boson mass and Higgs boson mass may test the Standard Model using the correlations between them. Here in this thesis, we present a measurement of the top quark mass in the all hadronic final state using the template method. This final state has the advantage of being fully reconstructed in the detector and having the largest branching fraction. The measurement is performed on 4033 candidate events collected using the DØ detector. The data is collected from pp collisions generated at √s =1.96 GeV by the TEVATRON accelerator, Fermi National Accelerator Laboratory, Batavia IL. This is a two dimensional measurement formulated to extract the top quark mass as well as lower the systematic uncertainty due to the jet energy scale calibration. A kinematic fitter is employed to build the templates of signal and background for various input top quark mass points and jet energy scale variations. These templates are compared to data to obtain the fitted top quark mass, jet energy scale shift and their uncertainties.

  18. Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model

    NASA Astrophysics Data System (ADS)

    Dahiya, Harleen; Randhawa, Monika

    2016-06-01

    We have analyzed the phenomenological dependence of the spin independent (F1p ,n and F2p ,n) and the spin dependent (g1p ,n) structure functions of the nucleon on the Bjorken scaling variable x using the unpolarized distribution functions of the quarks q (x ) and the polarized distribution functions of the quarks Δ q (x ) respectively. The chiral constituent quark model, which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of p and n . In light of the improved precision of the world data, the p and n longitudinal spin asymmetries [A1p(x ) and A1n(x )] have been calculated. The implication of the presence of the sea quarks has been discussed for the ratio of polarized to unpolarized quark distribution functions for up and down quarks in the p and n Δ/up(x ) up(x ) , Δ/dp(x ) dp(x ) , Δ/un(x ) un(x ) , and Δ/dn(x ) dn(x ) . The ratio of the n and p structure functions Rn p(x )=F/2n(x ) F2p(x ) has also been presented. The results have been compared with the recent available experimental observations. The results on the spin sum rule have also been included and compared with data and other recent approaches.

  19. Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.

    PubMed

    Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L

    2016-08-19

    In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4)  MeV in the modified minimal subtraction scheme at 2  GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations. PMID:27588847

  20. Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED

    NASA Astrophysics Data System (ADS)

    Fodor, Z.; Hoelbling, C.; Krieg, S.; Lellouch, L.; Lippert, Th.; Portelli, A.; Sastre, A.; Szabo, K. K.; Varnhorst, L.; Budapest-Marseille-Wuppertal Collaboration

    2016-08-01

    In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on Nf=2 +1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ɛ =0.73 (2 )(5 )(17 ), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, mu=2.27 (6 )(5 )(4 ) and md=4.67 (6 )(5 )(4 ) MeV in the modified minimal subtraction scheme at 2 G e V and the isospin breaking ratios mu/md=0.485 (11 )(8 )(14 ), R =38.2 (1.1 )(0.8 )(1.4 ), and Q =23.4 (0.4 )(0.3 )(0.4 ). Our results exclude the mu=0 solution to the strong C P problem by more than 24 standard deviations.

  1. CHIRAL LIMIT AND LIGHT QUARK MASSES IN 2+1 FLAVOR DOMAIN WALL QCD.

    SciTech Connect

    SCHOLZ,E.; LIN, M.

    2007-07-30

    We present results for meson masses and decay constants measured on 24{sup 3} x 64 lattices using the domain wall fermion formulation with an extension of the fifth dimension of L{sub s} = 16 for N{sub f} 2 + 1 dynamical quark flavors. The lightest dynamical meson mass in our set-up is around 331MeV. while partially quenched mesons reach masses as low as 250MeV. The applicability of SU(3) x SU(3) and SU(2) x SU(2) (partially quenched) chiral perturbation theory will be compared and we quote values for the low-energy constants from both approaches. We will extract the average light quark and strange quark masses and use a non-perturbative renormalization technique (RI/MOM) to quote their physical values. The pion and kaon decay constants are determined at those values from our chiral fits and their ratio is used to obtain the CKM-matrix element |V{sub us}|. The results presented here include statistical errors only.

  2. Quark masses, chiral symmetry, and the U(1) anomaly

    SciTech Connect

    Creutz, M.

    1996-09-17

    The author discusses the mass parameters appearing in the gauge theory of the strong interactions, concentrating on the two flavor case. He shows how the effect of the CP violating parameter {theta} is simply interpreted in terms of the state of the aether via an effective potential for meson fields. For degenerate flavors he shows that a first order phase transition is expected at {theta} = {pi}. The author speculates on the implications of this structure for Wilson`s lattice fermions.

  3. Quark Hadron duality tests on polarized structure functions using CLAS

    SciTech Connect

    Tony Forest

    2004-06-02

    Inclusive electron-nucleon scattering data from Jefferson Lab's Hall B has been analyzed to test quark-hadron duality for the polarized structure function g1(x,Q{sup 2}) over a Q{sup 2} range from 0.2 to 3.5 GeV{sup 2}/c{sup 2}. Incident polarized electron beam energies of 1.6 and 5.7 GeV were scattered by polarized {sup 15}NH{sub 3} and {sup 15}ND{sub 3} targets. The measurements of g1(x,Q{sup 2}) in the resonance region appear to be equivalent to a fit of g1(x,Q{sup 2}) in the deep inelastic scattering region at high Q{sup 2}. A quantitative test comparing the ratio of first moment in the resonance region to the first moment in the deep inelastic region is consistent with unity when Q{sup 2} > 2.0 GeV{sup 2}/c{sup 2} but substantially departs from unity when Q{sup 2} < 1.0 GeV{sup 2}/c{sup 2}.

  4. On the computation of finite bottom-quark mass effects in Higgs boson production

    NASA Astrophysics Data System (ADS)

    Mueller, Romain; Öztürk, Deniz Gizem

    2016-08-01

    We present analytic results for the partonic cross-sections contributing to the top-bottom interference in Higgs production via gluon fusion at hadron colliders at NLO accuracy in QCD. We develop a method of expansion in small bottom-mass for master integrals and combine it with the usual infinite top-mass effective theory. Our method of expansion admits a simple algorithmic description and can be easily generalized to any small parameter. These results for the integrated cross-sections will be needed in the computation of the renormalization counter-terms entering the computation of finite bottom-quark mass effects at NNLO.

  5. Parton-distribution functions for the pion and kaon in the gauge-invariant nonlocal chiral-quark model

    NASA Astrophysics Data System (ADS)

    Nam, Seung-il

    2012-10-01

    We investigate the parton-distribution functions (PDFs) for the positively charged pion and kaon at a low renormalization scale ˜1GeV. To this end, we employ the gauge-invariant effective chiral action from the nonlocal chiral-quark model, resulting in the vector currents being conserved. All the model parameters are determined phenomenologically with the normalization condition for PDF and the empirical values for the pseudoscalar meson weak-decay constants. We consider the momentum dependence of the effective quark mass properly within the model calculations. It turns out that the leading local contribution provides about 70% of the total strength for PDF, whereas the nonlocal one, which is newly taken into account in this work for the gauge invariance, does the rest. High-Q2 evolution to 27GeV2 is performed for the valance-quark distribution function, using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. The moments for the pion and kaon valance-quark distribution functions are also computed. The numerical results are compared with the empirical data and theoretical estimations, and show qualitatively agreement with them.

  6. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-09-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  7. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-10-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  8. Bound-state quark and gluon contributions to structure functions in QCD

    SciTech Connect

    Brodsky, S.J.

    1990-08-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: intrinsic'' contributions, which are due to the direct scattering on the bound-state constituents, and extrinsic'' contributions, which are derived from particles created in the collision. In this talk, I discussed several aspects of deep inelastic structure functions in which the bound-state structure of the proton plays a crucial role: the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; the separation of the quark structure function of the proton onto intrinsic bound-valence'' and extrinsic non-valence'' components which takes into account the Pauli principle; the properties and identification of intrinsic heavy quark structure functions; and a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. 49 refs., 5 figs.

  9. Precision Measurement of the Mass of the Top Quark in p anti-p Collisions

    SciTech Connect

    Garcia, Carlos A.; /Rochester U.

    2007-01-01

    We report a measurement of the mass of the top quark (m{sub top}) in p{bar p} collisions at a center of mass energy of 1.96 TeV. The analysis is based on p{bar p}{yields}t{bar t}{yields} lepton+jets data recorded with the D0 detector at the Fermilab Tevatron Collider. Events were preselected in the e+jets (913 events/pb of data) and in the {mu}+jets (871 events/pb of data) channels. These were analyzed through a comparison of the matrix element for the production and decay of the t{bar t} states with data, using a likelihood method and 'tagged' b quarks from the t {yields} Wb decays.

  10. Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2015-11-11

    We measure the top quark mass in dilepton final states of tt¯ events in pp¯ collisions at √s= 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. Furthermore, we improve the calibration of jet energies using the calibration determined in tt¯ → lepton + jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. As a result, the measured top quark mass is mt = 173.32±1.36(stat)±0.85(syst) GeV.

  11. Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

    DOE PAGESBeta

    Abazov, Victor Mukhamedovich

    2015-11-11

    We measure the top quark mass in dilepton final states of tt¯ events in pp¯ collisions at √s= 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. Furthermore, we improve the calibration of jet energies using the calibration determined in tt¯ → lepton + jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. As a result, the measured top quark mass is mt = 173.32±1.36(stat)±0.85(syst) GeV.

  12. Calibration of the Top-Quark Monte Carlo Mass.

    PubMed

    Kieseler, Jan; Lipka, Katerina; Moch, Sven-Olaf

    2016-04-22

    We present a method to establish, experimentally, the relation between the top-quark mass m_{t}^{MC} as implemented in Monte Carlo generators and the Lagrangian mass parameter m_{t} in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of m_{t}^{MC} and an observable sensitive to m_{t}, which does not rely on any prior assumptions about the relation between m_{t} and m_{t}^{MC}. The measured observable is independent of m_{t}^{MC} and can be used subsequently for a determination of m_{t}. The analysis strategy is illustrated with examples for the extraction of m_{t} from inclusive and differential cross sections for hadroproduction of top quarks. PMID:27152794

  13. Light quark mass dependence of the X(3872) in X

    NASA Astrophysics Data System (ADS)

    Jansen, M.; Hammer, H.-W.; Jia, Yu

    2015-10-01

    The X(3872) is a charmonium-like hadron with a mass close to the overline D ^0 D^{*0} threshold. It was first observed in 2003 by the Belle Collaboration and confirmed shortly after by the CDF collaboration. The quantum numbers were recently determined by the LHCb experiment to be JPC = 1++3. Yet, the nature of the X(3872) is not fully understood. In future, lattice QCD calculations should be able to obtain observables and are expected to contribute to a better understanding of the X...

  14. Quark masses, B-parameters, and CP violation parameters {epsilon} and {epsilon}{prime}/{epsilon}

    SciTech Connect

    Gupta, R.

    1998-01-20

    After a brief introduction to lattice QCD, the author summarizes the results for the light quark masses and the bag parameters B{sub K}, B{sub 6}{sup 1/2}, and B{sub 8}{sup 3/2}. The implications of these results for the standard model estimates of CP violation parameters {epsilon} and {epsilon}{prime}/{epsilon} are also discussed.

  15. Measurement of the top quark mass at CDF using the `neutrino phi weighting' template method on a lepton plus isolated track sample

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-01-01

    We present a measurement of the top quark mass with t{bar t} dilepton events produced in p{bar p} collisions at the Fermilab Tevatron ({radical}s = 1.96 TeV) and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb{sup -1}, are selected as t{bar t} candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ({phi}{sub {nu}1}, {phi}{sub {nu}2}) of neutrinos and reconstruct the top quark mass for each {phi}{sub {nu}1}, {phi}{sub {nu}2} pair by minimizing a {chi}{sup 2} function in the t{bar t} dilepton hypothesis. We assign {chi}{sup 2}-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t{bar t} and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of 165.5{sub -3.3}{sup +3.4}(stat.){+-}3.1(syst.) GeV/c{sup 2}.

  16. Measurement of the top quark mass at CDF using the ``neutrino ϕ weighting'' template method on a lepton plus isolated track sample

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzurri, P.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Almenar, C. Cuenca; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Fernandez, P. Movilla; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Griso, S. Pagan; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-04-01

    We present a measurement of the top quark mass with t tmacr dilepton events produced in p pmacr collisions at the Fermilab Tevatron (s=1.96TeV) and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9fb-1, are selected as t tmacr candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles (ϕν1,ϕν2) of neutrinos and reconstruct the top quark mass for each ϕν1, ϕν2 pair by minimizing a χ2 function in the t tmacr dilepton hypothesis. We assign χ2-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t tmacr and background events, and parametrized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of 165.5-3.3+3.4(stat)±3.1(syst)GeV/c2.

  17. Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    SciTech Connect

    Hrayr Matevosyan; Anthony Thomas; Peter Tandy

    2007-04-01

    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.

  18. Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    SciTech Connect

    Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.

    2007-04-15

    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region.

  19. Up- and down-quark masses from finite-energy QCD sum rules to five loops

    SciTech Connect

    Dominguez, C. A.; Nasrallah, N. F.; Roentsch, R. H.; Schilcher, K.

    2009-01-01

    The up- and down-quark masses are determined from an optimized QCD finite-energy sum rule involving the correlator of axial-vector divergences, to five-loop order in perturbative QCD, and including leading nonperturbative QCD and higher order quark-mass corrections. This finite-energy sum rule is designed to reduce considerably the systematic uncertainties arising from the (unmeasured) hadronic resonance sector, which in this framework contributes less than 3-4% to the quark mass. This is achieved by introducing an integration kernel in the form of a second degree polynomial, restricted to vanish at the peak of the two lowest lying resonances. The driving hadronic contribution is then the pion pole, with parameters well known from experiment. The determination is done in the framework of contour improved perturbation theory, which exhibits a very good convergence, leading to a remarkably stable result in the unusually wide window s{sub 0}=1.0-4.0 GeV{sup 2}, where s{sub 0} is the radius of the integration contour in the complex energy (squared) plane. The results are m{sub u}(Q=2 GeV)=2.9{+-}0.2 MeV, m{sub d}(Q=2 GeV)=5.3{+-}0.4 MeV, and (m{sub u}+m{sub d})/2=4.1{+-}0.2 MeV (at a scale Q=2 GeV)

  20. Measurement of the top quark mass using template methods on dilepton events in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-02-01

    The authors describe a measurement of the top quark mass from events produced in p{bar p} collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. They identify t{bar t} candidates where both W bosons from the top quarks decay into leptons (e{nu}, {mu}{nu}, or {tau}{nu}) from a data sample of 360 pb{sup -1}. The top quark mass is reconstructed in each event separately by three different methods, which draw upon simulated distributions of the neutrino pseudorapidity, t{bar t} longitudinal momentum, or neutrino azimuthal angle in order to extract probability distributions for the top quark mass. For each method, representative mass distributions, or templates, are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. A likelihood fit incorporating these parameterized templates is then performed on the data sample masses in order to derive a final top quark mass. Combining the three template methods, taking into account correlations in their statistical and systematic uncertainties, results in a top quark mass measurement of 170.1 {+-} 6.0(stat.) {+-} 4.1(syst.) GeV/c{sup 2}.

  1. Mass spectra and leptonic decay widths of heavy quarkonia by using psi function

    NASA Astrophysics Data System (ADS)

    Abou-Salem, L. I.

    2004-10-01

    In this study, a non-relativistic two-body wave equation is used to describe the properties of heavy quark-antiquark systems with a potential proportional to the psgr-function. The wave equation is transformed into a true eigenvalue equation and solved numerically. Both the resonance masses and the leptonic decay widths of c\\bar c and b\\skew{-5}\\barb mesons are calculated. The obtained results showed that the quark-antiquark interaction in these systems could be described adequately by using this simple potential form which contains one adjustable parameter besides the quark masses.

  2. Measurement of the top quark mass in the lepton+jets final state with the matrix element method

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U.

    2006-09-01

    We present a measurement of the top quark mass with the Matrix Element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the Matrix Element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty.

  3. Top quark physics experimental results at the LHC: Cross section and mass measurements with the CMS experiment

    NASA Astrophysics Data System (ADS)

    Gallinaro, M.

    2016-07-01

    The top quark, the heaviest known elementary particle discovered at the Fermilab Tevatron almost exactly twenty years ago, has taken a central role in the study of fundamental interactions. Its large mass suggests that it may play a special role in Nature. With approximately 25fb-1 of data collected by the CMS experiments at the Large Hadron Collider in Run 1 (2010-2012), top quark physics is at a turning point from first studies to precision measurements with sensitivity to new physics processes. This report summarizes the latest experimental results on top quark production cross section and mass measurements.

  4. Measurement of the mass difference between $t$ and $\\bar{t}$ quarks

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2011-03-01

    We present a direct measurement of the mass difference between t and {bar t} quarks using t{bar t} candidate events in the lepton+jets channel, collected with the CDF II detector at Fermilab's 1.96 TeV Tevatron p{bar p} Collider. We make an event by event estimate of the mass difference to construct templates for top quark pair signal events and background events. The resulting mass difference distribution of data is compared to templates of signals and background using a maximum likelihood fit. From a sample corresponding to an integrated luminosity of 5.6 fb{sup -1}, we measure a mass difference, {Delta}M{sub top} = M{sub t} - M{sub {bar t}} = -3.3 {+-} 1.4 (stat) {+-} 1.0 (syst) GeV/c{sup 2}, approximately two standard deviations away from the CPT hypothesis of zero mass difference. This is the most precise measurement of a mass difference between t and its {bar t} partner to date.

  5. Masses of third family vectorlike quarks and leptons in Yukawa-unified E6

    NASA Astrophysics Data System (ADS)

    Hebbar, Aditya; Leontaris, George K.; Shafi, Qaisar

    2016-06-01

    In supersymmetric E6 the masses of the third family quarks and charged lepton, t -b -τ , as well as the masses of the vectorlike quarks and leptons, D -D ¯ and L -L ¯, may arise from the coupling 2 73×2 73×2 7H, where 2 73 and 2 7H denote the third family matter and Higgs multiplets, respectively. We assume that the SO(10) singlet component in 2 7H acquires a TeV-scale vacuum expectation value that spontaneously breaks U (1 )ψ and provides masses to the vectorlike particles in 2 73, while the Minimal Supersymmetric Standard Model doublets in 2 7H provide masses to t , b , and τ . Imposing Yukawa coupling unification ht=hb=hτ=hD=hL at MGUT and employing the ATLAS and CMS constraints on the Zψ' boson mass, we estimate the lower bounds on the third family vectorlike particles D -D ¯ and L -L ¯ masses to be around 5.85 TeV and 2.9 TeV, respectively. These bounds apply in the supersymmetric limit.

  6. Measurement of the top quark mass in the dilepton final state using the matrix element method

    SciTech Connect

    Grohsjean, Alexander; /Munich U.

    2008-12-01

    The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb{sup -1}. A total of 107 t{bar t} candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be m{sub top}{sup Run IIa} = 170.6 {+-} 6.1(stat.){sub -1.5}{sup +2.1}(syst.)GeV; m{sub top}{sup Run IIb} = 174.1 {+-} 4.4(stat.){sub -1.8}{sup +2.5}(syst.)GeV; m{sub top}{sup comb} = 172.9 {+-} 3.6(stat

  7. Measurement of the top quark mass using proton-proton data at √{(}s )=7 and 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Mohammed, Y.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.

    2016-04-01

    A new set of measurements of the top quark mass are presented, based on the proton-proton data recorded by the CMS experiment at the LHC at √{s }=8 TeV corresponding to a luminosity of 19.7 fb-1 . The top quark mass is measured using the lepton+jets , all-jets and dilepton decay channels, giving values of 172.35 ±0.16 (stat )±0.48 (syst ) GeV , 172.32 ±0.25 (stat )±0.59 (syst ) GeV , and 172.82 ±0.19 (stat )±1.22 (syst ) GeV , respectively. When combined with the published CMS results at √{s }=7 TeV , they provide a top quark mass measurement of 172.44 ±0.13 (stat )±0.47 (syst ) GeV . The top quark mass is also studied as a function of the event kinematical properties in the lepton+jets decay channel. No indications of a kinematic bias are observed and the collision data are consistent with a range of predictions from current theoretical models of t t ¯ production.

  8. Radiative origin of all quark and lepton masses through dark matter with flavor symmetry.

    PubMed

    Ma, Ernest

    2014-03-01

    The fundamental issue of the origin of mass for all quarks and leptons (including Majorana neutrinos) is linked to dark matter, odd under an exactly conserved Z2 symmetry which may or may not be derivable from an U(1)D gauge symmetry. The observable sector interacts with a proposed dark sector which consists of heavy neutral singlet Dirac fermions and suitably chosen new scalars. Flavor symmetry is implemented in a renormalizable context with just the one Higgs doublet (ϕ(+), ϕ(0)) of the standard model in such a way that all observed fermions obtain their masses radiatively through dark matter. PMID:24655241

  9. Top quark mass: Latest CDF results, Tevatron combination and electroweak implications

    SciTech Connect

    Vellidis, Costas

    2009-10-01

    A summary of the most up-to-date top quark mass measurements at CDF is presented. These analyses use top-antitop candidate events detected in the CDF experiment at the Tevatron collider with an integrated luminosity of up to {approx}3/fb. The combination of all those measurements together with the corresponding top mass measurements from the concurrently running D0 experiment at the Tevatron yields a world average of M{sub t} = [173.1 {+-} 0.6(stat.) {+-} 1.1(syst.)] GeV/c{sup 2}.

  10. Structure functions at low Q^2: higher twists and target mass effects

    SciTech Connect

    Wally Melnitchouk

    2006-05-22

    We review the physics of structure functions at low Q{sup 2}, focusing on the phenomenon of quark-hadron duality and the resonance-scaling transition, both phenomenologically and in the context of quark models. We also present a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q{sup 2} in the x -> 1 limit.

  11. Direct measurement of the top quark mass by the DØ Collaboration

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-09-01

    We determine the top quark mass mt using tt¯ pairs produced in the DØ detector by s=1.8 TeV pp¯ collisions in a 125 pb-1 exposure at the Fermilab Tevatron. We make a two constraint fit to mt in tt¯-->bW+b¯W- final states with one W boson decaying to qq¯ and the other to eν or μν. Likelihood fits to the data yield mt(l+jets)=173.3+/-5.6 (stat) +/- 5.5 (syst) GeV/c2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain mt=172.1+/-5.2 (stat) +/- 4.9 (syst) GeV/c2. An alternate analysis, using three constraint fits to fixed top quark masses, gives mt(l+jets)=176.0+/-7.9 (stat)+/- 4.8 (syst) GeV/c2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented. 14.65.Ha, 13.85.Ni, 13.85.Qk

  12. On the light quark mass effects in Higgs boson production in gluon fusion

    NASA Astrophysics Data System (ADS)

    Melnikov, Kirill; Penin, Alexander

    2016-05-01

    Production of Higgs bosons at the LHC is affected by the contribution of light quarks, that mediate the gg → Hg transition. Although their impact is suppressed by small Yukawa couplings, it is enhanced by large logarithms of the ratio of the Higgs boson mass or its transverse momentum to light quark masses. We study the origin of this enhancement, focusing on the abelian corrections to gg → Hg amplitudes of the form {({C}_F{α}_s{mathcal{L}}^2)}^n , where mathcal{L}in \\{ ln (s/{m}_b^2),kern0.5em ln ({p}_{perp}^2/{m}_b^2)\\} . We show how these non-Sudakov double logarithmic terms can be resummed to all orders in the strong coupling constant. Interestingly, we find that the transverse momentum dependence of these corrections is very weak due to a peculiar cancellation between different logarithmic terms. Although the abelian part of QCD corrections is not expected to be dominant, it can be used to estimate missing higher-order corrections to light quark contributions to Higgs boson production at the LHC.

  13. Quark structure functions measured with the Drell-Yan process

    SciTech Connect

    Garvey, G.T.

    1986-01-01

    The physics relevant to showing that the Drell-Yan process offers the possibility for measuring flavor specific quark momentum distributions of free hadrons and their possible modification in nuclei are presented. The case for flavor specific measurements via use of the Drell-Yan process is developed. 21 refs. (LEW)

  14. Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    SciTech Connect

    Hrayr Matevosyan; Anthony Thomas; Peter Tandy

    2007-06-18

    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The guark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.

  15. Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon b-tagged Events

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    We present the first measurement of the mass of the top quark in a sample of t{bar t} {yields} {ell}{bar {nu}}b{bar b}q{bar q} events (where {ell} = e, {mu}) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon b-tagging). The p{bar p} collision data used corresponds to an integrated luminosity of 2 fb{sup -1} and was collected by the CDF II detector at the Fermilab Tevatron. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the W boson of the t {yields} Wb decay, and the muon from a semileptonic b decay. We fit template histograms, derived from simulation of t{bar t} events and a modeling of the background, to the mass distribution observed in the data and measure a top quark mass of 180.5 {+-} 12.0(stat.) {+-} 3.6(syst.) GeV/c{sup 2}, consistent with the current world average.

  16. Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices

    SciTech Connect

    Galletly, D.; Horsley, R.; Guertler, M.; Perlt, H.; Schiller, A.; Rakow, P. E. L.; Schierholz, G.; Streuer, T.

    2007-04-01

    We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3}48 and for pion masses down to {approx_equal}250 MeV. Among the quantities we study are the pion, rho, and nucleon masses; the light and strange quark masses; and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a{approx_equal}0.1 fm and {approx_equal}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well.

  17. Quark-hadron duality and truncated moments of nucleon structure functions

    SciTech Connect

    Psaker, A.; Melnitchouk, W.; Christy, M. E.; Keppel, C.

    2008-08-15

    We employ a novel new approach to study local quark-hadron duality using 'truncated' moments, or integrals of structure functions over restricted regions of x, to determine the degree to which individual resonance regions are dominated by leading twist. Because truncated moments obey the same Q{sup 2} evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.

  18. A Measurement of the Mass of the Top Quark in Lepton + Jets Events at CDF

    SciTech Connect

    Brubaker, Erik Matthews

    2004-12-01

    This document presents a measurement of the top quark mass using the CDF run II detector at Fermilab. Colliding beams of protons and anti-protons at Fermilab's Tevatron ({radical}s = 1.96 TeV) produce top/anti-top pairs, which decay to W{sup +}W{sup -} b{bar b}; events are selected where one W decays hadronically, and one W decays to either e or {mu} plus a neutrino. The data sample was collected between March 2002 and September 2003, and corresponds to an integrated luminosity of approximately 162 pb{sup -1}. Thirty-seven candidate t{bar t} events are found with at least one b jet identified by its displaced vertex. In each event, the best fit top quark invariant mass is determined by minimizing a {chi}{sup 2} for the overconstrained kinematic system. A likelihood fit of the reconstructed masses in the data sample to distributions from simulated signal and background events gives a top mass of 174.9{sub -7.7}{sup +7.1}(stat.) {+-} 6.5(syst.) GeV/c{sup 2}. The dominant systematic error is due to uncertainties in the jet energy measurements.

  19. Measurement of cross section of quark pair production top with the D0 experiment at the Tevatron and determination the top quark mass using this measure

    SciTech Connect

    Chevalier-Thery, Solene

    2010-06-01

    The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb -1 recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.

  20. QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order μ 2

    NASA Astrophysics Data System (ADS)

    Borsányi, Sz.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Krieg, S.; Ratti, C.; Szabó, K. K.

    2012-08-01

    We determine the equation of state of QCD for nonzero chemical potentials via a Taylor expansion of the pressure. The results are obtained for N f = 2 + 1 flavors of quarks with physical masses, on various lattice spacings. We present results for the pressure, interaction measure, energy density, entropy density, and the speed of sound for small chemical potentials. At low temperatures we compare our results with the Hadron Resonance Gas model. We also express our observables along trajectories of constant entropy over particle number. A simple parameterization is given (the Matlab/Octave script parameterization.m, submitted to the arXiv along with the paper), which can be used to reconstruct the observables as functions of T and μ, or as functions of T and S/N.

  1. Quark-lepton mass relation and CKM mixing in an A4 extension of the minimal supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Morisi, S.; Nebot, M.; Patel, Ketan M.; Peinado, E.; Valle, J. W. F.

    2013-08-01

    An interesting mass relation between down-type quarks and charged leptons has been recently predicted within a supersymmetric SU(3)c⊗SU(2)L⊗U(1)Y model based on the A4 flavor symmetry. Here we propose a simple extension which provides an adequate full description of the quark sector. By adding a pair of vectorlike up quarks, we show how the CKM entries Vub, Vcb, Vtd and Vts arise from deviations of the unitarity. We perform an analysis including the most relevant observables in the quark sector, such as oscillations and rare decays of kaons, Bd and Bs mesons. In the lepton sector, the model predicts an inverted hierarchy for the neutrino masses, leading to a potentially observable rate of neutrinoless double beta decay.

  2. Charge balance functions in a scenario of continuing charge production in quark matter

    NASA Astrophysics Data System (ADS)

    Pan, Ying-Hua; Zhang, Wei-Ning

    2015-11-01

    We study the charge balance functions of π+π- and K+K- in a scenario of continuing charge creation in a strongly interacting quark-gluon plasma (QGP) in high-energy heavy-ion collisions, using relativistic hydrodynamics and the lattice QCD results of quark susceptibilities and the equation of state of the QGP. We find that the charge balance functions are dominated by their QGP components because most charges are produced before the hadronic stage. The hadronic component of the balance function of π+π- is small but non-negligible. The balance function of K+K- has a negative hadronic component because the strangeness decreases during the system evolution. The correlation between light and strange quarks leads to small enhancements of the balance functions at small rapidity difference.

