Science.gov

Sample records for quartz manganese oxide

  1. Tellurium content of marine manganese oxides and other manganese oxides

    USGS Publications Warehouse

    Lakin, H.W.; Thompson, C.E.; Davidson, D.F.

    1963-01-01

    Tellurium in amounts ranging from 5 to 125 parts per million was present in all of 12 samples of manganese oxide nodules from the floor of the Pacific and Indian oceans. These samples represent the first recognized points of high tellurium concentration in a sedimentary cycle. The analyses may lend support to the theory that the minor-element content of seafloor manganese nodules is derived from volcanic emanations.

  2. Manganese oxidation by Leptothrix discophora.

    PubMed Central

    Boogerd, F C; de Vrind, J P

    1987-01-01

    Cells of Leptothrix discophora SS1 released Mn2+-oxidizing factors into the medium during growth in batch culture. Manganese was optimally oxidized when the medium was buffered with HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) at pH 7.5. Manganese-oxidizing activity in the culture medium in which this strain had been grown previously was sensitive to heat, phosphate, Tris, NaN3, HgCl2 NaCl, sodium dodecyl sulfate, and pronase; 0.5 mol of O2 was consumed per mol of MnO2 formed. During Mn2+ oxidation, protons were liberated. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two protein-containing bands were detected in the spent culture medium. One band had an apparent molecular weight of 110,000 and was predominant in Mn2+-oxidizing activity. The second product (Mr 85,000) was only detected in some cases and probably represents a proteolytic breakdown moiety of the 110,000-Mr protein. The Mn2+-oxidizing factors were associated with the MnO2 aggregates that had been formed in spent culture medium. After solubilization of this MnO2 with ascorbate, Mn2+-oxidizing activity could be recovered. Images PMID:3804969

  3. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    PubMed

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnO x .This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnO x . The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV) -oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials.In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnO x catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnO x materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future. PMID:25980320

  4. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    SciTech Connect

    Manigandan, R.; Suresh, R.; Giribabu, K.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  5. Manganese oxidation model for rivers

    USGS Publications Warehouse

    Hess, Glen W.; Kim, Byung R.; Roberts, Philip J.W.

    1989-01-01

    The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.

  6. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  7. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 false Barium calcium manganese strontium oxide. 721.10011 Section 721...721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and...identified as barium calcium manganese strontium oxide (PMN P-00-1124; CAS...

  8. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 false Barium calcium manganese strontium oxide. 721.10011 Section 721...721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and...identified as barium calcium manganese strontium oxide (PMN P-00-1124; CAS...

  9. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Barium calcium manganese strontium oxide. 721.10011 Section 721...721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and...identified as barium calcium manganese strontium oxide (PMN P-00-1124; CAS...

  10. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 false Barium calcium manganese strontium oxide. 721.10011 Section 721...721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and...identified as barium calcium manganese strontium oxide (PMN P-00-1124; CAS...

  11. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 false Barium calcium manganese strontium oxide. 721.10011 Section 721...721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and...identified as barium calcium manganese strontium oxide (PMN P-00-1124; CAS...

  12. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  13. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  14. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  15. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  16. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance... manganese strontium oxide (PMN P-00-1124; CAS No. 359427-90-0) is subject to reporting under this...

  17. Sol-gel synthesis of manganese oxides

    NASA Astrophysics Data System (ADS)

    Bach, S.; Henry, M.; Baffier, N.; Livage, J.

    1990-10-01

    Transparent and stable manganese dioxide gels are obtained upon reduction of permanganate aqueous solutions AMnO 4 [ A = Li, Na, K, NH 4, N(CH 3) 4] by fumaric acid. All xerogels are amorphous when dried at room temperature. Their thermal behavior however depends on the nature of the counter cation A+. Ammonium permanganates lead to the formation of ?- or ?-Mn 2O 3 while AMnO 2 mixed oxides are obtained at high temperature when A = Li, Na, K. Other crystalline phases such as LiMn 2O 4 or Na 0.7MnO 2 are also formed at lower temperature around 500°C. Oxidation of these mixed oxides into sulfuric acid lead to the formation of ?- or ?-MnO 2 while A+ and Mn 2+ ions are released into the solution. Such manganese dioxides could be good candidates for making reversible cathodes in nonaqueous lithium batteries.

  18. Manganese

    SciTech Connect

    Major-Sosias, M.A.

    1996-10-01

    Manganese (Mn) is a hard, brittle, gray-white transition metal, with the most numerous oxidation states of the elements in the first series of the Periodic Table. Since the manganese atom can donate up to seven electrons from its outer two shells, manganese compounds exist with valences from -3 to +7, the most common being +2, +4, and +7. Due to its sulfur-fixing, deoxidizing, and alloying properties, as well as its low cost, the principal commercial application for manganese is in iron and steel production. Manganese is also employed in non-ferrous metallurgy, batteries and chemical processes. Although potentially harmful to the respiratory and nervous systems, manganese is an essential element for animals and humans, and a micronutrient for plants.

  19. Oxidative decarboxylation of diclofenac by manganese oxide bed filter.

    PubMed

    Huguet, Mélissa; Deborde, Marie; Papot, Sébastien; Gallard, Hervé

    2013-09-15

    Diclofenac (DCF) was eliminated by fast chemical oxidation on natural manganese oxide in a column reactor. Identification of transformation by-products of DCF by HPLC-UV-MS(n) gave evidence of decarboxylation, iminoquinone formation and dimerization. The fast oxidation of DCF is also accompanied by a strong adsorption of organic carbon that was explained by the sorption of dimer products on the surface of manganese oxide. Decarboxylation and dimerization increased the hydrophobic interactions with manganese oxide and reduced the presence of potentially toxic by-products in the effluent. The rate of oxidation was first order with respect to DCF and was slowed down by the presence of organic buffer MOPS (3-morpholinopropane-1-sulfonic acid). The first order rate constant in absence of MOPS was extrapolated by considering a surface site-binding model and MOPS as a co-adsorbate. The rate constant was 0.818 min(-1) at pH 7 and 10 mM NaCl corresponding to empty bed residence time of 50 s only for 50% removal of DCF. Rate constants increased when pH decreased from pH 8.0 to 6.5 and when ionic strength increased. Manganese oxide bed filter can be considered as an alternative treatment for polishing waste water effluent or for remediation of contaminated groundwater. PMID:23850215

  20. Optimizing Biogenic Manganese Oxide Production 

    E-print Network

    Vance, Cherish Christony Ann

    2013-02-15

    . These emerging organic pollutants also may be carcinogenic, mutagenic, and endocrine disruptive in nature. Traditional treatments such as granular activated carbon (GAC), oxidation, and ozonation with sand filtration have not proven to effectively remove...

  1. Oxidation state of marine manganese nodules

    USGS Publications Warehouse

    Piper, D.Z.; Basler, J.R.; Bischoff, J.L.

    1984-01-01

    Analyses of the bulk oxidation state of marine manganese nodules indicates that more than 98% of the Mn in deep ocean nodules is present as Mn(IV). The samples were collected from three quite different areas: the hemipelagic environment of the Guatemala Basin, the pelagic area of the North Pacific, and seamounts in the central Pacific. Results of the study suggest that todorokite in marine nodules is fully oxidized and has the following stoichiometry: (K, Na, Ca, Ba).33(Mg, Cu, Ni).76Mn5O22(H2O)3.2. ?? 1984.

  2. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Cobalt iron manganese oxide, carboxylic acid-modified...Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid-modified...substance identified generically as cobalt iron manganese oxide, carboxylic...

  3. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Cobalt iron manganese oxide, carboxylic acid-modified...Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid-modified...substance identified generically as cobalt iron manganese oxide, carboxylic...

  4. Sol-gel synthesis of manganese oxides

    SciTech Connect

    Bach, S.; Henry, M.; Baffier, N.; Livage, J. )

    1990-10-01

    Transparent and stable manganese dioxide gels are obtained upon reduction of permanganate aqueous solutions AMnO{sub 4} (A = Li, Na, K, NH{sub 4}, N(CH{sub 3}){sub 4}) by fumaric acid. All xerogels are amorphous when dried at room temperature. Their thermal behavior however depends on the nature of the counter cation A{sup +}. Ammonium permanganates lead to the formation of {alpha}- or {gamma}-Mn{sub 2}O{sub 3} while AMnO{sub 2} mixed oxides are obtained at high temperature when A = Li, Na, K. Other crystalline phases such as LiMn{sub 2}O{sub 4} or Na{sub 0.7}MnO{sub 2} are also formed at lower temperature around 500{degree}C. Oxidation of these mixed oxides into sulfuric acid lead to the formation of {lambda}- or {delta}-MnO{sub 2} while A{sup +} and Mn{sup 2+} ions are released into the solution. Such manganese dioxides could be good candidates for making reversible cathodes in nonaqueous lithium batteries.

  5. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  6. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  7. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  8. Biological Superoxide In Manganese Oxide Formation

    NASA Astrophysics Data System (ADS)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  9. Manganese Oxidation In A Natural Marine Environment- San Antonio Bay 

    E-print Network

    Neyin, Rosemary Ogheneochuko

    2013-04-12

    the San Antonio Bay. In this study area, the formaldoxime assay was utilized to determine that manganese oxidation is catalyzed via multiple pathways utilizing various catalysts and proximal oxidants. The contribution of catalysts such as colloidal matter...

  10. Manganese binding and oxidation by spores of a marine bacillus.

    PubMed Central

    Rosson, R A; Nealson, K H

    1982-01-01

    Mature, dormant spores of a marine bacillus, SG-1, bound and oxidized (precipitated) manganese on their surfaces. The binding and oxidation occurred under dormant conditions, with mature spores suspended in natural seawater. These heat-stable spores were formed in the absence of added manganese in the growth medium. The rate and amount of manganese bound by SG-1 spores was a function of spore concentration. Temperatures greater than 45 degrees C, pH values below 6.5, or the addition of EDTA or the metabolic inhibitors sodium azide, potassium cyanide, and mercuric chloride inhibited manganese binding and oxidation. However, SG-1 spores bound and oxidized manganese after treatment with glutaraldehyde, formaldehyde, ethylene oxide gas, or UV light, all of which killed the spores. Manganese oxidation never occurred in the absence of manganese binding to spores. The data suggest that Mn2+ was complexed by a spore component, perhaps an exosporium or a spore coat protein: once bound, the manganese was rapidly oxidized. Images PMID:6212577

  11. Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.

    PubMed

    Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu

    2015-09-01

    Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping. PMID:26716267

  12. Arsenic mobilization in the critical zone: Oxidation by hydrous manganese oxide Jason S. Fischel, fischjs06@juniata.edu1

    E-print Network

    Sparks, Donald L.

    Arsenic mobilization in the critical zone: Oxidation by hydrous manganese oxide GEOC 112 Jason S manganese (Mn) oxides, even in low concentrations, to oxidize trace metals such as arsenic from arsenite [As

  13. Synthesis of Ordered Mesoporous Manganese Oxides with Various Oxidation States.

    PubMed

    Park, Gwi Ok; Shon, Jeong Kuk; Kim, Yong Ho; Kim, Ji Man

    2015-03-01

    Ordered mesoporous MnO, MnO4, Mn2O3 and MnO2 materials with 3-D pore structure were suc- cessfully synthesized via a nano-replication method by using ordered mesoporous silica, KIT-6 (Cubic Ia3d space group mesostructure) as the template under specific oxidation and reduction conditions. Notably, ordered mesoporous MnO with a crystalline wall (rock salt structure) was syn- thesized for the first time, to the best of our knowledge. The synthesis of the ordered mesoporous MnO was achieved by reducing the ordered mesoporous Mn3O4 under an H2 atmosphere, while preserving the ordered mesostructure and crystalline wall throughout the solid/solid transformation. All of the ordered mesoporous manganese oxides with different crystal structures and oxidation states demonstrated almost the same spherical-like morphology with several hundred nanometers of particles. The synthesized ordered mesoporous manganese oxides had uniform dual mesopores (2-3 nm, and ~20 nm) and crystalline frameworks with large surface areas (86-140 m2/g) and pore volumes (0.27-0.33 cm3/g). PMID:26413684

  14. Manganese Oxide-Based Chemically Powered Micromotors.

    PubMed

    Safdar, Muhammad; Wani, Owies M; Jänis, Janne

    2015-11-25

    Chemically powered micromotors represent an exciting research area in nanotechnology. Such artificial devices are typically driven by catalytic bubble formation, taking place at the solid-liquid interface. Platinum has been most frequently used for the fabrication of different micromotors due to its superior catalytic efficiency. Other materials typically suffer from slow speeds and require very high concentrations of chemical fuel. Here, we report preparation and characterization of fast moving micromotors based on manganese oxide (MnO2) with different geometrical shapes (tubes, rods, and spheres). On the basis of the results, the prepared micromotors reached the highest speeds (up to ?900 ?m s(-1) in 10% H2O2) reported to date for any MnO2-based micromotors. Moreover, they moved by bubble propulsion even at very low concentrations of peroxide fuel. Thus, MnO2 represents a promising material for the preparation of micromotors for various biomedical or environmental applications, where high speeds are desired. PMID:26551302

  15. Giant negative magnetoresistance in Manganese-substituted Zinc Oxide

    PubMed Central

    Wang, X. L.; Shao, Q.; Zhuravlyova, A.; He, M.; Yi, Y.; Lortz, R.; Wang, J. N.; Ruotolo, A.

    2015-01-01

    We report a large negative magnetoresistance in Manganese-substituted Zinc Oxide thin films. This anomalous effect was found to appear in oxygen-deficient films and to increase with the concentration of Manganese. By combining magnetoresistive measurements with magneto-photoluminescence, we demonstrate that the effect can be explained as the result of a magnetically induced transition from hopping to band conduction where the activation energy is caused by the sp-d exchange interaction. PMID:25783664

  16. A manganese oxidation model for rivers

    SciTech Connect

    Hess, G.W. ); Kim, Byung R. ); Roberts, P.J.W. )

    1989-04-01

    The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the los pH conditions, or their combinations.

  17. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  18. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.

    PubMed

    Sotirelis, Nikolaos P; Chrysikopoulos, Constantinos V

    2015-11-17

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles attachment onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH 4, 7, and 10), and ionic strengths (IS = 1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results showed that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the attachment of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence attachment. The attachment of GO particles onto quartz sand increased significantly with increasing IS. The experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model, which implies that the quartz sand exhibited substantial surface heterogeneity and that GO retention was governed by chemisorption. Furthermore, thermodynamic analysis revealed that the attachment process was nonspontaneous and endothermic, which may be associated with structural changes of the sand surfaces due to chemisorption. Therefore, secondary minimum interaction may not be the dominant mechanism for GO attachment onto the quartz sand under the experimental conditions. PMID:26465676

  19. The sorption of silver by poorly crystallized manganese oxides

    USGS Publications Warehouse

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  20. Manganese- and Iron-Dependent Marine Methane Oxidation

    NASA Astrophysics Data System (ADS)

    Beal, Emily J.; House, Christopher H.; Orphan, Victoria J.

    2009-07-01

    Anaerobic methanotrophs help regulate Earth’s climate and may have been an important part of the microbial ecosystem on the early Earth. The anaerobic oxidation of methane (AOM) is often thought of as a sulfate-dependent process, despite the fact that other electron acceptors are more energetically favorable. Here, we show that microorganisms from marine methane-seep sediment in the Eel River Basin in California are capable of using manganese (birnessite) and iron (ferrihydrite) to oxidize methane, revealing that marine AOM is coupled, either directly or indirectly, to a larger variety of oxidants than previously thought. Large amounts of manganese and iron are provided to oceans from rivers, indicating that manganese- and iron-dependent AOM have the potential to be globally important.

  1. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  2. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  3. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  4. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  5. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  6. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  7. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  8. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  9. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  10. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  11. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  12. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  13. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  14. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  15. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  16. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721.10010...Chemical Substances § 721.10010 Barium manganese oxide (BaMnO3). (a...The chemical substance identified as barium manganese oxide (BaMnO3 )...

  17. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721.10010...Chemical Substances § 721.10010 Barium manganese oxide (BaMnO3). (a...The chemical substance identified as barium manganese oxide (BaMnO3 )...

  18. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721.10010...Chemical Substances § 721.10010 Barium manganese oxide (BaMnO3 ). (a...The chemical substance identified as barium manganese oxide (BaMnO3 )...

  19. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721.10010...Chemical Substances § 721.10010 Barium manganese oxide (BaMnO3 ). (a...The chemical substance identified as barium manganese oxide (BaMnO3 )...

  20. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721.10010...Chemical Substances § 721.10010 Barium manganese oxide (BaMnO3 ). (a...The chemical substance identified as barium manganese oxide (BaMnO3 )...

  1. 75 FR 70583 - Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ...RIN 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Withdrawal of Significant New...identified as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1), which...rule issued for cobalt lithium manganese nickel oxide (PMN P-04-269; CAS No....

  2. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Lithium manganese oxide (LiMn204) (generic...Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic...chemical substance identified generically as lithium manganese oxide (LiMn204)...

  3. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Lithium manganese oxide (LiMn204) (generic...Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic...chemical substance identified generically as lithium manganese oxide (LiMn204)...

  4. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Lithium manganese oxide (LiMn204) (generic...Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic...chemical substance identified generically as lithium manganese oxide (LiMn204)...

  5. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 false Manganese strontium oxide (MnSrO3). 721.10008 Section...Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical...chemical substance identified as manganese strontium oxide (MnSrO3 ) (PMN...

  6. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Manganese strontium oxide (MnSrO3). 721.10008 Section...Substances § 721.10008 Manganese strontium oxide (MnSrO3 ). (a) Chemical...chemical substance identified as manganese strontium oxide (MnSrO3 ) (PMN...

  7. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Manganese strontium oxide (MnSrO3). 721.10008 Section...Substances § 721.10008 Manganese strontium oxide (MnSrO3 ). (a) Chemical...chemical substance identified as manganese strontium oxide (MnSrO3 ) (PMN...

  8. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Manganese strontium oxide (MnSrO3). 721.10008 Section...Substances § 721.10008 Manganese strontium oxide (MnSrO3 ). (a) Chemical...chemical substance identified as manganese strontium oxide (MnSrO3 ) (PMN...

  9. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Manganese strontium oxide (MnSrO3). 721.10008 Section...Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical...chemical substance identified as manganese strontium oxide (MnSrO3 ) (PMN...

  10. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Manganese yttrium oxide (Mn2YO5). 721.10013 Section...Substances § 721.10013 Manganese yttrium oxide (Mn2 YO5 ). (a) Chemical...chemical substance identified as manganese yttrium oxide (Mn2 YO5 ) (PMN...

  11. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Manganese yttrium oxide (MnYO3). 721.10009 Section...Substances § 721.10009 Manganese yttrium oxide (MnYO3 ). (a) Chemical...chemical substance identified as manganese yttrium oxide (MnYO3 ) (PMN...

  12. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Manganese yttrium oxide (MnYO3). 721.10009 Section...Substances § 721.10009 Manganese yttrium oxide (MnYO3 ). (a) Chemical...chemical substance identified as manganese yttrium oxide (MnYO3 ) (PMN...

  13. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Manganese yttrium oxide (MnYO3). 721.10009 Section...Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance...chemical substance identified as manganese yttrium oxide (MnYO3 ) (PMN...

  14. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Manganese yttrium oxide (Mn2YO5). 721.10013 Section...Substances § 721.10013 Manganese yttrium oxide (Mn2 YO5 ). (a) Chemical...chemical substance identified as manganese yttrium oxide (Mn2 YO5 ) (PMN...

  15. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Manganese yttrium oxide (Mn2YO5). 721.10013 Section...Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance...chemical substance identified as manganese yttrium oxide (Mn2 YO5 ) (PMN...

  16. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Manganese yttrium oxide (MnYO3). 721.10009 Section...Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance...chemical substance identified as manganese yttrium oxide (MnYO3 ) (PMN...

  17. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Manganese yttrium oxide (MnYO3). 721.10009 Section...Substances § 721.10009 Manganese yttrium oxide (MnYO3 ). (a) Chemical...chemical substance identified as manganese yttrium oxide (MnYO3 ) (PMN...

  18. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Manganese yttrium oxide (Mn2YO5). 721.10013 Section...Substances § 721.10013 Manganese yttrium oxide (Mn2 YO5 ). (a) Chemical...chemical substance identified as manganese yttrium oxide (Mn2 YO5 ) (PMN...

  19. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Manganese yttrium oxide (Mn2YO5). 721.10013 Section...Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance...chemical substance identified as manganese yttrium oxide (Mn2 YO5 ) (PMN...

  20. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  1. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  2. Joining of highly aluminum-doped lanthanum strontium manganese oxide with tetragonal zirconia by plastic deformation

    E-print Network

    Dutta, Prabir K.

    Joining of highly aluminum-doped lanthanum strontium manganese oxide with tetragonal zirconia February 2008; accepted 24 March 2008 Abstract Aluminum-doped lanthanum strontium manganese oxide, La0.77Sr at the interface. © 2008 Elsevier B.V. All rights reserved. Keywords: Lanthanum strontium aluminum manganese oxide

  3. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  4. Directed Vapor Deposition of Lithium Manganese Oxide Films

    E-print Network

    Wadley, Haydn

    Directed Vapor Deposition of Lithium Manganese Oxide Films A Dissertation Presented to the faculty vapor deposition (EB-DVD) method for the synthesis of thin film batteries. The dissertation focuses upon around the vapor. The gas jet entrains and transports the vapor to a substrate where the deposition

  5. Interaction between graphene oxide nanoparticles and quartz sand

    NASA Astrophysics Data System (ADS)

    Sotirelis, Nikolaos P.; Chrysikopoulos, Constantinos V.

    2015-04-01

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles adsorption onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH=4, 7, and 10), and ionic strengths (IS=1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO), and extended-DLVO (XDLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results shown that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the adsorption of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence adsorption. Increasing the IS, dramatically increased. The adsorption of GO particles onto quartz sand increased dramatically with increasing IS, mainly due to secondary-minimum deposition, as indicated by the XDLVO interaction energy profiles. Furthermore, the experimental data were fitted nicely with a Langmuir type sorption isotherm, and the adsorption kinetics were satisfactorily described with a pseudo-second-order model.

  6. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium...

  7. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium...

  8. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium...

  9. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium...

  10. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese strontium...

  11. Manganese

    MedlinePLUS

    Manganese is a mineral that is found in several foods including nuts, legumes, seeds, tea, whole grains, and leafy green vegetables. It is ... manganese by mouth along with other vitamins and minerals can promote growth in children who have low ...

  12. Manganese oxidation state mediates toxicity in PC12 cells

    SciTech Connect

    Reaney, S.H. . E-mail: stevereaney@hotmail.com; Smith, D.R.

    2005-06-15

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 {mu}M Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 {mu}M produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 {mu}M), while Mn(III) exposures produced increases in LDH activity at lower exposures ({>=}50 {mu}M) than did Mn(II) (200 {mu}M only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 {mu}M Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity.

  13. Characterization of Synthetic and Natural Manganese Oxides as Martian Analogues

    NASA Technical Reports Server (NTRS)

    Fox, V. K.; Arvidson, R. E.; Jolliff, B. L.; Carpenter, P. K.; Catalano, J. G.; Hinkle, M. A. G.; Morris, R. V.

    2015-01-01

    Recent discoveries of highly concentrated manganese oxides in Gale Crater and on the rim of Endeavour Crater by the Mars Science Laboratory Curiosity and Mars Exploration Rover Opportunity, respectively, imply more highly oxidizing aqueous conditions than previously recognized. Manganese oxides are a significant environmental indicator about ancient aqueous conditions, provided the phases can be characterized reliably. Manganese oxides are typically fine-grained and poorly crystalline, making the mineral structures difficult to determine, and they generally have very low visible reflectance with few distinctive spectral features in the visible to near infrared, making them a challenge for interpretation from remote sensing data. Therefore, these recent discoveries motivate better characterization using methods available on Mars, particularly visible to near infrared (VNIR) spectroscopy, X-ray diffractometry (XRD), and compositional measurements. Both rovers have complementary instruments in this regard. Opportunity is equipped with its multispectral visible imager, Pancam, and an Alpha Particle X-ray Spectrometer (APXS), and Curiosity has the multispectral Mastcam, ChemCam (laser-induced breakdown spectroscopy and passive spectroscopy), and APXS for in situ characterization, and ChemMin (XRD) for collected samples.

  14. Distributions of Manganese, Iron, and Manganese-Oxidizing Bacteria In Lake Superior Sediments of Different Organic Carbon Content

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Nealson, Kenneth H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacteria and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic (and facultatively aerobic) heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrations primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  15. Preliminary LIBS analysis of Yucca Mountain manganese oxide minerals

    SciTech Connect

    Blacic, J.; Pettit, D.; Cremers, D.

    1996-01-01

    The licensing and performance of a potential repository at Yucca Mountain will require the characterization of radionuclide sorptive capacity of the host rock, which in turn calls for hundreds of analyses based on extensive sampling or in situ measurements. A rapid method specifically for characterizing the manganese oxide minerals occurring heterogeneously throughout the Yucca Mountain block as fracture surface coatings is needed. Our unique solution is a laser-induced breakdown spectroscopy (LIBS) surface-analysis technique that is usable in the field to produce high-resolution atomic emission spectra. In tests with manganese oxide minerals and fracture surface coatings from a few Yucca Mountain core samples, we used four spectral bands to show that qualitative measurement of all constituent elements except K and Na (in the presence of Mn) is possible with LIBS. Detailed calibration of final hardware will make the system quantitative.

  16. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence (Storrs, CT); Yuan, Jikang (Storrs, CT)

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  17. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    NASA Astrophysics Data System (ADS)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  18. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    NASA Astrophysics Data System (ADS)

    Pröll, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H. J.; Pfleging, W.

    2011-09-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 °C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  19. GEOC Andrew Stack Thursday, March 20, 2014 152 Kinetics of arsenic oxidation by manganese oxide minerals: The influence of origin and structure on reactivity

    E-print Network

    Sparks, Donald L.

    minerals: The influence of origin and structure on reactivity Jason S. Fischel1, fischelj@udel.edu, Matthew. Their highly reactive surfaces allow manganese minerals to oxidize trace metals such as arsenic from the mobile of manganese minerals found in natural systems. Five Manganese oxide minerals manganese oxide (HMO), hexagonal

  20. Manganese ion-assisted assembly of superparamagnetic graphene oxide microbowls

    SciTech Connect

    Tian, Zhengshan; Xu, Chunxiang Li, Jitao; Zhu, Gangyi; Xu, Xiaoyong; Dai, Jun; Shi, Zengliang; Lin, Yi

    2014-03-24

    A facile manganese ion Mn(II)-assisted assembly has been designed to fabricate microbowls by using graphene oxide nanosheets as basic building blocks, which were exfoliated ultrasonically from the oxidized soot powders in deionized water. From the morphology evolution observations of transmission electron microscope and scanning electron microscope, a coordinating-tiling-collapsing manner is proposed to interpret the assembly mechanism based on attractive Van der Waals forces, ?-? stacking, and capillary action. It is interesting to note that the as-prepared microbowls present a room temperature superparamagnetic behavior.

  1. Manganese oxide nanosheets and a 2D hybrid of graphene-manganese oxide nanosheets synthesized by liquid-phase exfoliation

    NASA Astrophysics Data System (ADS)

    Coelho, João; Mendoza-Sánchez, Beatriz; Pettersson, Henrik; Pokle, Anuj; McGuire, Eva K.; Long, Edmund; McKeon, Lorcan; Bell, Alan P.; Nicolosi, Valeria

    2015-06-01

    Manganese oxide nanosheets were synthesized using liquid-phase exfoliation that achieved suspensions in isopropanol (IPA) with concentrations of up to 0.45 mg ml-1. A study of solubility parameters showed that the exfoliation was optimum in N,N-dimethylformamide followed by IPA and diethylene glycol. IPA was the solvent of choice due to its environmentally friendly nature and ease of use for further processing. For the first time, a hybrid of graphene and manganese oxide nanosheets was synthesized using a single-step co-exfoliation process. The two-dimensional (2D) hybrid was synthesized in IPA suspensions with concentrations of up to 0.5 mg ml-1 and demonstrated stability against re-aggregation for up to six months. The co-exfoliation was found to be a energetically favorable process in which both solutes, graphene and manganese oxide nanosheets, exfoliate with an improved yield as compared to the single-solute exfoliation procedure. This work demonstrates the remarkable versatility of liquid-phase exfoliation with respect to the synthesis of hybrids with tailored properties, and it provides proof-of-concept ground work for further future investigation and exploitation of hybrids made of two or more 2D nanomaterials that have key complementary properties for various technological applications.

  2. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    NASA Astrophysics Data System (ADS)

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  3. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore

    NASA Astrophysics Data System (ADS)

    Okita, Patrick M.; Maynard, J. Barry; Spiker, Elliott C.; Force, Eric R.

    1988-11-01

    Unlike other marine-sedimentary manganese ore deposits, which are largely composed of manganese oxides, the primary ore at Molango (Hidalgo State, Mexico) is exclusively manganese carbonate (rhodochrosite, Mn-calcite, kutnahorite). Stable isotope studies of the carbonates from Molango provide critical new information relevant to the controversy over syngenetic and diagenetic models of stratiform manganese deposit formation. Negative ? 13C values for carbonates from mineralized zones at Molango are strongly correlated with manganese content both on a whole rock scale and by mineral species. Whole rock ? 13C data fall into three groups: high-grade ore = -16.4 to -11.5%.; manganese-rich, sub-ore-grade = -5.2 to 0%.; and unmineralized carbonates = 0 to +2.5%. (PDB). ? 18O data show considerable overlap in values among the three groups: +4.8 to -2.8, -5.4 to -0.3%., and -7.4 to +6.2 (PDB), respectively. Isotopic data for individual co-existing minerals suggest a similar separation of ? 13C values: ? 13C values from calcite range from -1.1 to +0.7%. (PDB), whereas values from rhodochrosite are very negative, -12.9 to -5.5%., and values from kutnahorite or Mn-calcite are intermediate between calcite and rhodochrosite. 13C data are interpreted to indicate that calcite ( i.e. unmineralized carbonate) formed from a normal marine carbon reservoir. However, 13C data for the manganese-bearing carbonates suggest a mixed seawater and organic source of carbon. The presence of only trace amounts of pyrite suggests sulfate reduction may have played a minor part in oxidizing organic matter. It is possible that manganese reduction was the predominant reaction that oxidized organic matter and that it released organic-derived CO 2 to produce negative ? 13C values and manganese carbonate mineralization.

  4. Formation and properties of nanostructured colloidal manganese oxide particles obtained through the thermally controlled transformation of manganese carbonate precursor phase.

    PubMed

    Škapin, Sre?o D; ?adež, Vida; Suvorov, Danilo; Sondi, Ivan

    2015-11-01

    Structurally and morphologically different colloidal manganese oxide solids, including manganosite (MnO), bixbyite (Mn2O3) and hausmannite (Mn(2+)[Mn(3+)]2O4), were obtained through the initial biomimetically induced precipitation of a uniform, nanostructured and micron-sized rhodochrosite (MnCO3) precursor phase and their subsequent thermally controlled transformation into oxide structures in air and Ar/H2 atmospheres. The structures and morphology of the obtained precipitates were investigated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). Their surface properties were investigated by electrophoretic mobilities (EPM) and specific surface area (SSA) measurements. The results showed that the structurally diverse, micron-sized, spherical manganese oxide particles exhibit unusual and fascinating nanostructured surface morphologies. These were developed through the coalescence of an initially formed, nanosized, crystalline, manganese carbonate precursor phase which, during the heating, transformed into coarser, irregular, elongated, micron-sized, manganese oxide solids. It was also shown that structural transformations and morphological tailoring were followed by significant changes in the physico-chemical properties of the obtained solids. Their SSA values were drastically reduced as a result of the progressive coalescence at the particle surfaces occurring at higher temperatures. The isoelectric points (IEPs) of the obtained manganese oxides were diverse. This is the consequence of their range of crystal-chemical properties that governed the complex physico-chemical processes at the interface of the manganese oxide solid and the aqueous solution. The results of this study may lead to a conceptually new method for the synthesis of high-performance, nanostructured, manganese oxide solids with desirable structural, morphological and surface properties. PMID:26151565

  5. Kinetics of Chromium(III) Oxidation by Manganese(IV) Oxides Using

    E-print Network

    Sparks, Donald L.

    Kinetics of Chromium(III) Oxidation by Manganese(IV) Oxides Using Quick Scanning X-ray Absorption parameters (3). The fate of chromium in soils has been extensively studied (4). Chromium is derived from both(VI) is mobile and more toxic than Cr(III), it is of great environmental concern. Chromium can be found naturally

  6. Rechargeable 3 V Li cells using hydrated lamellar manganese oxide

    SciTech Connect

    Bach, S.; Pereira-Ramos, J.P.; Baffier, N.

    1996-11-01

    The synthesis and the electrochemical features of hydrated lamellar manganese oxides are reported. The authors use the reduction of aqueous permanganate solution by fumaric acid and the oxidation of manganese hydroxide by an aqueous permanganate solution to obtain sol-gel birnessite and classical X-exchanged birnessites (X = Li, Al, Na), respectively. The high oxidation state of Mn associated with the 2D character of the hot lattice allows high specific capacities (150 to 200 Ah/kg) available in the potential range of 4 to 2 V. Interlayer water provides the structural stability of the host lattice required for long cycling. Rechargeable two-electrode Li cells using starved or flooded electrolytes were built with the cathodic materials. The batteries exhibit a satisfactory behavior with a specific capacity of 160 Ah/kg recovered after 30 cycles at the C/20 discharge-charge rate for the sol-gel birnessite. This paper demonstrates an interest in cathodic materials based on oxides containing structural water for use in secondary Li batteries.

  7. Manganese

    MedlinePLUS

    ... in many chemical processes in the body, including processing of cholesterol, carbohydrates, and protein. It might also ... iron, zincTaking calcium along with any of these minerals can decrease the amount of manganese that the ...

  8. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5

  9. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0

  10. Sol-gel route to the tunneled manganese oxide cryptomelane

    SciTech Connect

    Ching, S.; Roark, J.L.; Duan, N.; Suib, S.L.

    1997-03-01

    The sol-gel reaction between KMnO{sub 4} and fumaric acid in a 3:1 mole ratio generates a flocculant gel that serves as a precursor to the tunneled manganese oxide, cryptomelane. The elemental composition of sol-gel cryptomelane has been determined to be K{sub 0.12}MnO{sub 2.0-} (H{sub 2}O){sub 0.09}. Further characterization has been performed using powder X-ray diffraction, scanning electron microscopy, and Auger electron spectroscopy. The sol-gel process is heavily dependent on reactant concentration. Solutions that are too concentrated produce the layered manganese oxide birnessite, whereas overly dilute reactions yield mixtures of cryptomelane and Mn{sub 2}O{sub 3}. The preference for cryptomelane over birnessite correlates with low potassium content in the gel. The sol-gel procedure for synthesizing cryptomelane is not easily transferred to the preparation of analogous manganese oxides with different tunnel cations. Reactions that employ permanganates other than KMnO{sub 4} generally yield Mn{sub 2}O{sub 3}, with cryptomelane being a minor product at best. Thermal analyses of cryptomelane gels indicate that calcination proceeds through a series of stages that involve loss of water, loss of residual organics, conversion to cryptomelane, and finally degradation to Mn{sub 3}O{sub 4}. The extraction of potassium ions from sol-gel cryptomelane by various foreign cations is minimal, with the loss of K{sup +} being on the order of 10%. 49 refs., 7 figs., 3 tabs.

  11. Towards a mechanistic understanding of carbon stabilization in manganese oxides

    PubMed Central

    Johnson, Karen; Purvis, Graham; Lopez-Capel, Elisa; Peacock, Caroline; Gray, Neil; Wagner, Thomas; März, Christian; Bowen, Leon; Ojeda, Jesus; Finlay, Nina; Robertson, Steve; Worrall, Fred; Greenwell, Chris

    2015-01-01

    Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550?°C) and the other is thermally more labile (<550?°C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems. PMID:26194625

  12. Nanorods of manganese oxides: Synthesis, characterization and catalytic application

    SciTech Connect

    Yang Zeheng; Zhang Yuancheng; Zhang Weixin . E-mail: wxzhang@hfut.edu.cn; Wang Xue; Qian Yitai; Wen Xiaogang; Yang Shihe . E-mail: chsyang@ust.hk

    2006-03-15

    Single-crystalline nanorods of {beta}-MnO{sub 2}, {alpha}-Mn{sub 2}O{sub 3} and Mn{sub 3}O{sub 4} were successfully synthesized via the heat-treatment of {gamma}-MnOOH nanorods, which were prepared through a hydrothermal method in advance. The calcination process of {gamma}-MnOOH nanorods was studied with the help of Thermogravimetric analysis and X-ray powder diffraction. When the calcinations were conducted in air from 250 to 1050 deg. C, the precursor {gamma}-MnOOH was first changed to {beta}-MnO{sub 2}, then to {alpha}-Mn{sub 2}O{sub 3} and finally to Mn{sub 3}O{sub 4}. When calcined in N{sub 2} atmosphere, {gamma}-MnOOH was directly converted into Mn{sub 3}O{sub 4} at as low as 500 deg. C. Transmission electron microscopy (TEM) and high-resolution TEM were also used to characterize the products. The obtained manganese oxides maintain the one-dimensional morphology similar to the precursor {gamma}-MnOOH nanorods. Further experiments show that the as-prepared manganese oxide nanorods have catalytic effect on the oxidation and decomposition of the methylene blue (MB) dye with H{sub 2}0009O.

  13. Manganese-doped zinc oxide tetratubes and their photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Sun, X. W.; Dong, Z. L.; Tan, S. T.; Cui, Y. P.; Wang, B. P.

    2005-12-01

    Based on vapor-phase transport method, manganese-doped zinc oxide (ZnO:Mn) tetropod whiskers were fabricated. The pods of the ZnO:Mn whiskers show hexagonal hollow shape with multitips at the front. X-ray diffraction and high-resolution transmission electron microscopy demonstrate that the tube pods and the tips are composed of wurtzite ZnO growing along [0001] direction. The generation of the luminescent center in ZnO whiskers and electron transport between the ground state and the excitation states of Mn2+ are analyzed by Raman-scattering, photoluminescence, and photoluminescent excitation measurements.

  14. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems.

    PubMed

    Grebel, Janel E; Charbonnet, Joseph A; Sedlak, David L

    2016-01-01

    To advance cost-effective strategies for removing trace organic contaminants from urban runoff, the feasibility of using manganese oxides as a geomedia amendment in engineered stormwater infiltration systems to oxidize organic contaminants was evaluated. Ten representative organic chemicals that have previously been detected in urban stormwater were evaluated for reactivity in batch experiments with birnessite. With respect to reactivity, contaminants could be classified as: highly reactive (e.g., bisphenol A), moderately reactive (e.g., diuron) and unreactive (e.g., tris(2-chloro-1-propyl)phosphate). Bisphenol A and diuron reacted with birnessite to produce a suite of products, including ring-cleavage products for bisphenol A and partially dechlorinated products for diuron. Columns packed with manganese oxide-coated sand were used evaluate design parameters for an engineered infiltration system, including necessary contact times for effective treatment, as well as the impacts of stormwater matrix variables, such as solution pH, concentration of natural organic matter and major anions and cations. The manganese oxide geomedia exhibited decreased reactivity when organic contaminants were oxidized, especially in the presence of divalent cations, bicarbonate, and natural organic matter. Under typical conditions, the manganese oxides are expected to retain their reactivity for 25 years. PMID:26521218

  15. The mechanism of water oxidation catalyzed by nanolayered manganese oxides: New insights.

    PubMed

    Najafpour, Mohammad Mahdi; Abbasi Isaloo, Mohsen

    2015-11-01

    Herein we consider the mechanism of water oxidation by nanolayered manganese oxide in the presence of cerium(IV) ammonium nitrate. Based on membrane-inlet mass spectrometry results, the rate of H2((18))O exchange of ?-O groups on the surface of the nanolayered Mn-K oxide, and studies on water oxidation in the presence of different ratios of acetonitrile/water we propose a mechanism for water oxidation by nanolayered Mn oxides in the presence of cerium(IV) ammonium nitrate. PMID:25666103

  16. Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid.

    PubMed

    Orge, C A; Órfão, J J M; Pereira, M F R

    2012-04-30

    Manganese oxide and manganese oxide-carbon composites were prepared and tested as catalysts for the removal of oxalic acid by ozonation. Their performances were compared with the parent carbon material (activated carbon or carbon xerogel) used to prepare the composites. Oxalic acid degradation by carbon materials is slower than that attained with manganese oxide or manganese oxide-carbon composites. A complete degradation after 90 and 45 min of reaction was obtained for carbon materials and for the catalysts containing manganese, respectively. The ozonation in the presence of the prepared composites are supposed to occur mainly by surface reactions, following a direct oxidation mechanism by molecular ozone and/or surface oxygenated radicals. PMID:22341747

  17. Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen

    SciTech Connect

    Hulley, Elliott; Kumar, Neeraj; Raugei, Simone; Bullock, R. Morris

    2015-10-05

    Oxidation of H2 (1 atm) is catalyzed by the manganese electrocatalysts [(P2N2)MnI(CO)(bppm)]+ and [(PNP)MnI(CO)(bppm)]+ (P2N2= 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; PNP = (Ph2PCH2)2NMe); bppm = (PArF2)2CH2, and ArF = 3,5-(CF3)2C6H3). In fluorobenzene solvent using 2,6-lutidine as the exogeneous base, the turnover frequency for [(P2N2)MnI(CO)(bppm)]+ is 3.5 s-1 with an estimated overpotential of 590 mV. For [(PNP)MnI(CO)(bppm)], in fluorobenzene solvent using N-methylpyrrolidine as the exogeneous base, the turnover frequency is 1.4 s-1 with an estimated overpotential of 700 mV. Density functional theory calculations suggest that the slow step in the catalytic cycle is proton transfer from the oxidized 17-electron manganese hydride, e.g., [(P2N2)MnIIH(CO)(bppm)]+ to the pendant amine. The computed activation barrier for intramolecular proton transfer from the metal to the pendant amine is 20.4 kcal/mol in [(P2N2)MnIIH(CO)(bppm)]+ and 21.3 kcal/mol in [(PNP)MnI(CO)(bppm)]. The high barrier appears to result from both the unfavorability of metal-to-nitrogen proton transfer (thermodynamically uphill by 6.6 pKa units, 9 kcal/mol), as well as the relatively long manganese-nitrogen separation in the MnIIH complexes.

  18. Comparisons of the film peeling from the composite oxides of quartz sand filters using ozone, hydrogen peroxide and chlorine dioxide.

    PubMed

    Guo, Yingming; Huang, Tinglin; Wen, Gang; Cao, Xin

    2015-08-01

    To solve the problem of shortened backwashing intervals in groundwater plants, several disinfectants including ozone (O3), hydrogen peroxide (H2O2) and chlorine dioxide (ClO2) were examined to peel off the film from the quartz sand surface in four pilot-scale columns. An optimized oxidant dosage and oxidation time were determined by batch tests. Subsequently, the optimized conditions were tested in the four pilot-scale columns. The results demonstrated that the backwashing intervals increased from 35.17 to 54.33 (H2O2) and to 53.67hr (ClO2) after the oxidation treatments, and the increase of backwashing interval after treatment by O3 was much less than for the other two treatments. Interestingly, the treatment efficiency of filters was not affected by O3 or H2O2 oxidation; but after oxidation by ClO2, the treatment efficiency was deteriorated, especially the ammonia removal (from 96.96% to 24.95%). The filter sands before and after the oxidation were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. Compared with the oxidation by O3 and H2O2, the structures on the surface of filter sands were seriously damaged after oxidation by ClO2. The chemical states of manganese on the surfaces of those treated sands were only changed by ClO2. The damage of the structures and the change of the chemical states of manganese might have a negative effect on the ammonia removal. In summary, H2O2 is a suitable agent for film peeling. PMID:26257342

  19. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms

    PubMed Central

    2011-01-01

    Chromite is a mineral with low solubility and is thus resistant to dissolution. The exception is when manganese oxides are available, since they are the only known naturally occurring oxidants for chromite. In the presence of Mn(IV) oxides, Cr(III) will oxidise to Cr(VI), which is more soluble than Cr(III), and thus easier to be removed. Here we report of chromite phenocrysts that are replaced by rhodochrosite (Mn(II) carbonate) in subseafloor basalts from the Koko Seamount, Pacific Ocean, that were drilled and collected during the Ocean Drilling Program (ODP) Leg 197. The mineral succession chromite-rhodochrosite-saponite in the phenocrysts is interpreted as the result of chromite oxidation by manganese oxides. Putative fossilized microorganisms are abundant in the rhodochrosite and we suggest that the oxidation of chromite has been mediated by microbial activity. It has previously been shown in soils and in laboratory experiments that chromium oxidation is indirectly mediated by microbial formation of manganese oxides. Here we suggest a similar process in subseafloor basalts. PMID:21639896

  20. KINETICS AND MECHANISMS OF CHROMIUM(III) OXIDATION AND PRECIPITATION ON MANGANESE OXIDES, IN REAL-TIME AND AT THE

    E-print Network

    Sparks, Donald L.

    KINETICS AND MECHANISMS OF CHROMIUM(III) OXIDATION AND PRECIPITATION ON MANGANESE OXIDES, IN REAL Summer 2010 Copyright 2010 Gautier Landrot All Rights Reserved #12;KINETICS AND MECHANISMS OF CHROMIUM

  1. Manganese

    Integrated Risk Information System (IRIS)

    Manganese ; CASRN 7439 - 96 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  2. Manganese oxide minerals: Crystal structures and economic and environmental significance

    PubMed Central

    Post, Jeffrey E.

    1999-01-01

    Manganese oxide minerals have been used for thousands of years—by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry. PMID:10097056

  3. Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction

    SciTech Connect

    Lee, Ji-Hoon; Kennedy, David W.; Dohnalkova, Alice; Moore, Dean A.; Nachimuthu, Ponnusamy; Reed, Samantha B.; Fredrickson, Jim K.

    2011-12-13

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 produced {gamma}-MnS (rambergite) nanoparticles during the concurrent reduction of MnO{sub 2} and thiosulfate coupled to H{sub 2} oxidation. To investigate effect of direct microbial reduction of MnO{sub 2} on MnS formation, two MR-1 mutants defective in outer membrane c-type cytochromes ({Delta}mtrC/{Delta}omcA and {Delta}mtrC/{Delta}omcA/{Delta}mtrF) were also used and it was determined that direct reduction of MnO{sub 2} was dominant relative to chemical reduction by biogenic sulfide generated from thiosulfate reduction. Although bicarbonate was excluded from the medium, incubations of strain MR-1 with lactate as the electron donor produced MnCO{sub 3} (rhodochrosite) as well as MnS in nearly equivalent amounts as estimated by micro X-ray diffraction (micro-XRD) analysis. It was concluded that carbonate released from lactate metabolism promoted MnCO{sub 3} formation and that Mn(II) mineralogy was strongly affected by carbonate ions even in the presence of abundant sulfide and weakly alkaline conditions expected to favor the precipitation of MnS. Formation of MnS, as determined by a combination of micro-XRD, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction analyses was consistent with equilibrium speciation modeling predictions. Biogenic manganese sulfide may be a manganese sink in the Mn biogeochemical cycle in select environments such as deep anoxic marine basins within the Baltic Sea.

