Science.gov

Sample records for quartz manganese oxide

  1. Manganese Oxidation State Assignment for Manganese Catalase.

    PubMed

    Beal, Nathan J; O'Malley, Patrick J

    2016-04-01

    The oxidation state assignment of the manganese ions present in the superoxidized manganese (III/IV) catalase active site is determined by comparing experimental and broken symmetry density functional theory calculated (14)N, (17)O, and (1)H hyperfine couplings. Experimental results have been interpreted to indicate that the substrate water is coordinated to the Mn(III) ion. However, by calculating hyperfine couplings for both scenarios we show that water is coordinated to the Mn(IV) ion and that the assigned oxidation states of the two manganese ions present in the site are the opposite of that previously proposed based on experimental measurements alone. PMID:27007277

  2. Tellurium content of marine manganese oxides and other manganese oxides

    USGS Publications Warehouse

    Lakin, H.W.; Thompson, C.E.; Davidson, D.F.

    1963-01-01

    Tellurium in amounts ranging from 5 to 125 parts per million was present in all of 12 samples of manganese oxide nodules from the floor of the Pacific and Indian oceans. These samples represent the first recognized points of high tellurium concentration in a sedimentary cycle. The analyses may lend support to the theory that the minor-element content of seafloor manganese nodules is derived from volcanic emanations.

  3. Microbial Formation of Manganese Oxides

    PubMed Central

    Greene, Anthony C.; Madgwick, John C.

    1991-01-01

    Microbial manganese oxidation was demonstrated at high Mn2+ concentrations (5 g/liter) in bacterial cultures in the presence of a microalga. The structure of the oxide produced varied depending on the bacterial strain and mode of culture. A nonaxenic, acid-tolerant microalga, a Chlamydomonas sp., was found to mediate formation of manganite (γ-MnOOH). Bacteria isolated from associations with crude cultures of this alga grown in aerated bioreactors formed disordered γ-MnO2 from Mn2+ at concentrations of 5 g/liter over 1 month, yielding 3.3 g of a semipure oxide per liter. All algal-bacterial cultures removed Mn2+ from solution, but only those with the highest removal rates formed an insoluble oxide. While the alga was an essential component of the reaction, a Pseudomonas sp. was found to be primarily responsible for the formation of a manganese precipitate. Medium components—algal biomass and urea—showed optima at 5.7 and 10 g/liters, respectively. The scaled-up culture (50 times) gave a yield of 22.3 g (53 mg/liter/day from a 15-liter culture) of semipure disordered γ-MnO2, identified by X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy, and had a manganese oxide O/Mn ratio of 1.92. The Mn(IV) content in the oxide was low (30.5%) compared with that of mined or chemically formed γ-MnO2 (ca. 50%). The shortfall in the bacterial oxide manganese content was due to biological and inorganic contaminants. FTIR spectroscopy, transmission electron microscopy, and electron diffraction studies have identified manganite as a likely intermediate product in the formation of disordered γ-MnO2. PMID:16348459

  4. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    PubMed

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future. PMID:25980320

  5. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  6. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    SciTech Connect

    Manigandan, R.; Suresh, R.; Giribabu, K.; Narayanan, V.; Vijayalakshmi, L.; Stephen, A.

    2014-01-28

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  7. Contaminant Transformation by a Biogenic Manganese Oxide

    NASA Astrophysics Data System (ADS)

    Toner, B. M.; Sposito, G.

    2001-12-01

    Biomineralization of manganese by Pseudomonas putida strain MnB1 produces tetravalent manganese oxides that surround the exterior of the bacterial cell. The manganese oxides produced by P. putida transform the herbicide atrazine, a widespread environmental contaminant, by dechlorination, dealkylation and deamination reactions. The transformation reactions catalyzed by biogenic manganese oxide surfaces create a suite of transformation intermediates whose properties, such as aqueous solubility, toxicity and biodegradability, differ dramatically from those of the parent compound. The rates and products of atrazine transformation by biogenic manganese oxide surfaces were examined as functions of temperature and water potential. Air-dry samples of hydrous manganese oxide (δ -MnO2) and biogenic manganese oxide were isopiestically equilibrated to -3.10, -0.50 and -0.04 MPa at 40 degrees Celsius and to -0.04 MPa at 20 and 30 degrees Celcius. The concentrations of atrazine and eight transformation intermediates were determined by HPLC. Our results suggest that biogenic manganese oxides may contribute greatly to the detoxification and immobilization of organic contaminants in the environment because of their nanoparticle size, large surface area and high chemical reactivity.

  8. Manganese oxidation model for rivers

    USGS Publications Warehouse

    Hess, Glen W.; Kim, Byung R.; Roberts, Philip J.W.

    1989-01-01

    The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.

  9. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  10. Oxidative decarboxylation of diclofenac by manganese oxide bed filter.

    PubMed

    Huguet, Mélissa; Deborde, Marie; Papot, Sébastien; Gallard, Hervé

    2013-09-15

    Diclofenac (DCF) was eliminated by fast chemical oxidation on natural manganese oxide in a column reactor. Identification of transformation by-products of DCF by HPLC-UV-MS(n) gave evidence of decarboxylation, iminoquinone formation and dimerization. The fast oxidation of DCF is also accompanied by a strong adsorption of organic carbon that was explained by the sorption of dimer products on the surface of manganese oxide. Decarboxylation and dimerization increased the hydrophobic interactions with manganese oxide and reduced the presence of potentially toxic by-products in the effluent. The rate of oxidation was first order with respect to DCF and was slowed down by the presence of organic buffer MOPS (3-morpholinopropane-1-sulfonic acid). The first order rate constant in absence of MOPS was extrapolated by considering a surface site-binding model and MOPS as a co-adsorbate. The rate constant was 0.818 min(-1) at pH 7 and 10 mM NaCl corresponding to empty bed residence time of 50 s only for 50% removal of DCF. Rate constants increased when pH decreased from pH 8.0 to 6.5 and when ionic strength increased. Manganese oxide bed filter can be considered as an alternative treatment for polishing waste water effluent or for remediation of contaminated groundwater. PMID:23850215

  11. Formation of manganese oxides by bacterially generated superoxide

    NASA Astrophysics Data System (ADS)

    Learman, D. R.; Voelker, B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M.

    2011-02-01

    Manganese oxide minerals are among the strongest sorbents and oxidants in the environment. The formation of these minerals controls the fate of contaminants, the degradation of recalcitrant carbon, the cycling of nutrients and the activity of anaerobic-based metabolisms. Oxidation of soluble manganese(II) ions to manganese(III/IV) oxides has been primarily attributed to direct enzymatic oxidation by microorganisms. However, the physiological reason for this process remains unknown. Here we assess the ability of a common species of marine bacteria-Roseobacter sp. AzwK-3b-to oxidize manganese(II) in the presence of chemical and biological inhibitors. We show that Roseobacter AzwK-3b oxidizes manganese(II) by producing the strong and versatile redox reactant superoxide. The oxidation of manganese(II), and concomitant production of manganese oxides, was inhibited in both the light and dark in the presence of enzymes and metals that scavenge superoxide. Oxidation was also inhibited by various proteases, enzymes that break down bacterial proteins, confirming that the superoxide was bacterially generated. We conclude that bacteria can oxidize manganese(II) indirectly, through the enzymatic generation of extracellular superoxide radicals. We suggest that dark bacterial production of superoxide may be a driving force in metal cycling and mineralization in the environment.

  12. Thermochemistry of iron manganese oxide spinels

    SciTech Connect

    Guillemet-Fritsch, Sophie; Navrotsky, Alexandra . E-mail: anavrotsky@ucdavis.edu; Tailhades, Philippe; Coradin, Herve; Wang Miaojun

    2005-01-15

    Oxide melt solution calorimetry has been performed on iron manganese oxide spinels prepared at high temperature. The enthalpy of formation of (Mn{sub x}Fe{sub 1-x}){sub 3}O{sub 4} at 298K from the oxides, tetragonal Mn{sub 3}O{sub 4} (hausmannite) and cubic Fe{sub 3}O{sub 4} (magnetite), is negative from x=0 to x=0.67 and becomes slightly positive for 0.670.6) spinels of intermediate compositions. The enthalpies of formation are discussed in terms of three factors: oxidation-reduction relative to the end-members, cation distribution, and tetragonality. A combination of measured enthalpies and Gibbs free energies of formation in the literature provides entropies of mixing. {delta}S{sub mix}, consistent with a cation distribution in which all trivalent manganese is octahedral and all other ions are randomly distributed for x>0.5, but the entropy of mixing appears to be smaller than these predicted values for x<0.4.

  13. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  14. Biological Superoxide In Manganese Oxide Formation

    NASA Astrophysics Data System (ADS)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  15. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  16. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  17. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  18. Manganese binding and oxidation by spores of a marine bacillus.

    PubMed Central

    Rosson, R A; Nealson, K H

    1982-01-01

    Mature, dormant spores of a marine bacillus, SG-1, bound and oxidized (precipitated) manganese on their surfaces. The binding and oxidation occurred under dormant conditions, with mature spores suspended in natural seawater. These heat-stable spores were formed in the absence of added manganese in the growth medium. The rate and amount of manganese bound by SG-1 spores was a function of spore concentration. Temperatures greater than 45 degrees C, pH values below 6.5, or the addition of EDTA or the metabolic inhibitors sodium azide, potassium cyanide, and mercuric chloride inhibited manganese binding and oxidation. However, SG-1 spores bound and oxidized manganese after treatment with glutaraldehyde, formaldehyde, ethylene oxide gas, or UV light, all of which killed the spores. Manganese oxidation never occurred in the absence of manganese binding to spores. The data suggest that Mn2+ was complexed by a spore component, perhaps an exosporium or a spore coat protein: once bound, the manganese was rapidly oxidized. Images PMID:6212577

  19. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata. PMID:27018915

  20. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  1. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  2. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  3. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  4. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  5. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  6. Structural and surface changes of copper modified manganese oxides

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    The structural and surface properties of manganese and copper-manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  7. Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.

    PubMed

    Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu

    2015-09-01

    Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping. PMID:26716267

  8. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    PubMed Central

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  9. Interaction Between Graphene Oxide Nanoparticles and Quartz Sand.

    PubMed

    Sotirelis, Nikolaos P; Chrysikopoulos, Constantinos V

    2015-11-17

    In this study, the influence of pH, ionic strength (IS), and temperature on graphene oxide (GO) nanoparticles attachment onto quartz sand were investigated. Batch experiments were conducted at three controlled temperatures (4, 12, and 25 °C) in solutions with different pH values (pH 4, 7, and 10), and ionic strengths (IS = 1.4, 6.4, and 21.4 mM), under static and dynamic conditions. The surface properties of GO nanoparticles and quartz sand were evaluated by electrophoretic mobility measurements. Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles were constructed for the experimental conditions, using measured zeta potentials. The experimental results showed that GO nanoparticles were very stable under the experimental conditions. Both temperature and pH did not play a significant role in the attachment of GO nanoparticles onto quartz sand. In contrast, IS was shown to influence attachment. The attachment of GO particles onto quartz sand increased significantly with increasing IS. The experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model, which implies that the quartz sand exhibited substantial surface heterogeneity and that GO retention was governed by chemisorption. Furthermore, thermodynamic analysis revealed that the attachment process was nonspontaneous and endothermic, which may be associated with structural changes of the sand surfaces due to chemisorption. Therefore, secondary minimum interaction may not be the dominant mechanism for GO attachment onto the quartz sand under the experimental conditions. PMID:26465676

  10. Manganese Oxide-Based Chemically Powered Micromotors.

    PubMed

    Safdar, Muhammad; Wani, Owies M; Jänis, Janne

    2015-11-25

    Chemically powered micromotors represent an exciting research area in nanotechnology. Such artificial devices are typically driven by catalytic bubble formation, taking place at the solid-liquid interface. Platinum has been most frequently used for the fabrication of different micromotors due to its superior catalytic efficiency. Other materials typically suffer from slow speeds and require very high concentrations of chemical fuel. Here, we report preparation and characterization of fast moving micromotors based on manganese oxide (MnO2) with different geometrical shapes (tubes, rods, and spheres). On the basis of the results, the prepared micromotors reached the highest speeds (up to ∼900 μm s(-1) in 10% H2O2) reported to date for any MnO2-based micromotors. Moreover, they moved by bubble propulsion even at very low concentrations of peroxide fuel. Thus, MnO2 represents a promising material for the preparation of micromotors for various biomedical or environmental applications, where high speeds are desired. PMID:26551302

  11. Giant negative magnetoresistance in Manganese-substituted Zinc Oxide.

    PubMed

    Wang, X L; Shao, Q; Zhuravlyova, A; He, M; Yi, Y; Lortz, R; Wang, J N; Ruotolo, A

    2015-01-01

    We report a large negative magnetoresistance in Manganese-substituted Zinc Oxide thin films. This anomalous effect was found to appear in oxygen-deficient films and to increase with the concentration of Manganese. By combining magnetoresistive measurements with magneto-photoluminescence, we demonstrate that the effect can be explained as the result of a magnetically induced transition from hopping to band conduction where the activation energy is caused by the sp-d exchange interaction. PMID:25783664

  12. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    NASA Astrophysics Data System (ADS)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Besson, M.; Descorme, C.; Khrouz, L.

    2015-01-01

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol-gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated.

  13. The sorption of silver by poorly crystallized manganese oxides

    USGS Publications Warehouse

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  14. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    SciTech Connect

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Besson, M.; Descorme, C.; Khrouz, L.

    2015-01-15

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol–gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated. - Graphical abstract: One-pot amorphous MnO{sub 2} supported on mesoporous anataseTiO{sub 2}. - Highlights: • Mesoporous manganese titanium oxides were synthesized using block copolymer. • Block copolymers form complexes with Mn{sup 2+} from MnCl{sub 2}. • With block copolymer, manganese oxide can be dispersed around the titania crystallites. • With Mn(acac){sub 2}, manganese is dispersed inside titania. • MnOOH crystallizes outside mesoporous titania during hydrothermal treatment.

  15. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    SciTech Connect

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  16. Np and Pu Sorption to Manganese Oxide Minerals

    SciTech Connect

    Zhao, P; Johnson, M R; Roberts, S K; Zavarin, M

    2005-08-30

    Manganese oxide minerals are a significant component of the fracture lining mineralogy at Yucca Mountain (Carlos et al., 1993) and within the tuff-confining unit at Yucca Flat (Prothro, 1998), Pahute Mesa (Drellack et al., 1997), and other locations at the Nevada Test Site (NTS). Radionuclide sorption to manganese oxide minerals was not included in recent Lawrence Livermore National Laboratory (LLNL) hydrologic source term (HST) models which attempt to predict the migration behavior of radionuclides away from underground nuclear tests. However, experiments performed for the Yucca Mountain Program suggest that these minerals may control much of the retardation of certain radionuclides, particularly Np and Pu (Triay et al., 1991; Duff et al., 1999). As a result, recent HST model results may significantly overpredict radionuclide transport away from underground nuclear tests. The sorption model used in HST calculations performed at LLNL includes sorption to iron oxide, calcite, zeolite, smectite, and mica minerals (Zavarin and Bruton 2004a; 2004b). For the majority of radiologic source term (RST) radionuclides, we believe that this accounts for the dominant sorption processes controlling transport. However, for the case of Np, sorption is rather weak to all but the iron and manganese oxides (Figure 1). Thus, we can expect to significantly reduce predicted Np transport by accounting for Np sorption to manganese oxides. Similarly, Pu has been shown to be predominantly associated with manganese oxides in Yucca Mountain fractured tuffs (Duff et al., 1999). Recent results on colloid-facilitated Pu transport (Kersting and Reimus, 2003) also suggest that manganese oxide coatings on fracture surfaces may compete with colloids for Pu, thus reducing the effects of colloid-facilitated Pu transport (Figure 1b). The available data suggest that it is important to incorporate Np and Pu sorption to manganese oxides in reactive transport models. However, few data are available for inclusion in our model. A survey of published data found only single-point (Triay et al., 1991; Kersting and Reimus, 2003; Keeney-Kennicutt and Morse, 1984; 1985) and qualitative (Duff et al., 1999; Dyer et al., 2000a; 2000b) Np and Pu sorption information. This report describes recent experiments that quantified the sorption and desorption of Np(V) and Pu(IV) onto three manganese oxide minerals as a function of pH and time. The three manganese oxides (pyrolusite, birnessite, and hollandite) have all been observed on fracture surfaces at Yucca Mountain and are likely to predominate at the NTS. Pyrolusite, birnessite, and hollandite comprise both a range of manganese oxide structure (framework, layered, and tunnel, respectively) and composition and a range of observed manganese oxide mineralogies. The pH range of 3-10 used in these experiments covers the range of pH observed in NTS groundwater (Rose et al., 1997).

  17. Characterization of Newly-Formed Manganese (Hydr)oxides in Biofilms in Pinal Creek, Arizona

    NASA Astrophysics Data System (ADS)

    Gilbert, H.; Conklin, M.; O'Day, P.