  3. Direct determinations of the nucleon and pion σ terms at nearly physical quark masses

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar S.; Collins, Sara; Richtmann, Daniel; Schäfer, Andreas; Söldner, Wolfgang; Sternbeck, André; RQCD Collaboration

    2016-05-01

    We present a high statistics study of the pion and nucleon light and strange quark sigma terms using Nf=2 dynamical nonperturbatively improved clover fermions with a range of pion masses down to mπ˜150 MeV and several volumes, L mπ=3.4 up to 6.7, and lattice spacings, a =0.06 - 0.08 fm , enabling a study of finite volume and discretization effects for mπ≳260 MeV . Systematics are found to be reasonably under control. For the nucleon we obtain σπ N=35 (6 ) MeV and σs=35 (12 ) MeV , or equivalently in terms of the quark fractions, fTu=0.021 (4 ) , fTd=0.016 (4 ) and fTs=0.037 (13 ) , where the errors include estimates of both the systematic and statistical uncertainties. These values, together with perturbative matching in the heavy quark limit, lead to fTc=0.075(4 ), fT b=0.072 (2 ) and fT t=0.070 (1 ). In addition, through the use of the (inverse) Feynman-Hellmann theorem our results for σπ N are shown to be consistent with the nucleon masses determined in the analysis. For the pion we implement a method which greatly reduces excited state contamination to the scalar matrix elements from states traveling across the temporal boundary. This enables us to demonstrate the Gell-Mann-Oakes-Renner expectation σπ=mπ/2 over our range of pion masses.

  4. Testing realistic quark mass matrices in the custodial Randall-Sundrum model with flavor changing top decays

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Ng, John N.; Wu, Jackson M. S.

    2008-11-01

    We study quark mass matrices in the Randall-Sundrum (RS) model with bulk symmetry SU(2)L×SU(2)R×U(1)B-L. The Yukawa couplings are assumed to be within an order of magnitude of each other, and perturbative. We find that quark mass matrices of the symmetrical form proposed by Koide et al. [Y. Koide, H. Nishiura, K. Matsuda, T. Kikuchi, and T. Fukuyama, Phys. Rev. D 66, 093006 (2002)PRVDAQ0556-282110.1103/PhysRevD.66.093006] can be accommodated in the RS framework with the assumption of hierarchyless Yukawa couplings, but not the Hermitian Fritzsch-type mass matrices. General asymmetrical mass matrices are also found which fit well simultaneously with the quark masses and the Cabibbo-Kobayashi-Maskawa matrix. Both left-handed (LH) and right-handed (RH) quark rotation matrices are obtained that allow analysis of flavor changing decay of both LH and RH top quarks. At a warped down scale of 1.65 TeV, the total branching ratio of t→Z+jets can be as high as ˜5×10-6 for symmetrical mass matrices and ˜2×10-5 for asymmetrical ones. This level of signal is within reach of the LHC.

  5. Top-quark mass measurement in events with jets and missing transverse energy using the full CDF data set

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; d'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucà, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; Stancari, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-07-01

    We present a measurement of the top-quark mass using the full data set of Tevatron s=1.96TeV proton-antiproton collisions recorded by the CDF II detector, corresponding to an integrated luminosity of 8.7fb-1. The analysis uses events with one semileptonic t or t¯ decay, but without detection of the electron or muon. We select events with significant missing transverse energy and multiple jets. We veto events containing identified electrons or muons. We obtain distributions of the top-quark masses and the invariant mass of the two jets from W-boson decays from data and compare these to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. A likelihood fit of the templates from signal and background events to the data yields the top-quark mass, Mtop=173.93±1.64(stat)±0.87(syst)GeV/c2. This result is the most precise measurement to date of the mass of the top quark in this event topology.

  6. Two-loop perturbative quark mass renormalization from large {beta} Monte Carlo

    SciTech Connect

    Keisuke Jimmy Juge

    2001-02-14

    We present the calculation of heavy Wilson quark mass renormalization constants from large beta Monte Carlo simulations. Simulations were performed at various beta larger than 9, each on several spatial lattice sizes to allow for an infinite volume extrapolation. We use twisted boundary conditions to suppress tunneling and work in Coulomb gauge with appropriate adjustments for the temporal links. The one-loop coefficient obtained from this method is in agreement with the analytical result and a preliminary result for the second order coefficient is reported.

  7. Top-quark pole mass in the tadpole-free MS ¯ scheme

    NASA Astrophysics Data System (ADS)

    Martin, Stephen P.

    2016-05-01

    The complex pole mass of the top quark is presented at full two-loop order in the Standard Model, augmenting the known four-loop QCD contributions. The input parameters are the MS ¯ Yukawa and gauge couplings, the Higgs self-coupling, and the Higgs vacuum expectation value (VEV). Here, the VEV is defined as the minimum of the full effective potential in Landau gauge, so that tadpoles vanish. This is an alternative to earlier results that instead minimize the tree-level potential, resulting in a VEV that is gauge-fixing independent but accompanied by negative powers of the Higgs self-coupling in perturbative expansions. The effects of nonzero Goldstone boson mass are eliminated by resummation. I also study the renormalization scale dependence of the calculated pole mass.

  8. Ginzburg-Landau phase diagram for dense matter with axial anomaly, strange quark mass, and meson condensation

    SciTech Connect

    Schmitt, Andreas; Stetina, Stephan; Tachibana, Motoi

    2011-02-15

    We discuss the phase structure of dense matter, in particular, the nature of the transition between hadronic and quark matter. Calculations within a Ginzburg-Landau approach show that the axial anomaly can induce a critical point in this transition region. This is possible because in three-flavor quark matter with instanton effects a chiral condensate can be added to the color-flavor locked phase without changing the symmetries of the ground state. In (massless) two-flavor quark matter such a critical point is not possible since the corresponding color superconductor (2SC) does not break chiral symmetry. We study the effects of a nonzero but finite strange quark mass which interpolates between these two cases. Since at ultrahigh density the first reaction of the color-flavor locked phase to a nonzero strange quark mass is to develop a kaon condensate, we extend previous Ginzburg-Landau studies by including such a condensate. We discuss the fate of the critical point systematically and show that the continuity between hadronic and quark matter can be disrupted by the onset of a kaon condensate. Moreover, we identify the mass terms in the Ginzburg-Landau potential which are needed for the 2SC phase to occur in the phase diagram.

  9. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence

    NASA Astrophysics Data System (ADS)

    Borowka, S.; Greiner, N.; Heinrich, G.; Jones, S. P.; Kerner, M.; Schlenk, J.; Schubert, U.; Zirke, T.

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  10. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    PubMed

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO. PMID:27419563

  11. Synthesis of baryons from unconfined quarks

    SciTech Connect

    Dicus, D.A.; Pati, J.C.; Teplitz, V.L.

    1980-02-15

    We calculate, for a number of cases, the cosmic temperature at which primordial quarks condense into baryons, within a field theory of partially confined quarks that enjoys temporary asymptotic freedom. We assume that the mass of a quark in a dense quark-antiquark medium is a monotonic function of the medium: that is, we assume the validity of the so-called ''Archimedes effect.'' We show that, within such models, unbound-quark lifetimes are larger than the age of the universe at the time of the transition.

  12. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2016-01-01

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N- 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1)N-1, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  13. Quark matter symmetry energy and quark stars

    SciTech Connect

    Chu, Peng-Cheng; Chen, Lie-Wen

    2014-01-10

    We extend the confined-density-dependent-mass (CDDM) model to include isospin dependence of the equivalent quark mass. Within the confined-isospin-density-dependent-mass (CIDDM) model, we study the quark matter symmetry energy, the stability of strange quark matter, and the properties of quark stars. We find that including isospin dependence of the equivalent quark mass can significantly influence the quark matter symmetry energy as well as the properties of strange quark matter and quark stars. While the recently discovered large mass pulsars PSR J1614–2230 and PSR J0348+0432 with masses around 2 M {sub ☉} cannot be quark stars within the CDDM model, they can be well described by quark stars in the CIDDM model. In particular, our results indicate that the two-flavor u-d quark matter symmetry energy should be at least about twice that of a free quark gas or normal quark matter within the conventional Nambu-Jona-Lasinio model in order to describe PSR J1614–2230 and PSR J0348+0432 as quark stars.

  14. Density of saturated nuclear matter at large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.; Datta, Ishaun

    2014-06-01

    We exhibit the existence of stable, saturated nuclear matter in the large Nc and heavy quark mass limits of QCD. In this limit, baryons (with the same spin flavor structure) interact at leading order in Nc via a repulsive interaction due to the Pauli exclusion principle and at subleading order in 1/Nc via the exchange of glueballs. Assuming that the lightest glueball is a scalar, which implies that the subleading baryon interaction is attractive, we find that nuclear matter saturates since the subleading attractive interaction is longer ranged than the leading order repulsive one. We find that the saturated matter is in the form of a crystal with either a face-centered-cubic or a hexagonal-close-packed symmetry with baryon densities of O ({α˜smq[mass and scalar-glueball-baryon coupling in the extreme large Nc limit or heavy quark limit (or both), which we define precisely in this work.

  15. Top Quark Mass Measurement in the Lepton + Jets Channel Using a Matrix Element Method and \\textit{in situ} Jet Energy Calibration

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2010-10-01

    A precision measurement of the top quark mass m{sub t} is obtained using a sample of t{bar t} events from p{bar p} collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m{sub t} and a parameter {Delta}{sub JES} used to calibrate the jet energy scale in situ. Using a total of 1087 events, a value of m{sub t} = 173.0 {+-} 1.2 GeV/c{sup 2} is measured.

  16. Top Quark Mass Measurement in the lepton+jets Channel Using a Matrix Element Method and in situ Jet Energy Calibration

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; de Barbaro, P.; de Cecco, S.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.

    2010-12-01

    A precision measurement of the top quark mass mt is obtained using a sample of tt¯ events from pp¯ collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of mt and a parameter ΔJES used to calibrate the jet energy scale in situ. Using a total of 1087 events in 5.6fb-1 of integrated luminosity, a value of mt=173.0±1.2GeV/c2 is measured.

  17. Top Quark Mass Measurement in the lepton+jets Channel Using a Matrix Element Method and in situ Jet Energy Calibration

    SciTech Connect

    Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.; Alvarez Gonzalez, B.; Casal, B.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Amerio, S.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Amidei, D.; Campbell, M.

    2010-12-17

    A precision measurement of the top quark mass m{sub t} is obtained using a sample of tt events from pp collisions at the Fermilab Tevatron with the CDF II detector. Selected events require an electron or muon, large missing transverse energy, and exactly four high-energy jets, at least one of which is tagged as coming from a b quark. A likelihood is calculated using a matrix element method with quasi-Monte Carlo integration taking into account finite detector resolution and jet mass effects. The event likelihood is a function of m{sub t} and a parameter {Delta}{sub JES} used to calibrate the jet energy scale in situ. Using a total of 1087 events in 5.6 fb{sup -1} of integrated luminosity, a value of m{sub t}=173.0{+-}1.2 GeV/c{sup 2} is measured.

  18. The Galaxy Cosmological Mass Function

    NASA Astrophysics Data System (ADS)

    Lopes, A. R.; Iribarrem, A.; Ribeiro, M. B.; Stoeger, W. R.

    2014-10-01

    The aim of this work is to present a semi-empirical relativistic approach which uses the general model connecting cosmological theory to observational data derived from galaxy surveys (Ribeiro & Stoeger 2003, ApJ, 592, 1) to study the galactic mass evolution. For this purpose we define a new quantity named the galaxy cosmological mass function (GCMF). We used the FORS Deep Field survey sample of 5558 galaxies in the redshift range 0.5 < z < 5.0 and its luminosity function in the B-band, as well as this sample's stellar masses. We obtained that the GCMF behaves as a power-law given by ζ (z) ∝ [M_{g}(z)]^{-2.3± 0.4}, where M_{g} is the average galactic mass in the studied redshift interval. This result can be seen as an average of the galaxy stellar mass function pattern found in the literature, where more massive galaxies were assembled earlier than less massive ones.

  19. Measurement of the mass of the top quark in dilepton final states with the D0 detector

    SciTech Connect

    Brandt, Oleg; /Bonn U.

    2006-08-01

    In the Standard Model (SM) the top quark mass is a fundamental parameter. Its precise measurement is important to test the self-consistency of the SM. Additionally, it offers sensitivity to New Physics beyond the Standard Model. In proton anti-proton collisions at a centre-of-mass energy of {radical}s = 1.96 TeV t{bar t} quarks are pair-produced, each decaying into a W boson and a b quark. In the dilepton channel both W bosons decay leptonically. Because of the presence of two neutrinos in the final state the kinematics are underconstrained. A so-called Neutrino Weighting algorithm is used to calculate a weight for the consistency of a hypothesized top quark mass with the event kinematics. To render the problem solvable, the pseudorapidities of the neutrinos are assumed. The Maximum Method, which takes the maximum to the weight distribution as input to infer the top quark mass, is applied to approximately 370 pb{sup -1} of Run-II data, recorded by the D0 experiment at the Tevatron. The e{mu}-channel of the 835 pb{sup -1} dataset is analyzed.

  20. Measurements of the Top Anti-Top Production Cross Section and Top Quark Mass in the Hadronically Decaying Tau + Jets Decay Channel at CDF

    SciTech Connect

    Hare, Daryl Curtis

    2011-01-01

    In this thesis, we present the first exclusive observation of the t-t → hadronic τ + jets decay channel. Using these events, we measure the t-t pair production cross section and the top quark mass in 2.2 fb-1 of data collected with the Collider Detector at Fermilab (CDF). The Tevatron accelerator at Fermilab provides collisions of protons and anti-protons at a center-of-mass energy of √s = 1.96 TeV and is one of only two accelerators in the world with enough energy to produce top quarks. With a branching fraction of nearly 10%, the hadronic τ + jets decay channel is the third largest t-t decay mode, and it has only been minimally explored. This the first measurement of the t-t pair production cross section in this decay channel at CDF and the first measurement of the top quark mass in this decay channel in the world. The analysis introduces a new method to recover the total momentum of the ν produced in the τ decay and an artificial neural network to reduce the contribution from the largest background source, QCD multijet background. The t-t pair production cross section is extracted by minimizing a negative log likelihood function which compares the number of observed events to the number of expected events for a given t-t cross section. The top quark mass is extracted by minimizing a negative log likelihood function built from signal and ii background probabilities which are based on the matrix elements for t-t production and decay and W + 4 parton production, respectively. Using events selected with exactly 1 hadronically decaying τ, exactly 4 jets with at least 1 identified as having originated from a b quark, and large missing transverse energy, we measure the t-t pair production cross section to be 8.8 ± 3.3 (stat.) ± 2.2 (syst.) pb and the top quark mass to be 172.7±9.3 (stat.) ±3.7 (syst.) GeV. We find both values to be in good agreement with

  1. Integral equation for gauge invariant quark two-point Green's function in QCD

    SciTech Connect

    Sazdjian, H.

    2008-02-15

    Gauge invariant quark two-point Green's functions defined with path-ordered gluon field phase factors along skew-polygonal lines joining the quark to the antiquark are considered. Functional relations between Green's functions with different numbers of path segments are established. An integral equation is obtained for the Green's function defined with a phase factor along a single straight line. The equation implicates an infinite series of two-point Green's functions, having an increasing number of path segments; the related kernels involve Wilson loops with contours corresponding to the skew-polygonal lines of the accompanying Green's function and with functional derivatives along the sides of the contours. The series can be viewed as an expansion in terms of the global number of the functional derivatives of the Wilson loops. The lowest-order kernel, which involves a Wilson loop with two functional derivatives, provides the framework for an approximate resolution of the equation.

  2. Precise measurement of the top quark mass in the dilepton channel at D0.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Guo, F; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jamin, D; Jayasinghe, A; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Polozov, P; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stolin, V; Stoyanova, D A; Strauss, M; Strom, D; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2011-08-19

    We measure the top quark mass (m(t)) in p ̄p collisions at a center of mass energy √s = 1.96 TeV using dilepton t ̄t→W(+)bW(-) ̄b→ℓ(+)ν(ℓ)bℓ(-) ̄ν(ℓ) ̄b events, where ℓ denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb(-1) collected with the D0 detector at the Fermilab Tevatron Collider. We obtain m(t)=174.0±1.8(stat)±2.4(syst) GeV, which is in agreement with the current world average m(t)=173.3±1.1 GeV. This is currently the most precise measurement of m(t) in the dilepton channel. PMID:21929164

  3. Measurement of the top quark mass in the dilepton channel using the neutrino weighting algorithm at CDF II

    NASA Astrophysics Data System (ADS)

    Sabik, Simon

    We measure the top quark mass using approximately 359 pb-1 of data from pp¯ collisions at s = 1.96 GeV at CDF Run II. We select tt¯ candidates that are consistent with two W bosons decaying to a charged lepton and a neutrino following tt¯ → W+W-bb¯ → l+l- nn¯ bb¯. Only one of the two charged leptons is required to be identified as an electron or a muon candidate, while the other is simply a well measured track. We use a neutrino weighting algorithm which weighs each possibility of neutrino direction to reconstruct a top quark mass in each event. We compare the resulting distribution to Monte Carlo templates to obtain a top quark mass of 170.8+6.9-6.5 (stat) +/- 4.6 (syst) GeV/c 2.

  4. Quark production in heavy ion collisions: formalism and boost invariant fermionic light-cone mode functions

    NASA Astrophysics Data System (ADS)

    Gelis, François; Tanji, Naoto

    2016-02-01

    We revisit the problem of quark production in high energy heavy ion collisions, at leading order in α s in the color glass condensate framework. In this first paper, we setup the formalism and express the quark spectrum in terms of a basis of solutions of the Dirac equation (the mode functions). We determine analytically their initial value in the Fock-Schwinger gauge on a proper time surface Q s τ 0 ≪ 1, in a basis that makes manifest the boost invariance properties of this problem. We also describe a statistical algorithm to perform the sampling of the mode functions.

  5. COMPASS Measurement of Pion and Kaon Multiplicities and Extraction of Quark Fragmentation Functions into Pions

    NASA Astrophysics Data System (ADS)

    Kunne, Fabienne

    2016-02-01

    We present preliminary COMPASS results on pion and kaon multiplicities produced in semi inclusive deep inelastic scattering of 160GeV muons off an isoscalar (6LiD) target. The results constitute an impressive data set of more than 400 points in p and 400 in K, covering a large x,Q2 and z domain in a fine binning, which will be used in future QCD fits at next to leading order to extract quark fragmentation functions. We show results of a first leading order fit performed to extract the favored and unfavored quark fragmentation functions into pions Dfavπ and Dunfavπ.

  6. A Method for the Precision Mass Measurement of the Stop Quark at the International Linear Collider

    SciTech Connect

    Freitas, Ayres; Milstene, Caroline; Schmitt, Michael; Sopczak, Andre; /Lancaster U.

    2007-12-01

    Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e{sup +}e{sup -} collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). The studies indicate that a precision of {Delta}m{sub {bar t}{sub 1}} = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. They also comment on the potential of the IDA to discover a stop quark in this scenario, and they revisit the accuracy of the theoretical predictions for the neutralino relic density.

  7. A Method for the Precision Mass Measurement of the Stop Quark at the International Linear Collider

    SciTech Connect

    Freitas, Ayres; Milstene, Caroline; Schmitt, Michael; Sopczak, Andre; /Lancaster U.

    2008-06-01

    Many supersymmetric models predict new particles within the reach of the next generation of colliders. For an understanding of the model structure and the mechanism(s) of symmetry breaking, it is important to know the masses of the new particles precisely. In this article the measurement of the mass of the scalar partner of the top quark (stop) at an e+e- collider is studied. A relatively light stop is motivated by attempts to explain electroweak baryogenesis and can play an important role in dark matter relic density. A method is presented which makes use of cross-section measurements near the pair-production threshold as well as at higher center-of-mass energies. It is shown that this method not only increases the statistical precision, but also greatly reduces the systematic uncertainties, which can be important. Numerical results are presented, based on a realistic event simulation, for two signal selection strategies: using conventional selection cuts, and using an Iterative Discriminant Analysis (IDA). Our studies indicate that a precision of {Delta}m{tilde t}{sub 1} = 0.42 GeV can be achieved, representing a major improvement over previous studies. While the analysis of stops is particularly challenging due to the possibility of stop hadronization, the general procedure could be applied to the mass measurement of other particles as well. We also comment on the potential of the IDA to discover a stop quark in this scenario, and we revisit the accuracy of the theoretical predictions for the neutralino relic density

  8. Extracting the Light Quark Mass Ratio m{sub u}/m{sub d} from Bottomonia Transitions

    SciTech Connect

    Guo Fengkun; Hanhart, Christoph; Meissner, Ulf-G.

    2010-10-15

    We propose a new method to extract the light quark mass ratio m{sub u}/m{sub d} using the {Upsilon}(4S){yields}h{sub b{pi}}{sup 0}({eta}) bottomonia transitions. The decay amplitudes are dominated by the light quark mass differences, and the corrections from other effects are rather small, allowing for a precise extraction. We also discuss how to reduce the theoretical uncertainty with the help of future experiments. As a by-product, we show that the decay {Upsilon}(4S){yields}h{sub b{eta}} is expected to be a nice channel for searching for the h{sub b} state.

  9. Transverse Quark Spin Effects and the Flavor Dependence of the Boer-Mulders Function

    SciTech Connect

    Leonard P. Gamberg; Gary R. Goldstein; Marc Schlegel

    2007-07-30

    The naive time reversal odd (T-odd) parton distribution $h_{1}^{\\perp}$, the so-called Boer-Mulders function, for both $u$- and $d$-quarks is considered in the diquark spectator model. While other approaches give evidence that the signs of the Boer-Mulders function for both flavors $u$ and $d$ are the same and negative, previous caculations in the diquark-spectator model found $h_{1}^{\\perp(u)}$ and $h_{1}^{\\perp(d)}$ have differnet signs. The flavor dependence is of significance for the analysis of the azimuthal $\\cos(2\\phi)$ asymmetries in unpolarized SIDIS and DY-processes, as well as for the overall physical understanding of the distribution of transversely polarized quarks in unpolarized nucleons. We find substantial differences with previous work. In particular we obtain estimates of the zeroth, half and first moments of Boer-Mulders functions that are negative over the full range in Bjorken $x$ for both the up and down quarks. In conjunction with the Collins function we then predict the $\\cos(2\\phi)$ azimuthal asymmetry for $\\pi^{+}$ and $\\pi^{-}$ in this framework. We also find that the Sivers up and down quark are negative and postive respectively. As a by-product of the formalism, we calculate the chiral-odd but T-even function $h_{1L}^{\\perp}$ in the spectator framework, which allows us to present a prediction for the single spin asymmetry $A_{UL}^{\\sin(2\\phi)}$ for a longitudinally polarized target in SIDIS.

  10. Quark-mass dependence of the baryon ground-state masses

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-02-01

    We perform a chiral extrapolation of the baryon octet and decuplet masses in a relativistic formulation of chiral perturbation theory. A partial summation is assumed as implied by the use of physical baryon and meson masses in the one-loop diagrams. Upon a chiral expansion, our results are consistent with strict chiral perturbation theory at the next-to-next-to-next-to-leading order. All counter terms are correlated by a large-Nc operator analysis. Our results are confronted with recent results of unquenched three-flavor lattice simulations. We adjust the parameter set to the pion-mass dependence of the nucleon and omega masses as computed by the BMW Collaboration and predict the pion-mass dependence of the remaining baryon octet and decuplet states. The current lattice simulations can be described accurately and smoothly up to pion masses of about 600 MeV. In particular, we recover the recent results of the HSC without any further adjustments.

  11. Revisiting the Cosmological Mass Function

    NASA Astrophysics Data System (ADS)

    Lim, Seunghwan; Lee, J.

    2013-01-01

    A non-stochastic scale-independent multi-dimensional barrier model of ellipsoidal collapse for the excursion set halo mass function is presented. The key concept of our model is that a bound halo forms at the moment when the initial shear eigenvalues hit a multi-dimensional absorbing barrier of constant height in their random walking process. The multi-dimensional barrier height that characterizes the analytic halo mass function is empirically determined by fitting the numerical results from the high-resolution N-body simulation to our model. It is found that the best-fit value of the barrier height is independent of redshift and key cosmological parameters. Our analytic model with empirically determined barrier-height is shown to work excellently in the wide mass-range at various redshifts: The ratio of the model to the N-body results departs from unity by up to 5% over 1011 1015M⊙/h at z=0, 0.5 and 1 for both of the FoF-halo and SO-halo cases. It is also shown that our analytic model naturally explains the stochastic behaviors of the density threshold value and its log-normal distribution.

  12. New GUT predictions for quark and lepton mass ratios confronted with phenomenology

    SciTech Connect

    Antusch, S.; Spinrath, M.

    2009-05-01

    Group theoretical factors from grand unified theory (GUT) symmetry breaking can lead to predictions for the ratios of quark and lepton masses (or Yukawa couplings) at the unification scale. Because of supersymmetric (SUSY) threshold corrections the viability of such predictions can depend strongly on the SUSY parameters. For three common minimal SUSY breaking scenarios with anomaly, gauge, and gravity mediation we investigate which GUT scale ratios m{sub e}/m{sub d}, m{sub {mu}}/m{sub s}, y{sub {tau}}/y{sub b}, and y{sub t}/y{sub b} are allowed when phenomenological constraints from electroweak precision observables, B physics, (g-2){sub {mu}}, mass limits on sparticles from direct searches as well as, optionally, dark matter constraints are taken into account. We derive possible new predictions for the GUT scale mass ratios and compare them with the phenomenologically allowed ranges. We find that new GUT scale predictions such as m{sub {mu}}/m{sub s}=9/2 or 6 and y{sub {tau}}/y{sub b}=3/2 or 2 are often favored compared to the ubiquitous relations m{sub {mu}}/m{sub s}=3 or y{sub {tau}}/y{sub b}=1. They are viable for characteristic SUSY scenarios, testable at the CERN LHC and future colliders.

  13. Effects of dynamical masses of gluons and quarks on hadronic B decays

    SciTech Connect

    Zanetti, C. M.; Natale, A. A.

    2010-11-12

    We study hadronic annihilation decays of B mesons within the perturbative QCD at collinear approximation. The regulation of endpoint divergences is performed with the help of an infrared finite gluon propagator characterized by a non-perturbative dynamical gluon mass. The divergences at twist-3 are regulated by a dynamical quark mass. Our results fit quite well the existent data of B{sup 0}{yields}D{sub s}{sup -}K{sup +} and B{sup 0}{yields}D{sub s}{sup -*}K{sup +} for the expected range of dynamical gluon masses. We also make predictions for the rare decays B{sup 0}{yields}K{sup -}K{sup +}, B{sub s}{sup 0}{yields}{pi}{sup -}{pi}{sup +}, {pi}{sup 0}{pi}{sup 0}, B{sup +}{yields}D{sub s}{sup (*)+}K-bar{sup 0}, B{sup 0}{yields}D{sub s}{sup {+-}(*)}K{sup {+-}} and B{sub s}{sup 0}{yields}D{sup {+-}(*)}{pi}{sup {+-}}, D{sup 0}{pi}{sup 0}.

  14. Sivers and Boer-Mulders functions in Light-Cone Quark Models

    SciTech Connect

    Pasquini, Barbara; Yuan, Feng

    2010-01-29

    Results for the naive-time-reversal-odd quark distributions in a light-cone quark model are presented. The final-state interaction effects are generated via single-gluon exchange mechanism. The formalism of light-cone wave functions is used to derive general expressions in terms of overlap of wave-function amplitudes describing the different orbital angular momentum components of the nucleon. In particular, the model predictions show a dominant contribution from S- and P-wave interference in the Sivers function and a significant contribution also from the interference of P and D waves in the Boer-Mulders function. The favourable comparison with existing phenomenological parametrizations motivates further applications to describe azimuthal asymmetries in hadronic reactions.

  15. CDF measurement of the top quark mass in the lepton + jets channel using the multivariate template method

    SciTech Connect

    Freeman, John; /Fermilab

    2004-12-01

    The authors measure the mass of the top quark using 162 pb{sup -1} of data collected by the CDF experiment at FNAL in Run II. The decay chain t{bar t} {yields} bq{bar q}{bar b}lv is studied using a novel technique called the Multivariate Template Method (MTM). Using this technique they obtain a result of M{sub top} = 179.6{sub -6.3}{sup +6.4} {+-} 6.8 GeV/c{sup 2} for the top quark.

  16. Transverse-momentum-dependent quark splitting functions in k T -factorization: real contributions

    NASA Astrophysics Data System (ADS)

    Gituliar, Oleksandr; Hentschinski, Martin; Kutak, Krzysztof

    2016-01-01

    We calculate transverse momentum dependent quark splitting kernels P gq and P qq within k T -factorization, completing earlier results which concentrated on gluon splitting functions P gg and P qg . The complete set of splitting kernels is an essential requirement for the formulation of a complete set of evolution equations for transverse momentum dependent parton distribution functions and the development of corresponding parton shower algorithms.

  17. Renormalization of quark propagators from twisted-mass lattice QCD at N{sub f}=2

    SciTech Connect

    Blossier, B.; Boucaud, Ph.; Pene, O.; Petrov, K.; Brinet, M.; Liu, Z.; Morenas, V.

    2011-04-01

    We present results concerning the nonperturbative evaluation of the renormalization constant for the quark field, Z{sub q}, from lattice simulations with twisted-mass quarks and three values of the lattice spacing. We use the regularization-invariant momentum-subtraction (RI'-MOM) scheme. Z{sub q} has very large lattice spacing artefacts; it is considered here as a test bed to elaborate accurate methods which will be used for other renormalization constants. We recall and develop the nonperturbative correction methods and propose tools to test the quality of the correction. These tests are also applied to the perturbative correction method. We check that the lattice-spacing artefacts indeed scale as a{sup 2}p{sup 2}. We then study the running of Z{sub q} with particular attention to the nonperturbative effects, presumably dominated by the dimension-two gluon condensate in Landau gauge. We show indeed that this effect is present, and not small. We check its scaling in physical units, confirming that it is a continuum effect. It gives a {approx}4% contribution at 2 GeV. Different variants are used in order to test the reliability of our result and estimate the systematic uncertainties. Finally, combining all our results and using the known Wilson coefficient of , we find g{sup 2}({mu}{sup 2}){sub {mu}}{sup 2}{sub CM}=2.01(11)({sub -0.73}{sup +0.61})GeV{sup 2} at {mu}=10 GeV, the local operator A{sup 2} being renormalized in the MS scheme. This last result is in fair agreement within uncertainties with the value independently extracted from the strong coupling constant. We convert the nonperturbative part of Z{sub q} from the regularization-invariant momentum-subtraction (RI'-MOM) scheme to MS. Our result for the quark field renormalization constant in the MS scheme is Z{sub q} {sup MS} {sup pert}((2 GeV){sup 2},g{sub bare}{sup 2})=0.750(3)(7)-0.313(20)(g{sub bare}{sup 2}-1.5) for the perturbative contribution and Z{sub q

  18. Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at √s=7 TeV

    SciTech Connect

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyka, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.