  4. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the spinel Mn3O4) for smaller particle size and in the presence of surface hydration. Chemisorption of water onto anhydrous nanophase Mn2O 3 surfaces promotes rapidly reversible redox phase changes at room temperature as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Water adsorption microcalorimetry (in situ) at room temperature measured the strongly exothermic integral enthalpy of water adsorption (-103.5 kJ/mol) and monitored the energetics of the redox phase transformation. Hydration-driven redox transformation of anhydrous nanophase Mn(III) 2O3, (high surface enthalpy of anhydrous surfaces 1.77 +/- 0.10 J/m2) to Mn(II,III)3O4 (lower surface enthalpy 0.96 +/- 0.08 J/m2) occurred during the first few doses of water vapor. Surface reduction of nanoparticle bixbyite (Mn 2O3) to hausmannite (Mn3O4) occurs under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Layered structure manganese oxides contain alkali or alkaline earth cations and water, are generally fine-grained, and have considerable thermodynamic stability. The surface enthalpies (SE) of layered and tunnel structure complex manganese oxides are significantly lower than those of the binary manganese oxide phases. The SE for hydrous surfaces and overall manganese average oxidation state (AOS) (value in parentheses) are: cryptomelane 0.77 +/- 0.10 J/m 2 (3.78), sodium birnessite 0.69 +/- 0.13 J/m2 (3.56), potassium birnessite 0.55 +/- 0.11 J/m2 (3.52), and calcium birnessite 0.41 +/- 0.11 J/m2 (3.50). Surface enthalpies of hydrous surfaces of the calcium manganese oxide nanosheets are: deltaCa 0.39MnO2.3nH2O 0.75 +/- 0.10 J/m2 (3.89) and deltaCa0.43MnO2.3nH2O 0.57 +/- 0.12 J/m2 (3.68). The surface enthalpy of the complex manganese oxides appears to decrease with decreasing manganese average oxidation state, that is, with greater mixed valence manganese (Mn 3+/4+). Low surface energy suggests loose binding of H2O on the internal and external surfaces and may be critical to catalysis in bo

  5. Uncovering structure-activity relationships in manganese-oxide-based heterogeneous catalysts for efficient water oxidation.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Driess, Matthias

    2015-03-01

    Artificial photosynthesis by harvesting solar light into chemical energy could solve the problems of energy conversion and storage in a sustainable way. In nature, CO2 and H2 O are transformed into carbohydrates by photosynthesis to store the solar energy in chemical bonds and water is oxidized to O2 in the oxygen-evolving center (OEC) of photosystem II (PS II). The OEC contains CaMn4 O5 cluster in which the metals are interconnected through oxido bridges. Inspired by biological systems, manganese-oxide-based catalysts have been synthesized and explored for water oxidation. Structural, functional modeling, and design of the materials have prevailed over the years to achieve an effective and stable catalyst system for water oxidation. Structural flexibility with eg(1) configuration of Mn(III) , mixed valency in manganese, and higher surface area are the main requirements to attain higher efficiency. This Minireview discusses the most recent progress in heterogeneous manganese-oxide-based catalysts for efficient chemical, photochemical, and electrochemical water oxidation as well as the structural requirements for the catalyst to perform actively. PMID:25641823

  6. Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols

    NASA Astrophysics Data System (ADS)

    Adil, Syed F.; Alabbad, Saad; Kuniyil, Mufsir; Khan, Mujeeb; Alwarthan, Abdulrahman; Mohri, Nils; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq Hussain

    2015-02-01

    Vanadia nanoparticles supported on nickel manganese mixed oxides were synthesized by co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as oxidant. It was observed that the calcination temperature and the size of particles play an important role in the catalytic process. The catalyst was evaluated for its oxidation property against aliphatic and aromatic alcohols, which was found to display selectivity towards aromatic alcohols. The samples were characterized by employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, and X-ray photoelectron spectroscopy.

  7. Monte Carlo study of double exchange interaction in manganese oxide

    NASA Astrophysics Data System (ADS)

    Naa, Christian Fredy; Suprijadi, Viridi, Sparisoma; Fasquelle, Didier; Djamal, Mitra

    2015-09-01

    In this paper we study the magnetoresistance properties attributed by double exchange (DE) interaction in manganese oxide by Monte Carlo simulation. We construct a model based on mixed-valence Mn3+ and Mn4+ on the general system of Re2/3Ae1/3MnO3 in two dimensional system. The conduction mechanism is based on probability of eg electrons hopping from Mn3+ to Mn4+. The resistivity dependence on temperature and the external magnetic field are presented and the validity with related experimental results are discussed. We use the resistivity power law to fit our data on metallic region and basic activated behavior on insulator region. On metallic region, we found our result agree well with the quantum theory of DE interaction. From general arguments, we found our simulation agree qualitatively with experimental results.

  8. Evidence for microbiological manganese oxidation in the river Tamar Estuary, South West England

    NASA Astrophysics Data System (ADS)

    Vojak, Peter W. L.; Edwards, Clive; Jones, Martin V.

    1985-06-01

    Water samples from the Tamar Estuary oxidized manganese when supplemented with Mn 2+ (2 mgl -1). The rates of oxidation were depressed in the presence of various metabolic inhibitors. The effect of Mn 2+ and temperature on the rate of manganese oxidation suggested that a biological process was largely responsible for converting Mn 2+ to Mn 4+. Rates of manganese oxidation were much higher in freshwater (3·32 ?gl -1 h -1 in water containing 30 mgl -1 of suspended matter) than in saline water (0·7 ?gl -1 h -1 in water of salinity 32‰) containing the same amount of particulate matter. The rate of manganese oxidation was proportional to the particulate load (up to 100 mgl -1 particulates).

  9. Synthesis and characterization of cobalt-manganese oxides

    NASA Astrophysics Data System (ADS)

    Valencia, J.; Arias, N. P.; Giraldo, O.; Rosales-Rivera, A.

    2012-08-01

    Cobalt doped/un-doped manganese oxides materials were synthesized at various doping rates by soft chemical reactions, oxidation-reduction method, which allows generating a metal-mixed oxide. The synthesized materials were characterized using several techniques including chemical analysis, X-rays diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The chemical analysis confirmed the presence of cobalt in the samples. XRD patterns reveal mainly a spinel-like structure and SEM micrographs exhibited morphology with fine aggregate of particles. TGA profiles showed weight loss due to loss of water in a first step, followed by a loss of oxygen from the lattice associated with partial reduction of Mn4+ to Mn3+. VSM was used to measure the magnetization as a function of the applied magnetic field at temperatures T=50 and 300 K. Different magnetic behaviors were observed when cobalt percentage changed in the samples. These behaviors are considered to be related to the size of the particles and composition of the materials. Higher coercive field and lesser magnetization were observed for the sample with higher cobalt content.

  10. Unilamellar nanosheet of layered manganese cobalt nickel oxide and its heterolayered film with polycations.

    PubMed

    Oh, Eun-Jin; Kim, Tae Woo; Lee, Kyung Min; Song, Min-Sun; Jee, Ah-Young; Lim, Seung Tae; Ha, Hyung-Wook; Lee, Minyung; Choy, Jin-Ho; Hwang, Seong-Ju

    2010-08-24

    The exfoliation of layered Li[Mn(1/3)Co(1/3)Ni(1/3)]O(2) into individual monolayers could be achieved through the intercalation of quaternary tetramethylammonium (TMA(+)) ions into protonated metal oxide. An effective exfoliation occurred when the TMA(+)/H(+) ratio was 0.5-50. Reactions outside this range produced no colloidal suspension, but all the manganese cobalt nickel oxides precipitated. Atomic force microscopy and transmission electron microscopy clearly demonstrated that exfoliated manganese cobalt nickel oxide nanosheets have a nanometer-level thickness, underscoring the formation of unilamellar nanosheets. The maintenance of the hexagonal atomic arrangement of the manganese cobalt nickel oxide layer upon the exfoliation was confirmed by selected area electron diffraction analysis. According to diffuse reflectance ultraviolet--visible spectroscopy, the exfoliated manganese cobalt nickel oxides displayed distinct absorption peaks at approximately 354 and approximately 480 nm corresponding to the d-d transitions of octahedral metal ions, which contrasted with the featureless spectrum of the pristine metal oxide. In the light of zeta potential data showing the negative surface charge of manganese cobalt nickel oxide nanosheets, a heterolayered film of manganese cobalt nickel oxide and conductive polymers could be prepared through the successive coating process with colloidal suspension and polycations. The UV--vis and X-ray diffraction studies verified the layer-by-layer ordered structure of the obtained heterolayered film, respectively. PMID:20731429

  11. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  12. Commercialization of cryptomelane-type manganese oxide (OMS-2) nanowire paper oil sorbent

    E-print Network

    Soo, Haw Yun

    2007-01-01

    Cryptomelane-type Manganese oxide (OMS-2, a group of Octahedral Molecular Sieves) nanowire paper exhibits interesting properties: reversible wettability, oleophilic while being hydrophobic, and high thermal stability. These ...

  13. ENVR Dionysios Dionysiou Wednesday, August 22, 2012 261 -Arsenic mobilization in the critical zone: Oxidation by manganese oxide minerals

    E-print Network

    Sparks, Donald L.

    : Oxidation by manganese oxide minerals Jason S. Fischel1, fischelj@udel.edu, Matthew H. Fischel1, Brandon J, biogenic and abiotic. Five Mn oxide minerals were reacted under identical conditions with equal reactivity, due to passivation. Understanding the reactivity of naturally occurring Mn oxide minerals

  14. Electrochromic properties of manganese oxide thin films prepared by chemical vapor deposition

    SciTech Connect

    Maruyama, Toshiro; Osaki, Yoshinori

    1995-09-01

    Electrochromic manganese oxide thin films were prepared by chemical vapor deposition. The source material was manganese (III) acetylacetonate. Transparent Mn{sub 3}O{sub 4} thin films were obtained at a substrate temperature above 250 C. Oxidation and reduction of the films in a 0.3 M LiClO{sub 4} propylene carbonate solution resulted in desirable changes in optical absorption. Coulometry indicated that the coloration efficiency was 6.03 cm{sup 2}/C.

  15. Significant role of Mn(III) sites in eg(1) configuration in manganese oxide catalysts for efficient artificial water oxidation.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias

    2015-11-01

    Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ?-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation. PMID:25542875

  16. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae landslide southwest of Oahu has yielded samples with the greatest manganese-iron oxide crusts (9.5 mm thick) and therefore apparently represents the oldest submarine material yet found in the study area. The submarine volcanic field 100 km southwest of Oahu is apparently younger than the Waianae landslide. ?? 2004 Geological Society of America.

  17. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Yu, Yingchun

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  18. In situ synthesis of mixed-valent manganese oxide nanocrystals: an in situ synchrotron X-ray diffraction study.

    PubMed

    Shen, Xiong-Fei; Ding, Yun-Shuang; Hanson, Jonathan C; Aindow, Mark; Suib, Steven L

    2006-04-12

    Phase transformations of materials can be studied by in situ synchrotron X-ray diffraction. However, most reported in situ synchrotron XRD studies focus on solid state/gel systems by measuring phase/structure changes during application of pressure or heat. Phase transformations during material synthesis and their applications, especially in wet chemistry processes with different media, have not drawn much attention. Here, using manganese oxides as examples, we report the successful characterization of phase transformations in in situ hydrothermal synthesis conditions by the in situ synchrotron XRD method using a quartz/sapphire capillary tube as the synthesis reactor. The results were used for better design of materials with controlled structures and properties. This method can be generally used for synthesis of manganese oxides as well as for in situ characterization of other material syntheses using hydrothermal, sol-gel, and other methods. In addition, catalytic processes in liquid-solid, gas-solid, and solid-solid systems can also be studied in such an in situ way so that catalytic mechanisms can be better understood and catalyst synthesis and catalytic processes can be optimized. PMID:16594683

  19. Photosynthetic water oxidation: insights from manganese model chemistry.

    PubMed

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(?-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2?-terpyridine), a mixed-valent di-?-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the ?-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for ?-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond-forming mechanism. Comparison between the OEC and the Mn-terpy dimer indicates that challenges remain in the development of synthetic Mn water-oxidation catalysts. These include redox leveling to couple multielectron reactions with one-electron steps, avoiding labile Mn(II) species during the catalytic cycle, and protecting the catalyst active site from undesired side reactions. As the first example of a functional manganese O2-evolution catalyst, the Mn-terpy dimer exemplifies the interrelatedness of biomimetic chemistry with biophysical studies. The design of functional model complexes enriches the study of the natural photosynthetic system, while biology continues to provide inspiration for artificial photosynthetic technologies to meet global energy demand. PMID:25730258

  20. Surfactant-mediated electrodeposition of a water-oxidizing manganese oxide.

    PubMed

    Osowiecki, Wojciech T; Sheehan, Stafford W; Young, Karin J; Durrell, Alec C; Mercado, Brandon Q; Brudvig, Gary W

    2015-10-14

    Splitting water into hydrogen and oxygen is one of the most promising ways of storing energy from intermittent, renewable sources in the future. Toward this goal, development of inexpensive, stable, and non-toxic catalysts for water oxidation is crucial. We report that the electrodeposition of manganese oxide in the presence of sodium dodecyl sulfate (SDS) produces a material that is highly active for electrocatalytic water oxidation at pH near 7 and remains stable for over 24 hours of sustained electrolysis. Clark electrode measurements demonstrate more than 95% Faradaic efficiency for oxygen evolution after an initial charging period. We found that catalytic performance was optimized in films prepared by electrodeposition using a precursor solution containing moderate concentration of substrates, namely 25 mM Mn(2+) and 25 mM SDS. Microstructure and elemental analyses revealed that the deposited material, a mixed-phase manganese oxide, is structurally similar to materials used for electrochemical capacitors and batteries, drawing a parallel between highly studied cathode materials for rechargeable batteries and heterogeneous catalysts for water oxidation. PMID:26350519

  1. Distribution of manganese species in an oxidative dimerization reaction of a bis-terpyridine mononuclear manganese (II) complex and their heterogeneous water oxidation activities.

    PubMed

    Takahashi, Kosuke; Sato, Taisei; Yamazaki, Hirosato; Yagi, Masayuki

    2015-11-01

    Heterogeneous water oxidation catalyses were studied as a synthetic model of oxygen evolving complex (OEC) in photosynthesis using mica adsorbing various manganese species. Distribution of manganese species formed in the oxidative dimerization reaction of [Mn(II)(terpy)2](2+) (terpy=2,2':6',2?-terpyridine) (1') with various oxidants in water was revealed. 1' was stoichiometrically oxidized to form di-?-oxo dinuclear manganese complex, [(OH2)(terpy)Mn(III)(?-O)2Mn(IV)(terpy)(OH2)](3+) (1) by KMnO4 as an oxidant. When Oxone and Ce(IV) oxidants were used, the further oxidation of 1 to [(OH2)(terpy)Mn(IV)(?-O)2Mn(IV)(terpy)(OH2)](4+) (2) was observed after the oxidative dimerization reaction of 1'. The mica adsorbates with various composition of 1', 1 and 2 were prepared by adding mica suspension to the various oxidant-treated solutions followed by filtration. The heterogeneous water oxidation catalysis by the mica adsorbates was examined using a Ce(IV) oxidant. The observed catalytic activity of the mica adsorbates corresponded to a content of 1 (1ads) adsorbed on mica for KMnO4- and Oxone-treated systems, indicating that 1' (1'ads) and 2 (2ads) adsorbed on mica do not work for the catalysis. The kinetic analysis suggested that 1ads works for the catalysis through cooperation with adjacent 1ads or 2ads, meaning that 2ads assists the cooperative catalysis by 1ads though 2ads is not able to work for the catalysis alone. For the Ce(IV)-treated system, O2 evolution was hardly observed although the sufficient amount of 1ads was contained in the mica adsorbates. This was explained by the impeded penetration of Ce(IV) ions (as an oxidant for water oxidation) into mica by Ce(3+) cations (generated in oxidative dimerization of 1') co-adsorbed with 1ads. PMID:25935510

  2. Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water.

    PubMed

    Wang, Jinlong; Zhang, Pengyi; Li, Jinge; Jiang, Chuanjia; Yunus, Rizwangul; Kim, Jeonghyun

    2015-10-20

    Layered manganese oxide, i.e., birnessite was prepared via the reaction of potassium permanganate with ammonium oxalate. The water content in the birnessite was adjusted by drying/calcining the samples at various temperatures (30 °C, 100 °C, 200 °C, 300 °C, and 500 °C). Thermogravimetry-mass spectroscopy showed three types of water released from birnessite, which can be ascribed to physically adsorbed H2O, interlayer H2O and hydroxyl, respectively. The activity of birnessite for formaldehyde oxidation was positively associated with its water content, i.e., the higher the water content, the better activity it has. In-situ DRIFTS and step scanning XRD analysis indicate that adsorbed formaldehyde, which is promoted by bonded water via hydrogen bonding, is transformed into formate and carbonate with the consumption of hydroxyl and bonded water. Both bonded water and water in air can compensate the consumed hydroxyl groups to sustain the mineralization of formaldehyde at room temperature. In addition, water in air stimulates the desorption of carbonate via water competitive adsorption, and accordingly the birnessite recovers its activity. This investigation elucidated the role of water in oxidizing formaldehyde by layered manganese oxides at room temperature, which may be helpful for the development of more efficient materials. PMID:26426569

  3. Manganese Based Oxidative Technologies For Water/Wastewater Treatment 

    E-print Network

    Desai, Ishan

    2013-08-27

    Manganese is a commonly occurring mineral found in soil and sediments that takes part in chemical reactions in groundwater and soil systems. It plays a significant role in controlling the environmental fate and transport ...

  4. Porous manganese oxide synthesized through organic-electrolyte templates and their catalytic applications

    SciTech Connect

    Zhang Wei; Li Jiangying; Du Xuemin; Zhang Zhicheng

    2009-11-15

    We report a facile approach to the preparation of porous manganese oxide materials by the organic-electrolyte templates based on strategy. The final products are thoroughly characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and Brunauer-Emmett-Teller (BET) techniques. The results reveal that porosity (pore size and distribution, surface area) of these manganese oxides has strong relationship with the templates used, which implies a simple way to obtain a series of porous materials. By comparing the catalytic effects of these manganese oxides in oxidation of indene and benzyl alcohol, we find that the pore size and distribution are also crucial to the catalytic properties of these porous materials.

  5. Adsorption of syndiotactic and isotactic poly(2-vinylpyridine 1-oxide) on quartz surface.

    PubMed Central

    Dobreva, M; Dancheva, N; Holt, P F

    1975-01-01

    Poly(2-vinylpyridine 1-oxide) inhibits the cytotoxic effects of quartz in cell cultures but the syndiotactic polymer behaves differently from the isotactic and atactic polymers. In each case approximately 1-0 mg/m2 of the polymer represents the adsorption maximum. No difference has been found between the adsorption isotherms of the stereoisomeric polymers or the stability of the adsorbed layers. The layers are not removed by repeated washing. The observations do not support the theory that the poly(2-vinylpyridine 1-oxide) is active because it coats the quartz surface. PMID:168917

  6. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    USGS Publications Warehouse

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  7. Supporting information for Kinetics of Chromium(III) Oxidation by Manganese(IV) Oxides Using Quick Scanning X-Ray Absorption Fine Structure Spectroscopy (Q-XAFS)

    E-print Network

    Sparks, Donald L.

    S-1 Supporting information for Kinetics of Chromium(III) Oxidation by Manganese(IV) Oxides Using Summary of supporting information: Page S-1: Figure S1: HMO XRD pattern Page S-2: Figure S2- Chromium pre: Literature cited Figure S1: XRD pattern of hydrous manganese oxide. #12;S-2 Figure S2- Chromium pre

  8. Adhesion enhancement of indium tin oxide (ITO) coated quartz optical fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yihua; Liu, Jing; Wu, Xu; Yang, Bin

    2014-07-01

    Transparent conductive indium tin oxide (ITO) film was prepared on optical fiber through a multi-step sol-gel process. The influence of annealing temperature on the adhesion of ITO coated optical fibers was studied. Different surface treatments were applied to improve the adhesion between ITO film and quartz optical fiber. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), UV-vis spectrophotometer and Avometer were used to characterize the morphology, crystal structure and photo-electric properties. A thermal shock test was used to evaluate the adhesion. The result shows that the adhesion between ITO film and quartz optical fiber can be strongly influenced by the annealing process, and optimal adhesion can be acquired when annealing temperature is 500 °C. Surface treatments of ultrasonic cleaning and the application of surface-active agent have effectively enhanced the adhesion and photo-electric properties of indium tin oxide film coated quartz optical fiber.

  9. THE EFFECTS OF IRON(II) ON ARSENIC(III) OXIDATION AND ARSENIC SORPTION/DESORPTION ON MANGANESE OXIDES

    E-print Network

    Sparks, Donald L.

    THE EFFECTS OF IRON(II) ON ARSENIC(III) OXIDATION AND ARSENIC SORPTION/DESORPTION ON MANGANESE © 2014 Yun Wu All Rights Reserved #12;THE EFFECTS OF IRON(II) ON ARSENIC(III) OXIDATION AND ARSENIC, Caroline Golt on arsenic speciation and UD Soil Test Lab. I thank all current and previous members

  10. Strontium and Actinides Removal from Savannah River Site Actual Waste Samples by Freshly Precipitated Manganese Oxide

    SciTech Connect

    Barnes, M.J.

    2002-10-18

    The authors investigated the performance of freshly precipitated manganese oxide and monosodium titanate (MST) for the removal of strontium (Sr) and actinides from actual high-level waste. Manganese oxide precipitation occurs upon addition of a reductant such as formate (HCO2-) or peroxide (H2O2) to a waste solution containing permanganate (MnO4-). An addition of non-radioactive strontium typically precedes the MnO4- and reductant addition, which serves primarily to isotopically dilute the strontium-90 (90Sr) present in the waste. Tests utilized a Tank 37H/44F composite waste solution. Personnel significantly increased the concentration of actinides in the waste by the addition of acidic americium/curium solution (F-Canyon Tank 17.1 solution), which contained a significant quantity of plutonium (Pu), and neptunium-237 (237Np) stock solution. Initial tests examined three manganese oxide treatment options.

  11. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria.

    PubMed

    Xing, Shengtao; Lu, Xiaoyang; Liu, Jia; Zhu, Lin; Ma, Zichuan; Wu, Yinsu

    2016-02-01

    Manganese oxide supported on mesoporous ceria was prepared and used as catalyst for catalytic ozonation of sulfosalicylic acid (SA). Characterization results indicated that the manganese oxide was mostly incorporated into the pores of ceria. The synthesized catalyst exhibited high activity and stability for the mineralization of SA in aqueous solution by ozone, and more than 95% of total organic carbon was removed in 30 min under various conditions. Mechanism studies indicated that SA was mainly degraded by ozone molecules, and hydroxyl radical reaction played an important role for the degradation of its ozonation products (small molecular organic acids). The manganese oxide in the pores of CeO2 improved the adsorption of small molecular organic acids and the generation of hydroxyl radicals from ozone decomposition, resulting in high TOC removal efficiency. PMID:26344143

  12. Cobalt Alters the Growth of a Manganese Oxide Film Young-Shin Jun and Scot T. Martin*

    E-print Network

    Cobalt Alters the Growth of a Manganese Oxide Film Young-Shin Jun and Scot T. Martin* Di, the effects of aqueous cobalt(II) on manganese oxide film growth are studied by atomic force microscopy thickness and rounded tops. The islands readily grow over steps. Cobalt ions

  13. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    ERIC Educational Resources Information Center

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  14. Prophylactic use of polyvinylpyridine-N-oxide (PVNO) in baboons exposed to quartz dust

    SciTech Connect

    Goldstein, B.; Rendall, R.E.G.

    1987-04-01

    Twelve baboons were exposed to a quartz dust cloud. Four of these were also given polyvinylpyridine-N-oxide (PVNO) by aerosol and four received PVNO by aerosol and injection. A prophylactic effect was demonstrated during the course of treatment, but when treatment stopped the silicosis progressed to the same degree of severity as in the untreated animals.

  15. Hyperthermia HeLa cell treatment with silica coated manganese oxide nanoparticles

    E-print Network

    Villanueva, A; Alonso, JM; Rueda, T; Martínez, A; Crespo, P; Morales, MP; Fernandez, MA Gonzalez; Valdes, J; Rivero, G

    2009-01-01

    HeLa tumour cells incubated with ferromagnetic nanoparticles of manganese oxide perovskite La0.56(SrCa)0.22MnO3 were treated with a high frequency alternating magnetic field. The particles were previously coated with silica to improve their biocompatibility. The control assays made with HeLa tumour cells showed that cell survival and growth rate were not affected by the particle internalization in cells, or by the electromagnetic field on cells without nanoparticles. The application of an alternating electromagnetic field to cells incubated with this silica coated manganese oxide induced a significant cellular damage that finally lead to cell death by an apoptotic mechanism.

  16. Manganese oxide helices, rings, strands, and films, and methods for their preparation

    DOEpatents

    Suib, Steven L. (Storrs, CT); Giraldo, Oscar (Storrs, CT); Marquez, Manuel (Wheeling, IL); Brock, Stephanie (Detroit, MI)

    2003-01-07

    Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.

  17. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona

    USGS Publications Warehouse

    Kay, J.T.; Conklin, M.H.; Fuller, C.C.; O'Day, P. A.

    2001-01-01

    A series of column experiments was conducted using manganese oxide coated sediments collected from the hyporheic zone in Pinal Creek (AZ), a metal-contaminated stream, to study the uptake and retention of Mn, Ni, and Co. Experimental variables included the absence (abiotic) and presence (biotic) of active Mn-oxidizing bacteria, the absence and presence of dissolved Mn, and sediment manganese oxide content. Uptake of Mn under biotic conditions was between 8 and 39% higher than under abiotic conditions. Continuous uptake of Mn due to biotic oxidation was evident from extraction of column sediments. Manganese uptake is hypothesized to initially occur as adsorption, which led to subsequent surface and/or microbial oxidation. Complete breakthrough of Ni within 100 pore volumes indicated no process of continuous uptake and was modeled as an equilibrium adsorption process. Nickel uptake in the presence of dissolved Mn was 67-100% reversible. Sediment extractions suggest that Ni uptake occurred through weak and strong adsorption. Continuous uptake of cobalt increased with sediment manganese oxide content, and Co uptake was up to 75% greater under biotic than abiotic conditions. Cobalt uptake was controlled by both existing and newly formed manganese oxides. Only a small amount of Co uptake was reversible (10-25%). XANES spectral analysis indicated that most Co(II) was oxidized to Co(III) and probably incorporated structurally into manganese oxides. Although manganese oxides were the primary phase controlling uptake and retention of Mn, Ni, and Co, the mechanisms varied among the metals.

  18. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  19. Surfactant manganese complexes as models for the oxidation of water

    SciTech Connect

    Wohlgemuth, R.; Otvos, J.W.; Calvin, M.

    1984-02-01

    Surfactant manganese complexes have been studied spectroscopically and electrochemically as models for the catalysts involved in the photooxidation of water to produce oxygen. Evidence has been obtained for the participation of the suggested redox cycle Mn/sup II/ to Mn/sup III/ to Mn/sup IV/ and back to Mn/sup II/ with the evolution of oxygen.

  20. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    USGS Publications Warehouse

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  1. Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide.

    PubMed

    Taujale, Saru; Zhang, Huichun

    2012-03-01

    Manganese oxides typically exist as mixtures with other metal oxides in soil-water environments; however, information is only available on their redox activity as single oxides. To bridge this gap, we examined three binary oxide mixtures containing MnO(2) and a secondary metal oxide (Al(2)O(3), SiO(2) or TiO(2)). The goal was to understand how these secondary oxides affect the oxidative reactivity of MnO(2). SEM images suggest significant heteroaggregation between Al(2)O(3) and MnO(2) and to a lesser extent between SiO(2)/TiO(2) and MnO(2). Using triclosan and chlorophene as probe compounds, pseudofirst-order kinetic results showed that Al(2)O(3) had the strongest inhibitory effect on MnO(2) reactivity, followed by SiO(2) and then TiO(2). Al(3+) ion or soluble SiO(2) had comparable inhibitory effects as Al(2)O(3) or SiO(2), indicating the dominant inhibitory mechanism was surface complexation/precipitation of Al/Si species on MnO(2) surfaces. TiO(2) inhibited MnO(2) reactivity only when a limited amount of triclosan was present. Due to strong adsorption and slow desorption of triclosan by TiO(2), precursor-complex formation between triclosan and MnO(2) was much slower and likely became the new rate-limiting step (as opposed to electron transfer in all other cases). These mechanisms can also explain the observed adsorption behavior of triclosan by the binary oxide mixtures and single oxides. PMID:22309023

  2. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Chapligin, Bernhard; Picard, Aude; Meyer, Hanno; Fischer, Cornelius; Rettenwander, Daniel; Amthauer, Georg; Vogt, Christoph; Aiello, Ivano

    2015-04-01

    The mechanisms of early diagenetic quartz formation under low-temperature conditions are still poorly understood. We studied lithified cherts consisting of microcrystalline quartz recovered from ODP Site 1226 in the Eastern Equatorial Pacific. The cherts occur near the base of a 420-m-thick Miocene-Holocene sequence within unlithified nannofossil and diatom ooze. Palaeo-temperatures reconstructed from ?18O values in the cherts are near to present porewater temperatures and a sharp depletion in dissolved silica occurs around 385 mbsf indicating that silica precipitation is still ongoing. Also a deep iron oxidation front occurs at the same depth, which is caused by upward diffusing nitrate from an oxic seawater aquifer in the underlying basaltic crust. Sequential iron extraction and analysis of the X-ray absorption near-edge structure (XANES) revealed that iron in the cherts predominantly occurs as illite and amorphous iron oxide, whereas iron in the nannofossil and diatom ooze occurs mainly as smectites. Mössbauer spectroscopy confirmed that the illite iron in the cherts is largely oxidized. A possible mechanisms that may be operative is quartz precipitation initiated by adsorption of silica to freshly precipitated iron oxides. The decrease in porewater silica concentration below opal-A and opal-CT saturation then allows for the precipitation of the thermodynamically more stable phase: quartz. We suggest that the formation of early-diagenetic chert at iron oxidation fronts is an important process in suboxic zones of silica-rich sediments. The largest iron oxidation front ever occurred during the great oxidation event ca. 2.5 Ga ago, when large amounts of iron and chert beds were deposited.

  3. Growth and Dissolution of Iron and Manganese Oxide Films

    SciTech Connect

    Scot T. Martin

    2008-12-22

    Growth and dissolution of Fe and Mn oxide films are key regulators of the fate and transport of heavy metals in the environment, especially during changing seasonal conditions of pH and dissolved oxygen. The Fe and Mn are present at much higher concentrations than the heavy metals, and, when Fe and Mn precipitate as oxide films, heavy metals surface adsorb or co-precipitate and are thus essentially immobilized. Conversely, when the Fe and Mn oxide films dissolve, the heavy metals are released to aqueous solution and are thus mobilized for transport. Therefore, understanding the dynamics and properties of Fe and Mn oxide films and thus on the uptake and release of heavy metals is critically important to any attempt to develop mechanistic, quantitative models of the fate, transport, and bioavailablity of heavy metals. A primary capability developed in our earlier work was the ability to grow manganese oxide (MnO{sub x}) films on rhodochrosite (MnCO{sub 3}) substrate in presence of dissolved oxygen under mild alkaline conditions. The morphology of the films was characterized using contact-mode atomic force microscopy. The initial growth began by heteroepitaxial nucleation. The resulting films had maximum heights of 1.5 to 2 nm as a result of thermodynamic constraints. Over the three past years, we have investigated the effects of MnO{sub x} growth on the interactions of MnCO{sub 3} with charged ions and microorganisms, as regulated by the surface electrical properties of the mineral. In 2006, we demonstrated that MnO{sub x} growth could induce interfacial repulsion and surface adhesion on the otherwise neutral MnCO{sub 3} substrate under environmental conditions. Using force-volume microscopy (FVM), we measured the interfacial and adhesive forces on a MnO{sub x}/MnCO{sub 3} surface with a negatively charged silicon nitride tip in a 10-mM NaNO3 solution at pH 7.4. The interfacial force and surface adhesion of MnOx were approximately 40 pN and 600 pN, respectively, whereas those of MnCO{sub 3} were essentially zero. The force differences between MnO{sub x} and MnCO{sub 3} suggest that oxide film growth can focus adsorbates to certain parts of the surface and thereby templating a heterogeneous layout of them. We suspected that the force differences were in part due to the differences in surface electrical properties. In 2007, we investigated two important electrical properties of MnO{sub x} and MnCO{sub 3} surfaces, namely surface potential and ion mobility. Surface potential is a composite quantity that can be linked to the local lattice structure of the reconstructed surface and the adsorption of water layers. The mobile surface ions formed by dissolution can also contribute to surface potential. Using Kelvin probe force microscopy (KPFM) and scanning polarization force microscopy (SPFM), we found that MnOx possessed excess surface potentials of over +200 mV in humid nitrogen and the excess surface potential decreased with increasing relative humidity (i.e., increasing adsorbed water layers on the mineral surface). The dependence of the excess surface potential was attributed to the change of the contributions from mobile ions. These results supported our earlier hypothesis that MnO{sub x} and MnCO{sub 3} had different surface electrical properties. In the third year, we systematically characterized that the change of the electrical double layer (EDL) structure of MnCO{sub 3} surface due to MnO{sub x} growth in aqueous solution and its dependence on pH. The structure of the electrical double layer determines the electrostatic interactions between the mineral surface and charged adsorbates. As described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the electrostatic force, together with van der Waals interaction, regulates surface adsorption and bacterial attachment. Once adsorbates establish contact with the surface, they must resist hydraulic shear forces through surface adhesion. The adhesion of mineral surfaces is also affected by their electrostatic interactions with adsorbates. To probe the EDL structure, we ap

  4. Influence of synthesis conditions on the electrochemical properties of nanostructured amorphous manganese oxide cryogels

    NASA Astrophysics Data System (ADS)

    Yang, Jingsi; Xu, Jun John

    Amorphous manganese oxides have received increasing attention in recent years as intercalation cathodes for rechargeable lithium batteries. The sol-gel method is a versatile method for achieving nanostructured amorphous oxides. In this paper, two different sol-gel routes are investigated, where nanostructured amorphous manganese oxide cryogels are obtained via freeze drying Mn(IV) oxide hydrogels formed in situ. In one route the hydrogels are formed by reaction between a solution of sodium permanganate and a solution of disodium fumarate, and in the other route by reaction between a solution of sodium permanganate and solid fumaric acid. Highly homogeneous monolithic manganese oxide hydrogels are obtained from both synthesis routes with precursor concentrations between 0.1 and 0.2 M. The freeze drying method proves to be an efficient method for obtaining nanostructured amorphous manganese oxide cryogels out of the hydrogels. Depending on the synthesis conditions of the hydrogels, the resultant cryogels can yield very high specific capacities for lithium intercalation and excellent rate performance. The cryogel with the best performance exhibits 289 mAh/g at a C/100 rate and 174 mAh/g at a 2 C rate. Strong dependence of electrochemical properties of the cryogels on the synthesis conditions of the parent hydrogels has been observed. The different electrochemical properties are believed to be due to different surface areas and local structures of the cryogels derived from hydrogels synthesized under different conditions. This strong dependence gives rise to the possibility of achieving promising intercalation materials through tailoring the surface area and the local structure of amorphous manganese oxides by adjusting sol-gel synthesis conditions.

  5. The kinetics of iodide oxidation by the manganese oxide mineral birnessite

    USGS Publications Warehouse

    Fox, P.M.; Davis, J.A.; Luther, G. W., III

    2009-01-01

    The kinetics of iodide (I-) and molecular iodine (I2) oxidation by the manganese oxide mineral birnessite (??-MnO2) was investigated over the pH range 4.5-6.25. I- oxidation to iodate (IO3-) proceeded as a two-step reaction through an I2 intermediate. The rate of the reaction varied with both pH and birnessite concentration, with faster oxidation occurring at lower pH and higher birnessite concentration. The disappearance of I- from solution was first order with respect to I- concentration, pH, and birnessite concentration, such that -d[I-]/dt = k[I-][H+][MnO2], where k, the third order rate constant, is equal to 1.08 ?? 0.06 ?? 107 M-2 h-1. The data are consistent with the formation of an inner sphere I- surface complex as the first step of the reaction, and the adsorption of I- exhibited significant pH dependence. Both I2, and to a lesser extent, IO3- sorbed to birnessite. The results indicate that iodine transport in mildly acidic groundwater systems may not be conservative. Because of the higher adsorption of the oxidized I species I2 and IO3-, as well as the biophilic nature of I2, redox transformations of iodine must be taken into account when predicting I transport in aquifers and watersheds.

  6. Experimental evaluation of the effects of quench rate and quartz surface area on homogeneous mercury oxidation

    SciTech Connect

    Andrew Fry; Brydger Cauch; Geoffrey D. Silcox; JoAnn S. Lighty; Constance L. Senior

    2007-07-01

    This paper presents a mercury oxidation data set suitable for validation of fundamental kinetic models of mercury chemistry and for mechanism development. Experimental facilities include a mercury reactor fitted with a 300-W, quartz-glass burner and a quartz reaction chamber. While operated with a temperature profile representative of a typical boiler, a residence time of 6 s was achieved. Participating reacting species (chlorine, mercury) were introduced through the burner to produce a radical pool representative of real combustion systems. Speciated mercury measurements were performed using a Tekran 2537A Analyzer coupled with a conditioning system. Homogeneous mercury reactions involving chlorine have been investigated under two different temperature profiles producing quench rates of -210 K/s and -440 K/s. The larger quench rate produced 52% greater total oxidation than the lower quench at chlorine concentrations of 200 ppm. The effect of reactor surface area on oxidation was also investigated. The quartz surfaces interacted with mercury only in the presence of chlorine and their overall effect was to weakly inhibit oxidation. The extent of oxidation was predicted using a detailed kinetic model. The model predicted the effects of quench rate and chlorine concentration shown in experimentation. 12 refs., 5 figs., 3 tabs.

  7. The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Ho?y?ska, Ma?gorzata; Shen, Jian-Ren; Allakhverdiev, Suleyman I; Allakhverdiev, Suleyman

    2015-12-01

    Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 2 (18) O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides. PMID:25701552

  8. Organ weight changes in mice after long-term inhalation exposure to manganese oxides nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeman, T.; Buchtová, M.; Do?ekal, B.; Míšek, I.; Navrátil, J.; Mikuška, P.; Šerý, O.; Ve?e?a, Z.

    2015-05-01

    Recently, it has been proven that manganese from inhaled particles of manganese compounds can accumulate in the internal organs of laboratory animals. Nevertheless, there were only a few researches dealing with changes in body morphology induced by inhalation of these particles, even though results of some studies indicate existence of such changes. The aim of our research was to assess the effect of inhaled manganese oxides nanoparticles on weight of internal organs. For this purpose a long-term inhalation experiment on laboratory mice was performed, during which the mice were exposed to MnO.Mn2O3 nanoparticles in concentration 2 × 106 particles/cm3 for 17 weeks, 24 hours a day, 7 days a week. Manganese oxides nanoparticles were synthesized continuously via aerosol route in a hot wall tube flow reactor using thermal decomposition of metal organic precursor manganese(II)acetylacetonate in the flow tube reactor at temperature 750 °C in the presence of 30 vol% of oxygen. It was proven that inhaled nanoparticles can influence the weight of internal organs of mice. Moreover, it was discovered that the resulting change in weight of selected organs is disproportional. The mice from the experimental group had statistically significantly lighter kidneys, liver and spleen and heavier pancreas compared to the mice from the control group.

  9. Quartz and Hydrous Iron Oxides from the Bee Bluff Structure of South Texas

    NASA Astrophysics Data System (ADS)

    Graham, R. A.; Martin, M.; Thadhani, N. N.; Morosin, B.

    2006-07-01

    There is substantial information showing that the Bee Bluff structure is an impact site and that a residual crater can be identified. The thin hard cap of Carrizo Sandstone, Indio fm calcareous silt and a thin layer of iron-rich siltstone leads to impact processes in which the high pressure release wave proceeds promptly upward leading to a trapping of metamorphic products at the impact interface, a `bottom-up' pressure release. Release of water from goethite binder in the sandstone and from the iron-rich siltstone results in supersaturated steam in mixtures with iron and quartz compounds. Samples with quartz and hydrous iron oxide features are examined with optical microscopy, SEM, EDX and XRD. A quartz grain is found with a well defined PDF set. There is widespread amorphous quartz including lechatleriete. Nanocrystals of ?-goethite in the acicular form are common. A condensation sphere from the `Uvalde Crater Rosetta Stone' shows a complex mixture of hematite, goethite, and alpha quartz with a trace of trydimite. Numerous samples are yet to be analyzed. The crater appears to have features that can serve as an Earth analog to Mars craters. A companion paper in the present proceedings summarizes prior work, adds new site detail, reports impact-loading analysis, and describes overall features of impactite samples from the site.

  10. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    E-print Network

    balance Judson W. Harvey Water Resources Division, U.S. Geological Survey, Reston, Virginia Christopher C. Fuller Water Resources Division, U.S. Geological Survey, Menlo Park, California Abstract. We determined treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative

  11. SERUM CHEMISTRIES OF COTURNIX JAPONICA GIVEN DIETARY MANGANESE OXIDE (MN3O4)

    EPA Science Inventory

    Plasma creatinine and inorganic phosphorus were increased in manganese oxide (Mn3O4)-treated adult male Coturnix quail, but BUN, BUN/creatinine ratio, uric acid, and total calcium were decreased. 2. Serum enzymes (alkaline phosphatase glutamic oxaloacetic transaminase, glutamic p...

  12. IMPACT OF WATER CHEMISTRY ON MANGANESE REMOVAL DURING OXIDATION/FILTRATION TREATMENT

    EPA Science Inventory

    This is a poster showing the purpose and setup of our pilot plant experiments with manganese filtration. The focus is on the differences, effectiveness, and problems with using chlorine and potassium permanganate in oxidation/filtration. The poster will show the results and findi...

  13. Nanostructural evolution from nanosheets to one-dimensional nanoparticles for manganese oxide

    SciTech Connect

    Pan, Hongmei; Kong, Xingang; Wen, Puhong; Kitayama, Tomonori; Feng, Qi

    2012-09-15

    Highlights: ? Nanosheets were transformed to other one-dimensional nanoparticles. ? Nanofibers, nanotubes, nanoribbons, and nanobelts were obtained. ? Nanoparticle morphology can be controlled with organic amines. ? Organic amines act as morphology directing agent. -- Abstract: This paper introduces a novel hydrothermal soft chemical synthesis process for manganese oxide nanostructured particles using two-dimensional manganese oxide nanosheets as precursor. In this process, a birnessite-type manganese oxide with a layered structure was exfoliated into its elementary layer nanosheets, and then the nanosheets were hydrothermally treated to transform the two-dimensional morphology of the nanosheets to one-dimensional nanoparticles. The manganese oxide nanofibers, nanotubes, nanobelts, nanoribbons, and fabric-ribbon-like particles constructed from nanofibers or nanobelts were obtained using this hydrothermal soft chemical process. The nanostructural evolution from the two-dimensional nanosheets to the one-dimensional nanoparticles was characterized by XRD, SEM, TEM, and TG-DTA analysis. The morphology and nanostructure of the products are strongly dependent on the molecular dimension of organic amine cations added in the reaction system. The organic amine cations act as a morphology directing agent in the nanostructural evolution process.

  14. Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver.

    PubMed

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-05-01

    The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio-MnOx), biogenic silver nanoparticles (Bio-Ag(0)) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2-anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio-MnOx, Bio-Ag(0) and Ag(+) separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio-MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese-free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co-metabolic removal during active Mn(2+) oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio-MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  15. Some derivatives of polyvinylpyridine 1-oxides and their effect on the cytotoxicity of quartz in macrophage cultures

    PubMed Central

    Holt, P. F.; Lindsay, H.; Beck, E. G.

    1970-01-01

    1. Poly(2-vinylpyridine 1-oxide) counteracts the pathogenic effects normally produced when quartz is injected into or inhaled by animals and the cytotoxic effects when quartz is added to macrophage cultures. The protective action of this polymer has been attributed variously to the formation of an adsorbed layer on the quartz particles, complex formation with monosilicic acid produced by the dissolution of quartz, and strengthening of the membranes or microstructures of the cells. 2. Stereoregular forms of poly(2-vinylpyridine 1-oxide), some alkyl derivatives of poly(2-vinylpyridine 1-oxide), poly(3-vinylpyridine 1-oxide) and poly(4-vinylpyridine 1-oxide), a copolymer of 2-vinylpyridine 1-oxide and 2-n-propenylpyridine 1-oxide, some poly(1-methyl-2-vinylpyridinium) quaternary salts, and poly(1-methoxy-2-vinylpyridinium iodide), which had previously been synthesized and studied with respect to their viscosities and interaction with silicic acid, were tested for their ability to counteract the cytotoxic effects of quartz in macrophage cultures. The tests were effected both by pretreating the quartz with polymers, and by pretreating the cells. 3. Every polymer proved active in one or other of these conditions, but several were active in one test but inactive in the other. Some polymer quaternary salts, which do not contain the N-oxide group, were found to be active. A remarkable difference in activity was found between the two stereoregular forms of poly(2-vinylpyridine 1-oxide). Pretreatment of the quartz with some of the polymers increased its cytotoxicity significantly. 4. Most of the results could be interpreted on the hypothesis that the polymers form an adsorbed layer on the quartz surface, but it is difficult to apply this explanation to two polymers which are inactive when used to pretreat the macrophages but are active when adsorbed on quartz. PMID:4312930

  16. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    SciTech Connect

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  17. Significantly improved cyclability of lithium manganese oxide under elevated temperature by an easily oxidized electrolyte additive

    NASA Astrophysics Data System (ADS)

    Zhu, Yunmin; Rong, Haibo; Mai, Shaowei; Luo, Xueyi; Li, Xiaoping; Li, Weishan

    2015-12-01

    Spinel lithium manganese oxide, LiMn2O4, is a promising cathode for lithium ion battery in large-scale applications, because it possesses many advantages compared with currently used layered lithium cobalt oxide (LiCoO2) and olivine phosphate (LiFePO4), including naturally abundant resource, environmental friendliness and high and long work potential plateau. Its poor cyclability under high temperature, however, limits its application. In this work, we report a significant cyclability improvement of LiMn2O4 under elevated temperature by using dimethyl phenylphonite (DMPP) as an electrolyte additive. Charge/discharge tests demonstrate that the application of 0.5 wt.% DMPP yields a capacity retention improvement from 16% to 82% for LiMn2O4 after 200 cycles under 55 °C at 1 C (1C = 148 mAh g-1) between 3 and 4.5 V. Electrochemical and physical characterizations indicate that DMPP is electrochemically oxidized at the potential lower than that for lithium extraction, forming a protective cathode interphase on LiMn2O4, which suppresses the electrolyte decomposition and prevents LiMn2O4 from crystal destruction.

  18. Manganese oxide octahedral molecular sieves: Synthesis, self-assembly, control over morphologies and tunnel structure

    NASA Astrophysics Data System (ADS)

    Yuan, Jikang

    Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.

  19. Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold.

    PubMed

    Najafpour, Mohammad Mahdi; Hosseini, Seyedeh Maedeh; Ho?y?ska, Ma?gorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2015-12-01

    We synthesized manganese oxides supported on gold nanoparticles (diameter <100 nm) by the reaction of KMnO4 with gold nanoparticles under hydrothermal conditions. In this green method Mn oxide is deposited on the gold nanoparticles. The compounds were characterized by scanning electron microscopy, energy-dispersive spectrometry, high-resolution transmission electron microscopy, X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy. In the next step, the water-oxidizing activities of these compounds in the presence of cerium(IV) ammonium nitrate as a non-oxo transfer oxidant were studied. The results show that these compounds are good catalysts toward water oxidation with a turnover frequency of 1.0 ± 0.1 (mmol O2/(mol Mn·s)). A comparison with other previously reported Mn oxides and important factors influencing the water-oxidizing activities of Mn oxides is also discussed. PMID:26076756

  20. Thursday, November 8, 2007 -10:50 AM Kinetics of Chromium(III) Oxidation on Manganese Oxides Using Real-Time Molecular Scale Approaches.