    2003-12-01

    Active, biologically mediated precipitation of manganese (hydr)oxides (Mn-oxides) in Pinal Creek, Arizona, a stream with a history of high manganese levels due to historic mining practices, was studied to determine the identity of newly formed phases and their ability to sequester other metals. Packages of crushed grains of eight clean mineral substrates, quartz, ilmenite, microcline, rutile, magnetite, hematite and labradorite, were placed in Pinal Creek for one to three months. Glass slides were set out as well in order to characterize biofilm formation. After retrieval and drying, the coating distributions were characterized using scanning electron microscopy (SEM), energy dispersive analysis, and X-ray absorption spectroscopy. Morphologically, coating material developed on the different substrates after one month appeared similar to those developed after two and three months. Overall, the SEM images indicate poorly crystalline, aggregated particles that are small (less than a few microns in general) and lack geometric regularity, although size estimates are somewhat hindered by particle aggregation. The coatings that formed on the microscope slides are characterized as biofilms, as numerous microorganisms were observed using microscopy, both confocal and SEM. Samples were further characterized using extended x-ray absorption fine structure spectroscopy (EXAFS) on coatings that had been separated from mineral substrates. EXAFS spectra of material from rutile and quartz substrates and the biofilm were analyzed and fit, using a natural and synthetic birnessite compounds as reference spectra. This analysis suggests that the rutile, quartz, and biofilm samples are composed of a disordered Mn-oxide that is similar in local structure to a natural birnessite of low symmetry. The formation of disordered, poorly crystalline birnessite is important, as it is an extremely efficient metal scavenger and the interlayer vacancies in the birnessite structure aids in metal sequestration.

  18. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  19. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  20. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  1. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  2. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  3. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  4. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  5. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  6. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  7. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  8. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  9. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  10. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  11. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  12. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  13. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  14. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  15. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  16. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  17. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    PubMed

    Jung, Haesung; Jun, Young-Shin

    2016-01-01

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation. PMID:26588858

  18. Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State

    NASA Astrophysics Data System (ADS)

    Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.

    2015-12-01

    Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.

  19. Electrosynthesis of Biomimetic Manganese-Calcium Oxides for Water Oxidation Catalysis-Atomic Structure and Functionality.

    PubMed

    González-Flores, Diego; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Martínez-Moreno, Elías; Pasquini, Chiara; Mohammadi, Mohammad Reza; Klingan, Katharina; Gernet, Ulrich; Fischer, Anna; Dau, Holger

    2016-02-01

    Water-oxidizing calcium-manganese oxides, which mimic the inorganic core of the biological catalyst, were synthesized and structurally characterized by X-ray absorption spectroscopy at the manganese and calcium K edges. The amorphous, birnesite-type oxides are obtained through a simple protocol that involves electrodeposition followed by active-site creation through annealing at moderate temperatures. Calcium ions are inessential, but tune the electrocatalytic properties. For increasing calcium/manganese molar ratios, both Tafel slopes and exchange current densities decrease gradually, resulting in optimal catalytic performance at calcium/manganese molar ratios of close to 10 %. Tracking UV/Vis absorption changes during electrochemical operation suggests that inactive oxides reach their highest, all-Mn(IV) oxidation state at comparably low electrode potentials. The ability to undergo redox transitions and the presence of a minor fraction of Mn(III) ions at catalytic potentials is identified as a prerequisite for catalytic activity. PMID:26692571

  20. Manganese oxidation state mediates toxicity in PC12 cells

    SciTech Connect

    Reaney, S.H. . E-mail: stevereaney@hotmail.com; Smith, D.R.

    2005-06-15

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 {mu}M Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 {mu}M produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 {mu}M), while Mn(III) exposures produced increases in LDH activity at lower exposures ({>=}50 {mu}M) than did Mn(II) (200 {mu}M only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 {mu}M Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity.

  1. Kinetic patterns in the formation of nanosized manganese-manganese oxide systems

    NASA Astrophysics Data System (ADS)

    Surovoi, E. P.; Bugerko, L. N.; Surovaya, V. E.; Zaikonnikova, T. M.

    2016-03-01

    Transformations in nanosized manganese films are studied by means of optical spectroscopy, microscopy, and gravimetry at different film thicknesses ( d = 4-108 nm) and temperatures of heat treatment ( T = 373-673 K). It is found that the kinetic curves of conversion are satisfactorily described in the terms of linear, inverse logarithmic, cubic, and logarithmic laws. The contact potential difference is measured for Mn and MnO films, and photo EMF is measured for Mn-MnO systems. An energy band diagram is constructed for Mn-MnO systems. A model for the thermal transformation of Mn films is proposed that includes stages of oxygen adsorption, the redistribution of charge carriers in the contact field of Mn-MnO, and manganese(II) oxide formation.

  2. Characterization of Synthetic and Natural Manganese Oxides as Martian Analogues

    NASA Technical Reports Server (NTRS)

    Fox, V. K.; Arvidson, R. E.; Jolliff, B. L.; Carpenter, P. K.; Catalano, J. G.; Hinkle, M. A. G.; Morris, R. V.

    2015-01-01

    Recent discoveries of highly concentrated manganese oxides in Gale Crater and on the rim of Endeavour Crater by the Mars Science Laboratory Curiosity and Mars Exploration Rover Opportunity, respectively, imply more highly oxidizing aqueous conditions than previously recognized. Manganese oxides are a significant environmental indicator about ancient aqueous conditions, provided the phases can be characterized reliably. Manganese oxides are typically fine-grained and poorly crystalline, making the mineral structures difficult to determine, and they generally have very low visible reflectance with few distinctive spectral features in the visible to near infrared, making them a challenge for interpretation from remote sensing data. Therefore, these recent discoveries motivate better characterization using methods available on Mars, particularly visible to near infrared (VNIR) spectroscopy, X-ray diffractometry (XRD), and compositional measurements. Both rovers have complementary instruments in this regard. Opportunity is equipped with its multispectral visible imager, Pancam, and an Alpha Particle X-ray Spectrometer (APXS), and Curiosity has the multispectral Mastcam, ChemCam (laser-induced breakdown spectroscopy and passive spectroscopy), and APXS for in situ characterization, and ChemMin (XRD) for collected samples.

  3. Distributions of Manganese, Iron, and Manganese-Oxidizing Bacteria In Lake Superior Sediments of Different Organic Carbon Content

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Nealson, Kenneth H.

    1989-01-01

    Profiles of oxygen, soluble and particulate manganese and iron, organic carbon and nitrogen were examined in Lake Superior sediment cores, along with the distribution and abundance of heterotrophic and manganese oxidizing bacteria. Analyses were performed using cores collected with the submersible Johnson Sea Link II. Three cores, exhibiting a range of organic carbon content, were collected from the deepest basin in Lake Superior and the north and south ends of the Caribou trough, and brought to the surface for immediate analysis. Minielectrode profiles of oxygen concentration of the three cores were carried out using a commercially available minielectrode apparatus. Oxygen depletion to less than 1% occurred within 4 cm of the surface for two of the cores, but not until approximately 15 cm for the core from the south basin of the Caribou trough. The three cores exhibited very different profiles of soluble, as well as leachable, manganese and iron, suggesting different degrees of remobilization of these metals in the sediments. Vertical profiles of viable bacteria and Mn oxidizing bacteria, determined by plating and counting, showed that aerobic (and facultatively aerobic) heterotrophic bacteria were present at the highest concentrations near the surface and decreased steadily with depth, while Mn oxidizing bacteria were concentrations primarily at and above the oxic/anoxic interface. Soluble manganese in the pore waters, along with abundant organic carbon, appeared to enhance the presence of manganese oxidizing bacteria, even below the oxic/anoxic interface. Profiles of solid-phase leachable manganese suggested a microbial role in manganese reprecipitation in these sediments.

  4. Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review

    PubMed Central

    Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.

    2012-01-01

    There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849

  5. Preliminary LIBS analysis of Yucca Mountain manganese oxide minerals

    SciTech Connect

    Blacic, J.; Pettit, D.; Cremers, D.

    1996-01-01

    The licensing and performance of a potential repository at Yucca Mountain will require the characterization of radionuclide sorptive capacity of the host rock, which in turn calls for hundreds of analyses based on extensive sampling or in situ measurements. A rapid method specifically for characterizing the manganese oxide minerals occurring heterogeneously throughout the Yucca Mountain block as fracture surface coatings is needed. Our unique solution is a laser-induced breakdown spectroscopy (LIBS) surface-analysis technique that is usable in the field to produce high-resolution atomic emission spectra. In tests with manganese oxide minerals and fracture surface coatings from a few Yucca Mountain core samples, we used four spectral bands to show that qualitative measurement of all constituent elements except K and Na (in the presence of Mn) is possible with LIBS. Detailed calibration of final hardware will make the system quantitative.

  6. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence; Yuan, Jikang

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  7. Oxidation kinetics of pentachlorophenol by manganese dioxide.

    PubMed

    Zhao, Ling; Yu, Zhiqiang; Peng, Pingán; Huang, Weilin; Feng, Shunqing; Zhou, Haiyan

    2006-11-01

    This study examined the abiotic transformation kinetics of pentachlorophenol (PCP) by manganese dioxide (MnO2) at different solution chemistry and initial concentrations of PCP and MnO2. The measured PCP transformation rates were found to be on the order of 1.07 with respect to [PCP] and 0.91 and 0.87 with respect to [MnO2] and [H+], respectively. Dissolved Mn2+ and Ca2+ as background electrolytes considerably decreased the reaction rate because of their adsorption and hence blocking of active sites on MnO2 surfaces. The dechlorination number, 0.59 chloride ions per transformed PCP after a 1-h reaction, suggests that a fraction of the transformed PCP was not dechlorinated and may be coupled directly to dimeric products. Gas chromatography/ mass spectrometry and liquid chromatography/mass spectrometry/mass spectrometry techniques were used to identify two isomeric nonachlorohydroxybiphenylethers as major products and 2,3,5,6-tetrachloro-1,4-hydroquinone and tetrachlorocatechol as minor products. Product identification suggested that the reaction may include two parallel reactions to form either dimers or 2,3,5,6-tetrachloro-1,4-hydroquinone and tetrachlorocatechol via simultaneous dehydrochlorination and hydroxylation. PMID:17089714

  8. Copper/Manganese Cocatalyzed Oxidative Coupling of Vinylarenes with Ketones.

    PubMed

    Lan, Xing-Wang; Wang, Nai-Xing; Zhang, Wei; Wen, Jia-Long; Bai, Cui-Bing; Xing, Yalan; Li, Yi-He

    2015-09-18

    A novel copper/manganese cocatalyzed direct oxidative coupling of terminal vinylarenes with ketones via C(sp(3))-H bond functionalization following C-C bond formation has been developed using tert-butyl hydroperoxide as the radical initiator. Various ketones underwent a free-radical addition of terminal vinylarenes to give the corresponding 1,4-dicarbonyl products with excellent regioselectivity and efficiency through one step. A possible reaction mechanism has been proposed. PMID:26348870

  9. Manganese

    MedlinePlus

    ... helps improve symptoms of PMS, including pain, crying, loneliness, anxiety, restlessness, irritability, mood swings, depression, and tension. ... Manganese is LIKELY SAFE for most adults when taken by mouth in amounts up to 11 mg per day. However, people who have trouble getting rid of manganese from ...

  10. A redox-assisted supramolecular assembly of manganese oxide nanotube

    SciTech Connect

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng . E-mail: zschao@yahoo.com; Zhai Hesheng . E-mail: hszhai@xmu.edu.cn

    2006-11-09

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO{sub 4} and MnCl{sub 2} as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N{sub 2} adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn{sup 3+} in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated.

  11. Nonequilibrium models for predicting forms of precipitated manganese oxides

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.

    1983-01-01

    Manganese oxides precipitated by bubbling air through 0.01 molar solutions of MnCl2, Mn(NO3)2, MnSO4, or Mn(ClO4)2 at a constantly maintained pH of 8.5 to 9.5 at temperatures of 25??C or higher consisted mainly of hausmannite, Mn3O4. At temperatures near 0??C, but with other conditions the same, the product is feitknechtite, ??MnOOH, except that if the initial solution is MnSO4 and the temperature is near 0??C the product is a mixture of manganite, ??MnOOH and groutite, ??MnOOH. All these oxides are metastable in aerated solution and alter by irreversible processes to more highly oxidized species during aging. A two-step nonequilibrium thermodynamic model predicts that the least stable species, ??MnOOH, should be most readily converted to MnO2. Some preparations of ??MnOOH aged in their native solution at 5??C attained a manganese oxidation state of +3.3 or more after 7 months. Hausmannite aged at 25??C altered to ??MnOOH. The latter is more stable than a or ??MnOOH, and manganese oxidation states above 3.0 were not reached in hausmannite precipitates during 4 months of aging. Initial precipitation of MnCO3 rather than a form of oxide is likely only where oxygen availability is very low. Composition of solutions and oxidation state and morphology of solids were determined during the aging process by chemical analyses, X-ray and electron diffraction and transmission electron micrographs. ?? 1983.

  12. Manganese ion-assisted assembly of superparamagnetic graphene oxide microbowls

    NASA Astrophysics Data System (ADS)

    Tian, Zhengshan; Xu, Chunxiang; Li, Jitao; Zhu, Gangyi; Xu, Xiaoyong; Dai, Jun; Shi, Zengliang; Lin, Yi

    2014-03-01

    A facile manganese ion Mn(II)-assisted assembly has been designed to fabricate microbowls by using graphene oxide nanosheets as basic building blocks, which were exfoliated ultrasonically from the oxidized soot powders in deionized water. From the morphology evolution observations of transmission electron microscope and scanning electron microscope, a coordinating-tiling-collapsing manner is proposed to interpret the assembly mechanism based on attractive Van der Waals forces, π-π stacking, and capillary action. It is interesting to note that the as-prepared microbowls present a room temperature superparamagnetic behavior.

  13. Manganese ion-assisted assembly of superparamagnetic graphene oxide microbowls

    SciTech Connect

    Tian, Zhengshan; Xu, Chunxiang Li, Jitao; Zhu, Gangyi; Xu, Xiaoyong; Dai, Jun; Shi, Zengliang; Lin, Yi

    2014-03-24

    A facile manganese ion Mn(II)-assisted assembly has been designed to fabricate microbowls by using graphene oxide nanosheets as basic building blocks, which were exfoliated ultrasonically from the oxidized soot powders in deionized water. From the morphology evolution observations of transmission electron microscope and scanning electron microscope, a coordinating-tiling-collapsing manner is proposed to interpret the assembly mechanism based on attractive Van der Waals forces, π-π stacking, and capillary action. It is interesting to note that the as-prepared microbowls present a room temperature superparamagnetic behavior.

  14. Validation of In-Situ Iron-Manganese Oxide Coated Stream Pebbles as Sensors for Arsenic Source Monitoring

    NASA Astrophysics Data System (ADS)

    Blake, J.; Peters, S. C.; Casteel, A.

    2013-12-01

    Locating nonpoint source contaminant fluxes can be challenging due to the inherent heterogeneity of source and of the subsurface. Contaminants such as arsenic are a concern for drinking water quality and ecosystem health. Arsenic contamination can be the result of several natural and anthropogenic sources, and therefore it can be difficult to trace and identify major areas of arsenic in natural systems. Identifying a useful source indicator for arsenic is a crucial step for environmental remediation efforts. Previous studies have found iron-manganese oxide coated streambed pebbles as useful source indicators due to their high attraction for heavy metals in water. In this study, pebbles, surface water at baseflow and nearby rocks were sampled from the Pennypack Creek and its tributaries, in southwestern Pennsylvania, to test the ability of coated streambed pebbles as environmental source indicators for arsenic. Quartz pebbles, 5-7 cm in diameter, were sampled to minimize elemental contamination from rock chemistry. In addition, quartz provides an excellent substrate for iron and manganese coatings to form. These coatings were leached from pebbles using 4M nitric acid with 0.1% concentrated hydrochloric acid. Following sample processing, analyses were performed using an ICP-MS and the resulting data were spatially organized using ArcGIS software. Arsenic, iron and manganese concentrations in the leachate are normalized to pebble surface area and each location is reported as a ratio of arsenic to iron and manganese. Results suggest that iron-manganese coated stream pebbles are useful indicators of arsenic location within a watershed.

  15. Manganese oxide nanosheets and a 2D hybrid of graphene-manganese oxide nanosheets synthesized by liquid-phase exfoliation

    NASA Astrophysics Data System (ADS)

    Coelho, João; Mendoza-Sánchez, Beatriz; Pettersson, Henrik; Pokle, Anuj; McGuire, Eva K.; Long, Edmund; McKeon, Lorcan; Bell, Alan P.; Nicolosi, Valeria

    2015-06-01

    Manganese oxide nanosheets were synthesized using liquid-phase exfoliation that achieved suspensions in isopropanol (IPA) with concentrations of up to 0.45 mg ml-1. A study of solubility parameters showed that the exfoliation was optimum in N,N-dimethylformamide followed by IPA and diethylene glycol. IPA was the solvent of choice due to its environmentally friendly nature and ease of use for further processing. For the first time, a hybrid of graphene and manganese oxide nanosheets was synthesized using a single-step co-exfoliation process. The two-dimensional (2D) hybrid was synthesized in IPA suspensions with concentrations of up to 0.5 mg ml-1 and demonstrated stability against re-aggregation for up to six months. The co-exfoliation was found to be a energetically favorable process in which both solutes, graphene and manganese oxide nanosheets, exfoliate with an improved yield as compared to the single-solute exfoliation procedure. This work demonstrates the remarkable versatility of liquid-phase exfoliation with respect to the synthesis of hybrids with tailored properties, and it provides proof-of-concept ground work for further future investigation and exploitation of hybrids made of two or more 2D nanomaterials that have key complementary properties for various technological applications.

  16. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore

    USGS Publications Warehouse

    Okita, P.M.; Maynard, J.B.; Spiker, E. C.; Force, E.R.