    2015-04-23

    In this study, the mass of the top quark is measured in a data set corresponding to 4.6 fb-1 of proton–proton collisions with centre-of-mass energy √s=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top–antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mt=175.1±1.4(stat.) ±1.2(syst.) GeV.

  19. Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at √s=7 TeV

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-04-23

    In this study, the mass of the top quark is measured in a data set corresponding to 4.6 fb-1 of proton–proton collisions with centre-of-mass energy √s=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top–antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jetmore » to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mt=175.1±1.4(stat.) ±1.2(syst.) GeV.« less

  20. Comparing symmetry restoration trends for meson masses and mixing angles in the QCD-like three quark flavor models

    NASA Astrophysics Data System (ADS)

    Tiwari, Vivek Kumar

    2013-10-01

    We are computing the modifications for the scalar and pseudoscalar meson masses and mixing angles due to the proper accounting of fermionic vacuum fluctuation in the framework of the generalized 2+1 flavor quark meson model and the Polyakov loop augmented quark meson model (PQM). The renormalized contribution of the divergent fermionic vacuum fluctuation at one loop level makes these models effective QCD-like models. It has been explicitly shown that analytical expressions for the model parameters, meson masses, and mixing angles do not depend on any arbitrary renormalization scale. We have investigated how the incorporation of fermionic vacuum fluctuation in quark meson and PQM models qualitatively and quantitatively affects the convergence in the masses of the chiral partners in pseudoscalar (π,η,η',K) and scalar (σ,a0,f0,κ) meson nonets as the temperature is varied on the reduced temperature scale. Comparison of present results in the quark meson model with vacuum term and the PQM model with vacuum term with the already existing calculations in the bare 2+1 quark meson and PQM models shows that the restoration of chiral symmetry becomes smoother due to the influence of the fermionic vacuum term. We find that the melting of the strange condensate registers a significant increase in the presence of the fermionic vacuum term and its highest melting is found in the PQM model with vacuum term. The role of the UA(1) anomaly in determining the isoscalar masses and mixing angles for the pseudoscalar (η and η') and scalar (σ and f0) meson complex has also been significantly modified due to the fermionic vacuum correction. In its influence, the interplay of chiral symmetry restoration and the setting up of the UA(1) restoration trends have also been shown to be significantly modified.

  1. Rare Down Quark Decays

    NASA Astrophysics Data System (ADS)

    Tung, Kwong-Kwai Humphrey

    1992-01-01

    The rare decays bto sX are sensitive to strong interaction corrections. The effects can be estimated by a renormalization group technique which requires the evaluation of QCD mixing among effective operators. In the dimensional reduction and the naive dimensional regularization methods, there are discrepancies in evaluating the QCD mixing of the four-quark operators with the bto sgamma and bto s+gluon dipole operators. In this thesis, the problem is investigated by considering the contributions of the epsilon -scalar field and the epsilon -dimensional operators that distinguish between the two methods. The discrepancies are shown to come from the epsilon-dimensional four-quark operators in dimensional reduction and not from the epsilon -scalar field. In the decay bto sl^+l^ -, the intermediate of cc pairs in the charm-penguin diagram can form the resonance states J/psi and psi^'. In the published literature, there is a sign discrepancy in the Breit-Wigner amplitude for the resonance effects. Here, the sign difference is settled by considering the unitarity limit of the amplitude in the Argand diagram. The effects of the resonances are quite substantial on the invariant mass spectrum for this decay. However, they are shown to be negligible on the dilepton energy spectrum below 0.95 GeV. The energy spectrum is, thus, more useful than the invariant mass spectrum for measurements of the top -quark mass. The decays Bto K^*X are well modeled by the quark-level decays bto sX. In the quark model, the hadronization is done using a nonrelativistic wave function. In the decay B to K^*gamma, the large K ^* recoil creates an uncertainty in calculating the branching ratio using the quark model. The problem is explored by considering other meson processes where data exist. The data on the pi form factor and the omegapi^0 transition form factor suggest the necessity to retain relativistic spinor and meson normalizations in the quark -model; however, the data do not resolve the

  2. Heavy-Quark Mass and Heavy-Meson Decay Constants from QCD Sum Rules

    SciTech Connect

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-05-23

    We present a sum-rule extraction of decay constants of heavy mesons from the two-point correlator of heavy-light pseudoscalar currents. Our primary concern is to control the uncertainties of the decay constants, induced by both input QCD parameters and limited accuracy of the sum-rule method. Gaining this control is possible by applying our novel procedure for the extraction of hadron observables utilizing Borel-parameter-depending dual thresholds. For the charmed mesons, we obtain f{sub D} (206.2{+-}7.3{sub (OPE){+-}}5.1{sub (syst)}) MeV and f{sub D{sub s}} (245.3{+-}15.7{sub (OPE){+-}}4.5{sub (syst)}) MeV. In the case of the beauty mesons, the decay constants prove to be extremely sensitive to the exact value of the b-quark MS mass m-bar{sub b}(m-bar{sub b}). By matching our sum-rule prediction for f{sub B} to the lattice outcomes, the very accurate b-mass value m-bar{sub b}(m-bar{sub b}) = (4.245{+-}0.025) GeV is found, which yields f{sub B} = (193.4{+-}12.3{sub (OPE){+-}}4.3{sub (syst)}) MeV and f{sub B{sub s}} (232.5{+-}18.6{sub (OPE){+-}}2.4{sub (syst)}) MeV.

  3. Top Quark Mass Measurement in the t anti-t All Hadronic Channel using a Matrix Element Technique in p anti-p Collisions at s**91/2) = 1.96-TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2008-11-01

    We present a measurement of the top quark mass in the all-hadronic channel (t{bar t} {yields} b{bar b} q{sub 1}{bar q}{sub 2}q{sub 3}{bar q}{sub 4}) using 943 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV collected at the CDF II detector at Fermilab (CDF). We apply the standard model production and decay matrix-element (ME) to t{bar t} candidate events. We calculate per-event probability densities according to the ME calculation and construct template models of signal and background. The scale of the jet energy is calibrated using additional templates formed with the invariant mass of pairs of jets. These templates form an overall likelihood function that depends on the top quark mass and on the jet energy scale (JES). We estimate both by maximizing this function. Given 72 observed events, we measure a top quark mass of 171.1 {+-} 3.7 (stat.+JES) {+-} 2.1 (syst.) GeV/c{sup 2}. The combined uncertainty on the top quark mass is 4.3 GeV/c{sup 2}.

  4. Determination of the b-quark Mass and Nonperturbative parameters in Semileptonic and Radiative Penguin Decays at BaBar

    SciTech Connect

    Tackmann, Kerstin; collaboration, for the BABAR

    2008-01-23

    Knowing the mass of the b-quark is essential to the study of the structure and decays of B mesons as well as to future tests of the Higgs mechanism of mass generation. We present recent preliminary measurements of the b-quark mass and related nonperturbative parameters from moments of kinematic distributions in charmed and charmless semileptonic and radiative penguin B decays. Their determination from charmless semileptonic B decays is the first measurement in this mode. The data were collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -}-collider at the Stanford Linear Accelerator Center at a center-of-momentum energy of 10:58 GeV.

  5. On mass-response functions

    NASA Astrophysics Data System (ADS)

    Rinaldo, Andrea; Marani, Alessandro; Bellin, Alberto

    1989-07-01

    Field transport of reactive solute species is investigated through a class of stochastic models, here termed mass response functions (MRFs), which incorporate simplified concepts of chemical/physical nonequilibrium kinetics in the formulation of transport by travel time distributions. MRFs are probability density functions (pdfs) associated with solute particles' travel time within transport volumes. The theory hinges on recent advances in modeling transport of solutes in groundwater and in basin scale transport volumes and links the approaches of surface hydrologists with recent subsurface transport models. The relationship between MRFs and the theory of solute transport by continuous motions is investigated. It is found that MRFs extend the basic formulation of transport of inert solutes to a particular case of sorption process. The relationship between MRFs and the basic differential convection-dispersion equation incorporating linear sorption is also investigated. It is found here that not only are transfer functions of solutes consistent with any mechanistic three-dimensional (3-D) model of convection dispersion, but also that they are, under limit conditions, the product of the travel time distribution of the carrier flow with a bounded continuous function. The latter is the solution to an initial value problem which results from solving the general 3-D differential equations of convection dispersion with sorption under some simplifying assumptions, and formally coincides with the resident concentration included (as an assumption) in the original MRF formulation. Travel time distributions and MRFs underlain by statistical constraints rather than by dynamical models are proposed. Non-Gaussian distributions are studied by statistical-mechanical tools and are found to represent the norm, rather than the exception, in this formulation of transport of reactive solutes. The concepts are applied to a field study and are shown to yield reliable models of solute

  6. Measurement of the top quark mass with a matrix element method in the lepton plus jets channel at CDF

    SciTech Connect

    Mohr, Brian; /UCLA

    2006-05-01

    The authors present a measurement of the mass of the top quark from p{bar p} collisions at 1.96 TeV observed with the Collider Detector at Fermilab (CDF) at the Fermilab Tevatron Run II. The events have the decay signature of p{bar p} {yields} t{bar t} in the lepton plus jets channel in which at least one jet is identified as coming from a secondary vertex and therefore a b-hadron. The largest systematic uncertainty, the jet energy scale (JES), is convoluted with the statistical error using an in-situ measurement of the hadronic W boson mass. They calculate a likelihood for each event using leading-order t{bar t} and W+jets cross-sections and parameterized parton showering. The final measured top quark mass and JES systematic is extracted from a joint likelihood of the product of individual event likelihoods. From 118 events observed in 680 pb{sup -1} of data, they measure a top quark mass of 174.09 {+-} 2.54 (stat+JES) {+-} 1.35(syst) GeV/c{sup 2}.

  7. Measurement of the top quark mass with the dynamical likelihood method using lepton plus jets events with b-tags in pp collisions at {radical}(s)=1.96 TeV

    SciTech Connect

    Abulencia, A.; Budd, S.; Chu, P.H.; Ciobanu, C.I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T.R.; Kraus, J.; Liss, T.M.; Marino, C.; Pitts, K.; Rogers, E.; Taffard, A.; Veramendi, G.; Vickey, T.; Zhang, X.; Acosta, D.; Cruz, A.

    2006-05-01

    This paper describes a measurement of the top quark mass, M{sub top}, with the dynamical likelihood method (DLM) using the CDF II detector at the Fermilab Tevatron. The Tevatron produces top/antitop (tt) pairs in pp collisions at a center-of-mass energy of 1.96 TeV. The data sample used in this analysis was accumulated from March 2002 through August 2004, which corresponds to an integrated luminosity of 318 pb{sup -1}. We use the tt candidates in the 'lepton+jets' decay channel, requiring at least one jet identified as a b quark by finding a displaced secondary vertex. The DLM defines a likelihood for each event based on the differential cross section as a function of M{sub top} per unit phase space volume of the final partons, multiplied by the transfer functions from jet to parton energies. The method takes into account all possible jet combinations in an event, and the likelihood is multiplied event by event to derive the top quark mass by the maximum likelihood method. Using 63 tt candidates observed in the data, with 9.2 events expected from background, we measure the top quark mass to be 173.2(+2.6/-2.4)(stat.){+-}3.2(syst.) GeV/c{sup 2}, or 173.2(+4.1/-4.0) GeV/c{sup 2}.

  8. Determination of light quark masses from {eta}{yields}3{pi}{sup 0}

    SciTech Connect

    Deandrea, A.; Talavera, P.

    2008-08-01

    We provide a model-independent determination of the quantity B{sub 0}(m{sub d}-m{sub u}). Our approach rests only on chiral symmetry and data from the decay of the eta into three neutral pions. Since the low-energy prediction at next-to-leading order fails to reproduce the experimental results, we keep the strong interaction correction as an unknown parameter. As a first step, we relate this parameter to the quark mass difference using data from the Dalitz plot. A similar relation is obtained using data from the decay width. Combining both relations we obtain B{sub 0}(m{sub d}-m{sub u})=(4495{+-}440) MeV{sup 2}. The preceding value, combined with lattice determinations, leads to the values m{sub u}(2 GeV)=(2.9{+-}0.8) MeV and m{sub d}(2 GeV)=(4.7{+-}0.8) MeV.

  9. The polarized structure function of the nucleons with a non-extensive statistical quark model

    NASA Astrophysics Data System (ADS)

    Trevisan, Luis A.; Mirez, Carlos

    2013-05-01

    We studied an application of nonextensive thermodynamics to describe the polarized structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution, often used in the statistical models, were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and the chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon and by Δu and Δd of the polarized functions.

  10. The polarized structure function of the nucleons with a non-extensive statistical quark model

    SciTech Connect

    Trevisan, Luis A.; Mirez, Carlos

    2013-05-06

    We studied an application of nonextensive thermodynamics to describe the polarized structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution, often used in the statistical models, were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and the chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon and by {Delta}u and {Delta}d of the polarized functions.

  11. f{sub 0}(600),{kappa}(800), {rho}(770) and K*(892), quark mass dependence from unitarized SU(3) Chiral Perturbation Theory

    SciTech Connect

    Nebreda, J.; Pelaez, J. R.

    2010-08-05

    We study the strange and non-strange quark mass dependence of the parameters of the f{sub 0}(600),{kappa}(800), {rho}(770) and K*(892) resonances generated from elastic meson-meson scattering using unitarized one-loop Chiral Perturbation Theory. We fit simultaneously all experimental scattering data up to 0.8-1 GeV together with lattice results on decay constants and scattering lengths up to a pion mass of 440 MeV. Then, the strange and non-strange quark masses are varied from the chiral limit up to values of interest for lattice studies. In these amplitudes, the mass and width of the {rho}(770) and K*(892) present a similar and smooth quark mass dependence. In contrast, both scalars present a similar non-analyticity at high quark masses. Nevertheless the f{sub 0}(600) dependence on both quark masses is stronger than for the {kappa}(800) and the vectors. We also confirm the lattice assumption of quark mass independence of the vector two-meson coupling that, in contrast, is violated for scalars.

  12. Applications of quark-hadron duality in F2 structure function

    SciTech Connect

    Malace, S P

    2009-09-01

    Inclusive electron-proton and electron-deuteron inelastic cross sections have been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken x, up to 0.92, and four-momentum transfer squared Q2 up to 7.5 GeV2 in the experiment E00-116. These measurements are used to extend to larger x and Q2 precision, quantitative, studies of the phenomenon of quark-hadron duality. Our analysis confirms, both globally and locally, the apparent violation of quark-hadron duality previously observed at a Q2 of 3.5 GeV2 when resonance data are compared to structure function data created from CTEQ6M and MRST2004 parton distribution functions (PDFs). More importantly, our new data show that this discrepancy saturates by Q2 ~ 4 Gev2, becoming Q2 independent. This suggests only small violations of Q2 evolution by contributions from the higher-twist terms in the resonance region which is confirmed by our comparisons to ALEKHIN and ALLM97.We conclude that the unconstrained strength of the CTEQ6M and MRST2004 PDFs at large x is the major source of the disagreement between data and these parameterizations in the kinematic regime we study and that, in view of quark-hadron duality, properly averaged resonance region data could be used in global QCD fits to reduce PDF uncertainties at large x.

  13. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    DOE PAGESBeta

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-13

    In this paper, we study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins- Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in e+e- annihilations measured by BELLE and BABAR Collaborations and SIDIS datamore » from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. Finally, we give predictions and discuss impact of future experiments.« less

  14. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.

  15. A preliminary measurement of the b quark fragmentation function in hadronic Z{sup 0} decays

    SciTech Connect

    The SLD Collaboration

    1996-06-01

    We present a measurement of the {ital b} quark fragmentation function from a sample of semi-leptonic {bold B} decays collected between 1993 and 1995 in the SLD experiment at SLAC. The energy of each tagged {bold B} hadron was reconstructed using information from the lepton and a partially reconstructed charm decay vertex. A comparison of the scaled energy distribution with several phenomenological models of heavy quark fragmentation was made, using the same model in each case to correct the data. The average scaled energy was found to be {l_angle}{chi}{sub E}{r_angle} = 0.697{+-}0.012({ital stat}){sup +0. 028}{sub -0.024} ({ital syst})(preliminary).

  16. Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    SciTech Connect

    Fomin, N; Arrington, J; Gaskell, D; Daniel, A; Seely, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Boillat, B; Bosted, P; Bruell, A; Bukhari, M.H.S.; Christy, M E; Chudakov, E; Clasie, B; Connell, S H; Dalton, M M; Dutta, D; Ent, R; El Fassi, L; Fenker, H; Filippone, B W; Garrow, K; Hill, C; Holt, R J; Horn, T; Jones, M K; Jourdan, J; Kalantarians, N; Keppel, C E; Kiselev, D; Kotulla, M; Lindgren, R; Lung, A F; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Miyoshi, T; Mkrtchyan, H; Navasardyan, T; Niculescu, G; Okayasu, Y; Opper, A K; Perdrisat, C; Potterveld, D H; Punjabi, V; Qian, X; Reimer, P E; Roche, J; Rodriguez, V M; Rondon, O; Schulte, E; Segbefia, E; Slifer, K; Smith, G R; Solvignon, P; Tadevosyan, V; Tajima, S; Tang, L; Testa, G; Tvaskis, V; Vulcan, W F; Wasko, C; Wesselmann, F R; Wood, S A; Wright, J; Zheng, X

    2010-11-01

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.

  17. Precision measurement of the top quark mass in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration

    SciTech Connect

    Lujan, Paul Joseph

    2009-12-01

    This thesis presents a measurement of the top quark mass obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. The measurement uses a matrix element integration method to calculate a t$\\bar{t}$ likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. We calculate a t$\\bar{t}$ likelihood as a 2-D function of the top pole mass mt and ΔJES, where ΔJES parameterizes the uncertainty in our knowledge of the jet energy scale; it is a shift applied to all jet energies in units of the jet-dependent systematic error. By introducing ΔJES into the likelihood, we can use the information contained in W boson decays to constrain ΔJES and reduce error due to this uncertainty. We use a neural network discriminant to identify events likely to be background, and apply a cut on the peak value of individual event likelihoods to reduce the effect of badly reconstructed events. This measurement uses a total of 4.3 fb-1 of integrated luminosity, requiring events with a lepton, large ET, and exactly four high-energy jets in the pseudorapidity range |η| < 2.0, of which at least one must be tagged as coming from a b quark. In total, we observe 738 events before and 630 events after applying the likelihood cut, and measure mt = 172.6 ± 0.9 (stat.) ± 0.7 (JES) ± 1.1 (syst.) GeV/c2, or mt = 172.6 ± 1.6 (tot.) GeV/c2.

  18. Determination of light quark masses from the electromagnetic splitting of pseudoscalar meson masses computed with two flavors of domain wall fermions

    SciTech Connect

    Blum, Thomas; Doi, Takumi; Hayakawa, Masashi; Izubuchi, Taku; Yamada, Norikazu

    2007-12-01

    We determine the light quark masses from lattice QCD simulations incorporating the electromagnetic interaction of valence quarks, using the splittings of charged and neutral pseudoscalar meson masses as inputs. The meson masses are calculated on lattice QCD configurations generated by the RBC Collaboration for two flavors of dynamical domain-wall fermions, which are combined with QED configurations generated via quenched noncompact lattice QED. The electromagnetic part of the pion mass splitting is found to be m{sub {pi}{sup +}}-m{sub {pi}{sup 0}}=4.12(21) MeV, where only the statistical error is quoted, and similarly for the kaon, 1.443(55) MeV. Our results for the light quark masses are m{sub u}{sup MS}(2 GeV)=3.02(27)(19) MeV, m{sub d}{sup MS}(2 GeV)=5.49(20)(34) MeV, and m{sub s}{sup MS}(2 GeV)=119.5(56)(74) MeV, where the first error is statistical and the second reflects the uncertainty in our nonperturbative renormalization procedure. By averaging over {+-}e to cancel O(e) noise exactly on each combined gauge field configuration, we are able to work at physical {alpha}=1/137 and obtain very small statistical errors. In our calculation, several sources of systematic error remain, including finite volume, nonzero lattice spacing, chiral extrapolation, quenched QED, and quenched strange quark, which may be more significant than the errors quoted above. We discuss these systematic errors and how to reduce or eliminate them.

  19. Measurement of the top quark mass using charged particles in p p collisions at √{s }=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Schöfbeck, R.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Awad, A.; Elgammal, S.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Dobrzynski, L.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.

    2016-05-01

    A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 fb-1 . By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected to be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68 ±0.20 (stat)-0.97 +1.58(syst ) GeV is measured. The overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.

  20. A precise measurement of the top quark mass in dilepton final states using 9.7 fb$^{-1}$ of D{Ø} Run II data

    SciTech Connect

    Liu, Huanzhao

    2015-05-16

    The top quark is a very special fundamental particle in the Standard Model (SM) mainly due to its heavy mass. The top quark has extremely short lifetime and decays before hadronization. This reduces the complexity for the measurement of its mass. The top quark couples very strongly to the Higgs boson since the fermion-Higgs Yukawa coupling linearly depends on the fermion’s mass. Therefore, the top quark is also heavily involved in Higgs production and related study. A precise measurement of the top quark mass is very important, as it allows for self-consistency check of the SM, and also gives a insight about the stability of our universe in the SM context. This dissertation presents my work on the measurement of the top quark mass in dilepton final states of t$\\bar{t}$ events in p$\\bar{p}$ collisions at √s = 1.96 TeV, using the full DØ Run II data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron. I extracted the top quark mass by reconstructing event kinematics, and integrating over expected neutrino rapidity distributions to obtain solutions over a scanned range of top quark mass hypotheses. The analysis features a comprehensive optimization that I made to minimize the expected statistical uncertainty. I also improve the calibration of jets in dilepton events by using the calibration determined in t$\\bar{t}$ → lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured mass is 173.11 ± 1.34(stat)+0.83 -0.72(sys) GeV .

  1. Tensor-polarized quark and antiquark distribution functions in a spin-one hadron

    NASA Astrophysics Data System (ADS)

    Kumano, S.

    2010-07-01

    It is becoming crucial to understand orbital-angular-momentum contributions for clarifying the nucleon-spin issue in the parton level. Twist-two structure functions b1 and b2 for spin-one hadrons could probe orbital-angular-momentum effects, which reflect a different aspect from current studies for the spin-1/2 nucleon. The structure functions b1 and b2 are described by tensor-polarized quark and antiquark distributions δTq and δTq¯. Using HERMES data on the b1 structure function for the deuteron, we made an analysis of extracting the distributions δTq and δTq¯ in a simple x-dependent functional form. Optimum distributions are proposed for the tensor-polarized valence and antiquark distribution functions from the analysis. A finite tensor polarization is obtained for antiquarks if we impose a constraint that the first moments of tensor-polarized valence-quark distributions vanish.

  2. Tensor-polarized quark and antiquark distribution functions in a spin-one hadron

    SciTech Connect

    Kumano, S.

    2010-07-01

    It is becoming crucial to understand orbital-angular-momentum contributions for clarifying the nucleon-spin issue in the parton level. Twist-two structure functions b{sub 1} and b{sub 2} for spin-one hadrons could probe orbital-angular-momentum effects, which reflect a different aspect from current studies for the spin-1/2 nucleon. The structure functions b{sub 1} and b{sub 2} are described by tensor-polarized quark and antiquark distributions {delta}{sub T}q and {delta}{sub T}q. Using HERMES data on the b{sub 1} structure function for the deuteron, we made an analysis of extracting the distributions {delta}{sub T}q and {delta}{sub T}q in a simple x-dependent functional form. Optimum distributions are proposed for the tensor-polarized valence and antiquark distribution functions from the analysis. A finite tensor polarization is obtained for antiquarks if we impose a constraint that the first moments of tensor-polarized valence-quark distributions vanish.

  3. Mass Effects on the Nucleon Sea Structure Functions

    NASA Astrophysics Data System (ADS)

    Kim, Sun Myong

    Nucleon sea structure functions are studied using Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations with the massive gluon-quark splitting kernels for strange and charm quarks, the massless gluon-quark splitting kernels for up and down quarks, and the massless kernels for all other splitting parts. The SU(2)f flavor symmetry for two light quarks, ``up'' and ``down'', is assumed. Glück-Reya-Vogt (GRV) and Martin-Roberts-Stirling (MRS) sets are chosen to be the base structure functions at Q02=3 GeV2. We evolve the sea structure functions from Q02=3 GeV2 to Q2=50 GeV2 using the base structure function sets and DGLAP equations. Some (about 10%) enhancement is found in the strange quark distribution functions at low x (<0.1) in leading order of the DGLAP equations compared to results directly from those structure function sets at the value of Q2=50 GeV2. We provide the value of κ and also show the behavior of κ (x)=2s(x)/(¯ u(x)+¯ d(x)) after the evolution of structure functions.

  4. Confirmation of quark-hadron duality in the neutron F_2 structure function

    SciTech Connect

    Simona Malace, Yonatan Kahn, Wolodymyr Melnitchouk, Cynthia Keppel

    2010-03-01

    Using a recently developed technique we extract the neutron F_2^n structure function from new inclusive proton and deuteron data in the large-x region, and test the validity of quark-hadron duality in the neutron. We establish for the first time the accuracy of duality in the low-lying neutron resonance regions over a range of Q^2, and compare with the corresponding results on the proton. Our findings open the possibility of using averaged resonance region data to constrain parton distributions at large x.

  5. Nucleon $g-2$ Structure Function at Large $x$ and Quark-Gluons Correlations

    SciTech Connect

    Zein-Eddine Meziani

    2009-12-01

    We discuss two recently carried out experiments at Jefferson Lab that measured with precision the spin structure function of the nucleon g2, aiming at the determination of the twist-3 matrix element known as d2 for both the proton and the neutron. This matrix element is related to the average Lorentz color force that a quark experiences just at the instant it is struck. It is also interpreted as a measurement of a linear combination of the electric and magnetic “color polarizability” in the nucleon.

  6. Nucleon g{sub 2} Structure Function and Quark-Gluon Correlations

    SciTech Connect

    Meziani, Zein-Eddine

    2009-12-17

    We discuss two recently carried out experiments at Jefferson Lab that measured with precision the spin structure function of the nucleon g{sub 2}, aiming at the determination of the twist-3 matrix element known as d{sub 2} for both the proton and the neutron. This matrix element is related to the average Lorentz color force that a quark experiences just at the instant it is struck. It is also interpreted as a measurement of a linear combination of the electric and magnetic 'color polarizability' in the nucleon.

  7. Determination of the top-quark pole mass and strong coupling constant from the t t-bar production cross section in pp collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE PAGESBeta

    Chatrchyan, Serguei

    2014-08-21

    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass,more » $$m_t^{pole}$$, or the strong coupling constant, $$\\alpha_S$$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$$^{+3.0}_{-2.8}$$ GeV is obtained when constraining $$\\alpha_S$$ at the scale of the Z boson mass, $m_Z$, to the current world average. Alternatively, by constraining $$m_t^{pole}$$ to the latest average from direct mass measurements, a value of $$\\alpha_S(m_Z)$$ = 0.1151$$^{+0.0028}_{-0.0027}$$ is extracted. This is the first determination of $$\\alpha_S$$ using events from top-quark production.« less

  8. Determination of the top-quark pole mass and strong coupling constant from the t t-bar production cross section in pp collisions at $\\sqrt{s}$ = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei

    2014-08-21

    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, $m_t^{pole}$, or the strong coupling constant, $\\alpha_S$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$^{+3.0}_{-2.8}$ GeV is obtained when constraining $\\alpha_S$ at the scale of the Z boson mass, $m_Z$, to the current world average. Alternatively, by constraining $m_t^{pole}$ to the latest average from direct mass measurements, a value of $\\alpha_S(m_Z)$ = 0.1151$^{+0.0028}_{-0.0027}$ is extracted. This is the first determination of $\\alpha_S$ using events from top-quark production.

  9. Applications of quark-hadron duality in F{sub 2} structure function.

    SciTech Connect

    Arrington, J.; Malace, S. P.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Asaturyan, R.; Hafidi, K.; Holt, R. J.; Reimer, P. E.; Schulte, E.; Zheng, X.; Physics; Hampton Univ.; Univ. of South Carolina; Rensselaer Polytechnic Institute; North Carolina A&T State Univ.; Bucharest Univ.

    2009-09-01

    Inclusive electron-proton and electron-deuteron inelastic cross sections have been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken x, up to 0.92, and four-momentum transfer squared Q{sup 2} up to 7.5 GeV{sup 2} in the experiment E00-116. These measurements are used to extend to larger x and Q{sup 2} precision, quantitative, studies of the phenomenon of quark-hadron duality. Our analysis confirms, both globally and locally, the apparent 'violation' of quark-hadron duality previously observed at a Q{sup 2} of 3.5 GeV{sup 2} when resonance data are compared to structure function data created from CTEQ6M and MRST2004 parton distribution functions (PDFs). More importantly, our new data show that this discrepancy saturates by Q{sup 2}{approx}4 GeV{sup 2}, becoming Q{sup 2} independent. This suggests only small violations of Q{sup 2} evolution by contributions from the higher-twist terms in the resonance region that is confirmed by our comparisons to ALEKHIN and ALLM97. We conclude that the unconstrained strength of the CTEQ6M and MRST2004 PDFs at large x is the major source of the disagreement between data and these parametrizations in the kinematic regime we study and that, in view of quark-hadron duality, properly averaged resonance region data could be used in global quantum chromodynamics fits to reduce PDF uncertainties at large x.

  10. Applications of quark-hadron duality in the F{sub 2} structure function

    SciTech Connect

    Malace, S. P.; Adams, G. S.; Villano, A. N.; Ahmidouch, A.; Danagoulian, S.; Angelescu, T.; Arrington, J.; Hafidi, K.; Holt, R. J.; Reimer, P. E.; Schulte, E.; Zheng, X.; Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Baker, O. K.; Ent, R.; Keppel, C. E.; Tang, L.