    E-print Network

    Sparks, Donald L.

    Thursday, November 8, 2007 - 10:50 AM 343-3 Kinetics of Chromium(III) Oxidation on Manganese Oxides capable of oxidizing chromium(III) to the more hazardous and mobile chromium(VI). Although the kinetics of chromium oxidation by Mn-oxides have been studied, the calculated rate parameters are apparent since

  1. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium

    PubMed Central

    Singh, Rahul; Grigg, Jason C.; Qin, Wei; Kadla, John F.; Murphy, Michael E.P.; Eltis, Lindsay D.

    2013-01-01

    DypB, a dye-decolorizing peroxidase from the lignolytic soil bacterium Rhodococcus jostii RHA1, catalyzes the peroxide-dependent oxidation of divalent manganese (Mn2+), albeit less efficiently than fungal manganese peroxidases. Substitution of Asn246, a distal heme residue, with alanine, increased the enzyme’s apparent kcat and kcat/Km values for Mn2+ by 80- and 15-fold, respectively. A 2.2 Å resolution X-ray crystal structure of the N246A variant revealed the Mn2+ to be bound within a pocket of acidic residues at the heme edge, reminiscent of the binding site in fungal manganese peroxidase and very different to that of another bacterial Mn2+-oxidizing peroxidase. The first coordination sphere was entirely comprised of solvent, consistent with the variant’s high Km for Mn2+ (17 ± 2 mM). N246A catalyzed the manganese-dependent transformation of hard wood kraft lignin and its solvent-extracted fractions. Two of the major degradation products were identified as 2,6-dimethoxybenzoquinone and 4-hydroxy-3,5-dimethoxybenzaldehyde, respectively. These results highlight the potential of bacterial enzymes as biocatalysts to transform lignin. PMID:23305326

  2. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 ?M, high sensitivity of 162.69 ?A mM(-1) cm(-2), and wide linear range of 0.05 ?M-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication. PMID:26647786

  3. Radical autoxidation and autogenous O2 evolution in manganese-porphyrin catalyzed alkane oxidations with chlorite.

    PubMed

    Slaughter, LeGrande M; Collman, James P; Eberspacher, Todd A; Brauman, John I

    2004-08-23

    A manganese porphyrin catalyst employing chlorite (ClO(2)(-)) as a "shunt" oxidant displays remarkable activity in alkane oxidation, oxidizing cyclohexane to cyclohexanol and cyclohexanone with >800 turnover numbers. The ketone is apparently formed without the intermediacy of alcohol and accounts for an unusually large fraction of the product ( approximately 40%). Radical scavenging experiments indicate that the alkane oxidation mechanism involves both carbon-centered and oxygen-centered radicals. The carbon-radical trap CBrCl(3) completely suppresses cyclohexanone formation and reduces cyclohexanol turnovers, while the oxygen-radical trap Ph(2)NH inhibits all oxidation until it is consumed. These observations are indicative of an autoxidation mechanism, a scenario further supported by TEMPO inhibition and (18)O(2) incorporation into products. However, similar cyclohexane oxidation activity occurs when air is excluded. This is explained by mass spectrometric and volumetric measurements showing catalyst-dependent O(2) evolution from the reaction mixture. The catalytic disproportionation of ClO(2)(-) into Cl(-) and O(2) provides sufficient O(2) to support an autoxidation mechanism. A two-path oxidation scheme is proposed to explain all of the experimental observations. The first pathway involves manganese-porphyrin catalyzed decomposition of ClO(2)(-) into both O(2) and an unidentified radical initiator, leading to classical autoxidation chemistry providing equal amounts of cyclohexanol and cyclohexanone. The second pathway is a "rebound" oxygenation involving a high-valent manganese-oxo intermediate, accounting for the excess of alcohol over ketone. This system highlights the importance of mechanistic studies in catalytic oxidations with highly reactive oxidants, and it is unusual in its ability to sustain autoxidation even under apparent exclusion of O(2). PMID:15310195

  4. Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides.

    PubMed

    Kim, Soon Sam; Bargar, John R; Nealson, Kenneth H; Flood, Beverly E; Kirschvink, Joseph L; Raub, Timothy D; Tebo, Bradley M; Villalobos, Mario

    2011-10-01

    Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (?500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer. PMID:21970705

  5. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries.

    PubMed

    Cai, Zhengyang; Xu, Lin; Yan, Mengyu; Han, Chunhua; He, Liang; Hercule, Kalele Mulonda; Niu, Chaojiang; Yuan, Zefan; Xu, Wangwang; Qu, Longbing; Zhao, Kangning; Mai, Liqiang

    2015-01-14

    Transition metal oxides have attracted much interest for their high energy density in lithium batteries. However, the fast capacity fading and the low power density still limit their practical implementation. In order to overcome these challenges, one-dimensional yolk-shell nanorods have been successfully constructed using manganese oxide as an example through a facile two-step sol-gel coating method. Dopamine and tetraethoxysilane are used as precursors to obtain uniform polymer coating and silica layer followed by converting into carbon shell and hollow space, respectively. As anode material for lithium batteries, the manganese oxide/carbon yolk-shell nanorod electrode has a reversible capacity of 660 mAh/g for initial cycle at 100 mA/g and exhibits excellent cyclability with a capacity of 634 mAh/g after 900 cycles at a current density of 500 mA/g. An enhanced capacity is observed during the long-term cycling process, which may be attributed to the structural integrity, the stability of solid electrolyte interphase layer, and the electrochemical actuation of the yolk-shell nanorod structure. The results demonstrate that the manganese oxide is well utilized with the one-dimensional yolk-shell structure, which represents an efficient way to realize excellent performance for practical applications. PMID:25490409

  6. Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil.

    PubMed

    Yu, Zhihong; Zhou, Li; Huang, Yifan; Song, Zhengguo; Qiu, Weiwen

    2015-11-01

    The arsenic adsorption capacity of a manganese oxide-modified biochar composite (MBC), prepared by pyrolysis of a mixture of potassium permanganate and biochar, was investigated in red soil. Adsorption experiments using batch procedures were used to estimate the arsenic adsorption capacities of the absorbent materials. Adsorption and desorption isotherms, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterise the prepared adsorbent materials, and a plausible mechanism for arsenic removal by MBC was proposed. Arsenic in red soil-MBC mixtures exhibited lower mobility than that in soils amended with pristine biochar. The improved removal performance of soil-MBC mixtures was attributed to a lower H/C ratio, higher O/C ratio, higher surface hydrophilicity, and higher surface sorption capacity, even though the impregnation of manganese oxide decreased the specific surface area of the biochar. Arsenic retention increased as the biochar content increased, mainly owing to an increase in soil pH. Several oxygenated functional groups, especially O-H, CO, Mn-O, and Si-O, participated in the adsorption process, and manganese oxides played a significant role in the oxidation of arsenic. This study highlights the potential of MBC as an absorbent to immobilise arsenic for use in contaminated land remediation in the red soils region. PMID:26320008

  7. The oxidation of As(III) in groundwater using biological manganese removal filtration columns.

    PubMed

    Yang, Hong; Sun, Wenyong; Ge, Huoqing; Yao, Renda

    2015-11-01

    Arsenic is known as a toxic element to humans, and has been reported to co-exist with iron and manganese in groundwater worldwide. The typical method for arsenic removal from groundwater is to oxidize trivalent (As(III)) to pentavalent (As(V)) followed by the As(V) removal. This study aims to evaluate the oxidization efficiency of As(III) in a mature biological manganese (Mn(2+)) removal filtration system with different elevated influent As(III) concentrations. The effects of influent Mn(2+) concentrations, influent As(III) concentrations, filtration rates and dissolved oxygen (DO) levels on the efficiency of As(III) oxidation were assessed. The results showed that As(III) oxidation can be simultaneously achieved with removing Mn(2+) in the filtration system. The oxidation efficiency was not impacted by increasing the influent As(III) concentration up to nearly 2500?µg?L(-1), but the filtration rate was limited at 11?m?h(-1) for maintaining the effluent As(III) concentration below 10?µg?L(-1). The oxidation process followed first-order kinetics with the constant reaching 0.56-0.61?min(-1). The As(III) oxidation process was most likely to be mediated by the bacterial community initially developed for Mn(2+) removal in the filtration system, which performed the catalytic oxidation for As(III). PMID:26056846

  8. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-06-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH.

  9. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G. ); Sims, R.C. . Dept. of Civil and Environmental Engineering)

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  10. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  11. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. PMID:25591399

  12. Strong antiferromagnetic exchange between manganese phthalocyanine and ferromagnetic europium oxide.

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Uldry, Anne-Christine; Delley, Bernard; Rusponi, Stefano; Dreiser, Jan

    2015-08-21

    We report on the antiferromagnetic exchange coupling between a submonolayer of Mn(II)-phthalocyanine molecules and a ferromagnetic Eu(II)-oxide thin film. The exchange energy is larger by nearly two orders of magnitude compared to previous studies involving oxidic substrates. PMID:26171839

  13. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, J.W.; Fuller, C.C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheicflow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/??(s), of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/??(h) = 2.6 hours), and in laboratory batch experiments using streambed sediment (1/?? = 2.7 hours). The modeled depths of subsurface storage zones (d(s) = 4-17 cm) and modeled residence times of water in storage zones (t(s) = 3-12 min) were both consistent with direct measurements in hyporheic flow paths (d(h) = 0-15 cm, and t(h) = 1-25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (f(s) = 8.9%, and f(h) = 9.3%). Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1??(s) ??? 1.3 hours), and the hyporheic porewater residence timescale (t(s) ??? 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (L(s) = stream velocity/storage-zone exchange coefficient ??? 1.3 km) and the length of Pinal Creek (L ??? 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, R(s) = ??(s)t(s)L/L(s) (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of R(s) > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  14. Synthesis and Electrochemical Analyses of Manganese Oxides for Super-Capacitors.

    PubMed

    Kim, Taewoo; Hwang, Hyein; Jang, Jaeyong; Park, Inyeong; Shim, Sang Eun; Baeck, Sung-Hyeon

    2015-11-01

    ?-Phase and ?-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the ?-phase changed to the ?-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure. PMID:26726613

  15. Oxidative Transformation of Controlled Substances by Manganese Dioxide

    PubMed Central

    Lai, Webber Wei-Po; Lin, Angela Yu-Chen; Yang, Sheng-Yao; Huang, Ching-Hua

    2015-01-01

    This study investigated the oxidative transformation of four controlled substances (ketamine, methamphetamine, morphine, and codeine) by synthesized MnO2 (?-MnO2) in aqueous environments. The results indicated that ketamine and methamphetamine were negligibly oxidized by MnO2 and, thus, may be persistent in the aqueous environment. However, morphine and codeine were able to be oxidized by MnO2, which indicated that they are likely naturally attenuated in aqueous environments. Overall, lower solution pH values, lower initial compound concentrations, and higher MnO2 loading resulted in a faster reaction rate. The oxidation of morphine was inhibited in the presence of metal ions (Mn2+, Fe3+, Ca2+, and Mg2+) and fulvic acid. However, the addition of Fe3+ and fulvic acid enhanced codeine oxidation. A second-order kinetics model described the oxidation of morphine and codeine by MnO2; it suggested that the formation of a surface precursor complex between the target compound and the MnO2 surface was the rate-limiting step. Although the target compounds were degraded, the slow TOC removal indicated that several byproducts were formed and persist against further MnO2 oxidation. PMID:26078991

  16. Adsorption of ribose nucleotides on manganese oxides with varied mn/o ratio: implications for chemical evolution.

    PubMed

    Bhushan, Brij; Shanker, Uma; Kamaluddin

    2011-10-01

    Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn(2)O(3)), Hausmannite (Mn(3)O(4)) and Pyrolusite (MnO(2)) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X( m ) and K( L ) values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts. PMID:21626404

  17. Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    E-print Network

    Fischer, Woodward

    -ray absorption spectroscopy | Great Oxidation Event | pyrite The rise of atmospheric oxygen 2.4 Ga (1, 2 were invented to facilitate this metabolism, including a core photosystem pigment with a higher redox

  18. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    PubMed Central

    Fenske, Daniela; Bardenhagen, Ingo; Westphal, Anne; Knipper, Martin; Plaggenborg, Thorsten; Kolny-Olesiak, Joanna; Parisi, Jürgen

    2015-01-01

    Summary Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx + oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous ?-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to ?-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous ?-Mn2O3 species. PMID:25671151

  19. Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    PubMed Central

    Johnson, Jena E.; Webb, Samuel M.; Thomas, Katherine; Ono, Shuhei; Kirschvink, Joseph L.; Fischer, Woodward W.

    2013-01-01

    The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ?17 wt %) well before those associated with the rise of oxygen such as the ?2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2—multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains—reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn. PMID:23798417

  20. Characterization of Manganese Oxide Precipitates from Appalachian Coal Mine Mine Drainage Treatment Systems

    SciTech Connect

    Tan, H.; Zhang, G; Heaney, P; Webb, S; Burgos, W

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO{sub x}). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction ({+-}inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO{sub x} precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnOx precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO{sub x} precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnOx mineral assemblages in CMD treatment systems.

  1. Tailor-made ultrathin manganese oxide nanostripes: ‘magic widths’ on Pd(1 1 N) terraces

    NASA Astrophysics Data System (ADS)

    Franchini, C.; Li, F.; Surnev, S.; Podloucky, R.; Allegretti, F.; Netzer, F. P.

    2012-02-01

    The growth of ultrathin two-dimensional manganese oxide nanostripes on vicinal Pd(1 1 N) surfaces leads to particular stable configurations for certain combinations of oxide stripe and substrate terrace widths. Scanning tunneling microscopy and high-resolution low-energy electron diffraction measurements reveal highly ordered nanostructured surfaces with excellent local and long-range order. Density functional theory calculations provide the physical origin of the stabilization mechanism of ‘magic width’ stripes in terms of a finite-size effect, caused by the significant relaxations observed at the stripe boundaries.

  2. Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Webb, S.; Thomas, K. S.; Ono, S.; Kirschvink, J. L.; Fischer, W. W.

    2012-12-01

    The evolution of oxygenic photosynthesis was a singularity that fundamentally transformed our planet's core biogeochemical cycles and changed the redox structure of Earth's surface, crust, and mantle. To date, understanding the evolution of this molecular machinery has largely been derived from comparative biology. Several biochemical innovations enabled water-splitting, including a central photosynthetic pigment with a higher redox potential and coupled photosystems. However the critical photochemical invention was the water oxidizing complex (WOC) of photosystem II, a cubane cluster of four redox-active Mn atoms and a Ca atom bound by oxo bridges, that couple the single electron photochemistry of the photosystem to the four-electron oxidation of water to O2. Transitional forms of the WOC have been postulated, including an Mn-containing catalase-like peptide using an H2O2 donor, or uptake and integration of environmental Mn-oxides. One attractive hypothesis from the perspective of modern photo-assembly of the WOC posits an initial Mn(II)-oxidizing photosystem as a precursor to the WOC (Zubay, 1996; Allen and Martin, 2007). To test these hypotheses, we studied the behavior of the ancient Mn cycle captured by 2415 ± 6 Ma scientific drill cores retrieved by the Agouron Drilling Project through the Koegas Subgroup in Griqualand West, South Africa. This succession contains substantial Mn-enrichments (up to 17 wt.% in bulk). To better understand the petrogenesis and textural context of these deposits, we employed a novel X-ray absorption spectroscopy microprobe to make redox maps of ultra-thin sample sections at a 2?m scale. Coupled to light and electron microscopy and C isotopic measurements, we observe that all of the Mn is present as Mn(II), contained within carbonate minerals produced from early diagenetic reduction of Mn-oxide phases with organic matter. To assay the environmental oxidant responsible for the production of the Mn-oxides we examined two independent techniques sensitive to low levels of environmental O2—multiple sulfur isotopes analyzed using whole-rock IRMS and texture-specific SIMS techniques, and the presence of redox-sensitive detrital grains. Despite the conspicuous oxidation of Mn, both proxies reveal a lack of significant molecular oxygen present in the environment at this time (O2 << 1 ppm). These results provide strong geological support for the idea that an early Mn-oxidizing photosystem once existed as a transitional form prior to the evolution of the WOC of photosystem II and oxygenic photosynthesis. [Refs: Zubay J (1996) Origins of Life on the Earth and in the Cosmos, Academic Press: San Diego. Allen JF, Martin W (2007) Evolutionary biology: Out of thin air, Nature, 445, 610-612.

  3. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M. (Hayward, CA); Peng, Marcus Y. (Cupertino, CA); Ma, Yanping (Albany, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  4. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  5. Electrochromic performance, wettability and optical study of copper manganese oxide thin films: Effect of annealing temperature

    NASA Astrophysics Data System (ADS)

    Falahatgar, S. S.; Ghodsi, F. E.; Tepehan, F. Z.; Tepehan, G. G.; Turhan, ?.

    2014-01-01

    In the present work, the nanostructured copper manganese oxide (CMO) thin films were prepared from acetate based sol-gel precursors and deposited on glass and indium tin oxide (ITO) substrates by dip-coating technique. The films were annealed at 300, 400 and 500 °C in ambient atmosphere. The effects of annealing temperature on structural, morphological, wettability, electrochromic and optical properties of CMO thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), water contact angle measurement (WCA), cyclic voltammetry (CV) measurements and ultraviolet-visible (UV-vis) spectrophotometery. The presence of mixed oxide phases comprising of copper manganese oxide (CuMn2O4) and manganese oxide at different annealing temperature was confirmed by XRD patterns. The results showed that the Mn3O4 phase has been changed to Mn2O3 when the annealing temperature is increased from 300 to 500 °C. The FESEM images indicated that the granular surface morphology was sensitive to annealing temperature. EDX studies indicated that the thin films contained O, Mn and Cu species. Wettability studies showed that the water contact angle of the nanostructured CMO thin films coated on glass substrates was influenced by the variation of annealing temperature and the surface nature of thin films was changed from hydrophilic to hydrophobic. The results of CVs measurement indicated that the anodic and cathodic charge density and capacitance of all CMO samples decreased with increasing scan rate in potential range of -1-1 eV. Also, the annealed CMO thin film at 500 °C showed better electrochromic performance with respect to other samples at lower scan rate. The thickness, refractive index, extinction coefficient and optical band gap of thin films coated on glass substrates were calculated from reflectance and transmittance spectra using an iterative numerical method. The optical band gap of nanostructured CMO thin films increased with increasing annealing temperature.

  6. Microbial reduction of manganese oxides - Interactions with iron and sulfur

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.

  7. Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flame-Made Manganese Oxide Nanocrystals.

    PubMed

    Liu, Guanyu; Hall, Jeremy; Nasiri, Noushin; Gengenbach, Thomas; Spiccia, Leone; Cheah, Mun Hon; Tricoli, Antonio

    2015-12-01

    Chemical energy storage by water splitting is a promising solution for the utilization of renewable energy in numerous currently impracticable needs, such as transportation and high temperature processing. Here, the synthesis of efficient ultra-fine Mn3 O4 water oxidation catalysts with tunable specific surface area is demonstrated by a scalable one-step flame-synthesis process. The water oxidation performance of these flame-made structures is compared with pure Mn2 O3 and Mn5 O8 , obtained by post-calcination of as-prepared Mn3 O4 (115?m(2) ?g(-1) ), and commercial iso-structural polymorphs, probing the effect of the manganese oxidation state and synthetic route. The structural properties of the manganese oxide nanoparticles were investigated by XRD, FTIR, high-resolution TEM, and XPS. It is found that these flame-made nanostructures have substantially higher activity, reaching up to 350?% higher surface-specific turnover frequency (0.07??molO2 ?m(-2) ?s(-1) ) than commercial nanocrystals (0.02??molO2 ?m(-2) ?s(-1) ), and production of up to 0.33?mmolO2 ?molMn (-1) ?s(-1) . Electrochemical characterization confirmed the high water oxidation activity of these catalysts with an initial current density of 10?mA?cm(-2) achieved with overpotentials between 0.35 and 0.50?V in 1?m NaOH electrolyte. PMID:26601653

  8. Part I. Manganese oxide containing layered double hydroxides materials: Synthesis and characterization. Part II. Manganese oxide octahedral molecular sieves (OMS-2): Synthesis, particle size control, characterization, and catalytic applications

    NASA Astrophysics Data System (ADS)

    Villegas, Josanlet C.

    The work presented here comprises the development of new routes for the preparation of manganese oxide-based materials with controlled properties. The first part of the research consists of the preparation of a new series of layered double hydroxide (LDH) materials containing intercalated manganese oxide species. Characterization of the resulting materials will be sub-divided in two major parts: (1) Composition, structural, and textural properties and (2) Determination of the oxidation state of the manganese species formed. The process of incorporating manganese oxides into the LDH materials takes place by a simple two-step method which involves the ion-exchange of nitrate anions with high valence manganese precursor anions followed by the in-situ reaction between the manganese anions and organic reducing agents. The method developed allows the preparation of a wide range of Mn-intercalated LDHs by simply changing the reducing agent used. In the second part of the research a new "soft" chemistry method to prepare manganese oxide octahedral molecular sieves (OMS-2) materials with controlled crystalline particle sizes will be presented. The synthesis is based on the use of H2O2 to reduce MnO4- under acidic conditions. The particle size is controlled by the concentration of H2O2 in the reaction media. The structural and textural properties of the synthesized OMS-2 are investigated. The catalytic activity and structural properties of these OMS-2 nanomaterials for oxidation catalysis will also be discussed. The work will continue with the investigation on the framework substitution of higher valency transition metal ions (TM = Nb, V) into the OMS-2 materials. The incorporation of TM into the structure of OMS-2 occurs by reacting the manganese and TM source with an oxidant under hydrothermal conditions. The structural properties, oxidation state of manganese, TM loading, and location of the TM in the OMS-2 structure will be investigated. The versatility of OMS-2 to accommodate higher valence TM metals is demonstrated. The last part of the research comprises the study of the electrical resistivity of OMS-2 materials. The effect of the different OMS-2 synthesis method and the framework doping is investigated. A correlation of the resistivities of all the OMS materials prepared in our laboratory and their structures is presented.

  9. Influence of extractable soil manganese on oxidation capacity of different soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun

    2008-08-01

    We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).

  10. Relationship between external and internal parameters of exposure to manganese in workers from a manganese oxide and salt producing plant

    SciTech Connect

    Roels, H.; Lauwerys, R.; Genet, P.; Sarhan, M.J.; de Fays, M.; Hanotiau, I.; Buchet, J.P.

    1987-01-01

    In a plant producing manganese (Mn) oxides and salts, 11 different workplaces were identified. The current exposure to airborne Mn (total dust, personal sampling, n = 80) varied from 0.07 to 8.61 mg/m3. The geometric mean and median values amounted approximately to 1 mg/m3 and the 95th percentile was 3.30 mg/m3. The concentration of Mn in blood (Mn-B) in a group of 141 Mn-exposed male workers ranged from 0.10-3.59 micrograms/100 ml compared to 0.04-1.31 micrograms/100 ml in a group of 104 control subjects. The ranges of the concentrations of Mn in urine (Mn-U) were 0.06-140.6 and 0.01-5.04 micrograms/g creatinine for the exposed and control groups, respectively. The average level of Mn-B in the Mn group was more than twice as high as in the control group (arithmetic mean, 1.36 vs 0.57 microgram/100 ml) and that of Mn-U was ten times higher in the Mn group (geometric mean, 1.56 vs 0.15 microgram/g creatinine). The Mn-B level did not change significantly after 8 h of Mn exposure, whereas the Mn-U level dropped rapidly when exposure ceased (half-life less than 30 h). On an individual basis, neither Mn-B nor Mn-U correlated with the current levels of Mn-air or duration of Mn exposure. There was also no relationship between Mn-B and Mn-U. On a group basis, there was no correlation between the mean Mn-B levels and the current levels of Mn-air at each workplace.

  11. The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri

    2011-01-01

    Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

  12. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  13. Illumina sequencing of fungi associated with manganese oxide deposits in cave systems

    NASA Astrophysics Data System (ADS)

    Zorn, B. T.; Santelli, C. M.; Carmichael, S. K.; Pepe-Ranney, C. P.; Roble, L.; Carmichael, M.; Bräuer, S.

    2013-12-01

    The environmental cycling of manganese (Mn) remains relatively poorly characterized when compared with other metals such as iron. However, fungi have been observed to produce Mn(III/IV) oxides resembling buserite, birnessite, and todorokite on the periphery of vegetative hyphae, hyphal branching points and at the base of fruiting bodies. Recent studies indicate that some of these oxides may be generated by a two-stage reaction with soluble Mn(II) and biogenic reactive oxygen species for some groups of fungi, in particular the Ascomycota. These oxides can provide a versatile protective barrier or aid in the capture of trace metals in the environment, although the exact evolutionary function and trigger is unclear. In this study, two caves in the southern Appalachians, a pristine cave and an anthropogenically impacted cave, were compared by analyzing fungal community assemblages in manganese oxide rich deposits. Quantitative PCR data indicated that fungi are present in a low abundance (<1%) in all locations sampled within the caves. Among amplified DNA sequences retrieved in an 18S rDNA clone library, over 88% were representative of the phylum Basidiomycota (predominantly Agaricomycetes), 2.74% of Ascomycota, 2.28% of Blastocladiomycota and Chytridiomycota, 0.46% of Zygomycota, and 3.65% of Eukarya or Fungi incertae sedis. Using Illumina's MiSeq to sequence amplicons of the fungal ITS1 gene has yielded roughly 100,000-200,000 paired-end reads per sample. These data are currently being analyzed to compare fungal communities before and after induced Mn oxidation in the field. In addition, sites within the pristine cave are being compared with analogous sites in the impacted cave. Culturing efforts have thus far yielded Mn oxide producing members of the orders Glomerales and Pleosporales as well as two Genus incertae sedis (Fungal sp. YECT1, and Fungal sp. YECT3, growing on discarded electrical tape) that do not appear to be closely related to any other known Mn oxidizing fungi.

  14. Role of Reactive Intermediates in Manganese Oxide Formation By Filamentous Ascomycete Fungi

    NASA Astrophysics Data System (ADS)

    Zeiner, C. A.; Anderton, C.; Wu, S.; Purvine, S.; Zink, E.; Paša-Toli?, L.; Santelli, C. M.; Hansel, C. M.

    2014-12-01

    Biogenic manganese (Mn) oxide minerals are ubiquitous in the environment, and their high reactivity can profoundly impact the fate of contaminants and cycling of carbon and nutrients. In contrast to bacteria, the pathways utilized by fungi to oxidize Mn(II) to Mn(III,IV) oxides remain largely unknown. Here, we explore the mechanisms of Mn(II) oxidation by a phylogenetically diverse group of filamentous Ascomycete fungi using a combination of chemical assays and bulk and spatially-resolved mass spectrometry. We show that the mechanisms of Mn(II) oxidation vary with fungal species, over time during secretome compositional changes, and in the presence of other fungi. Specifically, our work implicates a dynamic transition in Mn(II) oxidation pathways that varies between species. In particular, while reactive oxygen species (ROS) produced via transmembrane NADPH oxidases are involved in initial oxidation, over time, secreted enzymes become important Mn(II) oxidation mediators for some species. In addition, the overall secretome oxidation capacity varies with time and fungal species. Secretome analysis reveals a surprising absence of enzymes currently considered to be Mn(II)-oxidizing enzymes in these organisms, and instead highlights a wide variety of redox-active enzymes. Furthermore, we implicate fungal cell defense mechanisms in the formation of distinct Mn oxide patterns when fungi are grown in head-to-head competition. The identification and regulation of these secreted enzymes are under current investigation within the bulk secretome and within the interaction zone of structured fungal communities. Overall, our findings illustrate that Ascomycete Mn(II) oxidation mechanisms are highly variable and are dictated by complex environmental and ecological interactions. Future work will explore the connection between Ascomycete Mn(II) oxidation and the ability to degrade cellulose, a key carbon reservoir for biofuel production.

  15. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas.

    PubMed

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-12-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu]. PMID:26744146

  16. Application of Quantum Monte Carlo Methods to Describe the Properties of Manganese Oxide Polymorphs

    NASA Astrophysics Data System (ADS)

    Schiller, Joshua; Ertekin, Elif

    2015-03-01

    First-principles descriptions of the properties of correlated materials such as transition metal oxides has been a long-standing challenge. Manganese oxide is one such example: according to both conventional and hybrid functional density functional theory, the zinc blende polymorph is predicted to be lower in energy than the rock salt polymorph that occurs in nature. While the correct energy ordering can be obtained in density functional approaches by careful selection of modeling parameters, we present here an alternative approach based on quantum Monte Carlo methods, which are a suite of stochastic tools for solution of the many-body Schrodinger equation. Due to its direct treatment of electron correlation, the QMC method offers the possibility of parameter-free, high-accuracy, systematically improvable analysis. In manganese oxide, we find that the QMC methodology is able to accurately reproduce relative phase energies, lattice constants, and band gaps without the use of adjustable parameters. Additionally, statistical analysis of the many-body wave functions from QMC provides some diagnostic assessments to reveal the physics that may be missing from other modeling approaches.

  17. High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide

    NASA Astrophysics Data System (ADS)

    Bello, Abdulhakeem; Fashedemi, Omobosede O.; Lekitima, Joel N.; Fabiane, Mopeli; Dodoo-Arhin, David; Ozoemena, Kenneth I.; Gogotsi, Yury; Charlie Johnson, Alan T.; Manyala, Ncholu

    2013-08-01

    We have fabricated a symmetric electrochemical capacitor with high energy and power densities based on a composite of graphene foam (GF) with ˜80 wt% of manganese oxide (MnO2) deposited by hydrothermal synthesis. Raman spectroscopy and X-ray diffraction measurements showed the presence of nanocrystalline MnO2 on the GF, while scanning and transmission electron microscopies showed needle-like manganese oxide coated and anchored onto the surface of graphene. Electrochemical measurements of the composite electrode gave a specific capacitance of 240 Fg-1 at a current density of 0.1 Ag-1 for symmetric supercapacitors using a two-electrode configuration. A maximum energy density of 8.3 Whkg-1 was obtained, with power density of 20 kWkg-1 and no capacitance loss after 1000 cycles. GF is an excellent support for pseudo-capacitive oxide materials such as MnO2, and the composite electrode provided a high energy density due to a combination of double-layer and redox capacitance mechanisms.

  18. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    USGS Publications Warehouse

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  19. Interaction of manganese(IV) oxide with aqueous solutions of citric and sulfuric acids

    NASA Astrophysics Data System (ADS)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-01-01

    The kinetic laws of the dissolution of manganese(IV) oxide using citric acid are studied as functions of the temperature and pH of a solution and the concentration of citric acid. The following kinetic parameters of the dissolution are calculated: the reaction rate, the reaction order with respect to citrate ions ( n = 0.6), and the activation energy ( E a = 47.4 kJ/mol). The optimum conditions favoring an increase in the leaching intensity and economical consumption of the reactants are experimentally determined.

  20. Nanostructured and layered lithium manganese oxide and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Singhal, Amit (Inventor); Skandan, Ganesh (Inventor)

    2005-01-01

    Nanostructured and layered lithium manganese oxide powders and methods of producing same. The powders are represented by the chemical formula, LixMn1-yMyO2, where 0.5

  1. Intrinsic Insulating Ferromagnetism in Manganese Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Hou, Yusheng; Xiang, Hongjun; Gong, Xingao; Key Laboratory of Computational Physical Sciences (Ministry of Education), Fudan University Team

    2014-03-01

    Recently, LaMnO3 thin films attract considerable attentions not only because LaMnO3 is the most common magnetic component in all fabricated oxide superlattices/interfaces, but also because experiment observed exotic insulating ferromagnetism in LaMnO3 thin film grown on SrTiO3. However, there is no any model or theory/calculation to explain such striking insulating ferromagnetism. In this work, by means of genetic algorithm optimization, first-principles calculations and the orbital-degenerate double-exchange model studies, we successfully find the insulating ferromagnetic phase of the epitaxially strained LaMnO3 film grown on the cubic SrTiO3 substrate. The unexpected insulating ferromagnetism, which was observed experimentally but not fully understood, originates from the G-type orbital order d3z2 -r2/d3z2 -r2dx2 - y/ dx2 - y and the insulating gap opens as a result of both the orbital ordering and the strong electron-phonon coupling. Our work provides new insight into how a prototypical antiferromagnetic Mott insulator transforms into the ferromagnetic insulator.

  2. Simulation of the surface structure of lithium manganese oxide spinel.

    SciTech Connect

    Benedek, R.; Thackeray, M. M.

    2011-05-31

    Simulations of the surface structure of low-index surfaces of LiMn{sub 2}O{sub 4} (LMO), a candidate Li-ion battery electrode material, have been performed within the GGA+U approximation, using the VASP code. Surfaces of (001), (110), and (111) orientation were considered, with at least two terminations treated in each case. A slab geometry was employed, with termination-layer vacancies introduced to remove the bulk dipole moment while maintaining ideal stoichiometry. To complement static-structure relaxation calculations, molecular-dynamics simulations were performed to explore the phase space of possible surface reconstructions. A reconstruction is predicted for the Mn-terminated (111) surface, in which the top layers mix in stoichiometric proportions to form an LMO termination layer with square-planar-coordinated Mn. Average surface Mn oxidation states are reduced, relative to the bulk, for all surfaces considered, as a consequence of the lower-energy cost of Jahn-Teller distortion at the surface. Threefold-coordinated surface Mn, found for two terminations, is divalent, which may enhance its vulnerability to dissolution. The Li-terminated (001) surface is lowest in energy, consistent with previous classical-potential simulations for MgAl{sub 2}O{sub 4} that showed the Mg-terminated (001) surface to be lowest in energy.

  3. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    SciTech Connect

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2009-05-12

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers ({approx}2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive {Delta}V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 {angstrom}, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10{sup -14} mol biotite m{sup -2} s{sup -1}. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 {micro}m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10{sup -13} mol hornblende m{sup -2} s{sup -1}: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O{sub 2} at the bedrock-saprolite interface.

  4. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing

    USGS Publications Warehouse

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (???2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ??V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 A??, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 ?? 10-14 mol biotite m-2 s-1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 ??m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 ?? 10-13 mol hornblende m-2 s-1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface. ?? 2008 Elsevier Ltd. All rights reserved.

  5. The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention

    SciTech Connect

    Zhu, Gang; Deng, Lingjuan; Wang, Jianfang; Kang, Liping; School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 ; Liu, Zong-Huai; School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062

    2012-11-15

    Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ? Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ? A facile low-temperature hydrothermal method. ? Novel flower-like microsphere consists of the thin nano-platelets. ? Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °C for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup ?1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup ?1} in 1 mol L{sup ?1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup ?1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.

  6. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  7. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae

    PubMed Central

    Wu, Hsing-Ju; Seib, Kate L.; Srikhanta, Yogitha N.; Edwards, Jennifer; Kidd, Stephen P.; Maguire, Tina L .; Hamilton, Amanda; Pan, Kuan-Tin; Hsiao, He-Hsuan; Yao, Chen-Wen; Grimmond, Sean M.; Apicella, Michael A.; McEwan, Alastair G.; Wang, Andrew H-J.; Jennings, Michael P.

    2014-01-01

    Neisseria gonorrhoeae has evolved a complex and novel network of oxidative stress responses, including defense mechanisms that are dependent on manganese (Mn). We performed systematic analyses at the transcriptomic and proteomic (1D SDS-PAGE and Isotope-Coded Affinity Tag [ICAT]) levels to investigate the global expression changes that take place in a high Mn environment, which results in a Mn-dependent oxidative stress resistance phenotype. These studies revealed that 97 proteins are regulated at the post-transcriptional level under conditions of increased Mn concentration, including proteins involved in virulence (eg. Pilin, a key adhesin), oxidative stress defence (eg. superoxide dismutase), cellular metabolism, protein synthesis, RNA processing and cell division. Mn regulation of inorganic pyrophosphatase (Ppa) indicated the potential involvement of phosphate metabolism in the Mn-dependent oxidative stress defense. A detailed analysis of the role of Ppa and polyphosphate kinase (Ppk) in the gonococcal oxidative stress response revealed that ppk and ppa mutant strains showed increased resistance to oxidative stress. Investigation of these mutants grown with high Mn suggests that phosphate and pyrophosphate are involved in Mn-dependent oxidative stress resistance. PMID:20004262

  8. The ability of oxidative stress to mimic quartz-induced chemokine responses is lung cell line-dependent.

    PubMed

    Ovrevik, Johan; Refsnes, Magne; Schwarze, Per; Låg, Marit

    2008-09-26

    Oxidative stress induced by surface-generated radicals has been a dominating hypothesis to explain how mineral particles and fibers trigger cellular responses. However, conflicting studies suggest that the importance of particle-derived formation of reactive oxygen species (ROS) requires further examination. The present study focuses on whether oxidative stress in the form of H(2)O(2)-exposure may mimic the effects of quartz particles on chemokine responses in epithelial lung cells. The results show that H(2)O(2) and quartz exposure induced almost identical levels of CXCL8 (interleukin-8) release in the alveolar epithelial cell line A549, but in the bronchial epithelial cell line BEAS-2B, H(2)O(2)-exposure did not affect CXCL8 release significantly, whereas quartz induced a 16-fold increase. Among 17 different cytokine and chemokine genes H(2)O(2) induced up-regulation of only IL-5 in BEAS-2B cells, while quartz increased the expression of 8 different cytokines and chemokines. In A549 cells, however, there was a moderate but significant correlation between the cytokine/chemokine gene-expression profiles induced by the two agents. Thus, the response to oxidative stress may vary considerably between different lung cell lines. Moreover, the results from the BEAS-2B cells strengthen the notion that non-oxidant initiation mechanisms may also be important to the effects of mineral particles and fibers. PMID:18662758

  9. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage.

    PubMed

    Song, Min-Kyu; Cheng, Shuang; Chen, Haiyan; Qin, Wentao; Nam, Kyung-Wan; Xu, Shucheng; Yang, Xiao-Qing; Bongiorno, Angelo; Lee, Jangsoo; Bai, Jianming; Tyson, Trevor A; Cho, Jaephil; Liu, Meilin

    2012-07-11

    While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (?2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials ?0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices. PMID:22681539

  10. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

    PubMed

    Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin

    2015-10-01

    In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. PMID:26070189

  11. Decoration of the layered manganese oxide birnessite with Mn(II/III) gives a new water oxidation catalyst with fifty-fold turnover number enhancement.

    PubMed

    McKendry, Ian G; Kondaveeti, Sandeep K; Shumlas, Samantha L; Strongin, Daniel R; Zdilla, Michael J

    2015-08-01

    The role of the manganese average oxidation state (AOS) in water oxidation catalysis by birnessite was investigated. Low AOS samples were most active, generating O2 immediately. Samples with a relatively high AOS showed an initial induction period and decreased turnover. Mn(ii- and iii)-enriched samples gave a 10-50 fold enhancement in turnover number. PMID:26134982

  12. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts.

    PubMed

    Liang, Yongye; Wang, Hailiang; Zhou, Jigang; Li, Yanguang; Wang, Jian; Regier, Tom; Dai, Hongjie

    2012-02-22

    Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co(3)O(4) nanoparticles, a manganese-cobalt spinel MnCo(2)O(4)/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitution of Co(3+) sites by Mn(3+), which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared with the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physical mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo(2)O(4)/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with stability superior to Pt/C in alkaline solutions. PMID:22280461

  13. Fully Converting Graphite into Graphene Oxide Hydrogels by Preoxidation with Impure Manganese Dioxide.

    PubMed

    Sun, Jiaojiao; Yang, Ningxin; Sun, Zhe; Zeng, Mengqi; Fu, Lei; Hu, Chengguo; Hu, Shengshui

    2015-09-30

    Potassium permanganate (KMnO4) has been proved to be an efficient oxidant for converting graphite into graphite oxide, but its slow diffusion in the interlayer of graphite seriously restricts the production of graphene oxide (GO). Here, we demonstrate that the preoxidation of graphite by impure manganese dioxide (MnO2) in a mixture of concentrated sulfuric acid (H2SO4) and phosphorus pentoxide (P2O5) can efficiently improve the synthesis of GO when KMnO4 is employed as the oxidant. The prepared honey-like GO hydrogels possess a high yield of single-layer sheets, large sizes (average lateral size up to 20 ?m), wide ranges of stable dispersion concentrations (from dilute solutions, viscous hydrogels, to dry films), and good conductivity after reduction (?2.9 × 10(4) S/m). The mechanism for the improved synthesis of GO by impure MnO2 was explored. The enhanced exfoliation and oxidation of graphite by oxidative Mn ions (mainly Mn(3+)), which are synergistically produced by the reaction of impure MnO2 with H2SO4 and P2O5, are found to be responsible for the improved synthesis of such GO hydrogels. Particularly, preoxidized graphite (POG) can be partially dispersed in water with sonication, which allows the facile construction of flexible and highly conductive graphene nanosheet film electrodes with excellent electrochemical sensing properties. PMID:26352992

  14. The Role of High Molecular Weight Polyethylene Oxide in Reducing Quartz Gangue Entrainment in Chalcopyrite Flotation by Xanthate Collectors

    NASA Astrophysics Data System (ADS)

    Gong, Jihua

    Fine particles pose two challenging problems to all mineral processors around the world today. The problems are the inefficient collection of hydrophobic particles (low recovery), and mechanical/hydraulic entrainment of hydrophilic gangue particles (low concentrate grade). Extensive research has been conducted to improve the flotation recovery of fine hydrophobic particles. However, much less effort was made to lower the mechanical/hydraulic entrainment of fine gangue mineral particles. In this study, polyethylene oxide (PEO) was used to flocculate and depress fine quartz particles. Batch flotation results indicated that the addition of low dosages of PEO improved value mineral recovery and concentrate grade in the flotation of artificial mixtures of chalcopyrite/quartz and a commercial Au-Cu sulfide ore sample. It was found that PEO adsorbed on both minerals mainly through hydrogen bonding and caused non-selective flocculation of quartz and chalcopyrite, forming large hetero-aggregates. However, the addition of potassium amyl xanthate (KAX), a specific sulfide mineral collector, adsorbed on chalcopyrite through chemical interaction, replaced PEO and caused the chalcopyrite particles to break away from the hetero-aggregates, forming separate homo-aggregates of quartz and chalcopyrite. The flotation of the chalcopyrite and the depression of the quartz were thus both improved due to the larger sizes of the homo-aggregates compared to the discrete particles. It was also observed that a completely solubilized PEO solution could not flocculate quartz, while a partially solubilized PEO solution was most effective. This was attributed to the better “bridging” functions of the undissolved PEO aggregates when it was partially solubilized. When the PEO was fully solubilized, the individual PEO molecules were probably too flexible and tended to flatten on the adsorbed solid surface and thus could not function as an effective bridging flocculant. Furthermore, it was found that PEO could function as a “collector” for quartz due to its affinity to air-water interface and quartz, and it could increase quartz entrainment when used at high dosages. Selective flocculation and depression of the quartz gangue during chalcopyrite flotation could only be achieved at low PEO dosages. The implication of these observations on how to utilize the polyethylene oxide in industrial flotation was discussed.

  15. Nano-sized Lithium Manganese Oxide Dispersed on Carbon Nanotubes for Energy Storage Applications

    SciTech Connect

    Bak, S.B.

    2009-08-01

    Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 C for 30 min using MnO{sub 2}-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.

  16. Sodium manganese oxide thin films as cathodes for Na-ion batteries

    SciTech Connect

    Baggetto, Loic; Carroll, Kyler J; Unocic, Raymond R; Bridges, Craig A; Meng, Ying Shirley; Veith, Gabriel M

    2014-01-01

    This paper presents the fabrication and characterization of sodium manganese oxide cathode thin films for rechargeable Na-ion batteries. Layered oxide compounds of nominal compositions Na0.6MnO2 and Na1.0MnO2 have been prepared by radio frequency magnetron sputtering and post-annealing at high temperatures under various conditions. The Na0.6MnO2 thin films possess either a hexagonal or orthorhombic structure while the Na1.0MnO2 films crystallize in a monoclinic structure, as shown by X-ray diffraction and X-ray absorption spectroscopy results. The potential profiles of the film cathodes are characterized by features similar to those measured for the powders and exhibit reversible storage capacities in the range of 50-60 Ah cm-2 m-1, which correspond to about 120-140 mAh g-1, and are maintained over 80 cycles.

  17. In Situ X-ray Absorption Study of a Layered Manganese-chromium Oxide-based Cathode Material

    SciTech Connect

    Balasubramanian, M.; McBreen, J; Davidson, I; Whitfield, P; Kargina, I

    2010-01-01

    We have investigated the electronic and atomic structure of a manganese-chromium-based layered oxide material Li[Li{sub 0.2}Cr{sub 0.4}Mn{sub 0.4}]O{sub 2} during electrochemical cycling using in situ X-ray absorption spectroscopy. Our results indicate that charge compensation in the cathode material is achieved by the oxidation/reduction of octahedral Cr(III) ions to tetrahedral Cr(VI) ions during delithiation/lithiation. Manganese ions are present predominantly in the Mn(IV) oxidation state and do not appear to actively participate in the charge compensation process. To accommodate the large changes in coordination symmetry of the Cr(III) and Cr(VI) ions, the chromium ions have to move between the regular octahedral sites in the R{bar 3}m-like lattice to interstitial tetrahedral sites during the charge/discharge process. The highly reversible (at least after the first charge) three-electron oxidation/reductions and the easy mobility of the chromium between octahedral and tetrahedral sites are very unusual and interesting. Equally interesting is the fact that chromium is the active metal undergoing oxidation/reduction rather than manganese. Our results also suggest that in the local scale manganese and chromium ions are not evenly distributed in the as-prepared material, but are present in separate domains of Mn and Cr-rich regions.

  18. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs.

  19. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    SciTech Connect

    Arulraj, James; Rajamathi, Michael

    2013-02-15

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni{sub 3}Zn{sub 2}(OH){sub 8}(OAc){sub 2}{center_dot}2H{sub 2}O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: Black-Right-Pointing-Pointer Anionic and cationic layered solid composites prepared. Black-Right-Pointing-Pointer Ni-Zn hydroxyoxalate reacted with KMnO{sub 4} to deposit MnO{sub 2} in the interlayer. Black-Right-Pointing-Pointer Birnessite layers coexist with anionic clay layers in the composites. Black-Right-Pointing-Pointer Birnessite/anionic clay ratio controlled by amount of KMnO{sub 4} used and reaction time.

  20. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  1. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    SciTech Connect

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  2. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium

    SciTech Connect

    Wariishi, Hiroyuki; Valli, K.; Renganathan, V.; Gold, M.H. )

    1989-08-25

    In the presence of Mn{sup II}, H{sub 2}O{sub 2}, and glutathione (GSH), manganese peroxidase oxidized veratryl alcohol (1) to veratraldehyde (4). Anisyl alcohol (2) and benzyl alcohol (3) were also oxidized by this system to their corresponding aldehydes, anisaldehyde (5) and benzaldehyde (6). In the presence of GSH, chemically prepared Mn{sup III} or {gamma}-irradiation also catalyzed the oxidation of 1, 2, and 3 to 4, 5, and 6, respectively. GSH and dithiothreitol rapidly reduced Mn{sup III} to Mn{sup II} in the absence of aromatic substrates and the dithiothreitol was oxidized to its disulfide (4,5-dihydroxyl-1,2-dithiane). These results indicate that the thiol is oxidized by enzyme-generated Mn{sup III} to a thiyl radical. The latter abstracts a hydrogen from the substrate , forming a benzylic radical which reacts with another thiyl radical to yield an intermediate which decomposes to the benzaldehyde product. 51 refs., 5 figs., 2 tabs.