    1988-01-01

    Unlike other marine-sedimentary manganese ore deposits, which are largely composed of manganese oxides, the primary ore at Molango (Hidalgo State, Mexico) is exclusively manganese carbonate (rhodochrosite, Mn-calcite, kutnahorite). Stable isotope studies of the carbonates from Molango provide critical new information relevant to the controversy over syngenetic and diagenetic models of stratiform manganese deposit formation. Negative ??13C values for carbonates from mineralized zones at Molango are strongly correlated with manganese content both on a whole rock scale and by mineral species. Whole rock ??13C data fall into three groups: high-grade ore = -16.4 to -11.5%.; manganese-rich, sub-ore-grade = -5.2 to 0%.; and unmineralized carbonates = 0 to +2.5%. (PDB). ??18O data show considerable overlap in values among the three groups: +4.8 to -2.8, -5.4 to -0.3%., and -7.4 to +6.2 (PDB), respectively. Isotopic data for individual co-existing minerals suggest a similar separation of ??13C values: ??13C values from calcite range from -1.1 to +0.7%. (PDB), whereas values from rhodochrosite are very negative, -12.9 to -5.5%., and values from kutnahorite or Mn-calcite are intermediate between calcite and rhodochrosite. 13C data are interpreted to indicate that calcite (i.e. unmineralized carbonate) formed from a normal marine carbon reservoir. However, 13C data for the manganese-bearing carbonates suggest a mixed seawater and organic source of carbon. The presence of only trace amounts of pyrite suggests sulfate reduction may have played a minor part in oxidizing organic matter. It is possible that manganese reduction was the predominant reaction that oxidized organic matter and that it released organic-derived CO2 to produce negative ??13C values and manganese carbonate mineralization. ?? 1988.

  17. Constraints on superoxide mediated formation of manganese oxides

    PubMed Central

    Learman, Deric R.; Voelker, Bettina M.; Madden, Andrew S.; Hansel, Colleen M.

    2013-01-01

    Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2−) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O2− with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation. PMID:24027565

  18. Formation and properties of nanostructured colloidal manganese oxide particles obtained through the thermally controlled transformation of manganese carbonate precursor phase.

    PubMed

    Škapin, Srečo D; Čadež, Vida; Suvorov, Danilo; Sondi, Ivan

    2015-11-01

    Structurally and morphologically different colloidal manganese oxide solids, including manganosite (MnO), bixbyite (Mn2O3) and hausmannite (Mn(2+)[Mn(3+)]2O4), were obtained through the initial biomimetically induced precipitation of a uniform, nanostructured and micron-sized rhodochrosite (MnCO3) precursor phase and their subsequent thermally controlled transformation into oxide structures in air and Ar/H2 atmospheres. The structures and morphology of the obtained precipitates were investigated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). Their surface properties were investigated by electrophoretic mobilities (EPM) and specific surface area (SSA) measurements. The results showed that the structurally diverse, micron-sized, spherical manganese oxide particles exhibit unusual and fascinating nanostructured surface morphologies. These were developed through the coalescence of an initially formed, nanosized, crystalline, manganese carbonate precursor phase which, during the heating, transformed into coarser, irregular, elongated, micron-sized, manganese oxide solids. It was also shown that structural transformations and morphological tailoring were followed by significant changes in the physico-chemical properties of the obtained solids. Their SSA values were drastically reduced as a result of the progressive coalescence at the particle surfaces occurring at higher temperatures. The isoelectric points (IEPs) of the obtained manganese oxides were diverse. This is the consequence of their range of crystal-chemical properties that governed the complex physico-chemical processes at the interface of the manganese oxide solid and the aqueous solution. The results of this study may lead to a conceptually new method for the synthesis of high-performance, nanostructured, manganese oxide solids with desirable structural, morphological and surface properties. PMID:26151565

  19. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Kang, J.-K.; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ??REEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ??REE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect the redox conditions of seawater. The concentration of elements in hydrogenetic Fe-Mn crusts depends on a wide variety of water column and crust surface characteristics, whereas concentration of elements in hydrothermal oxide deposits depends of the intensity of leaching, rock types leached, and precipitation of sulphides at depth in the hydrothermal system.

  20. Biological manganese oxidation by Pseudomonas putida in trickling filters.

    PubMed

    McKee, Kyle P; Vance, Cherish C; Karthikeyan, Raghupathy

    2016-06-01

    Biological oxidation has been researched as a viable alternative for treating waters with high manganese (Mn) concentrations, typically found in mine drainage or in some geological formations. In this study, laboratory-scale trickling filters were constructed to compare the Mn removal efficiency between filters inoculated with the Mn oxidizing bacteria, Pseudomonas putida, and filters without inoculation. Manganese oxidation and removal was found to be significantly greater in trickling filters with Pseudomonas putida after startup times of only 48 h. Mn oxidation in Pseudomonas putida inoculated trickling filters was up to 75% greater than non-inoculated filters. One-dimensional advective-dispersive models were formulated to describe the transport of Mn in trickling filter porous media. Based on the experimental transport parameters obtained, the model predicted that a filter depth of only 16 cm is needed to reduce influent concentration of 10 mg L(-1) to 0.05 mg L(-1). PMID:26943637

  1. Manganese chlorins immobilized on silica as oxidation reaction catalysts.

    PubMed

    Castro, Kelly A D F; Pires, Sónia M G; Ribeiro, Marcos A; Simões, Mário M Q; Neves, M Graça P M S; Schreiner, Wido H; Wypych, Fernando; Cavaleiro, José A S; Nakagaki, Shirley

    2015-07-15

    Synthetic strategies that comply with the principles of green chemistry represent a challenge: they will enable chemists to conduct reactions that maximize the yield of products with commercial interest while minimizing by-products formation. The search for catalysts that promote the selective oxidation of organic compounds under mild and environmentally friendly conditions constitutes one of the most important quests of organic chemistry. In this context, metalloporphyrins and analogues are excellent catalysts for oxidative transformations under mild conditions. In fact, their reduced derivatives chlorins are also able to catalyze organic compounds oxidation effectively, although they have been still little explored. In this study, we synthesized two chlorins through porphyrin cycloaddition reactions with 1.3-dipoles and prepared the corresponding manganese chlorins (MnCHL) using adequate manganese(II) salts. These MnCHL were posteriorly immobilized on silica by following the sol-gel process and the resulting solids were characterized by powder X-ray diffraction (PXRD), UVVIS spectroscopy, FTIR, XPS, and EDS. The catalytic activity of the immobilized MnCHL was investigated in the oxidation of cyclooctene, cyclohexene and cyclohexane and the results were compared with the ones obtained under homogeneous conditions. PMID:25841060

  2. Rechargeable 3 V Li cells using hydrated lamellar manganese oxide

    SciTech Connect

    Bach, S.; Pereira-Ramos, J.P.; Baffier, N.

    1996-11-01

    The synthesis and the electrochemical features of hydrated lamellar manganese oxides are reported. The authors use the reduction of aqueous permanganate solution by fumaric acid and the oxidation of manganese hydroxide by an aqueous permanganate solution to obtain sol-gel birnessite and classical X-exchanged birnessites (X = Li, Al, Na), respectively. The high oxidation state of Mn associated with the 2D character of the hot lattice allows high specific capacities (150 to 200 Ah/kg) available in the potential range of 4 to 2 V. Interlayer water provides the structural stability of the host lattice required for long cycling. Rechargeable two-electrode Li cells using starved or flooded electrolytes were built with the cathodic materials. The batteries exhibit a satisfactory behavior with a specific capacity of 160 Ah/kg recovered after 30 cycles at the C/20 discharge-charge rate for the sol-gel birnessite. This paper demonstrates an interest in cathodic materials based on oxides containing structural water for use in secondary Li batteries.

  3. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Johnson, Christopher S.; Kang, Sun-Ho; Thackeray, Michael M.

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5

  4. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0

  5. Mesoporous Manganese Oxide Catalyzed Aerobic Oxidative Coupling of Anilines To Aromatic Azo Compounds.

    PubMed

    Dutta, Biswanath; Biswas, Sourav; Sharma, Vinit; Savage, Nancy Ortins; Alpay, S Pamir; Suib, Steven L

    2016-02-01

    Herein we introduce an environmentally friendly approach to the synthesis of symmetrical and asymmetrical aromatic azo compounds by using air as the sole oxidant under mild reaction conditions in the presence of cost-effective and reusable mesoporous manganese oxide materials. PMID:26749298

  6. Chemical synthesis and characterization of manganese oxide coated Ni particles

    NASA Astrophysics Data System (ADS)

    An, Jing; Xu, LiHong; He, Jun; Zhao, DongLiang; Liu, ZhongYuan

    2013-08-01

    Nanosized Ni particles with an average diameter of about 8 nm were prepared by reducing of NiCl2 with sodium borohydride (NaBH4) in aqueous solution. By moderate annealing in protective atmosphere, the composite grew up to be 15-20 nm particles. Both of the as-prepared and annealed Ni particles were coated by a layer of manganese oxide via decomposition reaction in aqueous KMnO4 solution. Hysteresis loops of as-prepared samples show a large increase in the magnetization with decreasing temperature and an unsaturated component at high magnetic field. In contrast, the ferromagnetic characteristics of annealed one are much stronger with large magnetization and coercivity. The thermomagnetic curves verified the coexistence of ferromagnetic Ni and antiferromangetic Mn oxide phases. But there exists no exchange bias behavior in the samples, even though the interface structure between the ferromagnetic Ni core and the antiferromagnetic manganese oxides has been distinctly formed. The absence of exchange bias probably originates from the weak ferromagnetic characteristic of Ni cores.

  7. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara

    2012-04-28

    CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. PMID:22382465

  8. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems.

    PubMed

    Grebel, Janel E; Charbonnet, Joseph A; Sedlak, David L

    2016-01-01

    To advance cost-effective strategies for removing trace organic contaminants from urban runoff, the feasibility of using manganese oxides as a geomedia amendment in engineered stormwater infiltration systems to oxidize organic contaminants was evaluated. Ten representative organic chemicals that have previously been detected in urban stormwater were evaluated for reactivity in batch experiments with birnessite. With respect to reactivity, contaminants could be classified as: highly reactive (e.g., bisphenol A), moderately reactive (e.g., diuron) and unreactive (e.g., tris(2-chloro-1-propyl)phosphate). Bisphenol A and diuron reacted with birnessite to produce a suite of products, including ring-cleavage products for bisphenol A and partially dechlorinated products for diuron. Columns packed with manganese oxide-coated sand were used evaluate design parameters for an engineered infiltration system, including necessary contact times for effective treatment, as well as the impacts of stormwater matrix variables, such as solution pH, concentration of natural organic matter and major anions and cations. The manganese oxide geomedia exhibited decreased reactivity when organic contaminants were oxidized, especially in the presence of divalent cations, bicarbonate, and natural organic matter. Under typical conditions, the manganese oxides are expected to retain their reactivity for 25 years. PMID:26521218

  9. Manganese

    Integrated Risk Information System (IRIS)

    Manganese ; CASRN 7439 - 96 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  10. Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen

    SciTech Connect

    Hulley, Elliott; Kumar, Neeraj; Raugei, Simone; Bullock, R. Morris

    2015-10-05

    Oxidation of H2 (1 atm) is catalyzed by the manganese electrocatalysts [(P2N2)MnI(CO)(bppm)]+ and [(PNP)MnI(CO)(bppm)]+ (P2N2= 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; PNP = (Ph2PCH2)2NMe); bppm = (PArF2)2CH2, and ArF = 3,5-(CF3)2C6H3). In fluorobenzene solvent using 2,6-lutidine as the exogeneous base, the turnover frequency for [(P2N2)MnI(CO)(bppm)]+ is 3.5 s-1 with an estimated overpotential of 590 mV. For [(PNP)MnI(CO)(bppm)], in fluorobenzene solvent using N-methylpyrrolidine as the exogeneous base, the turnover frequency is 1.4 s-1 with an estimated overpotential of 700 mV. Density functional theory calculations suggest that the slow step in the catalytic cycle is proton transfer from the oxidized 17-electron manganese hydride, e.g., [(P2N2)MnIIH(CO)(bppm)]+ to the pendant amine. The computed activation barrier for intramolecular proton transfer from the metal to the pendant amine is 20.4 kcal/mol in [(P2N2)MnIIH(CO)(bppm)]+ and 21.3 kcal/mol in [(PNP)MnI(CO)(bppm)]. The high barrier appears to result from both the unfavorability of metal-to-nitrogen proton transfer (thermodynamically uphill by 6.6 pKa units, 9 kcal/mol), as well as the relatively long manganese-nitrogen separation in the MnIIH complexes.

  11. Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction.

    PubMed

    Periyasamy, Sivakumar; Subramanian, Palaniappan; Levi, Elena; Aurbach, Doron; Gedanken, Aharon; Schechter, Alex

    2016-05-18

    Spinel nickel manganese oxides, widely used materials in the lithium ion battery high voltage cathode, were studied in urea oxidation catalysis. NiMn2O4, Ni1.5Mn1.5O4, and MnNi2O4 were synthesized by a simple template-free hydrothermal route followed by a thermal treatment in air at 800 °C. Rietveld analysis performed on nonstoichiometric nickel manganese oxide-Ni1.5Mn1.5O4 revealed the presence of three mixed phases: two spinel phases with different lattice parameters and NiO unlike the other two spinels NiMn2O4 and MnNi2O4. The electroactivity of nickel manganese oxide materials toward the oxidation of urea in alkaline solution is evaluated using cyclic voltammetric measurements. Ni1.5Mn1.5O4 exhibits excellent redox characteristics and lower charge transfer resistances in comparison with other compositions of nickel manganese oxides and nickel oxide prepared under similar conditions.The Ni1.5Mn1.5O4modified electrode oxidizes urea at 0.29 V versus Ag/AgCl with a corresponding current density of 6.9 mA cm(-2). At a low catalyst loading of 50 μg cm(-2), the urea oxidation current density of Ni1.5Mn1.5O4 in alkaline solution is 7 times higher than that of nickel oxide and 4 times higher than that of NiMn2O4 and MnNi2O4, respectively. PMID:27123873

  12. Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction

    SciTech Connect

    Lee, Ji-Hoon; Kennedy, David W.; Dohnalkova, Alice; Moore, Dean A.; Nachimuthu, Ponnusamy; Reed, Samantha B.; Fredrickson, Jim K.

    2011-12-13

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 produced {gamma}-MnS (rambergite) nanoparticles during the concurrent reduction of MnO{sub 2} and thiosulfate coupled to H{sub 2} oxidation. To investigate effect of direct microbial reduction of MnO{sub 2} on MnS formation, two MR-1 mutants defective in outer membrane c-type cytochromes ({Delta}mtrC/{Delta}omcA and {Delta}mtrC/{Delta}omcA/{Delta}mtrF) were also used and it was determined that direct reduction of MnO{sub 2} was dominant relative to chemical reduction by biogenic sulfide generated from thiosulfate reduction. Although bicarbonate was excluded from the medium, incubations of strain MR-1 with lactate as the electron donor produced MnCO{sub 3} (rhodochrosite) as well as MnS in nearly equivalent amounts as estimated by micro X-ray diffraction (micro-XRD) analysis. It was concluded that carbonate released from lactate metabolism promoted MnCO{sub 3} formation and that Mn(II) mineralogy was strongly affected by carbonate ions even in the presence of abundant sulfide and weakly alkaline conditions expected to favor the precipitation of MnS. Formation of MnS, as determined by a combination of micro-XRD, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction analyses was consistent with equilibrium speciation modeling predictions. Biogenic manganese sulfide may be a manganese sink in the Mn biogeochemical cycle in select environments such as deep anoxic marine basins within the Baltic Sea.

  13. Manganese oxide minerals: crystal structures and economic and environmental significance.

    PubMed

    Post, J E

    1999-03-30

    Manganese oxide minerals have been used for thousands of years-by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry. PMID:10097056

  14. Nickel and Lead Sequestration in Manganese Oxide-coated Montmorillonite

    SciTech Connect

    Boonfueng,T.; Axe, L.; Xu, Y.; Tyson, T.

    2006-01-01

    Amorphous hydrous manganese oxide (HMO) is an important mineral in soils and sediments influencing the mobility and bioavailability of metal contaminants. In this study, nickel and lead sorption to discrete HMO and HMO-coated montmorillonite was investigated mechanistically. The effect of pH and concentration revealed that when normalized to the mass of oxide present, the HMO-coated montmorillonite behaved similarly to the discrete Mn oxide, where both ions sorbed onto HMO-coated montmorillonite as inner-sphere complexes. Ni coordinated to the vacancy sites in the Mn oxide structure, while Pb formed bidentate corner-sharing complexes. These coordination environments were observed not only as a function of loading, pH, and ionic strength, but also in long-term studies where sorption increased by as much as 100% (from 6 x 10{sup -4} to 1.2 x 10{sup -3} mol Ni/g HMO-coated montmorillonite). In this slower sorption process, intraparticle diffusion, the internal surface sites along microporous walls appear to be no different than external ones. Best fit diffusivities ranged from 10{sup -12} to 10{sup -13} cm{sup 2}/s for Ni and 10{sup -17} to 10{sup -20} cm{sup 2}/s for Pb. The significant difference in the diffusivities for the two ions is consistent with site activation theory, where theoretical surface diffusivities were predicted and given their error were in agreement with experimental results. Mn oxides sequester heavy metals in the environment.