    2009-09-15

    Inclusive electron-proton and electron-deuteron inelastic cross sections have been measured at Jefferson Lab (JLab) in the resonance region, at large Bjorken x, up to 0.92, and four-momentum transfer squared Q{sup 2} up to 7.5 GeV{sup 2} in the experiment E00-116. These measurements are used to extend to larger x and Q{sup 2} precision, quantitative, studies of the phenomenon of quark-hadron duality. Our analysis confirms, both globally and locally, the apparent 'violation' of quark-hadron duality previously observed at a Q{sup 2} of 3.5 GeV{sup 2} when resonance data are compared to structure function data created from CTEQ6M and MRST2004 parton distribution functions (PDFs). More importantly, our new data show that this discrepancy saturates by Q{sup 2}{approx}4 GeV{sup 2}, becoming Q{sup 2} independent. This suggests only small violations of Q{sup 2} evolution by contributions from the higher-twist terms in the resonance region that is confirmed by our comparisons to ALEKHIN and ALLM97. We conclude that the unconstrained strength of the CTEQ6M and MRST2004 PDFs at large x is the major source of the disagreement between data and these parametrizations in the kinematic regime we study and that, in view of quark-hadron duality, properly averaged resonance region data could be used in global quantum chromodynamics fits to reduce PDF uncertainties at large x.

  11. Measurement of the Top Quark Mass at D0 Run II with the Matrix Element Method in the Lepton+Jets Final State

    SciTech Connect

    Schieferdecker, Philipp; /Munich U.

    2005-08-01

    The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb{sup -1} of D0 Run II data, the mass of the top quark is measured to be: m{sub top}{sup {ell}+jets} = 169.5 {+-} 4.4(stat. + JES){sub -1.6}{sup +1.7}(syst.) GeV; m{sub top}{sup e+jets} = 168.8 {+-} 6.0(stat. + JES){sub -1.9}{sup +1.9}(syst.) GeV; m{sub top}{sup {mu}+jets} = 172.3 {+-} 9.6(stat.+JES){sub -3.3}{sup +3.4}(syst.) GeV. The jet energy scale measurement in the {ell}+jets sample yields JES = 1.034 {+-} 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.

  12. Transverse-momentum-dependent fragmentation and quark distribution functions from the Nambu-Jona-Lasinio-jet model

    NASA Astrophysics Data System (ADS)

    Matevosyan, Hrayr H.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.

    2012-01-01

    Using the model of Nambu and Jona-Lasinio to provide a microscopic description of both the structure of the nucleon and of the quark to hadron elementary fragmentation functions, we investigate the transverse-momentum dependence of the unpolarized quark distributions in the nucleon and of the quark to pion and kaon fragmentation functions. The transverse-momentum dependence of the fragmentation functions is determined within a Monte Carlo framework, with the notable result that the average P⊥2 of the produced kaons is significantly larger than that of the pions. We also find that ⟨P⊥2⟩ has a sizable z dependence, in contrast with the naive Gaussian ansatz for the fragmentation functions. Diquark correlations in the nucleon give rise to a nontrivial flavor dependence in the unpolarized transverse-momentum-dependent quark distribution functions. The ⟨kT2⟩ of the quarks in the nucleon are also found to have a sizable x dependence. Finally, these results are used as input to a Monte Carlo event generator for semi-inclusive deep inelastic scattering (SIDIS), which is used to determine the average transverse momentum squared of the produced hadrons measured in SIDIS, namely, ⟨PT2⟩. Again, we find that the average PT2 of the produced kaons in SIDIS is significantly larger than that of the pions and in each case ⟨PT2⟩ has a sizable z dependence.

  13. Next-to-leading-order constituent quark structure and hadronic structure functions

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Khorramian, Ali N.

    2003-04-01

    We utilize the existing next-to-leading-order (NLO) formalism to calculate the partonic structure of a constituent quark. The structure of any hadron can be obtained thereafter using a convolution method. Such a procedure is used to generate the structure functions of protons and pions in NLO, neglecting certain corrections to ΛQCD. It is shown that while the constituent quark structure is generated purely perturbatively and accounts for the most part of the hadronic structure, there is a few percent contribution coming from the nonperturbative sector in the hadronic structure. This contribution plays the key role in explaining the SU(2) symmetry breaking of the nucleon sea and the observed violation of the Gottfried sum rule. These effects are calculated. We obtained an excellent agreement with the experimental data in a wide range of x=[10-6,1] and Q2=[0.5,5000] GeV2 for the proton structure function. We have also calculated pion structure and compared it with the existing data. Again, the model calculations agree rather well with the data from experiment.

  14. Scalar correlations in a quark plasma and low mass dilepton production

    SciTech Connect

    Blaschke, D.; Kalinovsky, Y.L.; Schmidt, S.; Schulze, H.

    1998-01-01

    We investigate possible consequences of resonant scalar interactions for dilepton production from a quark plasma at the chiral phase transition. It is found that this production mechanism is strongly suppressed compared to the Born process and has no significance for present experiments. {copyright} {ital 1998} {ital The American Physical Society}

  15. Measurement of top quark mass in the all hadronic channel in √s = 1.96 TeF, p$\\bar{p}$ collisions at D0

    SciTech Connect

    Lam, David Wai Kui

    2008-04-01

    A measurement of the top quark mass in proton-antiproton collisions at √s = 1.96 TeV using 1040fb-1 of data collected in D detector at Fermilab is presented. This analysis focuses on the all-hadronic decay mode of the top quark and therefore only events with six or more calorimeter jets in the final state are considered.

  16. Measurement of the Top Quark Mass in the Lepton+Jets Channel Using the Lepton Transverse Momentum

    SciTech Connect

    Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-01-01

    This letter reports a measurement of the top quark mass, M{sub top}, in data from p{bar p} collisions at {radical}s = 1.96 TeV corresponding to 2.7 fb{sup -1} of integrated luminosity at the Fermilab Tevatron using the CDF II detector. Events with the lepton+jets topology are selected. An unbinned likelihood is constructed based on the dependence of the lepton transverse momentum, P{sub T}, on M{sub top}. A maximum likelihood fit to the data yields a measured mass M{sub top} = 176.9 {+-} 8.0{sub stat} {+-} 2.7{sub syst} GeV/c{sup 2}. In this measurement, the contribution by the jet energy scale uncertainty to the systematic error is negligible. The result provides an important consistency test for other M{sub top} measurements where explicit use of the jet energy is made for deriving the top quark mass.

  17. The relation between the fundamental scale controlling high-energy interactions of quarks and the proton mass

    SciTech Connect

    Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.

    2015-04-06

    Quantum Chromodynamics (QCD) provides a fundamental description of the physics binding quarks into protons, neutrons, and other hadrons. QCD is well understood at short distances where perturbative calculations are feasible. Establishing an explicit relation between this regime and the large-distance physics of quark confinement has been a long-sought goal. A major challenge is to relate the parameter Λs, which controls the predictions of perturbative QCD (pQCD) at short distances, to the masses of hadrons. Here we show how new theoretical insights into QCD's behavior at large and small distances lead to an analytical relation between hadronic masses and Λs. The resulting prediction, Λs = 0.341 ± 0.024 GeV agrees well with the experimental value 0.339 ± 0.016 GeV. Conversely, the experimental value of Λs can be used to predict the masses of hadrons, a task which had so far only been accomplished through intensive numerical lattice calculations, requiring several phenomenological input parameters.

  18. Broken valence chiral symmetry and chiral polarization of Dirac spectrum in Nf=12 QCD at small quark mass

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Horváth, Ivan

    2016-01-01

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass mc such that for m > mc the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for mch < m < mc the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < mch, but this has not yet been seen by overlap valence probe, leaving the mch = 0 possibility open. The latter option could place massless Nf=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for mch < m < mc is qualitatively similar to one observed previously in zero and few-flavor theories as an effect of thermal agitation.

  19. Precise MS light-quark masses from lattice QCD in the regularization invariant symmetric momentum-subtraction scheme

    SciTech Connect

    Gorbahn, Martin; Jaeger, Sebastian

    2010-12-01

    We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI) up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters renormalized in the recently proposed RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }renormalization schemes. This is important for obtaining the MS masses with the best possible precision from numerical lattice QCD simulations, because the customary RI{sup (')}/MOM scheme is afflicted with large irreducible uncertainties both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching coefficients is accompanied by even smaller two-loop contributions. From a study of residual scale dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2% in the RI/SMOM scheme and about 3% in the RI/SMOM{sub {gamma}{sub {mu}} }scheme. Our conversion factors are given in fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the associated anomalous dimensions.

  20. The Mass Function of Cosmic Structures

    NASA Astrophysics Data System (ADS)

    Audit, E.; Teyssier, R.; Alimi, J.-M.

    We investigate some modifications to the Press and Schechter (1974) (PS) prescription resulting from shear and tidal effects. These modifications rely on more realistic treatments of the collapse process than the standard approach based on the spherical model. First, we show that the mass function resulting from a new approximate Lagrangian dynamic (Audit and Alimi, A&A 1996), contains more objects at high mass, than the classical PS mass function and is well fitted by a PS-like function with a threshold density of deltac ≍ 1.4. However, such a Lagrangian description can underestimate the epoch of structure formation since it defines it as the collapse of the first principal axis. We therefore suggest some analytical prescriptions, for computing the collapse time along the second and third principal axes, and we deduce the corresponding mass functions. The collapse along the third axis is delayed by the shear and the number of objects of high mass then decreases. Finally, we show that the shear also strongly affects the formation of low-mass halos. This dynamical effect implies a modification of the low-mass slope of the mass function and allows the reproduction of the observed luminosity function of field galaxies.

  1. Measurement of the top quark mass with the template method in the tbar{t} tolepton+jets channel using ATLAS data

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, J.; Price, L. E.; Price, M. J.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Romero Adam, E.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-06-01

    The top quark mass has been measured using the template method in the tbar{t}tolepton+jets channel based on data recorded in 2011 with the ATLAS detector at the LHC. The data were taken at a proton-proton centre-of-mass energy of √{s}=7 TeV and correspond to an integrated luminosity of 1.04 fb-1. The analyses in the e+jets and μ+jets decay channels yield consistent results. The top quark mass is measured to be m top=174.5±0.6stat±2.3syst GeV.

  2. Quark-hadron duality in the free neutron F2 structure function

    SciTech Connect

    Niculescu, Gabriel

    2015-09-01

    The Thomas Jefferson National Accelerator Facility (JLab) experiment BONuS used a novel spectator-tagging technique to measure the inclusive electron-free neutron scattering cross section and extract the F2 structure function. This data was used to reconstruct moments of F2 in the three prominent resonance region and the moments integrated over the entire resonance region. Comparisons of the experimental results with moments obtained from global parton distribution function parametrization seem to suggest that the quark-hadron duality hypothesis holds locally for the neutron in the second and third resonance regions down to Q2 of 1 GeV2; with up to 20% violations observed in the first resonance region.

  3. ρ and K* resonances on the lattice at nearly physical quark masses and Nf=2

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar S.; Collins, Sara; Cox, Antonio; Donald, Gordon; Göckeler, Meinulf; Lang, C. B.; Schäfer, Andreas; RQCD Collaboration

    2016-03-01

    Working with a pion mass mπ≈150 MeV , we study π π and K π scattering using two flavors of nonperturbatively improved Wilson fermions at a lattice spacing a ≈0.071 fm . Employing two lattice volumes with linear spatial extents of Ns=48 and Ns=64 points and moving frames, we extract the phase shifts for p -wave π π and K π scattering near the ρ and K* resonances. Comparing our results to those of previous lattice studies, that used pion masses ranging from about 200 MeV up to 470 MeV, we find that the coupling gρ π π appears to be remarkably constant as a function of mπ.

  4. Protostar mass functions in young clusters

    SciTech Connect

    Myers, Philip C.

    2014-01-20

    In an improved model of protostar mass functions (PMFs), protostars gain mass from isothermal cores in turbulent clumps. Their mass accretion rate is similar to Shu accretion at low mass and to reduced Bondi accretion at high mass. Accretion durations follow a simple expression in which higher-mass protostars accrete for longer times. These times are set by ejections, stellar feedback, and gravitational competition, which terminate accretion and reduce its efficiency. The mass scale is the mass of a critically stable isothermal core. In steady state, the PMF approaches a power law at high mass because of competition between clump accretion and accretion stopping. The power law exponent is the ratio of the timescales of accretion and accretion stopping. The protostar luminosity function (PLF) peaks near 1 L {sub ☉} because of inefficient accretion of core gas. Models fit observed PLFs in four large embedded clusters. These indicate that their underlying PMFs may be top-heavy compared with the initial mass function, depending on the protostar radius model.

  5. Parton distribution in pseudoscalar mesons with a light-front constituent quark model

    NASA Astrophysics Data System (ADS)

    de Melo, J. P. B. C.; Ahmed, Isthiaq; Tsushima, Kazuo

    2016-05-01

    We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function [1, 2, 3]. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions (PDFs), we use both the conditions in the light-cone wave function, i.e., when s ¯ quark is on-shell, and when u quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses [4, 5].

  6. A detailed study of nucleon structure function in nuclei in the valence quark region

    SciTech Connect

    Bianchi, N.

    1994-04-01

    The so called {open_quotes}EMC effect{close_quotes} discovered during the 1980`s, has caused a big controversy in the community of nuclear and high energy physicists; during the last ten years, five experiments have been performed in different laboratories and several hundreds of papers about the possible interpretation of the modification of the nucleon structure function inside nuclei have been published. However, from the experimental point of view, the main goal of four experiments (EMC, BCDMS, NMC, FNAL) has been to emphasize the region of low x{sub b}, where shadowing effects appear. In the region of valence quarks and nuclear effects (x{sub b} > 0.1 - 0.2) the most reliable data presently available are from the SLAC E139 experiment performed in 1983 with only 80 hours of beam time. New precise data in the valence quark region are necessary to measure separate structure functions F{sub 2}(x{sub b}, Q{sup 2}) and R{sup lt}(x{sub b},Q{sup 2}) = {sigma}{sub l}/{sigma}{sub t}, and to investigate the real A-dependence of the ratio between bound and free-nucleon structure functions which is not completely defined by the SLAC data. Moreover, from the nuclear physics point of view, a measurement on some unexplored nuclei, like {sup 3}He and {sup 48}Ca, would be of great interest. The intermediate scaling region (0.1 < x{sub b} < 0.7) would be accessible at CEBAF if the machine energy will reach 6-8 GeV, as suggested by all the tests performed on the RF cavities. This physics program has been already presented in two letter of intents.

  7. Can the four-zero-texture mass matrix model reproduce the observed quark and lepton mixing angles and CP-violating phases?

    SciTech Connect

    Matsuda, Koichi; Nishiura, Hiroyuki

    2006-08-01

    We reconsider a universal mass matrix model which has a seesaw-invariant structure with four-zero texture common to all quarks and leptons. The Cabibbo-Kobayashi-Maskawa (CKM) quark and Maki-Nakagawa-Sakata (MNS) lepton mixing matrices of the model are analyzed analytically. We show that the model can be consistent with all the experimental data of neutrino oscillation and quark mixings by tuning free parameters of the model. It is also shown that the model predicts a relatively large value for the (1, 3) element of the MNS lepton mixing matrix (U{sub MNS}){sub 13}{sup 2}{approx_equal}(0.041-9.6)x10{sup -2}. Using the seesaw mechanism, we also discuss the conditions for the components of the Dirac and the right-handed Majorana neutrino mass matrices which lead to the neutrino mass matrix consistent with the experimental data.

  8. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules

    PubMed Central

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-01-01

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465

  9. Formation of gapless phases of K{sup 0} condensed color-flavor locked superconducting quark matter

    SciTech Connect

    Zhang Xiaobing; Kapusta, J. I.

    2007-03-01

    Electric and color neutral solutions, and the critical conditions for the formation of gapless color superconductors, are investigated in K{sup 0} condensed color-flavor locked quark matter for nonzero strange quark mass. We show that as the strange quark mass increases, gapless modes for up-strange quark pairing occur first, followed by down-strange quark pairing. The behavior of the gaps, the dispersion relations, and the thermodynamic potential are all found as functions of the strange quark mass on the basis of a Nambu-Jona-Lasinio type model. To a high degree of accuracy, they are presented as relatively simple elementary functions. This allows for easy computation for any reasonable range of baryon chemical potential and strange quark mass.

  10. Measurement of the top quark mass with the dynamical likelihood method using lepton plus jets events with b-tags in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2005-12-01

    This report describes a measurement of the top quark mass, M{sub top}, with the dynamical likelihood method (DLM) using the CDF II detector at the Fermilab Tevatron. The Tevatron produces top/anti-top (t{bar t}) pairs in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The data sample used in this analysis was accumulated from March 2002 through August 2004, which corresponds to an integrated luminosity of 318 pb{sup -1}. They use the t{bar t} candidates in the ''lepton+jets'' decay channel, requiring at least one jet identified as a b quark by finding an displaced secondary vertex. The DLM defines a likelihood for each event based on the differential cross section as a function of M{sub top} per unit phase space volume of the final partons, multiplied by the transfer functions from jet to parton energies. The method takes into account all possible jet combinations in an event, and the likelihood is multiplied event by event to derive the top quark mass by the maximum likelihood method. Using 63 t{bar t} candidates observed in the data, with 9.2 events expected from background, they measure the top quark mass to be 173.2{sub -2.4}{sup +2.6}(stat.) {+-} 3.2(syst.) GeV/c{sup 2}, or 173.2{sub -4.0}{sup +4.1} GeV/c{sup 2}.

  11. Top quark physics: Future measurements

    SciTech Connect

    Frey, R.; Vejcik, S.; Berger, E.L.

    1997-04-04

    The authors discuss the study of the top quark at future experiments and machines. Top`s large mass makes it a unique probe of physics at the natural electroweak scale. They emphasize measurements of the top quark`s mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  12. Quark confinement in a constituent quark model

    SciTech Connect

    Langfeld, K.; Rho, M.

    1995-07-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.

  13. Composite quarks and leptons

    SciTech Connect

    Preskill, J.

    1982-01-01

    Calculability of quark and lepton masses and mixing angles is stressed as the primary motivation for constructing models in which quarks and leptons are composite particles. A general strategy for constructing such models is outlined, in which quarks and leptons are kept light compared to their inverse sizes by approximate chiral symmetries. The origin of multiple families is discussed, and an unrealistic model is exhibited which has several generations and a complicated pattern of masses and generation-mixing angles. The new physics responsible for binding quarks and leptons tends to induce various rare processes at rates which are potentially too large.

  14. Measurement of the top quark mass with the matrix element method in the semileptonic decay channel at D0

    SciTech Connect

    Haefner, Petra

    2008-07-31

    The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with theW boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t $\\bar{t}$ →W±W b$\\bar{b}$ →q $\\bar{t}$lnb$\\bar{b}$ is the ”golden channel” for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb-1 of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: mt = (169.2±3.5(stat.)±1.0(syst.)) GeV . The

  15. Combination of CDF and D0 results on the mass of the top quark using up to 5.8~fb-1 of data

    SciTech Connect

    Lancaster, Mark; /Fermilab

    2011-07-01

    We summarize the top-quark mass measurements from the CDF and D0 experiments at Fermilab. We combine published Run I (1992--1996) measurements with the most precise published and preliminary Run II (2001--present) measurements using up to 5.8 fb{sup -1} of data, adding new analyses (the missing transverse energy plus jets analysis) and updating old ones. Taking uncertainty correlations into account, and adding in quadrature the statistical and systematic uncertainties, the resulting preliminary Tevatron average mass of the top quark is M{sub t} = 173.2 {+-} 0.9 GeV/c{sup 2}.

  16. Combination of CDF and D0 results on the mass of the top quark using up to 9.7 fb$^{-1}$ at the Tevatron

    SciTech Connect

    Tevatron Electroweak Working Group, Tevatron Group

    2014-07-10

    We summarize the current top-quark mass measurements from the CDF and D0 experiments at Fermilab. We combine published Run I (1992--1996) results with the most precise published and preliminary Run II (2001--2011) measurements based on data corresponding to up to 9.7 fb$^{-1}$ of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic uncertainties, the resulting preliminary Tevatron average mass of the top quark is $M_{top} = 174.34 \\pm 0.64 ~GeV/c^2$, corresponding to a relative precision of 0.37%.

  17. Effects of heavy sea quarks at low energies.

    PubMed

    Bruno, Mattia; Finkenrath, Jacob; Knechtli, Francesco; Leder, Björn; Sommer, Rainer

    2015-03-13

    We present a factorization formula for the dependence of light hadron masses and low energy hadronic scales on the mass M of a heavy quark: apart from an overall mass-independent factor Q, ratios such as r_{0}(M)/r_{0}(0) are computable in perturbation theory at large M. The perturbation theory part is stable concerning different loop orders. Our nonperturbative Monte Carlo results obtained in a model calculation, where a doublet of heavy quarks is decoupled, match quantitatively to the perturbative prediction. Upon taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios are given by the decoupled theory up to M^{-2} corrections. We verify-in the continuum limit-that the sea quark effects of quarks with masses around the charm mass are very small in such ratios. PMID:25815925

  18. QCD sum rule calculation of quark-gluon three-body components in the B-meson wave function

    SciTech Connect

    Nishikawa, Tetsuo; Tanaka, Kazuhiro

    2011-10-21

    We discuss the QCD sum rule calculation of the heavy-quark effective theory parameters {lambda}{sub E} and {lambda}{sub H}, which represent quark-gluon three-body components in the B-meson wave function. We update the sum rules for {lambda}{sub E,H} calculating the new higher-order contributions to the operator product expansion for the corresponding correlator, i.e., the order {alpha}{sub s} radiative corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed condensate, and the power corrections due to the dimension-6 vacuum condensates. We find that the new radiative corrections significantly improve stability of the corresponding Borel sum rules, modifying the values of {lambda}{sub E,H}.

  19. Correlation functions for extended mass galaxy clusters

    NASA Astrophysics Data System (ADS)

    Iqbal, Naseer; Ahmad, Naveel; Hamid, Mubashir; Masood, Tabasum

    2012-07-01

    The phenomenon of clustering of galaxies on the basis of correlation functions in an expanding Universe is studied by using equation of state, taking gravitational interaction between galaxies of extended nature into consideration. The partial differential equation for the extended mass structures of a two-point correlation function developed earlier by Iqbal, Ahmad & Khan is studied on the basis of assigned boundary conditions. The solution for the correlation function for extended structures satisfies the basic boundary conditions, which seem to be sufficient for understanding the phenomena, and provides a new insight into the gravitational clustering problem for extended mass structures.

  20. Calculation of mass of Y(4140) by introducing mixed molecule state in quark model

    NASA Astrophysics Data System (ADS)

    Chen, Xiaozhao; Lü, Xiaofu; Shi, Renbin; Guo, Xiurong

    2016-08-01

    Using the general form of the Bethe-Salpeter wave functions for the bound states consisting of two vector fields given in our previous work, we investigate the molecular state composed of Ds*+ Ds*-. However, for the SU(3) symmetry the component Ds*+ Ds*- is coupled with the other components D*0D bar * 0 and D*+D*-. Then we interpret the internal structure of the observed Y (4140) state as a mixed state of pure molecule states D*0D bar * 0, D*+D*- and Ds*+ Ds*-with quantum numbers JP =0+. In this paper, the operator product expansion is used to introduce the nonperturbative contribution from the vacuum condensates into the interaction between two heavy mesons. The calculated mass of Y (4140) is consistent with the experimental value, and we conclude that it is a more reasonable scenario to explain the structure of Y (4140) as a mixture of pure molecule states.

  1. The mass function of Seyfert 1 nuclei

    NASA Technical Reports Server (NTRS)

    Padovani, P.; Burg, R.; Edelson, R. A.

    1990-01-01

    The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.

  2. Top quark physics

    SciTech Connect

    Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.

    2000-03-24

    The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by

  3. From fundamental fields to constituent quarks and nucleon form factors

    SciTech Connect

    Coester, F.

    1990-01-01

    Constituent-quark models formulated in the frame work of nonrelativistic quantum mechanics have been successful in accounting for the mass spectra of mesons and baryons. Applications to elastic electron scattering require relativistic dynamics. Relativistic quantum mechanics of constituent quarks can be formulated by constructing a suitable unitary representation of the Poincare group on the three-quark Hilbert space. The mass and spin operators of this representation specify the relativistic model dynamics. The dynamics of fundamental quark fields, on the other hand, is specified by a Euclidean functional integral. In this paper I show how the dynamics of the fundamental fields can be related in principle to the Hamiltonian dynamics of quark particles through the properties of the Wightman functions. 14 refs.

  4. Measurement of the Top Quark Mass and ppbar -> ttbar Cross Section in the All-Hadronic Mode with the CDFII Detector

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; /Purdue U. /Waseda U.

    2010-02-01

    We present a measurement of the top quark mass and of the top-antitop pair production cross section using p{bar p} data collected with the CDF II detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb{sup -1}. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 {+-} 2.4(stat+JES){sub -1.0}{sup +1.2}(syst)GeV/c{sup 2}, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, {sigma}{sub t{bar t}} = 7.2 {+-} 0.5(stat) {+-} 1.0(syst) {+-} 0.4(lum) pb, for the measured values of top quark mass and JES.

  5. MASS FUNCTION PREDICTIONS BEYOND {Lambda}CDM

    SciTech Connect

    Bhattacharya, Suman; Lukic, Zarija; Habib, Salman; Heitmann, Katrin; White, Martin; Wagner, Christian

    2011-05-10

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference {Lambda}CDM cosmology and for a set of wCDM cosmologies. For the reference {Lambda}CDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) {Lambda}CDM mass function over a mass range of 6 x 10{sup 11}-3 x 10{sup 15} M{sub sun} to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a {Lambda}CDM cosmology and others with w {approx_equal} -1) are described by the fitting formula for the reference {Lambda}CDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  6. Mass Function Predictions Beyond ΛCDM

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Suman; Heitmann, Katrin; White, Martin; Lukić, Zarija; Wagner, Christian; Habib, Salman

    2011-05-01

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference ΛCDM cosmology and for a set of wCDM cosmologies. For the reference ΛCDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) ΛCDM mass function over a mass range of 6 × 1011-3 × 1015 M sun to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a ΛCDM cosmology and others with w ~= -1) are described by the fitting formula for the reference ΛCDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  7. Initial mass function of intermediate-mass black hole seeds

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Salvadori, S.; Yue, B.; Schleicher, D.

    2014-09-01

    We study the initial mass function (IMF) and hosting halo properties of intermediate-mass black holes (IMBHs, 104-6 M⊙) formed inside metal-free, UV-illuminated atomic-cooling haloes (virial temperature Tvir ≥ 104 K) either via the direct collapse of the gas or via an intermediate supermassive star (SMS) stage. These IMBHs have been recently advocated as the seeds of the supermassive black holes observed at z ≈ 6. We achieve this goal in three steps: (a) we derive the gas accretion rate for a proto-SMS to undergo General Relativity instability and produce a direct collapse black hole (DCBH) or to enter the zero-age main sequence and later collapse into an IMBH; (b) we use merger-tree simulations to select atomic-cooling haloes in which either a DCBH or SMS can form and grow, accounting for metal enrichment and major mergers that halt the growth of the proto-SMS by gas fragmentation. We derive the properties of the hosting haloes and the mass distribution of black holes at this stage, and dub it the `birth mass function'; (c) we follow the further growth of the DCBH by accreting the leftover gas in the parent halo and compute the final IMBH mass. We consider two extreme cases in which minihaloes (Tvir < 104 K) can (fertile) or cannot (sterile) form stars and pollute their gas leading to a different IMBH IMF. In the (fiducial) fertile case, the IMF is bimodal extending over a broad range of masses, M ≈ (0.5-20) × 105 M⊙, and the DCBH accretion phase lasts from 10 to 100 Myr. If minihaloes are sterile, the IMF spans the narrower mass range M ≈ (1-2.8) × 106 M⊙, and the DCBH accretion phase is more extended (70-120 Myr). We conclude that a good seeding prescription is to populate haloes (a) of mass 7.5 < log (Mh/ M⊙) < 8, (b) in the redshift range 8 < z < 17, (c) with IMBH in the mass range 4.75 < (log M•/ M⊙) < 6.25.

  8. The b Quark Fragmentation Function, From LEP to TeVatron

    SciTech Connect

    Ben-haim, Eli

    2004-12-01

    ongoing. It makes use of {approx} 6000 B{sup {+-}} candidates, from 333 pb{sup -1} of data registered by the CDF experiment, fully reconstructed in the decay channel B{sup {+-}} {yields} J/{Psi}K{sup {+-}}. Characteristics of B mesons and for accompanying tracks have been examined, in the perspective of understanding the effect of fragmentation. These studies, done in the framework of the PYTHIA event generator, also involve the contributions from different b{bar b} production mechanisms. Distributions from a fully reconstructed Monte Carlo sample have been compared to data, and the agreement has been found to be reasonable. The analysis is ongoing, and the goal is to fit the fragmentation function parameters and/or the relative contributions from different production mechanisms to improve the agreement between data and Monte Carlo. A measurement of the b quark production cross section has been obtained using the same data. The analysis is still under way, and therefore the result is preliminary.

  9. Coulomb gauge confinement in the heavy quark limit

    SciTech Connect

    Popovici, C.; Watson, P.; Reinhardt, H.

    2010-05-15

    The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.