  3. The synergism between SO2 oxidation and manganese leaching on spruce needles--a chamber experiment.

    PubMed

    Burkhardt, J; Drechsel, P

    1997-01-01

    Four year old spruce (Picea abies (L.) Karst.) seedlings were planted in sand pots and supplied with nutrient solution. Three groups were formed, differing only in manganese nutrition (0.5 ppm, 2.5 ppm, 12.5 ppm, respectively). After three months, five individuals of each group were transferred to a dew chamber. For the next seven weeks the trees were sprayed in the evenings, the relative humidity overnight was kept high and the droplets were collected directly from the needles in the mornings. The trees were sprayed with HNO3 (pH 3.4) during the first three weeks to reduce the natural buffering capacity of the needles. After this time, the trees were sprayed with KCl (1 mM) solution, and NaHSO3 was added to the chamber resulting in SO2 concentrations usually between 50 and 150 microg m(-3). Needles and water samples were analysed. Foliar Ca seemed to be only a short-time buffer even under optimal Ca supply. A highly significant influence of managanese supply on manganese in needles and droplets was observed, as well as on sulphate, H+ and calcium concentrations in the droplets. The SO2 flux to trees treated with 12.5 ppm Mn was about twice as high as to trees treated with 0.5 ppm Mn. The conclusion is that this is due to a synergism between manganese leaching and catalysis of the SO2 oxidation by the leached Mn2+ ions. The results suggest a positive feedback between (moderate) acidification of soils and SO2 and NH3 inputs to terrestrial ecosystems. PMID:15093468

  4. Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries

    E-print Network

    Ransil, Alan Patrick Adams

    2013-01-01

    Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

  5. ADSORPTION OF LEAD FROM A CONTAMINATED SOIL TREATED WITH PHOSPHORUS AND MANGANESE OXIDES BY APRAGUE-DAWLEY RATS

    EPA Science Inventory

    In addition to the formation of insoluble lead (Pb) compounds as a mean of reducing Pb bioavalability, adsorption is another potentially important process controlling the bioavailability of Pb in soils. Less attention has been given to manganese (Mn) oxides, even though they are ...

  6. Thursday, November 8, 2007 -9:15 AM Effects of Environmental Conditions on the Properties of Biogenic Manganese Oxides.

    E-print Network

    Sparks, Donald L.

    of Biogenic Manganese Oxides. Mengqiang Zhu, Sanjai Parikh, Matt Ginder-Vogel, and Donald L. Sparks. Plant, and organic compound in the natural environment. Various microorganisms, including bacteria and fungiMnOx. In this study, we investigated the effect of pH on the structure, morphology and reactivity of BioMnOx produced

  7. Purification and Characterization of the Manganese(II) Oxidizing Protein from Erythrobacter sp. SD-21

    NASA Astrophysics Data System (ADS)

    Nakama, K. R.; Lien, A.; Johnson, H. A.

    2013-12-01

    The manganese(II) oxidizing protein (Mop) found in the alpha-proteobacterium Erythrobacter sp. SD-21 catalyzes the formation of insoluble Mn(III/IV) oxides from soluble Mn(II). These Mn(III/IV) oxides formed are one of the strongest naturally occurring oxides, next to oxygen, and can be used to adsorb and oxidize toxic chemicals from the surrounding environment. Because of the beneficial use in the treatment of contaminated sources, the mechanism and biochemical properties of this novel enzyme are being studied. Due to low expression levels in the native host strain, purification of Mop has been problematic. To overcome this problem the gene encoding Mop, mopA, was cloned from the native host into a C-terminal histidine tag vector and expressed in Escherichia coli cells. Affinity chromatography under denaturing conditions have been applied in attempts to purify an active Mop. Western blots have confirmed that the protein is being expressed and is at the expected size of 250 kDa. Preliminary characterization on crude extract containing Mop has shown a Km and vmax value of 2453 uM and 0.025 uM min-1, respectively. Heme and pyrroloquinoline quinone can stimulate Mn(II) oxidizing activity, but hydrogen peroxide does not affect activity, despite the sequence similarity to animal heme peroxidase proteins. Research has been shown that calcium is essential for Mop activity. Purifying an active Mn(II) oxidizing protein will allow for a better understanding behind the enigmatic process of Mn(II) oxidation.

  8. Coprecipitation mechanisms and products in manganese oxidation in the presence of cadmium

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.

    1991-01-01

    Manganese oxidation products were precipitated in an aerated open-aqueous system where a continuous influx of mixed Mn2+ and Cd2+ solution was supplied and pH was maintained with an automated pH-stat adding dilute NaOH. X-ray diffraction and electron diffraction identified the solids produced as mixtures of Cd2Mn34+O8, Mn2+2Mn4+3O8, MnO2 (ramsdellite), and CdCO3. Mean oxidation numbers of the total precipitated Mn as great as 3.6 were reached during titrations. During subsequent aging in solution, oxidation numbers between 3.8 and 3.9 were reached in some precipitates in less than 40 days. Conditional oxidation rate constants calculated from a crystal-growth equation applied to titration data showed the overall precipitation rate, without considering manganese oxidation state in the precipitate, was increased by a factor of ~4 to ~7 when the mole ratio (Cd/Mn + Cd) of cadmium in the feed solution was 0.40 compared with rate constants for hausmannite (Mn2+Mn23+O4 precipitation under similar conditions but without accessory metals. Kinetic experiments were made to test effects of various Cd/Mn + Cd mole ratios and rates of addition of the feed solution, different temperatures from 5.0 to 35??C, and pH from 8.0 to 9.0. Oxidation rates were slower when the Cd mole ratio was less than 0.40. The rate increased by a factor of ~10 when pH was raised one-half unit. The effect of temperature on the rate constants was also substantial, but the meaning of this is uncertain because the rate of formation of Mn4+ oxide in the absence of Cd or other accessory metals was too slow to be measurable in titration experiments. The increased rate of Mn4+ oxide formation in the presence of Cd2+ can be ascribed to the formation of a labile adsorbed intermediate, CdMn2O4 Int, an analog of hausmannite, formed on precipitate surfaces at the beginning of the oxidation process. The increased lability of this structure, resulting from coordination-chemical behavior of Cd2+ during the titration, causes a rapid second-stage rearrangement and facilitates disproportionation of the Mn3+ ions. The Mn2+ ions thus released provide a positive feedback mechanism that couples the two steps of the conversion of Mn2+ to Mn4+ more closely than is possible when other metal ions besides manganese are not present. During aging of precipitates in contact with solutions, proportions of Cd2Mn3O8 and MnO2 increased at the expense of other precipitate components. ?? 1991.

  9. Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium

    NASA Astrophysics Data System (ADS)

    Abdel Hameed, R. M.; Fetohi, Amani E.; Amin, R. S.; El-Khatib, K. M.

    2015-12-01

    The modification of Pt/C by incorporating metal oxides for electrocatalytic oxidation of methanol has gained major attention because of the efficiency loss during the course of long-time operation. This work describes the preparation of Pt-MnO2/C electrocatalysts through a chemical route using ethylene glycol or a mixture of ethylene glycol and sodium borohydride as a reducing agent. The crystallite structure and particle size of synthesized electrocatalysts are determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The addition of MnO2 improves the dispersion of Pt nanoparticles. The electrocatalytic activity of Pt-MnO2/C towards methanol oxidation in H2SO4 solution is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The onset potential value of methanol oxidation peak is negatively shifted by 169 mV when MnO2 is introduced to Pt/C. Moreover, the charge transfer resistance value at Pt-MnO2/C is about 10 times as low as that at Pt/C. Chronoamperometry and chronopotentiometry show that CO tolerance is greatly improved at Pt-MnO2/C. The increased electrocatalytic activity and enhanced ability to clean platinum surface elect manganese oxide as a suitable promoter for the anode performance in direct methanol fuel cells (DMFCs).

  10. Mesoporous iron–manganese oxides for sulphur mustard and soman degradation

    SciTech Connect

    Štengl, Václav; J.E. Purkyn? University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem ; Grygar, Tomáš Matys; J.E. Purkyn? University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem ; Bludská, Jana; Opluštil, František; N?mec, Tomáš

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ? The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ? One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electron microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn{sub 7}5 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn{sub 3}7U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.

  11. Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li+ recovery.

    PubMed

    Yu, Qianqian; Sasaki, Keiko; Hirajima, Tsuyoshi

    2013-11-15

    Microbial transformations, a primary pathway for the Mn oxides formation in nature, provide potential for material-oriented researchers to fabricate new materials. Using Mn oxidizing fungus Paraconiothyrium sp. WL-2 as a bio-oxidizer as well as a bio-template, a special lithium ion sieve with microtube morphology was prepared through a solid-state transformation. Varying the calcination temperature from 300 to 700 °C was found to influence sample properties and consequently, the adsorption of Li(+). Lithium manganese oxide microtube (LMO-MTs) calcined at different temperatures as well as their delithiated products (HMO-MTs) were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Calcination temperatures affect not only the content but also the crystal structure of LMO spinel, which is important in Li(+) adsorption. The optimized sample was obtained after calcination at 500 °C for 4h, which shows higher Li(+) adsorption capacity than particulate materials. PMID:24007997

  12. THEORETICAL TECHNIQUE FOR DETERMINING THE CUMULATIVE IMPACT OF IRON AND MANGANESE OXIDATION IN STREAMS RECEIVING COAL-MINE DISCHARGE.

    USGS Publications Warehouse

    Bobay, Keith E.; Banaszak, Konrad J.

    1985-01-01

    Two U. S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge on the dissolved-chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved-iron, dissolved-manganese, and dissolved-oxygen concentrations, and the pH of surface water downstream from the discharge. The cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to determine the effectiveness and sensitivity of the coupled programs.

  13. Geology, alteration, age, and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Ghaderi, Majid; Corfu, Fernando; Neubauer, Franz; Bernroider, Manfred; Prokofiev, Vsevolod; Honarmand, Maryam

    2014-02-01

    Iron oxide-apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U-Pb dating of monazite inclusions in the apatite indicates an age of 39.99 ± 0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide-apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic-hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.

  14. a Manganese Oxide Contained Coating for Biodegradable AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yan, Tingting; Tan, Lili; Xiong, Dangsheng; Zhang, Bingchun; Yang, Ke

    A manganese oxide contained coating was prepared on biodegradable AZ31B magnesium alloy to control the degradation of AZ31B and improve its biocompatibility. Morphology, composition, and corrosion resistance of the coating were studied. The SEM observations showed that the coating was approximately 4-6 ?m in thickness with net-like microcracks. The XPS analysis indicated that the coating was mainly composed of MgO, Mg(OH)2, MnO2, Mn2O3, and Mn3O4. It was found that AZ31B with such coating showed better corrosion resistance in simulated blood plasma through electrochemical and immersion tests. The hemolytic assay indicated that the treated AZ31B had no hemolytic effect.

  15. Theory of chemical bonds in metalloenzymes - Manganese oxides clusters in the oxygen evolution center -

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K.; Shoji, M.; Saito, T.; Isobe, H.; Yamada, S.; Nishihara, S.; Kawakami, T.; Kitagawa, Y.; Yamanaka, S.; Okumura, M.

    2012-12-01

    In early 1980 we have initiated broken-symmetry (BS) MO theoretical calculations of transition-metal oxo species M = O (M = Ti,V,Cr,Mn,Fe,Ni,Cu) to elucidate the nature of d?-p? and d?-p? bonds. It has been concluded that high-valent M = O species such as [Mn(IV) = O]2+ and [Fe(IV) = O]2+ exhibit electrophilic property in a sharp contrast with nucleophilic character of low-valent M = O bonds: [M(II)O2-]0, and closed-shell d?-p? bonds of high-valent M = O species often suffer the triplet-instability, giving rise to open-shell (BS) configurations with significant metal-diradical (MDR) character: •M-O•: note that these bonds are therefore regarded as typical examples of strongly correlated electron systems. Because of the MDR character, 1,4-metal diradical mechanism was indeed preferable to four-centered mechanism in the case of addition reaction of naked Mn(IV) = O to ethylene. Recently the manganese-oxo species have been receiving renewed interest in relation to catalytic cycle of oxygen evolution from water molecules in the photosynthesis II (PSII) system. Accumulated experimental results indicate that this process is catalyzed with four manganese oxide clusters coordinated with calcium ion (CaMn4O4). Past decade we have performed BS MO theoretical investigations of manganese oxide clusters related to CaMn4O4. These calculations have elucidated that high-valent Mn(X) = O (X = IV,V) bonds exhibit intermediate MDR character (y=40-60%) in the case of total low-spin (LS) configuration but the MDR character decreases with coordination of Ca2+ and water molecules. While the MDR character of the Mn-oxo bonds becomes very high at the high-spin (HS) configuration. Our computational results enabled us to propose two possible mechanisms on the theoretical ground: (A) electrophilic (EP) mechanism and (B) radical coupling (RC) mechanism. The theoretical results indicate that the EP mechanism is preferable for the low-spin (LS) state in polar media like in the protein environments (native OEC), whereas the RC mechanism is feasible at the state without such environmental stabilization: local singlet and local triplet diradical mechanisms are proposed for the OO coupling process. Possibilities of EP and RC mechanisms are examined in comparison with a lot of experimental results accumulated and theoretical results with several groups.

  16. Nanostructured dimagnesium manganese oxide (Spinel): Control of size, shape and their magnetic and electro catalytic properties

    SciTech Connect

    Garg, Neha; Menaka; Ramanujachary, Kandalam V.; Lofland, Samuel E.; Ganguli, Ashok K.

    2013-01-15

    Tetravalent Mn based ternary oxides are of interest as they are important electrode materials. Dimagnesium manganate (Mg{sub 2}MnO{sub 4}) is one Mn(IV) containing oxide which has been of interest. Nanostructures of the above oxide (spinel) have been obtained by the thermal decomposition of nanostructured metal oxalate precursor at 500 Degree-Sign C. The size and anisotropy of the oxide nanostructures was controlled by choosing appropriate decomposition temperature of the oxalate precursor. Mg{sub 2}MnO{sub 4} nanorods were obtained at low temperature (500 Degree-Sign C), formed by aligned nanoparticles of size{approx}8-10 nm. These nanoparticles show Curie-Weiss behavior with Weiss constant (14 K). Below {approx}50 K there is a small deviation resulting in a negative Weiss constant (-7.36 K) indicating exchange cross over (from ferromagnetic like interactions to antiferromagnetic interactions). The high temperature magnetic moment corresponds to Mn (IV). Electrochemical experiments show that nanostructured Mg{sub 2}MnO{sub 4} is an efficient anode material for oxygen evolution reaction with a current density of 14 mA/cm{sup 2}. The stability of the anode over several cycles of oxidation and reduction is highly encouraging. - Graphical abstract: Nanostructured dimagnesium manganese with efficient electrocatalytic property synthesized by reverse micellar route. Highlights: Black-Right-Pointing-Pointer Mg{sub 2}MnO{sub 4} nanorods were synthesized by reverse micellar route. Black-Right-Pointing-Pointer Anisotropy of oxalate rods retained in oxides nanorods. Black-Right-Pointing-Pointer Nanorods show good catalytic behavior towards oxygen evolution reaction.

  17. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Aleksandrova, M.; Stefanov, P.; Grechnikov, A.; Gadjanova, V.; Dilova, T.; Angelov, Ts

    2014-12-01

    A study of NO2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO2 concentrations. The QCM-ITO system becomes sensitive at NO2 concentration >= 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO2 concentration. When the NO2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO2 in the air at room temperature.

  18. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems. PMID:26348539

  19. Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury

    PubMed Central

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira

    2013-01-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600

  20. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia.

    PubMed

    Torres, Natascha T; Och, Lawrence M; Hauser, Peter C; Furrer, Gerhard; Brandl, Helmut; Vologina, Elena; Sturm, Michael; Bürgmann, Helmut; Müller, Beat

    2014-04-01

    Distinct layers of iron(III) and manganese(IV) (Fe/Mn) oxides are found buried within the reducing part of the sediments in Lake Baikal and cause considerable complexity and steep vertical gradients with respect to the redox sequence. For the on-site investigation of the responsible biogeochemical processes, we applied filter tube samplers for the extraction of sediment porewater combined with a portable capillary electrophoresis instrument for the analyses of inorganic cations and anions. On the basis of the new results, the sequence of diagenetic processes leading to the formation, transformation, and dissolution of the Fe/Mn layers was investigated. With two exemplary cores we demonstrate that the dissolution of particulate Fe and Mn is coupled to the anaerobic oxidation of CH? (AOM) either via the reduction of sulphate (SO?(2-)) and the subsequent generation of Fe(II) by S(-II) oxidation, or directly coupled to Fe reduction. Dissolved Fe(II) diffuses upwards to reduce particulate Mn(IV) thus forming a sharp mineral boundary. An alternative dissolution pathway is indicated by the occurrence of anaerobic nitrification of NH?(+) observed at locations with Mn(IV). Furthermore, the reasons and consequences of the non-steady-state sediment pattern and the resulting redox discontinuities are discussed and a suggestion for the burial of active Fe/Mn layers is presented. PMID:24619231

  1. Chemical syntheses of manganese and tantalum oxide octahedral molecular sieves and their structural characterization by powder x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Duan, Niangao

    This research consists of soft chemical synthesis and structural investigations of manganese and tantalum oxide octahedral molecular sieves. These include the use of sol-gel, hydrothermal and reflux methods for syntheses and the employment of various techniques for characterization, especially the Rietveld analysis of powder X-ray diffraction data for structural refinements. The manganese oxide cryptomelane (K-OMS-2) with a tunnel structure and birnessite layered materials (OL-1) were prepared by the sol gel method. The synthesis consists of reacting MnO4- solutions with fumaric acid or glucose to form a gel, and heating the xerogels at a temperature effective to produce the final manganese oxide materials. These sol-gel methods give many advantages, such as high thermal stabilities of products, over other preparation routes. The synthetic parameters have been optimized to prepare pure K-OMS-2 and OL-1. The crystal structure of K-OMS-2 has been refined by the Rietveld method from in-house powder X-ray diffraction data. The potassium tantalate defect pyrochlores were prepared by hydrothermal methods at a temperature of 200°C. The materials were crystallized from tantalum pentoxide in a potassium hydroxide solution, with a uniform crystal size of about 1 mum. They were ion-exchanged with H+ at low temperatures in a nitric acid solution. A BET surface area of 15 m 2/g was obtained. The structure of this defect pyrochlore and its acid exchanged form were determined by Rietveld refinement from powder X-ray diffraction data. The reflux method was also employed to search for new manganese oxide microporous materials. A ramsdellite material with a 1 x 2 tunnel structure and high surface area of 70 m2/g was prepared. Catalytic oxidations of hexane and cyclohexane with tert-butyl hydroperoxide have shown good activities with this catalyst. This investigation suggests that shape selectivity plays a role in the high catalytic activities of the oxidations of these saturated hydrocarbons.

  2. Photochemical Oxidation of a Manganese(III) Complex with Oxygen and Toluene Derivatives to Form a Manganese(V)-Oxo Complex

    PubMed Central

    Jung, Jieun; Ohkubo, Kei; Prokop-Prigge, Katharine A.; Neu, Heather M.; Goldberg, David P.; Fukuzumi, Shunichi

    2013-01-01

    Visible light photoirradiation of an oxygen-saturated benzonitrile solution of a manganese(III) corrolazine complex [(TBP8Cz)MnIII (1): [TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3?] in the presence of toluene derivatives resulted in formation of the manganese(V)-oxo complex [(TBP8Cz)MnV(O)]. The photochemical oxidation of (TBP8Cz)MnIII with O2 and hexamethylbenzene (HMB) led to the isosbestic conversion of 1 to (TBP8Cz)MnV(O), accompanied by the selective oxidation of HMB to pentamethylbenzyl alcohol (87%). The formation rate of (TBP8Cz)MnV(O) increased with methyl group substitution, from toluene, p-xylene, mesitylene, durene, pentamethylbenzene, up to hexamethylbenzene. Deuterium kinetic isotope effects (KIEs) were observed for toluene (KIE = 5.4) and mesitylene (KIE = 5.3). Femtosecond laser flash photolysis of (TBP8Cz)MnIII revealed the formation of a tripquintet excited state, which was rapidly converted to a tripseptet excited state. The tripseptet excited state was shown to be the key, activated state that reacts with O2 via a diffusion-limited rate constant. The data allow for a mechanism to be proposed in which the tripseptet excited state reacts with O2 to give the putative (TBP8Cz)MnIV(O2•?), which then abstracts a hydrogen atom from the toluene derivatives in the rate-determining step. The mechanism of hydrogen abstraction is discussed by comparison of the reactivity with the hydrogen abstraction from the same toluene derivatives by cumylperoxyl radical. Taken together, the data suggest a new catalytic method is accessible for the selective oxidation of C-H bonds with O2 and light, and the first evidence for catalytic oxidation of C–H bonds was obtained with 10-methyl-9,10-dihydroacridine as a substrate. PMID:24219426

  3. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I?), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2?). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ?90% of the provided iodide (10 ?M) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  4. Manganese Oxidation State as a Cause of Irritant Patch Test Reactions

    PubMed Central

    Shallcross, Laurie; Ritchie, Simon; Harberts, Erin; Tammaro, Antonella; Gaitens, Joanna; Gaspari, Anthony A.

    2015-01-01

    Background Manganese chloride (MnCl2) 2.5% is included in the extended metals patch test series to evaluate patients for contact hypersensitivity to this metal salt. Objectives The objective of this study was to prospectively determine the rate of allergic and irritant patch test reactions to MnCl2 (Mn(II)), Mn2O3 (Mn(III)), and KMnO4 (Mn(VII)) in a cohort of patients undergoing patch testing. Methods Fifty-eight patients were patch tested with MnCl2, Mn2O3, and KMnO4, each at 2.5% in petrolatum. Patch readings were taken at 48, and 72 or 96 hours, and scored using standard methods. Cultured monolayers of keratinocytes (KCs) were exposed to MnCl2, Mn2O3, and KMnO4 in aqueous culture medium, and cell survival and cytokine release were studied. Conclusions MnCl2 caused irritant patch test reactions in 41% of the cohort, whereas Mn2O3 and KMnO4 caused a significantly lower rate of irritant reactions (both 3%). No allergic morphologies were observed. Similarly, in cultured KC monolayers, only MnCl2 was cytotoxic to KC and induced tumor necrosis factor ? release. The oxidation state of manganese used for patch testing affects the irritancy of this metal salt, as Mn(II) caused an unacceptably high rate of irritant reactions in a cohort of patients. In vitro studies confirmed these clinical data, as only Mn(II) was cytotoxic to cultured monolayers of KC. PMID:24603521

  5. Nanogold supported on manganese oxide doped alumina microspheres as a highly active and selective catalyst for CO oxidation in a H2-rich stream.

    PubMed

    Miao, Yu-Xin; Li, Wen-Cui; Sun, Qiang; Shi, Lei; He, Lei; Wang, Jing; Deng, Gao-Ming; Lu, An-Hui

    2015-12-28

    Manganese oxide-doped Al2O3 microspheres were synthesized via a redox method, and were then deposited with Au nanoparticles using a deposition-precipitation method. The obtained catalyst is not only highly active and selective for the preferential oxidation of CO in a H2-rich stream, but also shows excellent stability in the co-presence of H2O and CO2 at 80 °C. PMID:26489890

  6. Transformation of paracetamol into 1,4-benzoquinone by a manganese oxide bed filter.

    PubMed

    Huguet, Mélissa; Simon, Virginie; Gallard, Hervé

    2014-04-30

    This study investigates the transformation of paracetamol (PRC) by a granular manganeseoxide in a column bed reactor. Paracetamol was quantitatively transformed into p-benzoquinone(BZQ) for empty bed residence times (EBRT) <5 min at pH 6.0. For 5mM MOPS (3-morpholinopropane-1-sulfonic acid) and pH 7.0, the mean removal yield of PRC was 77% for initial PRC concentrations ranging from 0.1 to 50 ?M. Conversion of PRC and formation of BZQ decreased when pH increased from 6 to 8. Dimer of PRC was observed at pH 7.0, which could explain the lower conversion into BZQ when pH increased. The presence of organic buffer MOPS and natural organic matter (NOM) reduced the oxidation of PRC because of competition reactions for active sites. The formation of the toxic BZQ metabolite was reduced in presence of NOM because of cross-coupling reactions between phenoxyl radicals and NOM. Results suggest that manganese oxide bed filter can be used to remove pharmaceutical compounds including phenolic moiety in their structure. PMID:24632488

  7. Growth of different phases of yttrium manganese oxide thin films by pulsed laser deposition

    SciTech Connect

    Kumar, Manish; Choudhary, R. J.; Phase, D. M.

    2012-06-05

    Various phases of yttrium manganese oxide (YMO) thin films have been synthesized on different substrates from a single target of h-YMnO{sub 3}. It is observed that the phase stability and crystallinity of YMO thin films depend on the substrate used and oxygen partial pressure (OPP). (110) oriented and polycrystalline growth of h-YMnO{sub 3} are observed on the Al{sub 2}O{sub 3} (0001) and NGO (110) substrates respectively, when grown in OPP {approx_equal} 10{sup -6} Torr. While for similar OPP value, growth of mixed phases (h-YMnO{sub 3} and o-YMn{sub 2}O{sub 5}) is observed on Si (001) substrate. Oriented growth of O-YMn{sub 2}O{sub 5} phase film on Si (001) substrate is observed first time, when deposited at OPP value of 225 and 350 mTorr. +3 and mixed oxidation states (+3 and +4) of Mn were confirmed by x-ray photoelectron spectroscopy in pure YMnO{sub 3} phase and YMn{sub 2}O{sub 5} phase respectively.

  8. Nutrient input influences fungal community composition and size and can stimulate manganese (II) oxidation in caves.

    PubMed

    Carmichael, Sarah K; Zorn, Bryan T; Santelli, Cara M; Roble, Leigh A; Carmichael, Mary J; Bräuer, Suzanna L

    2015-08-01

    Little is known about the fungal role in biogeochemical cycling in oligotrophic ecosystems. This study compared fungal communities and assessed the role of exogenous carbon on microbial community structure and function in two southern Appalachian caves: an anthropogenically impacted cave and a near-pristine cave. Due to carbon input from shallow soils, the anthropogenically impacted cave had an order of magnitude greater fungal and bacterial quantitative-polymerase chain reaction (qPCR) gene copy numbers, had significantly greater community diversity, and was dominated by ascomycotal phylotypes common in early phase, labile organic matter decomposition. Fungal assemblages in the near-pristine cave samples were dominated by Basidiomycota typically found in deeper soils (and/or in late phase, recalcitrant organic matter decomposition), suggesting more oligotrophic conditions. In situ carbon and manganese (II) [Mn(II)] addition over 10 weeks resulted in growth of fungal mycelia followed by increased Mn(II) oxidation. A before/after comparison of the fungal communities indicated that this enrichment increased the quantity of fungal and bacterial cells, yet decreased overall fungal diversity. Anthropogenic carbon sources can therefore dramatically influence the diversity and quantity of fungi, impact microbial community function, and stimulate Mn(II) oxidation, resulting in a cascade of changes that can strongly influence nutrient and trace element biogeochemical cycles in karst aquifers. PMID:25865809

  9. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (?-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in acidic soil environments.

  10. Kinetics of Chromium(III) Oxidation by Manganese(IV) Oxides Using Quick X-Ray Absorption Fine Structure Spectroscopy (Q-Thursday, November 5, 2009: 9:30 AM

    E-print Network

    Sparks, Donald L.

    Kinetics of Chromium(III) Oxidation by Manganese(IV) Oxides Using Quick X-Ray Absorption Fine, Univ. of Delaware, Newark, DE The rapid kinetics of Cr(III) oxidation on mineral surfaces is poorly the chemical kinetics of Cr(III) oxidation on Mn-Oxides. The results will be useful in predicting the fate

  11. Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System

    PubMed Central

    Elder, Alison; Gelein, Robert; Silva, Vanessa; Feikert, Tessa; Opanashuk, Lisa; Carter, Janet; Potter, Russell; Maynard, Andrew; Ito, Yasuo; Finkelstein, Jacob; Oberdörster, Günter

    2006-01-01

    Background Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; < 100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb. Methods To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; ~ 500 ?g/m3) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses. Results After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-? mRNA (~ 8-fold) and protein (~ 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was < 1.5% per day. Conclusions We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans. PMID:16882521

  12. Development of optically transparent water oxidation catalysts using manganese pyrophosphate compounds.

    PubMed

    Takashima, Toshihiro; Hotori, Yuki; Irie, Hiroshi

    2015-11-01

    One challenge in artificial photosynthetic systems is the development of active oxygen evolution catalysts composed of abundant elements. The oxygen evolution activities of manganese pyrophosphate compounds were examined in electrochemical and photochemical experiments. Electrocatalysis using calcium-manganese pyrophosphate exhibited good catalytic ability under neutral pH and an oxygen evolution reaction was driven with a small overpotential (?<100mV). UV-vis diffuse reflectance measurements revealed that manganese pyrophosphates exhibit weak absorption in the visible light region while commonly used oxygen evolution catalysts exhibit intense absorption. Therefore, the efficient light absorption of a photocatalyst was retained even after surface modification with a manganese pyrophosphate, and photochemical oxygen evolution was achieved by using magnesium ferrite modified with manganese pyrophosphate nanoparticles under the illumination of visible light at wavelength of over 420nm. PMID:25648929

  13. Heavy metals and manganese oxides in the genesee watershed, New York state: effects of geology and land use

    USGS Publications Warehouse

    Whitney, P.R.

    1981-01-01

    Manganese oxide coatings on gravels from 255 sites on tributary streams in the Genesee River Watershed were analyzed for Mn, Fe, Zn, Cd, Co, Ni, Pb, and Cu. The results were compared with data on bedrock geology, surficial geology and land use, using factor analysis and stepwise multiple regression. All metals except Pb show strong positive correlation with Mn. This association results from the well-known tendency of Mn oxide precipitates to adsorb and incorporate dissolved trace metals. Pb may be present in a separate phase on the gravel surfaces; alternatively Pb abundance may be so strongly influenced by environmental factors that the effect of varying abundance of the carrier phase becomes relatively unimportant. When the effects of varying Mn abundance are allowed for, Pb and to a lesser extent Zn and Cu abundances are seen to be related to commercial, industrial and residential land use. In addition to this pollution effect, all the trace metals, Cd and Ni most strongly, tend to be more abundant in oxide coatings from streams in the forested uplands in the southern part of the area. This probably reflects increased geochemical mobility of the metals in the more acid soils and groundwater of the southern region. A strong Zn anomaly is present in streams draining areas underlain by the Lockport Formation. Oxide coatings in these streams contain up to 5% Zn, originating from disseminated sphalerite in the Lockport and secondary Zn concentrations in the overlying muck soils. The same group of metals, plus calcium and loss on ignition, were determined in the silt and clay (minus 230 mesh) fraction of stream sediments from 129 of the same sites, using a hot nitric acid leach. The amounts of manganese in the sediments are low (average 1020 ppm) and manganese oxides are, at most, of relatively minor significance in the trace-metal geochemistry of these sediments. The bulk of the trace metals in sediment appears to be associated with iron oxides, clays and organic matter. ?? 1981.

  14. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model

    USGS Publications Warehouse

    Tonkin, J.W.; Balistrieri, L.S.; Murray, J.W.

    2004-01-01

    Manganese oxides are important scavengers of trace metals and other contaminants in the environment. The inclusion of Mn oxides in predictive models, however, has been difficult due to the lack of a comprehensive set of sorption reactions consistent with a given surface complexation model (SCM), and the discrepancies between published sorption data and predictions using the available models. The authors have compiled a set of surface complexation reactions for synthetic hydrous Mn oxide (HMO) using a two surface site model and the diffuse double layer SCM which complements databases developed for hydrous Fe (III) oxide, goethite and crystalline Al oxide. This compilation encompasses a range of data observed in the literature for the complex HMO surface and provides an error envelope for predictions not well defined by fitting parameters for single or limited data sets. Data describing surface characteristics and cation sorption were compiled from the literature for the synthetic HMO phases birnessite, vernadite and ??-MnO2. A specific surface area of 746 m2g-1 and a surface site density of 2.1 mmol g-1 were determined from crystallographic data and considered fixed parameters in the model. Potentiometric titration data sets were adjusted to a pH1EP value of 2.2. Two site types (???XOH and ???YOH) were used. The fraction of total sites attributed to ???XOH (??) and pKa2 were optimized for each of 7 published potentiometric titration data sets using the computer program FITEQL3.2. pKa2 values of 2.35??0.077 (???XOH) and 6.06??0.040 (???YOH) were determined at the 95% confidence level. The calculated average ?? value was 0.64, with high and low values ranging from 1.0 to 0.24, respectively. pKa2 and ?? values and published cation sorption data were used subsequently to determine equilibrium surface complexation constants for Ba2+, Ca2+, Cd 2+, Co2+, Cu2+, Mg2+, Mn 2+, Ni2+, Pb2+, Sr2+ and Zn 2+. In addition, average model parameters were used to predict additional sorption data for which complementary titration data were not available. The two-site model accounts for variability in the titration data and most metal sorption data are fit well using the pKa2 and ?? values reported above. A linear free energy relationship (LFER) appears to exist for some of the metals; however, redox and cation exchange reactions may limit the prediction of surface complexation constants for additional metals using the LFER. ?? 2003 Elsevier Ltd. All rights reserved.

  15. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect

    Francis, Todd M; Lichty, Paul R; Perkins, Christopher; Tucker, Melinda; Kreider, Peter B; Funke, Hans H; Lewandowski, A; Weimer, Alan W

    2012-10-24

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar-driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  16. Manganese(III) corrole-oxidant adduct as the active intermediate in catalytic hydrogen atom transfer.

    PubMed

    Zdilla, Michael J; Abu-Omar, Mahdi M

    2008-11-17

    Hydrogen atom transfer (HAT) reactions from dihydroanthracene to ArINTs (Ar = 2- tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) is catalyzed by Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole). Kinetics of HAT was monitored by gas chromatography. Conversion to the major products anthracene, TsNH 2, and ArI is too fast to be explained by direct HAT from the terminal imido complex TsN=Mn(tpfc), which forms from the reaction of Mn(tpfc) with ArINTs. Steady-state kinetics, isotope effects, and variation of the initial catalyst form (Mn (III)(tpfc) vs TsN=Mn (V)(tpfc)) support a mechanism in which the active catalytic species is an adduct of manganese(III) with the oxidant, (ArINTs)Mn (III)(tpfc). This species was detected by rapid-scan stopped-flow absorption spectroscopy. Kinetic simulations demonstrated the viability of this mechanism in contrast to other proposals. PMID:18855381

  17. Complexation and redox interactions between aqueous plutonium and manganese oxide interfaces

    SciTech Connect

    Shaughnessy, Dawn A.; Nitsche, Heino; Booth, Corwin H.; Shuh, David K.; Waychunas, Glenn A.; Wilson, Richard E.; Cantrell, Kirk J.; Serne, R. Jeffrey

    2001-11-01

    The sorption of Pu(VI) and Pu(V) onto manganite (MnOOH) and Hausmannite (Mn3O4) was studied at pH 5. Manganite sorbed 21-24% from a 1x10-4 M plutonium solution and the hausmannite removed between 43-66% of the plutonium. The increased sorption by hausmannite results from its larger surface area (about twice that of manganite) plus a larger number of active surface sites. X-ray absorption near-edge structure (XANES) spectra taken at the Pu LIII edge were compared to standard spectra of plutonium in single oxidation states. Based on these spectra, it appears that both manganite and hausmannite reduce the higher valent plutonium species to Pu(IV). Between 53-59% of the plutonium was present as Pu(IV) in the manganite samples while 55-61% of the plutonium complexed to the hausmannite had also been reduced to Pu(IV). The exact mechanism behind this redox interaction between the plutonium and the manganese needs to be identified.

  18. Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kang, Doo Won; Kim, Sang-Wook; Kim, Chang-Koo

    2015-05-01

    We develop a direct and environmentally benign method to prepare manganese oxide (Mn3O4)/graphene composites via one-step hydrothermal synthesis from graphite without using strong acids and toxic reducing agents. Structural and morphological analyses reveals that the irregularly shaped Mn3O4 nanoparticles are well-dispersed on the graphene flakes. Cyclic voltammetry and galvanostatic charge-discharge tests indicate that the charge-storing mechanism of the Mn3O4/graphene composites is pseudocapacitive. The Mn3O4/graphene composite exhibits a specific capacitance of 367 F/g at a current density of 5 A/g. After 3000 charge-discharge cycles, the Mn3O4/graphene electrode retains 91.8% of its initial specific capacitance. From electrochemical impedance spectra, it is evident that the changes in both the equivalent series resistance and charge-transfer resistance of the Mn3O4/graphene electrode before and after 3000 charge-discharge cycles are small, indicating good cycling and electrochemical stability of the Mn3O4/graphene electrode.

  19. Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmi; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-08-01

    We have prepared a reduced graphene oxide (rGO)-supported silver (Ag) and manganese dioxide (MnO2) deposited porous-like catalyst (denoted as rGO/MnO2/Ag) through a facile electrochemical deposition route and have been used as a cathode catalyst for oxygen reduction reaction (ORR) in alkaline fuel cells. The physical properties of rGO/MnO2/Ag have been investigated via several instrumental methods. This material exhibits a polycrystalline structure characterized by Ag/MnO2 microsphere formation as a result of Ostwald ripening. The X-ray diffraction and X-ray photoelectron spectroscopy data reveal that the MnO2 and Ag have been slightly alloyed and Mn presents with the dioxide form on rGO. The electrochemical properties of the electrocatalyst have been studied via several voltammetric methods. The results demonstrated that the rGO/MnO2/Ag has an excellent catalytic activity for ORR in alkaline media compared to the other tested electrodes. Particularly, it shows 1.2 times higher current density and better electron transfer rate at 0.3 V per O2 than that of 20 wt% Pt/C. The other kinetic analysis reveals that the O2 has reduced directly to H2O through a nearly four-electron pathway with better anodic fuel tolerance and duration performance than that of 20% Pt/C.

  20. Lattice-mismatch Strain Effects in Electron-Doped Calcium Manganese Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Hart, Cacie; Yong, Grace; Warecki, Zoey; Chaudhry, Adeel; Sharma, Prakash; Johnson, Anthony; Schaefer, David; Kolagani, Rajeswari

    2015-03-01

    Electron-doped Calcium Manganese Oxide (CaMnO3-?) thin films are of interest for use as photocatalysts and fuel cell electrodes in renewable energy applications. Oxygen stoichiometry of the films is a key parameter for the functionality in these applications. Currently, we are investigating the properties of (CaMnO3-?) films grown by pulsed laser deposition. The thin films are epitaxially grown on LaAlO3 and SrTiO3 substrates. Both of these substrates have larger in-plane lattice parameters than CaMnO3-?, which leads to bi-axial tensile strain in the thin films. We have characterized the thickness dependence of structural, electrical, and morphological properties of these films using high resolution x-ray diffraction, temperature dependent electrical resistivity measurements, and atomic force microscopy. The thickness dependence is characteristically different from what has been preciously observed in thin films of hole-doped manganites. Our results suggest that coupling between tensile strain and oxygen deficiency affect the electrical and structural properties of the material. NSF Grant ECCS1128586.

  1. Photo-catalytic Degradation and Sorption of Radio-cobalt from EDTA-Co Complexes Using Manganese Oxide Materials - 12220

    SciTech Connect

    Koivula, Risto; Harjula, Risto; Tusa, Esko

    2012-07-01

    The synthesised cryptomelane-type ?-MnO{sub 2} was tested for its Co-57 uptake properties in UV-photo-reactor filled with 10 ?M Co-EDTA solution with a background of 10 mM NaNO{sub 3}. High cobalt uptake of 96% was observed after 1 hour of UV irradiation. As for comparison, a well-known TiO{sub 2} (Degussa P25) was tested as reference material that showed about 92% cobalt uptake after six hours of irradiation in identical experiment conditions. It was also noted that the cobalt uptake on cryptomelane with out UV irradiation was modest, only about 10%. Decreasing the pH of the Co-EDTA solution had severe effects on the cobalt uptake mainly due to the rather high point of zero charge of the MnO{sub 2} surface (pzc at pH ?4.5). Modifying the synthesis procedure we were able to produce a material that functioned well even in solution of pH 3 giving cobalt uptake of almost 99%. The known properties, catalytic and ion exchange, of manganese oxides were simultaneously used for the separation of EDTA complexed Co-57. Tunnel structured cryptomelane -type showed very fast and efficient Co uptake properties outperforming the well known and widely used Degussa P25 TiO{sub 2} in both counts. The layered structured manganese oxide, birnessite, reached also as high Co removal level as the reference material Degussa did but the reaction rate was considerably faster. Since the decontamination solutions are typically slightly acidic and the point of zero charge of the manganese oxides are rather high > pH 4.5 the material had to be modified. This modified material had tolerance to acidic solutions and it's Co uptake performance remained high in the solutions of lower pH (pH 3). Increasing the ion concentration of test solutions, background concentration, didn't affect the final Co uptake level; however, some changes in the uptake kinetics could be seen. The increase in EDTA/MoMO ratio was clearly reflected in the Co uptake curves. The obtained results of manganese oxide were very promising for the treatment of EDTA complexed Co solutions. The better performance values and cheaper production cost of manganese oxide, compared to titanium dioxide, is so big driving force that further studies on the material are evident. The possibilities for continuous treatment, instead of the fluidized bed -type batch experiment are investigated and the effects of other compounds affecting the de-complexation of Co-EDTA are further studied. (authors)

  2. Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis

    E-print Network

    Garfunkel, Eric

    on the five known structural polymorphs of MnO2. We have adapted literature synthesis methods to obtain pure dye photo-oxidant system. No Ru was absorbed on the catalyst surface as observed by XPS and EDX was found exclusively for (distorted) cubic phases, Mn2O3 (bixbyite), Mn3O4 (hausmannite), and -MnO2 (spinel

  3. Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    SciTech Connect

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-02-15

    Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 Degree-Sign C for 2 h and also possesses high total pore volumes (0.41 cm Superscript-Three g{sup -1}) and high specific BET surface area (161 m{sup 2} g{sup -1}), which is nine times larger than that of the pristine (19 m{sup 2} g{sup -1}). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic-inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: Black-Right-Pointing-Pointer A two-step synthesis method was used to prepare the CTAB-Al-MO. Black-Right-Pointing-Pointer The CTAB-Al-MO has the large basal spacing and high specific BET surface area. Black-Right-Pointing-Pointer The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. Black-Right-Pointing-Pointer The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  4. Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Junlong; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, HuiLing; Yang, Guangjin

    2014-08-01

    Polyvinylpyrrolidone (PVP)/reduced graphene oxide (RGO) nanocomposites are sprayed on quartz crystal microbalance (QCM) for NO2 sensing. The thin films are characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The experimental results reveal that PVP/RGO sensor exhibits higher sensitivity and shorter recovery time than those of PVP. Besides, the response to 20 ppm NO2 is higher than other gases such as CO, CO2 and NH3 even at 100ppm. When the PVP/RGO sensor is exposed to these gases, the good selectivity to NO2 makes the sensor ideal for NO2 detection.

  5. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    PubMed

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels. PMID:26452013

  6. Manganese-Cobalt Mixed Spinel Oxides as Surface Modifiers for Stainless Steel Interconnects of Solid Oxide Fuel Cells

    SciTech Connect

    Xia, Gordon; Yang, Z Gary; Stevenson, Jeffry W.

    2006-11-06

    Ferritic stainless steels are promising candidates for interconnect applications in low- and mid-temperature solid oxide fuel cells (SOFCs). A couple of issues however remain for the particular application, including the chromium poisoning due to chromia evaporation, and long-term surface and electrical stability of the scale grown on these steels. Application of a manganese colbaltite spinel protection layer on the steels appears to be an effective approach to solve the issues. For an optimized performance, Mn{sub 1+x}Co{sub 2-x}O{sub 4} (-1 {le} x {le} 2) spinels were investigated against properties relative for protection coating applications on ferritic SOFC interconnects. Overall it appears that the spinels with x around 0.5 demonstrate a good CTE match to ceramic cell components, a relative high electrical conductivity, and a good thermal stability up to 1,250 C. This was confirmed by a long-term test on the Mn{sub 1.5}Co{sub 1.5}O{sub 4} protection layer that was thermally grown on Crofer22 APU, indicating the spinel protection layer not only significantly decreased the contact resistance between a LSF cathode and the stainless steel interconnects, but also inhibited the sub-scale growth on the stainless steels.

  7. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  8. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  9. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries.

    PubMed

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  10. Ab initio molecular dynamics study of manganese porphine hydration and interaction with nitric oxide

    E-print Network

    Kevin Leung; Craig J. Medforth

    2007-01-23

    The authors use ab initio molecular dynamics and the density functional theory+U (DFT+U) method to compute the hydration environment of the manganese ion in manganese (II) and manganese (III) porphines (MnP) dispersed in liquid water. These are intended as simple models for more complex water soluble porphyrins, which have important physiological and electrochemical applications. The manganese ion in Mn(II)P exhibits significant out-of-porphine plane displacement and binds strongly to a single H2O molecule in liquid water. The Mn in Mn(III)P is on average coplanar with the porphine plane and forms a stable complex with two H2O molecules. The residence times of these water molecules exceed 15 ps. The DFT+U method correctly predicts that water displaces NO from Mn(III)P-NO, but yields an ambiguous spin state for the MnP(II)-NO complex.

  11. Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes

    SciTech Connect

    Nam,K.W.; Yang,X.

    2009-03-01

    Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

  12. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    SciTech Connect

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.

  13. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200? reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods. PMID:25843280

  14. The Staphylococcus aureus ABC-Type Manganese Transporter MntABC Is Critical for Reinitiation of Bacterial Replication Following Exposure to Phagocytic Oxidative Burst

    PubMed Central

    Coady, Alison; Xu, Min; Phung, Qui; Cheung, Tommy K.; Bakalarski, Corey; Alexander, Mary Kate; Lehar, Sophie M.; Kim, Janice; Park, Summer; Tan, Man-Wah; Nishiyama, Mireille

    2015-01-01

    Manganese plays a central role in cellular detoxification of reactive oxygen species (ROS). Therefore, manganese acquisition is considered to be important for bacterial pathogenesis by counteracting the oxidative burst of phagocytic cells during host infection. However, detailed analysis of the interplay between bacterial manganese acquisition and phagocytic cells and its impact on bacterial pathogenesis has remained elusive for Staphylococcus aureus, a major human pathogen. Here, we show that a mntC mutant, which lacks the functional manganese transporter MntABC, was more sensitive to killing by human neutrophils but not murine macrophages, unless the mntC mutant was pre-exposed to oxidative stress. Notably, the mntC mutant formed strikingly small colonies when recovered from both type of phagocytic cells. We show that this phenotype is a direct consequence of the inability of the mntC mutant to reinitiate growth after exposure to phagocytic oxidative burst. Transcript and quantitative proteomics analyses revealed that the manganese-dependent ribonucleotide reductase complex NrdEF, which is essential for DNA synthesis and repair, was highly induced in the mntC mutant under oxidative stress conditions including after phagocytosis. Since NrdEF proteins are essential for S. aureus viability we hypothesize that cells lacking MntABC might attempt to compensate for the impaired function of NrdEF by increasing their expression. Our data suggest that besides ROS detoxification, functional manganese acquisition is likely crucial for S. aureus pathogenesis by repairing oxidative damages, thereby ensuring efficient bacterial growth after phagocytic oxidative burst, which is an attribute critical for disseminating and establishing infection in the host. PMID:26379037

  15. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.