  15. Manganese oxide minerals: Crystal structures and economic and environmental significance

    PubMed Central

    Post, Jeffrey E.

    1999-01-01

    Manganese oxide minerals have been used for thousands of yearsby the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry. PMID:10097056

  16. Manganese Oxide Nanoarray-Based Monolithic Catalysts: Tunable Morphology and High Efficiency for CO Oxidation.

    PubMed

    Chen, Sheng-Yu; Song, Wenqiao; Lin, Hui-Jan; Wang, Sibo; Biswas, Sourav; Mollahosseini, Mehdi; Kuo, Chung-Hao; Gao, Pu-Xian; Suib, Steven L

    2016-03-30

    A generic one-pot hydrothermal synthesis route has been successfully designed and utilized to in situ grow uniform manganese oxide nanorods and nanowires onto the cordierite honeycomb monolithic substrates, forming a series of nanoarray-based monolithic catalysts. During the synthesis process, three types of potassium salt oxidants have been used with different reduction potentials, i.e., K2Cr2O7, KClO3, and K2S2O8, denoted as HM-DCM, HM-PCR, and HM-PSF, respectively. The different reduction potentials of the manganese source (Mn(2+)) and oxidants induced the formation of manganese oxide nanoarrays with different morphology, surface area, and reactivity of carbon monoxide (CO) oxidation. K2Cr2O7 and KClO3 can induce sharp and long nanowires with slow growth rates due to their low reduction potentials. In comparison, the nanoarrays of HM-PSF presented shorter nanorods but displayed an efficient 90% CO oxidation conversion at 200 °C (T90) without noble-metal loading. Reducibility tests for the three monolithic catalysts by hydrogen temperature-programmed reduction revealed an activation energy order of HM-PSF > HM-DCM > HM-PCR for CO oxidation. The characterizations of oxygen temperature-programmed desorption and X-ray photoelectron spectroscopy indicated the abundant surface-adsorbed oxygen and lattice oxygen contributing to the superior reactivity of HM-PSF. The straightforward synthetic process showed a scalable, low-cost, and template-free method to fabricate manganese oxide nanoarray monolithic catalysts for exhaust treatment. PMID:26954301

  17. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the spinel Mn3O4) for smaller particle size and in the presence of surface hydration. Chemisorption of water onto anhydrous nanophase Mn2O 3 surfaces promotes rapidly reversible redox phase changes at room temperature as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Water adsorption microcalorimetry (in situ) at room temperature measured the strongly exothermic integral enthalpy of water adsorption (-103.5 kJ/mol) and monitored the energetics of the redox phase transformation. Hydration-driven redox transformation of anhydrous nanophase Mn(III) 2O3, (high surface enthalpy of anhydrous surfaces 1.77 +/- 0.10 J/m2) to Mn(II,III)3O4 (lower surface enthalpy 0.96 +/- 0.08 J/m2) occurred during the first few doses of water vapor. Surface reduction of nanoparticle bixbyite (Mn 2O3) to hausmannite (Mn3O4) occurs under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Layered structure manganese oxides contain alkali or alkaline earth cations and water, are generally fine-grained, and have considerable thermodynamic stability. The surface enthalpies (SE) of layered and tunnel structure complex manganese oxides are significantly lower than those of the binary manganese oxide phases. The SE for hydrous surfaces and overall manganese average oxidation state (AOS) (value in parentheses) are: cryptomelane 0.77 +/- 0.10 J/m 2 (3.78), sodium birnessite 0.69 +/- 0.13 J/m2 (3.56), potassium birnessite 0.55 +/- 0.11 J/m2 (3.52), and calcium birnessite 0.41 +/- 0.11 J/m2 (3.50). Surface enthalpies of hydrous surfaces of the calcium manganese oxide nanosheets are: deltaCa 0.39MnO2.3nH2O 0.75 +/- 0.10 J/m2 (3.89) and deltaCa0.43MnO2.3nH2O 0.57 +/- 0.12 J/m2 (3.68). The surface enthalpy of the complex manganese oxides appears to decrease with decreasing manganese average oxidation state, that is, with greater mixed valence manganese (Mn 3+/4+). Low surface energy suggests loose binding of H2O on the internal and external surfaces and may be critical to catalysis in both natural and technological settings.

  18. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora.

    PubMed

    Urza, U; Fernando Larrondo, L; Lobos, S; Larran, J; Vicua, R

    1995-09-01

    A total of 11 manganese peroxidase isoenzymes (MnP1-MnP11) with isoelectric points (pIs) in the range of 4.58-3.20 were isolated from liquid- and solid-state cultures of the basidiomycete Ceriporiopsis subvermispora. In the presence of hydrogen peroxide, these isoenzymes showed different requirements for Mn(II) in the oxidation of vanillylacetone, o-dianisidine, p-anisidine and ABTS, whereas oxidation of guaiacol by any isoenzyme did not take place when this metal was omitted. Km values for o-dianisidine and p-anisidine in the absence of Mn(II) are in the range of 0.5-1.0 mM and 4.5-42.0 mM, respectively. Oxalate and citrate, but not tartrate, accelerate the oxidation of o-dianisidine, both in the presence and in the absence of Mn(II). MnPs from this fungus are able to oxidize kojic acid without externally added hydrogen peroxide, indicating that they can also act as oxidases. In this reaction, however, the requirement for Mn(II) is absolute. PMID:7672112

  19. Manganese oxidation by bacterial isolates from the Indian ridge system.

    PubMed

    Fernandes, Sheryl Oliveira; Krishnan, K P; Khedekar, V D; Loka Bharathi, P A

    2005-10-01

    The abundance and activity of culturable manganese-oxidizing bacteria were assessed from near-bottom water samples of the tectonically active Carlsberg Ridge. Retrievable counts as colony forming units (CFU) on dilute nutrient agar medium (dilNA=2 gm l(-1) nutrient broth+2% agar) and on dilNA supplemented with 1, 2 and 3 mM MnCl(2).4H(2)O were in the order of 10(6) CFU l(-1). Retrievability of heterotrophs ranged from non-detectable levels (ND) to 2.82 x 10(6) CFU l(-1). The retrievable counts on Mn amended dilNA ranged from ND to 3.21 x 10(6), 1.47 x 10(6) and 1.45 x 10(6) CFU l(-1) on 1, 2 and 3 mM, respectively. About 87% of the Mn tolerant isolates (n=39) showed taxonomic affinities to Pseudomonas I and II sp. Two representative strains CR35 and CR48 (CR-Carlsberg Ridge) isolated on manganese-supplemented media were tested for their ability to tolerate a range of Mn amendments from 1 nM to 100 mM in terms of growth and respiration. CR35 represents 66% of the total CFU (3.04 x 10(6) CFU l(-1)), while CR48 represented only 6% of the total CFU (1.05 x 10(6) CFU l(-1)). The colonies of these two isolates were dark brown in color suggesting precipitation of Mn as oxide. Tests for the effect on growth and respiration were conducted in media simulating heterotrophic (amended with 0.01% glucose) and lithotrophic (unamended) conditions. Maximum stimulation in growth and respiration of CR35 occurred at 100 microM Mn both in unamended and amended media. At levels of Mn greater than 100 microM the counts decreased steadily. Total respiring cells of CR48 were stimulated to a maximum at 1 microM Mn in unamended medium and 1 nM in amended medium. Total cells counts for the same decreased beyond 100 microM Mn in unamended and 1 nM in amended medium. The isolates were tested for their ability to oxidize Mn amendments from 1 microM to 10 mM Mn. At the end of a 76-day incubation period, there was evidence of manganese oxide precipitation at high Mn concentrations (>or=1 mM) as a dark brown coloration on the sides of culture tubes. Highest Mn oxidation rates were observed at 10 mM Mn(II) concentration with CR35 oxidizing 27 and 25 microM Mn day(-1) in unamended and amended condition, respectively. CR48 oxidized Mn at the rate of 26 microM Mn day(-1) in unamended medium and 35 microM Mn day(-1) in amended medium. Scanning electron microscope (SEM) observations of both isolates revealed free-living cells in clustered matrices approximately 2 microm diameter. Energy dispersive spectrum of the cell matrix of CR35 cultured in 1 mM Mn detected 30% Mn, while the cell aggregates of CR48 harbored 7-10% Mn. The relatively high specific activity of these mixotrophic bacteria under relatively oligotrophic conditions suggests that they may be responsible for scavenging dissolved Mn from the Carlsberg Ridge waters and could potentially participate in oxidation. PMID:16333749

  20. Nanostructured manganese oxide particles from coordination complex decomposition and their catalytic properties for ethanol oxidation.

    PubMed

    Palza, Humberto; Maturana, Andrés; Gracia, Francisco; Neira, Andrónico; Fuenzalida, Victor M; Avila, Jonathan; Sanchez-Ballester, Noelia M; Elsegood, Mark R J; Teat, Simon J; Ariga, Katsuhiko; Hill, Jonathan P

    2012-10-01

    Novel manganese oxide particles with complex morphologies and different nanostructures (i.e., spherical/lamellar) were synthesized by initial preparation of a coordination complex of manganese with 1,4,7,10-tetraazacyclododecane (cyclen), followed by characterization of the nanostructured oxide as a catalytic material for ethanol oxidation. The samples present a bulk gamma-MnO2 structure although X-ray photoelectron spectroscopy analysis reveals that their surfaces have different chemical compositions. Some of these nanostructured particles show high catalytic activities for ethanol oxidation enabling a decrease of the reaction temperature by more than 80 degrees C as compared with traditional MnO2 particles. The high catalytic activity of the particles depends on their morphology and a relationship between morphology and specific area was established. It is proposed that these novel nanostructured manganese oxide particles may be highly active in the catalytic oxidation of other volatile organic compounds (VOCs) opening up their further development for environmental applications. PMID:23421183

  1. Monte Carlo study of double exchange interaction in manganese oxide

    SciTech Connect

    Naa, Christian Fredy; Suprijadi, Viridi, Sparisoma Djamal, Mitra; Fasquelle, Didier

    2015-09-30

    In this paper we study the magnetoresistance properties attributed by double exchange (DE) interaction in manganese oxide by Monte Carlo simulation. We construct a model based on mixed-valence Mn{sup 3+} and Mn{sup 4+} on the general system of Re{sub 2/3}Ae{sub 1/3}MnO{sub 3} in two dimensional system. The conduction mechanism is based on probability of e{sub g} electrons hopping from Mn{sup 3+} to Mn{sup 4+}. The resistivity dependence on temperature and the external magnetic field are presented and the validity with related experimental results are discussed. We use the resistivity power law to fit our data on metallic region and basic activated behavior on insulator region. On metallic region, we found our result agree well with the quantum theory of DE interaction. From general arguments, we found our simulation agree qualitatively with experimental results.

  2. Manganese oxide microswitch for electronic memory based on neural networks

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Daud, T.; Moopenn, A.; Thakoor, A. P.; Khanna, S. K.

    1989-01-01

    A solid-state, resistance tailorable, programmable-once, binary, nonvolatile memory switch based on manganese oxide thin films is reported. MnO(x) exhibits irreversible memory switching from conducting (on) to insulating (off) state, with the off and on resistance ratio of greater than 10,000. The switching mechanism is current-triggered chemical transformation of a conductive MnO(2-Delta) to an insulating Mn2O3 state. The energy required for switching is of the order of 4-20 nJ/sq micron. The low switching energy, stability of the on and off states, and tailorability of the on state resistance make these microswitches well suited as programmable binary synapses in electronic associative memories based on neural network models.

  3. Monte Carlo study of double exchange interaction in manganese oxide

    NASA Astrophysics Data System (ADS)

    Naa, Christian Fredy; Suprijadi, Viridi, Sparisoma; Fasquelle, Didier; Djamal, Mitra

    2015-09-01

    In this paper we study the magnetoresistance properties attributed by double exchange (DE) interaction in manganese oxide by Monte Carlo simulation. We construct a model based on mixed-valence Mn3+ and Mn4+ on the general system of Re2/3Ae1/3MnO3 in two dimensional system. The conduction mechanism is based on probability of eg electrons hopping from Mn3+ to Mn4+. The resistivity dependence on temperature and the external magnetic field are presented and the validity with related experimental results are discussed. We use the resistivity power law to fit our data on metallic region and basic activated behavior on insulator region. On metallic region, we found our result agree well with the quantum theory of DE interaction. From general arguments, we found our simulation agree qualitatively with experimental results.

  4. Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols

    NASA Astrophysics Data System (ADS)

    Adil, Syed F.; Alabbad, Saad; Kuniyil, Mufsir; Khan, Mujeeb; Alwarthan, Abdulrahman; Mohri, Nils; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq Hussain

    2015-02-01

    Vanadia nanoparticles supported on nickel manganese mixed oxides were synthesized by co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as oxidant. It was observed that the calcination temperature and the size of particles play an important role in the catalytic process. The catalyst was evaluated for its oxidation property against aliphatic and aromatic alcohols, which was found to display selectivity towards aromatic alcohols. The samples were characterized by employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, and X-ray photoelectron spectroscopy.

  5. Towards a mechanistic understanding of carbon stabilization in manganese oxides

    PubMed Central

    Johnson, Karen; Purvis, Graham; Lopez-Capel, Elisa; Peacock, Caroline; Gray, Neil; Wagner, Thomas; März, Christian; Bowen, Leon; Ojeda, Jesus; Finlay, Nina; Robertson, Steve; Worrall, Fred; Greenwell, Chris

    2015-01-01

    Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550 °C) and the other is thermally more labile (<550 °C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems. PMID:26194625

  6. Towards a mechanistic understanding of carbon stabilization in manganese oxides.

    PubMed

    Johnson, Karen; Purvis, Graham; Lopez-Capel, Elisa; Peacock, Caroline; Gray, Neil; Wagner, Thomas; März, Christian; Bowen, Leon; Ojeda, Jesus; Finlay, Nina; Robertson, Steve; Worrall, Fred; Greenwell, Chris

    2015-01-01

    Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550 °C) and the other is thermally more labile (<550 °C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems. PMID:26194625

  7. Nature of Activated Manganese Oxide for Oxygen Evolution.

    PubMed

    Huynh, Michael; Shi, Chenyang; Billinge, Simon J L; Nocera, Daniel G

    2015-12-01

    Electrodeposited manganese oxide films (MnOx) are promising stable oxygen evolution catalysts. They are able to catalyze the oxygen evolution reaction in acidic solutions but with only modest activity when prepared by constant anodic potential deposition. We now show that the performance of these catalysts is improved when they are "activated" by potential cycling protocols, as measured by Tafel analysis (where lower slope is better): upon activation the Tafel slope decreases from ∼120 to ∼70 mV/decade in neutral conditions and from ∼650 to ∼90 mV/decade in acidic solutions. Electrochemical, spectroscopic, and structural methods were employed to study the activation process and support a mechanism where the original birnessite-like MnOx (δ-MnO2) undergoes a phase change, induced by comproportionation with cathodically generated Mn(OH)2, to a hausmannite-like intermediate (α-Mn3O4). Subsequent anodic conditioning from voltage cycling or water oxidation produces a disordered birnessite-like phase, which is highly active for oxygen evolution. At pH 2.5, the current density of activated MnOx (at an overpotential of 600 mV) is 2 orders of magnitude higher than that of the original MnOx and begins to approach that of Ru and Ir oxides in acid. PMID:26574923

  8. Mn(II) removal from groundwater with manganese oxide-coated filter media.

    PubMed

    Piispanen, Jutta K; Sallanko, Jarmo T

    2010-11-01

    Removing soluble manganese from groundwater requires a strong chemical oxidant, such as ozone or potassium permanganate, or raising the pH to alkaline value (over pH 9). Biological or adsorption processes can also be applied. Filter media naturally or industrially coated with manganese oxide are effective in adsorptive manganese removal. In this work, a layer of commercial manganese oxide coated medium was added to the top of an experimental sand/anthracite filter column to improve manganese removal. The coated layer was ca 28 cm thick (20% of the total filter depth) and the sand layer was 110 cm thick. The coated layer enhanced the manganese removal markedly. Manganese removal increased by over 91%, and < 0.02 mg/L of manganese remained in the treated water. Also iron removal was enhanced. Filters with added coated layer recovered faster than reference filter from filter backwashes. Sodium hypochlorite feed, which was tested in regeneration of the filter medium, had a slight negative effect on the filter performance. PMID:20924918

  9. Prophylactic use of polyvinylpyridine-N-oxide (PVNO) in baboons exposed to quartz dust

    SciTech Connect

    Goldstein, B.; Rendall, R.E.G.

    1987-04-01

    Twelve baboons were exposed to a quartz dust cloud. Four of these were also given polyvinylpyridine-N-oxide (PVNO) by aerosol and four received PVNO by aerosol and injection. A prophylactic effect was demonstrated during the course of treatment, but when treatment stopped the silicosis progressed to the same degree of severity as in the untreated animals.

  10. Sodium perxenate permits rapid oxidation of manganese for easy spectrophotometric determination

    NASA Technical Reports Server (NTRS)

    Bane, R. W.

    1967-01-01

    Sodium perxenate oxidizes manganese to permanganate almost instantaneously in dilute acid solution and without a catalyst. A solution is prepared by dissolving 200 mg of sodium perxenate in distilled water and diluting to 100 ml.

  11. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  12. Manganese peroxidase-catalyzed oxidative degradation of vanillylacetone.