  10. Measurement of the Hadronic Mass Spectrum in B to Xulnu Decaysand Determination of the b-Quark Mass at the BaBar Experiment

    SciTech Connect

    Tackmann, Kerstin

    2008-06-26

    I present preliminary results of the measurement of the hadronic mass spectrum and its first three spectral moments in inclusive charmless semileptonic B-meson decays. The truncated hadronic mass moments are used for the first determination of the b-quark mass and the nonperturbative parameters μπ2 and ρD3 in this B-meson decay channel. The study is based on 383 x 106 B$\\bar{B}$ decays collected with the BABAR experiment at the PEP-II e+e- storage rings, located at the Stanford Linear Accelerator Center. The first, second central, and third central hadronic mass moment with a cut on the hadronic mass mX2 < 6.4GeV2 and the lepton momentum p* > 1 GeV are measured to be: M1 = (1.96 ± 0.34stat ± 0.53syst) GeV2; U2 = (1.92 ± 0.59stat ± 0.87syst) GeV4; and U3 = (1.79 ± 0.62stat ± 0.78syst) GeV6; with correlation coefficients ρ12 = 0.99, ρ23 = 0.94, and ρ13 = 0.88, respectively. Using Heavy Quark Effective Theory-based predictions in the kinetic scheme we extract: mb = (4.60 ± 0.13stat ± 0.19syst ± 0.10theo GeV); μπ2 = (0.40 ± 0.14stat ± 0.20syst ± 0.04theo) GeV2; ρD3 = (0.10 ± 0.02stat ± 0.02syst ± 0.07theo) GeV3; at μ = 1 GeV, with correlation coefficients ρmbμπ2 = -0.99, ρ μπ2ρD3 = 0.57, and ρmbρD3 = -0.59. The results are in good agreement with earlier determinations in inclusive charmed semileptonic and radiative penguin B-meson decays and have a

  11. A Measurement of the mass of the Top Quark in the di-lepton channels using the D0 Detector at Fermilab

    SciTech Connect

    Fatakia, Sarosh Noshir

    2005-01-01

    This dissertation describes a measurement of the mass of the top quark using events consistent with the hypothesis t{bar t} {yields} bW{sup +} {bar b}W{sup -} {yields} bl{sup +}{nu}{bar b}l{sup -}{bar {nu}}, where (l=e,{mu}). The events are obtained from nearly 230 pb{sup -1} of p{bar p} collision data collected by the D0 experiment between 2002 and 2004 during Run II. In this decay channel two neutrinos remain undetected. Extraction of the mass of the top quark by kinematic reconstruction is not possible because the event is under-constrained. Therefore, a dynamical likelihood method is developed to obtain the mass of the top quark. The mass of top quark obtained from the candidate events selected in the di-electron channel and the e{mu} channel is: 154.1 {sup +14.2}{sub -12.8}(stat.) {+-}6.6 (syst.) GeV.

  12. The Pleiades mass function: Models versus observations

    NASA Astrophysics Data System (ADS)

    Moraux, E.; Kroupa, P.; Bouvier, J.

    2004-10-01

    Two stellar-dynamical models of binary-rich embedded proto-Orion-Nebula-type clusters that evolve to Pleiades-like clusters are studied with an emphasis on comparing the stellar mass function with observational constraints. By the age of the Pleiades (about 100 Myr) both models show a similar degree of mass segregation which also agrees with observational constraints. This thus indicates that the Pleiades is well relaxed and that it is suffering from severe amnesia. It is found that the initial mass function (IMF) must have been indistinguishable from the standard or Galactic-field IMF for stars with mass m ≲ 2 M⊙, provided the Pleiades precursor had a central density of about 104.8 stars/pc3. A denser model with 105.8 stars/pc3 also leads to reasonable agreement with observational constraints, but owing to the shorter relaxation time of the embedded cluster it evolves through energy equipartition to a mass-segregated condition just prior to residual-gas expulsion. This model consequently preferentially loses low-mass stars and brown dwarfs (BDs), but the effect is not very pronounced. The empirical data indicate that the Pleiades IMF may have been steeper than the Salpeter for stars with m⪆ 2 M⊙.

  13. Heavy-quark physics in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1991-04-01

    Heavy quarks can expose new symmetries and novel phenomena in QCD not apparent in ordinary hadronic systems. In these lectures I discuss the use of effective-Lagrangian and light-cone Fock methods to analyze exclusive heavy hadron decays such as {Upsilon} {yields} p{bar p} and B {yields} {pi}{pi}, and also to derive effective Schroedinger and Dirac equations for heavy quark systems. Two contributions to the heavy quark structure functions of the proton and other light hadrons are identified: an extrinsic'' contribution associated with leading twist QCD evolution of the gluon distribution, and a higher twist intrinsic'' contribution due to the hardness of high-mass fluctuations of multi-gluon correlations in hadronic wavefunctions. A non-perturbative calculation of the heavy quark distribution of a meson in QCD in one space and one time is presented. The intrinsic higher twist contributions to the pion and proton structure functions can dominate the hadronic production of heavy quark systems at large longitudinal momentum fraction x{sub F} and give anomalous contributions to the quark structure functions of ordinary hadrons at large x{sub bj}. I also discuss a number of ways in which heavy quark production in nuclear targets can test fundamental QCD phenomena and provide constraints on hadronic wavefunctions. The topics include color transparency, finite formation time, and predictions for charm production at threshold, including nuclear-bound quarkonium. I also discuss a number of QCD mechanisms for the suppression of J/{psi} and {Upsilon} production in nuclear collisions, including gluon shadowing, the peripheral excitation of intrinsic heavy quark components at large x{sub F}, and the coalescence of heavy quarks with co-moving spectators at low x{sub F}.

  14. Measurement of the top-quark mass in all-jets $$t\\bar{t}$$ events in pp collisions at $$\\sqrt{s}$$=7 TeV

    DOE PAGESBeta

    Chatrchyan, Serguei

    2013-07-17

    The mass of the top quark is measured using a sample ofmore » $$t\\bar{t}$$ candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at $$\\sqrt{s}$$ = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 inverse femtobarns. The mass is reconstructed for each event employing a kinematic fit of the jets to a $$t\\bar{t}$$ hypothesis. The top-quark mass is measured to be 173.49 $$\\pm$$ 0.69 (stat.) $$\\pm$$ 1.21 (syst.) GeV. A combination with previously published measurements in other decay modes by CMS yields a mass of 173.54 $$\\pm$$ 0.33 (stat.) $$\\pm$$ 0.96 (syst.) GeV.« less

  15. Measurement of the top-quark mass in all-jets $t\\bar{t}$ events in pp collisions at $\\sqrt{s}$=7 TeV

    SciTech Connect

    Chatrchyan, Serguei

    2013-07-17

    The mass of the top quark is measured using a sample of $t\\bar{t}$ candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at $\\sqrt{s}$ = 7 TeV in 2011 and corresponds to an integrated luminosity of 3.54 inverse femtobarns. The mass is reconstructed for each event employing a kinematic fit of the jets to a $t\\bar{t}$ hypothesis. The top-quark mass is measured to be 173.49 $\\pm$ 0.69 (stat.) $\\pm$ 1.21 (syst.) GeV. A combination with previously published measurements in other decay modes by CMS yields a mass of 173.54 $\\pm$ 0.33 (stat.) $\\pm$ 0.96 (syst.) GeV.

  16. Measurement of the Top Quark Mass using Dilepton Events and a Neutrino Weighting Algorithm with the D0 Experiment at the Tevatron (Run II)

    SciTech Connect

    Meyer, Joerg; /Bonn U.

    2007-01-01

    Elementary particle physics raises questions that are several thousand years old. What are the fundamental components of matter and how do they interact? These questions are linked to the question of what happened in the very first moments after the creation of the universe. Modern physics systematically tests nature to find answers to these and other fundamental questions. Precise theories are developed that describe various phenomena and at the same time are reduced to a few basic principals of nature. Simplification and reduction have always been guiding concepts of physics. The interplay between experimental data and theoretical descriptions led to the Standard Model of elementary particle physics. It summarizes the laws of nature and is one of most precise descriptions of nature achieved by mankind. Despite the great success of the Standard Model it is not the ultimate theory of everything. Models beyond the Standard Model try to unify all interactions in one grand unified theory. The number of free parameters is attempted to be reduced. Gravity is attempted to be incorporated. Extensions to the Standard Model like supersymmetry address the so-called hierarchy problem. Precision measurements are the key for searches of new particles and new physics. A powerful tool of experimental particle physics are particle accelerators. They provide tests of the Standard Model at smallest scales. New particles are produced and their properties are investigated. In 1995 the heaviest known elementary particle, called top quark, has been discovered at Fermilab. It differs from all other lighter quarks due to the high mass and very short lifetime. This makes the top quark special and an interesting object to be studied. A rich program of top physics at Fermilab investigates whether the top quark is really the particle as described by the Standard Model. The top quark mass is a free parameter of the theory that has been measured precisely. This thesis presents a precise

  17. Tests of constituent-quark generation methods which maintain both the nucleon center of mass and the desired radial distribution in Monte Carlo Glauber models

    NASA Astrophysics Data System (ADS)

    Mitchell, J. T.; Perepelitsa, D. V.; Tannenbaum, M. J.; Stankus, P. W.

    2016-05-01

    Several methods of generating three constituent quarks in a nucleon are evaluated which explicitly maintain the nucleon's center of mass and desired radial distribution and can be used within Monte Carlo Glauber frameworks. The geometric models provided by each method are used to generate distributions over the number of constituent quark participants (Nqp) in p +p ,d +Au , and Au +Au collisions. The results are compared with each other and to a previous result of Nqp calculations, without this explicit constraint, used in measurements of √{sNN}=200 GeV p +p ,d +Au , and Au +Au collisions at the BNL Relativistic Heavy Ion Collider.

  18. Planetary mass function and planetary systems

    NASA Astrophysics Data System (ADS)

    Dominik, M.

    2011-02-01

    With planets orbiting stars, a planetary mass function should not be seen as a low-mass extension of the stellar mass function, but a proper formalism needs to take care of the fact that the statistical properties of planet populations are linked to the properties of their respective host stars. This can be accounted for by describing planet populations by means of a differential planetary mass-radius-orbit function, which together with the fraction of stars with given properties that are orbited by planets and the stellar mass function allows the derivation of all statistics for any considered sample. These fundamental functions provide a framework for comparing statistics that result from different observing techniques and campaigns which all have their very specific selection procedures and detection efficiencies. Moreover, recent results both from gravitational microlensing campaigns and radial-velocity surveys of stars indicate that planets tend to cluster in systems rather than being the lonely child of their respective parent star. While planetary multiplicity in an observed system becomes obvious with the detection of several planets, its quantitative assessment however comes with the challenge to exclude the presence of further planets. Current exoplanet samples begin to give us first hints at the population statistics, whereas pictures of planet parameter space in its full complexity call for samples that are 2-4 orders of magnitude larger. In order to derive meaningful statistics, however, planet detection campaigns need to be designed in such a way that well-defined fully deterministic target selection, monitoring and detection criteria are applied. The probabilistic nature of gravitational microlensing makes this technique an illustrative example of all the encountered challenges and uncertainties.

  19. Lattice QCD Green's functions in maximally Abelian gauge: Infrared Abelian dominance and the quark sector

    NASA Astrophysics Data System (ADS)

    Schröck, Mario; Vogt, Hannes

    2016-01-01

    On lattice gauge field configurations with 2 +1 dynamical quark flavors, we investigate the momentum space quark and gluon propagators in the combined maximally Abelian plus U (1 )3×U (1 )8 Landau gauge. We extract the gluon fields from the lattice link variables and study the diagonal and off-diagonal gluon propagators. We find that the infrared region of the transverse diagonal gluon propagator is strongly enhanced compared to the off-diagonal propagator. The Dirac operator from the Asqtad action is inverted on the diagonal and off-diagonal gluon backgrounds separately. In agreement with the hypothesis of infrared Abelian dominance, we find that the off-diagonal gluon background hardly gives rise to any nontrivial quark dynamics while the quark propagator from the diagonal gluon background closely resembles its Landau gauge counterpart.

  20. T Dwarfs and the Substellar Mass Function

    NASA Astrophysics Data System (ADS)

    Burgasser, A. J.; 2MASS Rare Objects Team

    2001-12-01

    The recent sky surveys 2MASS, SDSS, and DENIS have unveiled a vast population of substellar objects in the Solar Neighborhood, and have appended two new spectral classes onto the familiar MK system: L and T dwarfs. With hundreds of these objects now known, we can address one of the fundamental questions that initiated the search for brown dwarfs in the first place - what is their contribution to the Galactic mass budget? I present results on the field substellar mass function, based on a sample of T dwarfs identified in the 2MASS survey. Using the evolutionary models of Burrows et al. and a Monte Carlo simulation of the Solar Neighborhood, I show that the number of T dwarfs identified in this sample is consistent with a shallow power-law mass function, 0.5 < α < 1.0, similar to values derived from young clusters but inconsistent with previous estimates in the field. I discuss possible reasons for this discrepancy, and ways in which we may improve our census of nearby brown dwarfs. Support for this work was provided by NASA through a Hubble Fellowship grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incoporated, under NASA contract NAS5-26555.

  1. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2014-11-01

    The effort of carrying additional mass at different body locations is important in ergonomics and in designing wearable robotics. We investigate the metabolic rate of carrying a load as a function of its mass, its location on the body and the subject's walking speed. Novel metabolic rate prediction equations for walking while carrying loads at the ankle, knees and back were developed based on experiments where subjects walked on a treadmill at 4, 5 or 6km/h bearing different amounts of added mass (up to 2kg per leg and 22kg for back). Compared to previously reported equations, ours are 7-69% more accurate. Results also show that relative cost for carrying a mass at a distal versus a proximal location changes with speed and mass. Contrary to mass carried on the back, mass attached to the leg cannot be modeled as an increase in body mass. PMID:24793822

  2. Cold quark matter

    SciTech Connect

    Kurkela, Aleksi; Romatschke, Paul; Vuorinen, Aleksi

    2010-05-15

    We perform an O({alpha}{sub s}{sup 2}) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further nonperturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in (slowly rotating) compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M{approx}2M{sub {center_dot},} in agreement with current observations. For strange stars, we find maximal masses of M{approx}2.75M{sub {center_dot}}and conclude that confirmed observations of compact stars with M>2M{sub {center_dot}}would strongly favor the existence of stable strange quark matter.

  3. Determination of hadron-quark phase transition line from lattice QCD and two-solar-mass neutron star observations

    NASA Astrophysics Data System (ADS)

    Sugano, Junpei; Kouno, Hiroaki; Yahiro, Masanobu

    2016-07-01

    We aim at drawing the hadron-quark phase transition line in the QCD phase diagram by using the two-phase model (TPM) in which the entanglement Polyakov-loop extended Nambu-Jona-Lasinio (EPNJL) model with the vector-type four-quark interaction is used for the quark phase and the relativistic mean field (RMF) model is used for the hadron phase. A reasonable TPM is constructed by using lattice QCD data and neutron star observations as reliable constraints. For the EPNJL model, we determine the strength of vector-type four-quark interaction at zero quark chemical potential from lattice QCD data on quark number density normalized by its Stefan-Boltzmann limit. For the hadron phase, we consider three RMF models: NL3; TM1; and the model proposed by Maruyama, Tatsumi, Endo, and Chiba (MTEC). We find that MTEC is most consistent with the neutron star observations and TM1 is the second best. Assuming that the hadron-quark phase transition occurs in the core of a neutron star, we explore the density dependence of vector-type four-quark interaction. Particularly for the critical baryon chemical potential μBc at zero temperature, we determine a range of μBc for the quark phase to occur in the core of a neutron star. The values of μBc lie in the range 1560 MeV ≤μBc≤1910 MeV .

  4. Cosmology with the Cluster Mass Function

    NASA Astrophysics Data System (ADS)

    Rines, Kenneth J.

    2006-12-01

    Galaxy clusters probe the amplitude of density fluctuations in the early universe and the growth of large-scale structure. I will discuss our recent efforts to constrain Ω_m and σ_8 using the mass function of X-ray selected galaxy clusters in the Sloan Digital Sky Survey. Our results agree well with Third-Year WMAP results and have statistical uncertainties competitive with cosmic shear estimates. Alternatively, these measurements can be used to estimate the velocity segregation of cluster galaxies. Taking the Third-Year WMAP results as a prior, we estimate that cluster galaxies have a velocity dispersion 1.3 times larger than the dark matter. I will discuss future efforts to improve these constraints and to use the evolution of the mass function to probe dark energy.

  5. Measurement of the top-quark mass in the t t xAF dilepton channel using the full CDF Run II data set

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2015-08-01

    We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run II at center-of-mass energy √{s }=1.96 TeV , corresponding to an integrated luminosity of 9.1 fb-1 . A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of t t ¯ dilepton signal and background. We measure a value for the top-quark mass of 171.5 ±1.9 (stat)±2.5 (syst) GeV /c2 .

  6. STRANGE GOINGS ON IN QUARK MATTER.

    SciTech Connect

    SCHAFER,T.

    2001-06-05

    We review recent work on how the superfluid state of three flavor quark matter is affected by non-zero quark masses and chemical potentials. The study of hadronic matter at high baryon density has recently attracted a lot of interest. At zero baryon density chiral symmetry is broken by a quark-anti-quark condensate. At high density condensation in the quark-anti-quark channel is suppressed. Instead, attractive interactions in the color anti-symmetric quark-quark channel favor the formation of diquark condensates. As a consequence, cold dense quark matter is expected to be a color superconductor. The symmetry breaking pattern depends on the density, the number of quark flavors, and their masses. A particularly symmetric phase is the color-flavor-locked (CFL) phase of three flavor quark matter. This phase is believed to be the true ground state of ordinary matter at very large density.

  7. The quark-gluon vertex in Landau gauge QCD: Its role in dynamical chiral symmetry breaking and quark confinement

    NASA Astrophysics Data System (ADS)

    Alkofer, Reinhard; Fischer, Christian S.; Llanes-Estrada, Felipe J.; Schwenzer, Kai

    2009-01-01

    The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector, we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitly, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior, numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore, we conclude that chiral symmetry breaking and confinement are closely related. Furthermore, we discuss aspects of confinement as the absence of long-range van der Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.

  8. Light-quark mass behaviour of the X(3872) as a molecular state

    NASA Astrophysics Data System (ADS)

    Baru, V.; Epelbaum, E.; Filin, A. A.; Gegelia, J.; Nefediev, A. V.

    2016-03-01

    Chiral extrapolations of the binding energy of the X(3872) molecular state are investigated using an explicitly renormalizable framework free of finite cut-off artefacts. Insights into the binding mechanisms are discussed: if the X is less bound with the growing pion mass, its binding energy is governed by the explicit pion mass dependence from one-pion exchange; an opposite behaviour would indicate the importance of the pionmass dependent short-range interactions, in addition to pionic effects. The important role of the three-body DD¯π dynamics is emphasised.

  9. Delta and Omega masses in a three-quark covariant Faddeev approach

    NASA Astrophysics Data System (ADS)

    Sanchis-Alepuz, Helios; Eichmann, Gernot; Villalba-Chávez, Selym; Alkofer, Reinhard

    2011-11-01

    We present the solution of the Poincaré-covariant Faddeev equation for the Δ(1232) and Ω(1672) baryons. The covariant structure of the corresponding baryon amplitudes and their decomposition in terms of internal spin and orbital angular momentum is explicitly derived. The interaction kernel is truncated to a rainbow-ladder dressed-gluon exchange such that chiral symmetry and its dynamical breaking are correctly implemented. The resulting physical masses agree reasonably with experiment and their evolution with the pion mass compares favorably with lattice calculations. Evidence for the nonsphericity of the Δ resonance is discussed as well.

  10. Delta and Omega masses in a three-quark covariant Faddeev approach

    SciTech Connect

    Sanchis-Alepuz, Helios; Villalba-Chavez, Selym; Alkofer, Reinhard; Eichmann, Gernot

    2011-11-01

    We present the solution of the Poincare-covariant Faddeev equation for the {Delta}(1232) and {Omega}(1672) baryons. The covariant structure of the corresponding baryon amplitudes and their decomposition in terms of internal spin and orbital angular momentum is explicitly derived. The interaction kernel is truncated to a rainbow-ladder dressed-gluon exchange such that chiral symmetry and its dynamical breaking are correctly implemented. The resulting physical masses agree reasonably with experiment and their evolution with the pion mass compares favorably with lattice calculations. Evidence for the nonsphericity of the {Delta} resonance is discussed as well.

  11. Top quark mass measurement in the dilepton channel during the D0 experiment at the Tevatron. Mesure de la masse du quark top dans les canaux di-leptoniques auprès de l’expérience DØ au Tevatron

    SciTech Connect

    Croc, Aurelien

    2011-01-01

    The top quark is the heaviest standard model quark. Discovered in 1995 by the two Tevatron experiments it has atypical properties. In particular its time life is so short that it decays before hadronizing, so the top quark mass could be measured with a high precision. Data collected by the DØ experiment between 2002 and 2009, which represent an integrated luminosity of 5.4 fb⁻¹, are used to measure the top quark mass by using the matrix element method in the three dilepton channels: dielectron, electron--muon and dimuon. The measured mass, 174.0 ± 1.8 (stat.) ± 2.4 (syst.) GeV, is in a good agreement with other measurements and limited by the systematic uncertainties for the first time in these channels. In this thesis different approaches have been studied to improve the accuracy of this measurement: the use of b-quark jet identification in order to optimize the selection of top--anti-top events and a better determination of the main systematic uncertainties. A special attention has been paid to the Monte-Carlo simulation of muons in DØ: the improved smearing procedure for the simulated muons, discussed in this thesis, will be used to increase the accuracy of the top properties measurements as well as the precision of many other DØ measurements.

  12. Scaling of the F{sub 2} Structure Function in Nuclei and Quark Distributions at x>1

    SciTech Connect

    Fomin, N.; Arrington, J.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Solvignon, P.; Day, D. B.; Dalton, M. M.; Hill, C.; Lindgren, R.; McKee, P.; Rondon, O.; Slifer, K.; Tajima, S.; Wasko, C.; Wright, J.; Gaskell, D.; Bosted, P.

    2010-11-19

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the ''superfast'' quarks probed at x>1. The falloff at x>1 is noticeably stronger in {sup 2}H and {sup 3}He, but nearly identical for all heavier nuclei.

  13. Scaling of the F{sub 2} structure function in nuclei and quark distributions at x {gt} 1.

    SciTech Connect

    Fomin, N.; Arrington, J.; Day, D. B.; Gaskell, D.; Daniel, A.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Schulte, E.; Solvignon, P.; Zheng, X.

    2010-11-01

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x > 1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the 'superfast' quarks probed at x > 1. The falloff at x > 1 is noticeably stronger in {sup 2}H and {sup 3}He, but nearly identical for all heavier nuclei.

  14. Quark distributions in nuclei

    SciTech Connect

    Catara, F.; Sambataro, M. Italy Dipartimento di Fisica dell'Universita, 95129 Catania )

    1992-08-01

    By making use of a mapping procedure recently proposed, we construct the nucleon image of the one-body quark density operator in the framework of the nonrelativistic quark model of the nucleons. We evaluate the expectation value of this operator in the ground state of the doubly magic nuclei {sup 4}He, {sup 16}O, and {sup 40}Ca described within the nuclear shell model. We analyze the role of quark exchanges between nucleons. We also investigate the effect on the quark density of short-range correlations in the nuclear wave functions as well as of variations in the nucleon size.

  15. Constraining the halo mass function with observations

    NASA Astrophysics Data System (ADS)

    Castro, Tiago; Marra, Valerio; Quartin, Miguel

    2016-08-01

    The abundances of dark matter halos in the universe are described by the halo mass function (HMF). It enters most cosmological analyses and parametrizes how the linear growth of primordial perturbations is connected to these abundances. Interestingly, this connection can be made approximately cosmology independent. This made it possible to map in detail its near-universal behavior through large-scale simulations. However, such simulations may suffer from systematic effects, especially if baryonic physics is included. In this paper we ask how well observations can constrain directly the HMF. The observables we consider are galaxy cluster number counts, galaxy cluster power spectrum and lensing of type Ia supernovae. Our results show that DES is capable of putting the first meaningful constraints on the HMF, while both Euclid and J-PAS can give stronger constraints, comparable to the ones from state-of-the-art simulations. We also find that an independent measurement of cluster masses is even more important for measuring the HMF than for constraining the cosmological parameters, and can vastly improve the determination of the halo mass function. Measuring the HMF could thus be used to cross-check simulations and their implementation of baryon physics. It could even, if deviations cannot be accounted for, hint at new physics.

  16. Measurement of the Top Quark Mass in p anti-p Collisions at s**(1/2) = 1.96-TeV using the Decay Length Technique

    SciTech Connect

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2006-12-01

    We report the first measurement of the top quark mass using the decay length technique in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. This technique uses the measured flight distance of the b hadron to infer the mass of the top quark in lepton plus jets events with missing transverse energy. It relies solely on tracking and avoids the jet energy scale uncertainty that is common to all other methods used so far. We apply our novel method to a 695 pb{sup -1} data sample recorded by the CDF II detector at Fermilab and extract a measurement of m{sub t} = 180.7{sub -13.4}{sup +15.5}(stat.) {+-} 8.6 (syst.) GeV/c{sup 2}. While the uncertainty of this result is larger than that of other measurements, the dominant uncertainties in the decay length technique are uncorrelated with those in other methods. This result can help reduce the overall uncertainty when combined with other existing measurements of the top quark mass.

  17. Measurement of Top Quark-Antitop Quark Helicity Fractions and Spin Correlation in Proton-Antiproton Collisions at Center of Mass Energy = TeV

    NASA Astrophysics Data System (ADS)

    Mietlicki, David John

    In the production of top-antitop quark pairs during pp¯ collisions, the spins of the t and t¯ are correlated. This correlation is quantified by the spin correlation coefficient kappa or the fraction of top quarks produced with opposite helicity FOH, which are determined by the QCD interaction mechanism that produces tt¯ pairs. A deviation of the correlation from the predicted value could be an indication of new production mechanisms. We describe a measurement of the tt¯ spin correlation using the lepton plus jets decay channel, where the decay proceeds via tt¯ → W+bW -b¯ → (qq¯'b) (ℓnuℓb¯) or (ℓnuℓb)( qq¯'b¯), in data corresponding to 4.3 fb-1 of integrated luminosity collected with t he CDF detector. In the helicity basis, we find an opposite helicity fraction FOH = 0.80 +/- 0.25stat +/- 0.08 syst and a spin correlation coefficient kappa = 0.60 +/- 0.50stat +/- 0.16 syst, which are in good agreement with the theoretical predictions FOH = 0.70 and kappa = 0.40.

  18. Direct Measurement of the Pion Valence-Quark Momentum Distribution, the Pion Light-Cone Wave Function Squared

    NASA Astrophysics Data System (ADS)

    Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Deval, S.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gerzon, S.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lichtenstadt, J.; Lundberg, B.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K.; Santoro, A. F.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.

    2001-05-01

    We present the first direct measurements of the pion valence-quark momentum distribution which is related to the square of the pion light-cone wave function. The measurements were carried out using data on diffractive dissociation of 500 GeV/c π- into dijets from a platinum target at Fermilab experiment E791. The results show that the \\|qq¯> light-cone asymptotic wave function describes the data well for Q2~10 \\(GeV/c\\)2 or more. We also measured the transverse momentum distribution of the diffractive dijets.

  19. On the flavour dependence of the O(αs4) correction to the relation between running and pole heavy quark masses

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Molokoedov, V. S.

    2016-08-01

    Recently the four-loop perturbative QCD contributions to the relations between pole and running masses of charm, bottom and top quarks were evaluated in the overline{MS} scheme with identical numerical error bars. In this work the flavour dependence of the O(αs4) correction to these asymptotic series is obtained in the semi-analytical form with the help of the least squares method. The numerical structure of the corresponding asymptotic perturbative relations between pole and running c -, b - and t -quark masses is considered and the theoretical errors of the O(αs4) contributions are discussed. The explicit dependence for these relations on the renormalization scale μ2 and the flavour number nl is presented.

  20. Effects of a dressed quark-gluon vertex in vector heavy-light mesons and theory average of the Bc* meson mass

    NASA Astrophysics Data System (ADS)

    Gómez-Rocha, M.; Hilger, T.; Krassnigg, A.

    2016-04-01

    We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the Bc* , which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature. The theoretical average for the mass of the Bc* meson is 6.336 ±0.002 GeV .

  1. Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV

    SciTech Connect

    Schwarz, Thomas A.; /Michigan U.

    2006-01-01

    Quarks, along with leptons and force carrying particles, are predicted by the Standard Model to be the fundamental constituents of nature. In distinction from the leptons, the quarks interact strongly through the chromodynamic force and are bound together within the hadrons. The familiar proton and neutron are bound states of the light ''up'' and ''down'' quarks. The most massive quark by far, the ''top'' quark, was discovered by the CDF and D0 experiments in March, 1995. The new quark was observed in p{bar p} collisions at 1.8 TeV at the Fermilab Tevatron. The mass of the top quark was measured to be 176 {+-} 13 GeV/c{sup 2} and the cross section 6.8{sub -2.4}{sup +3.6} pb. It is the Q = 2/3, T{sub 3} = +1/2 member of the third generation weak-isospin doublet along with the bottom quark. The top quark is the final Standard Model quark to be discovered. Along with whatever is responsible for electroweak symmetry breaking, top quark physics is considered one of the least understood sectors of the Standard Model and represents a front line of our understanding of particle physics. Currently, the only direct measurements of top quark properties come from the CDF and D0 experiments observing p{bar p} collisions at the Tevatron. Top quark production at the Tevatron is almost exclusively by quark-antiquark annihilation, q{bar q} {yields} t{bar t} (85%), and gluon fusion, gg {yields} t{bar t} (15%), mediated by the strong force. The theoretical cross-section for this process is {sigma}{sub t{bar t}} = 6.7 {+-} 0.8 pb for m{sub t} = 175 GeV/c{sup 2}. Top quarks can also be produced at the Tevatron via q{bar b}{prime} {yields} tb and qg {yields} q{prime}tb through the weak interaction. The cross section for these processes is lower (3pb) and the signal is much more difficult to isolate as backgrounds are much higher. The top quark is predicted to decay almost exclusively into a W-boson and a bottom quark (t {yields} Wb). The total decay width t {yields} Wb is {Lambda} = 1

  2. Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2011-01-01

    We present a new measurement of the inclusive forward-backward t{bar t} production asymmetry and its rapidity and mass dependence. The measurements are performed with data corresponding to an integrated luminosity of 5.3 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, recorded with the CDF II Detector at the Fermilab Tevatron. Significant inclusive asymmetries are observed in both the laboratory frame and the t{bar t} rest frame, and in both cases are found to be consistent with CP conservation under interchange of t and {bar t}. In the t{bar t} rest frame, the asymmetry is observed to increase with the t{bar t} rapidity difference, {Delta}y, and with the invariant mass M{sub t{bar t}} of the t{bar t} system. Fully corrected parton-level asymmetries are derived in two regions of each variable, and the asymmetry is found to be most significant at large {Delta}y and M{sub t{bar t}}. For M{sub t{bar t}} {ge} 450 GeV/c{sup 2}, the parton-level asymmetry in the t{bar t} rest frame is A{sup t{bar t}} = 0.475 {+-} 0.114 compared to a next-to-leading order QCD prediction of 0.088 {+-} 0.013.