    PubMed

    Liu, Ruiping; Xu, Wei; He, Zan; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui; Prasai, Tista

    2015-11-01

    Manganese(IV) oxide [Mn(IV)] potentially oxidizes antimony(III) [Sb(III)] to antimony(V) [Sb(V)] and improves Sb removal by FeMn binary oxide (FMBO) through an oxidation-adsorption mechanism. This study focused on the effect of Mn(IV) reductive dissolution by potassium sulfite (K2SO3) on Sb(V) adsorption onto manganese oxide (Mn-oxide) and FMBO. The maximum Sb(V) adsorption (Qmax,Sb(V)) increased from 1.0 to 1.1 mmol g(-1) for FMBO and from 0.4 to 0.6 mmol g(-1) for Mn-oxide after pretreatment with 10 mmol L(-1) K2SO3. The addition of 2.5 mmol L(-1) Mn(2+) also significantly improved Sb(V) adsorption, and the observed Qmax,Sb(V) increased to 1.4 and 1.0 mmol g(-1) for FMBO and Mn-oxide, respectively, with pre-adsorbed Mn(2+). Neither K2SO3 nor Mn(2+) addition had any effect on Sb(V) adsorption onto iron oxide (Fe-oxide). Mn(2+) introduced by either Mn(IV) dissolution or addition tended to form outer-sphere surface complexes with hydroxyl groups on Mn-oxide surfaces (MnOOH). Mn(2+) at 2.5 mmol L(-1) shifted the isoelectric point (pHiep) from 7.5 to 10.2 for FMBO and from 4.8 to 9.2 for Mn-oxide and hence benefited Sb(V) adsorption. The adsorption of Sb(V) onto Mn(2+)-enriched surfaces contributed to the release of Mn(2+), and the X-ray photoelectron spectra also indicated increased binding energy of Mn 2p3/2 after the adsorption of Sb(V) onto K2SO3-pretreated FMBO and Mn-oxide. Sb(V) adsorption involved the formation of inner-sphere complexes and contributed to the release of Mn(2+). In the removal of Sb(III) by Mn-based oxides, the oxidation of Sb(III) to Sb(V) by Mn(IV) oxides had an effect; however, Mn(IV) dissolution and Mn(2+)-enrichment also played an important role. PMID:26218341

  16. Early diagenetic quartz formation at a deep iron oxidation front in the Eastern Equatorial Pacific - A modern analogue for banded iron/chert formations?

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Chapligin, Bernhard; Picard, Aude; Meyer, Hanno; Fischer, Cornelius; Rettenwander, Daniel; Amthauer, Georg; Vogt, Christoph; Aiello, Ivano W.

    2014-07-01

    The mechanisms of early diagenetic quartz formation under low-temperature conditions are still poorly understood. In this study we investigated lithified cherts consisting of microcrystalline quartz recovered near the base of a 420 m thick Miocene-Holocene sequence of nannofossil and diatom ooze at a drill site in the Eastern Equatorial Pacific (Ocean Drilling Program Site 1226). Precipitation seems still ongoing based on a sharp depletion in dissolved silica at the depth of the cherts. Also, palaeo-temperatures reconstructed from ?18O values in the cherts are in the range of adjacent porewater temperatures. Opal-A dissolution appears to control silica concentration throughout the sequence, while the solution remains oversaturated with respect to quartz. However, at the depth of the sharp depletion in dissolved silica, quartz is still saturated while the more soluble silica phases are strongly undersaturated. Hence, precipitation of quartz was initiated by an auxiliary process. A process, previously observed to assist in the nucleation of quartz is the adsorption of silica on freshly precipitated iron oxides. Indeed, a deep iron oxidation front is present at 400 m below seafloor, which is caused by upward diffusing nitrate from an oxic seawater aquifer in the underlying oceanic crust. Sequential iron extraction showed a higher content of the adsorbed iron hydroxide fraction in the chert than in the adjacent nannofossil and diatom ooze. X-ray absorption near-edge structure (XANES) spectroscopy revealed that iron in the cherts predominantly occurs in illite and amorphous iron oxide, whereas iron in the nannofossil and diatom ooze occurs mainly in smectite. Mössbauer spectroscopy also indicated the presence of illite that is to 97% oxidized. Two possible mechanisms may be operative during early diagenetic chert formation at iron oxidation fronts: (1) silica precipitation is catalysed by adsorption to freshly precipitated iron oxide surfaces, and (2) porewater silica concentration is locally decreased below opal-A and opal-CT saturation allowing for precipitation of the thermodynamically more stable phase: quartz. This mechanism of chert formation at the iron oxidation front in suboxic zones may explain why early-diagenetic microcrystalline chert only occurs sporadically in modern marine sediments. It may also serve as a modern analogue for the deposition of much more abundant banded iron/chert formations at the time of the great oxidation event around 2.4 Ga BP, which was probably the largest iron oxidation front in Earth's history.

  17. Graphene-Based Hybrids with Manganese Oxide Polymorphs as Tailored Interfaces for Electrochemical Energy Storage: Synthesis, Processing, and Properties

    NASA Astrophysics Data System (ADS)

    Gupta, S.; van Meveren, M. M.; Jasinski, J.

    2015-01-01

    Technological progress is determined to a greater extent by developments of novel materials or new combinations of known materials with different dimensionality and diverse functionality. In this work, we report on the synthesis and characterization of graphene-based hybrid nanomaterials coupled with transition-metal oxide polymorphs (nano/micro-manganese oxides, i.e., ?-MnO2 [Mn(IV)] and Mn3O4 [Mn(II, III)]). This lays the groundwork for high-performance electrochemical electrodes for alternative energy devices owing to their higher specific capacitance, wide operational potential window and stability through charge-discharge cycling, environmentally benignity, cost-effectiveness, easy processing, and reproducibility on a larger scale. To accomplish this, we strategically designed these hybrids by direct anchoring or physical adsorption of ?-MnO2 and Mn3O4 on variants of graphene, namely graphene oxide and its reduced form, via mixing dispersions of the constituents under mild ultrasonication and drop-casting, resulting in four different combinations. This facile approach affords strong chemical/physical attachment and is expected to result in coupling between the pseudocapacitive transition-metal oxides and supercapacitive nanocarbons showing enhanced activity/reactivity and reasonable areal density of tailored interfaces. We used a range of complementary analytical characterization tools to determine the structure and physical properties, such as scanning electron microscopy combined with energy-dispersive x-ray spectroscopy, atomic force microscopy, x-ray diffraction, resonance Raman spectroscopy combined with elemental Raman mapping, and transmission electron microscopy in conjunction with selected-area electron diffraction. All of these techniques reveal surface morphology, local (lattice dynamical) and average structure, and local charge transfer due to the physically (or chemically) adsorbed manganese oxide of synthesized hybrids that helps to establish microscopic structure-property-function correlations highlighting the surface structure and interfaces to further investigate their electrochemical supercapacitor properties.

  18. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    SciTech Connect

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-12-15

    Graphical abstract: DC conductivity variation of CaCe{sub 1?x}Mn{sub x}SnNbO{sub 7??} (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ? We have observed that the structural ordering as well as grain size increase with Mn substitution. ? Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ? Activation energy as well as electrical conductivity increases with increase in Mn substitution. ? Localization of electrons associated with Mn{sup 2+} and structural ordering are the key factors for the increased activation energy with Mn substitution. ? All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe{sub 1?x}Mn{sub x}SnNbO{sub 7??} (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn{sup 2+} ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy contrastingly. This unusual behavior has been explained by correlating the structure, microstructure, defect states, electron localization and intersite separation with the conductivity data of the samples.

  19. Chemical approach to a new crystal structure: phase control of manganese oxide on a carbon sphere template.

    PubMed

    Nam, Ki Min; Park, Joon T

    2014-12-01

    The stabilization and growth of a non-native structure, hexagonal wurtzite MnO (h-MnO), is explored via kinetic control of manganese precursor on a carbon sphere template. MnO is most stable in the cubic rock-salt structure (c-MnO), and a number of studies have focused on the synthesis and properties of this rock-salt phase. However, h-MnO has not been fully characterized before our work. Prolonged heating at a relatively low temperature yields c-MnO, whereas rapid heating of the reaction mixture at reflux produces h-MnO in the presence of carbon spheres. The effect of benzyl amine concentration on the formation of two different oxidation states (c-MnO and t-Mn3O4) was examined as well. Moreover, the structural stability of the manganese oxides and phase transition of MnO in terms of the wurtzite to rock-salt structural transformation have been investigated. PMID:25303773

  20. Cesium and cobalt adsorption on synthetic nano manganese oxide: A two dimensional infra-red correlation spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Al Lafi, Abdul G.; Al Abdullah, Jamal

    2015-08-01

    Molecular scale information is of prime importance to understand ions coordination to mineral surfaces and consequently to aid in the design of improved ion exchange materials. This paper reports on the use of two-dimensional correlation infra-red spectroscopy (2D-COS-IR) to investigate the time dependent adsorptions of cesium and cobalt ions onto nano manganese oxide (NMO). The metal ions uptake was driven mainly by inner-sphere complex formation as demonstrated by the production of new absorption bands at 1160, 1100, 585 and 525 cm-1, which were assigned to the O-O bond vibration and the coupled vibrations of M-O and Mn-O bonds. The progressive development of the 3100 cm-1 band, which is attributed to the stretching vibration of the lattice-OH group, indicates an M+/H+ ion-exchange reaction. The new bands at 700 and 755 cm-1 in the case of cobalt ion adsorption and at 800 and 810 cm-1 in the case of cesium ion adsorption, and the splitting of other bands at 1135 and 875 cm-1 indicate the presence of different O-O bond lengths. This suggests different coordination of the two metal ions with oxygen. The infrared spectroscopy combined with 2D-COS provides a powerful tool to investigate the mechanism of interaction between heavy metals and manganese oxide.

  1. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  2. Oxidant Selection for the Treatment of Manganese (II), Iron (II), and Arsenic (III) in Groundwaters

    EPA Science Inventory

    In order to comply with the United States Environmental Protection Agency’s (U.S. EPA’s) arsenic standard and the manganese and iron secondary maximum contaminant levels (MCLs) in water (10µg/L, 50µg/L, and 300µg/L, respectively), many Midwestern water utilities must add a strong...

  3. Kinetics and mechanism of 1-phenylethanol oxidation by the system hydrogen peroxide-manganese(IV) binuclear complex-oxalic acid

    NASA Astrophysics Data System (ADS)

    Kozlov, Yu. N.; Shul'Pina, L. S.; Strelkova, T. V.; Shul'Pin, G. B.

    2010-09-01

    Hydrogen peroxide was found to oxidize 1-phenylethanol to acetophenone in acetonitrile homogeneous solution efficiently at room temperature in the presence of a dimeric complex of manganese (IV) [LMn(O)3MnL](PF6)2(where L = 1,4,7-trimethyl-1,4,7-triazacyclononane) as the catalyst and oxalic acid as a co-catalyst. The number of catalytic cycles was 15 000 3 h after the onset of the reaction. The dependences of the initial rate of acetophenone accumulation on the initial concentrations of the reagents were studied. Based on an analysis of the kinetic data, we conclude that phenylethanol is oxidized by a manganyl particle containing an Mn = O fragment that interacts competitively with hydrogen peroxide.

  4. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    PubMed

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. PMID:21944282

  5. Influence of Calcium(II) and Chloride on the Oxidative Reactivity of a Manganese(II) Complex of a Cross-Bridged Cyclen Ligand

    E-print Network

    Hubin, Tim

    Influence of Calcium(II) and Chloride on the Oxidative Reactivity of a Manganese(II) Complex calcium(II) and chloride have been recognized to play significant roles in the catalytic cycle, even(IV) complexes with no chloride ligand present, adding Ca2+ positively shifted the redox potential of the Mn

  6. Suppression of manganese-dependent production of nitric oxide in astrocytes: implications for therapeutic modulation of glial-derived inflammatory mediators 

    E-print Network

    Wright, Tyler T.

    2009-05-15

    ???????????????????????????.. 1 Manganese.......................................................................................2 Manganism vs. Parkinsonism..........................................................5 Nitric Oxide and the Inflammatory Response... and are associated with conditions of dementia. These diseases include, but are not limited to, Amylotropic Lateral Sclerosis, Multiple Sclerosis, Huntington?s Diesase, and Parkinson?s Disease. Parkinson?s disease (PD) is one of the leading causes of death...

  7. Astrocyte-derived nitric oxide in manganese neurotoxicity: from cellular and molecular mechanisms underlying selective neuronal vulnerability in the basal ganglia to potential therapeutic modalities 

    E-print Network

    Liu, Xuhong

    2007-04-25

    , and TRAM-1) PARP: poly (ADP-ribose) polymerase PAS: para-aminosalicylic acid PC12 cells: pheochromocytoma cells PD: Parkinson's disease PDZ domain: PSD-95 discs large/ZO-1 homology domain PEPCK: phosphoenolpyruvate carboxykinase PET... ............................................................. 44 II ASTROCYTE-DERIVED NITRIC OXIDE MODULATES NEURONAL DEGENERATION IN A MOUSE MODEL OF MANGANESE-INDUCED PARKINSONISM......................................................................................... 47...

  8. Structural Study of Poorly Crystalline Layered Manganese Oxides Using the Atomic Pair Distribution Function Technique. Tuesday, November 3, 2009: 11:15 AM

    E-print Network

    Sparks, Donald L.

    Structural Study of Poorly Crystalline Layered Manganese Oxides Using the Atomic Pair Distribution. of Delaware, Bear, DE (4)Univ. of Delaware, Newark, DE The atomic pair distribution function (PDF) is a powerful technique to analyze crystal structures of nanoparticulate, poorly crystalline and amorphous

  9. Biological and Chemical Interactions with U(VI) During Anaerobic Enrichment in the Presence of Iron Oxide Coated Quartz

    SciTech Connect

    Brady D. Lee; Michelle R. Walton; Jodette L. Megio

    2005-11-01

    Microcosm experiments were performed to understand chemical and biological interactions with hexavalent uranium (U(VI)) in the presence of iron oxide bearing minerals and trichloroethylene (TCE) as a co-contaminant. Interactions of U(VI) and hydrous iron oxide moieties on the mineral oxide surfaces were studied during enrichments for dissimilatory iron reducing (DIRB) and sulfate reducing bacteria (SRB). Microbes enriched from groundwater taken from the Test Area North (TAN) site at the Idaho National Engineering and Environmental Laboratory (INEEL) were able to reduce the U(VI) in the adsorption medium as well as the iron on quartz surfaces. Early in the experiment disappearance of U(VI) from solution was a function of chemical interactions since no microbial activity was evident. Abiotic removal of U(VI) was enhanced in the presence of carbonate. As the experiment proceeded, further removal of U(VI) from solution was associated with the fermentation of lactate to propionate and acetate. During later phases of the experiment when lactate was depleted from the growth medium in the microcosm containing the DIRB enrichments, U(VI) concentrations in the solution phase increased until additional lactate was added. When lactate fermentation proceeded, U(VI) concentrations in the liquid phase again returned to near zero. Similar results were shown for the SRB enrichment but less uranium was released back into solution, while in the enrichment with carbonate uranium was not released back into solution. Chemical and biological interactions appear to be important on the mobilization/immobilization of U(VI) in an iron oxide system when TCE is present as a co-contaminant. Interestingly, TCE present in the microcosm experiments was not dechlorinated which was probably an effect of redox conditions that were unsuitable for reductive dechlorination by the microbial culture tested.

  10. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles

    PubMed Central

    2012-01-01

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies. PMID:22296968

  11. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-?m-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 ?m), thin and homogeneous coatings, with thicknesses lower than 10 ?m could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  12. The development of manganese oxide coated ceramic membranes for combined catalytic ozonation and ultrafiltration of drinking water

    NASA Astrophysics Data System (ADS)

    Corneal, Lindsay Marie

    A novel method for the preparation of hydrated MnO2 by the ozonation of MnCl2 in water is described. The hydrated MnO 2 was used to coat titania water filtration membranes using a layer-by-layer technique. The coated membranes were then sintered in air at 500°C for 45 minutes. Upon sintering, the MnO2 is converted to alpha-Mn 2O3 (as characterized by x-ray and electron diffraction). Atomic force microscopy (AFM) imaging showed no significant change in the roughness or height of the surface features of coated membranes, while scanning electron microscopy (SEM) imaging showed an increase in grain size with increasing number of coating layers. Energy dispersive x-ray spectroscopy (EDS) mapping and line scans revealed manganese present throughout the membrane, indicating that manganese dispersed into the porous membrane during the coating process and diffused into the titania grains during sintering. Selected area diffraction (SAD) of the coated and sintered membrane was used to index the surface layer as alpha-Mn2O3. The surface layer was uneven, although there was a trend of increasing thickness with increasing coating layers. The coating acts as a catalyst for the oxidation of organic matter when coated membranes are used in a hybrid ozonation-membrane filtration system. A trend of decreasing total organic carbon (TOC) in the permeate water was observed with increasing number of coating layers. The catalytic activity also manifests itself as improved recovery of the water flux due to oxidation of foulants on the membrane surface. Ceramic nanoparticle coatings on ceramic water filtration membranes must undergo high temperature sintering. However, this means that the underlying membrane, which has been engineered for a given molecular weight cut-off (MWCO), also undergoes a high temperature heat treatment that serves to increase pore size that have resulted in increases in permeability of titania membranes. Coating the titania membrane with manganese oxide followed by sintering in air at 500°C maintains the MWCO of the membranes, with high DI water permeability, which may be favorable in terms of membrane use. SEM micrographs of titania membrane samples sintered between 500°C to 900°C were analyzed to identify a statistically significant increase in grain size with increasing sintering temperature. The grains however, generally retain a uniform shape until the 900°C sintering temperature, where large, irregularly shaped grains were observed. AFM analysis showed a corresponding increase in the surface roughness of the membrane for the sample sintered at 900°C.

  13. 21 CFR 184.1446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...7773-01-5) is a pink, translucent, crystalline product. It is also known as manganese dichloride. It is prepared by dissolving manganous oxide, pyrolusite ore (MnO2 ), or reduced manganese ore in hydrochloric acid. The resulting solution...

  14. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    NASA Astrophysics Data System (ADS)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  15. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Yubin; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-01

    Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO2)/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO4-) and MWCNTs. The results indicate that the MnO2/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO2 (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  16. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage.

    PubMed

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M João; Silva, Teresa M; Montemor, M Fátima

    2015-08-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g(-1) at 1 A g(-1). The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g(-1) to 20 A g(-1). The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles. PMID:26135715

  17. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity.

    PubMed Central

    Masaphy, S; Henis, Y; Levanon, D

    1996-01-01

    Manganese enhanced atrazine transformation by the fungus Pleurotus pulmonarius when added to a liquid culture medium at concentrations of up to 300 microM. Both N-dealkylated and propylhydroxylated metabolites accumulated in the culture medium, with the former accumulating to a greater extent than did the latter. Lipid peroxidation, oxygenase and peroxidase activities, and the cytochrome P-450 concentration increased. In addition, an increase in the spectral interactions between atrazine and components in the cell extract was observed. Antioxidants, mainly nordihydroguaiaretic acid, which inhibits lipoxygenase, peroxidase, and P-450 activities, and piperonyl butoxide, which inhibits P-450 activity, inhibited atrazine transformation by the mycelium. It is suggested that the stimulation of oxidative activity by Mn might be responsible for increasing the biotransformation of atrazine and for nonspecific transformations of other xenobiotic compounds. PMID:8967773

  18. Manganese, the stress reliever.

    PubMed

    Latour, J-M

    2015-01-01

    Convergent evidence has emerged over the past decade to highlight the role of manganese as a key player in the defenses that many organisms are building to fight oxidative stress. For redox processes replacing iron by manganese requires adaptation at different levels. The aim of this perspective is to summarize recent important observations and to analyze the implications of the present knowledge for resolving future issues. PMID:25434324

  19. Design, synthesis, and characterization of materials for controlled line deposition, environmental remediation, and doping of porous manganese oxide material

    NASA Astrophysics Data System (ADS)

    Calvert, Craig A.

    This thesis covers three topics: (1) coatings formed from sol-gel phases, (2) environmental remediation, and (3) doping of a porous manganese oxide. Synthesis, characterization, and application were investigated for each topic. Line-formations were formed spontaneously by self-assembly from vanadium sol-gels and other metal containing solutions on glass substrates. The solutions were prepared by the dissolution of metal oxide or salt in water. A more straightforward method is proposed than used in previous work. Analyses using optical microscopy, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and infrared spectroscopy showed discreet lines whose deposition could be controlled by varying the concentration. A mechanism was developed from the observed results. Microwave heating, the addition of graphite rods, and oxidants, can enhance HCB remediation from soil. To achieve remediation, a TeflonRTM vessel open to the atmosphere along with an oxidant, potassium persulfate (PerS) or potassium hydroxide, along with uncoated or aluminum oxide coated, graphite rods were heated in a research grade microwave oven. Microwave heating was used to decrease the heating time, and graphite rods were used to increase the absorption of the microwave energy by providing thermal centers. The results showed that the percent HCB removed was increased by adding graphite rods and oxidants. Tungsten, silver, and sulfur were investigated as doping agents for K--OMS-2. The synthesis of these materials was carried out with a reflux method. The doping of K--OMS-2 led to changes in the properties of a tungsten doped K--OMS-2 had an increased resistivity, the silver doped material showed improved epoxidation of trans-stilbene, and the addition of sulfur produced a paper-like material. Rietveld refinement of the tungsten doped K--OMS-2 showed that the tungsten was doped into the framework.

  20. Rational design of coaxial structured carbon nanotube-manganese oxide (CNT-MnO2) for energy storage application

    NASA Astrophysics Data System (ADS)

    Salunkhe, Rahul R.; Ahn, Heejoon; Kim, Jung Ho; Yamauchi, Yusuke

    2015-05-01

    Recently, there has been great research interest in the development of composites (core-shell structures) of carbon nanotubes (CNTs) with metal oxides for improved electrochemical energy storage, photonics, electronics, catalysis, etc. Currently, the synthetic strategies for metal oxides/hydroxides are well established, but the development of core-shell structures by robust, cost-effective chemical methods is still a challenge. The main drawbacks for obtaining such electrodes are the very complex synthesis methods which ultimately result in high production costs. Alternatively, the solution based method offers the advantages of simple and cost effective synthesis, as well as being easy to scale up. Here, we report on the development of multi-walled carbon nanotube-manganese oxide (CNT-MnO2) core-shell structures. These samples were directly utilized for asymmetric supercapacitor (ASC) applications, where the CNT-MnO2 composite was used as the positive electrode and ZIF-8 (zeolitic imidazolate framework, ZIF) derived nanoporous carbon was used as the negative electrode. This unconventional ASC shows a high energy density of 20.44 W h kg-1 and high power density of 16 kW kg-1. The results demonstrate that these are efficient electrodes for supercapacitor application.

  1. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control.

    PubMed

    Huang, Guoming; Li, Hui; Chen, Jiahe; Zhao, Zhenghuan; Yang, Lijiao; Chi, Xiaoqin; Chen, Zhong; Wang, Xiaomin; Gao, Jinhao

    2014-09-01

    In this paper, we demonstrate the tunable T1 and T2 contrast abilities of engineered iron oxide nanoparticles with high performance for liver contrast-enhanced magnetic resonance imaging (MRI) in mice. To enhance the diagnostic accuracy of MRI, large numbers of contrast agents with T1 or T2 contrast ability have been widely explored. The comprehensive investigation of high-performance MRI contrast agents with controllable T1 and T2 contrast abilities is of high importance in the field of molecular imaging. In this study, we synthesized uniform manganese-doped iron oxide (MnIO) nanoparticles with controllable size from 5 to 12 nm and comprehensively investigated their MRI contrast abilities. We revealed that the MRI contrast effects of MnIO nanoparticles are highly size-dependent. By controlling the size of MnIO nanoparticles, we can achieve T1-dominated, T2-dominated, and T1-T2 dual-mode MRI contrast agents with much higher contrast enhancement than the corresponding conventional iron oxide nanoparticles. PMID:25079966

  2. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production.

    PubMed

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-03-01

    Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8mgg(-1) adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na3MnPO4CO3. Results suggested the complexity of natural microbe-mediated Mn transformation. PMID:26606462

  3. The annealing effect for structural, optical and electrical properties of dysprosium manganese oxide films grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.

    2005-12-01

    Samples of (Dy-Mn) oxide thin films were prepared on quartz and Si(p) substrates for optical and electrical investigations. These samples were annealed at different temperatures and characterised by UV-VIS absorption spectroscopy, X-ray fluorescence (XRF) and X-ray diffraction (XRD). The XRF spectrum was used to determine the weight fraction ratio of Mn to Dy in the prepared samples. The XRD shows that Dy oxide and Mn oxide prevent each other to crystallise alone or making a solid solution even at 600 °C. However, compound of DyMnO 3 was formed through the solid-state reaction for T > 800 °C. The ac-conductance and capacitance were studied, as a function of frequency and gate voltage and the fixed and interface charge densities were determined. It was found that the "correlated barrier hopping" CBH model controls the frequency dependence of the conductivity, while the Kramers-Kronig (KK) relations explain the frequency dependence of the capacitance. The parameters of CBH model were determined and show that the ac-conduction in crystalline (Dy-Mn) oxide is realised by bipolaron mechanism, where the barrier height of hopping is equal to the bandgap determined the UV-VIS absorption spectroscopy.

  4. Electrochemical Quartz Crystal Microbalance Studies of Electron Addition at Nanocrystalline Tin Oxide/Water and Zinc Oxide/Water Interfaces: Evidence for

    E-print Network

    Electrochemical Quartz Crystal Microbalance Studies of Electron Addition at Nanocrystalline Tin ReceiVed: June 17, 1996; In Final Form: January 20, 1997X Electrochemical quartz crystal microbalance-compensating cations. Electrochemical quartz crystal microbalance (EQCM) measurements in light and heavy water

  5. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments

    SciTech Connect

    Aller, R.C.; Rude, P.D. )

    1988-03-01

    During the physical or biological reworking of surficial marine sediments, metal oxides are often brought into contact with both solid and dissolved sulfides. Experiments simulating these mixing processes demonstrate that in natural sediments Mn-oxides can completely oxidize solid phase sulfides to SO{sup =}{sub 4} under anoxic conditions. The major source of sulfur is probably acid volatile sulfide. Minerals containing Mn{sup +4} are apparently more effective than Mn{sup +3} in driving the oxidation. There is slight or no evidence for complete sulfide oxidation by Fe-oxides under similar conditions. The reaction is inhibited by DNP (dinitrophenol) and Azide, implying biological mediation by a group of chemolithotrophic bacteria such as the thiobacilli, having a well-organized cytochrome system, oxidative phosphorylation coupled with sulfide oxidation, and possibly autotrophic CO{sub 2} fixation. Lack of sensitivity to chlorate suggests that a NO{sup {minus}}{sub 3} reductase complex is not involved. Because of metal reduction and the overall stoichiometry of reaction, this sulfide oxidation causes a rise in pH in contrast to oxidation by O{sub 2}. Alkalinity is also simultaneously depleted by Mn, Ca carbonate precipitation. Both manganoan kutnahorite and manganoan calcite are observed to form rapidly (days) during Mn reduction. The oxidation of sulfides by Mn-oxides is likely to be important, but highly variable, in organic-rich shelf sediments and environments such as hydrothermal vents where sulfidic plumes contact oxidized metals. A substantial proportion of sedimentary sulfide may be oxidized and Mn reduced by this pathway, particularly in bioturbated sediments. The relative roles of lithotrophic (S) and heterotrophic (C) Mn-reduction in marine sediments are presently unknown.

  6. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    PubMed Central

    Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050

  7. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase

    PubMed Central

    Brown, Charles O.; Salem, Kelley; Wagner, Brett A.; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R.; Goel, Apollina

    2012-01-01

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-?B (nuclear factor ?B) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-?B activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-?, IL-6 induced an early perturbation in reduced glutathione level and increased NF-?B-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy. PMID:22471522

  8. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions.

    PubMed

    Ding, Jiafeng; Su, Mian; Wu, Cuiwei; Lin, Kunde

    2015-08-01

    Triclosan (TCS) is a broad-spectrum antibacterial agent widely used in household and personal care products and is frequently detected in the environment. Previous studies have shown that TCS could be converted to the more toxic compound 2,8-dichlorodibenzo-p-dioxins (2,8-DCDD) in photochemical reactions and incineration processes. In this study, we demonstrated the formation of 2,8-DCDD from the oxidation of TCS by ?-FeOOH and a natural manganese oxides (MnOx) sand. Experiments at room temperature and under near dry conditions showed that Fe and Mn oxides readily catalyzed the conversion of TCS to 2,8-DCDD and other products. Approximately 5.5% of TCS was transformed to 2,8-DCDD by ?-FeOOH in 45 d and a higher conversion percentage (6.7%) was observed for MnOx sand in 16d. However, the presence of water in the samples significantly inhibited the formation of 2,8-DCDD. Besides 2,8-DCDD, 2,4-dichlorphenol (2,4-DCP), 4-chlorobenzene-1,2-diol, 2-chloro-5-(2,4-dichlorophenoxy)benzene-1,4-diol, and 2-chloro-5-(2,4-dichlorophenoxy)-1,4-benzoquinone were identified in the reactions. The possible pathways for the formation of reaction products were proposed. This study suggests that Fe and Mn oxides-mediated transformation of TCS under near dry conditions might be another potential pathway for the formation of 2,8-DCDD in the natural environment. PMID:25880455

  9. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase.

    PubMed

    Brown, Charles O; Salem, Kelley; Wagner, Brett A; Bera, Soumen; Singh, Neeraj; Tiwari, Ajit; Choudhury, Amit; Buettner, Garry R; Goel, Apollina

    2012-06-15

    IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-?B (nuclear factor ?B) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-?B activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-?, IL-6 induced an early perturbation in reduced glutathione level and increased NF-?B-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy. PMID:22471522

  10. Synthesis of magnetic core/shell carbon nanosphere supported manganese catalysts for oxidation of organics in water by peroxymonosulfate.

    PubMed

    Wang, Yuxian; Sun, Hongqi; Ang, Ha Ming; Tadé, Moses O; Wang, Shaobin

    2014-11-01

    Magnetic separation is more cost-effective than conventional separation processes in heterogeneous catalysis, especially for ultrafine nanoparticles. Magnetic core/shell nanospheres (MCS, Fe3O4/carbon) were synthesized by a hydrothermal method and their supported manganese oxide nanoparticles (Mn/MCS) were obtained by redox reactions between MCS and potassium permanganate at a low temperature. The materials were analyzed by a variety of characterization techniques such as powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and N2 adsorption/desorption. The Mn/MCS catalysts were able to effectively activate Oxone® for phenol degradation in aqueous solutions. Nitrogen treated MCS supported Mn achieved 100% conversion within 120min. Kinetic studies showed that phenol degradation over supported Mn catalysts follows the first order kinetics. It was also found that the catalysts can be easily separated from the aqueous solutions by an external magnetic field. The Oxone® activation mechanism by Mn/MCS catalysts was discussed and sulfate radicals were suggested to be the primary reactive species generated from peroxymonosulfate (PMS) for phenol catalytic oxidation. PMID:25112914

  11. Oxidation Of Manganese At Kimberley, Gale Crater: More Free Oxygen In Mars' Past?

    NASA Technical Reports Server (NTRS)

    Lanza, N. L.; Wiens, R. C.; Arvidson, R. E.; Clark, B. C.; Fischer, W. W.; Gellert, R.; Grotzinger, J. P.; Hurowitz, J. A.; McLennan, S. M.; Morris, R. V.; Rice, M. S.; Bell, J. F., III; Berger, J. A.; Blaney, D. L.; Bridges, N. T.; Calef, F., III; Campbell, J. L.; Clegg, S. M.; Cousin, A.; Edgett, K. S.; Fabre, C.; Fisk, M. R.; Forni, O.; Frydenvang, J.; Ming, D. W.

    2015-01-01

    High Mn concentrations provide unique indicators of water-rich environments and their redox state. Very high-potential oxidants are required to oxidize Mn to insoluble, high-valence oxides that can precipitate and concentrate Mn in rocks and sediments; these redox potentials are much higher than those needed to oxidize Fe or S. Consequently, Mn-rich rocks on Earth closely track the rise of atmospheric oxygen. Given the association between Mn-rich rocks and the redox state of surface environments, observations of anomalous Mn enrichments on Mars raise similar questions about redox history, solubility and aqueous transport, and availability as a metabolic substrate. Our observations suggest that at least some of the high Mn present in Gale crater occurs in the form of Mn-oxides filling veins that crosscut sand-stones, requiring post-depositional precipitation as highly oxidizing fluids moved through the fractured strata after their deposition and lithification.

  12. Kinetics and mechanism of benzene oxidation by peroxymonosulfate catalyzed with a binuclear manganese(IV) complex in the presence of oxalic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Kozlov, Yu. N.; Strelkova, T. V.; Shul'pin, G. B.

    2013-03-01

    It is established that Oxone (peroxymonosulfate, 2KHSO5 · KHSO4 · K2SO4) oxidizes benzene to p-quinone very efficiently and selectively in a homogeneous solution in aqueous acetonitrile in the presence of a catalyst, i.e., dimeric manganese(IV) complex [LMn(O)3MnL](PF6)2 where L is 1,4,7-trimethyl-1,4,7-triazacyclononane, and a cocatalyst, i.e., oxalic acid. The dependences of the maximum rate of quinone accumulation on the initial concentrations of reagents are studied. It is proposed that benzene is oxidized by the manganyl particle containing the Mn(V)=O fragment that forms upon the reaction of the reduced form of the starting dimeric manganese complex with Oxone.

  13. Drinking Water Problems: Iron and Manganese 

    E-print Network

    Dozier, Monty; McFarland, Mark L.

    2004-02-20

    . This is caused by colloidal iron?iron that does not form particles large enough to precipitate. Manganese usually is dissolved in water, although some shallow wells contain colloidal manganese that gives water a black tint. L-5451 2-04 Drinking Water Problems... mg/L combined concentrations of iron and manganese) Dissolved (colloidal) iron or Water is reddish or blackish Chemical oxidation and manganese (organic color from the tap and color filtration complexes of these minerals) remains longer than 24 hours...

  14. Spatial Distribution of Iron in Soils and Vegetation Cover Close to an Abandoned Manganese Oxide Ore Mine, Botswana

    NASA Astrophysics Data System (ADS)

    Ekosse, Georges Ivo E.

    This study aimed at establishing the spatial distribution of iron (Fe) in soils and vegetation cover within the periphery of the Kgwakgwe Manganese (Mn) oxides ore abandoned mine in Botswana. Four hundred soil samples and two hundred vegetation samples were obtained from a 4 km2 area close to the mine. Determination of Fe concentrations after acid digestion of samples was performed using an atomic absorption spectrometer equipped with a deuterium background correction. Tests for soil pH and soil colour were complementary to soil chemical analysis. Results were processed using Geographical Information Systems (GIS) and Remote Sensing (RS) techniques with integrated Land and Water Information System (ILWIS), Geosoft Oasis Montaj, ArcGIS and Microsoft Excel software packages. Concentrations of Fe in soils was from 1116.59 to 870766.00 ?g g-1 with a mean of 17593.52 ?g g-1 and for leaves, levels were from 101.2 to 3758.09 ?g g-1 with a mean of 637.07 ?g g-1. Soil pH values ranged from 2.92 to 7.26 and soil colour shades ranged from yellowish red to very dark grey. Gridded soils and vegetation maps show Fe anomalies in different parts of the study area. Values were low in areas located at the mine workings and in the Northwestern part of the study area and high in the north and southern part. Where concentrations of Fe were high in soils, correspondingly high figures were obtained for vegetation cover. Similar trends were obtained for soil pH distribution in the study area. Bedrock geology, topography, Mn mineralization, soil acidity and prevailing oxidizing conditions were governing factors that influenced the concentration and spatial distribution of Fe in the soils and vegetation. The findings further confirm that Fe distribution and its chemistry in the soils and environment around the Kgwakgwe abandoned Mn oxides ore mine have affected the vegetation cover.

  15. The Cytochrome c Maturation Operon Is Involved in Manganese Oxidation in Pseudomonas putida GB-1

    PubMed Central

    de Vrind, J. P. M.; Brouwers, G. J.; Corstjens, P. L. A. M.; den Dulk, J.; de Vrind-de Jong, E. W.

    1998-01-01

    A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn2+ oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn2+-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn2+ oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed. PMID:9758767

  16. Partial purification and characterization of manganese-oxidizing factors of Pseudomonas fluorescens GB-1.

    PubMed Central

    Okazaki, M; Sugita, T; Shimizu, M; Ohode, Y; Iwamoto, K; de Vrind-de Jong, E W; de Vrind, J P; Corstjens, P L

    1997-01-01

    The Mn(2+)-oxidizing bacterium Pseudomonas fluorescens GB-1 deposits Mn oxide around the cell. During growth of a culture, the Mn(2+)-oxidizing activity of the cells first appeared in the early stationary growth phase. It depended on the O2 concentration in the culture during the late logarithmic growth phase. Maximal activity was observed at an oxygen concentration of 26% saturation. The activity could be recovered in cell extracts and was proportional to the protein concentration in the cell extracts. The specific activity was increased 125-fold by ammonium sulfate precipitation followed by reversed-phase and gel filtration column chromatographies. The activity of the partly purified Mn(2+)-oxidizing preparation had a pH optimum of circa 7 and a temperature optimum of 35 degrees C and was lost by heating. The Mn(2+)-oxidizing activity was sensitive to NaN3 and HgCl2. It was inhibited by KCN, EDTA, Tris, and o-phenanthroline. Although most data indicated the involvement of protein in Mn2+ oxidation, the activity was slightly stimulated by sodium dodecyl sulfate at a low concentration and by treatment with pronase and V8 protease. By polyacrylamide gel electrophoresis, two Mn(2+)-oxidizing factors with estimated molecular weights of 180,000 and 250,000 were detected. PMID:9406397

  17. Biodiesel synthesis catalyzed by transition metal oxides: ferric-manganese doped tungstated/molybdena nanoparticle catalyst.

    PubMed

    Alhassan, Fatah Hamid; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard. PMID:25492234

  18. An anionic N-donor ligand promotes manganese-catalyzed water oxidation

    PubMed Central

    Young, Karin J.; Takase, Michael K.; Brudvig, Gary W.

    2014-01-01

    Four manganese complexes of pentadentate ligands have been studied for their ability to act as oxygen-evolution catalysts in the presence of Oxone or hydrogen peroxide. The complexes [Mn(PaPy3)(NO3)](ClO4), 1 (PaPy3H = N,N-bis(2-pyridylmethyl)-amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy3)(?-O)(PaPy3)Mn](ClO4)2, 2 feature an anionic carboxamido ligand trans to the labile sixth coordination site, while [Mn(N4Py)OTf](OTf), 3 (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and [Mn(PY5)(OH2)](ClO4)2, 4 (PY5 = 2,6-bis(bis(2-pyridyl)methoxymethane)-pyridine) have neutral ligands of varying flexibility. 1 and 2 are shown to evolve oxygen in the presence of either Oxone or hydrogen peroxide, but 3 evolves oxygen only in the presence of hydrogen peroxide and 4 is inactive. The activity of 1 and 2 with Oxone suggests that the presence of an anionic N-donor ligand plays a role in stabilizing putative high-valent intermediates. Anionic N-donor ligands may be viewed as an alternative to ?-oxo ligands that are prone to protonation in low-valent Mn species formed during a catalytic cycle, resulting in loss of catalyst structure. PMID:23777320

  19. [Removal Kinetics and Mechanism of Aniline by Manganese-oxide-modified Diatomite].

    PubMed

    Xiao, Shao-dan; Liu, Lu; Jiang, Li-ying; Chen, Jian-meng

    2015-06-01

    A novel rapid green one-step method was developed for the preparation of manganese modified diatomite (Mn-D) by treating roasted diatomite with an acidic permanganate solution. The effects of calcination temperature and mass ratio of KMnO4 and diatomite (p) on aniline removal efficiency of Mn-D were investigated. The removal kinetics and mechanism of aniline by Mn-D were also discussed. The results showed that when the optimal calcination temperature was 450 degrees C, p was 1.6, and the loading amounts of ?-MnO2 was 0.82 g x g(-1), Mn-D had a great performance for aniline removal, and more than 80% of aniline was adsorbed within 10 minutes, accompanied with the release of Mn2+. In acidic conditions, the adsorption process on Mn-D followed pseudo-second-order and was mainly controlled by intra-particle diffusion. The best fitting of the experimental adsorption data was given by the Freundlich equation. Gas chromatograph-mass spectrometer was applied to identify the reaction intermediates at different times, and azobenzene was found to be the main reaction intermediate in the degradation system. Based on the above observations, the possible degradation pathway of aniline by Mn-D was proposed. PMID:26387323

  20. Oxidation state of manganese in zinc pyrophosphate: Probed by luminescence and EPR studies

    SciTech Connect

    Gupta, Santosh K. Kadam, R. M. Natarajan, V. Godbole, S. V.

    2014-04-24

    Zn{sub 2}P{sub 2}O{sub 7}: Mn was synthesized by wet chemical route and characterized by X-ray diffraction (XRD), photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques. Photoluminescence spectrum shows two bands, one at 500 nm (green emission), which is attributed to the {sup 4}T{sub 1}({sup 4}G)-{sup 6}A{sub 1}({sup 6}S) transition of Mn{sup 2+} and other centered at 686 nm (red emission) is attributed to the electronic transition between {sup 2}E and {sup 4}A{sub 2} of Mn{sup 4+} accompanied with vibronic transitions. EPR spectroscopic studies also confirmed the presence of both Mn2+ and Mn4+ ions in zinc pyrophosphate with difference in the number of fine transitions and g values (Mn{sub 4+}, S=3/2, three fine transitions and g < 2.00; Mn{sup 2+} S=5/2, five fine transitions and g=2.00).Mn{sup 2+} is attributed to presence of Mn at 6-ccordinated Zn{sup 2+} site whereas Mn{sup 4+} is due to presence substitution of Mn{sup 4+} at Zn{sup 2+} site thereby invoking charge compensation by presence of interstitial oxygen ions around Mn{sup 4+} ion or due to substitution of manganese at distorted 5-coordinated zinc site.

  1. Manganese oxidation in pH and O2 microenvironments produced by phytoplankton

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Aguilar, Carmen; Nealson, Kenneth H.

    1988-01-01

    This paper reports on the oxidation of Mn(II) by pure cultures of Chlorella. It is shown that these cultures establish strong microgradients of pH and O2 concentration due to their photosynthetic activity, and it is demonstrated that Mn oxidation in the pelagic zone of Oneida Lake, New York, is limited to a microzone of high pH and O2 associated with the near-surface aggregates of phytoplankton cells. The data suggest that visible light is important in catalyzing Mn oxidation by driving the photosynthetic removal of CO2 with concomitant increases in pH.

  2. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    SciTech Connect

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-10-24

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redox conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.

  3. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (?-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic ?-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by ?-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the ?-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the ?-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. PMID:26196715

  4. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    SciTech Connect

    Milatovic, Dejan; Gupta, Ramesh C.; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael; Pharmacology and the Kennedy Center for Research on Human Development, Nashville, TN

    2011-11-15

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p < 0.01) increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 {mu}M) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F{sub 2}-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 {mu}g/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F{sub 2}-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative processes. -- Research highlights: Black-Right-Pointing-Pointer Mn exposure leads to neurotoxicity in vitro and in vivo. Black-Right-Pointing-Pointer Antioxidants and anti-inflammatory agents attenuate Mn-induced oxidative injury. Black-Right-Pointing-Pointer These agents also protect the striatal neurons from dendritic atrophy and spine loss. Black-Right-Pointing-Pointer These prophylactic strategies may be effective against Mn neurotoxicity.

  5. One-pot synthesis of co-substituted manganese oxide nanosheets and physical properties of lamellar aggregates

    SciTech Connect

    Kai, Kazuya; Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 ; Cuisinier, Marine; Institut des Materiaux Jean Rouxel , CNRS UMR 6502, Universite de Nantes, 2 Rue de la Houssiniere, BP32229, 44322 Nantes Cedex 3 ; Yoshida, Yukihiro; Saito, Gunzi; Research Institute, Meijo University, Shiogamaguchi 1-501 Tempaku-ku, Nagoya 468-8502 ; Kobayashi, Yoji; Kageyama, Hiroshi; Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ? Solid solution nanosheets, (Mn{sub 1?x}Co{sub x})O{sub 2}, synthesized via facile one-pot process. ? The structural characterization of nanosheets revealing a single (Mn,Co)O{sub 2} layer and the solubility limit as x ? 0.20. ? The invariant charge density of the layer upon Co substitution. ? Systematic dependence of magnetic and optical properties of the lamellar aggregates. -- Abstract: Co-substituted manganese oxide nanosheets, (Mn{sub 1?x}Co{sub x})O{sub 2} have been synthesized in the form of a colloidal suspension via a simple one-pot method. Substitution effects on the structural, optical absorption, and magnetic properties are investigated for the nanosheets and their lamellar aggregates. The composition of the (Mn{sub 1?x}Co{sub x})O{sub 2} nanosheets can be controlled continuously by adjusting the molar ratio of the starting materials. The solubility limit is x ? 0.20 based on the cell volume. In the 0.00 ? x ? 0.20 range, the band gap energy, magnetic moment, and Weiss temperature change systematically with x. The charge density of the (Mn,Co)O{sub 2} layer is independent of x (i.e., [(Mn,Co)O{sub 2}]{sup 0.2?}) and the cobalt ions are trivalent in low-spin state.

  6. YREE sorption on hydrous manganese oxide (MnOx) in 0.5 M NaCl

    NASA Astrophysics Data System (ADS)

    Marshall, K. S.; Schijf, J.

    2010-12-01

    Cerium is the only member of the yttrium and rare earth element (YREE) series that can be oxidized in natural waters from Ce(III) to less soluble Ce(IV), causing anomalous sorption behavior with respect to its strictly trivalent YREE neighbors. Sedimentary Ce anomaly records have been interpreted in terms of episodic shifts in the bottom water oxygenation of the paleo-ocean. However, Ce anomalies also form due to catalytic Ce oxidation on certain sorbent surfaces regardless of ambient redox conditions, thus creating a ‘preformed’ signal that may instead reflect variations in the composition of settling particles. We investigate YREE sorption in 0.5 M NaCl on mixtures of three major components of marine particulate matter: Fe and Mn oxides, and algal debris. Here we report our results for one pure endmember, hydrous manganese oxide (MnOx). Batch experiments with freshly prepared MnOx were conducted under nitrogen atmosphere, to prevent aerobic Ce oxidation and YREE complexation with carbonate, over a range of pH (4-8) at 25.0±0.1°C. After at least 6 hours of equilibration at each pH, solution samples were filtered to 0.22 ?m and dissolved YREE concentrations analyzed by ICP-MS to determine their solid/solution distribution coefficient, K. Under the same experimental conditions, log K increases less steeply with pH for MnOx than for hydrous ferric oxide (HFO). This may result from the lower pHzpc of MnOx as well as its higher tendency than HFO to form bidentate edge-sharing YREE surface complexes, as determined by others using X-ray Absorption Fine Structure (XAFS) spectroscopy. A non-electrostatic surface complexation model is being developed to further elucidate these findings. Preferential Ce sorption, implying catalytic Ce oxidation at the mineral-water interface, was observed on MnOx but never on HFO or organic surfaces, in agreement with prior research. This may be related to the generally higher Gibbs free energy gain associated with oxidation reactions in which MnOx is the electron acceptor, although some large organic ligands, such as siderophores, have also been reported to catalyze Ce(III) oxidation. The enhanced Ce removal in anoxic 0.5 M NaCl solutions increases with pH from about 10- to 100-fold relative to the other YREEs, which show comparatively little fractionation among themselves. Sedimentary Ce anomalies are therefore unlikely to provide a reliable and lasting record of bottom water oxygenation when Mn oxides are an important constituent of settling particles and their interpretation as a proxy of paleo-redox conditions should be undertaken with appropriate caution.