    PubMed

    Hwang, Sangpill; Lee, Chang-Ha; Ahn, Ik-Sung; Park, Kwangyong

    2008-06-01

    When 4-(4-hydroxy-3-methoxy-phenyl)-2-butanone (vanillylacetone) was tested for manganese peroxidase (MnP)-catalyzed oxidation, it was found to be degraded with the cleavage of an aromatic ring. Among numerous products of vanillylacetone oxidation, four major ones were purified by thin-layer chromatography and identified using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analysis. Three of them maintained the aromatic ring structure and were identified as 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-butan-2-one, 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, and 4-[6,2'-dihydroxy-5,3'-dimethoxy-5'-(3-oxo-butyl)-biphenyl]-3-buten-2-one. Even though the fourth product could not be purified to a single compound, data from infrared spectroscopy showed that it did not have a benzene ring. From MS and NMR analysis, 3-(3-oxo-butyl)-hexa-2,4-dienedioic acid-1-methyl ester was tentatively suggested as the dominant species. The reaction mechanism was suggested on the basis of the structural information of these products. To our knowledge, this paper is the first report on aromatic ring cleavage of the phenolic compound by MnP. PMID:18472135

  13. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and... (MnSrO3) (PMN P-00-1121; CAS No. 12163-45-0) is subject to reporting under this section for...

  14. 40 CFR 721.10008 - Manganese strontium oxide (MnSrO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese strontium oxide (MnSrO3... Specific Chemical Substances § 721.10008 Manganese strontium oxide (MnSrO3). (a) Chemical substance and... (MnSrO3) (PMN P-00-1121; CAS No. 12163-45-0) is subject to reporting under this section for...

  15. Nano-porous manganese oxide formed by self-assembled agglomeration of nanocrystallites

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuyasu; Sasaki, Hidehiro; Morinaga, Yasunori; Yamada, Yuka

    2005-12-01

    We synthesized specific nano-porous dendritic structures similar to cedar leaves of manganese oxides using pulsed laser ablation (PLA) process, with the potential for use as highly active nano-catalysts. The nano-porous structures were formed by self-assembled agglomeration of nanocrystallites without templates. Furthermore, the dendritic nano-porous manganese oxide as an electrocatalyst showed a significant decrease in overpotential on oxygen reduction in alkaline electrolyte.

  16. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation.

    PubMed

    Roy, Mouni; Basak, Somjyoti; Naskar, Milan Kanti

    2016-02-10

    A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency. PMID:26815335

  17. Visible-Light-Driven Water Oxidation by a Molecular Manganese Vanadium Oxide Cluster.

    PubMed

    Schwarz, Benjamin; Forster, Johannes; Goetz, McKenna K; Yücel, Duygu; Berger, Claudia; Jacob, Timo; Streb, Carsten

    2016-05-17

    Photosynthetic water oxidation in plants occurs at an inorganic calcium manganese oxo cluster, which is known as the oxygen evolving complex (OEC), in photosystem II. Herein, we report a synthetic OEC model based on a molecular manganese vanadium oxide cluster, [Mn4 V4 O17 (OAc)3 ](3-) . The compound is based on a [Mn4 O4 ](6+) cubane core, which catalyzes the homogeneous, visible-light-driven oxidation of water to molecular oxygen and is stabilized by a tripodal [V4 O13 ](6-) polyoxovanadate and three acetate ligands. When combined with the photosensitizer [Ru(bpy)3 ](2+) and the oxidant persulfate, visible-light-driven water oxidation with turnover numbers of approximately 1150 and turnover frequencies of about 1.75 s(-1) is observed. Electrochemical, mass-spectrometric, and spectroscopic studies provide insight into the cluster stability and reactivity. This compound could serve as a model for the molecular structure and reactivity of the OEC and for heterogeneous metal oxide water-oxidation catalysts. PMID:27062440

  18. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae landslide southwest of Oahu has yielded samples with the greatest manganese-iron oxide crusts (9.5 mm thick) and therefore apparently represents the oldest submarine material yet found in the study area. The submarine volcanic field 100 km southwest of Oahu is apparently younger than the Waianae landslide. ?? 2004 Geological Society of America.

  19. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Yu, Yingchun

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  20. Visible and near-infrared spectra of manganese oxides: Detecting high manganese phases in Curiosity Mastcam multispectral images

    NASA Astrophysics Data System (ADS)

    Hardgrove, C. J.; Lanza, N.; Bell, J. F., III; Wiens, R. C.; Johnson, J. R.; Morris, R. V.

    2014-12-01

    The Mars Science Laboratory Curiosity rover's Chemcam instrument has identified manganese in relatively high abundance on several rock surfaces. The manganese abundances are several orders of magnitude greater than has been previously identified on Mars, indicating the presence of a manganese-rich phase. Although the specific phase has yet to be identified, these results suggest that the martian surface may have been much more highly oxidizing than has previously been recognized. The presence of a manganese-rich phase could provide an additional indicator of habitable aqueous environments. Given the importance of manganese for understanding past habitability, and the high abundances identified with Chemcam, we investigate the utility of using Mastcam multispectral imaging surveys to identify areas for subsequent detailed analysis with Chemcam. Vempati et al. showed that Mn3+ affect the reflectance spectra of Mn-bearing minerals. Specifically, relatively weak features due to electronic transitions and crystal field effects are observed in Mn-enriched hematites and geothites at 454, 554, 596 and 700 nm. The Mastcam-34 medium angle camera has filter band-passes at 550, 675 and 750nm, and we will explore the utility of using these bands (or combinations thereof) to determine if there is a contribution of Mn-bearing phases on spectra, specifically those that have been identified as having elevated Mn with Chemcam. The most common Mn-bearing mineral phase in terrestrial varnishes, Birnessite, has charge-transfer features that are similar to Fe-oxides but are centered at slightly longer wavelength band positions. Longer wavelength features are also common for other Mn-oxides, and this could be used to distinguish these phases from other Fe-oxide components. In this study we will present visible to near-infrared (0.4 - 3 µm) reflectance spectra on a suite of Mn-oxide laboratory standards. The set of standards includes Mn-oxide abundances that vary from less than 1 up to ~75 wt.%. Spectra will be downsampled to Mastcam bandpasses to determine if the effects of Mn-bearing phases could be identified from Mastcam multispectral observations in Gale Crater.

  1. A 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid as a promising structural model for the tyrosine 161/histidine 190-manganese cluster in photosystem II.

    PubMed

    Najafpour, Mohammad Mahdi; Amouzadeh Tabrizi, Mahmoud; Haghighi, Behzad; Govindjee

    2013-01-28

    In this communication, we report the synthesis, characterization, and electrochemistry of a 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid. Our results suggest that this compound is a promising model for the manganese cluster together with tyrosine-161 and histidine-190 in photosystem II of plants, algae and cyanobacteria. PMID:23178300

  2. Quartz and Hydrous Iron Oxides from the Bee Bluff Structure of South Texas

    NASA Astrophysics Data System (ADS)

    Graham, R. A.; Martin, M.; Thadhani, N. N.; Morosin, B.

    2006-07-01

    There is substantial information showing that the Bee Bluff structure is an impact site and that a residual crater can be identified. The thin hard cap of Carrizo Sandstone, Indio fm calcareous silt and a thin layer of iron-rich siltstone leads to impact processes in which the high pressure release wave proceeds promptly upward leading to a trapping of metamorphic products at the impact interface, a `bottom-up' pressure release. Release of water from goethite binder in the sandstone and from the iron-rich siltstone results in supersaturated steam in mixtures with iron and quartz compounds. Samples with quartz and hydrous iron oxide features are examined with optical microscopy, SEM, EDX and XRD. A quartz grain is found with a well defined PDF set. There is widespread amorphous quartz including lechatleriete. Nanocrystals of α-goethite in the acicular form are common. A condensation sphere from the `Uvalde Crater Rosetta Stone' shows a complex mixture of hematite, goethite, and alpha quartz with a trace of trydimite. Numerous samples are yet to be analyzed. The crater appears to have features that can serve as an Earth analog to Mars craters. A companion paper in the present proceedings summarizes prior work, adds new site detail, reports impact-loading analysis, and describes overall features of impactite samples from the site.

  3. Photosynthetic water oxidation: insights from manganese model chemistry.

    PubMed

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond-forming mechanism. Comparison between the OEC and the Mn-terpy dimer indicates that challenges remain in the development of synthetic Mn water-oxidation catalysts. These include redox leveling to couple multielectron reactions with one-electron steps, avoiding labile Mn(II) species during the catalytic cycle, and protecting the catalyst active site from undesired side reactions. As the first example of a functional manganese O2-evolution catalyst, the Mn-terpy dimer exemplifies the interrelatedness of biomimetic chemistry with biophysical studies. The design of functional model complexes enriches the study of the natural photosynthetic system, while biology continues to provide inspiration for artificial photosynthetic technologies to meet global energy demand. PMID:25730258

  4. Experimental evaluation of the effects of quench rate and quartz surface area on homogeneous mercury oxidation

    SciTech Connect

    Andrew Fry; Brydger Cauch; Geoffrey D. Silcox; JoAnn S. Lighty; Constance L. Senior

    2007-07-01

    This paper presents a mercury oxidation data set suitable for validation of fundamental kinetic models of mercury chemistry and for mechanism development. Experimental facilities include a mercury reactor fitted with a 300-W, quartz-glass burner and a quartz reaction chamber. While operated with a temperature profile representative of a typical boiler, a residence time of 6 s was achieved. Participating reacting species (chlorine, mercury) were introduced through the burner to produce a radical pool representative of real combustion systems. Speciated mercury measurements were performed using a Tekran 2537A Analyzer coupled with a conditioning system. Homogeneous mercury reactions involving chlorine have been investigated under two different temperature profiles producing quench rates of -210 K/s and -440 K/s. The larger quench rate produced 52% greater total oxidation than the lower quench at chlorine concentrations of 200 ppm. The effect of reactor surface area on oxidation was also investigated. The quartz surfaces interacted with mercury only in the presence of chlorine and their overall effect was to weakly inhibit oxidation. The extent of oxidation was predicted using a detailed kinetic model. The model predicted the effects of quench rate and chlorine concentration shown in experimentation. 12 refs., 5 figs., 3 tabs.

  5. Surfactant-mediated electrodeposition of a water-oxidizing manganese oxide.

    PubMed

    Osowiecki, Wojciech T; Sheehan, Stafford W; Young, Karin J; Durrell, Alec C; Mercado, Brandon Q; Brudvig, Gary W

    2015-10-14

    Splitting water into hydrogen and oxygen is one of the most promising ways of storing energy from intermittent, renewable sources in the future. Toward this goal, development of inexpensive, stable, and non-toxic catalysts for water oxidation is crucial. We report that the electrodeposition of manganese oxide in the presence of sodium dodecyl sulfate (SDS) produces a material that is highly active for electrocatalytic water oxidation at pH near 7 and remains stable for over 24 hours of sustained electrolysis. Clark electrode measurements demonstrate more than 95% Faradaic efficiency for oxygen evolution after an initial charging period. We found that catalytic performance was optimized in films prepared by electrodeposition using a precursor solution containing moderate concentration of substrates, namely 25 mM Mn(2+) and 25 mM SDS. Microstructure and elemental analyses revealed that the deposited material, a mixed-phase manganese oxide, is structurally similar to materials used for electrochemical capacitors and batteries, drawing a parallel between highly studied cathode materials for rechargeable batteries and heterogeneous catalysts for water oxidation. PMID:26350519

  6. Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Verma, Ekta; Mishra, Arun Kumar

    2015-06-01

    The cyanobacterium Anabaena sp. PCC 7120 was grown in presence and absence of iron to decipher the role of manganese in protection against the oxidative stress under iron starvation and growth, manganese uptake kinetics, antioxidative enzymes, lipid peroxidation, electrolyte leakage, thiol content, total peroxide, proline and NADH content was investigated. Manganese supported the growth of cyanobacterium Anabaena 7120 under iron deprived conditions where maximum uptake rate of manganese was observed with lower K(m) and higher V(max) values. Antioxidative enzymes were also found to be elevated in iron-starved conditions. Estimation of lipid peroxidation and electrolyte leakage depicted the role of manganese in stabilizing the integrity of the membrane which was considered as the prime target of oxygen free radicals in oxidative stress. The levels of total peroxide, thiol, proline and NADH content, which are the representative of oxidative stress response in Anabaena 7120, were also showed increasing trends in iron starvation. Hence, the results discerned, clearly suggested the role of manganese in protection against the oxidative stress in cyanobacterium Anabaena 7120 under iron starvation either due to its antioxidative properties or involvement as cofactor in a number of antioxidative enzymes. PMID:25572501

  7. Iron and manganese oxide mineralization in the Pacific

    USGS Publications Warehouse

    Hein, J. R., (Edited By); Koschinsky, A.; Halbach, P.; Manheim, F. T., (Edited By); Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  8. Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water.

    PubMed

    Wang, Jinlong; Zhang, Pengyi; Li, Jinge; Jiang, Chuanjia; Yunus, Rizwangul; Kim, Jeonghyun

    2015-10-20

    Layered manganese oxide, i.e., birnessite was prepared via the reaction of potassium permanganate with ammonium oxalate. The water content in the birnessite was adjusted by drying/calcining the samples at various temperatures (30 °C, 100 °C, 200 °C, 300 °C, and 500 °C). Thermogravimetry-mass spectroscopy showed three types of water released from birnessite, which can be ascribed to physically adsorbed H2O, interlayer H2O and hydroxyl, respectively. The activity of birnessite for formaldehyde oxidation was positively associated with its water content, i.e., the higher the water content, the better activity it has. In-situ DRIFTS and step scanning XRD analysis indicate that adsorbed formaldehyde, which is promoted by bonded water via hydrogen bonding, is transformed into formate and carbonate with the consumption of hydroxyl and bonded water. Both bonded water and water in air can compensate the consumed hydroxyl groups to sustain the mineralization of formaldehyde at room temperature. In addition, water in air stimulates the desorption of carbonate via water competitive adsorption, and accordingly the birnessite recovers its activity. This investigation elucidated the role of water in oxidizing formaldehyde by layered manganese oxides at room temperature, which may be helpful for the development of more efficient materials. PMID:26426569

  9. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures.

    PubMed

    Nelson, Yarrow M; Lion, Leonard W; Shuler, Michael L; Ghiorse, William C

    2002-02-01

    The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures. PMID:11871557

  10. Porous manganese oxide synthesized through organic-electrolyte templates and their catalytic applications

    SciTech Connect

    Zhang Wei; Li Jiangying; Du Xuemin; Zhang Zhicheng

    2009-11-15

    We report a facile approach to the preparation of porous manganese oxide materials by the organic-electrolyte templates based on strategy. The final products are thoroughly characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and Brunauer-Emmett-Teller (BET) techniques. The results reveal that porosity (pore size and distribution, surface area) of these manganese oxides has strong relationship with the templates used, which implies a simple way to obtain a series of porous materials. By comparing the catalytic effects of these manganese oxides in oxidation of indene and benzyl alcohol, we find that the pore size and distribution are also crucial to the catalytic properties of these porous materials.

  11. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures.

    PubMed

    Najafpour, Mohammad Mahdi; Renger, Gernot; Hołyńska, Małgorzata; Moghaddam, Atefeh Nemati; Aro, Eva-Mari; Carpentier, Robert; Nishihara, Hiroshi; Eaton-Rye, Julian J; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2016-03-01

    All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts. PMID:26812090

  12. EFFECTS OF SOLAR RADIATION ON MANGANESE OXIDE REACTIONS WITH SELECTED ORGANIC COMPOUNDS

    EPA Science Inventory

    The effects of sunlight on aqueous redox reactions between manganese oxides (MnOx) and selected organic substances are reported. o sunlight-induced rate enhancement was observed for the MnOx oxidation of substituted phenols, anisole, o-dichlorobenzene, or p-chloroaniline. n the o...

  13. Studies of layered and pillared manganese oxide materials

    NASA Astrophysics Data System (ADS)

    Ma, Ying

    Synthetic Birnessite, an octahedral layered manganese oxide material called OL-1 was synthesized with Na+, K+, Na +/Mg2+, K+/Mg2+, Na +/K+ ions as interlayer cations by redox reactions between permanganate and alcohols in a strong basic media. Chromia pillared OL-1s were prepared under reflux conditions using trinuclear chromium hydroxyl acetate as a pillaring agent followed by calcination in a N2 atmosphere at 200°C. Vanadium oxide pillared OL-1s were obtained by intercalating neutral vanadyl acetylacetonate (VOacac) or vanadium acetylacetonate (Vacac) into the interlayer of OL-1 and subsequently calcining in air at 300°C. The synthesis procedures were monitored using X-ray diffraction studies. The resultant materials were characterized by XRD, X-ray absorption, X-ray photoelectron spectra, FTIR, UV-VIS, inductively coupled plasma, transmission electron spectroscopy, scanning electron microscopy with energy dispersive X-ray analysis, potentiometric titration, thermal analyses, TPD measurements, BET surface area and pore size distribution measurements. OL-1 materials prepared using this alcohol route showed enhanced thermal stabilities and increased Mg accommodation compared to OL-1s prepared with other methods. Based on the analysis methods developed here, Na-OL-1 exhibited recoverable and reversible structural and surface O2 oxygen species while K-OL-1 showed higher stability. Na-OL-1 had predominantly Bronsted acid sites resulting from OH groups bonded to Mn on Na-OL-1 surfaces, while the Na/Mg-OL-1 had mainly Lewis acid sites. Large porosity was obtained in chromia pillared OL-1 materials with a narrow pore size distribution centered around 18 A. Although these materials remained "amorphous" as determined by XRD after calcination, TEM morphology studies suggest that the materials were still layered. EXAFS studies indicated the formation of Cr-O-Mn bonds in the resultant materials via comer-shared linkages of CrO6 and MnO6 octahedra. Good crystallinity in VOacac intercalated OL-1 was achieved, which after calcination, led to the formation of mesoporous VOx pillared OL-1 materials with the pore diameters being in the range of 36 to 41 A. The intercalation of bulky neutral inorganic species into the interlayer of OL-1 through an exfoliation route simplified the pillaring process and preparative factors and made the process and pore sizes in the pillared materials controllable.