  3. A Measurement of the Top Quark Mass with the D0 Detector at s**(1/2) = 1.96-TeV using the Matrix Element Method

    SciTech Connect

    Kroeninger, Kevin Alexander; /Bonn U.

    2004-04-01

    Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.

  4. Predictions for the top-quark forward-backward asymmetry at high invariant pair mass using the principle of maximum conformality

    DOE PAGESBeta

    Wang, Sheng -Quan; Wu, Xing -Gang; Si, Zong -Guo; Brodsky, Stanley J.

    2016-01-07

    In this study, the D0 collaboration at FermiLab has recently measured the top-quark pair forward-backward asymmetry inmore » $$\\bar{p}p$$ → $$t\\bar{t}$$X reactions as a function of the $$t\\bar{t}$$ invariant mass M$$t\\bar{t}$$. The D0 result for AFB(M$$t\\bar{t}$$ > 650 GeV) is smaller than AFB(M$$t\\bar{t}$$) obtained for small values of M$$t\\bar{t}$$, which may indicate an “increasing-decreasing” behavior for AFB(M$$t\\bar{t}$$ > Mcut). This behavior is not explained using conventional renormalization scale setting, or even by a next-to-next-to-leading order (N2LO) QCD calculation—one predicts a monotonically increasing behavior. In the conventional scale-setting method, one simply guesses a single renormalization scale μr for the argument of the QCD running coupling and then varies it over an arbitrary range. However, the conventional method has inherent difficulties.« less

  5. Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in √{s }=8 TeV proton-proton collisions using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration

    2016-02-01

    The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb-1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for t t ¯ events in the lepton +jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-kt jet with radius parameter R =1.0 and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

  6. Galactic Stellar and Substellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles

    2003-07-01

    We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy-disk, spheroid, young, and globular clusters-and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form for m>~1 Msolar and a lognormal form below, except possibly for early star formation conditions. The disk IMF for single objects has a characteristic mass around mc~0.08 Msolar and a variance in logarithmic mass σ~0.7, whereas the IMF for multiple systems has mc~0.2 Msolar and σ~0.6. The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, nBD~n*~0.1 pc-3. The IMF of young clusters is found to be consistent with the disk field IMF, providing the same correction for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages >~130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, mc~0.2-0.3 Msolar, excluding a significant population of brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star

  7. The moment ⟨x ⟩u -d of the nucleon from Nf=2 lattice QCD down to nearly physical quark masses

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Göckeler, Meinulf; Najjar, Johannes; Rödl, Rudolf H.; Schäfer, Andreas; Schiel, Rainer W.; Sternbeck, André; Söldner, Wolfgang

    2014-10-01

    We present an update of our analysis [1] which includes additional ensembles at different quark masses, lattice spacings and volumes, all with high statistics. We use Nf=2 mass-degenerate quark flavors, employing the nonperturbatively improved clover action. The lattice matrix elements are converted to the MS ¯ scheme via renormalization factors determined nonperturbatively in the RI' -MOM scheme. We have systematically investigated excited state contributions, in particular, at the smallest, near physical, pion mass. While our results (with much increased precision) are consistent with Ref. [1], comparing to previous determinations we find that excited state contributions can be significant if the quark smearing is not suitably optimized, in agreement with other recent studies. The difference with respect to the value for ⟨x ⟩u-d extracted from experimental data is reduced but not resolved. Using lattice sizes in the range L mπ˜3.4 - 6.7 , no significant finite volume effects have been observed. Performing a controlled continuum limit that may remove the discrepancy will require simulations at lattice spacings a <0.06 fm .

  8. Reduction of Quark Mass Scheme Dependence in B bar -> Xs gamma at the NNLL Level

    SciTech Connect

    Asatrian, H.M.; Greub, C.; Hovhannisyan, A.; Hurth, T.; Poghosyan, V.; /Yerevan Phys. Inst.

    2005-06-20

    The uncertainty of the theoretical prediction of the B {yields} X{sub s}{gamma} branching ratio at NLL level is dominated by the charm mass renormalization scheme ambiguity. In this paper we calculate those NNLL terms which are related to the renormalization of m{sub c}, in order to get an estimate of the corresponding uncertainty at the NNLL level. We find that these terms significantly reduce (by typically a factor of two) the error on BR(B {yields} X{sub s}{gamma}) induced by the definition of m{sub c}. Taking into account the experimental accuracy of around 10% and the future prospects of the B factories, we conclude that a NNLL calculation would increase the sensitivity of the observable B {yields} X{sub s}{gamma} to possible new degrees of freedom beyond the SM significantly.

  9. Contribution of a heavy singlet quark to the mass differences {Delta}m{sub k}{sup o}, {Delta}m{sub Bd}, and {Delta}m{sub Bs} and to the CP-violation parameter {epsilon}{sub K}

    SciTech Connect

    Kopnin, P. N.

    2008-08-15

    It is shown that, within the Standard Model extended by including a singlet quark heavy enough to prevent its direct detection at LHC, the mass differences {Delta}m{sub B{sub d}} and {Delta}m{sub Bs} and the parameter of CP violation in K-meson oscillations, {epsilon}{sub K}, acquire universal corrections of about 5 to 10%. Implicit experimental constraints on the mass of this new quark are discussed.

  10. A family of exact solutions of Einstein-Maxwell field equations in isotropic coordinates: an application to optimization of quark star mass

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj; Pradhan, N.; Murad, Mohammad Hassan

    2014-07-01

    In the present paper, we have obtained a class of charged super dense star models, starting with a static spherically symmetric metric in isotropic coordinates for perfect fluid by considering Hajj-Boutros (in J. Math. Phys. 27:1363, 1986) type metric potential and a specific choice of electrical intensity which involves a parameter K. The resulting solutions represent charged fluid spheres joining smoothly with the Reissner-Nordstrom metric at the pressure free interface. The solutions so obtained are utilized to construct the models for super-dense star like neutron stars ( ρ b =2 and 2.7×1014 g/cm3) and Quark stars ( ρ b =4.6888×1014 g/cm3). Our solution is well behaved for all values of n satisfying the inequalities and K satisfying the inequalities 0≤ K≤0.24988, depending upon the value of n. Corresponding to n=4.001 and K=0.24988, we observe that the maximum mass of quark star M=2.335 M ⊙ and radius R=10.04 km. Further, this maximum mass limit of quark star is in the order of maximum mass of stable Strange Quark Star established by Dong et al. (in arXiv:1207.0429v3 , 2013). The robustness of our results is that the models are alike with the recent discoveries.

  11. Top Quark Properties

    SciTech Connect

    Peters, Yvonne

    2011-12-01

    Since its discovery in 1995 by the CDF and D0 collaborations at the Fermilab Tevatron collider, the top quark has undergone intensive studies. Besides the Tevatron experiments, with the start of the LHC in 2010 a top quark factory started its operation. It is now possible to measure top quark properties simultaneously at four different experiments, namely ATLAS and CMS at LHC and CDF and D0 at Tevatron. Having collected thousands of top quarks each, several top quark properties have been measured precisely, while others are being measured for the first time. In this article, recent measurements of top quark properties from ATLAS, CDF, CMS and D0 are presented, using up to 5.4 fb{sup -1} of integrated luminosity at the Tevatron and 1.1 fb{sup -1} at the LHC. In particular, measurements of the top quark mass, mass difference, foward backward charge asymmetry, t{bar t} spin correlations, the ratio of branching fractions, W helicity, anomalous couplings, color flow and the search for flavor changing neutral currents are discussed.

  12. Top quark physics: Future Measurements

    SciTech Connect

    Frey, Raymond; Gerdes, David; Jaros, John; Vejcik, Steve; Berger, Edmond L.; Chivukula, R. Sekhar; Cuypers, Frank; Drell, Persis S.; Fero, Michael; Hadley, Nicholas; Han, Tao; Heinson, Ann P.; Knuteson, Bruce; Larios, Francisco; Miettinen, Hannu; Orr, Lynne H.; Peskin, Michael E.; Rizzo, Thomas; Sarid, Uri; Schmidt, Carl; Stelzer, Tim; Sullivan, Zack

    1996-12-31

    We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  13. Gauge-invariant approach to quark dynamics

    NASA Astrophysics Data System (ADS)

    Sazdjian, H.

    2016-02-01

    The main aspects of a gauge-invariant approach to the description of quark dynamics in the nonperturbative regime of quantum chromodynamics (QCD) are first reviewed. The role of the parallel transport operation in constructing gauge-invariant Green's functions is then presented, and the relevance of Wilson loops for the representation of the interaction is emphasized. Recent developments, based on the use of polygonal lines for the parallel transport operation, are presented. An integro-differential equation, obtained for the quark Green's function defined with a phase factor along a single, straight line segment, is solved exactly and analytically in the case of two-dimensional QCD in the large- N c limit. The solution displays the dynamical mass generation phenomenon for quarks, with an infinite number of branch-cut singularities that are stronger than simple poles.

  14. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.; CDF Collaboration

    1996-08-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag {ital b} quark jets in candidate events. The most recent measurements of top quark properties by the CDF and D{null} collaborations are reviewed, including the top quark cross section, mass, branching fractions and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  15. Heavy quarks in the jet calculus

    SciTech Connect

    Jones, L.M.

    1983-07-01

    In this paper we explore a method for treating heavy quarks such as c and b quarks within the jet calculus. These quarks are differentiated from the more common u, d, and s quarks by the requirement that the gluons never branch into heavy-quark pairs during the jet development. We compute and discuss the charmed-quark ''propagators''; the x distribution of colorless clusters containing a charmed quark, a noncharmed antiquark, and gluons; and the mass distribution of the parent partons giving rise to these colorless clusters.

  16. Top quark studies at hadron colliders

    SciTech Connect

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  17. Predictions for the top-quark forward-backward asymmetry at high invariant pair mass using the principle of maximum conformality

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Quan; Wu, Xing-Gang; Si, Zong-Guo; Brodsky, Stanley J.

    2016-01-01

    The D0 collaboration at FermiLab has recently measured the top-quark pair forward-backward asymmetry in p ¯p →t t ¯X reactions as a function of the t t ¯ invariant mass Mt t ¯. The D0 result for AFB(Mt t ¯>650 GeV ) is smaller than AFB(Mt t ¯) obtained for small values of Mt t ¯, which may indicate an "increasing-decreasing" behavior for AFB(Mt t ¯>Mcut) . This behavior is not explained using conventional renormalization scale setting, or even by a next-to-next-to-leading order (N2LO ) QCD calculation—one predicts a monotonically increasing behavior. In the conventional scale-setting method, one simply guesses a single renormalization scale μr for the argument of the QCD running coupling and then varies it over an arbitrary range. However, the conventional method has inherent difficulties. For example, the resulting perturbative quantum chromodynamics (pQCD) predictions depend on the choice of renormalization scheme, in contradiction to the principle of "renormalization scheme invariance"—predictions for physical observables cannot depend on a theoretical convention. The error estimate obtained by varying μr is unreliable since it is only sensitive to perturbative contributions involving the pQCD β -function. Worse, guessing the renormalization scale gives predictions for precision QED observables which are in contradiction to results obtained using the standard Gell-Mann-Low method. In contrast, if one fixes the scale using the principle of maximum conformality (PMC), the resulting pQCD predictions are renormalization-scheme independent since all of the scheme-dependent {βi}-terms in the QCD perturbative series are resummed into the QCD running couplings at each order. The {βi}-terms at each order can be unambiguously identified using renormalization group methods such as the Rδ method. The PMC then determines the renormalization scales of the running coupling at each order and provides unambiguous scale-fixed and scheme-independent predictions

  18. Einstein's Gravitational Field Approach to Dark Matter and Dark Energy-Geometric Particle Decay into the Vacuum Energy Generating Higgs Boson and Heavy Quark Mass

    NASA Astrophysics Data System (ADS)

    Christensen, Walter James

    2015-08-01

    During an interview at the Niels Bohr Institute David Bohm stated, "according to Einstein, particles should eventually emerge as singularities, or very strong regions of stable pulses of (the gravitational) field" [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass; and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.

  19. Quark and gluon distribution functions in a viscous quark-gluon plasma medium and dilepton production via q q ¯ annihilation

    NASA Astrophysics Data System (ADS)

    Chandra, Vinod; Sreekanth, V.

    2015-11-01

    Viscous modifications to the thermal distributions of quark-antiquarks and gluons have been studied in a quasiparticle description of the quark-gluon-plasma medium created in relativistic heavy-ion collision experiments. The model is described in terms of quasipartons that encode the hot QCD medium effects in their respective effective fugacities. Both shear and bulk viscosities have been taken in to account in the analysis, and the modifications to thermal distributions have been obtained by modifying the energy-momentum tensor in view of the nontrivial dispersion relations for the gluons and quarks. The interactions encoded in the equation of state induce significant modifications to the thermal distributions. As an implication, the dilepton production rate in the q q ¯ annihilation process has been investigated. The equation of state is found to have a significant impact on the dilepton production rate along with the viscosities.

  20. ON THE FUNDAMENTAL MASS-PERIOD FUNCTIONS OF EXTRASOLAR PLANETS

    SciTech Connect

    Jiang, I.-G.; Yeh, L.-C.; Chang, Y.-C.; Hung, W.-L.

    2010-01-01

    Employing a catalog of 175 extrasolar planets (exoplanets) detected by the Doppler-shift method, we constructed the independent and coupled mass-period functions. It is the first time in this field that the selection effect is considered in the coupled mass-period functions. Our results are consistent with those of Tabachnik and Tremaine in 2002, with the major difference that we obtain a flatter mass function but a steeper period function. Moreover, our coupled mass-period functions show that about 2.5% of stars would have a planet with mass between Earth Mass and Neptune Mass, and about 3% of stars would have a planet with mass between Neptune Mass and Jupiter Mass.

  1. Curvature of the critical line on the plane of quark chemical potential and pseudoscalar meson mass for three-flavor QCD

    NASA Astrophysics Data System (ADS)

    Jin, Xiao-Yong; Kuramashi, Yoshinobu; Nakamura, Yoshifumi; Takeda, Shinji; Ukawa, Akira

    2015-12-01

    We investigate the phase structure of three-flavor QCD in the presence of finite quark chemical potential μ /T ≲1.2 by using the nonperturbatively O (a ) improved Wilson fermion action on lattices with a fixed temporal extent Nt=6 and varied spatial linear extents Ns=8 , 10, 12. Especially, we focus on locating the critical end point that characterizes the phase structure, and extracting the curvature of the critical line on the μ -mπ plane. For Wilson-type fermions, the correspondence between bare parameters and physical parameters is indirect. Hence we present a strategy to transfer the bare parameter phase structure to the physical one, in order to obtain the curvature. Our conclusion is that the curvature is positive. This implies that, if one starts from a quark mass in the region of crossover at zero chemical potential, one would encounter a first-order phase transition when one raises the chemical potential.

  2. Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Cohen, Thomas D.

    2013-11-01

    We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.

  3. Heavy quark results at D0

    SciTech Connect

    Fein, D.K.; D0 Collaboration

    1997-01-01

    Recent results in heavy quark physics from the D0 experiment at the Fermilab Tevatron Collider are reported. Topics included are top quark production and mass determination, bottom production and correlations, and charmonium production. 20 refs., 10 figs., 2 tabs.

  4. Measurement of the top quark pair production cross section in proton-antiproton collisions at a center of mass energy of 1.96 TeV, hadronic top decays with the D0 detector

    SciTech Connect

    Hegeman, Jeroen Guido

    2009-01-16

    Of the six quarks in the standard model the top quark is by far the heaviest: 35 times more massive than its partner the bottom quark and more than 130 times heavier than the average of the other five quarks. Its correspondingly small decay width means it tends to decay before forming a bound state. Of all quarks, therefore, the top is the least affected by quark confinement, behaving almost as a free quark. Its large mass also makes the top quark a key player in the realm of the postulated Higgs boson, whose coupling strengths to particles are proportional to their masses. Precision measurements of particle masses for e.g. the top quark and the W boson can hereby provide indirect constraints on the Higgs boson mass. Since in the standard model top quarks couple almost exclusively to bottom quarks (t → Wb), top quark decays provide a window on the standard model through the direct measurement of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element Vtb. In the same way any lack of top quark decays into W bosons could imply the existence of decay channels beyond the standard model, for example charged Higgs bosons as expected in two-doublet Higgs models: t → H+b. Within the standard model top quark decays can be classified by the (lepton or quark) W boson decay products. Depending on the decay of each of the W bosons, t$\\bar{t}$ pair decays can involve either no leptons at all, or one or two isolated leptons from direct W → e$\\bar{v}${sub e} and W → μ$\\bar{v}$μ decays. Cascade decays like b → Wc → e$\\bar{v}$ec can lead to additional non-isolated leptons. The fully hadronic decay channel, in which both Ws decay into a quark-antiquark pair, has the largest branching fraction of all t$\\bar{t}$ decay channels and is the only kinematically complete (i.e. neutrino-less) channel. It lacks, however, the clear isolated lepton signature and is therefore hard to distinguish from the multi-jet QCD background. It

  5. Dibaryons with two strange quarks and total spin zero in a constituent quark model

    NASA Astrophysics Data System (ADS)

    Park, Woosung; Park, Aaron; Lee, Su Houng

    2016-04-01

    We investigate the symmetry property and construct the wave function of the dibaryon states containing two strange quarks with S =0 in both the flavor SU(3) symmetric and breaking cases. We discuss how the color ⊗ isospin ⊗ spin states of dibaryon in the symmetry broken case of flavor SU(3) can be extracted from the fully antisymmetric states in flavor SU(3). The stability of the dibaryon against the strong decay into two baryons is then discussed, by using the variational method within a constituent quark model with confining and color-spin interactions. To compare our results with those from lattice QCD in the flavor SU(3) limit, we search for the stable H-dibaryon in a wide range of π meson masses. We find that with the given potential, there is no compact six-quark dibaryon state in the SU(3) flavor symmetry broken case with realistic quark masses as well as in the flavor SU(3) symmetric case in a wide range of quark masses.

  6. First measurement of the forward-backward asymmetry in bottom-quark pair production at high mass

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Henry, S.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2015-08-01

    We measure the particle-level forward-backward production asymmetry in b b ¯ pairs with masses (mb b ¯ ) larger than 150 GeV /c2 , using events with hadronic jets and employing jet charge to distinguish b from b ¯. The measurement uses 9.5 fb-1 of p p ¯ collisions at a center-of-mass energy of 1.96 TeV recorded by the CDF II detector. The asymmetry as a function of mb b ¯ is consistent with zero, as well as with the predictions of the standard model. The measurement disfavors a simple model including an axigluon with a mass of 200 GeV /c2 , whereas a model containing a heavier 345 GeV /c2 axigluon is not excluded.

  7. Determination of |V(us)|| from a lattice QCD calculation of the K → πℓν semileptonic form factor with physical quark masses.

    PubMed

    Bazavov, A; Bernard, C; Bouchard, C M; Detar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, Jongjeong; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2014-03-21

    We calculate the kaon semileptonic form factor f+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with Nf = 2 + 1 + 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, f+(0) = 0.9704(32), where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of K semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element |V(us)| = 0.22290(74)(52), where the first error is from f+(0) and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from |V(us)| is now comparable to that from |V(ud)|. PMID:24702353

  8. Covariant nucleon wave function with S, D, and P-state components

    SciTech Connect

    Franz Gross, G. Ramalho, M. T. Pena

    2012-05-01

    Expressions for the nucleon wave functions in the covariant spectator theory (CST) are derived. The nucleon is described as a system with a off-mass-shell constituent quark, free to interact with an external probe, and two spectator constituent quarks on their mass shell. Integrating over the internal momentum of the on-mass-shell quark pair allows us to derive an effective nucleon wave function that can be written only in terms of the quark and diquark (quark-pair) variables. The derived nucleon wave function includes contributions from S, P and D-waves.

  9. Excess production of low-mass lepton pairs in S+Au collisions at the CERN Super Proton Synchrotron and the quark-hadron phase transition

    SciTech Connect

    Srivastava, D.K.

    1996-02-01

    The mass distribution for excess dielectrons in S+Au collisions at 200{ital A} GeV measured by the CERES Collaboration at the CERN Super Proton Synchrotron is analyzed. The data are seen to be in satisfactory agreement with a scenario where a thermalized quark-gluon plasma is formed initially, which expands, cools, hadronizes, and undergoes a freeze-out. The same treatment is also seen to provide a reasonable description for the excess dimuons measured by the HELIOS/3 experiment for S+W collisions. {copyright} {ital 1996 The American Physical Society.}

  10. Charm physics with a nonperturbatively determined relativistic heavy quark action

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen

    We explore the methodology of a nonperturbative approach on the lattice to heavy quark calculations. We discuss the application of the regularization-independent (RI) scheme of Rome/Southampton to determining the normalization of heavy quark operators nonperturbatively using the Fermilab action. We study the fermion action needed to accurately describe the low-energy physics of systems including heavy quarks in lattice QCD, even when the heavy fermion mass m is on the order of, or larger than, the inverse lattice spacing: m ≥ 1/a. We carry out an expansion through first order in | p⃗ |a and all orders in ma, refining the analysis of the Fermilab and Tsukuba groups. We demonstrate that the spectrum of heavy quark bound states can be determined accurately through | p⃗ |a and (ma)n for arbitrary exponent n by using a lattice action containing only three unknown coefficients: m0, zeta and cP (a generalization of cSW), which are functions of ma. We propose to determine the coefficients of the relativistic heavy quark action by matching the finite-volume on-shell spectrum with one determined in an exact relativistic theory. The matching relativistic amplitudes may be determined from finite-volume step-scaling recursion. The results will be presented from a step-scaling determination of the coefficients in the relativistic heavy quark action. By matching finite-volume heavy-heavy and heavy-light meson masses, we attempt to determine the three parameters ( m0, zeta, cP) in the on-shell-improved heavy quark action. These calculations are carried out on 163 and 243 spatial volumes for a heavy quark mass approximately that of the charm quark. We use nonperturbative coefficients obtained from the step-scaling method to calculate the charmed meson spectrum on 243, a -1 = 2.4 GeV lattices. The charmonium state masses, including radial excited states, are in reasonable agreement with the experimentally observed spectrum. We find the hyperfine splitting is 77.8(15) MeV with

  11. Measurement of the top-quark mass in all-hadronic decays in p anti-p collisions at CDF II

    SciTech Connect

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Fermilab /Frascati

    2006-12-01

    We present a measurement of the top-quark mass, M{sub tpo}, in the all-hadronic decay channel t{bar t} {yields} W{sup +}bW{sup -}{bar b} {yields} q{sub 1}{bar q}{sub 2}bq{sub 3}{bar q}{sub 4}{bar b}. The analysis is performed using 310 pb{sup -1} of {radical}s = 1.96 TeV p{bar p} collisions collected with the CDF II detector using a multi-jet trigger. The mass measurement is based on an event-by-event likelihood which depends on both the sample purity and the value of the top-quark mass, using 90 possible jet-to-parton assignments in the six-jet final state. The joint likelihood of 290 selected events yields a value of M{sub top} = 177.1 {+-} 4.9(stat.) {+-} 4.7(syst.) GeV/c{sup 2}.

  12. Measurement of the top-quark mass in the tt¯ dilepton channel using the full CDF Run II data set

    SciTech Connect

    Aaltonen, T.

    2015-08-06

    We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run II at center-of-mass energy √s = 1.96 TeV, corresponding to an integrated luminosity of 9.1 fb–1. A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of tt¯ dilepton signal and background. We measure a value for the top-quark mass of 171.5±1.9 (stat)±2.5 (syst) GeV/c2.

  13. Progress in Top Quark Physics

    SciTech Connect

    Thomson, Evelyn J.

    2006-07-11

    Experimental measurements of the properties of the top quark have improved and will continue to improve significantly, with the excellent operation of the CDF and D0 experiments and the Tevatron pp-bar collider at the Fermi National Accelerator Laboratory. All of the final state experimental signatures from top quark production and decay are being analysed to test if this most massive quark is sensitive to new physics beyond the standard model. So far, observations are consistent with the standard model. New techniques have dramatically improved the precision of the top quark mass measurement to 1.7% and set the stage for a sub-1% measurement by 2008. This improved knowledge of the top quark mass sharpens the standard model prediction for the mass of the undiscovered Higgs boson, with implications for Higgs studies at the future LHC and ILC.

  14. Progress in top quark physics

    SciTech Connect

    Thomson, Evelyn J.; /Pennsylvania U.

    2006-02-01

    Experimental measurements of the properties of the top quark have improved and will continue to improve significantly, with the excellent operation of the CDF and D0 experiments and the Tevatron p{bar p} collider at the Fermi National Accelerator Laboratory. All of the final state experimental signatures from top quark production and decay are being analyzed to test if this most massive quark is sensitive to new physics beyond the standard model. So far, observations are consistent with the standard model. New techniques have dramatically improved the precision of the top quark mass measurement to 1.7% and set the stage for a sub-1% measurement by 2008. This improved knowledge of the top quark mass sharpens the standard model prediction for the mass of the undiscovered Higgs boson, with implications for Higgs studies at the future LHC and ILC.

  15. Strange Quark Matter Status and Prospects

    NASA Technical Reports Server (NTRS)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  16. Precision Measurement of the Neutron Spin Asymmetries and Spin-dependent Structure Functions in the Valence Quark Region

    SciTech Connect

    Xiaochao Zheng; Konrad Aniol; David Armstrong; Todd Averett; William Bertozzi; Sebastien Binet; Etienne Burtin; Emmanuel Busato; Cornel Butuceanu; John Calarco; Alexandre Camsonne; Gordon Cates; Zhengwei Chai; Jian-ping Chen; Seonho Choi; Eugene Chudakov; Francesco Cusanno; Raffaele De Leo; Alexandre Deur; Sonja Dieterich; Dipangkar Dutta; John Finn; Salvatore Frullani; Haiyan Gao; Juncai Gao; Franco Garibaldi; Shalev Gilad; Ronald Gilman; Javier Gomez; Jens-ole Hansen; Douglas Higinbotham; Wendy Hinton; Tanja Horn; Cornelis De Jager; Xiaodong Jiang; Lisa Kaufman; James Kelly; Wolfgang Korsch; Kevin Kramer; John Lerose; David Lhuillier; Nilanga Liyanage; Demetrius Margaziotis; Frederic Marie; Pete Markowitz; Kathy Mccormick; Zein-eddine Meziani; Robert Michaels; Bryan Moffit; Sirish Nanda; Damien Neyret; Sarah Phillips; Anthony Powell; Thierry Pussieux; Bodo Reitz; Julie Roche; Michael Roedelbronn; Guy Ron; Marat Rvachev; Arunava Saha; Nikolai Savvinov; Jaideep Singh; Simon Sirca; Karl Slifer; Patricia Solvignon; Paul Souder; Daniel Steiner; Steffen Strauch; Vincent Sulkosky; William Tobias; Guido Urciuoli; Antonin Vacheret; Bogdan Wojtsekhowski; Hong Xiang; Yuan Xiao; Feng Xiong; Bin Zhang; Lingyan Zhu; Xiaofeng Zhu; Piotr Zolnierczuk

    2004-05-01

    We report on measurements of the neutron spin asymmetries A{sub 1,2}{sup n} and polarized structure functions g{sub 1,2}{sup n} at three kinematics in the deep inelastic region, with x = 0.33, 0.47 and .60 and Q{sub 2} = 2.7, 3.5 and 4.8 (GeV/c){sup 2}, respectively. These measurements were performed using a 5.7 GeV longitudinally-polarized electron beam and a polarized {sup 3}He target. The results for A{sub 1}{sup n} and g{sub 1}{sup n} at x = 0.33 are consistent with previous world data and, at the two higher x points, have improved the precision of the world data by about an order of magnitude. The new A{sub 1}{sup n} data show a zero crossing around x = 0.47 and the value at x = 0.60 is significantly positive. These results agree with a next-to-leading order QCD analysis of previous world data. The trend of data at high x agrees with constituent quark model predictions but disagrees with that from leading-order perturbative QCD (pQCD) assuming hadron helicity conservation. Results for A{sub 2}{sup n} and g{sub 2}{sup n} have a precision comparable to the best world data in this kinematic region. Combined with previous world data, the moment d{sub 2}{sup n} was evaluated and the new result has improved the precision of this quantity by about a factor of two. When combined with the world proton data, polarized quark distribution functions were extracted from the new g{sub 1}{sup n}/F{sub 1}{sup n} values based on the quark parton model. While results for {Delta}u/u agree well with predictions from various models, results for {Delta}d/d disagree with the leading-order pQCD prediction when hadron helicity conservation is imposed.

  17. Precision measurement of the neutron spin asymmetries and spin-dependent structure functions in the valence quark region

    SciTech Connect

    Zheng, X.; Bertozzi, W.; Chai, Z.; Dutta, D.; Gao, H.; Gilad, S.; Higinbotham, D.W.; Rvachev, M.; Sirca, S.; Xiang, H.; Xiao, Y.; Xiong, F.; Zhang, B.; Zhu, L.; Aniol, K.; Margaziotis, D.J.; Armstrong, D.S.; Butuceanu, C.; Finn, J.M.; Kramer, K.

    2004-12-01

    We report on measurements of the neutron spin asymmetries A{sub 1,2}{sup n} and polarized structure functions g{sub 1,2}{sup n} at three kinematics in the deep inelastic region, with x=0.33, 0.47, and 0.60 and Q{sup 2}=2.7, 3.5, and 4.8 (GeV/c){sup 2}, respectively. These measurements were performed using a 5.7 GeV longitudinally polarized electron beam and a polarized {sup 3}He target. The results for A{sub 1}{sup n} and g{sub 1}{sup n} at x=0.33 are consistent with previous world data and, at the two higher-x points, have improved the precision of the world data by about an order of magnitude. The new A{sub 1}{sup n} data show a zero crossing around x=0.47 and the value at x=0.60 is significantly positive. These results agree with a next-to-leading-order QCD analysis of previous world data. The trend of data at high x agrees with constituent quark model predictions but disagrees with that from leading-order perturbative QCD (PQCD) assuming hadron helicity conservation. Results for A{sub 2}{sup n} and g{sub 2}{sup n} have a precision comparable to the best world data in this kinematic region. Combined with previous world data, the moment d{sub 2}{sup n} was evaluated and the new result has improved the precision of this quantity by about a factor of 2. When combined with the world proton data, polarized quark distribution functions were extracted from the new g{sub 1}{sup n}/F{sub 1}{sup n} values based on the quark-parton model. While results for {delta}u/u agree well with predictions from various models, results for {delta}d/d disagree with the leading-order PQCD prediction when hadron helicity conservation is imposed.