  7. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1989-01-01

    The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.

  8. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System.

    PubMed

    Sujith, P P; Mourya, B S; Krishnamurthi, S; Meena, R M; Loka Bharathi, P A

    2014-01-01

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral deposition. We also hypothesized that, the Mn-oxidizing microbes may respond reversibly to pulses of fresh organic carbon introduced into the water column by mobilizing the Mn in Mn-oxides. To test these two hypotheses, we enumerated the number of Mn-oxidizers and -reducers and carried out studies on the mobilization of Mn by microbial communities associated with basalt. In medium containing 100 ?M Mn(2+), 10(3) colony forming units (CFU) were recovered with undetectable number of reducers on Mn-oxide amended medium, suggesting that the community was more oxidative. Experiments were then conducted with basalt fragments at 4±2 °C in the presence 'G(+)' and absence 'G(-)' of glucose (0.1%). Controls included set-ups, some of which were poisoned with 15 mM azide and the others of which were heat-killed. The mobilization of Mn in the presence of glucose was 1.76 ?g g(-1) d(-1) and in the absence, it was 0.17 ?g g(-1) d(-1) after 150 d. Mn mobilization with and without added glucose was 13 and 4 times greater than the corresponding azide treated controls. However, rates in 'G(+)' were 16 times and 'G(-)' 24 times more than the respective heat killed controls. The corresponding total counts in the presence of added glucose increased from 1.63×10(6) to 6.71×10(7) cells g(-1) and from 1.41×10(7) to 3.52×10(7) cells g(-1) in its absence. Thus, the addition of glucose as a proxy for organic carbon changed the community's response from Mn(II)-oxidizing to Mn(IV)-reducing activity. The results confirm the participation of Mn oxidizing bacteria in the mobilization of Mn. Identification of culturable bacteria by 16S rRNA gene analysis showed taxonomic affiliations to Bacillus, Exiguobacterium, Staphylococcus, Brevibacterium and Alcanivorax sp. PMID:24183631

  9. Nanostructured dimagnesium manganese oxide (Spinel): Control of size, shape and their magnetic and electro catalytic properties

    NASA Astrophysics Data System (ADS)

    Garg, Neha; Menaka; Ramanujachary, Kandalam V.; Lofland, Samuel E.; Ganguli, Ashok K.

    2013-01-01

    Tetravalent Mn based ternary oxides are of interest as they are important electrode materials. Dimagnesium manganate (Mg2MnO4) is one Mn(IV) containing oxide which has been of interest. Nanostructures of the above oxide (spinel) have been obtained by the thermal decomposition of nanostructured metal oxalate precursor at 500 °C. The size and anisotropy of the oxide nanostructures was controlled by choosing appropriate decomposition temperature of the oxalate precursor. Mg2MnO4 nanorods were obtained at low temperature (500 °C), formed by aligned nanoparticles of size˜8-10 nm. These nanoparticles show Curie-Weiss behavior with Weiss constant (14 K). Below ˜50 K there is a small deviation resulting in a negative Weiss constant (-7.36 K) indicating exchange cross over (from ferromagnetic like interactions to antiferromagnetic interactions). The high temperature magnetic moment corresponds to Mn (IV). Electrochemical experiments show that nanostructured Mg2MnO4 is an efficient anode material for oxygen evolution reaction with a current density of 14 mA/cm2. The stability of the anode over several cycles of oxidation and reduction is highly encouraging.

  10. Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments

    USGS Publications Warehouse

    Whitney, P.R.

    1975-01-01

    The distribution of ammonium citrate-leachable lead, zinc and cadmium among size fractions in stream sediments is strongly influenced by the presence of hydrous Mn-Fe oxides in the form of coatings on sediment grains. Distribution curves showing leachable metals as a function of particle size are given for eight samples from streams in New York State. These show certain features in common; in particular two concentrations of metals, one in the finest fractions, and a second peak in the coarse sand and gravel fraction. The latter can be explained as a result of the increasing prevalence and thickness of oxide coatings with increasing particle size, with the oxides serving as collectors for the heavy metals. The distribution of Zn and Cd in most of the samples closely parallels that of Mn; the distribution of Pb is less regular and appears to be related to Fe in some samples and Mn in others. The concentration of metals in the coarse fractions due to oxide coatings, combined with the common occurrence of oxide deposition in streams of glaciated regions, raises the possibility of using coarse materials for geochemical surveys and environmental heavy-metal studies. ?? 1975.

  11. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    PubMed Central

    Milatovic, Dejan; Gupta, Ramesh C.; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael

    2011-01-01

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson’s disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (P<0.01) increase in biomarkers of oxidative damage, F2-isoprostanes (F2-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 µM) for 2 hours. These effects were protected when neurons were pretreated for 30 min with 100 µM of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F2-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 hours. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 µg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F2-IsoPs and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative processes. PMID:21684300

  12. Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction.

    PubMed

    Seitz, Linsey C; Hersbach, Thomas J P; Nordlund, Dennis; Jaramillo, Thomas F

    2015-10-15

    Developing improved catalysts for the oxygen evolution reaction (OER) is key to the advancement of a number of renewable energy technologies, including solar fuels production and metal air batteries. In this study, we employ electrochemical methods and synchrotron techniques to systematically investigate interactions between metal oxides and noble metals that lead to enhanced OER catalysis for water oxidation. In particular, we synthesize porous MnOx films together with nanoparticles of Au, Pd, Pt, or Ag and observe significant improvement in activity for the combined catalysts. Soft X-ray absorption spectroscopy (XAS) shows that increased activity correlates with increased Mn oxidation states to 4+ under OER conditions compared to bare MnOx, which exhibits minimal OER current and remains in a 3+ oxidation state. Thickness studies of bare MnOx films and of MnOx films deposited on Au nanoparticles reveal trends suggesting that the enhancement in activity arises from interfacial sites between Au and MnOx. PMID:26722794

  13. Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine.

    PubMed

    Hu, Yichen; Chen, Xiao; Liu, Zhiqiang; Wang, Gejiao; Liao, Shuijiao

    2016-01-15

    Indigo carmine (IC) is one of the oldest, most important, and highly toxic dyes which is released from the effluents of many industries and results in serious pollution in water. In this study, the biogenic Mn oxides were activated by NaOH and then heated for 3 h at 350 °C to produce activated carbon doped with Mn oxide (Bio-MnOx-C), which were produced by culturing Mn (II)-oxidizing bacterial strain MnI7-9 in liquid A medium at 28 °C with 10 mmol/L MnCl2. Bio-MnOx-C was characterized by SEM, TEM, IR, XPS, XRD, etc. It contained C, O, and Mn which comprised Mn (IV) and Mn (III) valence states at a ratio of 3.81:1. It had poorly crystalline ?-MnO2 with a specific surface area of 130.94 m(2)/g. A total of 0.1 g Bio-MnOx-C could remove 45.95 g IC from 500 mg/L IC solution after 0.5 h contact time. IC removal by Bio-MnOx-C included a rapid oxidation reaction and the removal reaction followed second-order kinetic equation. These results confirmed that Bio-MnOx-C could be a potential material for wastewater remediation. PMID:26595178

  14. ROLE OF IRON AND MANGANESE OXIDES IN BIOSOLIDS AND BIOSOLIDS-AMENDED SOILS ON METAL BINDING

    EPA Science Inventory

    Biosolids contain high levels of Fe, Mn, and Al. Surfaces of freshly precipitated metal oxides, especially Fe and Mn, are known to be highly active sites for most dissolved metal ion species. We nw have metal sorption/desorption data that illustrate the importance of Fe and Mn fr...

  15. Photosystem II like water oxidation mechanism in a bioinspired tetranuclear manganese complex.

    PubMed

    Liao, Rong-Zhen; Kärkäs, Markus D; Lee, Bao-Lin; Åkermark, Björn; Siegbahn, Per E M

    2015-01-01

    The synthesis of Mn-based catalysts to mimic the structural and catalytic properties of the oxygen-evolving complex in photosystem II is a long-standing goal for researchers. An interesting result in this field came with the synthesis of a Mn complex that enables water oxidation driven by the mild single-electron oxidant [Ru(bpy)3](3+). On the basis of hybrid density functional calculations, we herein propose a water oxidation mechanism for this bioinspired Mn catalyst, where the crucial O-O bond formation proceeds from the formal Mn4(IV,IV,IV,V) state by direct coupling of a Mn(IV)-bound terminal oxyl radical and a di-Mn bridging oxo group, a mechanism quite similar to the presently leading suggestion for the natural system. Of importance here is that the designed ligand is shown to be redox-active and can therefore store redox equivalents during the catalytic transitions, thereby alleviating the redox processes at the Mn centers. PMID:25486382

  16. Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast

    PubMed Central

    2013-01-01

    Abstract Significance: Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn2+, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn2+ with superoxide and specifically shield proteins from oxidative damage. Recent Advances: There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn2+ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. Critical Issues: What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn2+-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. Future Directions: Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn2+. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes. Antioxid. Redox Signal. 19, 933–944. PMID:23249283

  17. In situ control of the oxide layer on thermally evaporated titanium and lysozyme adsorption by means of electrochemical quartz crystal microbalance with dissipation.

    PubMed

    Van De Keere, Isabel; Svedhem, Sofia; Högberg, Hans; Vereecken, Jean; Kasemo, Bengt; Hubin, Annick

    2009-02-01

    Electrochemical (EC) quartz crystal microbalance with dissipation monitoring (ECQCM-D) is a new and powerful technique for the in situ study of adsorption phenomena, e.g., as a function of the potential of the substrate. When titanium (Ti) is employed as the substrate, its oxidation behavior needs to be taken into account. Ti is always covered with a native oxide layer that can grow by, e.g., thermal oxidation or under anodic polarization. For biomolecular adsorption studies on oxidized Ti under applied potential, a stable oxide layer is desired in order to be able to distinguish the adsorption phenomena and the oxide growth. Therefore, the oxidation of thermally evaporated Ti films was investigated in phosphate-buffered saline by means of ECQCM-D, using a specially designed EC flow cell. Upon stepping the potential applied to Ti up to 2.6 V vs standard hydrogen electrode (SHE), a fast increase of the mass was observed initially for each potential step, evolving slowly to an asymptotic mass change after several hours. The oxide layer thickness increased as a quasi-linear function of the oxidation potential for potentials up to 1.8 V vs SHE. The growth rate of the oxide was around 2.5-3 nm/V. No changes in the dissipation shift were observed for potentials up to 1.8 V vs SHE. The composition of the oxide layer was analyzed by X-ray photoelectron spectroscopy (XPS). It was mainly composed of TiO(2), with a small percentage of suboxides (TiO and Ti(2)O(3)) primarily at the inner metal/oxide interface. The amount of TiO(2) increased, and that of TiO and Ti(2)O(3) decreased, with increasing oxidation potential. For each oxidation potential, the calculated thickness obtained from ECQCM-D correlated well with the thickness obtained by XPS depth profiling. A procedure to prepare Ti samples with a stable oxide layer was successfully established for investigations on the influence of an electric field on the adsorption of biomolecules. As such, the effect of an applied potential on the adsorption behavior of lysozyme on oxidized Ti was investigated. It was observed that the adsorption of lysozyme on oxidized Ti was not influenced by the applied potential. PMID:20353217

  18. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process.

    PubMed

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 ?g/mL for the MTT assay and 20 ?g/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of other ferrofluid drugs currently in clinical practice suggests that there might be sufficient safety margins for further development of our formulation. PMID:24790434

  19. Celeribacter manganoxidans sp. nov., a manganese-oxidizing bacterium isolated from deep-sea sediment of a polymetallic nodule province.

    PubMed

    Wang, Long; Liu, Yan; Wang, Yanan; Dai, Xiaofeng; Zhang, Xiao-Hua

    2015-11-01

    A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped, manganese-oxidizing bacterial strain, designated DY2-5T, was isolated from surface sediment of Pacific Clarion-Clipperton Fracture Zone (CCFZ). Growth occurred at 0-37?°C (optimum 28?°C), pH?6.5-9.0 (optimum pH?7.0-7.5) and in the presence of 1-11?% (w/v) NaCl (optimum 3-4?%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel strain was most closely related to Celeribacter halophilus ZXM137T with 96.13?% sequence similarity, and had 16S rRNA gene sequence similarities in the range 93.89-95.87?% with other species of the genus Celeribacter. The dominant fatty acids were summed feature 8 (C18?:?1?7c and/or C18?:?1?6c) and C16?:?0. The polar lipids of strain DY2-5T comprised phosphatidylglycerol, phosphatidylcholine and two unknown aminolipids. The major respiratory quinone was ubiquinone-10 (Q-10). The DNA G+C content of strain DY2-5T was 64.8?mol%. On the basis of the phenotypic, genotypic and physiological evidence, strain DY2-5T represents a novel species of the genus Celeribacter, for which the name Celeribacter manganoxidans sp. nov. is proposed. The type strain is DY2-5T (?=?JCM 19384T?=?KCTC 32473T). PMID:26303941

  20. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process

    PubMed Central

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 ?g/mL for the MTT assay and 20 ?g/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of other ferrofluid drugs currently in clinical practice suggests that there might be sufficient safety margins for further development of our formulation. PMID:24790434

  1. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    NASA Astrophysics Data System (ADS)

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-10-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.

  2. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides.

    PubMed

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-01-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects. PMID:26510508

  3. High Valent Manganese and Cobalt Complexes of Oxidatively Robust Nitrogen and Oxygen Donor Ligands.

    NASA Astrophysics Data System (ADS)

    Gordon-Wylie, Scott Wallace

    1995-01-01

    The focus of this thesis is to extend the range of ligands that satisfy the Collins criteria through a program of organic synthesis, and to apply the resulting high valent metal ligand complexes to the solution of current problems in structural inorganic chemistry, solid state chemistry (with a particular emphasis on magnetic interactions in solids) and to homogeneous and heterogeneous catalysis. Notable achievements along these directions to date are: (i) A streamlined synthesis of diamide dialkoxide and diamide diphenoxide acyclic ligands which allows for a wide range of both electron withdrawing and electron donating substituents to be incorporated into the ligand framework. (ii) The first example of a LMn(V)O species stable enough to be crystallographically characterized was obtained, utilizing the acyclic ligands of (i). (iii) Catalytic O-atom transfer oxidations utilizing acyclic ligands from (i) have been performed. Planar Co(III) complexes of these ligands can catalyze O-atom transfers, ^1 with 30-50 turnovers, including enantioselective ones,^2 implicating that the ligands remain at least partially intact during the catalytic process. (iv) Unusual magnetic ordering has been observed in an infinite linear chain of S = 2 LMn(III) centers, in collaboration with Edmund P. Day. (v) Ferromagnetic exchange has been obtained in a ((LCo(III)) _3Co(II)) ^{-} complex^4 Magnetic model building in collaboration with Gordon Yee and Emile Bominaar has led to an understanding of the magnetic data suitable for publication.^5 (vi) Adaptation of a range of electronic substituents (see (i)) into a macrocyclic framework^7 allows for the preparation of hydrolytically and oxidatively stable high valent metal complexes. The presence of a range of electronic substituents further allows redox potentials for a single (LM) ^{rm n+}/(LM) ^{(rm n+1)+ } oxidation process to be tuned over a range that spans ca. 1 V. (vii) Initial linear syntheses for these macrocycles involved the use of organic azide intermediates. (viii) A new macrocyclic switching ligand has been synthesized utilizing (vii), that allows H^{+} or other lewis acids to act at the secondary site as electron withdrawing groups from the metal. In the structurally characterized switching (Co(III)( kappa^4-L)) ^{ -} complex, there is a bidentate switching site consisting of a pyridine-N and an adjacent amide-O donor. It has been found that the cobalt(II) derivative (CO(II)(kappa^4-L)) ^{-} readily reduces O _2 by an outer sphere (presumably by 1 e ^{-}) process. (ix) Robust homogeneous metalloredox-active oxidants are an important strategic goal for primary pollution prevention, or what is often called "green chemistry". Use of (vii) provides access to quantities of a macrocyclic ligand, that is derivatized in such a way that it can be attached to a solid polymer support. (x) C-H bond activation has been observed in iron systems^{15} in collaboration with Mike Bartos (the principal investigator) where use of (vii) has allowed quantities of ligand to be synthesized and burned in reaction chemistry with nitriles and oxidants. (xi) Macrocyclic ligands with organic solubilizing groups have been prepared utilizing (vii) and metal complexes with substantial alkane solubility result. (Abstract shortened by UMI.).

  4. One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn-ZSM-5, characterization, and catalytic oxidation of hydrocarbons.

    PubMed

    Meng, Yongtao; Genuino, Homer C; Kuo, Chung-Hao; Huang, Hui; Chen, Sheng-Yu; Zhang, Lichun; Rossi, Angelo; Suib, Steven L

    2013-06-12

    Manganese-containing MFI-type Mn-ZSM-5 zeolite was synthesized by a facile one-step hydrothermal method using tetrapropylammonium hydroxide (TPAOH) and manganese(III)-acetylacetonate as organic template and manganese salts, respectively. A highly crystalline MFI zeolite structure was formed under pH = 11 in 2 days, without the need for additional alkali metal cations. Direct evidence of the incorporation of Mn in the zeolite framework sites was observed by performing structure parameter refinements, supported by data collected from other characterization techniques such as IR, Raman, UV-vis, TGA, N2-adsorption, SEM, TEM, EDAX, and XPS. UV-vis spectra from the unique optical properties of Mn-ZSM-5 show two absorption peaks at 250 and 500 nm. The absorption varies in different atmospheres accompanied by a color change of the materials due to oxygen evolution. Raman spectra show a significant and gradual red shift from 383 cm(-1) to 372 cm(-1) when the doping amount of Mn is increased from 0 to 2 wt %. This suggests a weakened zeolite structural unit induced by the Mn substitution. The catalytic activity was studied in both gas-phase benzyl alcohol oxidation and toluene oxidation reactions with remarkable oxidative activity presented for the first time. These reactions result in a 55% yield of benzaldehyde, and 65% total conversion of toluene to carbon dioxide for the 2% Mn-ZSM-5. Temperature programmed reduction (TPR) using CO in He demonstrates two reduction peaks: one between 300 and 500 °C and the other between 500 and 800 °C. The first reduction peak, due to manganese-activated oxidation sites shifted from higher temperature to lower temperature, and the peak intensity of CO2 rises when the dopant amount increases. For the first time, calculated photophysical properties of a model Mn(O-SiH3)4(-) compound, an Mn-embedded zeolite cluster, and model Mn oxides help to explain and interpret the diffuse reflectance spectroscopy of Mn-ZSM-5 zeolites. PMID:23679582

  5. Ferromagnetism of manganese-doped indium tin oxide films deposited on polyethylene naphthalate substrates

    SciTech Connect

    Nakamura, Toshihiro; Isozaki, Shinichi; Tanabe, Kohei; Tachibana, Kunihide

    2009-04-01

    Mn-doped indium tin oxide (ITO) films were deposited on polyethylene naphthalate (PEN) substrates using radio-frequency magnetron sputtering. The magnetic, electrical, and optical properties of the films deposited on PEN substrates were investigated by comparing with the properties of films grown on glass substrates at the same growth conditions. Thin films on PEN substrates exhibited low electrical resistivity of the order of 10{sup -4} {omega} cm and high optical transmittance between 75% and 90% in the visible region. Ferromagnetic hysteresis loops were observed at room temperature for the samples grown on PEN substrates. Mn-doped ITO films can be one of the most promising candidates of transparent ferromagnetic materials for flexible spintronic devices.

  6. Thermochemistry of perovskites in the lanthanum-strontium-manganese-iron oxide system

    NASA Astrophysics Data System (ADS)

    Marinescu, Cornelia; Vradman, Leonid; Tanasescu, Speranta; Navrotsky, Alexandra

    2015-10-01

    The enthalpies of formation from binary oxides of perovskites (ABO3) based on lanthanum strontium manganite La(Sr)MnO3 (LSM) and lanthanum strontium ferrite La(Sr)FeO3 (LSF) and mixed lanthanum strontium manganite ferrite La(Sr)Mn(Fe)O3 (LSMF) were measured by high temperature oxide melt solution calorimetry. Using iodometric titration, the oxygen content was derived. The perovskites with A-site cation deficiency have greater oxygen deficiency than the corresponding A-site stoichiometric series. Stability of LSMF decreases with increasing iron content. Increasing oxygen deficiency clearly destabilizes the perovskites. The results suggest an enthalpy of oxygen incorporation that is approximately independent of composition. 0.35La2O3 (xl, 25 °C)+Mn2O3 (xl, 25 °C)+0.3SrO (xl, 25 °C)+Fe2O3 (xl, 25 °C)+O2 (g, 25 °C)?La0.7Sr0.3Mn1-yFeyO3-? (xl, 25 °C). (b) ?ubscriptshift="90%"superscriptshift="90%">Hf, ox * (La0.7Sr0.3Mn1-yFeyO3-?) .0.35 La2O3 (xl, 25 ººC) + (0.7-y+ 2?)/2 Mn2O3 (xl, 25 ºC) + 0.3 SrO (xl, 25 ºC) + y/2Fe2O3 (xl, 25 ºC) + (0.3-2?) MnO2 (xl, 25 ºC)?La0.7Sr0.3Mn1-yFeyO3-? (xl, 25 ºC).

  7. Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples.

    PubMed Central

    Siering, P L; Ghiorse, W C

    1997-01-01

    Comparative sequence analysis of the 16S rRNA genes from several Leptothrix and Sphaerotilus strains led to the design of an oligonucleotide probe (PS-1) based on a sequence within the hypervariable region 1 specific for four Leptothrix strains and for one of the four Sphaerotilus natans strains examined. Another probe (PSP-6) was based on a sequence within the hypervariable region 2. PSP-6 was specific for one of the two evolutionary lineages previously described for Leptothrix spp. (P. L. Siering and W. C. Ghiorse, Int. J. Syst. Bacteriol. 46:173-182, 1996). Fluorescein-labeled oligonucleotide probes were synthesized, and their specificity for fluorescence in situ hybridization identification was confirmed by a laser scanning microscopy technique (W. C. Ghiorse, D. N. Miller, R. L. Sandoli, and P. L. Siering, Microsc. Res. Tech. 33:73-86, 1996) to compare whole-cell hybridizations of closely related bacteria. Probe specificity was also tested in dot blot against total RNA isolated from four Leptothrix strains, four Sphaerotilus strains, and 15 other members of the class Proteobacteria. When the probes were tested on samples from the Sapsucker Woods wetland habitat where Leptothrix spp. are thought to play a role in manganese and iron oxidation, positive signals were obtained from several sheathed filamentous bacteria including some that were morphologically similar to previously isolated strains of "Leptothrix discophora." Other unknown filamentous sheathed bacteria also gave strong positive signals. This work provides a foundation for future studies correlating the presence of members of the Leptothrix-Sphaerotilus group of sheathed bacteria with manganese and iron oxidation activity in habitats where biological iron and manganese oxidation are important environmental processes. PMID:9023942

  8. Peroxidase-like oxidative activity of a manganese-coordinated histidyl bolaamphiphile self-assembly

    NASA Astrophysics Data System (ADS)

    Kim, Min-Chul; Lee, Sang-Yup

    2015-10-01

    A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy analysis. The activation energy of the produced catalysts was 55.0 kJ mol-1, which was comparable to other peroxidase-mimetic catalysts. A detailed kinetics study revealed that the prepared catalyst followed a ping-pong mechanism and that the turnover reaction was promoted by increasing the substrate concentration. Finally, application of the prepared catalyst for glucose detection was demonstrated through cascade enzyme catalysis. This study demonstrated a facile way to prepare an enzyme-mimetic catalyst through the self-assembly of an amphiphilic molecule containing amino acid segments.A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy analysis. The activation energy of the produced catalysts was 55.0 kJ mol-1, which was comparable to other peroxidase-mimetic catalysts. A detailed kinetics study revealed that the prepared catalyst followed a ping-pong mechanism and that the turnover reaction was promoted by increasing the substrate concentration. Finally, application of the prepared catalyst for glucose detection was demonstrated through cascade enzyme catalysis. This study demonstrated a facile way to prepare an enzyme-mimetic catalyst through the self-assembly of an amphiphilic molecule containing amino acid segments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04893a

  9. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    SciTech Connect

    Liang, W.

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S{sub 2} state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S{sub 2} state with the g{approx}4 electron paramagnetic resonance (EPR) signal (S{sub 2}-g4 state) was compared with that in the S{sub 2} state with multiline signal (S{sub 2}-MLS state) and the S{sub 1} state. The S{sub 2}-g4 state has a higher XAS inflection point energy than that of the S{sub 1} state, indicating the oxidation of Mn in the advance from the S{sub 1} to the S{sub 2}-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S{sub 2}-g4 state is different from that in the S{sub 2}-MLS or the S{sub 1} state. In the S{sub 2}-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 {angstrom} and 2.85 {angstrom}. Very little distance disorder exists in the second shell of the S{sub 1} or S{sub 2}-MLS states. The third shell of the S{sub 2}-g4 state at about 3.3 {angstrom} also contains increased heterogeneity relative to that of the S{sub 2}-MLS or the S{sub 1} state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct {open_quotes}pure{close_quotes} S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S{sub 1} {yields} S{sub 2} transition.

  10. Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels.

    PubMed

    Furgal, Karolina M; Meyer, Rikke L; Bester, Kai

    2015-10-01

    The oxidation of organic micro-pollutants by biogenic manganese oxide nanoparticles (BioMnOx) has been studied with respect to possible implementation of BioMnOx in wastewater treatment. For this it would be prerequisite that microbial Mn(2+) oxidation and BioMnOx-driven pollutant removal can occur in situ, i.e. in the same reactor as the removal. Here we present the in situ reactivity of BioMnOx produced by Pseudomonas putida towards a range of micro-pollutants at environmentally relevant concentrations (10 ?g L(-1)). We found that in situ formed BioMnOx completely removed the steroid hormones estrone and 17-? ethinylestradiol, while only 26% removal of diclofenac was achieved. Ibuprofen, tebuconazole, carbamazepine, carbendazim, and terbutryn were not removed under in situ conditions. PMID:25532770

  11. Peroxidase-like oxidative activity of a manganese-coordinated histidyl bolaamphiphile self-assembly.

    PubMed

    Kim, Min-Chul; Lee, Sang-Yup

    2015-10-01

    A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn(2+) ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn(2+) ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn(2+) ion concentration was determined and coordination of the Mn(2+) ion with multiple histidine imidazoles was investigated using spectroscopy analysis. The activation energy of the produced catalysts was 55.0 kJ mol(-1), which was comparable to other peroxidase-mimetic catalysts. A detailed kinetics study revealed that the prepared catalyst followed a ping-pong mechanism and that the turnover reaction was promoted by increasing the substrate concentration. Finally, application of the prepared catalyst for glucose detection was demonstrated through cascade enzyme catalysis. This study demonstrated a facile way to prepare an enzyme-mimetic catalyst through the self-assembly of an amphiphilic molecule containing amino acid segments. PMID:26419275

  12. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead.

    PubMed

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Mosa, Ahmed; Zimmerman, Andrew R; Ma, Lena Q; Harris, Willie G; Migliaccio, Kati W

    2015-04-01

    This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles. PMID:25625462

  13. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode.

    PubMed

    Weng, Yu-Ting; Huang, Tzu-Yang; Lim, Chek-Hai; Shao, Pei-Sian; Hy, Sunny; Kuo, Chao-Yen; Cheng, Ju-Hsiang; Hwang, Bing-Joe; Lee, Jyh-Fu; Wu, Nae-Lih

    2015-12-21

    MnO2 is shown for the first time to be electrochemically active as a conversion anode for Na-ion batteries (NIBs). Space-confined ultrafine (UF)-MnO2, with an average crystal size of 4 nm, synthesized using a porous silicon dioxide templated hydrothermal process exhibits a high reversible sodiation capacity of 567 mA h g(-1), in contrast to the negligible activity shown by the aggregates of larger (14 nm) MnO2 nanocrystallites. The remarkably enhanced sodiation activity of the UF-MnO2 is attributable to its greatly reduced crystal size, which facilitates diffusion of Na ions, along with high surface energy arising from extensive heterogeneous interfacial bonding with the SiO2 surrounding. The UF-MnO2 anode exhibits an exceptional rate and cycle performance, exhibiting >70% capacity retention after 500 cycles. In operando synchrotron X-ray absorption near-edge structural analysis reveals combined charge-storage mechanisms involving conversion reaction between Mn(iii) and Mn(ii) oxides, Mn(iii)-O1.5 + Na(+) + e(-)- ? 1/2Na2O + Mn(ii)-O, and non-Mn-centered redox reactions. The finding suggests a new strategy for "activating" the potential electrochemical electrode materials that appear inactive in the bulk form. PMID:26567463

  14. Surface chemistry of coated lithium manganese nickel oxide thin film cathodes studied by XPS

    SciTech Connect

    Baggetto, Loic; Dudney, Nancy J; Veith, Gabriel M

    2013-01-01

    The effect of coating high voltage LiMn1.5Ni0.5O4 spinel cathode thin films with three metal oxide thin layers is discussed. The changes in surface chemistry of the electrodes are measured by X-ray photoelectron spectroscopy. ZnO is found to decompose during the first charge whereas Al2O3 and ZrO2 are stable for more than 100 cycles. ZrO2, however, importantly limits the available Li storage capacity of the electrochemical reaction due to poorer kinetics. Al2O3 offers the best results in term of capacity retention. Upon cycling, the evidence of a signal at 75.4 eV in the Al2p binding energy spectrum indicates the partial conversion of Al2O3 into Al2O2F2. Moreover, the continuous formation of PEO , esters and LixPOyFz compounds on the surface of the electrodes is found for all coating materials.

  15. Interface physics of perovskite manganese oxides: A polarized x-ray spectroscopy and scattering study

    NASA Astrophysics Data System (ADS)

    Kavich, Jerald J., Jr.

    Interface physics of strongly correlated electron materials is at the forefront of experimental and theoretical investigation. From a fundamental perspective, the ultimate goal is a complete understanding of the electronic and magnetic properties of these materials. In the case of perovskite oxides, this will lead to the precise control and optimization of material properties for a variety of new spintronic device applications. This work focuses on x = 1/3 hole-doped La1-xSrMnO3, where the interface behaves much differently from the bulk. A suppressed magnetization at the interface was postulated very early due to the surprisingly poor performance of novel spintronic devices. Attempts were made to atomically modify the interface to improve the magnetization even before the precise nature and functional dependence was known. Using the technique of soft x-ray resonant magnetic scattering, we probe interfaces of complicated layered structures and quantitatively model depth-dependent magnetic profiles as a function of distance from the interface on atomically flat, molecular beam expitaxy grown single interfaces and digital superlattices. Comparisons of the average electronic and magnetic properties at interfaces were made independently using x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The first scientific contribution of this work is a direct measurement of the magnetization profile at La 2/3Sr1/3MnO3/SrTiO3 single interfaces. Measurements indicate that the properties of the modified interfaces are equivalent to the unmodified La2/3Sr1/3MnO3 film. Temperature dependent measurements show that below 300K, the surface exhibits a highly suppressed ferromagnetic moment that evolves to the bulk value over a length scale of ˜1.6--2.4 nm. Secondly, by using superlattices to investigate the behavior of electrons in these materials to study the origin of the magnetization, it was discovered that the mechanism of the loss of magnetization is different from the mechanism which leads to long range magnetic order. In the superlattice structures, the delocalization of charge in these materials creates a ferromagnetic state near the interface but is limited to just one unit cell. This is in contrast to the longer length scale of the suppressed surface magnetization in the random alloy.

  16. Understanding the oxidative relationships of the metal oxo, hydroxo, and hydroperoxide intermediates with manganese(IV) complexes having bridged cyclams: correlation of the physicochemical properties with reactivity.

    PubMed

    Yin, Guochuan

    2013-02-19

    Multiple transition metal functional groups including metaloxo, hydroxo, and hydroperoxide groups play significant roles in various biological and chemical oxidations such as electron transfer, oxygen transfer, and hydrogen abstraction. Further studies that clarify their oxidative relationships and the relationship between their reactivity and their physicochemical properties will expand our ability to predict the reactivity of the intermediate in different oxidative events. As a result researchers will be able to provide rational explanations of poorly understood oxidative phenomena and design selective oxidation catalysts. This Account summarizes results from recent studies of oxidative relationships among manganese(IV) molecules that include pairs of hydroxo/oxo ligands. Changes in the protonation state may simultaneously affect the net charge, the redox potential, the metal-oxygen bond order (M-O vs M?O), and the reactivity of the metal ion. In the manganese(IV) model system, [Mn(IV)(Me(2)EBC)(OH)(2)](PF(6))(2), the Mn(IV)-OH and Mn(IV)?O moieties have similar hydrogen abstraction capabilities, but Mn(IV)?O abstracts hydrogen at a more than 40-fold faster rate than the corresponding Mn(IV)-OH. However, after the first hydrogen abstraction, the reduction product, Mn(III)-OH(2) from the Mn(IV)-OH moiety, cannot transfer a subsequent OH group to the substrate radical. Instead the Mn(III)-OH from the Mn(IV)?O moiety reforms the OH group, generating the hydroxylated product. In the oxygenation of substrates such as triarylphosphines, the reaction with the Mn(IV)?O moiety proceeds by concerted oxygen atom transfer, but the reaction with the Mn(IV)-OH functional group proceeds by electron transfer. In addition, the manganese(IV) species with a Mn(IV)-OH group has a higher redox potential and demonstrates much more facile electron transfer than the one that has the Mn(IV)?O group. Furthermore, an increase in the net charge of the Mn(IV)-OH further accelerates its electron transfer rate. But its influence on hydrogen abstraction is minor because charge-promoted electron transfer does not enhance hydrogen abstraction remarkably. The Mn(IV)-OOH moiety with an identical coordination environment is a more powerful oxidant than the corresponding Mn(IV)-OH and Mn(IV)?O moieties in both hydrogen abstraction and oxygen atom transfer. With this full understanding of the oxidative reactivity of the Mn(IV)-OH and Mn(IV)?O moieties, we have clarified the correlation between the physicochemical properties of these active intermediates, including net charge, redox potential, and metal-oxygen bond order, and their reactivities. The reactivity differences between the metal oxo and hydroxo moieties on these manganese(IV) functional groups after the first hydrogen abstraction have provided clues for understanding their occurrence and functions in metalloenzymes. The P450 enzymes require an iron(IV) oxo form rather than an iron(IV) hydroxo form to perform substrate hydroxylation. However, the lipoxygenases use an iron(III) hydroxo group to dioxygenate unsaturated fatty acids rather than an iron(III) oxo species, a moiety that could facilitate hydroxylation reactions. These distinctly different physicochemical properties and reactivities of the metal oxo and hydroxo moieties could provide clues to understand these elusive oxidation phenomena and provide the foundation for the rational design of novel oxidation catalysts. PMID:23194251

  17. O-atom transport catalysis by neutral manganese oxide clusters in the gas phase: reactions with CO, C2H4, NO2, and O2.

    PubMed

    Yin, Shi; Wang, Zhechen; Bernstein, Elliot R

    2013-08-28

    Reactions of CO, C2H4, NO2, and O2 with neutral Mn(m)O(n) clusters in a fast flow reactor are investigated both experimentally and theoretically. Single photon ionization at 118 nm is used to detect neutral cluster distributions through time of flight mass spectrometry. Mn(m)O(n) clusters are generated through laser ablation of a manganese target in the presence of 5% O2/He carrier gas. A strong size dependent reactivity of Mn(m)O(n) clusters is characterized. Reactions Mn2O5/Mn3O7 + CO ? Mn2O4/Mn3O6 + CO2 are found for CO oxidation by Mn(m)O(n) clusters, while only association products Mn2O(3-5)C2H4 and Mn3O(5-7)C2H4 are observed for reactions of C2H4 with small Mn(m)O(n) clusters. Reactions of Mn(m)O(n) clusters with NO2 and O2 are also investigated, and the small Mn2O(n) clusters are easily oxidized by NO2. This activation suggests that a catalytic cycle can be generated for the Mn2O5 cluster: Mn2O5 + CO + NO2 ? Mn2O4 + CO2 + NO2 ? Mn2O5 + CO2 + NO. Density functional theory (DFT) calculations are performed to explore the potential energy surfaces for the reactions Mn2O(4,5)/Mn3O7 + CO ? Mn2O(3,4)/Mn3O6 + CO2, Mn2O5 + C2H4 ? Mn2O4 + CH3CHO, and Mn2O4 + NO2 ? Mn2O5 + NO. Barrierless and thermodynamically favorable pathways are obtained for Mn2O5?Mn3O7 + CO and Mn2O4 + NO2 reactions. A catalytic cycle for CO oxidation by NO2 over a manganese oxide surface is proposed based on our experimental and theoretical investigations. The various atom related reaction mechanisms explored by DFT are in good agreement with the experimental results. Condensed phase manganese oxide is suggested to be a good catalyst for low temperature CO oxidation by NO2, especially for an oxygen rich sample. PMID:24006997

  18. Manganese mineralogy and diagenesis in the sedimentary rock record

    NASA Astrophysics Data System (ADS)

    Johnson, Jena E.; Webb, Samuel M.; Ma, Chi; Fischer, Woodward W.

    2016-01-01

    Oxidation of manganese (II) to manganese (III,IV) demands oxidants with very high redox potentials; consequently, manganese oxides are both excellent proxies for molecular oxygen and highly favorable electron acceptors when oxygen is absent. The first of these features results in manganese-enriched sedimentary rocks (manganese deposits, commonly Mn ore deposits), which generally correspond to the availability of molecular oxygen in Earth surface environments. And yet because manganese reduction is promoted by a variety of chemical species, these ancient manganese deposits are often significantly more reduced than modern environmental manganese-rich sediments. We document the impacts of manganese reduction and the mineral phases that form stable manganese deposits from seven sedimentary examples spanning from modern surface environments to rocks over 2 billion years old. Integrating redox and coordination information from synchrotron X-ray absorption spectroscopy and X-ray microprobe imaging with scanning electron microscopy and energy and wavelength-dispersive spectroscopy, we find that unlike the Mn(IV)-dominated modern manganese deposits, three manganese minerals dominate these representative ancient deposits: kutnohorite (CaMn(CO3)2), rhodochrosite (MnCO3), and braunite (Mn(III)6Mn(II)O8SiO4). Pairing these mineral and textural observations with previous studies of manganese geochemistry, we develop a paragenetic model of post-depositional manganese mineralization with kutnohorite and calcian rhodochrosite as the earliest diagenetic mineral phases, rhodochrosite and braunite forming secondarily, and later alteration forming Mn-silicates.

  19. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wang, Liangjun; Xu, Leilei; Ge, Xiaoming; Zhao, Xiao; Lai, Min; Liu, Zhaolin; Chen, Wei

    2014-12-01

    The development of cathode catalysts with a porous structure is essential to design Li-O2 batteries with a high rate performance and good cycle stability. Herein, spinel-type porous cobalt-manganese oxide (Co-Mn-O) nanocubes derived from metal organic frameworks were employed as an electrocatalyst in a Li-O2 battery. The battery with the porous Co-Mn-O nanocubes electrode showed a low overpotential and enhanced capacity. The synergistic effects of large specific surface area, porous structure, and the high electrocatalytic activity of the porous Co-Mn-O nanocubes electrode endowed the Li-O2 battery with a good rate performance and excellent cycle stability up to 100 cycles.The development of cathode catalysts with a porous structure is essential to design Li-O2 batteries with a high rate performance and good cycle stability. Herein, spinel-type porous cobalt-manganese oxide (Co-Mn-O) nanocubes derived from metal organic frameworks were employed as an electrocatalyst in a Li-O2 battery. The battery with the porous Co-Mn-O nanocubes electrode showed a low overpotential and enhanced capacity. The synergistic effects of large specific surface area, porous structure, and the high electrocatalytic activity of the porous Co-Mn-O nanocubes electrode endowed the Li-O2 battery with a good rate performance and excellent cycle stability up to 100 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05865h

  20. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kuo, Cheng-Chi; Lan, Wen-Jie; Chen, Chun-Hu

    2013-12-01

    High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 ?M was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed.High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 ?M was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03791f

  1. Quartz ball value

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M.

    1979-01-01

    Quartz ball valve consisting of two quartz joints sealed back-to-back and seated in quartz sockets perform at temperatures of up to 1,250 C and in corrosive chemical environments without contamination or degradation.

  2. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-01

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide. PMID:17778807

  3. Occupational Exposure to Welding Fume among Welders: Alterations of Manganese, Iron, Zinc, Copper, and Lead in Body Fluids and the Oxidative Stress Status

    PubMed Central

    Li, Guojun Jane; Zhang, Long-Lian; Lu, Ling; Wu, Ping; Zheng, Wei

    2014-01-01

    Welders in this study were selected from a vehicle manufacturer; control subjects were from a nearby food factory. Airborne manganese levels in the breathing zones of welders and controls were 1.45 ± SD1.08 mg/m3 and 0.11 ± 0.07 ?g/m3, respectively. Serum levels of manganese and iron in welders were 4.3-fold and 1.9-fold, respectively, higher than those of controls. Blood lead concentrations in welders increased 2.5-fold, whereas serum zinc levels decreased 1.2-fold, in comparison with controls. Linear regression revealed the lack of associations between blood levels of five metals and welder’s age. Furthermore, welders had erythrocytic superoxide dismutase activity and serum malondialdehyde levels 24% less and 78% higher, respectively, than those of controls. These findings suggest that occupational exposure to welding fumes among welders disturbs the homeostasis of trace elements in systemic circulation and induces oxidative stress. PMID:15091287

  4. Immobilization of manganese peroxidase from Lentinula edodes on alkylaminated Emphaze{trademark} AB 1 polymer for generation of Mn{sup 3+} as an oxidizing agent

    SciTech Connect

    Grabski, A.C.; Burgess, R.R.; Rasmussen, J.K.; Coleman, P.L.

    1996-07-01

    Manganese peroxidase (MnP) is secreted by white-rot fungi and participates in the degradation of lignin by these organisms. MnP uses H{sub 2}O{sub 2} as an oxidant to oxidize Mn{sup II} to Mn{sup III} as the manganic ion Mn{sup 3+}. The Mn{sup 3+} stabilized by chelation, is a highly reactive nonspecific oxidant capable of oxidizing a variety of toxic organic compounds. Previous attempts at immobilization of MnP, purified from Lentinula edodes through reactive amino groups, have been hindered by the protein`s low lysine content of only 1% and its instability above pH 6.0. As an alternative to amine coupling, the enzyme has now been covalently immobilized through its carboxyl groups, using an azlactone-functional copolymer derivatized with ethylenediamine and 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) as a coupling reagent. The immobilization reaction was performed under acidic (pH 5.25) conditions, and 90% coupling efficiency was achieved within 2 h. Net immobilization efficiencies, expressed as the product of protein coupling efficiency and enzyme activity, have been measured at > 95% within 4 h. The MnP-NH-polymer and the free soluble protein were characterized and compared for their pH, temperature, and storage stabilities, as well as their H{sub 2}O{sub 2} dependence and kinetics. 61 refs., 8 figs.

  5. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO.

    PubMed

    Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin

    2015-06-30

    This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ? 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ? 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. PMID:25748996

  6. Structure-related optical properties of (Pb,La)(Zr,Ti)O3 thin films on indium tin oxide/quartz substrates

    NASA Astrophysics Data System (ADS)

    Leng, W. J.; Yang, C. R.; Ji, H.; Zhang, J. H.; Chen, H. W.; Tang, J. L.

    2006-10-01

    To be suitable for integrated optical devices, (Pb,La)(Zr,Ti)O3 (PLZT) ferroelectric thin films require high crystalline quality, low surface roughness, high optical index, and high transparency. In this paper, PLZT thin films have been grown in situ on indium tin oxide (ITO) coated quartz substrates by rf magnetron sputtering. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate the structural properties of these PLZT films. The results show that the ferroelectric films exhibit satisfying crystallization with the highly (110)-oriented growth from 550°C, and the surface roughness value (˜3.1nm) in studied films is within the optimum range so that a low optical loss can be obtained. High quality PLZT ferroelectric thin films were further investigated by electrical measurements, showing that the remnant polarization Pr and coercive field Ec are approximately 11.3?C/cm2 and 56.2kV/cm, respectively. Spectroscopic ellipsometry (SE) was employed to characterize the depth profiles, the microstructural inhomogeneities (void and surface roughness), refractive index n, and extinction coefficient k of the PLZT film. In the analysis of the measured SE spectra, a three-layer Lorentz model with four oscillators was adopted to represent the optical properties of the PLZT film. In this model, the film was assumed to consist of two layers (a bottom bulk PLZT and a surface layer composed of bulk PLZT as well as void). Good agreement was obtained between the measured spectra and the model calculations. The film thickness measured from SEM is consistent with that obtained by SE, while the root mean square roughness determined by AFM is also close to our fitted effective surface layer thickness obtained by SE. The PLZT thin film on ITO-coated quartz substrate is highly transparent in the visible near infrared wavelength region, and the band gap energy Eg is estimated to be 3.54eV. The experimental results above tend to demonstrate the suitability of the PLZT films in situ grown on ITO/quartz substrates for optical applications.

  7. Adiabats of quartz, coesite, olivine, and magnesium oxide to 50 kbar and 1000 K, and the adiabatic gradient in the earth's mantle

    SciTech Connect

    Boehler, R.

    1982-07-10

    The adiabats of olivine, magnesium oxide, and quartz were measured up to 50 kbar and 1000 K. An end-loaded piston-cylinder apparatus with an in situ pressure gauge and a very fine thermocouple was used to measure (partialT/partialP)/sub s/, during adiabatic compression. A power law between (partialT/partialP)/sub s/ and compression yields values of the power n = -partial ln(partialT/partialP)/sub s//partial ln rho that agree with previous results from salts, metals, and fluids. Assuming constant values for n, the adiabatic gradient for an olivine upper mantle and a magnesium oxide lower mantle was calculated. The results agree well with some previous theoretical estimates. The volume dependence of the Grueneisen parameter ..gamma.. was calculated from the thermodynamic equation partialln ..gamma../partial ln rho = partialB/partialP-n, where B is the isothermal bulk modulus, ..gamma.. is found to a good approximation to be proportional to volume.

  8. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater.