  14. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    USGS Publications Warehouse

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  15. Quartz and Hydrous Iron-oxide Impactites from the Bee Bluff Structure of South Texas

    NASA Astrophysics Data System (ADS)

    Graham, R. A.; Martin, M.; Morosin, B.

    2005-07-01

    Breccia impactite samples are found to have been strongly influenced by high pressure shock waves controlled by the thin veneer of sandstone, siltstone and a thin layer of iron-rich siltstone target rocks. Carrizo sandstone is converted to a hard grey breccia containing comminuted quartz bound with tightly adhering alpha goethite. Transformations in the hydrous iron-oxide binder and hydrous iron-rich siltstone in virtually all impactite samples dominate the scientific issues. Goethite is found in numerous samples including spherules loose on the site, `sky bombs,' in suevite in a Rosetta Stone containing five different impactite clasts, and in samples with hydrodynamic instabilities. Localized melting in quartz at particle interfaces is observed throughout. SEM and EDX analysis shows regions of fused quartz, some in the ballen structure characteristic of lechatleriete. Acicular goethite nanocrystals and submicron spheres are abundant. The high pressure-high temperature pulse of the impact produces an environment in which transformation to the iron-rich hydrous oxide to goethite, hematite and steam is to be expected.

  16. Sol-gel synthesis and adsorption properties of mesoporous manganese oxide

    NASA Astrophysics Data System (ADS)

    Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.

    2015-03-01

    Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.

  17. Strontium and Actinides Removal from Savannah River Site Actual Waste Samples by Freshly Precipitated Manganese Oxide

    SciTech Connect

    Barnes, M.J.

    2002-10-18

    The authors investigated the performance of freshly precipitated manganese oxide and monosodium titanate (MST) for the removal of strontium (Sr) and actinides from actual high-level waste. Manganese oxide precipitation occurs upon addition of a reductant such as formate (HCO2-) or peroxide (H2O2) to a waste solution containing permanganate (MnO4-). An addition of non-radioactive strontium typically precedes the MnO4- and reductant addition, which serves primarily to isotopically dilute the strontium-90 (90Sr) present in the waste. Tests utilized a Tank 37H/44F composite waste solution. Personnel significantly increased the concentration of actinides in the waste by the addition of acidic americium/curium solution (F-Canyon Tank 17.1 solution), which contained a significant quantity of plutonium (Pu), and neptunium-237 (237Np) stock solution. Initial tests examined three manganese oxide treatment options.

  18. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria.

    PubMed

    Xing, Shengtao; Lu, Xiaoyang; Liu, Jia; Zhu, Lin; Ma, Zichuan; Wu, Yinsu

    2016-02-01

    Manganese oxide supported on mesoporous ceria was prepared and used as catalyst for catalytic ozonation of sulfosalicylic acid (SA). Characterization results indicated that the manganese oxide was mostly incorporated into the pores of ceria. The synthesized catalyst exhibited high activity and stability for the mineralization of SA in aqueous solution by ozone, and more than 95% of total organic carbon was removed in 30 min under various conditions. Mechanism studies indicated that SA was mainly degraded by ozone molecules, and hydroxyl radical reaction played an important role for the degradation of its ozonation products (small molecular organic acids). The manganese oxide in the pores of CeO2 improved the adsorption of small molecular organic acids and the generation of hydroxyl radicals from ozone decomposition, resulting in high TOC removal efficiency. PMID:26344143

  19. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    ERIC Educational Resources Information Center

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  20. Manganese oxide helices, rings, strands, and films, and methods for their preparation

    DOEpatents

    Suib, Steven L.; Giraldo, Oscar; Marquez, Manuel; Brock, Stephanie

    2003-01-07

    Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.

  1. Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides: Reaction products

    SciTech Connect

    Ukrainczyk, L.; McBride, M.B. . Dept.of Soil, Crop, and Atmospheric Sciences)

    1993-11-01

    Some monomeric and dimeric oxidation products of para- and/or ortho-chlorinated phenols in dilute (1 mmol/L phenol), acidified, aqueous suspensions of manganese oxide (Na-buserite) were identified by MS, Fourier-transform IR spectroscopy and UV/visible spectroscopy. The para-chlorinated phenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-chloro-2-methylphenol) gave corresponding p-benzoquionones (benzoquinone, 2-chlorobenzoquinone, 2,6-dichlorobenzoquinone, 2-methylbenzoquinone) as the detectable water-soluble oxidation products. Dimeric products were present in the extracts obtained by washing the oxide with methylene chloride. Michael addition of phenolate to quinone seems to be the predominant mode of coupling. Chlorinated phenols without chlorine in the para-position (2-chlorophenol, 2,6-dichlorophenol) were more difficult to oxidize and afforded diphenoquinones as the only detectable water-soluble products. For all studied phenols, with the exception of 2,4,6-trichlorophenol, the amount of water-soluble products accounts only for a small fraction of oxidized phenol. The quinone and diphenoquinone products readily couple with phenols into humus like materials.

  2. Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe mining district, Arizona

    USGS Publications Warehouse

    Kay, J.T.; Conklin, M.H.; Fuller, C.C.; O'Day, P. A.

    2001-01-01

    A series of column experiments was conducted using manganese oxide coated sediments collected from the hyporheic zone in Pinal Creek (AZ), a metal-contaminated stream, to study the uptake and retention of Mn, Ni, and Co. Experimental variables included the absence (abiotic) and presence (biotic) of active Mn-oxidizing bacteria, the absence and presence of dissolved Mn, and sediment manganese oxide content. Uptake of Mn under biotic conditions was between 8 and 39% higher than under abiotic conditions. Continuous uptake of Mn due to biotic oxidation was evident from extraction of column sediments. Manganese uptake is hypothesized to initially occur as adsorption, which led to subsequent surface and/or microbial oxidation. Complete breakthrough of Ni within 100 pore volumes indicated no process of continuous uptake and was modeled as an equilibrium adsorption process. Nickel uptake in the presence of dissolved Mn was 67-100% reversible. Sediment extractions suggest that Ni uptake occurred through weak and strong adsorption. Continuous uptake of cobalt increased with sediment manganese oxide content, and Co uptake was up to 75% greater under biotic than abiotic conditions. Cobalt uptake was controlled by both existing and newly formed manganese oxides. Only a small amount of Co uptake was reversible (10-25%). XANES spectral analysis indicated that most Co(II) was oxidized to Co(III) and probably incorporated structurally into manganese oxides. Although manganese oxides were the primary phase controlling uptake and retention of Mn, Ni, and Co, the mechanisms varied among the metals.

  3. Growth and Dissolution of Iron and Manganese Oxide Films

    SciTech Connect

    Scot T. Martin

    2008-12-22

    Growth and dissolution of Fe and Mn oxide films are key regulators of the fate and transport of heavy metals in the environment, especially during changing seasonal conditions of pH and dissolved oxygen. The Fe and Mn are present at much higher concentrations than the heavy metals, and, when Fe and Mn precipitate as oxide films, heavy metals surface adsorb or co-precipitate and are thus essentially immobilized. Conversely, when the Fe and Mn oxide films dissolve, the heavy metals are released to aqueous solution and are thus mobilized for transport. Therefore, understanding the dynamics and properties of Fe and Mn oxide films and thus on the uptake and release of heavy metals is critically important to any attempt to develop mechanistic, quantitative models of the fate, transport, and bioavailablity of heavy metals. A primary capability developed in our earlier work was the ability to grow manganese oxide (MnO{sub x}) films on rhodochrosite (MnCO{sub 3}) substrate in presence of dissolved oxygen under mild alkaline conditions. The morphology of the films was characterized using contact-mode atomic force microscopy. The initial growth began by heteroepitaxial nucleation. The resulting films had maximum heights of 1.5 to 2 nm as a result of thermodynamic constraints. Over the three past years, we have investigated the effects of MnO{sub x} growth on the interactions of MnCO{sub 3} with charged ions and microorganisms, as regulated by the surface electrical properties of the mineral. In 2006, we demonstrated that MnO{sub x} growth could induce interfacial repulsion and surface adhesion on the otherwise neutral MnCO{sub 3} substrate under environmental conditions. Using force-volume microscopy (FVM), we measured the interfacial and adhesive forces on a MnO{sub x}/MnCO{sub 3} surface with a negatively charged silicon nitride tip in a 10-mM NaNO3 solution at pH 7.4. The interfacial force and surface adhesion of MnOx were approximately 40 pN and 600 pN, respectively, whereas those of MnCO{sub 3} were essentially zero. The force differences between MnO{sub x} and MnCO{sub 3} suggest that oxide film growth can focus adsorbates to certain parts of the surface and thereby templating a heterogeneous layout of them. We suspected that the force differences were in part due to the differences in surface electrical properties. In 2007, we investigated two important electrical properties of MnO{sub x} and MnCO{sub 3} surfaces, namely surface potential and ion mobility. Surface potential is a composite quantity that can be linked to the local lattice structure of the reconstructed surface and the adsorption of water layers. The mobile surface ions formed by dissolution can also contribute to surface potential. Using Kelvin probe force microscopy (KPFM) and scanning polarization force microscopy (SPFM), we found that MnOx possessed excess surface potentials of over +200 mV in humid nitrogen and the excess surface potential decreased with increasing relative humidity (i.e., increasing adsorbed water layers on the mineral surface). The dependence of the excess surface potential was attributed to the change of the contributions from mobile ions. These results supported our earlier hypothesis that MnO{sub x} and MnCO{sub 3} had different surface electrical properties. In the third year, we systematically characterized that the change of the electrical double layer (EDL) structure of MnCO{sub 3} surface due to MnO{sub x} growth in aqueous solution and its dependence on pH. The structure of the electrical double layer determines the electrostatic interactions between the mineral surface and charged adsorbates. As described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the electrostatic force, together with van der Waals interaction, regulates surface adsorption and bacterial attachment. Once adsorbates establish contact with the surface, they must resist hydraulic shear forces through surface adhesion. The adhesion of mineral surfaces is also affected by their electrostatic interactions with adsorbates. To probe the EDL structure, we applied force-volume microscopy coupled with physical and chemical models of the SPM system.

  4. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  5. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    USGS Publications Warehouse

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  6. Adsorption of iron cyanide complexes onto clay minerals, manganese oxide, and soil.

    PubMed

    Kang, Dong-Hee; Schwab, A Paul; Johnston, C T; Banks, M Katherine

    2010-09-01

    The adsorption characteristics of an iron cyanide complex, soluble Prussian blue KFe(III)[Fe(II)(CN)(6)], were evaluated for representative soil minerals and soil at pH 3.7, 6.4 and 9.7. Three specimen clay minerals (kaolinite, montmorillonite, and illite), two synthesized manganese oxides (birnessite and cryptomelane), and a Drummer soil from Indiana were used as the adsorbents. Surface protonation of variable charge sites increased with decreasing pH yielding positively charged sites on crystal edges and enhancing the attractive force between minerals and iron cyanide complexes. Anion adsorption on clays often is correlated to the metal content of the adsorbent, and a positive relationship was observed between iron or aluminum content and Prussian blue adsorption. Illite had high extractable iron and adsorbed more ferro-ferricyande anion, while kaolinite and montmorillonite had lower extractable iron and adsorbed less. However, less pH effect was observed on the adsorption of iron cyanide to manganese oxides. This may due to the manganese oxide mediated oxidation of ferrocyanide [Fe(II)(CN)(6)(4-)], to ferricyanide [Fe(III)(CN)(6)(3-)], which has a low affinity for manganese oxides. PMID:20665323

  7. Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide.

    PubMed

    Taujale, Saru; Zhang, Huichun

    2012-03-01

    Manganese oxides typically exist as mixtures with other metal oxides in soil-water environments; however, information is only available on their redox activity as single oxides. To bridge this gap, we examined three binary oxide mixtures containing MnO(2) and a secondary metal oxide (Al(2)O(3), SiO(2) or TiO(2)). The goal was to understand how these secondary oxides affect the oxidative reactivity of MnO(2). SEM images suggest significant heteroaggregation between Al(2)O(3) and MnO(2) and to a lesser extent between SiO(2)/TiO(2) and MnO(2). Using triclosan and chlorophene as probe compounds, pseudofirst-order kinetic results showed that Al(2)O(3) had the strongest inhibitory effect on MnO(2) reactivity, followed by SiO(2) and then TiO(2). Al(3+) ion or soluble SiO(2) had comparable inhibitory effects as Al(2)O(3) or SiO(2), indicating the dominant inhibitory mechanism was surface complexation/precipitation of Al/Si species on MnO(2) surfaces. TiO(2) inhibited MnO(2) reactivity only when a limited amount of triclosan was present. Due to strong adsorption and slow desorption of triclosan by TiO(2), precursor-complex formation between triclosan and MnO(2) was much slower and likely became the new rate-limiting step (as opposed to electron transfer in all other cases). These mechanisms can also explain the observed adsorption behavior of triclosan by the binary oxide mixtures and single oxides. PMID:22309023

  8. The kinetics of iodide oxidation by the manganese oxide mineral birnessite

    USGS Publications Warehouse

    Fox, P.M.; Davis, J.A.; Luther, G. W., III

    2009-01-01

    The kinetics of iodide (I-) and molecular iodine (I2) oxidation by the manganese oxide mineral birnessite (??-MnO2) was investigated over the pH range 4.5-6.25. I- oxidation to iodate (IO3-) proceeded as a two-step reaction through an I2 intermediate. The rate of the reaction varied with both pH and birnessite concentration, with faster oxidation occurring at lower pH and higher birnessite concentration. The disappearance of I- from solution was first order with respect to I- concentration, pH, and birnessite concentration, such that -d[I-]/dt = k[I-][H+][MnO2], where k, the third order rate constant, is equal to 1.08 ?? 0.06 ?? 107 M-2 h-1. The data are consistent with the formation of an inner sphere I- surface complex as the first step of the reaction, and the adsorption of I- exhibited significant pH dependence. Both I2, and to a lesser extent, IO3- sorbed to birnessite. The results indicate that iodine transport in mildly acidic groundwater systems may not be conservative. Because of the higher adsorption of the oxidized I species I2 and IO3-, as well as the biophilic nature of I2, redox transformations of iodine must be taken into account when predicting I transport in aquifers and watersheds.

  9. Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.

    PubMed

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-10-21

    Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides. PMID:24074443

  10. Distribution of manganese species in an oxidative dimerization reaction of a bis-terpyridine mononuclear manganese (II) complex and their heterogeneous water oxidation activities.

    PubMed

    Takahashi, Kosuke; Sato, Taisei; Yamazaki, Hirosato; Yagi, Masayuki

    2015-11-01

    Heterogeneous water oxidation catalyses were studied as a synthetic model of oxygen evolving complex (OEC) in photosynthesis using mica adsorbing various manganese species. Distribution of manganese species formed in the oxidative dimerization reaction of [Mn(II)(terpy)2](2+) (terpy=2,2':6',2″-terpyridine) (1') with various oxidants in water was revealed. 1' was stoichiometrically oxidized to form di-μ-oxo dinuclear manganese complex, [(OH2)(terpy)Mn(III)(μ-O)2Mn(IV)(terpy)(OH2)](3+) (1) by KMnO4 as an oxidant. When Oxone and Ce(IV) oxidants were used, the further oxidation of 1 to [(OH2)(terpy)Mn(IV)(μ-O)2Mn(IV)(terpy)(OH2)](4+) (2) was observed after the oxidative dimerization reaction of 1'. The mica adsorbates with various composition of 1', 1 and 2 were prepared by adding mica suspension to the various oxidant-treated solutions followed by filtration. The heterogeneous water oxidation catalysis by the mica adsorbates was examined using a Ce(IV) oxidant. The observed catalytic activity of the mica adsorbates corresponded to a content of 1 (1ads) adsorbed on mica for KMnO4- and Oxone-treated systems, indicating that 1' (1'ads) and 2 (2ads) adsorbed on mica do not work for the catalysis. The kinetic analysis suggested that 1ads works for the catalysis through cooperation with adjacent 1ads or 2ads, meaning that 2ads assists the cooperative catalysis by 1ads though 2ads is not able to work for the catalysis alone. For the Ce(IV)-treated system, O2 evolution was hardly observed although the sufficient amount of 1ads was contained in the mica adsorbates. This was explained by the impeded penetration of Ce(IV) ions (as an oxidant for water oxidation) into mica by Ce(3+) cations (generated in oxidative dimerization of 1') co-adsorbed with 1ads. PMID:25935510

  11. X-ray photoelectron spectroscopic studies on initial oxidation of iron and manganese mono-silicides

    NASA Astrophysics Data System (ADS)

    Ohtsu, Naofumi; Oku, Masaoki; Nomura, Akiko; Sugawara, Takamasa; Shishido, Toetsu; Wagatsuma, Kazuaki

    2008-03-01

    Initial oxidation of iron and manganese mono-silicides (FeSi and MnSi) surfaces was studied by X-ray photoelectron spectroscopy (XPS). Clean surfaces of these silicides were prepared by fracturing in an ultra high vacuum, and then the fractured surfaces were oxidized by exposing to high-purity oxygen at pressures up to 1.3 Pa. For the clean FeSi surface, positive chemical shifts of the Fe 2p 3/2 and Si 2p peaks from elemental Fe and Si were 0.5 eV and 0.1 eV, respectively. For the clean MnSi surface, a negative chemical shift of the Si 2p peak from elemental Si was 0.1 eV. Iron on the FeSi surface was oxidized at an oxygen pressure of 1.3 Pa, whereas the silicon was oxidized under the pressure of 1.3 × 10 -6 Pa, indicating that oxidation of silicon occurred prior to that of iron. Manganese and silicon on the MnSi were simultaneously oxidized in the range from 1.3 × 10 -6 Pa to 1.3 × 10 -3 Pa; however, over the pressure of 1.3 Pa, the oxidation of manganese occurs prior to that of silicon. These oxidation behaviors at low oxygen pressures were similar to those of the FeSi and MnSi fractured in air.