  18. Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel

    NASA Astrophysics Data System (ADS)

    Bonciani, R.; Ferroglia, A.; Gehrmann, T.; von Manteuffel, A.; Studerus, C.

    2013-12-01

    We calculate the two-loop corrections to heavy-quark pair production in the gluon fusion channel which arise from diagrams involving a closed light-quark loop. The calculation is carried out by keeping the exact dependence on the heavy-quark mass. The analytic results are written in terms of logarithms, classical polylogarithms Li n ( n = 2 , 3 , 4), and genuine multiple polylogarithms Li2,2. The functional arguments are rational expressions of two independent external invariants and they are chosen in such a way that the functions are real in all the physical phase-space points. Through systematic changes in the functional basis, we obtain expansions of the results in both the production threshold and small mass limits.

  19. Secondary production of massive quarks in thrust

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Mateu, Vicent; Pietrulewicz, Piotr

    2016-01-01

    We present a factorization framework that takes into account the production of heavy quarks through gluon splitting in the thrust distribution for e+e- → hadrons. The explicit factorization theorems and some numerical results are displayed in the dijet region where the kinematic scales are widely separated, which can be extended systematically to the whole spectrum. We account for the necessary two-loop matrix elements, threshold corrections, and include resummation up to N3LL order. We include nonperturbative power corrections through a field theoretical shape function, and remove the O(ΛQCD) renormalon in the partonic soft function by appropriate mass-dependent subtractions. Our results hold for any value of the quark mass, from an infinitesimally small (merging to the known massless result) to an infinitely large one (achieving the decoupling limit). This is the first example of an application of a variable flavor number scheme to final state jets.

  20. Luminosity functions for very low mass stars and brown dwarfs

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1993-01-01

    A theoretical investigation of the luminosity function for low-mass objects to constrain the stellar initial mass function at the low-mass end is reported. The ways in which luminosity functions for low-mass stars are affected by star formation histories, brown dwarf and premain-sequence cooling rates and main-sequence mass luminosity relations, and the IMF are examined. Cooling rates and the mass-luminosity relation are determined through a new series of evolutionary calculations for very low mass stars and brown dwarfs in the range 0.05-0.50 solar mass. Model luminosity functions are constructed for specific comparison with the results of four recent observational surveys. The likelihood that the stellar mass function in the solar neighborhood is increasing at masses near the bottom of the main sequence and perhaps at lower masses is confirmed. In the most optimistic case, brown dwarfs contribute half of the local missing disk mass. The actual contribution is likely to be considerably less.

  1. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    SciTech Connect

    Freeman, John

    2007-01-01

    A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$\\bar{t}$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2.

  2. Search for Scalar Bottom Quarks from Gluino Decays in Proton - Anti-proton Collisions at a Center-of-Mass Energy of 1.96-TeV

    SciTech Connect

    Rott, Carsten

    2004-12-01

    The authors have performed a search for the scalar bottom quark ({tilde b}{sub 1}) from gluino ({tilde g}) decays in an R-parity conserving SUSY scenario with m{sub {tilde g}} > m{sub {tilde b}{sub 1}}, by investigating a final state of large missing transverse energy, with three or more jets, and some of them from the hadronization of b-quarks. A data sample of 156 pb{sup -1} collected by the Collider Detector at Fermilab at a center-of-mass energy of {radical}s = 1.96 TeV was used. For the final selection, jets containing secondary displaced vertices were required. This analysis has been performed ''blind'', in that the inspection of the signal region was only made after the Standard Model prediction was finalized. Comparing data with SUSY predictions, they can exclude masses of the gluino and sbottom of up to 280 and 240 GeV/c{sup 2} respectively.

  3. A measurement of the top quark mass in 1.96 TeV proton-antiproton collisions using a novel matrix element method

    SciTech Connect

    Freeman, John C

    2007-01-01

    A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix elements techniques, the method involves an integration using the Standard Model matrix element for tt production and decay. however, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2.

  4. Nucleon quark distributions in a covariant quark-diquark model

    SciTech Connect

    Ian Cloet; W. Bentz; Anthony Thomas

    2005-04-01

    Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquarks channels are included. We find excellent agreement between our model results and empirical data.

  5. Azimuthal dependence of the heavy quark initiated contributions to DIS

    SciTech Connect

    Ananikyan, L. N.; Ivanov, N. Ya.

    2007-01-01

    We analyze the azimuthal dependence of the heavy-quark-initiated contributions to the lepton-nucleon deep inelastic scattering (DIS). First we derive the relations between the parton-level semi-inclusive structure functions and the helicity {gamma}*Q cross sections in the case of arbitrary values of the heavy quark mass. Then the azimuth-dependent O({alpha}{sub s}) lepton-quark DIS is calculated in the helicity basis. Finally, we investigate numerically the properties of the cos{phi} and cos2{phi} distributions caused by the photon-quark scattering (QS) contribution. It turns out that, contrary to the basic photon-gluon fusion (GF) component, the QS mechanism is practically cos2{phi}-independent. This fact implies that measurements of the azimuthal distributions in charm leptoproduction could directly probe the charm density in the proton.

  6. Measurement of the effective b quark fragmentation function at the Z resonance

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, L.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stierlin, U.; St. Denis, R.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; van Gemmeren, P.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A., III; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, Y.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Lan Wu, Sau; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1995-02-01

    Using a sample of about 1.46 million hadronic Z decays collected between 1991 and 1993 with the ALEPH detector at LEP, the energy distribution of the B 0 and B ± mesons produced at the Z resonance is measured by reconstructing semileptonic decays B → ℓ νℓD(X) or B → ℓν ℓD∗+(X). The charmed mesons are reconstructed through the decay modes D 0 → K -π+, D 0 → K -π+π-π+, D + → K -π+π+ and D ∗+ → D 0π +. The neutrino energy is estimated from the missing energy in the lepton hemisphere. Accounting for B ∗ and B ∗∗ production, the shape of the scaled energy distribution xE(b) for mesons containing a b quark is compared to the predictions of different fragmentation models. The mean value of xE(b) is found to be < xE(b)> = 0.715 ± 0.007(stat) ± 0.013(syst).

  7. Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Majersky, O.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.

    2016-06-01

    We report a measurement of the forward-backward asymmetry, AFB , in b b ¯ pairs produced in proton-antiproton collisions and identified by muons from semileptonic b -hadron decays. The event sample is collected at a center-of-mass energy of √{s }=1.96 TeV with the CDF II detector and corresponds to 6.9 fb-1 of integrated luminosity. We obtain an integrated asymmetry of AFB(b b ¯ ) =(1.2 ±0.7 )% at the particle level for b -quark pairs with invariant mass, mb b ¯ , down to 40 GeV /c2 and measure the dependence of AFB(b b ¯ ) on mb b ¯ . The results are compatible with expectations from the standard model.

  8. Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

    DOE PAGESBeta

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; et al

    2016-06-02

    Here, we report a measurement of the forward-backward asymmetry, AFB, in bb¯ pairs produced in proton-antiproton collisions and identified by muons from semileptonic b-hadron decays. The event sample is collected at a center-of-mass energy of √s = 1.96 TeV with the CDF II detector and corresponds to 6.9 fb–1 of integrated luminosity. We obtain an integrated asymmetry of AFB(bb¯)=(1.2±0.7)% at the particle level for b-quark pairs with invariant mass, mbb¯, down to 40 GeV/c2 and measure the dependence of AFB(bb¯) on mbb¯. The results are compatible with expectations from the standard model.

  9. Top quark production at the Tevatron

    SciTech Connect

    Varnes, Erich W.; /Arizona U.

    2010-09-01

    The Fermilab Tevatron has, until recently, been the only accelerator with sufficient energy to produce top quarks. The CDF and D0 experiments have collected large samples of top quarks. We report on recent top quark production measurements of the single top and t{bar t} production cross sections, as well as studies of the t{bar t} invariant mass distribution and a search for highly boosted top quarks.

  10. New Insights on the Galactic Bulge Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Sahu, K. C.; Casertano, S.; Anderson, J.; Cassisi, S.; Gennaro, M.; Cignoni, M.; Brown, T. M.; Kains, N.; Ferguson, H.; Livio, M.; Bond, H. E.; Buonanno, R.; Clarkson, W.; Ferraro, I.; Pietrinferni, A.; Salaris, M.; Valenti, J.

    2015-09-01

    We have derived the Galactic bulge initial mass function (IMF) of the Sagittarius Window Eclipsing Extrasolar Planet Search field in the mass range 0.15 \\lt M/{M}⊙ 1.0, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, F814W ≈ 26 mag, with a proper-motion accuracy better than 0.5 mas yr-1 (20 km s-1). This allowed us to determine the IMF of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge IMF can be fitted with two power laws with a break at M˜ 0.56 {M}⊙ , the slope being steeper (α =-2.41+/- 0.50) for the higher masses, and shallower (α =-1.25+/- 0.20) for the lower masses. In the high-mass range, our derived mass function agrees well with the mass function derived for other regions of the bulge. In the low-mass range however, our mass function is slightly shallower, which suggests that separating the disk and bulge components is particularly important in the low-mass range. The slope of the bulge mass function is also similar to the slope of the mass function derived for the disk in the high-mass regime, but the bulge mass function is slightly steeper in the low-mass regime. We used our new mass function to derive stellar mass-to-light values for the Galactic bulge and we obtained 2.1 \\lt M/{L}F814W \\lt 2.4 and 3.1 \\lt M/{L}F606W \\lt 3.6 according to different assumptions on the slope of the IMF for masses larger than 1{M}⊙ . Based on observations made with the NASA/ESA Hubble Space Telescope, obtained by the

  11. Quantitative Study of the Violation of k{sub perpendicular} Factorization in Hadroproduction of Quarks at Collider Energies

    SciTech Connect

    Fujii, Hirotsugu; Gelis, Francois

    2005-10-14

    We demonstrate the violation of k{sub perpendicular} factorization for quark production in high energy hadronic collisions. This violation is quantified in the color glass condensate framework and studied as a function of the quark mass, the quark transverse momentum, and the saturation scale Q{sub s}, which is a measure of large parton densities. At x values where parton densities are large but leading twist shadowing effects are still small, violations of k{sub perpendicular} factorization can be significant--especially for lighter quarks. At very small x, where leading twist shadowing is large, we show that violations of k{sub perpendicular} factorization are relatively weaker.

  12. Quark number fluctuations at high temperatures

    SciTech Connect

    Petreczky, P.; Hegde, P.; Velytsky, A.

    2009-11-01

    We calculate the second, fourth and sixth order quark number fluctuations in the deconfined phase of 2+1 flavor QCD using lattices with temporal extent N{sub t} = 4,6,8 and 12. We consider light, strange and charm quarks. We use p4 action for valence quarks and gauge configurations generated with p4 action with physical value of the strange quark mass and light quark mass m{sub q} = 0.1 m{sub s} generated by the RBC-Bielefeld collaboration. We observe that for all quark masses the quark number fluctuations rapidly get close to the corresponding ideal gas limits. We compare our results to predictions of a quasi-particle model and resummed high temperature perturbative calculations. We also investigate correlations among different flavor channels.

  13. A measurement of the b quark fragmentation function at {radical}Q{sup 2} = 45.6 GeV

    SciTech Connect

    Church, E.D.

    1996-06-01

    Presented here is a measurement of the b quark fragmentation function D{sub b}(X), taken from a sample of 504 semi-leptonic B decays which were selected from the 150,000 Z{sup 0} decays collected between 1993 and 1995 at the SLD at SLAC. The energy of each tagged B hadron is reconstructed using missing jet energy, based on the information from the lepton and a partially-reconstructed charm-decay vertex. Account is taken of the effect of primary orbitally excited mesons (B**s). An iterative unfolding procedure is used which serves to effectively extract the true fragmentation function from the reconstructed B energy spectrum. The final result is shown to be compatible with many theoretical models. A comparison is made with other b fragmentation function measurements at 45.6 GeV, and this measurement is shown to be consistent with those results. The average scaled energy is found to be (x{sub E}) = 0.697{+-} 0.017(stat) {+-} 0.034(sys).

  14. Quantifying zigzag motion of quarks

    SciTech Connect

    Antonov, D.; Ribeiro, J. E. F. T.

    2010-03-01

    The quark condensate is calculated in terms of the effective string tension and the constituent quark mass. For 3 colors and 2 light flavors, the constituent mass is bounded from below by the value of 460 MeV. This value is only accessible when the string tension decreases linearly with the Schwinger proper time. For this reason, the Hausdorff dimension of a light-quark trajectory is equal to 4, indicating that these trajectories are similar to branched polymers, which can describe a weak first-order deconfinement phase transition in SU(3) Yang-Mills theory. Using this indication, we develop a gluon-chain model based on such trajectories.

  15. Quark transversity distribution in perturbative QCD: light-front Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Chakrabarti, D.

    2001-05-01

    To resolve the current ambiguity in the splitting function corresponding to the quark transversity distribution h1(x), we calculate h1(x) for a dressed quark in light-front Hamiltonian perturbation theory. Our result agrees with the expected form of the splitting function found in the literature and disagrees with the recent calculation in M. Meyer-Hermann et al., hep-ph/0012226. We emphasize the importance of quark mass in h1(x) in perturbative QCD and show its connection with a part of gT.

  16. QUARK-NOVAE IN LOW-MASS X-RAY BINARIES. II. APPLICATION TO G87-7 AND TO GRB 110328A

    SciTech Connect

    Ouyed, Rachid; Staff, Jan; Jaikumar, Prashanth

    2011-12-20

    We propose a simple model explaining two outstanding astrophysical problems related to compact objects: (1) that of stars such as G87-7 (alias EG 50) that constitute a class of relatively low-mass white dwarfs (WDs) which nevertheless fall away from the C/O composition and (2) that of GRB 110328A/Swift J164449.3+57345 which showed spectacularly long-lived strong X-ray flaring, posing a challenge to standard gamma-ray burst models. We argue that both these observations may have an explanation within the unified framework of a quark-nova (QN) occurring in a low-mass X-ray binary (LMXB; neutron star (NS)-WD). For LMXBs, where the binary separation is sufficiently tight, ejecta from the exploding NS triggers nuclear burning in the WD on impact, possibly leading to Fe-rich composition compact WDs with mass 0.43 M{sub Sun} < M{sub WD} < 0.72 M{sub Sun }, reminiscent of G87-7. Our results rely on the assumption, which ultimately needs to be tested by hydrodynamic and nucleosynthesis simulations, that under certain circumstances the WD can avoid the thermonuclear runaway. For heavier WDs (i.e., M{sub WD} > 0.72 M{sub Sun }) experiencing the QN shock, degeneracy will not be lifted when carbon burning begins, and a sub-Chandrasekhar Type Ia supernova may result in our model. Under slightly different conditions and for pure He WDs (i.e., M{sub WD} < 0.43 M{sub Sun }), the WD is ablated and its ashes raining down on the quark star (QS) leads to accretion-driven X-ray luminosity with energetics and duration reminiscent of GRB 110328A. We predict additional flaring activity toward the end of the accretion phase if the QS turns into a black hole.

  17. Occupation-number-based energy functional for nuclear masses

    SciTech Connect

    Bertolli, Michael G.; Papenbrock, Thomas F; Wild, S. M.

    2012-01-01

    We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to 2049 nuclear masses yields a root-mean-square deviation of =1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

  18. Occupation number-based energy functional for nuclear masses.

    SciTech Connect

    Bertolli, M.; Papenbrock, T.; Wild, S. M.

    2012-01-01

    We develop an energy functional with shell-model occupations as the relevant degrees of freedom and compute nuclear masses across the nuclear chart. The functional is based on Hohenberg-Kohn theory with phenomenologically motivated terms. A global fit of the 17-parameter functional to 2049 nuclear masses yields a root-mean-square deviation of {chi} = 1.31 MeV. Nuclear radii are computed within a model that employs the resulting occupation numbers.

  19. Detecting heavy quarks

    SciTech Connect

    Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

    1983-01-01

    In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10/sup 32/ cm/sup -2/ sec/sup -1/. Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system. (WHK)

  20. Measurement of the t t-bar production cross section and the top quark mass in the dilepton channel in pp collisions at sqrt(s) =7 TeV

    SciTech Connect

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Ero, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-05-01

    The t{bar t} production cross section and top quark mass are measured in proton-proton collisions at {radical}s = 7 TeV in a data sample corresponding to an integrated luminosity of 36 pb{sup -1} collected by the CMS experiment. The measurements are performed in events with two leptons (electrons or muons) in the final state. Results of the cross section measurement in events with and without b-quark identification are obtained and combined. The measured value is {sigma}{sub t{bar t}} = 168 {+-} 18 (stat.) {+-} 14 (syst.) {+-} 7 (lumi.) pb, consistent with predictions from the standard model. The top quark mass m{sub top} is reconstructed with two different methods, a full kinematic analysis and a matrix weighting technique. The combination yields a measurement of m{sub top} = 175.5 {+-} 4.6 (stat.) {+-} 4.6 (syst.) GeV/c{sup 2}.

  1. Thermodynamics of an exactly solvable confining quark model

    NASA Astrophysics Data System (ADS)

    Mintz, Bruno W.

    2016-04-01

    The grand partition function of a model of confined quarks is exactly calculated at arbitrary temperatures and quark chemical potentials. The model is inspired by a version of QCD where the usual (perturbative) BRST symmetry is broken in the infrared, while possessing a quark mass function compatible with nonperturbative analyses of lattice simulations and Dyson-Schwinger equations. Even though the model is defined at tree level, we show that it produces a non-trivial and stable thermodynamic behaviour at any temperature or chemical potential. Results for the pressure, the entropy and the trace anomaly as a function of the temperature are qualitatively compatible with the effect of non-perturbative interactions as observed in lattice simulations. The finite density thermodynamics is also shown to contain non-trivial features, being far away from an ideal gas picture.

  2. Radial Variation in the Stellar Mass Functions of Star Clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2016-09-01

    A number of recent observational studies of Galactic globular clusters have measured the variation in the slope of a cluster's stellar mass function α with clustercentric distance r. In order to gather a deeper understanding of the information contained in such observations, we have explored the evolution of α(r) for star clusters with a variety of initial conditions using a large suite of N-body simulations. We have specifically studied how the time evolution of α(r) is affected by initial size, mass, binary fraction, primordial mass segregation, black hole retention, an external tidal field, and the initial mass function itself. Previous studies have shown that the evolution of αG is closely related to the amount of mass loss suffered by a cluster. Hence for each simulation we have also followed the evolution of the slope of the cluster's global stellar mass function, αG, and have shown that clusters follow a well-defined track in the αG-dα(r)/d(ln(r/rm)) plane. The location of a cluster on the αG - dα(r)/d(ln(r/rm)) plane can therefore constrain its dynamical history and, in particular, constrain possible variations in the stellar initial mass function. The αG-dα(r)/d(ln(r/rm)) plane thus serves as a key tool for fully exploiting the information contained in wide field studies of cluster stellar mass functions.

  3. Top quark mass determination on double b-tagged events in barpp Collsions at √s = 1.8 TeV

    NASA Astrophysics Data System (ADS)

    CDF Collaboration

    1996-05-01

    We report on the measurement of the top quark mass using complete kinematic reconstruction of events containing a W and 4 jets. Two of the jets are required to be identified as b-jets. Data were collected by the Collider Detector at Fermilab (CDF) in the barpp collisions at √s = 1.8 TeV. Results are reported for 110 pb-1 of integrated luminosity. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation. Supported by the Ministry of Education, Science and Culture of Japan.

  4. Phenomenology of heavy quark production

    SciTech Connect

    Berger, E.L.

    1989-01-01

    A review is presented of heavy quark production in {bar p}p, {pi}{sup -}p, and pp interactions at fixed target and collider energies. Calculations of total cross sections and of single quark inclusive differential cross sections d{sup 2}{omega}/dk{sub T}dy are described including contributions through next-to-leading order in QCD perturbation theory. Comparisons with available data on charm and bottom quark production show good agreement for reasonable values of the charm and bottom quark masses and other parameters. Predictions and open issues in the interpretation of results are summarized. A brief discussion is presented of signatures, backgrounds, and expected event rates for top quark production. 24 refs., 6 figs.

  5. Quark Flavor Identification in Electron-Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Kaye, Harold Stephen

    The MAC (Magnetic Calorimeter) Detector at the PEP electron-positron storage ring at SLAC is used to obtain multihadron events at a center of mass energy of 29 GeV. Particles that penetrate the one-meter thickness of steel contained in the calorimetric detector are tracked by drift chambers and identified as muon candidates. The momentum of the muons is obtained by measurement of the curvature of the track through the magnetized steel. Events with a muon candidate with momentum greater than 2 GeV/c are studied in this analysis. The momentum of the muon transverse to the event thrust axis is used to obtain samples enriched in events with either b or c parent quarks. Background from light quark events is concentrated at low values of the transverse momentum, so that the high transverse momentum sample contains mostly b quark events. The total momentum spectrum of the muons is used to infer the fragmentation function of the b quark. It is found that the B meson carries away most of the momentum of the b quark in the fragmentation process. The semimuonic branching fraction of the B mesons, averaged over the mixture of charged and neutral mesons present, is. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). The invariant mass is computed for the jets in these events and is used to confirm the presence of heavy quark events in the sample. By the same technique, an additional one-third charged quark with mass less than 14 GeV is ruled out. Also, charged Higgs particles and technipions with masses between 9 and 13 GeV are ruled out, with more than 95% confidence, if their predominant decay mode is to the heaviest available quarks. The charged multiplicity of the events is indicative of the presence of weak decays. The forward/backward asymmetry of the b quark events is consistent with the predicted value. Pairs of oppositely charged muons in the same jet are studied, and an upper limit of 0.8% is established for the dimuon branching fraction of the b. This result rules

  6. Top quark physics at the LHC

    NASA Astrophysics Data System (ADS)

    Kim, Tae Jeong

    2014-04-01

    In 2011, an integrated luminosity of more than 5 fb-1 at 7 TeV has been delivered by the LHC. The measurement of the cross section in top quark pair production and in single top quark production, top quark mass, top quark properties and new physics searches in top quark decays have been performed at the CMS experiment with various integrated luminosities. An overview of the latest results of these measurements and searches by the time of ICFP 2012 conference will be presented.

  7. Top Quark Studies at D0

    SciTech Connect

    Peters, Reinhild Yvonne

    2014-11-26

    Years after its discovery in 1995 by CDF and D0, the top quark still undergoes intense investigations at the Tevatron. Using up to the full Run II data sample, new measurements of top quark production and properties by the D0 Collaboration are presented. In particular, the first observation of single top quark s-channel production, the measurement of differential tbar t distributions, forward-backward tbar t asymmetry, a new measurement of the top quark mass, and a measurement of the top quark charge are discussed.

  8. Confining quark condensate model of the nucleon.

    SciTech Connect

    Frank, Michael; Tandy, Peter

    1992-07-01

    We obtain a mean-field solution for the nucleon as a quark-meson soliton obtained from the action of the global color-symmetry model of QCD. All dynamics is generated from an effective interaction of quark currents. At the quark-meson level there are two novel features: (1) absolute confinement is produced from the space-time structure of the dynamical self-energy in the vacuum quark propagator; and (2) the related scalar meson field is an extended q-barq composite that couples nonlocally to quarks. The influence of these features upon the nucleon mass contributions and other nucleon properties is presented.

  9. Measurements of top quark properties at CDF

    SciTech Connect

    Kraan, Aafke C.; /Pennsylvania U.

    2006-11-01

    The top quark with its mass of about 172 GeV/c{sup 2} is the most massive fundamental particle observed by experiment. In this talk they highlight the most recent measurements of several top quark properties performed with the CDF detector based on data samples corresponding to integrated luminosities up to 1 fb{sup -1}. These results include a search for top quark pair production via new massive resonances, measurements of the helicity of the W boson from top-quark decay, and a direct limit on the lifetime of the top quark.

  10. Heavy quark production processes in QCD

    SciTech Connect

    Brodsky, S.J.; Gunion, J.F.

    1984-12-01

    We have identified two novel effects in QCD, each of which acts to enhance the production of heavy quark and supersymmetric particles beyond what is conventionally expected from gluon fusion. Both effects are present in QED, but are compounded in QCD because of the increased number of diagrams and the much larger coupling constant. The intrinsic charm quark distribution in the nucleon could account for the observed enhancements of the charm structure function at large x and features of the charm production data but this mechanism is relatively suppressed for heavier systems. Prebinding distortion of the fusion cross section is, however, likely to be significant for the production at low p/sub T/ of all particles containing heavy colored constituents. At this stage the QCD calculations are highly model dependent although they agree with the general properties which can be inferred from the operator product expansion in the heavy quark mass. Much more theoretical analysis of these effects is clearly needed. It is also clear that much more experimental work is necessary to extend and confirm the reported anomalous heavy quark signals. 22 references.

  11. Direct observation of quark-hadron duality in the free neutron F2 structure function

    SciTech Connect

    Niculescu, I.; Niculescu, G.; Melnitchouk, W.; Arrington, J.; Christy, M. E.; Ent, R.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Kuhn, S.; Tkachenko, S.; Zhang, J.

    2015-05-21

    Using data from the recent BONuS experiment at Jefferson Lab, which utilized a novel spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F2 structure function. In addition, the data are used to reconstruct the lowest few (N = 2, 4 and 6) moments of F2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark--hadron duality holds locally for the neutron in the second and third resonance regions down to Q2 ≈ 1 GeV2, with violations possibly up to 20% observed in the first resonance region.

  12. Transverse momentum dependent distribution functions in a covariant parton model approach with quark orbital motion

    SciTech Connect

    Efremov, A. V.; Teryaev, O. V.; Schweitzer, P.; Zavada, P.

    2009-07-01

    Transverse parton momentum dependent distribution functions (TMDs) of the nucleon are studied in a covariant model, which describes the intrinsic motion of partons in terms of a covariant momentum distribution. The consistency of the approach is demonstrated, and model relations among TMDs are studied. As a by-product it is shown how the approach allows to formulate the nonrelativistic limit.

  13. Effective field theories of baryons and mesons, or, what do quarks do?

    SciTech Connect

    Keaton, G.L.

    1995-06-26

    This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N{sup 2}. To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark.

  14. Recent Results of Top Quark Physics from the Tevatron

    SciTech Connect

    Peters, R. Y.

    2015-07-09

    Twenty years after its discovery in 1995 by the CDF and D0 collaborations at the Tevatron proton-antiproton collider at Fermilab, the top quark still undergoes intensive studies at the Tevatron and the LHC at CERN. In this article, recent top quark physics results from CDF and D0 are reported. In particular, measurements of single top quark and double top quark production, the $t\\bar{t}$ forward-backward asymmetry and the top quark mass are discussed.

  15. Toward a universal formulation of the halo mass function.

    PubMed

    Corasaniti, P S; Achitouv, I

    2011-06-17

    We compute the dark matter halo mass function using the excursion set formalism for a diffusive barrier with linearly drifting average which captures the main features of the ellipsoidal collapse model. We evaluate the non-Markovian corrections due to the sharp filtering of the linear density field in real space with a path-integral method. We find an unprecedented agreement with N-body simulation data with deviations ≲5% over the range of masses probed by the simulations. This indicates that the excursion set in combination with a realistic modeling of the collapse threshold can provide a robust estimation of the halo mass function. PMID:21770562

  16. Fish otolith mass asymmetry: morphometry and influence on acoustic functionality.

    PubMed

    Lychakov, D V; Rebane, Y T

    2005-03-01

    The role of the fish otolith mass asymmetry in acoustic functionality is studied. The saccular, lagenar and utricular otoliths are weighted in two species of the Black Sea rays, 15 species of the Black Sea teleost fish and guppy fish. The dimensionless otolith mass asymmetry chi is calculated as ratio of the difference between masses of the right and left paired otoliths to average otolith mass. In the most fish studied the otolith mass asymmetry is within the range of -0.2 < chi < +0.2 (< 20%). We do not find specific fish species with extremely large or extremely small otolith asymmetry. The large otoliths do not belong solely to any particular side, left or right. The heavier otoliths of different otolithic organs can be located in different labyrinths. No relationship has been found between the magnitude of the otolith mass asymmetry and the length (mass, age) of the animal. The suggested fluctuation model of the otolith growth can interpret these results. The model supposes that the otolith growth rate varies slightly hither and thither during lifetime of the individual fish. Therefore, the sign of the relative otolith mass asymmetry can change several times in the process of the individual fish growth but within the range outlined above. Mathematical modeling shows that acoustic functionality (sensitivity, temporal processing, sound localization) of the fish can be disturbed by the otolith mass asymmetry. But this is valid only for the fish with largest otolith masses, characteristic of the bottom and littoral fish, and with highest otolith asymmetry. For most fish the values of otolith mass asymmetry is well below critical values. Thus, the most fish get around the troubles related to the otolith mass asymmetry. We suggest that a specific physicochemical mechanism of the paired otolith growth that maintains the otolith mass asymmetry at the lowest possible level should exist. However, the principle and details of this mechanism are still far from being

  17. Measurement of the top quark mass in the tt¯→ lepton+jets and tt¯→ dilepton channels using √s = 7   TeV ATLAS data

    SciTech Connect

    Aad, G.