    PubMed

    Xu, Jing-Cheng; Chen, Gu; Huang, Xiang-Feng; Li, Guang-Ming; Liu, Jia; Yang, Na; Gao, Sai-Nan

    2009-09-30

    To reclaim treated steel wastewater as cooling water, manganese ore constructed wetland was proposed in this study for the removal of iron and manganese. In lab-scale wetlands, the performance of manganese ore wetland was found to be more stable and excellent than that of conventional gravel constructed wetland. The iron and manganese concentration in the former was below 0.05 mg/L at hydraulic retention time of 2-5 days when their influent concentrations were in the range of 0.16-2.24 mg/L and 0.11-2.23 mg/L, respectively. Moreover, its removals for COD, turbidity, ammonia nitrogen and total phosphorus were 55%, 90%, 67% and 93%, respectively, superior to the corresponding removals in the gravel wetland (31%, 86%, 58% and 78%, respectively). The good performance of manganese ore was ascribed to the enhanced biological manganese removal with the aid of manganese oxide surface and the smaller size of the medium. The presence of biological manganese oxidation was proven by the facts of good manganese removal in wetlands at chemical unfavorable conditions (such as ORP and pH) and the isolation of manganese oxidizing strains from the wetlands. Similar iron and manganese removal was later observed in a pilot-scale gravel-manganese-ore constructed wetland, even though the manganese ore portion in total volume was reduced from 100% (in the lab-scale) to only 4% (in the pilot-scale) for the sake of cost-saving. The quality of the polished wastewater not only satisfied the requirement for cooling water but also suitable as make-up water for other purposes. PMID:19443107

  9. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    SciTech Connect

    Mahdavi, Vahid Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated.

  10. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl? as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. PMID:24907577

  11. Porous cobalt-manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li-O2 batteries.

    PubMed

    Zhang, Jian; Wang, Liangjun; Xu, Leilei; Ge, Xiaoming; Zhao, Xiao; Lai, Min; Liu, Zhaolin; Chen, Wei

    2015-01-14

    The development of cathode catalysts with a porous structure is essential to design Li-O2 batteries with a high rate performance and good cycle stability. Herein, spinel-type porous cobalt-manganese oxide (Co-Mn-O) nanocubes derived from metal organic frameworks were employed as an electrocatalyst in a Li-O2 battery. The battery with the porous Co-Mn-O nanocubes electrode showed a low overpotential and enhanced capacity. The synergistic effects of large specific surface area, porous structure, and the high electrocatalytic activity of the porous Co-Mn-O nanocubes electrode endowed the Li-O2 battery with a good rate performance and excellent cycle stability up to 100 cycles. PMID:25429438

  12. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam

    PubMed Central

    2014-01-01

    A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g-1 at the current density of 10 A g-1, and the electrode also shows excellent cycling performance, which retains 102% of its initial discharge capacitance after 7,000 cycles. The fabricated binder-free hierarchical composite electrode with superior electrochemical performance is a promising candidate for high-performance supercapacitors. PMID:25258611

  13. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, ?-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    SciTech Connect

    Koretsky, Carla

    2013-11-29

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatly impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), ?-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2?nH2O). The results show that all of these materials can bind substantial quantities of hexavalent chromium, especially at low pH. Unexpectedly, experiments with the clay minerals kaolinite and montmorillonite suggest that hexavalent chromium may interact with these solids over much longer periods of time than expected. Furthermore, hexavalent chromium may irreversibly bind to these solids, perhaps because of oxidation-reduction reactions occurring on the surfaces of the clay minerals. More work should be done to investigate and quantify these chemical reactions. Experiments conducted with mixtures of goethite, hydrous manganese oxide, hydrous ferric oxide, ?-alumina, montmorillonite and kaolinite demonstrate that it is possible to correctly predict hexavalent chromium binding in the presence of multiple minerals using thermodynamic models derived for the simpler systems. Further, these models suggest that of the six solid considered in this study, goethite is typically the solid to which most of the hexavalent chromium will bind. Experiments completed with organic-rich and organic-poor natural sediments demonstrate that in organic-rich substrates, organic matter is likely to control uptake of the hexavalent chromium. The models derived and tested in this study for hexavalent chromium binding to ?-alumina, hydrous manganese oxide, goethite, hydrous ferric oxide and clay minerals can be used to better predict changes in hexavalent chromium bioavailability and mobility in contaminated sediments and soils.

  14. Using amorphous manganese oxide for remediation of smelter-polluted soils: a pH-dependent long-term stability study

    NASA Astrophysics Data System (ADS)

    Ettler, Vojtech; Tomasova, Zdenka; Komarek, Michael; Mihaljevic, Martin; Sebek, Ondrej

    2015-04-01

    In soil systems, manganese (Mn) oxides are commonly found to be powerful sorbents of metals and metalloids and are thus potentially useful in soil remediation. A novel amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH = 3 - 8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH > 5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils and other in situ applications need to be evaluated. This study was supported by the Czech Science Foundation (GA?R 15-07117S).

  15. In situ high-pressure synchrotron X-ray powder diffraction study of tunnel manganese oxide minerals: hollandite, romanechite, and todorokite

    NASA Astrophysics Data System (ADS)

    Hwang, Gil Chan; Post, Jeffrey E.; Lee, Yongjae

    2015-05-01

    In situ high-pressure synchrotron X-ray powder diffraction study of three tunnel manganese oxide minerals (hollandite with 2 × 2 MnO6 octahedra tunnels, romanechite with 2 × 3 tunnels, and todorokite with 3 × 3 tunnels) was performed using a diamond anvil cell and nominally penetrating alcohol and water mixture as a pressure-transmitting medium up to ~8 GPa. Bulk moduli ( B 0) calculated using Murnaghan's equation of state are inversely proportional to the size of the tunnel, i.e., 134(4) GPa for hollandite ( I2/m), 108(2) GPa for romanechite ( C2/m), and 67(5) GPa for todorokite ( P2/m). On the other hand, axial compressibilities show different elastic anisotropies depending on the size of the tunnel, i.e., ( a/ a 0) = -0.00066(3) GPa-1, ( b/ b 0) = 0.00179(8) GPa-1, ( c/ c 0) = 0.00637(4) GPa-1 [ c > b > a] for hollandite; ( a/ a 0) = 0.00485(4) GPa-1, ( b/ b 0) = 0.0016(1) GPa-1, ( c/ c 0) = 0.00199(8) GPa-1 [ a > c > b] for romanechite; and ( a/ a 0) = 0.00826(9) GPa-1, ( b/ b 0) = 0.0054(1) GPa-1, ( c/ c 0) = 0.00081(8) GPa-1 [ a > b > c] for todorokite. Overall, the degree of tunnel distortion increases with increasing pressure and correlates with the size of the tunnel, which is evidenced by the gradual increases in the monoclinic ? angles up to 3 GPa of 0.62°, 0.8°, and 1.15° in hollandite, romanechite, and todorokite, respectively. The compression of tunnel manganese oxides is related to the tunnel distortion and the size of the tunnel.

  16. Determination of growth of Sphaerotilus discophorus in the presence of manganese.

    PubMed Central

    Hajj, H; Makemson, J

    1976-01-01

    Manganese interferes strongly with most chemical methods of biomass determination. However, the biomass of manganese-encrusted Sphaerotilus discophorus can be determined after removal of the MnO2 with trichloroacetic acid and oxalic acid. Evidence which indicates that manganese inhibits the heterotrophic growth of S. discophorus and that the cells only oxidize manganese late in the growth curve is presented. PMID:791129

  17. Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy.

    PubMed

    Mattioli, Giuseppe; Zaharieva, Ivelina; Dau, Holger; Guidoni, Leonardo

    2015-08-19

    Amorphous transition-metal (hydr)oxides are considered as the most promising catalysts that promote the oxidation of water to molecular oxygen, protons, and "energized" electrons, and, in turn, as fundamental parts of "artificial leaves" that can be exploited for large scale generation of chemical fuels (e.g., hydrogen) directly from sunlight. We present here a joint theoretical-experimental investigation of electrodeposited amorphous manganese oxides with different catalytic activities toward water oxidation (MnCats). Combining the information content of X-ray absorption fine structure (XAFS) measurements with the predictive power of ab initio calculations based on density functional theory, we have been able to identify the essential structural and electronic properties of MnCats. We have elucidated (i) the localization and structural connection of Mn(II), Mn(III), and Mn(IV) ions in such amorphous oxides and (ii) the distribution of protons at the MnCat/water interface. Our calculations result in realistic 3D models of the MnCat atomistic texture, formed by the interconnection of small planar Mn-oxo sheets cross-linked through different kinds of defective Mn atoms, isolated or arranged in closed cubane-like units. Essential for the catalytic activity is the presence of undercoordinated Mn(III)O5 units located at the boundary of the amorphous network, where they are ready to act as hole traps that trigger the oxidation of neighboring water molecules when the catalyst is exposed to an external positive potential. The present validation of a sound 3D model of MnCat improves the accuracy of XAFS fits and opens the way for the development of mechanistic schemes of its functioning beyond a speculative level. PMID:26226190

  18. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  19. Culture-Independent Identification of Manganese-Oxidizing Genes from Deep-Sea Hydrothermal Vent Chemoautotrophic Ferromanganese Microbial Communities Using a Metagenomic Approach

    NASA Astrophysics Data System (ADS)

    Davis, R.; Tebo, B. M.

    2013-12-01

    Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn oxidases McoA and MopA. The greater diversity of Mn oxidase pathways in this metagenome suggests a more diverse Mn oxidizing microbial community in the cold pumice sample. Key enzymes for four of the six known carbon fixation pathways (the Calvin Cycle, the reductive TCA cycle, the Wood-Ljungdahl pathway, and the 3-hydroxypropionate/4-hydroxybutyrate Cycle) were also identified in both samples indicating primary production occurs via a diverse community of carbon fixing organisms. Together, these samples contain active, diverse populations of Mn oxidizing bacteria living in association with microbial communities supported by chemoautotrophic carbon fixation.

  20. Role of Substrate on Quartz Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (?30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (?3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (?25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to experiments using crushed fragments of synthetic quartz (Pepple, 2007), the amount of cement in these natural samples was greater. Cementation followed a common pattern in all samples. Microfractures, which formed during pressurization of the charges, healed very rapidly followed by overgrowths on the quartz grains. Cementation began closest to the amorphous silica, then progressed away. There was no measurable difference in the amount of quartz cement formed in samples of the as-is and cleaned St. Peter Sandstone indicating that iron played no role in the rate of cementation. Although the amount of cement formed increased with increasing temperature and duration of the experiments, the rate of cementation decreased dramatically in longer duration (8 weeks) experiments suggesting a change in the precipitation mechanism/rate. This apparent change in precipitation rate may reflect a decrease in available surfaces for nucleation and/or a decrease in growth rate as euhedral faces develop as proposed by Lander et al (2008).

  1. Concretionary manganese-iron oxides in streams and their usefulness as a sample medium for geochemical prospecting

    USGS Publications Warehouse

    Nowlan, G.A.

    1976-01-01

    Correlation studies of 400 samples of sieved stream sediments and 325 samples of fluvial, concretionary Mn-Fe oxides from Maine resulted in the separation of elements into the following categories: (1) elements not scavenged by Mn-Fe oxides - B, Cr, K, Mg, Rb, Sc, Ti, V, and Zr; (2) elements probably not scavenged by Mn-Fe oxides - Ag, Be, Ca, Ga, La, Sb, and Y; (3) elements scavenged weakly by Mn-Fe oxides - Cu, Mo, Pb, and Sr; (4) elements scavenged strongly by Mn oxides - Ba, Cd, Co, Ni, Tl, and Zn; and (5) elements scavenged strongly by Fe oxides - As and In. Studies of the scavenged elements showed that the deviation from the mean is characteristically greater in oxide samples as compared to sieved sediments from the same locality. However, a significant increase in contrast between anomalous and background localities, when oxides are the sample medium, more than offsets the disadvantage of data scatter. The use of oxides as a sampling medium clearly and significantly accentuates anomalous localities. In general, non-ratioed data on oxides give very nearly the same results as data consisting of scavenged elements ratioed to Mn and Fe. However, ratioed data expand the geographic area of specific anomalies. Cd and Zn consistently show strong correlations with concretionary Mn-Fe oxides, but their concentrations in the oxides do not generally show as much contrast between anomalous and background localities as do Cu, Mo, and Pb. These latter elements are strongly scavenged where rocks are mineralized. ?? 1976.

  2. Layered lithium manganese(0.4) nickel(0.4) cobalt(0.2) oxide(2) as cathode for lithium batteries

    NASA Astrophysics Data System (ADS)

    Ma, Miaomiao

    The lithium ion battery occupies a dominant position in the portable battery market today. Intensive research has been carried out on every part of the battery to reduce cost, avoid environmental hazards, and improve battery performance. The commercial cathode material LiCoO2 has been partially replaced by LiNiyCo1- yO2 in the last two years, and mixed metal oxides have been introduced in the last quarter. From a resources point of view, only about 10 million tons of cobalt deposits are available from the world's minerals. However, there is about 500 times more manganese available than cobalt. Moreover, cobalt itself is not environmentally friendly. The purpose of this work is to find a promising alternative cathode material that can maintain good cycling performance, while at the same time reducing the cost and toxicity. When the cost is lowered, it is then possible to consider the larger scale use of lithium ion batteries in application such as hybrid electric vehicles (HEV). The research work presented in this thesis has focused on a specific composition of a layered lithium transition metal oxide, LiMn0.4Ni 0.4Co0.2O2 with the R3¯m structure. The presence of cobalt plays a critical role in minimizing transition metal migration to the lithium layer, and perhaps also in enhancing the electronic conductivity; however, cobalt is in limited supply and it is therefore more costly than nickel or manganese. The performance of LiMn0.4Ni0.4Co 0.2O2 was investigated and characterized utilizing various techniques an its performance compared with cobalt free LiMn0.5N i0.5O2, as well as with LiMn1/3Ni1/3Co 1/3O2, which is the most extensively studied replacement candidate for LiNiyCo1- yO2, and may be in SONY'S new hybrid cells. First, the structure and cation distribution in LiMn0.4Ni 0.4Co0.2O2 was studied by a combination of X-ray and neutron diffraction experiments. This combination study shows that about 3--5% nickel is present in the lithium layer, while manganese and cobalt are not observed in the lithium layer. In addition, the study did not reveal any ordering of the manganese, nickel, and cobalt, in the transition metal layer at room temperature. The structure changes during the first charge were also investigated both by ex situ and in situ X-ray diffractions. The same cell parameter trends are observed using both techniques. The hexagonal structure is maintained up to 4.6V, which is above the limit for normal cycling. Excess lithium addition reduces the cation disorder just as cobalt addition does. (Abstract shortened by UMI.)

  3. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    SciTech Connect

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-03-15

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 {+-} 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  4. Hypoxia acclimation protects against oxidative damage and changes in prolactin and somatolactin expression in silver catfish (Rhamdia quelen) exposed to manganese.

    PubMed

    Dolci, G S; Vey, L T; Schuster, A J; Roversi, Kr; Roversi, K; Dias, V T; Pase, C S; Barcelos, R C S; Antoniazzi, C T D; Golombieski, J I; Glanzner, W G; Anezi Junior, P A; Gonçalves, P B D; Nunes, M A G; Dressler, V L; Baldisserotto, B; Burger, M E

    2014-12-01

    The aim of this study was to assess the Mn toxicity to silver catfish considering Mn accumulation and oxidative status in different tissues, as well as pituitary hormone expression after acclimation to hypoxia. Silver catfish acclimated to hypoxia for 10 days and successively exposed to Mn (9.8 mg L(-1)) for an additional 10 days exhibited lower Mn accumulation in plasma, liver, kidneys and brain and prevented the hematocrit decrease observed in the normoxia group. Hypoxia acclimation also modified Mn-induced oxidative damage, which was observed by lower reactive species (RS) generation in gills and kidneys, decreased lipid peroxidation (LP) levels in gills, liver and kidneys and decreased protein carbonyl (PC) levels in liver, kidneys and brain. Manganese accumulation showed positive correlations with LP levels in gills and kidneys, as well as with PC levels in gills, liver and brain. In addition, hypoxia acclimation and Mn exposure increased catalase (CAT) activity in gills and kidneys and Na(+)/K(+)-ATPase activity in gills, liver and brain. Silver catfish that were acclimated under normoxia and exposed to Mn displayed increased pituitary prolactin (PRL) and decreased somatolactin (SL) expression. Interestingly, hypoxia acclimation prevented hormonal fluctuation of PRL and SL in fish exposed to Mn. These findings indicate that while the exposure of silver catfish to Mn under normoxia was related to metal accumulation and oxidative damage in tissues together with endocrine axis disruption, as represented by PRL and SL, hypoxia acclimation reduced waterborne Mn uptake, thereby minimizing oxidative damage and changes in hormonal profile. We hypothesized that moderate hypoxia is able to generate adaptive responses, which may be related to hormesis, thereby ameliorating Mn toxicity to silver catfish. PMID:25456232

  5. Stability and Rate Capability of Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries

    SciTech Connect

    Li, Zheng; Chernova, Natasha A.; Feng, Jijun; Upreti, Shailesh; Omenya, Fredrick; Whittingham, M. Stanley

    2015-10-15

    The structures, electrochemical properties and thermal stability of Al-substituted lithium-excess oxides, Li{sub 1.2}Ni{sub 0.16} Mn{sub 0.56}Co{sub 0.08-y}Al{sub y}O{sub 2} (y = 0, 0.024, 0.048, 0.08), are reported, and compared to the stoichiometric compounds, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2}. A solid solution was found up to at least y = 0.06. Aluminum substitution improves the poor thermal stability while preserving the high energy density of lithium-excess oxides. However, these high manganese compositions are inferior to the lithium stoichiometric materials, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2} (z = 0.333, 0.4), in terms of both power and thermal stability.

  6. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese

    NASA Technical Reports Server (NTRS)

    Aguilar, C.; Nealson, K. H.

    1998-01-01

    Oneida Lake, New York is a eutrophic freshwater lake known for its abundant manganese nodules and a dynamic manganese cycle. Temporal and spatial distribution of soluble and particulate manganese in the water column of the lake were analyzed over a 3-year period and correlated with other variables such as oxygen, pH, and temperature. Only data from 1988 are shown. Manganese is removed from the water column in the spring via conversion to particulate form and deposited in the bottom sediments. This removal is due to biological factors, as the lake Eh/pH conditions alone can not account for the oxidation of the soluble manganese Mn(II). During the summer months the manganese from microbial reduction moves from the sediments to the water column. In periods of stratification the soluble Mn(II) builds up to concentrations of 20 micromoles or more in the bottom waters. When mixing occurs, the soluble Mn(II) is rapidly removed via oxidation. This cycle occurs more than once during the summer, with each manganese atom probably being used several times for the oxidation of organic carbon. At the end of the fall, whole lake concentrations of manganese stabilize, and remain at about 1 micromole until the following summer, when the cycle begins again. Inputs and outflows from the lake indicate that the active Mn cycle is primarily internal, with a small accumulation each year into ferromanganese nodules located in the oxic zones of the lake.

  7. Geodynamic and climate controls in the formation of Mio-Pliocene world-class oxidized cobalt and manganese ores in the Katanga province, DR Congo

    NASA Astrophysics Data System (ADS)

    Decrée, Sophie; Deloule, Étienne; Ruffet, Gilles; Dewaele, Stijn; Mees, Florias; Marignac, Christian; Yans, Johan; de Putter, Thierry

    2010-10-01

    The Katanga province, Democratic Republic of Congo, hosts world-class cobalt deposits accounting for ~50% of the world reserves. They originated from sediment-hosted stratiform copper and cobalt sulfide deposits within Neoproterozoic metasedimentary rocks. Heterogenite, the main oxidized cobalt mineral, is concentrated as “cobalt caps” along the top of silicified dolomite inselbergs. The supergene cobalt enrichment process is part of a regional process of residual ore formation that also forms world-class “manganese cap” deposits in western Katanga, i.e., the “black earths” that are exploited by both industrial and artisanal mining. Here, we provide constraints on the genesis and the timing of these deposits. Ar-Ar analyses of oxidized Mn ore and in situ U-Pb SIMS measurements of heterogenite yield Mio-Pliocene ages. The Ar-Ar ages suggest a multi-phase process, starting in the Late Miocene (10-5 Ma), when the metal-rich substratum was exposed to the action of meteoric fluids, due to major regional uplift. Further oxidation took place in the Pliocene (3.7-2.3 Ma) and formed most of the observed deposits under humid conditions: Co- and Mn-caps on metal-rich substrata, and coeval Fe laterites on barren areas. These deposits formed prior to the regional shift toward more arid conditions in Central Africa. Arid conditions still prevailed during the Quaternary and resulted in erosion and valley incision, which dismantled the metal-bearing caps and led to ore accumulation in valleys and along foot slopes.

  8. Synthesis of some vanadium oxides and layered lithium nickel(1-y-z)manganese(y)cobalt(z)oxide compounds and their properties as cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ngala, J. Katana

    One of the motivations for the work reported in this Dissertation is derived from the need to replace the commercial cathode material lithium cobalt oxide, LiCoO2, which is found in the SONY lithium rechargeable batteries. The cathode LiCoO2 is expensive and gives a low energy density and is thus suitable only for low scale application such as in cellular phones, laptops and other microelectronics. Some vanadium oxides and mixed metal manganese oxides LiNi1-y-z MnyCozO2 were studied due to their relatively lower cost. The vanadium oxides were hydrothermally synthesized, whereas the compounds LiNi1-y-zMnyCo zO2 were synthesized by the high temperature solid-state reaction method. The compounds were characterized and tested as cathodes. Two categories of novel vanadium compounds were synthesized; the hollandite and the double-layered types of vanadium oxides. These compounds were fully characterized. The hollandite type consists of tunnel structures, whereas the other type consists of double sheets of vanadium oxide. These interesting structures could find use in catalytic processes and in ion-exchanging reactions among other uses. Both types demonstrated a high discharge capacity in lithium cells, and hence high energy density as well as high rechargeability. However, their capacity retention was low. Results of two studies on the layered LiNi1-y-zMn yCozO2 are reported. Each transition metal ion in the compounds was found to play a key role in their electrochemical performance. The temperature of their synthesis was also found to affect their electrochemical properties. The nickel was thought to be critical in converting the manganese to be more cobalt-like in its redox properties hence widening the working potential window of the Mn. However, it was found that the Mn was electrochemically inert with all the redox activity residing on the nickel. The cobalt is useful in stabilizing the layered structure. Among the studied compositions, the compound LiNi0.4Mn 0.4Co0.2O2 was found to have the highest reversible capacity. It also demonstrates a remarkable rate capability hence power density, since it operates with a high current density of 2.0 mA/cm2 reversibly, while it gives a high capacity retention of about 70%.

  9. Elastic and magnetic properties of the bilayer manganese oxide (Pr0.6La0.4)1.2Sr1.8Mn2O7

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yoshiki; Shimomura, Kota; Kumagai, Tomoyuki; Matsukawa, Michiaki; Yoshizawa, Masahito; Suryanarayanan, Ramanathaan; Thakur, Jagdish Singh; Apostu, Mircea; Revcolevschi, Alexandre; Nakamura, Shintaro

    2007-09-01

    The elastic and magnetic properties of a single crystal of the bilayer manganese oxide (Pr0.6La0.4)1.2Sr1.8Mn2O7 have been investigated by means of ultrasonic and high-field magnetization measurements. Remarkable changes in the elastic constants C11 , C33 , C44 , and C66 as a function of temperature and magnetic field have been observed. In particular, a distinct elastic anomaly was observed at low temperatures and in magnetic fields when crossing the phase boundary between the paramagnetic insulating and the field-induced ferromagnetic metallic state. A pronounced elastic softening as a function of magnetic field (H) appears across the boundary of the low-temperature magnetic phase below around 40K , accompanied by a distinct hysteresis. In the high-field region, however, these elastic constants exhibit a monotonic increase upon increasing the magnetic field. The high-field magnetization measurements characterizing the magnetic state point out a strong coupling between the elastic strain and the magnetic moment. The data can be described reasonably well considering a strong coupling between elastic strain and magnetic susceptibility ?m=?M/?H .

  10. Artificial Neural Network Modelling of Photodegradation in Suspension of Manganese Doped Zinc Oxide Nanoparticles under Visible-Light Irradiation

    PubMed Central

    Abdollahi, Yadollah; Sairi, Nor Asrina; Amin Matori, Khamirul; Fard Masoumi, Hamid Reza

    2014-01-01

    The artificial neural network (ANN) modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software's option. To obtain the optimum topologies, ANN was trained by quick propagation (QP), Incremental Back Propagation (IBP), Batch Back Propagation (BBP), and Levenberg-Marquardt (LM) algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE) for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work. PMID:25538962

  11. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    PubMed

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-01-01

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV). PMID:26039669

  12. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals

    PubMed Central

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-01-01

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV). PMID:26039669

  13. Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona.

    PubMed

    Fuller, Christopher C; Bargar, John R

    2014-02-18

    The distribution and speciation of Zn sorbed to biogenic Mn oxides forming in the hyporheic zone of Pinal Creek, AZ, was investigated using extended X-ray absorption fine structure (EXAFS) and microfocused synchrotron X-ray fluorescence (?SXRF) mapping, and chemical extraction. ?SXRF and chemical extractions show that contaminant Zn co-varied with Mn in streambed sediment grain coatings. Bulk and microfocused EXAFS spectra of Zn in the biogenic Mn oxide coating are indicative of Zn forming triple-corner-sharing inner-sphere complexes over octahedral vacancies in the Mn oxide sheet structure. Zn desorbed in response to the decrease in pH in batch experiments and resulted in near-equal dissolved Zn at each pH over a 10-fold range in the solid/solution ratio. The geometry of sorbed Zn was unchanged after 50% desorption at pH 5, indicating that desorption is not controlled by dissolution of secondary Zn phases. In summary, these findings support the idea that Zn attenuation in Pinal Creek is largely controlled by sorption to microbial Mn oxides forming in the streambed during hyporheic exchange. Sorption to biogenic Mn oxides is likely an important process of Zn attenuation in circum-neutral pH reaches of many acid-mine drainage contaminated streams when dissolved Mn is present. PMID:24460038

  14. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors.

    PubMed

    Minigalieva, Ilzira A; Katsnelson, Boris A; Privalova, Larisa I; Sutunkova, Marina P; Gurvich, Vladimir B; Shur, Vladimir Y; Shishkina, Ekaterina V; Valamina, Irene E; Makeyev, Oleg H; Panov, Vladimir G; Varaksin, Anatoly N; Grigoryeva, Ekaterina V; Meshtcheryakova, Ekaterina Y

    2015-01-01

    Stable suspensions of NiO and Mn?O? nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7 ± 8.2 and 18.4 ± 5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn?O?-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn?O?-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn?O?-NPs in combination with NiO-NPs. PMID:26393577

  15. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles’ Adverse Effects with a Complex of Bioprotectors

    PubMed Central

    Minigalieva, Ilzira A.; Katsnelson, Boris A.; Privalova, Larisa I.; Sutunkova, Marina P.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Shishkina, Ekaterina V.; Valamina, Irene E.; Makeyev, Oleg H.; Panov, Vladimir G.; Varaksin, Anatoly N.; Grigoryeva, Ekaterina V.; Meshtcheryakova, Ekaterina Y.

    2015-01-01

    Stable suspensions of NiO and Mn3O4 nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7 ± 8.2 and 18.4 ± 5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a “bio-protective complex” (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn3O4-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn3O4-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn3O4-NPs in combination with NiO-NPs. PMID:26393577

  16. Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples.

    PubMed

    Nguyen Tran, Phuong Hoang; Thi Luong, Tha Thanh; Thi Nguyen, Thuy Thu; Nguyen, Huy Quang; Duong, Hop Van; Kim, Byung Hong; Pham, Hai The

    2015-10-01

    Iron-oxidizing bacterial consortia can be enriched in microbial fuel cells (MFCs) operated with ferrous iron as the sole electron donor. In this study, we investigated the possibility of using such lithotrophic iron-oxidizing MFC (LIO-MFC) systems as biosensors to monitor iron and manganese in water samples. When operated with anolytes containing only ferrous iron as the sole electron donor, the experimented LIO-MFCs generated electrical currents in response to the presence of Fe(2+) in the anolytes. For the concentrations of Fe(2+) in the range of 3-20 mM, a linear correlation between the current and the concentration of Fe(2+) could be achieved (r(2) = 0.98). The LIO-MFCs also responded to the presence of Mn(2+) in the anolytes but only when the Mn(2+) concentration was less than 3 mM. The presence of other metal ions such as Ni(2+) or Pb(2+) in the anolytes reduced the Fe(2+)-associated electricity generation of the LIO-MFCs at various levels. Organic compounds, when present at a non-excessive level together with Fe(2+) in the anolytes, did not affect the generation of electricity, although the compounds might serve as alternative electron donors for the anode bacteria. The performance of the LIO-MFCs was also affected to different degrees by operational parameters, including surrounding temperature, pH of the sample, buffer strength and external resistance. The results proved the potential of LIO-MFCs as biosensors sensing Fe(2+) in water samples with a significant specificity. However, the operation of the system should be in compliance with an optimal procedure to ensure reliable performance. PMID:26343878

  17. Manganese-Induced Oxidative DNA Damage in Neuronal SH-SY5Y Cells: Attenuation of thymine base lesions by glutathione and N-acetylcysteine

    PubMed Central

    Stephenson, Adrienne P.; Schneider, Jeffrey A.; Nelson, Bryant C.; Atha, Donald H.; Jain, Ashok; Soliman, Karam F. A.; Aschner, Michael; Mazzio, Elizabeth; Reams, R. Renee

    2013-01-01

    Manganese (Mn) is an essential trace element required for normal function and development. However, exposure to this metal at elevated levels may cause manganism, a progressive neurodegenerative disorder with neurological symptoms similar to idiopathic Parkinson’s disease (IPD). Elevated body burdens of Mn from exposure to parental nutrition, vapors in mines and smelters and welding fumes have been associated with neurological health concerns. The underlying mechanism of Mn neurotoxicity remains unclear. Accordingly, the present study was designed to investigate the toxic effects of Mn2+ in human neuroblastoma SH-SY5Y cells. Mn2+ caused a concentration dependent decrease in SH-SY5Y cellular viability compared to controls. The LD50 value was 12.98 ?M Mn2+ (p <0.001 for control vs. 24h Mn treatment). Both TUNEL and annexin V/propidium iodide apoptosis assays confirmed the induction of apoptosis in the cells following exposure to Mn2+ (2 ?M, 62 ?M or 125 ?M). In addition, Mn2+ induced both the formation and accumulation of DNA single strand breaks (via alkaline comet assay analysis) and oxidatively modified thymine bases (via gas chromatography/mass spectrometry analysis). Pre-incubation of the cells with characteristic antioxidants, either 1 mM N-acetylcysteine or 1 mM glutathione reduced the level of DNA strand breaks and the formation of thymine base lesions, suggesting protection against oxidative cellular damage. Our findings indicate that 1) exposure of SH-SY5Y cells to Mn promotes both the formation and accumulation of oxidative DNA nucleotide base damage, 2) SH-SY5Y cells with accumulated DNA damage are more likely to die via an apoptotic pathway and 3) the accumulated levels of DNA damage can be abrogated by the addition of exogenous chemical antioxidants. This is the first known report of Mn2+-induction and antioxidant protection of thymine lesions in this SH-SY5Y cell line and contributes new information to the potential use of antioxidants as a therapeutic strategy for protection against Mn2+-induced oxidative DNA damage. PMID:23296100

  18. TREATMENT OF CONTAMINATED SOIL WITH PHOSPHORUS AND MANGANESE OXIDE REDUCES LEAD ADSORPTION BY SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    A study was conducted to determine the extent of adsorption of Pb into young rats that were fed Pb contaminated soil treated with two different sources of P and P plus Mn oxide. Attempts were also made to compare an in vitro, physiologically based extraction procedure test (PBET)...

  19. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    PubMed

    Rusi; Chan, P Y; Majid, S R

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications. PMID:26158447

  20. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor

    PubMed Central

    Rusi; Chan, P. Y.; Majid, S. R.

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg-1 at current density of 1.85 Ag-1 in 0.5M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5M KOH and 0.5M KOH/0.04M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 103 Fg-1 and an energy density of 309 Whkg-1 in a 0.5MKOH/0.04MK3Fe(CN) 6 electrolyte at a current density of 10 Ag-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications. PMID:26158447

  1. Chronic manganese intoxication

    SciTech Connect

    Huang, C.C.; Chu, N.S.; Lu, C.S.; Wang, J.D.; Tsai, J.L.; Tzeng, J.L.; Wolters, E.C.; Calne, D.B. )

    1989-10-01

    We report six cases of chronic manganese intoxication in workers at a ferromanganese factory in Taiwan. Diagnosis was confirmed by assessing increased manganese concentrations in the blood, scalp, and pubic hair. In addition, increased manganese levels in the environmental air were established. The patients showed a bradykinetic-rigid syndrome indistinguishable from Parkinson's disease that responded to treatment with levodopa.

  2. Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor.

    PubMed

    Li, Long; Xu, Jinmeng; Zheng, Xiaoxiao; Ma, Chao; Song, Xianrang; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2014-11-15

    Flexible biosensors are of considerable current interest for the development of portable point-of-care medical products, minimally invasive implantable devices, and compact diagnostic platforms. Here, we reported an electrochemical paper based analytical device fabricated (EPADs) by sequentially growing gold nanoparticles (AuNPs) and manganese oxide (MnO2) nanowires networks on a freestanding three dimensional (3D) origami device. This fabricated through the growth of an AuNPs layer on the surfaces of cellulose fibers in the screen-printed paper working electrode (PWE), and thus developed a gold paper working electrode (Au-PWE). Subsequently, MnO2 nanowires were successfully electrodeposited on Au-PWE to form a 3D network with large surface areas. Based on this novel EPADs and the principle of origami, we presented herein a simple immunosensing scheme using glucose oxidase (GOx) as an enzyme label, 3,3',5,5'-tetramethylbenzidine (TMB) as a redox terminator, and glucose as an enzyme substrate. The electrochemical enzymatic redox cycling was applied to the detection of prostate protein antigen (PSA), a biomarker of prostatic cancer. The proposed method successfully fulfilled the highly sensitive detection of PSA with a linear range of 0.005 ng mL(-1)-100 ng mL(-1) with a detection limit of 0.0012 ng mL(-1). This EPADs exhibited high sensitivity, specificity and excellent performance in real human serum assay, and could be applied in point-of-care testing of other tumor markers for remote regions and developing countries. PMID:24858676

  3. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.

    PubMed

    Zhou, Xiqiang; Chen, Daizhao; Tang, Dongjie; Dong, Shaofeng; Guo, Chuan; Guo, Zenghui; Zhang, Yanqiu

    2015-07-01

    Fe-(oxyhydr)oxide-encrusted filamentous microstructures produced by microorganisms have been widely reported in various modern and ancient extreme environments; however, the iron-dependent microorganisms preserved in hydrothermal quartz veins have not been explored in detail because of limited materials available. In this study, abundant well-preserved filamentous microstructures were observed in the hydrothermal quartz veins of the uppermost dolostones of the terminal-Ediacaran Qigebulake Formation in the Aksu area, northwestern Tarim Basin, China. These filamentous microstructures were permineralized by goethite and hematite as revealed by Raman spectroscopy and completely entombed in chalcedony and quartz cements. Microscopically, they are characterized by biogenic filamentous morphologies (commonly 20-200??m in length and 1-5??m in diameter) and structures (curved, tubular sheath-like, segmented, and mat-like filaments), similar to the Fe-oxidizing bacteria (FeOB) living in modern and ancient hydrothermal vent fields. A previous study revealed that quartz-barite vein swarms were subseafloor channels of low-temperature, silica-rich, diffusive hydrothermal vents in the earliest Cambrian, which contributed silica to the deposition of the overlying bedded chert of the Yurtus Formation. In this context, this study suggests that the putative filamentous FeOB preserved in the quartz veins might have thrived in the low-temperature, silica- and Fe(II)-rich hydrothermal vent channels in subseafloor mixing zones and were rapidly fossilized by subsequent higher-temperature, silica-rich hydrothermal fluids in response to waning and waxing fluctuations of diffuse hydrothermal venting. In view of the occurrence in a relatively stable passive continental margin shelf environment in Tarim Block, the silica-rich submarine hydrothermal vent system may represent a new and important geological niche favorable for FeOB colonization, which is different from their traditional habitats reported in hydrothermal vent systems at oceanic spreading centers or volcanic seamounts. Thus, these newly recognized microfossils offer a new clue to explore the biological signatures and habitat diversity of microorganisms on Earth and beyond. PMID:26168395

  4. Improving cyclic stability of lithium nickel manganese oxide cathode at elevated temperature by using dimethyl phenylphosphonite as electrolyte additive

    NASA Astrophysics Data System (ADS)

    Mai, Shaowei; Xu, Mengqing; Liao, Xiaolin; Xing, Lidan; Li, Weishan

    2015-01-01

    A novel electrolyte additive, dimethyl phenylphosphonite (DMPP), is reported in this paper to be able to improve significantly the cyclic stability of LiNi0.5Mn1.5O4 cathode of high voltage lithium ion battery at elevated temperature. When experiencing charge/discharge cycling at 50 °C with 1C (1C = 146.7 mAh g-1) rate in a standard (STD) electrolyte (1.0 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC), EC/DMC = 1/2 in volume), LiNi0.5Mn1.5O4 suffers serious discharge capacity decaying, with a capacity retention of 42% after 100 cycles. With adding 0.5% DMPP into the STD electrolyte, the capacity retention is increased to 91%. This improvement can be ascribed to the preferential oxidation of DMPP to the STD electrolyte and the subsequent formation of a protective film on LiNi0.5Mn1.5O4, which suppresses the electrolyte decomposition and protects LiNi0.5Mn1.5O4 from destruction. Theoretical calculations together with voltammetric analyses demonstrate the preferential oxidation of DMPP and the consequent suppression of electrolyte decomposition, while the observations from scanning electron microscopy, X-ray photoelectronic spectroscopy and Fourier transform infrared spectroscopy confirm the protection that DMPP provides for LiNi0.5Mn1.5O4.

  5. Manganese accumulation in soil and plants along Utah roadways: A possible indication of motor vehicle exhaust pollution

    SciTech Connect

    Lytle, C.M.; Smith, B.N.; McKinnon, C.Z.

    1995-06-01

    An organic manganese compound is currently added to gasoline to replace tetraethyl lead as an antiknock fuel additive in the U.S. and Canada. Combustion exhaust gases contain manganese oxides. Manganese oxides are known to cause various deleterious health effects in experimental animals and humans. A field survey of roadside soil and plants in central Utah revealed that soil manganese concentrations in high traffic areas were up to 100-fold higher than historic lead levels. Soil manganese concentrations were highly correlated with distance from the roadway. In addition, roadside aquatic plants were higher in leaf tissue manganese than herbs or grasses. Submerged and emergent aquatic plants were sensitive bioindicators of manganese contamination. Manganese concentrations in soil and in some plant species along impacted roadsides often exceeded levels known to cause toxicity. We conclude that roadside soil and plants were apparently contaminated by manganese oxides from Mn-containing motor vehicle exhaust.

  6. Sorption of trivalent cerium by a mixture of microbial cells and manganese oxides: Effect of microbial cells on the oxidation of trivalent cerium

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Jiang, Mingyu; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya; Yu, Qianqian; Tanaka, Kazuya; Utsunomiya, Satoshi; Xia, Xiaobin; Yang, Ke; He, Jianhua

    2015-08-01

    Sorption of Ce by mixtures of synthetic Mn oxides and microbial cells of Pseudomonas fluorescens was investigated to elucidate the role of microorganisms on Ce(III) oxidative migration in the environment. The mixtures, upon which Ce was sorbed following exposure to solutions containing 1.0 × 10-4 or 1.0 × 10-5 mol L-1 Ce(III), were analyzed by scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS) and micro-X-ray fluorescence (micro-XRF) at synchrotron facilities. A Ce LIII-edge micro XANES spectra analysis was also performed to determine the oxidation states of Ce adsorbed to the Mn oxides and microbial cells in the mixtures. The distribution ratios (Kd) of Ce between the individual solids and solution increased with increasing pH of the solution, and was nearly the same in mixtures containing varying amounts of microbial cells. SEM-EDS and micro-XRF analyses showed that Ce was sorbed by both MnO2 and microbial cells (1.7 × 10-1 or 3.3 × 10-1 g L-1). In addition, nano-particles containing Ce and P developed on the surface of the microbial cells. XANES analysis showed that lower fractions of Ce(III) were oxidized to Ce(IV) in the mixtures containing greater amounts of microbial cells. Micro-XANES analysis revealed that Ce was present as Ce(III) on the microbial cells and as Ce(IV) on Mn oxides. These results strongly suggest that the association of Ce(III) with the microbial cell surface and the formation of Ce phosphate nano-particles are responsible for suppressing the oxidation of Ce(III) to Ce(IV) in the mixtures.

  7. Possible evidence for enrichment of trace elements in the hydrous manganese oxide phases of suspended matter from an urbanized embayment

    NASA Astrophysics Data System (ADS)

    Feely, Richard A.; Massoth, Gary J.; Paulson, Anthony J.; Gendron, James F.

    1983-12-01

    Total and weak-acid-soluble trace elements in suspended matter from the Duwamish River and Elliott Bay were determined from samples collected in February and September 1980. The results indicate that Mn scavenging in the water column is coincident with enrichments of Cr, Ni, Cu, Zn, and Pb in the suspended matter, suggesting a possible enrichment of these trace elements in a hydrous Mn oxide phase. This process occurs primarily in the sub-surface waters of Elliott Bay. Since mass balance calculations show a net export of Mn out of the bay, this mechanism may be an important means of transporting toxic trace metals from polluted estuaries and embayments to cleaner coastal environments.

  8. Redox dependence for photoligation of manganese to the apo-water-oxidizing complex in chloroplasts and photosystem II membranes.

    PubMed

    Tamura, N; Kuwahara, M; Sasaki, Y; Wakamatsu, K; Oku, T

    1997-05-20

    Effects of reducing reagents and redox potentials on photoactivation were studied in Mn-depleted chloroplasts and PSII membranes. Exogenous reducing reagents abolished photoactivation in PSII membranes, while they stimulated photoactivation in chloroplasts. To determine how reducing reagents can have such opposing effects in these preparations, we studied how redox potentials affect photoactivation in the range from 0 mV to +500 mV. In chloroplasts, a modest yield of photoactivation was obtained in the redox potential range of +100 and +330 mV at pH 7.5. The yield of photoactivation decreased at redox potentials above +330 mV, and drastically increased below potentials of +100 mV. Nernst plots of the data show that an n = 1 redox component with an Em7.5 of +374 mV, as well as an n = 2 redox component with an Em7.5 of +61 mV, is involved in photoactivation of chloroplasts isolated from dark-grown spruce seedlings. In the case of PSII membranes, photoactivation decreased sharply on either side of +335 mV at pH 5.5. The n = 1 redox components with Em5.5 of +375 and +319 mV may be involved, both of which showed pH dependences of -60 mV/pH unit. DCMU abolished photoactivation in chloroplasts, but did not affect the dependence of photoactivation on oxidation-reduction potentials in PSII membranes. The component with an Em5.5 of +319 mV involved in photoactivation of PSII membranes was also observed in the dependence of Mn solubilization on oxidation-reduction potentials with PSII membranes lacking extrinsic proteins, suggesting that the reduction of Mn with higher valences to Mn(II) by exogenous reducing reagents reversibly occurs in the intermediates or an active center during photoactivation in PSII membranes. Involvement of such redox components in photoactivation in chloroplasts and PSII membranes is discussed. PMID:9166789

  9. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.

  10. Citreicella manganoxidans sp. nov., a novel manganese oxidizing bacterium isolated from a shallow water hydrothermal vent in Espalamaca (Azores).

    PubMed

    Rajasabapathy, Raju; Mohandass, Chellandi; Dastager, Syed Gulam; Liu, Qing; Li, Wen-Jun; Colaço, Ana

    2015-12-01

    A Gram-stain negative, non-motile, non-spore forming, aerobic and rod or narrow lemon-shaped bacterial strain, VSW210(T), was isolated from surface seawater in a shallow water hydrothermal vent region in Espalamaca (Azores). Strain VSW210(T) was found to grow optimally at 30 °C, at pH 7 and in the presence of 2-6 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain VSW210(T) clusters with the type strain Citreicella marina CK-I3-6(T) (sequence similarity value of 99.6 %), but DNA-DNA hybridization showed DNA-DNA relatedness between the strain VSW210(T) and C. marina CK-I3-6(T) to be 55.8 ± 3.2 %. The DNA G+C content of strain VSW210(T) was determined to be 67.4 mol%. The cellular fatty acid profiles of strain VSW210(T) was found to contain C18:1 ?7c (80.1 %) and C16:0 (9.2 %). The major polar lipids in strain VSW210(T) were identified as phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified phospholipid. Strain VSW210(T) was found to be able to oxidize soluble Mn(II) to insoluble MnO2, which was confirmed with LBB staining. Differential phenotypic properties and genetic uniqueness revealed that this strain VSW210(T) is distinguishable from other species of the genus Citreicella. On the basis of the data presented, strain VSW210(T) is considered to represent a novel species of the genus Citreicella, for which the name Citreicella manganoxidans sp. nov. is proposed. The type strain is VSW210(T) (=KCTC 32497(T) = MCC 2286(T)). PMID:26404429

  11. Methods and Strategies for the Ab Initio Design of Novel Manganese Oxide- Based Water Splitting Photocatalyst Materials

    NASA Astrophysics Data System (ADS)

    Kanan, Dalal K.

    Photoelectrochemical cells (PECs) use sunlight to drive endoergic reactions such as carbon dioxide reduction to fuels or water-splitting for renewable hydrogen production. However, materials that combine both the efficiency and low cost needed to make solar-powered catalysis a practical reality have yet to be discovered. This thesis presents methods and new design strategies for developing novel, efficient, robust, and inexpensive photocatalysts based on transition metal oxides (TMOs). Quantum mechanics methodologies are developed and tested for their ability to predict the properties of known materials and then used to predict how altering the composition by alloying and doping with abundant elements affects optical, electronic, transport, and catalytic properties. The first material considered for photocatalysis is MnO, the bio-inspired solid state analogue of the photosystem II active site. GW theory with input from hybrid DFT and ab initio DFT+U capably predicts the photoemission/inverse photoemission (PE/IPE) band gap and dielectric properties. An ab initio value of U-J = 3.5 eV for Mn2+ was determined using unrestricted Hartree-Fock theory on cluster-size-converged electrostatically embedded clusters. The lowest-lying excitations in MnO, studied using ECW theory, are found to be single Mn d ? d ligand field excitations (~2.5 eV, ~108 s lifetime), followed by double d ? d excitations (~5.2 eV, ~106 s lifetime), Mn 3d-4s excitations (~6.3 eV, ~10-3 s lifetime), and higher-lying O 2p ? Mn 3d ligand-to-metal charge-transfer (LMCT) excitations (~10.1 eV, ~10-4 s lifetime). The longer-lived transitions should exhibit better electron-hole pair separation and enhance photoconductivity depending on ease of carrier transport. While MnO possesses suitable band edge energies, its band gap is too large for efficient sunlight absorption. We predict alloying MnO with ZnO in varying amounts reduces the PE/IPE band gap (to 2.6 eV for the 1:1 alloy) while preserving potential redox reactivity. Optical excitation studies show alloying lowers the LMCT transition to ~8.3 eV leaving all other absorption properties relatively unchanged. We find near degeneracies among spin-allowed and spin-forbidden LMCT states that could facilitate intersystem crossing (ISC) resulting in longer lifetimes. We suggest seeking other materials that exhibit similar LMCT excitations but that are visible-light activated as a design strategy for further enhancing photon conversion efficiencies. Additionally, several dopants (Al, Ga, In, Sc, Y, Ti, Sb, Gd, F (n-type dopants) and Li (a p-type dopant)) were assessed for their ability to enhance conductivity in MnO:ZnO. We find Ga, Sc, Ti, F, and Sb dopants create deep traps whereas In forms shallower traps that merit further investigation. In contrast, Y, Al, Gd, and Li dopants should increase the carrier concentration while maintaining favorable electron and hole transport pathways. The adsorption and oxidation of water on MnO:ZnO(001) surface was studied with ab initio DFT+U calculations. The computed phase diagram for the water/MnO:ZnO(001) interface reveals the surface is quite hydrophilic with the half-dissociated 1 ML (2 ML) structure being most stable under water-poor (water-rich) conditions. For the gas phase water oxidation reaction, we compute a thermodynamic overpotential of 0.82 V without yet modeling reaction kinetics or solvation. The overpotential mainly results from the *OOH intermediate being too weakly bound to the surface because of a loss of resonance stabilization in the adsorbate. We suggest judicious doping as a way to stabilize *OOH and potentially reduce the overpotential to just 0.05 V (for 0.5 ML reaction coverage). (Abstract shortened by UMI.)