  12. Organ weight changes in mice after long-term inhalation exposure to manganese oxides nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeman, T.; Buchtová, M.; Dočekal, B.; Míšek, I.; Navrátil, J.; Mikuška, P.; Šerý, O.; Večeřa, Z.

    2015-05-01

    Recently, it has been proven that manganese from inhaled particles of manganese compounds can accumulate in the internal organs of laboratory animals. Nevertheless, there were only a few researches dealing with changes in body morphology induced by inhalation of these particles, even though results of some studies indicate existence of such changes. The aim of our research was to assess the effect of inhaled manganese oxides nanoparticles on weight of internal organs. For this purpose a long-term inhalation experiment on laboratory mice was performed, during which the mice were exposed to MnO.Mn2O3 nanoparticles in concentration 2 × 106 particles/cm3 for 17 weeks, 24 hours a day, 7 days a week. Manganese oxides nanoparticles were synthesized continuously via aerosol route in a hot wall tube flow reactor using thermal decomposition of metal organic precursor manganese(II)acetylacetonate in the flow tube reactor at temperature 750 °C in the presence of 30 vol% of oxygen. It was proven that inhaled nanoparticles can influence the weight of internal organs of mice. Moreover, it was discovered that the resulting change in weight of selected organs is disproportional. The mice from the experimental group had statistically significantly lighter kidneys, liver and spleen and heavier pancreas compared to the mice from the control group.

  13. The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Hołyńska, Małgorzata; Shen, Jian-Ren; Allakhverdiev, Suleyman I; Allakhverdiev, Suleyman

    2015-12-01

    Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 2 (18) O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides. PMID:25701552

  14. SERUM CHEMISTRIES OF COTURNIX JAPONICA GIVEN DIETARY MANGANESE OXIDE (MN3O4)

    EPA Science Inventory

    Plasma creatinine and inorganic phosphorus were increased in manganese oxide (Mn3O4)-treated adult male Coturnix quail, but BUN, BUN/creatinine ratio, uric acid, and total calcium were decreased. 2. Serum enzymes (alkaline phosphatase glutamic oxaloacetic transaminase, glutamic p...

  15. Synthesis of nanostructured manganese oxides based materials and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Dung Dang, Trung; Le, Thi Thu Hang; Bich Thuy Hoang, Thi; Mai, Thanh Tung

    2015-01-01

    Manganese oxides are important materials with a variety of applications in different fields such as chemical sensing devices, magnetic devices, field-emission devices, catalysis, ion-sieves, rechargeable batteries, hydrogen storage media and microelectronics. To open up new applications of manganese oxides, novel morphologies or nanostructures are required to be developed. Via sol—gel and anodic electrodeposition methods, M (Co, Fe) doped manganese oxides were prepared. On the other hand, nanostructured (nanoparticles, nanorods and hollow nanotubes) manganese oxides were synthesized via a process including a chemical reaction with carbon nanotubes (CNTs) templates followed by heat treatment. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used for characterization of the prepared materials. The influence of chemical reaction conditions, heat treatment and template present on the morphology, structure, chemical and electrochemical properties of the prepared materials were investigated. Chronopotentiometry (CP) and CV results show high specific capacitance of 186.2 to 298.4 F g-1 and the charge/discharge stability of the prepared materials and the ideal pseudocapacitive behaviors were observed. These results give an opening and promising application of these materials in advanced energy storage applications.

  16. IMPACT OF WATER CHEMISTRY ON MANGANESE REMOVAL DURING OXIDATION/FILTRATION TREATMENT

    EPA Science Inventory

    This is a poster showing the purpose and setup of our pilot plant experiments with manganese filtration. The focus is on the differences, effectiveness, and problems with using chlorine and potassium permanganate in oxidation/filtration. The poster will show the results and findi...

  17. Endowing manganese oxide with fast adsorption ability through controlling the manganese carbonate precursor assembled in ionic liquid.

    PubMed

    Ge, X; Gu, C D; Wang, X L; Tu, J P

    2015-01-15

    Manganese oxides with desired structure are controllably obtained through annealing MnCO3 precursors with required structures. The structures of MnCO3 precursors are determined by a "mesocrystal formation" process in an ionic liquid system of a choline chloride/urea (CU) mixture. Without addition of surfactants, only CU solvent and manganese chloride are needed in the reaction system, in which the CU acts as reaction medium as well as control agent for particle growth. A shape transformation of MnCO3 particles from well-defined rhombohedral mesocrystals to ellipsoidal polycrystal ensembles, and to nanoparticulate aggregates is observed when heating the reaction system for 4 h at 120, 150, and 180 C, respectively. With a longer aging time at 120 C, etching and disassembly of MnCO3 mesocrystals happened. The correlation between the microstructure and the underlying formation mechanism is highlighted. Porous and nanowire-like MnO(x) nanostructures are obtained through a facile thermal conversion process from the diverse MnCO3 precursors, which are demonstrated as effective and efficient adsorbents to remove organic waste (e.g. Congo red) from water. Significantly, the nanowire-like MnO(x) nanostructures obtained by annealing the MnCO3 mesocrystals at 300 C for 4 h can remove about 95% Congo red in waste water at room temperature in only one minute, which is superior to the reported hierarchical hollow nanostructured MnO2. PMID:25454437

  18. Cobalt(II) Oxidation by the Marine Manganese(II)-Oxidizing Bacillus sp. Strain SG-1

    PubMed Central

    Lee, Yoon; Tebo, Bradley M.

    1994-01-01

    The geochemical cycling of cobalt (Co) has often been considered to be controlled by the scavenging and oxidation of Co(II) on the surface of manganese [Mn(III,IV)] oxides or manganates. Because Mn(II) oxidation in the environment is often catalyzed by bacteria, we have investigated the ability of Mn(II)-oxidizing bacteria to bind and oxidize Co(II) in the absence of Mn(II) to determine whether some Mn(II)-oxidizing bacteria also oxidize Co(II) independently of Mn oxidation. We used the marine Bacillus sp. strain SG-1, which produces mature spores that oxidize Mn(II), apparently due to a protein in their spore coats (R.A. Rosson and K. H. Nealson, J. Bacteriol. 151:1027-1034, 1982; J. P. M. de Vrind et al., Appl. Environ. Microbiol. 52:1096-1100, 1986). A method to measure Co(II) oxidation using radioactive 57Co as a tracer and treatments with nonradioactive (cold) Co(II) and ascorbate to discriminate bound Co from oxidized Co was developed. SG-1 spores were found to oxidize Co(II) over a wide range of pH, temperature, and Co(II) concentration. Leucoberbelin blue, a reagent that reacts with Mn(III,IV) oxides forming a blue color, was found to also react with Co(III) oxides and was used to verify the presence of oxidized Co in the absence of added Mn(II). Co(II) oxidation occurred optimally around pH 8 and between 55 and 65°C. SG-1 spores oxidized Co(II) at all Co(II) concentrations tested from the trace levels found in seawater to 100 mM. Co(II) oxidation was found to follow Michaelis-Menten kinetics. An Eadie-Hofstee plot of the data suggests that SG-1 spores have two oxidation systems, a high-affinity-low-rate system (Km, 3.3 × 10-8 M; Vmax, 1.7 × 10-15 M · spore-1 · h-1) and a low-affinity-high-rate system (Km, 5.2 × 10-6 M; Vmax, 8.9 × 10-15 M · spore-1 · h-1). SG-1 spores did not oxidize Co(II) in the absence of oxygen, also indicating that oxidation was not due to abiological Co(II) oxidation on the surface of preformed Mn(III,IV) oxides. These results suggest that some microorganisms may directly oxidize Co(II) and such biological activities may exert some control on the behavior of Co in nature. SG-1 spores may also have useful applications in metal removal, recovery, and immobilization processes. Images PMID:16349360

  19. Manganese-induced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Švec, Pavel

    2014-02-01

    Impact of manganese (Mn(2+)) excess (100, 500 and 1000 μM over 7 days) on two ontogenetic stages (7-week-old plants and 7-day-old seedlings) of Matricaria chamomilla was compared. Mn excess depressed growth of seedlings (but not germination) and stimulated oxidative stress (ROS and lipid peroxidation) in both plants and seedlings. Growth inhibition could be evoked by higher Mn uptake and higher translocation factor in seedlings than in plants. Total thiols staining revealed elevation in almost all treatments. In 7-week-old plants, activity of peroxidases increased slightly and rather decreased under high Mn doses. Superoxide rather than hydrogen peroxide contributed to visualized ROS presence. Fluorescence of nitric oxide (NO) showed stimulation in plants but decrease in seedlings. Impact of exogenous nitric oxide donor (sodium nitroprusside/SNP) was therefore tested and results showed amelioration of 1000 μM Mn-induced oxidative stress in seedlings (decrease in H2O2 and increase in NO content while antioxidative enzyme activities were variably affected) concomitantly with depleted Mn accumulation. It is concluded that NO participates in tolerance to Mn excess but negative effects of the highest SNP dose were also observed. Extensive fluorescence microscopy is also explanatively discussed. PMID:24388509

  20. Determining the Oxidation States of Manganese in NT2 Cells and Cultured Astrocytes

    SciTech Connect

    Gunter,K.; Aschner, M.; Miller, L.; Eliseev, R.; Salter, J.; Andersen, K.; Gunter, T.

    2006-01-01

    Excessive brain manganese (Mn) can produce a syndrome called 'manganism', which correlates with loss of striatal dopamine and cell death in the striatum and globus pallidus. The prevalent hypothesis for the cause of this syndrome has been oxidation of cell components by the strong oxidizing agent, Mn{sup 3+}, either formed by oxidation of intracellular Mn{sup 2+} or transported into the cell as Mn{sup 3+}. We have recently used X-ray absorption near edge structure spectroscopy (XANES) to determine the oxidation states of manganese complexes in brain and liver mitochondria and in nerve growth factor (NGF)-induced and non-induced PC12 cells. No evidence was found for stabilization or accumulation of Mn{sup 3+} complexes because of oxidation of Mn{sup 2+} by reactive oxygen species in these tissues. Here we extend these studies of manganese oxidation state to cells of brain origin, human neuroteratocarcinoma (NT2) cells and primary cultures of rat astrocytes. Again we find no evidence for stabilization or accumulation of any Mn{sup 3+} complex derived from oxidation of Mn{sup 2+} under a range of conditions.

  1. Coexistence of electrical conductivity and ferromagnetism in a hybrid material formed from reduced graphene oxide and manganese oxide.

    PubMed

    Murashima, Yusuke; Ohtani, Ryo; Matsui, Takeshi; Takehira, Hiroshi; Yokota, Ryotaro; Nakamura, Masaaki; Lindoy, Leonard F; Hayami, Shinya

    2015-03-21

    The coexistence of electrical conductivity and ferromagnetism has been achieved in a reduced graphene oxide/manganese oxide hybrid (rGO-Mn) synthesized by chemical reduction of a graphene oxide and Mn(2+) (as its GO-Mn(2+) complex) using hydrazine. The rGO-Mn and GO-Mn(2+) complexes were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). In rGO-Mn the Mn was present as manganese oxide nanoparticles located on the rGO nanosheets. This rGO-Mn exhibits both electrical conductivity and ferromagnetism. The synthesis of hybrids incorporating rGO and metal oxides is proposed as a useful strategy for generation of new multifunctional nano-composite materials. PMID:25697449

  2. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    SciTech Connect

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  3. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants: The Involvement of Mn(III).

    PubMed

    Sun, Bo; Guan, Xiaohong; Fang, Jingyun; Tratnyek, Paul G

    2015-10-20

    MnO4(-) was activated by HSO3(-), resulting in a process that oxidizes organic contaminants at extraordinarily high rates. The permanganate/bisulfite (PM/BS) process oxidized phenol, ciprofloxacin, and methyl blue at pHini 5.0 with rates (kobs ≈ 60-150 s(-1)) that were 5-6 orders of magnitude faster than those measured for permanganate alone, and ∼5 to 7 orders of magnitude faster than conventional advanced oxidation processes for water treatment. Oxidation of phenol was fastest at pH 4.0, but still effective at pH 7.0, and only slightly slower when performed in tap water. A smaller, but still considerable (∼3 orders of magnitude) increase in oxidation rates of methyl blue was observed with MnO2 activated by HSO3(-) (MO/BS). The above results, time-resolved spectroscopy of manganese species under various conditions, stoichiometric analysis of pH changes, and the effect of pyrophosphate on UV absorbance spectra suggest that the reactive intermediate(s) responsible for the extremely rapid oxidation of organic contaminants in the PM/BS process involve manganese(III) species with minimal stabilization by complexation. The PM/BS process may lead to a new category of advanced oxidation technologies based on contaminant oxidation by reactive manganese(III) species, rather than hydroxyl and sulfate radicals. PMID:26421879

  4. Oxidation of Manganese and Iron by Leptothrix discophora: Use of N,N,N′,N′-Tetramethyl-p-Phenylenediamine as an Indicator of Metal Oxidation

    PubMed Central

    de Vrind-de Jong, E. W.; Corstjens, P. L. A. M.; Kempers, E. S.; Westbroek, P.; de Vrind, J. P. M.

    1990-01-01

    A new method for the quantification and characterization of manganese-oxidizing activity by spent culture medium of Leptothrix discophora SS-1 was developed. It is based on the formation of the dye Wurster blue from N,N,N′,N′-Tetramethyl-p-phenylenediamine by oxidized manganese generated in the spent medium. The kinetic parameters thus obtained agreed well with data obtained with other methods. It was also possible to demonstrate iron oxidation by spent culture medium. The kinetics of the process and inhibition by enzyme poisons suggest that iron oxidation is enzymatically catalyzed. Probably two different factors are involved in manganese and iron oxidation. Images PMID:16348351

  5. Water-oxidation catalysis by manganese in a geochemical-like cycle

    NASA Astrophysics Data System (ADS)

    Hocking, Rosalie K.; Brimblecombe, Robin; Chang, Lan-Yun; Singh, Archana; Cheah, Mun Hon; Glover, Chris; Casey, William H.; Spiccia, Leone

    2011-06-01

    Water oxidation in all oxygenic photosynthetic organisms is catalysed by the Mn4CaO4 cluster of Photosystem II. This cluster has inspired the development of synthetic manganese catalysts for solar energy production. A photoelectrochemical device, made by impregnating a synthetic tetranuclear-manganese cluster into a Nafion matrix, has been shown to achieve efficient water oxidation catalysis. We report here in situ X-ray absorption spectroscopy and transmission electron microscopy studies that demonstrate that this cluster dissociates into Mn(II) compounds in the Nafion, which are then reoxidized to form dispersed nanoparticles of a disordered Mn(III/IV)-oxide phase. Cycling between the photoreduced product and this mineral-like solid is responsible for the observed photochemical water-oxidation catalysis. The original manganese cluster serves only as a precursor to the catalytically active material. The behaviour of Mn in Nafion therefore parallels its broader biogeochemistry, which is also dominated by cycles of oxidation into solid Mn(III/IV) oxides followed by photoreduction to Mn2+.

  6. Significantly improved cyclability of lithium manganese oxide under elevated temperature by an easily oxidized electrolyte additive

    NASA Astrophysics Data System (ADS)

    Zhu, Yunmin; Rong, Haibo; Mai, Shaowei; Luo, Xueyi; Li, Xiaoping; Li, Weishan

    2015-12-01

    Spinel lithium manganese oxide, LiMn2O4, is a promising cathode for lithium ion battery in large-scale applications, because it possesses many advantages compared with currently used layered lithium cobalt oxide (LiCoO2) and olivine phosphate (LiFePO4), including naturally abundant resource, environmental friendliness and high and long work potential plateau. Its poor cyclability under high temperature, however, limits its application. In this work, we report a significant cyclability improvement of LiMn2O4 under elevated temperature by using dimethyl phenylphonite (DMPP) as an electrolyte additive. Charge/discharge tests demonstrate that the application of 0.5 wt.% DMPP yields a capacity retention improvement from 16% to 82% for LiMn2O4 after 200 cycles under 55 °C at 1 C (1C = 148 mAh g-1) between 3 and 4.5 V. Electrochemical and physical characterizations indicate that DMPP is electrochemically oxidized at the potential lower than that for lithium extraction, forming a protective cathode interphase on LiMn2O4, which suppresses the electrolyte decomposition and prevents LiMn2O4 from crystal destruction.