    2015-07-17

    The top quark mass was measured in the channels tt¯→ lepton+jets and tt¯→ dilepton (lepton = e,μ) based on ATLAS data recorded in 2011. The data were taken at the LHC with a proton–proton centre-of-mass energy of √s = 7 TeV and correspond to an integrated luminosity of 4.6 fb–1. The tt¯→ lepton+jets analysis uses a three-dimensional template technique which determines the top quark mass together with a global jet energy scale factor (JSF), and a relative b-to-light-jet energy scale factor (bJSF), where the terms b-jets and light-jets refer to jets originating from b-quarks and u, d, c, s-quarks or gluons, respectively. The analysis of the tt¯→ dilepton channel exploits a one-dimensional template method using the mℓb observable, defined as the average invariant mass of the two lepton+b-jet pairs in each event. The top quark mass is measured to be 172.33 ± 0.75 (stat + JSF + bJSF) ± 1.02(syst) GeV, and 173.79 ± 0.54(stat) ± 1.30(syst) GeV in the tt¯→ lepton+jets and tt¯→ dilepton channels, respectively. Thus, the combination of the two results yields mtop = 172.99 ± 0.48(stat) ± 0.78(syst) GeV, with a total uncertainty of 0.91 GeV.

  18. Measurement of the top quark mass in the tt¯→ lepton+jets and tt¯→ dilepton channels using √s = 7   TeV ATLAS data

    DOE PAGESBeta

    Aad, G.

    2015-07-17

    The top quark mass was measured in the channels tt¯→ lepton+jets and tt¯→ dilepton (lepton = e,μ) based on ATLAS data recorded in 2011. The data were taken at the LHC with a proton–proton centre-of-mass energy of √s = 7 TeV and correspond to an integrated luminosity of 4.6 fb–1. The tt¯→ lepton+jets analysis uses a three-dimensional template technique which determines the top quark mass together with a global jet energy scale factor (JSF), and a relative b-to-light-jet energy scale factor (bJSF), where the terms b-jets and light-jets refer to jets originating from b-quarks and u, d, c, s-quarks ormore » gluons, respectively. The analysis of the tt¯→ dilepton channel exploits a one-dimensional template method using the mℓb observable, defined as the average invariant mass of the two lepton+b-jet pairs in each event. The top quark mass is measured to be 172.33 ± 0.75 (stat + JSF + bJSF) ± 1.02(syst) GeV, and 173.79 ± 0.54(stat) ± 1.30(syst) GeV in the tt¯→ lepton+jets and tt¯→ dilepton channels, respectively. Thus, the combination of the two results yields mtop = 172.99 ± 0.48(stat) ± 0.78(syst) GeV, with a total uncertainty of 0.91 GeV.« less

  19. The impact of chromospheric activity on observed initial mass functions

    SciTech Connect

    Stassun, Keivan G.; Scholz, Aleks; Dupuy, Trent J.; Kratter, Kaitlin M.

    2014-12-01

    Using recently established empirical calibrations for the impact of chromospheric activity on the radii, effective temperatures, and estimated masses of active low-mass stars and brown dwarfs, we reassess the shape of the initial mass function (IMF) across the stellar/substellar boundary in the Upper Sco star-forming region (age ∼ 5-10 Myr). We adjust the observed effective temperatures to warmer values using the observed strength of the chromospheric Hα emission, and redetermine the estimated masses of objects using pre-main-sequence evolutionary tracks in the H-R diagram. The effect of the activity-adjusted temperatures is to shift the objects to higher masses by 3%-100%. While the slope of the resulting IMF at substellar masses is not strongly changed, the peak of the IMF does shift from ≈0.06 to ≈0.11 M {sub ☉}. Moreover, for objects with masses ≲ 0.2 M {sub ☉}, the ratio of brown dwarfs to stars changes from ∼80% to ∼33%. These results suggest that activity corrections are essential for studies of the substellar mass function, if the masses are estimated from spectral types or from effective temperatures.

  20. The behavior of the heavy quarks structure functions at small-x

    NASA Astrophysics Data System (ADS)

    Boroun, G. R.; Rezaei, B.

    2015-08-01

    The behavior of the charm and bottom structure functions (Fki(x, Q2), where i = c, and b; k = 2, and L) at small-x is considered with respect to the hard-Pomeron and saturation models. Having checked that this behavior predicate the heavy flavor reduced cross-sections concerning the unshadowed and shadowed corrections. We will show that the effective exponents for the unshadowed and saturation corrections are independent of x and Q2, and also the effective coefficients are dependent to ln Q2 compared to Donnachie-Landshoff (DL) and color dipole models (CDMs).

  1. Energy change of a heavy quark in a viscous quark-gluon plasma with fluctuations

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-feng; Hou, De-fu; Li, Jia-rong

    2016-09-01

    When a heavy quark travels through the quark-gluon plasma, the polarization and fluctuating chromoelectric fields will be produced simultaneously in the plasma. The drag force due to those fields exerting in return on the moving heavy quark will cause energy change to it. Based on the dielectric functions derived from the viscous chromohydrodynamics, we have studied the collisional energy change of a heavy quark traversing the viscous quark-gluon plasma including fluctuations of chromoelectric field. Numerical results indicate that the chromoelectric field fluctuations lead to an energy gain of the moving heavy quark. Shear viscosity suppresses the fluctuation-induced energy gain and the viscous suppression effect for the charm quark is much more remarkable than that for the bottom quark. While, the fluctuation energy gain is much smaller than the polarization energy loss in magnitude and the net energy change for the heavy quark is at loss.

  2. Measurement of the helium-3 spin structure functions in the resonance region: A test of Quark-Hadron duality on the neutron

    NASA Astrophysics Data System (ADS)

    Solvignon, Patricia H.

    One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAG in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F2 of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g1 and the virtual photon asymmetry A 1 at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron (3He) in the moderate momentum transfer (Q 2) region, 1.0 < Q2 < 4.0 (GeV/c) 2, where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall A. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized 3He target. Asymmetries and cross section differences were measured in order to extract the 3He spin structure function g1 and virtual photon asymmetry A1 in the resonance region. A test of quark-hadron duality has then been performed for the 3He and neutron structure functions. The study of spin duality

  3. Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

    SciTech Connect

    Solvignon, Patricia

    2006-08-31

    One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F{sub 2} of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g{sub 1} and the virtual photon asymmetry A{sub 1} at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron ({sup 3}He) in the moderate momentum transfer (Q{sup 2}) region, 1.0 < Q{sup 2} < 4.0 (GeV/c{sup 2}), where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall B. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized {sup 3}He target. Asymmetries and cross section differences were measured in order to extract the {sup 3}He spin structure function g{sub 1} and virtual photon asymmetry A{sub 1} in the resonance region. A test of quark-hadron duality has then been performed for the

  4. Search for W-prime Boson Resonances Decaying to a Top Quark and a Bottom Quark

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, Georgiy; /Dubna, JINR /St. Petersburg, INP /Northeastern U.

    2008-03-01

    We search for the production of a heavy W{prime} gauge boson that decays to third generation quarks in 0.9 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the D0 detector at the Fermilab Tevatron collider. We find no significant excess in the final-state invariant mass distribution and set upper limits on the production cross section times branching fraction. For a left-handed W{prime} boson with SM couplings, we set a lower mass limit of 731 GeV. For right-handed W{prime} bosons, we set lower mass limits of 739 GeV if the W{prime} boson decays to both leptons and quarks and 768 GeV if the W{prime} boson decays only to quarks. We also set limits on the coupling of the W{prime} boson to fermions as a function of its mass.

  5. Quarks and gluons at hadron colliders

    SciTech Connect

    Bodek, A.; CDF Collaboration

    1996-08-01

    Data from proton-antiproton collisions at high energy provide important information on constraining the quark and gluon distributions in the nucleon and place limits on quark substructure. The S asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass. Drell-Yan data at high invariant mass provides strong limits on quark substructure. Information on {alpha}{sub s} and the gluon distributions can be extracted from high P{sub T} jet data and direct photons.

  6. Nonequilibrium hadronization and constituent quark number scaling

    SciTech Connect

    Zschocke, Sven; Horvat, Szabolcs; Mishustin, Igor N.; Csernai, Laszlo P.

    2011-04-15

    The constituent quark number scaling of elliptic flow is studied in a nonequilibrium hadronization and freeze-out model with rapid dynamical transition from ideal, deconfined, and chirally symmetric quark-gluon plasma, to final noninteracting hadrons. In this transition a bag model of constituent quarks is considered, where the quarks gain constituent quark mass while the background bag field breaks up and vanishes. The constituent quarks then recombine into simplified hadron states, while chemical, thermal, and flow equilibrium break down one after the other. In this scenario the resulting temperatures and flow velocities of baryons and mesons are different. Using a simplified few source model of the elliptic flow, we are able to reproduce the constituent quark number scaling, with assumptions on the details of the nonequilibrium processes.

  7. Bondi-Hoyle-Littleton accretion and the upper-mass stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Hartmann, Lee W.; Pérez-Goytia, Nadia; Kuznetsova, Aleksandra

    2015-09-01

    We report on a series of numerical simulations of gas clouds with self-gravity forming sink particles, adopting an isothermal equation of state to isolate the effects of gravity from thermal physics on the resulting sink mass distributions. Simulations starting with supersonic velocity fluctuations develop sink mass functions with a high-mass power-law tail dN/d log M ∝ MΓ, Γ = -1 ± 0.1, independent of the initial Mach number of the velocity field. Similar results but with weaker statistical significance hold for a simulation starting with initial density fluctuations. This mass function power-law dependence agrees with the asymptotic limit found by Zinnecker assuming Bondi-Hoyle-Littleton (BHL) accretion, even though the mass accretion rates of individual sinks show significant departures from the predicted dot{M}∝ M^2 behaviour. While BHL accretion is not strictly applicable due to the complexity of the environment, we argue that the final mass functions are the result of a relative M2 dependence resulting from gravitationally focused accretion. Our simulations may show the power-law mass function particularly clearly compared with others because our adoption of an isothermal equation of state limits the effects of thermal physics in producing a broad initial fragmentation spectrum; Γ → -1 is an asymptotic limit found only when sink masses grow well beyond their initial values. While we have purposely eliminated many additional physical processes (radiative transfer, feedback) which can affect the stellar mass function, our results emphasize the importance of gravitational focusing for massive star formation.

  8. Nonperturbative renormalization of overlap quark bilinears on 2+1-flavor domain wall fermion configurations

    NASA Astrophysics Data System (ADS)

    Liu, Zhaofeng; Chen, Ying; Dong, Shao-Jing; Glatzmaier, Michael; Gong, Ming; Li, Anyi; Liu, Keh-Fei; Yang, Yi-Bo; Zhang, Jian-Bo; χQCD Collaboration

    2014-08-01

    We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the χQCD Collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale-independent renormalization constant for the axial-vector current is computed using the Ward identity. The renormalization constants for scalar, pseudoscalar, and vector currents are calculated in the RI-MOM scheme. Results in the MS ¯ scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks, each on two lattices with sizes 243×64 and 323×64 at spacings a =(1.73 GeV)-1 and (2.28 GeV)-1, respectively.

  9. Challenging neck mass: non-functional giant parathyroid adenoma.

    PubMed

    Mossinelli, Chiara; Saibene, Alberto Maria; De Pasquale, Loredana; Maccari, Alberto

    2016-01-01

    A 46-year-old man was referred to our ear, nose and throat department after the accidental discovery of a large retrotracheal mass. In order to obtain the diagnosis and to plan treatment he underwent a full battery of tests (CT, MRI, blood tests, hormonal assays, ultrasounds, thyroid scintigraphy, urine tests and fine-needle aspiration of the mass), but none of these was able to define the true nature of such cervical mass. Only after surgical excision and histological evaluation, it was diagnosed as an exceptional case of giant non-functional parathyroid adenoma. PMID:27535730

  10. Almost-Killing conserved currents: A general mass function

    NASA Astrophysics Data System (ADS)

    Ruiz, Milton; Palenzuela, Carlos; Bona, Carles

    2014-01-01

    A new class of conserved currents, describing nongravitational energy-momentum density, is presented. The proposed currents do not require the existence of a (timelike) Killing vector, and are not restricted to spherically symmetric spacetimes (or similar ones, in which the Kodama vector can be defined). They are based instead on almost-Killing vectors, which could in principle be defined on generic spacetimes. We provide local arguments, based on energy density profiles in highly simplified (stationary, rigidly rotating) star models, which confirm the physical interest of these almost-Killing currents. A mass function is defined in this way for the spherical case, qualitatively different from the Hernández-Misner mass function. An elliptic equation determining the new mass function is derived for the Tolman-Bondi spherically symmetric dust metrics, including a simple solution for the Oppenheimer-Snyder collapse. The equations for the nonsymmetric case are shown to be of a mixed elliptic-hyperbolic nature.

  11. An analytic formula for the supercluster mass function

    SciTech Connect

    Lim, Seunghwan; Lee, Jounghun E-mail: jounghun@astro.snu.ac.kr

    2014-03-01

    We present an analytic formula for the supercluster mass function, which is constructed by modifying the extended Zel'dovich model for the halo mass function. The formula has two characteristic parameters whose best-fit values are determined by fitting to the numerical results from N-body simulations for the standard ΛCDM cosmology. The parameters are found to be independent of redshifts and robust against variation of the key cosmological parameters. Under the assumption that the same formula for the supercluster mass function is valid for non-standard cosmological models, we show that the relative abundance of the rich superclusters should be a powerful indicator of any deviation of the real universe from the prediction of the standard ΛCDM model.

  12. Failed supernovae explain the compact remnant mass function

    SciTech Connect

    Kochanek, C. S.

    2014-04-10

    One explanation for the absence of higher mass red supergiants (16.5 M {sub ☉} ≲ M ≲ 25 M {sub ☉}) as the progenitors of Type IIP supernovae (SNe) is that they die in failed SNe creating black holes. Simulations show that such failed SNe still eject their hydrogen envelopes in a weak transient, leaving a black hole with the mass of the star's helium core (5-8 M {sub ☉}). Here we show that this naturally explains the typical masses of observed black holes and the gap between neutron star and black hole masses without any fine-tuning of stellar mass loss, binary mass transfer, or the SN mechanism, beyond having it fail in a mass range where many progenitor models have density structures that make the explosions more likely to fail. There is no difficulty including this ∼20% population of failed SNe in any accounting of SN types over the progenitor mass function. And, other than patience, there is no observational barrier to either detecting these black hole formation events or limiting their rates to be well below this prediction.

  13. Constraining Amplitude and Slope of the Mass Fluctuation Spectrum Using a Cluster Baryon Mass Function

    NASA Astrophysics Data System (ADS)

    Voevodkin, A.; Vikhlinin, A.

    2004-02-01

    We derive the baryon mass function for a complete sample of low-redshift clusters and argue that it is an excellent proxy for the total mass function if the ratio fb=Mb/Mtot in all clusters is close to its universal value, Ωb/ΩM. Under this assumption, the baryon mass function can be used to constrain the amplitude and slope of the density fluctuation power spectrum on cluster scales. This method does not use observational determinations of the total mass and thus bypasses major uncertainties in the traditional analyses based on the X-ray temperature function. However, it is sensitive to possible systematic variations of the baryon fraction as a function of cluster mass. Adapting a weak dependence fb(M), suggested by observations and numerical simulations by Bialek et al., we derive σ8=0.72+/-0.04 and the shape parameter ΩMh=0.13+/-0.07, in good agreement with a number of independent methods. We discuss the sensitivity of these values to other cosmological parameters and to different assumptions about variations in fb.

  14. Quark-gluon vertex from the Landau gauge Curci-Ferrari model

    NASA Astrophysics Data System (ADS)

    Peláez, Marcela; Tissier, Matthieu; Wschebor, Nicolás

    2015-08-01

    We investigate the quark-gluon three-point correlation function within a one-loop computation performed in the Curci-Ferrari massive extension of the Faddeev-Popov gauge-fixed action. The mass term is used as a minimal way for taking into account the influence of the Gribov ambiguity. Our results, with renormalization-group improvement, are compared with lattice data. We show that the comparison is, in general, very satisfactory for the functions which are compatible with chiral symmetry, except for one. We argue that this may be due to large systematic errors when extracting this function from lattice simulations. The quantities which break chiral symmetry are more sensitive to the details of the renormalization scheme. We, however, manage to reproduce some of them with good precision. The chosen parameters allow us to simultaneously fit the quark mass function coming from the quark propagator with reasonable agreement.

  15. Properties of the Top Quark

    SciTech Connect

    Wicke, Daniel; /Wuppertal U., Dept. Math.

    2009-08-01

    Tevatron experiments CDF and D0 and was the last of the quarks to be discovered. As the partner of the bottom quark the top quark is expected to have quantum numbers identical to that of the other known up-type quarks. Only the mass is a free parameter. We now know that it is more than 30 times heavier than the next heaviest quark, the bottom quark. Thus, within the Standard Model all production and decay properties are fully defined. Having the complete set of quarks further allows to verify constraints that the Standard Model puts on the sum of all quarks or particles. This alone is reason enough to experimentally study the top quark properties. The high value of the top quark mass and its closeness to the electroweak scale has inspired people to speculate that the top quark could have a special role in the electroweak symmetry breaking. Confirming the expected properties of the top quark experimentally establishes the top quark as we expect it to be. Any deviation from the expectations gives hints to new physics that may help to solve the outstanding questions. In this review the recent results on top quark properties obtained by the Tevatron experiments CDF and D0 are summarized. At the advent of the LHC special emphasis is given to the basic measurement methods and the dominating systematic uncertainties. After a short introduction to the Standard Model and the experimental environment in the remainder of this chapter, Chapter 2 describes the current status of top quark mass measurements. Then measurments of interaction properties are described in Chapter 3. Finally, Chapter 4 deals with analyses that consider hypothetical particles beyond the Standard Model in the observed events.

  16. Top quark properties and single top at CMS

    NASA Astrophysics Data System (ADS)

    Skovpenon, K.; CMS Collaboration

    2016-07-01

    Measurements of top-quark properties as well as single top-quark production are presented, obtained from the CMS data collected in 2011 and 2012 at centre-of-mass energies of 7 and 8TeV. The results include measurements of the top pair charge asymmetry, the W helicity in top decays, the t bar{{t}} spin correlation and the search for anomalous couplings. The cross sections for the electroweak production of single top quarks in the t-channel and in association with W-bosons are measured and the results are used to place constraints on the CKM matrix element Vtb. In the t-channel the ratio of top and antitop production cross sections is determined and compared with predictions from different parton density distribution functions. The results are compared with predictions from the standard model as well as new physics models.

  17. The mass distribution function of planets in the Galaxy

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2016-05-01

    I will describe some deductions about the planet mass function from the observational data of exoplanets and theoretical considerations of dynamical stability of planetary systems. The Kepler mission has carried out a systematic survey for planets in the Galaxy, and obtained data on several hundred exo-planetary systems. Analysis of these data indicates that planetary orbital separations have an approximately log-normal distribution. Taken together with plausible ansatzs for the dynamical stability of multi-planet systems, it appears that the planet mass function is peaked in logarithm of mass, with the most probable value of log m/M_Earth ∼ (0.6 ‑ 1.0). A modest extrapolation finds that Earth mass planets are about ~1000 times more common than Jupiter mass planets, and that the most common planets in the Galaxy may be of lunar-to-Mars mass.This research was supported by NSF (grant AST-1312498) and NASA (grant NNX14AG93G).

  18. Binary pulsar with a very small mass function

    NASA Astrophysics Data System (ADS)

    Dewey, R. J.; Maguire, C. M.; Rawley, L. A.; Stokes, G. H.; Taylor, J. H.

    1986-08-01

    Radiotelescope pulse-arrival-time (PAT) data of PSR1831-00, primarily at 390 MHz, were collected to characterize the evolution of the binary pulsars. The data were used to calculate, the right ascension and declination, pulsar and orbital periods, dispersion measure, semi-major axis, eccentricity, and time of periastron. The orbital period and semi-major axis are used to calculate the mass function. Comparisons are made with other binary and millisecond pulsars, noting the high degree of similarity with the other objects. The limitations imposed on the evolution of the objects by the observed physical characteristics lead to two possible evolutionary models: mass transfer after or during the formation of the neutron star, or no mass transfer. The first model would have required a contact phase during evolution of the primary. The second model posits a three solar mass primary which was also in contact during its evolution and which went to supernova.

  19. Functional Requirements for the Next Generation of Mass Notification

    ERIC Educational Resources Information Center

    Trumbo, Berkly

    2012-01-01

    While the latest update to National Fire Protection Association (NFPA) redefines mass notification as "emergency communications systems" (ECS), the end user community is formulating expectations related to the future functionality of today's alerting solutions. Numerous best practices have surfaced since alerting technology began its rapid,…

  20. Semiclassical projection of hedgehog models with quarks

    SciTech Connect

    Cohen, T.D.; Broniowski, W.

    1986-12-01

    A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2) x SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, g/sub A/, g/sub ..pi..//sub N//sub N/, N-..delta.. mass splitting, properties of the N-..delta.. transition, etc., are calculated.

  1. Semiclassical projection of hedgehog models with quarks

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.; Broniowski, Wojciech

    1986-12-01

    A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2)×SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, gA, gπNN, N-Δ mass splitting, properties of the N-Δ transition, etc., are calculated.

  2. Baryons as Fock states of 3,5,... Quarks

    SciTech Connect

    Dmitri Diakonov; Victor Petrov

    2004-09-01

    We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.

  3. Measurements of the Top-quark Mass and the $t\\bar{t}$ Cross Section in the Hadronic $\\tau +$ Jets Decay Channel at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-08-01

    We present the first direct measurement of the top-quark mass using t{bar t} events decaying in the hadronic {tau} + jets decay channel. Using data corresponding to an integrated luminosity of 2.2 fb{sup -1} collected by the CDF II detector in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron, we measure the t{bar t} cross section, {sigma}{sub t{bar t}}, and the top-quark mass, M{sub top}. We extract M{sub top} from a likelihood based on per-event probabilities calculated with leading-order signal and background matrix elements. We measure {sigma}{sub t{bar t}} = 8.8 {+-} 3.3 (stat) {+-} 2.2 (syst) pb and M{sub top} = 172.7 {+-} 9.3 (stat) {+-} 3.7 (syst) GeV/c{sup 2}.

  4. Hidden-beauty charged tetraquarks and heavy quark spin conservation

    NASA Astrophysics Data System (ADS)

    Ali, A.; Maiani, L.; Polosa, A. D.; Riquer, V.

    2015-01-01

    Assuming the dominance of the spin-spin interaction in a diquark, we point out that the mass difference in the beauty sector M (Zb')±-M (Zb)± scales with quark masses as expected in QCD, with respect to the corresponding mass difference M (Zc')±-M (Zc)± . Notably, we show that the decays ϒ (10890 )→ϒ (n S )π+π- and ϒ (10890 )→(hb(1 P ),hb(2 P ))π+π- are compatible with heavy quark spin conservation if the contributions of Zb,Zb' intermediate states are taken into account, ϒ (10890 ) being either a ϒ (5 S ) or the beauty analog of Yc(4260 ). Belle results on these decays support the quark spin wave function of the Z states as tetraquarks. We also consider the role of light quark spin nonconservaton in Zb,Zb' decays into B B* and B*B*. Indications of possible signatures of the still missing Xb resonance are proposed.

  5. Kidney function outcomes following thermal ablation of small renal masses

    PubMed Central

    Raman, Jay D; Jafri, Syed M; Qi, David

    2016-01-01

    The diagnosis of small renal masses (SRMs) continues to increase likely attributable to widespread use of axial cross-sectional imaging. Many of these SRMs present in elderly patients with abnormal baseline renal function. Such patients are at risk for further decline following therapeutic intervention. Renal thermal ablation presents one approach for management of SRMs whereby tumors are treated in situ without need for global renal ischemia. These treatment characteristics contribute to favorable renal function outcomes following kidney tumor ablation particularly in patients with an anatomic or functional solitary renal unit. PMID:27152264

  6. Kidney function outcomes following thermal ablation of small renal masses.

    PubMed

    Raman, Jay D; Jafri, Syed M; Qi, David

    2016-05-01

    The diagnosis of small renal masses (SRMs) continues to increase likely attributable to widespread use of axial cross-sectional imaging. Many of these SRMs present in elderly patients with abnormal baseline renal function. Such patients are at risk for further decline following therapeutic intervention. Renal thermal ablation presents one approach for management of SRMs whereby tumors are treated in situ without need for global renal ischemia. These treatment characteristics contribute to favorable renal function outcomes following kidney tumor ablation particularly in patients with an anatomic or functional solitary renal unit. PMID:27152264

  7. Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks

    SciTech Connect

    Huey-Wen Lin; Shigemi Ohta

    2006-07-23

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments {sub u-d}/{sub {Delta} u - {Delta} d} are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm){sup 3}. Even with preliminary statistics of 25-30 gauge configurations, the ratios g{sub A}/g{sub V} and {sub u-d}/{sub {Delta} u - {Delta} d} are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d{sub 1}, though yet to be renormalized, appears small in both sets.

  8. NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS.

    SciTech Connect

    LIN H.-W.; OHTA, S.

    2006-10-02

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a{sup -1} {approx} 1.7GeV and the spatial volume is about (1.9fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments {sub u-d}/{sub {Delta}u-{Delta}d} are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a{sup -1} {approx} 1.6GeV and the spatial volume is about (3.0fm){sup 3}. Even with preliminary statistics of 25-30 gauge configurations, the ratios g{sub A}/g{sub V} and {sub u-d}/{sub {Delta}u-{Delta}d} are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d{sub 1}, though yet to be renormalized, appears small in both sets.

  9. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION

    SciTech Connect

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, {psi}(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope {gamma}, the high-mass slope -{Gamma} (taken to be -1.35), the characteristic mass m{sub ch} ({approx} the peak mass of the IMF), and the lower and upper limits on the mass, m{sub l} and m{sub u} (taken to be 0.004 and 120 M{sub sun}, respectively): {psi}(m)dln m {proportional_to} m{sup -}{Gamma}{l_brace}1 - exp [- (m/m{sub ch}){sup {gamma}}+{Gamma}]{r_brace}dln m. The values of {gamma} and m{sub ch} are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M{sub sun} to that in the range m = 0.6-0.8 M{sub sun} as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M{sub sun} to the number of brown dwarfs in the range m = 0.03-0.08 M{sub sun} in young clusters. The IMF satisfying the above constraints is characterized by the parameters {gamma} = 0.51 and m{sub ch} = 0.35 M{sub sun} (which corresponds to a peak mass of 0.27 M{sub sun} ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses <0.03 M{sub sun}; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  10. Top Quark Production at the Tevatron

    SciTech Connect

    Mietlicki, David J.

    2011-12-01

    The top quark is the most recently discovered of the standard model quarks, and because of its very large mass, studies of the top quark and its interactions are important both as tests of the standard model and searches for new phenomena. In this document, recent results of analyses of top quark production, via both the electroweak and strong interactions, from the CDF and D0 experiments are presented. The results included here utilize a dataset corresponding to up to 6 fb{sup -1} of integrated luminosity, slightly more than half of the dataset recorded by each experiment before the Tevatron was shutdown in September 2011.

  11. Top Quark Physics at the CDF Experiment

    SciTech Connect

    Stelzer, Bernd; Collaboration, for the CDF

    2010-07-01

    Fermilab's Tevatron accelerator is recently performing at record luminosities that enables a program systematically addressing the physics of top quarks. The CDF collaboration has analyzed up to 5 fb{sup -1} of proton anti-proton collisions from the Tevatron at a center of mass energy of 1.96 TeV. The large datasets available allow to push top quark measurements to higher and higher precision and have lead to the recent observation of electroweak single top quark production at the Tevatron. This article reviews recent results on top quark physics from the CDF experiment.

  12. Measurement of the p anti-p ---> t anti-t production cross- section and the top quark mass at s**(1/2) = 1.96-TeV in the all-hadronic decay mode

    SciTech Connect

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Affolder, Anthony Allen; Akimoto, T.; Albrow, Michael G.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Fermilab /Frascati /Comenius U.

    2007-06-01

    We report the measurements of the t{bar t} production cross section and of the top quark mass using 1.02 fb{sup -1} of p{bar p} data collected with the CDF II detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be {sigma}{sub t{bar t}} = 8.3 {+-} 1.0(stat. ){sup +2.0}{sub -1.5}(syst.) {+-} 0.5(lumi.) pb, which is consistent with the standard model prediction. The top quark mass of 174.0 {+-} 2.2(stat.){+-}4.8(syst.) GeV/c{sup 2} is derived from a likelihood fit incorporating reconstructed mass distributions representative of signal and background.

  13. Measurements of top quark properties at the Tevatron collider

    SciTech Connect

    Margaroli, Fabrizio

    2011-05-01

    The discovery of the top quark in 1995 opened a whole new sector of investigation of the Standard Model; today top quark physics remains a key priority of the Tevatron program. Some of the measurements of top quark properties, for example its mass, will be a long-standing legacy. The recent evidence of an anomalously large charge asymmetry in top quark events suggests that new physics could couple preferably with top quarks. I will summarize this long chapter of particle physics history and discuss the road the top quark is highlighting for the LHC program.

  14. Bounds on the Slope and Curvature of Isgur-Wise Function in a QCD-Inspired Quark Model

    NASA Astrophysics Data System (ADS)

    Hazarika, Bhaskar Jyoti; Choudhury, D. K.

    2011-09-01

    The quantum chromodynamics-inspired potential model pursued by us earlier has been recently modified to incorporate an additional factor ` c' in the linear cum Coulomb potential. While it felicitates the inclusion of standard confinement parameter b = 0.183 GeV2 unlike in previous work, it still falls short of explaining the Isgur-Wise function for the B mesons without ad hoc adjustment of the strong coupling constant. In this work, we determine the factor ` c' from the experimental values of decay constants and masses and show that the reality constraint on ` c' yields bounds on the strong coupling constant as well as on slope and curvature of Isgur-Wise function allowing more flexibility to the model.

  15. RESOLVE and ECO: The Halo Mass-dependent Shape of Galaxy Stellar and Baryonic Mass Functions

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.

    2016-06-01

    In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass M bary ∼ 109.1 M ⊙, probing the gas-rich dwarf regime below M bary ∼ 1010 M ⊙. The second, ECO, covers a ∼40× larger volume (containing RESOLVE-A) and is complete to M bary ∼ 109.4 M ⊙. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below M star ∼ 1010 M ⊙ that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ∼1010 M ⊙, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF, separated into four physically motivated halo mass regimes, reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass <1013.5 M ⊙ ye