  12. Bispecific Antibody Conjugated Manganese-Based Magnetic Engineered Iron Oxide for Imaging of HER2/neu- and EGFR-Expressing Tumors

    PubMed Central

    Wu, Shou-Cheng; Chen, Yu-Jen; Wang, Hsiang-Ching; Chou, Min-Yuan; Chang, Teng-Yuan; Yuan, Shyng-Shiou; Chen, Chiao-Yun; Hou, Ming-Feng; Hsu, John Tsu-An; Wang, Yun-Ming

    2016-01-01

    The overexpression of HER2/neu and EGFR receptors plays important roles in tumorigenesis and tumor progression. Targeting these two receptors simultaneously can have a more widespread application in early diagnosis of cancers. In this study, a new multifunctional nanoparticles (MnMEIO-CyTE777-(Bis)-mPEG NPs) comprising a manganese-doped iron oxide nanoparticle core (MnMEIO), a silane-amino functionalized poly(ethylene glycol) copolymer shell, a near infrared fluorescence dye (CyTE777), and a covalently conjugated anti-HER2/neu and anti-EGFR receptors bispecific antibody (Bis) were successfully developed. In vitro T2-weighted MR imaging studies in SKBR-3 and A431 tumor cells incubated with MnMEIO-CyTE777-(Bis)-mPEG NPs showed - 94.8 ± 3.8 and - 84.1 ± 2.8% negative contrast enhancement, respectively. Pharmacokinetics study showed that MnMEIO-CyTE777-(Bis)-mPEG NPs were eliminated from serum with the half-life of 21.3 mins. In vivo MR imaging showed that MnMEIO-CyTE777-(Bis)-mPEG NPs could specifically and effectively target to HER2/neu- and EGFR-expressing tumors in mice; the relative contrast enhancements were 11.8 (at 2 hrs post-injection) and 61.5 (at 24 hrs post-injection) fold higher in SKBR-3 tumors as compared to Colo-205 tumors. T2-weighted MR and optical imaging studies revealed that the new contrast agent (MnMEIO-CyTE777-(Bis)-mPEG NPs) could specifically and effectively target to HER2/neu- and/or EGFR-expressing tumors. Our results demonstrate that MnMEIO-CyTE777-(Bis)-mPEG NPs are able to recognize the tumors expressing both HER2/neu and/or EGFR, and may provide a novel molecular imaging tool for early diagnosis of cancers expressing HER2/neu and/or EGFR. PMID:26722378

  13. Manganese uptake of imprinted polymers

    SciTech Connect

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  14. Manganese reduction by microbes from oxic regions of the Lake Vanda (Antarctica) water column

    SciTech Connect

    Bratina, B.J.; Stevenson, B.S.; Schmidt, T.M.; Green, W.J.

    1998-10-01

    Depth profiles of metals in Lake Vanda, a permanently ice-covered, stratified Antarctic lake, suggest the importance of particulate manganese oxides in the scavenging, transport, and release of metals. Since manganese oxides can be solubilized by manganese-reducing bacteria, microbially mediated manganese reduction was investigated in Lake Vanda. Microbes concentrated from oxic regions of the water column, encompassing a peak of soluble manganese [Mn(II)], reduced synthetic manganese oxides (MnO{sub 2}) when incubated aerobically, Pure cultures of manganese-reducing bacteria were readily isolated from waters collected near the oxic Mn(II) peak. Based on phylogenetic analysis of the 16S rRNA gene sequence, most of the isolated manganese reducers belong to the genus Carnobacterium. Cultures of a phylogenetically representative strain of Carnobacterium reduced synthetic MnO{sub 2} in the presence of sodium azide, as was seen in field assays. Unlike anaerobes that utilize manganese oxides as terminal electron acceptors in respiration, isolates of the genus Carnobacterium reduced Mn(IV) via a diffusible compound under oxic conditions. The release of adsorbed trace metals accompanying the solubilization of manganese oxides may provide populations of Carnobacterium with a source of nutrients in this extremely oligotrophic environment.

  15. Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters.

    PubMed

    Bruins, Jantinus H; Petrusevski, Branislav; Slokar, Yness M; Huysman, Koen; Joris, Koen; Kruithof, Joop C; Kennedy, Maria D

    2015-02-01

    The efficiency of manganese removal in conventional groundwater treatment consisting of aeration followed by rapid sand filtration, strongly depends on the ability of filter media to promote auto-catalytic adsorption of dissolved manganese and its subsequent oxidation. Earlier studies have shown that the compound responsible for the auto-catalytic activity in ripened filters is a manganese oxide called Birnessite. The aim of this study was to determine if the ripening of manganese removal filters and the formation of Birnessite on virgin sand is initiated biologically or physico-chemically. The ripening of virgin filter media in a pilot filter column fed by pre-treated manganese containing groundwater was studied for approximately 600 days. Samples of filter media were taken at regular time intervals, and the manganese oxides formed in the coating were analysed by Raman spectroscopy, Electron Paramagnetic Resonance (EPR) and Scanning Electron Microscopy (SEM). From the EPR analyses, it was established that the formation of Birnessite was most likely initiated via biological activity. With the progress of filter ripening and development of the coating, Birnessite formation became predominantly physico-chemical, although biological manganese oxidation continued to contribute to the overall manganese removal. The knowledge that manganese removal in conventional groundwater treatment is initiated biologically could be of help in reducing typically long ripening times by creating conditions that are favourable for the growth of manganese oxidizing bacteria. PMID:25463936

  16. Superior performance of asymmetric supercapacitor based on reduced graphene oxide-manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials

    NASA Astrophysics Data System (ADS)

    Jana, Milan; Kumar, J. Sharath; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2016-01-01

    A novel strategy to synthesize hierarchical rod like MnCO3 on the reduced graphene oxide (RGO) sheets by a facile and cost-effective hydrothermal method is demonstrated. The chelating action of citric acid facilitates the formation a complex intermediate of Mn2+ and citrate ions, which finally results a 3D MnCO3/RGO (MRGO) composite with high electrical conductivity (?1056 S m-1), good surface area (59 m2 g-1) and high pore volume (0.3 cm3 g-1). The specific capacitance (SC) of the MRGO composite is ?1120 F g-1 at a current density of 2 A g-1 in three electrode system. An asymmetric device has been designed with MRGO as positive and sono-chemically reduced RGO (SRGO) as negative electrode material. The asymmetric device (MRGO//SRGO) shows the SC of ?318 F g-1 (at 2 A g-1) and energy density of ?113 W h kg-1 (at 1600 W kg-1). The true energy density (1.7 W h kg-1) has been calculated considering the total weight of the device. The MRGO//SRGO device can power a wall clock for ?13 min after full charging. The Nyquist plot of the asymmetric cell has been simulated with Z-View software to measure the solution resistance, charge-transfer resistance and Warburg elements.

  17. BIOLOGICAL EFFECTS OF MANGANESE

    EPA Science Inventory

    The biological effects of manganese were studied in a town on the coast of Dalmatia in which a ferromanganese plant has been operating since before World War II. The study focused on the question of whether the exposure to manganese can cause a higher incidence of respiratory dis...

  18. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: The use of a-quartz and nano zinc oxide particles as benchmark

    NASA Astrophysics Data System (ADS)

    Beyerle, Andrea; Schulz, Holger; Kissel, Thomas; Stoeger, Tobias

    2009-02-01

    Nanotechnology is a broad, revolutionary field with promising advantages for new medicine. In this context the rapid development and improvement of so called nanocarriers is of high pharmaceutical interest and some devices are already on the market. In our project we aim to develop well characterized nanoscaled drug delivery systems for an inhalative application. To this end, we focus on the most adverse side-effects within the lung, the cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and proinflammatory effects of the investigated particles on two murine lung target cell lines, the alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). Three different endpoints were estimated, (i) cellular metabolic activity, determined by the WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and (iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose two reference particles as benchmarks, (i) fine a-quartz, and (ii) ultrafine ZnO particles. The investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the named cell lines provide an insight to a close evaluation of our cell based screening strategy. oc-quartz is well known for its inflammatory and toxic potential caused by inhalation, and nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. Preliminary experiments indicated not only particle and cell specific inflammatory responses, but also different susceptibilities of the cell types being exposed to our benchmark particles regarding their size and surface activities. Exposure to the ?m-sized a-quartz particles affected the viability of epithelia cells less than that of macrophages, pointing to the impact of particle uptake by phagocytosis. In contrast, the nanosized ZnO particles caused much stronger decrease in cell viability and higher levels of LDH in the macrophage cell line compared to epithelial cells, even though the hemolytic activity was much higher for the a-quartz particles than for the nanosized ZnO. For the proinflammatory effects, we observed a clear dose-dependent release of acute phase cytokines (TNF-?, IL-6, G-CSF> CXCL10>CCL2) for both alveolar cell lines after Min-U-Sil exposure. After ZnO treatment the cytokine responses were negligible compare to control cells. In conclusion, our data attach value to the use of different cell types to detect different pathways of toxicity generated by different particle properties. Therefore, we will establish both lung target cell lines for an in vitro screening to analyze proinflammatory and cytotoxicity effects of nanocarriers. The implementation of the two reference particles facilitate the validated classification of the cytotoxic responses caused by the NPs investigated.

  19. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (inventors)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  20. Optical contacting of quartz

    NASA Technical Reports Server (NTRS)

    Payne, L. L.

    1982-01-01

    The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.

  1. Study of a QCM dimethyl methylphosphonate sensor based on a ZnO-modified nanowire-structured manganese dioxide film.

    PubMed

    Pei, Zhifu; Ma, Xingfa; Ding, Pengfei; Zhang, Wuming; Luo, Zhiyuan; Li, Guang

    2010-01-01

    Sensitive, selective and fast detection of chemical warfare agents is necessary for anti-terrorism purposes. In our search for functional materials sensitive to dimethyl methylphosphonate (DMMP), a simulant of sarin and other toxic organophosphorus compounds, we found that zinc oxide (ZnO) modification potentially enhances the absorption of DMMP on a manganese dioxide (MnO(2)) surface. The adsorption behavior of DMMP was evaluated through the detection of tiny organophosphonate compounds with quartz crystal microbalance (QCM) sensors coated with ZnO-modified MnO(2) nanofibers and pure MnO(2) nanofibers. Experimental results indicated that the QCM sensor coated with ZnO-modified nanostructured MnO(2) film exhibited much higher sensitivity and better selectivity in comparison with the one coated with pure MnO(2) nanofiber film. Therefore, the DMMP sensor developed with this composite nanostructured material should possess excellent selectivity and reasonable sensitivity towards the tiny gaseous DMMP species. PMID:22163653

  2. Galileo quartz clock

    NASA Technical Reports Server (NTRS)

    Block, M.; Meirs, M.; Rosenfeld, M.; Garriga, P. C.

    1979-01-01

    A quartz oscillator for use in the Galileo experiment (orbiter and Probe) for Jupiter mission 1982 are described. This oscillator has achieved significant performance breakthroughs by the use of an SC cut, double rotated, crystal in a titanium dewar flask. Some of the performance parameters as well as the design feature of the oscillator are presented.

  3. Manganese concentrate usage in steelmaking

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhihina, I. D.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands. The paper describes experiments on effects of metal deoxidizer composition, component proportion, pelletizing mixture, particle size distribution of basic materials and flux on manganese recovering from oxides under direct melting.

  4. Nanofabricated quartz cylinders for angular

    E-print Network

    Cai, Long

    Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection Christopher nanofabricated quartz cylinders well suited for torque application and detection in an angular optical trap. We made the cylinder axis perpendicular to the extraordinary axis of the quartz crystal and chemically

  5. Hydrothermal Synthesis of Quartz Nanocrystals

    E-print Network

    Natelson, Douglas

    Hydrothermal Synthesis of Quartz Nanocrystals Jane F. Bertone, Joel Cizeron, Rajeev K. Wahi, Joan K describes for the first time a chemical method for the preparation for nanocrystalline quartz. Submicron quartz powders are initially produced in hydrothermal reactions where soluble silica precursors

  6. Manganese recovery from secondary resources: a green process for carbothermal reduction and leaching of manganese bearing hazardous waste.

    PubMed

    Chandra, Navin; Amritphale, S S; Pal, Deepti

    2011-02-15

    During the hydrometallurgical extraction of zinc by electrowinning process, a hazardous solid waste called anode mud is generated. It contains large quantity of manganese oxides (55-80%) and lead dioxide (6-16%). Due to the presence of a large quantity of lead, the anode mud waste is considered hazardous and has to be disposed of in secure landfills, which is costly, wastes available manganese and valuable land resources. For recovery of manganese content of anode mud, a process comprising of carbothermal treatment using low density oil (LDO) followed by sulphuric acid leaching is developed. PMID:21115220

  7. Colorado quartz: occurrence and discovery

    USGS Publications Warehouse

    Kile, D.E.; Modreski, P.J.; Kile, D.L.

    1991-01-01

    The many varieties and associations of quartz found throughout the state rank it as one of the premier worldwide localities for that species. This paper briefly outlines the historical importance of the mineral, the mining history and the geological setting before discussing the varieties of quartz present, its crystallography and the geological enviroments in which it is found. The latter include volcanic rocks and near surface igneous rocks; pegmatites; metamorphic and plutonic rocks; hydrothermal veins; skarns and sedimentary deposits. Details of the localities and mode of occurrence of smoky quartz, amethyst, milky quartz, rock crystal, rose quartz, citrine, agate and jasper are then given. -S.J.Stone

  8. Manganese-rich red tourmaline from the Fowler talc belt, New York.

    USGS Publications Warehouse

    Ayuso, R.A.; Brown, C. Erwin

    1984-01-01

    Red uvite containing up to 4.34 wt.% MnO is found in the Arnold talc mine near Fowler, New York, USA. Microprobe analyses give a composition of 51% uvite in the uvite-dravite series. Associated minerals in this manganiferous metamorphic assemblage (possibly an evaporite) are manganese-rich tremolite (hexagonite) braunite and quartz.-R.A.G.

  9. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc

    USGS Publications Warehouse

    Czamanske, G.K.; Roedder, E.; Burns, F.C.

    1963-01-01

    Microgram quantities of copper, manganese, and zinc, corresponding to concentrations greater than 100 parts per million, were found in milligram quantities of primary inclusion fluid extracted from samples of quartz and fluorite from two types of ore deposits. The results indicate that neutron activation is a useful analytical method for studying the content of heavy metal in fluid inclusions.

  10. The compression pathway of quartz

    SciTech Connect

    Thompson, Richard M.; Downs, Robert T.; Dera, Przemyslaw

    2011-11-07

    The structure of quartz over the temperature domain (298 K, 1078 K) and pressure domain (0 GPa, 20.25 GPa) is compared to the following three hypothetical quartz crystals: (1) Ideal {alpha}-quartz with perfectly regular tetrahedra and the same volume and Si-O-Si angle as its observed equivalent (ideal {beta}-quartz has Si-O-Si angle fixed at 155.6{sup o}). (2) Model {alpha}-quartz with the same Si-O-Si angle and cell parameters as its observed equivalent, derived from ideal by altering the axial ratio. (3) BCC quartz with a perfectly body-centered cubic arrangement of oxygen anions and the same volume as its observed equivalent. Comparison of experimental data recorded in the literature for quartz with these hypothetical crystal structures shows that quartz becomes more ideal as temperature increases, more BCC as pressure increases, and that model quartz is a very good representation of observed quartz under all conditions. This is consistent with the hypothesis that quartz compresses through Si-O-Si angle-bending, which is resisted by anion-anion repulsion resulting in increasing distortion of the c/a axial ratio from ideal as temperature decreases and/or pressure increases.

  11. Quartz crystal growth

    DOEpatents

    Baughman, Richard J. (Albuquerque, NM)

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  12. A2MnU3O11 (A = K, Rb) and Li3.2Mn1.8U6O22: Three New Alkali-Metal Manganese Uranium(VI) Oxides Related to Natrotantite.

    PubMed

    Read, Cory Michael; Morrison, Gregory; Yeon, Jeongho; Smith, Mark D; Zur Loye, Hans-Conrad

    2015-07-20

    Single crystals of three new alkali-metal manganese uranium oxides, K2MnU3O11, Rb2MnU3O11, and Li3.2Mn1.8U6O22, have been grown from molten chloride fluxes and structurally characterized by single-crystal X-ray diffraction. The first two compounds crystallize in the trigonal space group, R3?c, in the three-dimensional (3D), natrotantite structure composed of ?-U3O8-topological layers connected via MnO6 octahedra. The Li-containing compound crystallizes in the monoclinic space group, Cc, with a related 3D structure, composed of ?-U3O8-topological sheets connected via irregular MnO7 polyhedra. All three compounds exhibit typical uranyl, UO2(2+), coordination environments consisting of either UO7 pentagonal bipyramids or UO6 flattened octahedra. The lattice parameters of the new oxides are K2MnU3O11, a = 6.8280(2) Å, c = 36.8354(17) Å; Rb2MnU3O11, a = 6.8407(2) Å, c = 37.5520(17) Å; and Li3.2Mn1.8U6O22, a = 11.8958(8) Å, b = 10.9639(7) Å, c = 13.3269(8) Å, and ? = 91.442(4)°. The magnetic susceptibilities of the K and Rb phases are discussed. PMID:26158295

  13. Structure and electrical properties of single-phase cobalt manganese oxide spinels Mn{sub 3-x}Co{sub x}O{sub 4} sintered classically and by spark plasma sintering (SPS)

    SciTech Connect

    Bordeneuve, Helene Guillemet-Fritsch, Sophie; Rousset, Abel; Schuurman, Sophie; Poulain, Veronique

    2009-02-15

    Cobalt manganese oxide spinels Mn{sub 3-x}Co{sub x}O{sub 4} (with 0.98{<=}x{<=}3) were prepared by the thermal decomposition in air of oxalate precursors. The influence of the thermal treatments on the structure of these materials is emphasized. Single-phase ceramics were obtained after optimization of the sintering parameters. A precise phase diagram for the Co-Mn-O system is proposed according to thermal stability and structure of oxide powders. The electrical measurements on single-phase ceramics show that low values of resistivity can be achieved. The conduction could take place through jumps of polarons between Mn{sup 3+} and Mn{sup 4+} on octahedral sites. These compounds present interesting electrical characteristics for negative temperature coefficient (NTC) thermistor applications. - Grapical abstract: After elaboration of single-phase and well densified ceramics Mn{sub 3-x}Co{sub x}O{sub 4} (with 0.98{<=}x{<=}3) by conventional and spark plasma sintering, electrical measurements have been taken and low values of resistivity can be achieved. The conductivity shifts from an insulator, Mn{sub 3}O{sub 4} (cationic distribution: Mn{sup 2+}[Mn{sup 3+}]{sub 2}O{sub 4}) to a semiconductor solid solution probably due to the hopping of polarons between Mn{sup 3+} and Mn{sup 4+} on octahedral sites.

  14. High manganese concentrations in rocks at Gale crater, Mars

    USGS Publications Warehouse

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  15. ORIGIN OF QUARTZ IN COAL.

    USGS Publications Warehouse

    Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.

    1984-01-01

    Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.

  16. Quartz Crystal Microbalance Data

    SciTech Connect

    Baxamusa, S H

    2011-11-16

    We are using a Qpod quartz crystal microbalance (manufactured by Inficon) for use as a low-volume non-volatile residue analysis tool. Inficon has agreed to help troubleshoot some of our measurements and are requesting to view some sample data, which are attached. The basic principle of an NVR analysis is to evaporate a known volume of solvent, and weigh the remaining residue to determine the purity of the solvent. A typical NVR analysis uses 60 g of solvent and can measure residue with an accuracy of +/- 0.01 mg. The detection limit is thus (0.01 mg)/(60 g) = 0.17 ppm. We are attempting to use a quartz crystal microbalance (QCM) to make a similar measurement. The attached data show the response of the QCM as a 5-20 mg drop of solvent evaporates on its surface. The change in mass registered by the QCM after the drop evaporates is the residue that deposits on the crystal. On some measurements, the change in mass in less than zero, which is aphysical since the drop will leave behind {>=}0 mass of residue. The vendor, Inficon, has agreed to look at these data as a means to help troubleshoot the cause.

  17. REGIOSELECTIVE OXIDATIONS OF EQUILENIN DERIVATIVES CATALYZED BY A RHODIUM (III) PORPHYRIN COMPLEX-CONTRAST WITH THE MANGANESE (III) PORPHYRIN. (R826653)

    EPA Science Inventory

    Abstract

    Equilenin acetate and dihydroequilenin acetate were oxidized with iodosobenzene and a rhodium(III) porphyrin catalyst. The selectivity of the reactions differs from that with the corresponding Mn(III) catalyst, or from that of free radical chain oxidation.

  18. Z .Bioelectrochemistry and Bioenergetics 48 1999 5359 Redox characteristics of Schiff base manganese and cobalt complexes

    E-print Network

    Carpentier, Robert

    manganese and cobalt complexes related to water-oxidizing complex of photosynthesis S. Hotchandani a,) , U manganese and a cobalt complex, employing Niten, a SALEN type ligand, have been prepared. Cyclic and square of the complexes is observed in anodic region. While the cobalt complex is electrochemically inactive

  19. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400?m. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. PMID:26409148

  20. Cryogenic quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, D.; Sonnenschein, G.; Fox, M. G.

    1975-01-01

    A radiatively cooled Cryogenic Quartz Crystal Microbalance designed to monitor highly volatile contaminants on the shuttle is described. Measurements are made with two 15-MHz microbalances having removable, optically polished sensors mounted in a radiant cooler. One sensor operates below the freezing point of water and monitors contamination including that of water vapor. The second sensor is heated and monitors the contamination background. It provides a reference from which the density of the water vapor cloud enveloping the shuttle is determined. The design incorporates a low-power dissipation oscillator, heaters for ice removal, and a method for attaching second-surface mirrors to the radiator employing an indium type solder instead of a room temperature vulcanizer.

  1. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M. (Rustburg, VA)

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  2. Augmentation of pulmonary reactions to quartz inhalation by trace amounts of iron-containing particles.

    PubMed Central

    Castranova, V; Vallyathan, V; Ramsey, D M; McLaurin, J L; Pack, D; Leonard, S; Barger, M W; Ma, J Y; Dalal, N S; Teass, A

    1997-01-01

    Fracturing quartz produces silica-based radicals on the fracture planes and generates hydroxyl radicals (.OH) in aqueous media. .OH production has been shown to be directly associated with quartz-induced cell damage and phagocyte activation in vitro. This .OH production in vitro is inhibited by desferrioxamine mesylate, an Fe chelator, indicating involvement of a Fenton-like reaction. Our objective was to determine if Fe contamination increased the ability of inhaled quartz to cause inflammation and lung injury. Male Fischer 344 rats were exposed 5 hr/day for 10 days to filtered air, 20 mg/m3 freshly milled quartz (57 ppm Fe), or 20 mg/m3 freshly milled quartz contaminated with Fe (430 ppm Fe). High Fe contamination of quartz produced approximately 57% more reactive species in water than quartz with low Fe contamination. Compared to inhalation of quartz with low Fe contamination, high Fe contamination of quartz resulted in increases in the following responses: leukocyte recruitment (537%), lavageable red blood cells (157%), macrophage production of oxygen radicals measured by electron spin resonance or chemiluminescence (32 or 90%, respectively), nitric oxide production by macrophages (71%), and lipid peroxidation of lung tissue (38%). These results suggest that inhalation of freshly fractured quartz contaminated with trace levels of Fe may be more pathogenic than inhalation of quartz alone. PMID:9400745

  3. Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7?2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA)

    PubMed Central

    Dong, Yiran; Sanford, Robert A.; Locke, Randall A.; Cann, Isaac K.; Mackie, Roderick I.; Fouke, Bruce W.

    2014-01-01

    The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40°C (range 20–60°C) and a salinity of 25 parts per thousand (range 25–75 ppt). This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25–200 ppt), and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir for CO2 injection. PMID:25324834

  4. Taurine improves the spatial learning and memory ability impaired by sub-chronic manganese exposure

    PubMed Central

    2014-01-01

    Background Excessive manganese exposure induced cognitive deficit. Several lines of evidence have demonstrated that taurine improves cognitive impairment induced by numerous neurotoxins. However, the role of taurine on manganese-induced damages in learning and memory is still elusive. This goal of this study was to investigate the beneficial effect of taurine on learning and memory capacity impairment by manganese exposure in an animal model. Results The escape latency in the Morris Water Maze test was significantly longer in the rats injected with manganese than that in the rats received both taurine and manganese. Similarly, the probe trial showed that the annulus crossings were significantly greater in the taurine plus manganese treated rats than those in the manganese-treated rats. However, the blood level of manganese was not altered by the taurine treatment. Interestingly, the exposure of manganese led to a significant increase in the acetylcholinesterase activity and an evidently decrease in the choline acetyltransferase activity, which were partially restored by the addition of taurine. Additionally, we identified 9 differentially expressed proteins between the rat hippocampus treated by manganese and the control or the manganese plus taurine in the proteomic analysis using the 2-dimensional gel electrophoresis followed by the tandem mass spectrometry (MS/MS). Most of these proteins play a role in energy metabolism, oxidative stress, inflammation, and neuron synapse. Conclusions In summary, taurine restores the activity of AChE and ChAT, which are critical for the regulation of acetylcholine. We have identified seven differentially expressed proteins specifically induced by manganese and two proteins induced by taurine from the rat hippocampus. Our results support that taurine improves the impaired learning and memory ability caused by excessive exposure of manganese. PMID:24885898

  5. CONVERSATION OF DISSOLVED MANGANESE TO PARTICULATE MANGANESE DURING DIATOM BLOOM: EFFECTS ON THE MANGANESE CYCLE IN THE MERL MICROCOSMS

    EPA Science Inventory

    Conversion of dissolved manganese to particulate manganese occurred during a minor diatom bloom during August and September 1978 in the MERL microcosms. Correlations between chlorophyll a and particulate manganese suggest that 29 moles Mn were transferred to the particulate phase...

  6. Recovery of Manganese Ferrite in Nanoform from the Metallurgical Slags

    NASA Astrophysics Data System (ADS)

    Semykina, Anna; Seetharaman, Seshadri

    2011-02-01

    The present work investigates the formation of manganese ferrite of nanosize by oxidation of MnO- and FeO-containing slag. A horizontal resistance furnace was used as an experimental setup. The experiment was conducted in the temperature range of 1573 K to 1673 K (1300 °C to 1400 °C) in an oxidizing atmosphere. The samples were quenched to the cold end of the furnace and were analyzed by X-ray diffraction (XRD). The XRD patterns of the products showed the presence of two phases—manganese ferrite and calcium silicate. The particle size of the manganese ferrite was estimated by the Scherrer formula to be in the range of nanometers.

  7. Silica Transport and Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Pebble, C.; Farver, J.; Onasch, C.; Winslow, D.

    2008-12-01

    Silica transport and cementation in quartz aggregates have been experimentally investigated. Starting materials include a natural quartz arenite (Pocono sandstone), sized clasts of synthetic quartz, and sized grains of disaggregated natural sandstones. Experimental charges consisted of amorphous silica powder (~25 mg), AlCl3 powder (~3 mg), 25 wt% NaCl brine solution (~20 mg), and the starting material (~150 mg). The charges were weld-sealed in gold capsules and run in cold-seal pressure vessels at 300°C to 600°C at 150 MPa confining pressure for up to 4 weeks. Detailed calibrations of the furnaces indicate the maximum temperature variation across the length of the sample charges (3-7mm) was <5°C, and typically <3°C. After the experiments, samples were vacuum impregnated with epoxy containing a blue dye and sawn in half along the long axis of the sample charge. The nature and amount of silica transport and cementation in the samples was determined by a combination of Cathodoluminescence (CL), Light Microscopy (LM), and Scanning Electron Microscopy (SEM). Photomosaics of the samples were collected and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement was easily recognized from the quartz grains by the difference in luminescence. The experiments indicate that the presence of amorphous silica results in rapid silica cementation in quartz aggregates (e.g., up to 12% cement by volume in 4 weeks at 450°C). The amount of cementation is a function of substrate type, time, temperature, and ionic strength of the brine. The rate of silica transport through the length of the experimental charge appears to be limited by the silica solubility and its rapid depletion by cementation. Although most of the cement was derived from the amorphous silica, evidence for local dissolution-precipitation was observed. The experiments demonstrate that the mobility of silica, and consequent precipitation of cement, does not require a temperature or pressure gradient as is commonly assumed. Rather, the only requirement is a concentration gradient, which is much easier to maintain in a variety of geologic environments. In addition, we have begun to investigate the important role of iron oxides on silica transport and cementation. Preliminary results show the amount of cementation is increased in the presence of iron oxides, which is most likely due to an increase in silica solubility.

  8. Manganese micro-nodules on ancient brick walls.

    PubMed

    López-Arce, P; García-Guinea, J; Fierro, J L G

    2003-01-20

    Romans, Jews, Arabs and Christians built the ancient city of Toledo (Spain) with bricks as the main construction material. Manganese micro-nodules (circa 2 microm in diameter) have grown under the external bio-film surface of the bricks. Recent anthropogenic activities such as industrial emissions, foundries, or traffic and housing pollution have further altered these old bricks. The energy-dispersive X-ray microanalyses (XPS) of micro-nodules show Al, Si, Ca, K, Fe and Mn, with some carbon species. Manganese atoms are present only as Mn(4+) and iron as Fe(3+) (FeOOH-Fe(2)O(3) mixtures). The large concentration of alga biomass of the River Tagus and the Torcón and Guajaraz reservoirs suggest manganese micro-nodules are formed either from water solutions rich in anthropogenic MnO(4)K in a reduction environment (from Mn(7+) to Mn(4+)) or by oxidation mechanisms from dissolved Mn(2+) (from Mn(2+) to Mn(4+)) linked to algae biofilm onto the ancient brick surfaces. Ancient wall surfaces were also studied by scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Chemical and biological analyses of the waters around Toledo are also analysed for possible sources of manganese. Manganese micro-nodules on ancient brick walls are good indicators of manganese pollution. PMID:12526915

  9. Studies on Indian Ocean manganese nodules. 3: Adsorption of aqueous selenite on ferromanganese nodules

    SciTech Connect

    Parida, K.M.; Gorai, B.; Das, N.N.

    1997-03-15

    Adsorption of aqueous selenite (SeO{sub 3}{sup 2{minus}}) on Indian Ocean manganese nodules was studied as a function of time, temperature, pH, and concentrations of adsorbate and adsorbent in acetic acid-sodium acetate buffer medium. Analysis of adsorption data supports a heterogeneous nature for the surface of manganese nodules. The adsorption capacity of various manganese nodules for selenite was correlated with their chemical composition and surface properties. Adsorption of selenite/selenate on hydrous oxides of iron, manganese, and aluminum appears to be an efficient and inexpensive method for removing trace contaminants. Manganese nodules, a naturally occurring complex material, with its high contents of oxides/oxyhydroxides of Mn, Fe, Si, and Al, high porosity, and high surface area may be a suitable substitute for conventional adsorbents.

  10. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  11. Ferro- and ferrimagnetic chains of hin-bridged copper(II) and manganese(II) and hnn-bridged manganese(II) complexes (hin = 4,4,5,5-tetramethylimidazolin-1-oxyl; hnn = 4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide).

    PubMed

    Ise, Tomoaki; Ishida, Takayuki; Hashizume, Daisuke; Iwasaki, Fujiko; Nogami, Takashi

    2003-09-22

    We have exploited potential utility of 4,4,5,5-tetramethylimidazolin-1-oxyl (hin) and 4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide (hnn) as mu-1,4 and mu-1,5 bridging ligands, respectively, carrying an unpaired electron in development of metal-radical hybrid magnets. X-ray diffraction measurements of [Cu(hfac)(2)hin] (1), [Mn(hfac)(2)hin] (2), and [Mn(hfac)(2)hnn] (3) revealed one-dimensional metal-radical alternating chain structures, where hfac denotes 1,1,1,5,5,5-hexafluoropentane-2,4-dionate. Magnetic measurements of 1 indicate the presence of intrachain ferromagnetic coupling between copper and radical spins. The magnetic exchange parameter was estimated as 2J/k = 56.8 K based on an S = 1/2 equally spaced ferromagnetic chain model (H = -2J summation operator S(i).S(i+1)). This ferromagnetic interaction can be explained in terms of the axial coordination of the hin nitrogen or oxygen to Cu(II). The chi(m)T value of 2 and 3 increased on cooling, and the magnetic data could be analyzed by Seiden's ferrimagnetic chain model, giving 2J/k = -325 and -740 K, respectively. The antiferromagnetic interaction of 2 and 3 can be attributed to orbital overlap between the manganese and the oxygen or nitrogen magnetic orbitals. The exchange interactions between Cu-hin and Mn-hnn are larger than those of typical Cu- and Mn-nitronyl nitroxide complexes, indicating that the choice of small ligands is a promising strategy to bestow strong exchange interaction. Compound 3 became a ferrimagnet below 4.4 K, owing to ferromagnetic coupling among the ferrimagnetic chains. PMID:12971783

  12. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Identity. The color additive manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium dihydrogen...and manganese dioxide at temperatures above 450 °F. The pigment is a manganese ammonium pyrophosphate complex having the...

  13. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food...Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  14. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food...Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  15. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food...Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  16. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food...Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  17. 21 CFR 582.5446 - Manganese chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food...Dietary Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  18. OXIDATION OF ALKANES WITH AIR USING IRON AND MANGANESE CATALYSTS. AN OVERALL GREEN CHEMISTRY APPROACH INCLUDING THE USE OF ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    The selective oxidation of alkanes is an industrially important process that is often plagued by low conversions and the formation of unwanted by-products. Research being conducted at the USEPA, implements a Green chemistry approach which is utilized to improve these difficult o...

  19. THE STATE OF MANGANESE IN THE PHOTOSYNTHETIC APPARATUS: FIRST VIEW OF THE MANGANESE SITES BY X-RAY ABSORPTION SPECTROSCOPY

    SciTech Connect

    Kirby, Jon A.; Goodin, D.B.; Robertson, A.S.; Smith, J.P.; Thompson, A.C.; Klein, M.P.

    1980-11-01

    Manganese atoms have long been implicated as essential ingredients in photosynthetic oxygen evolution. Heretofore they have eluded direct observation. We report the first direct observation, by X-ray Absorption Spectroscopy, of the Mn sites in chloroplasts isolated from Spinacia oleracea. The manganese in chlorplasts is commonly thought to exist in two pools. The major pool, corresponding to two-thirds of the manganese, can be reversibly released with concomitant loss of oxygen evolving capacity, and has thus come to be assigned as the active pool. The role of the remanant one-third, or tightly bound pool is moot. Our analysis of the Extended X-ray Absorption Fine Structure of the active pool is consistent with a bridged dimeric structure involving two manganese atoms separated by about 2.7 {Angstroms}. The distance between manganese and bridging ligands is about 1.8 {Angstrom}. Analysis of the edge region suggests that the manganese in the active pool exists in oxidation states somewhat higher than Mn(II).

  20. INHALATION TOXICOLOGY OF AIRBORNE PARTICULATE MANGANESE IN RHESUS MONKEYS

    EPA Science Inventory

    Four male and four female rhesus monkeys were exposed to manganese oxide (Mn3O4) aerosol at 100 micrograms/cubic meter in an exposure chamber for periods up to 66 weeks. Three male and three female monkeys were maintained as unexposed controls. Observation and clinical chemistry ...

  1. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b)...

  2. 21 CFR 582.5455 - Manganese glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5455 Manganese glycerophosphate. (a) Product. Manganese glycerophosphate. (b)...

  3. Thermoelectrically-cooled quartz microbalance

    NASA Technical Reports Server (NTRS)

    Mckeown, D.

    1975-01-01

    Temperature of microbalance can be maintained at ambient temperature or held at some other desired temperature. Microbalance has tow-stage thermoelectric device that controls temperature of quartz crystal. Heat can be pumped to or from balance by Peltier effect.

  4. Quartz fiber calorimetry and calorimeters

    E-print Network

    G. Mavromanolakis

    2004-12-20

    Quartz fiber calorimetry is a technique the signal generation mechanism of which is based on the Cherenkov effect. In this article we try to give a comprehensive overview of the subject. We start with a general introduction to calorimetry where the basic elements that characterize the development of electromagnetic and hadronic showers are discussed. Then we describe in detail the operation principle and the properties of calorimeters equipped with quartz fibers. The main advantages of this type of calorimeters are the radiation hardness, the fast response and the compact detector dimensions, features that derive from the quartz material and the specific mechanism of operation. A section is devoted to presenting the quartz fiber calorimeters that have been built or planned to in various experiments to operate as centrality detectors, trigger detectors, luminosity monitors or general purpose very forward calorimeters.

  5. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    NASA Astrophysics Data System (ADS)

    Aras, Neny Rasnyanti M.; Arcana, I. Made

    2015-09-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate, and followed by thermal treatment at a temperature of 70 °C and the incubation time for 45 days in the activated sludge.

  6. Kinetic fractionation of Fe isotopes during transport through a porous quartz-sand column

    NASA Astrophysics Data System (ADS)

    Matthews, Alan; Emmanuel, Simon; Levi, Lena; Gvirtzman, Haim; Erel, Yigal

    2008-12-01

    Sorption and desorption processes are an important part of biological and geochemical metallic isotope cycles. Here, we address the dynamic aspects of metallic isotopic fractionation in a theoretical and experimental study of Fe sorption and desorption during the transport of aqueous Fe(III) through a quartz-sand matrix. Transport equations describing the behavior of sorbing isotopic species in a water saturated homogeneous porous medium are presented; isotopic fractionation of the system (? sorbedmetal-soln) being defined in terms of two parameters: (i) an equilibrium fractionation factor, ?e; and (ii) a kinetic sorption factor, ?1. These equations are applied in a numerical model that simulates the sorption-desorption of Fe isotopes during injection of a Fe(III) solution pulse into a quartz matrix at pH 0-2 and explores the effects of the kinetic and equilibrium parameters on the Fe-isotope evolution of porewater. The kinetic transport theory is applied to a series of experiments in which pulses of Na and Fe(III) chloride solutions were injected into a porous sand grain column. Fractionation factors of ?e = 1.0003 ± 0.0001 and ?1 = 0.9997 ± 0.0004 yielded the best fit between the transport model and the Fe concentration and ?56Fe data. The equilibrium fractionation (? 56Fe sorbedFe-soln) of 0.3‰ is comparable with values deduced for adsorption of metallic cations on iron and manganese oxide surfaces and suggests that sandstone aquifers will fractionate metallic isotopes during sorption-desorption reactions. The ability of the equilibrium fractionation factor to describe a natural system, however, depends on the proximity to equilibrium, which is determined by the relative time scales of mass transfer and chemical reaction; low fluid transport rates should produce a system that is less dependent on kinetic effects. The results of this study are applicable to Fe-isotope fractionation in clastic sediments formed in highly acidic conditions; such conditions may have existed on Mars where acidic oxidizing ground and surface waters may have been responsible for clastic sedimentation and metallic element transport.

  7. 3D-architectured nickel-cobalt-manganese layered double hydroxide/reduced graphene oxide composite for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, M.; Cheng, J. P.; Liu, F.; Zhang, X. B.

    2015-11-01

    Pure flower-like NiCoMn layered double hydroxide (LDH) and 3D-architectured NiCoMn LDH/reduced graphene oxide (rGO) composite are fabricated by a solution method. The NiCoMn hydroxide nanoflakes are tightly deposited on the surface of rGO. Electrochemical measurements prove that rGO can greatly improve its capacitive performances, compared with the pure counterpart. A high-specific capacitance of 912 F g-1, high-rate capability and long cycle life are achieved for the composite. A NiCoMn LDH/rGO//activated carbon hybrid capacitor is also fabricated. It possesses a high-specific capacitance of 206 F g-1 and an energy density of 92.8 W h kg-1 in 1.8 V.

  8. Carbothermic reduction of U.S. ferruginous manganese resources

    NASA Astrophysics Data System (ADS)

    Hansen, Jeffrey S.; Tress, Jack E.; Nafziger, Ralph H.

    1993-04-01

    The U.S. Bureau of Mines conducted laboratory-scale research to determine the degree to which U.S. ferruginous manganese resources can be reduced to produce an acceptable ferromanganese for alloying iron and steel. The objective was to evaluate the feasibility of prereduction (reduction prior to melting) of such resources as an alternative to direct smelting. As part of the Bureau's goal to recover metal values economically and efficiently from U.S. resources, ferruginous manganese oxide materials from five deposits were reduced with low-cost and lower grade carbonaceous reductants at temperatures ranging from 600°C to 1,050°C for holding periods from 30 min. to 90 min. Greater than 95% net reduction of the tetravalent and trivalent states of manganese to the divalent state (which represents a typical feed for an electric arc furnace producing ferromanganese) was achieved at 750°C using inexpensive blacksmith coal on samples that did not contain significant amounts of silica.

  9. EFFECTS OF CHRONIC HIGH-LEVEL MANGANESE EXPOSURE ON MALE BEHAVIOR IN THE JAPANESE QUAIL 'COTURNIX COTURNIX JAPONICA'

    EPA Science Inventory

    Male Japanese quail were chronically exposed to 5000 ppm manganese (Mn) as particulate manganese oxide (Mn3O4) in their diet from hatching to 75 days of age. No decrements in growth or in other indices of general toxicity were noted. There were significant (P<.05) age-related inc...

  10. Manganese deposits in northeastern European Russia and the Urals: Isotope geochemistry, genesis, and evolution of ore formation

    NASA Astrophysics Data System (ADS)

    Kuleshov, V. N.; Brusnitsyn, A. I.; Starikova, E. V.

    2014-09-01

    Based on new data on the lithology, mineralogy, chemistry, and isotopic composition of manganese carbonate ores and rocks at the deposits and occurrences in the Novaya Zemlya Archipelago, the Pai-Khoi, and the Urals, as well as using data from the literature, the main Phanerozoic basins of manganese deposition have been established in the geological history of Laurasia, Pangea, and Siberian paleocontinents. The formation conditions of manganese ore gradually changed from hydrothermal-sedimentary in the Middle Paleozoic to sedimentary-diagenetic in Mesozoic and Cenozoic. The ore was also formed under catagenetic conditions. Carbon of oxidized organic matter plays a substantial role in the formation of manganese carbonates.

  11. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.

  12. Mineral of the month: manganese

    USGS Publications Warehouse

    Corathers, Lisa

    2005-01-01

    Manganese is one of the most important ferrous metals and one of the few for which the United States is totally dependent on imports. It is a black, brittle element predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production, which together provide the largest market for manganese (about 83 percent). It is also used as an alloy with nonferrous metals such as aluminum and copper. Nonmetallurgical applications of manganese include battery cathodes, soft ferrite magnets used in electronics, micronutrients found in fertilizers and animal feed, water treatment chemicals, and a colorant for bricks and ceramics.

  13. Synthetic entry into polynuclear bismuth-manganese chemistry: high oxidation state Bi(III)2Mn(IV)6 and Bi(III)Mn(III)10 complexes.

    PubMed

    Stamatatos, Theocharis C; Oliver, Katie; Abboud, Khalil A; Christou, George

    2011-06-01

    The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(?(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(?(4)-O)](10+) tetrahedra, and two [BiMn(2)(?(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science. PMID:21520907

  14. Quartz Vein in the Gunsight Formation

    USGS Multimedia Gallery

    Quartz vein in biotite-rich rock in the Gunsight Formation of the Mesoproterozoic Lemhi Group. Bluish green copper-bearing minerals coat the quartz vein. Pale pinkish cobalt bloom and white caliche coat adjacent biotite-rich wallrock....

  15. Sorption of As(III) and As(V) on chemically synthesized manganese dioxide.

    PubMed

    Ajith, Nicy; Dalvi, Aditi A; Swain, Kallola K; Devi, P S Remya; Kalekar, Bhupesh B; Verma, Rakesh; Reddy, A V R

    2013-01-01

    Sorption of As(III) and As(V) on manganese dioxide was studied by batch equilibration method using (76)As radioactive tracer. Manganese dioxide was prepared by two different methods viz. reacting (a) KMnO(4) solution with MnSO(4) solution, and (b) KMnO(4) solution with concentrated hydrochloric acid. Manganese dioxide was characterized by zeta potential measurement, surface area measurement, thermogravimetry (TG), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. Point of zero charge (PZC) for manganese dioxide was between pH 3 and 4. Radioactive tracer ((76)As) was prepared by neutron irradiation of arsenious oxide in self serve facility of CIRUS reactor followed by conversion to As(III) and As(V), by appropriate chemical methods. Sorption of As(III) and As(V) were studied separately, between pH 1 to 11, using (i) freshly prepared, (ii) air-dried and (iii) aged manganese dioxide. Sorption of As(III) and As(V) on freshly prepared as well as aged manganese dioxide, from both the methods was greater than 98% between pH 1 to 9 and decreased above pH 9. Percentage sorption was comparable for manganese dioxide prepared by both the methods in different batches. Sorption capacity was ?2 mg g(-1) for both As(III) and As(V). Arsenic was desorbed from the manganese dioxide by 0.1 M sodium hydroxide and oxidation state of desorbed arsenic was determined by solvent extraction method. It was found that the desorbed arsenic was present in As(V) oxidation state, independent of the initial oxidation states. This simple and direct chemical evidence, establishing that As(III) is converted to As(V) by manganese dioxide, is reported for the first time. Sorption of As(III) and As(V) on manganese dioxide did not cause an increase in manganese concentration above solubility limit confirming that Mn(2+), formed during oxidation of As(III) to As(V), was re-adsorbed. PMID:23379947

  16. Terahertz polarization conversion with quartz waveplate sets

    E-print Network

    Ganichev, Sergey

    Terahertz polarization conversion with quartz waveplate sets Andrey K. Kaveev,1, * Grigory I used for THz instrumentation is crystalline quartz. Its trans- mission spectrum in the spectral range of interest is shown in Fig. 1. Besides that, crystalline quartz is a birefringent material [10]; this fact

  17. The catalase, peroxidase, and oxidase properties of the coordination compounds of manganese

    NASA Astrophysics Data System (ADS)

    Sychev, Aleksei Ya; Isak, V. G.

    1993-03-01

    The experimental data on the oxidation-reduction catalysis by coordination compounds of manganese(II) of reactions involving the decomposition of H2O2 and the oxidation of organic substances by hydrogen peroxide and molecular oxygen are surveyed and modern ideas on these topics are described. The bibliography includes 170 references.

  18. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  19. Commission of the European Communities PHOTOSYNTHETIC WATER OXIDATION

    E-print Network

    Junge, Wolfgang

    . Photosynthetic water oxidation occurs in a manganese containing protein complex, and it is driven by a special the lowest 'oxidation state of the manganese protein the following stoichiometric pat tern of proton releaseCommission of the European Communities energy PHOTOSYNTHETIC WATER OXIDATION BY GREEN PLANTS

  20. Why did Nature choose manganese to make oxygen?

    PubMed Central

    Armstrong, Fraser A

    2007-01-01

    This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2? and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1?V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329