  7. Effect of Precipitation Method and Ce Doping on the Catalytic Activity of Copper Manganese Oxide Catalysts for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-bin; Ma, Kuo-yan; Zhang, Ling-hui; Yong, Guo-ping; Dai, Ya; Liu, Shao-min

    2011-02-01

    The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably.

  8. Manganese oxide octahedral molecular sieves: Synthesis, self-assembly, control over morphologies and tunnel structure

    NASA Astrophysics Data System (ADS)

    Yuan, Jikang

    Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.

  9. An Electrochemical Sensor Based on Nanostructured Hollandite-type Manganese Oxide for Detection of Potassium Ions

    PubMed Central

    Lima, Alex S.; Bocchi, Nerilso; Gomes, Homero M.; Teixeira, Marcos F. S.

    2009-01-01

    The participation of cations in redox reactions of manganese oxides provides an opportunity for development of chemical sensors for non-electroactive ions. A sensor based on a nanostructured hollandite-type manganese oxide was investigated for voltammetric detection of potassium ions. The detection is based on the measurement of anodic current generated by oxidation of Mn(III) to Mn(IV) at the surface of the electrode and the subsequent extraction of the potassium ions into the hollandite structure. In this work, an amperometric procedure at an operating potential of 0.80 V (versus SCE) is exploited for amperometric monitoring. The current signals are linearly proportional to potassium ion concentration in the range 4.97 × 10−5 to 9.05 × 10−4 mol L−1, with a correlation coefficient of 0.9997. PMID:22399969

  10. A kinetic study of the enhancement of solution chemiluminescence of glyoxylic acid oxidation by manganese species.

    PubMed

    Otamonga, Jean-Paul; Abdel-Mageed, Amal; Agater, Irena B; Jewsbury, Roger A

    2015-08-01

    In order to study the mechanism of the enhancement of solution chemiluminescence, the kinetics of the decay of the oxidant and the chemiluminescence emission were followed for oxidations by permanganate, manganese dioxide sol and Mn(3+) (aq) of glyoxylic acid, using stopped-flow spectrophotometry. Results are reported for the glyoxylic acid oxidized under pseudo first-order conditions and in an acidic medium at 25?C. For permanganate under these conditions, the decay is sigmoidal, consistent with autocatalysis, and for manganese dioxide sol and Mn(3+) it is pseudo first order. The effects of the presence of aqueous formaldehyde and Mn(2+) were observed and a fit to a simple mechanism is discussed. It is concluded that chemiluminescent enhancement in these systems is best explained by reaction kinetics. PMID:25223402

  11. Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold.

    PubMed

    Najafpour, Mohammad Mahdi; Hosseini, Seyedeh Maedeh; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2015-12-01

    We synthesized manganese oxides supported on gold nanoparticles (diameter <100 nm) by the reaction of KMnO4 with gold nanoparticles under hydrothermal conditions. In this green method Mn oxide is deposited on the gold nanoparticles. The compounds were characterized by scanning electron microscopy, energy-dispersive spectrometry, high-resolution transmission electron microscopy, X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy. In the next step, the water-oxidizing activities of these compounds in the presence of cerium(IV) ammonium nitrate as a non-oxo transfer oxidant were studied. The results show that these compounds are good catalysts toward water oxidation with a turnover frequency of 1.0 ± 0.1 (mmol O2/(mol Mn·s)). A comparison with other previously reported Mn oxides and important factors influencing the water-oxidizing activities of Mn oxides is also discussed. PMID:26076756

  12. The oxidative dechlorination reaction of 2,4,6-trichlorophenol in dilute aqueous suspensions of manganese oxides

    SciTech Connect

    Ukrainczyk, L.; McBride, M.B. . Dept. of Soil, Crop and Atmospheric Sciences)

    1993-11-01

    Oxidation of 2,4,6-trichlorophenol (TCP) by layered manganese oxides (Na and Co-buserite) in dilute acidified aqueous suspension gives 2,6-dichloro-p-benzoquinone as a major product. This compound is likely to further polymerize and become incorporated into humus like materials. The oxidation rate was higher at lower pH and higher on Na-buserite compared to Co-buserite. TCP reacted at a faster rate than unsubstituted phenol at pH3 and 5.5, which is explained by (a) the lower half-wave potential of TCP compared to phenol; (b) a stronger bond dipole associated with the electronegative halogen, favoring an addition step in nucleophilic substitution; and (c) easier depronation of TCP at the manganese oxide-water interface due to its lower pK[sub a]. IR spectroscopy shows that TCP adsorbs in deprotonated form on the surface of manganese oxide, and it cannot be washed from the surface by water. Nucleophilic attack by addition-elimination is suggested as a mechanism of TCP dechlorination and oxidation.

  13. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing

    USGS Publications Warehouse

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (???2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ??V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 A??, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 ?? 10-14 mol biotite m-2 s-1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 ??m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 ?? 10-13 mol hornblende m-2 s-1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface. ?? 2008 Elsevier Ltd. All rights reserved.

  14. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    SciTech Connect

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2009-05-12

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers ({approx}2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive {Delta}V of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 {angstrom}, forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10{sup -14} mol biotite m{sup -2} s{sup -1}. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 {micro}m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10{sup -13} mol hornblende m{sup -2} s{sup -1}: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O{sub 2} at the bedrock-saprolite interface.

  15. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication. PMID:26647786

  16. Decreased methane formation from the hydrogenation of carbon monoxide using zeolite/cobalt-manganese oxide composite catalysts.

    PubMed

    Johns, M; Landon, P; Alderson, T; Hutchings, G J

    2001-12-01

    A composite catalyst comprising a physical mixture of a zeolite and a cobalt/manganese oxide Fischer-Tropsch catalyst decreases the formation of methane in the hydrogenation of carbon monoxide without significantly affecting conversion. PMID:12240011

  17. Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil.

    PubMed

    Yu, Zhihong; Zhou, Li; Huang, Yifan; Song, Zhengguo; Qiu, Weiwen

    2015-11-01

    The arsenic adsorption capacity of a manganese oxide-modified biochar composite (MBC), prepared by pyrolysis of a mixture of potassium permanganate and biochar, was investigated in red soil. Adsorption experiments using batch procedures were used to estimate the arsenic adsorption capacities of the absorbent materials. Adsorption and desorption isotherms, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterise the prepared adsorbent materials, and a plausible mechanism for arsenic removal by MBC was proposed. Arsenic in red soil-MBC mixtures exhibited lower mobility than that in soils amended with pristine biochar. The improved removal performance of soil-MBC mixtures was attributed to a lower H/C ratio, higher O/C ratio, higher surface hydrophilicity, and higher surface sorption capacity, even though the impregnation of manganese oxide decreased the specific surface area of the biochar. Arsenic retention increased as the biochar content increased, mainly owing to an increase in soil pH. Several oxygenated functional groups, especially O-H, CO, Mn-O, and Si-O, participated in the adsorption process, and manganese oxides played a significant role in the oxidation of arsenic. This study highlights the potential of MBC as an absorbent to immobilise arsenic for use in contaminated land remediation in the red soils region. PMID:26320008

  18. Diclofenac and 2‐anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver

    PubMed Central

    Meerburg, Francis; Hennebel, Tom; Vanhaecke, Lynn; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary The occurrence of a range of recalcitrant organic micropollutants in our aquatic environment has led to the development of various tertiary wastewater treatment methods. In this study, biogenic manganese oxides (Bio‐MnOx), biogenic silver nanoparticles (Bio‐Ag0) and ionic silver were used for the oxidative removal of the frequently encountered drug diclofenac and its dechlorinated form, 2‐anilinophenylacetate (APA). Diclofenac was rapidly degraded during ongoing manganese oxidation by Pseudomonas putida MnB6. Furthermore, whereas preoxidized Bio‐MnOx, Bio‐Ag0 and Ag+ separately did not show any removal capacity for diclofenac, an enhanced removal occurred when Bio‐MnOx and silver species were combined. Similar results were obtained for APA. Finally, a slow removal of diclofenac but more rapid APA degradation was observed when silver was added to manganese‐free P. putida biomass. Combining these results, three mechanisms of diclofenac and APA removal could be distinguished: (i) a co‐metabolic removal during active Mn2+ oxidation by P. putida; (ii) a synergistic interaction between preoxidized Bio‐MnOx and silver species; and (iii) a (bio)chemical process by biomass enriched with silver catalysts. This paper demonstrates the use of P. putida for water treatment purposes and is the first report of the application of silver combined with biogenic manganese for the removal of organic water contaminants. PMID:22221449

  19. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries.

    PubMed

    Cai, Zhengyang; Xu, Lin; Yan, Mengyu; Han, Chunhua; He, Liang; Hercule, Kalele Mulonda; Niu, Chaojiang; Yuan, Zefan; Xu, Wangwang; Qu, Longbing; Zhao, Kangning; Mai, Liqiang

    2015-01-14

    Transition metal oxides have attracted much interest for their high energy density in lithium batteries. However, the fast capacity fading and the low power density still limit their practical implementation. In order to overcome these challenges, one-dimensional yolk-shell nanorods have been successfully constructed using manganese oxide as an example through a facile two-step sol-gel coating method. Dopamine and tetraethoxysilane are used as precursors to obtain uniform polymer coating and silica layer followed by converting into carbon shell and hollow space, respectively. As anode material for lithium batteries, the manganese oxide/carbon yolk-shell nanorod electrode has a reversible capacity of 660 mAh/g for initial cycle at 100 mA/g and exhibits excellent cyclability with a capacity of 634 mAh/g after 900 cycles at a current density of 500 mA/g. An enhanced capacity is observed during the long-term cycling process, which may be attributed to the structural integrity, the stability of solid electrolyte interphase layer, and the electrochemical actuation of the yolk-shell nanorod structure. The results demonstrate that the manganese oxide is well utilized with the one-dimensional yolk-shell structure, which represents an efficient way to realize excellent performance for practical applications. PMID:25490409

  20. Protective role of silymarin against manganese-induced nephrotoxicity and oxidative stress in rat.

    PubMed

    Chtourou, Yassine; Garoui, El mouldi; Boudawara, Tahia; Zeghal, Najiba

    2014-10-01

    Metal toxicity may occur after exposure from many sources. Oxidative stress is thought to be involved in manganese-induced toxicity and leads to various health disorders. Silymarin (SIL), a natural flavonoid, has been reported to have many benefits and medicinal properties. The aim of this study was to assess the toxicity of manganese (Mn) on oxidative stress and DNA damage in the kidney of rats and its alleviation by SIL. Manganese was given orally in drinking water (20 mg MnCl2 /mL) with or without SIL administration (100 mg /kg intraperitoneally) for 30 days. Our data showed that SIL significantly prevented Mn induced nephrotoxicity, indicated by both diagnostic indicators of kidney injury like plasma urea, uric acid and creatinine and urinary electrolyte levels and by histopathological analysis. Moreover, Mn-induced profound elevation of the production of reactive oxygen species (ROS) and altered the levels of oxidative stress related biomarkers in kidney tissue. This is evidenced by the increase of lipid peroxidation, protein carbonylation, DNA fragmentation and urinary hydrogen peroxide, while, the activities of enzymatic antioxidant and glutathione level were decreased. Treatment with SIL reduced the alterations in the renal and urine markers, decreasing lipid peroxidation markers, increasing the antioxidant cascade and decreasing the Mn-induced damage. All these changes were supported by histopathological observations. These findings suggested that the inhibition of Mn-induced damage by SIL was due at least in part to its antioxidant activity and its capacity to modulate the oxidative damage. PMID:23339144

  1. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  2. Interactions between manganese oxides and multiple-ringed aromatic compounds

    SciTech Connect

    Whelan, G. ); Sims, R.C. . Dept. of Civil and Environmental Engineering)

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated, indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.

  3. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-06-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH.

  4. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH

    PubMed Central

    Yamaguchi, Akira; Inuzuka, Riko; Takashima, Toshihiro; Hayashi, Toru; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides. Pyridine and its derivatives, which have pKa values intermediate to the water ligand bound to manganese(II) and manganese(III), are used as proton-coupled electron transfer induction reagents. The induction of concerted proton-coupled electron transfer is demonstrated by the detection of deuterium kinetic isotope effects and compliance of the reactions with the libido rule. Although proton-coupled electron transfer regulation is essential for the facial redox change of manganese in photosystem II, most manganese oxides impair these regulatory mechanisms. Thus, the present findings may provide a new design rationale for functional analogues of the oxygen-evolving complex for efficient water splitting at neutral pH. PMID:24977746

  5. Coordination compounds of manganese(II) with polyamines - catalysts of the oxidation of organic dyes by hydrogen peroxide

    SciTech Connect

    Batyr, D.G.; Isak, V.G.; Kirienko, A.A.; Kharitonov, Yu.Ya.

    1987-02-01

    The peroxidase activity of complexes of manganese(II) with polyamines has been characterized. A comparison of the original and literature data has led to the conclusion that the oxidation of organic substrates having some complexing ability with respect to Manganese(II) in Mn(II)-ligand-H/sub 2/O/sub 2/-S systems takes place according to an inner-sphere ion-molecule mechanism. In cases in which the substrate does not have any complexing ability with respect to Manganese(II), the oxidation process takes place according to an outer-sphere mechanism.

  6. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications. Electronic supplementary information (ESI) available: Chemical structures of functional groups on cellulose fibers, the surface water wettability of rice paper, CV curves of supercapacitors at different scan rates, galvanostatic charge-discharge curves of supercapacitors at different current densities, TGA profiles of the SWCNT-MnO2-paper composites synthesized at different temperatures, TEM images of MnO2 particles deposited on rice paper at different temperatures, photographs of supercapacitors under different bending test conditions, and a video of bending and folding the SWCNT-MnO2-paper composites. See DOI: 10.1039/c3nr03010e

  7. Enhanced mercury removal from fix-bed reactor by lamella manganese oxide sorbents

    NASA Astrophysics Data System (ADS)

    Cheng, H. W.; Yu, C. T.

    2015-12-01

    Mercury (Hg) is an extremely hazardous metal and attracted more concern because of its high toxicity and bioaccumulation. Several manganese-oxide-containing sorbents prepared by co-precipitation method could exhibit the mercury removal activities toward Hg0. The mercury removal test at the temperature of 300°C has the highest removal efficiency. Under this temperature, the maximum absorption equivalent of Mg-Al-Mn and Mn-Al were up to 90.9 and 247 μg/g, then gradually decreased at 400°C. The mercury removal efficiency declined in the following sequence: Mn-Al > Mg-Al-Mn > Mg-Al-Mn/ACA = Mn/AC(p)> Mn/AC(g), due to the manganese-oxide content formed on the sorbents.

  8. Low-temperature, manganese oxide-based, thermochemical water splitting cycle

    PubMed Central

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2012-01-01

    Thermochemical cycles that split water into stoichiometric amounts of hydrogen and oxygen below 1,000 °C, and do not involve toxic or corrosive intermediates, are highly desirable because they can convert heat into chemical energy in the form of hydrogen. We report a manganese-based thermochemical cycle with a highest operating temperature of 850 °C that is completely recyclable and does not involve toxic or corrosive components. The thermochemical cycle utilizes redox reactions of Mn(II)/Mn(III) oxides. The shuttling of Na+ into and out of the manganese oxides in the hydrogen and oxygen evolution steps, respectively, provides the key thermodynamic driving forces and allows for the cycle to be closed at temperatures below 1,000 °C. The production of hydrogen and oxygen is fully reproducible for at least five cycles. PMID:22647608

  9. Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity.

    PubMed

    Adedara, Isaac A; Abolaji, Amos O; Rocha, Joao B T; Farombi, Ebenezer O

    2016-06-01

    Several experimental and epidemiological reports have associated manganese exposure with induction of oxidative stress and locomotor dysfunctions. Diphenyl diselenide (DPDS) is widely reported to exhibit antioxidant, anti-inflammatory and neuroprotective effects in in vitro and in vivo studies via multiple biochemical mechanisms. The present study investigated the protective effect of DPDS on manganese-induced toxicity in Drosophila melanogaster. The flies were exposed, in a dietary regimen, to manganese alone (30 mmol per kg) or in combination with DPDS (10 and 20 µmol per kg) for 7 consecutive days. Exposure to manganese significantly (p < 0.05) increased flies mortality, whereas the survivors exhibited significant locomotor deficits with increased acetylcholinesterase (AChE) activity. However, dietary supplementation with DPDS caused a significant decrease in mortality, improvement in locomotor activity and restoration of AChE activity in manganese-exposed flies. Additionally, the significant decreases in the total thiol level, activities of catalase and glutathione-S-transferase were accompanied with significant increases in the generation of reactive oxygen and nitrogen species and thiobarbituric acid reactive substances in flies exposed to manganese alone. Dietary supplementation with DPDS significantly augmented the antioxidant status and prevented manganese-induced oxidative stress in the treated flies. Collectively, the present data highlight that DPDS may be a promising chemopreventive drug candidate against neurotoxicity resulting from acute manganese exposure. PMID:26875733

  10. CHROMIUM TRANSPORT, OXIDATION, AND ADSORPTION IN MANGANESE-COATED SAND

    EPA Science Inventory

    We examine how the processes of advection, dispersion, oxidation-reduction, and adsorption combine to affect the transport of chromium through columns packed with pyrolusite (P-MnO$-coated sand. We find that P-Mn02 effectively oxidizes Cr@I) to Cr(VI) and that the extent of oxida...

  11. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, J.W.; Fuller, C.C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheicflow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/??(s), of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/??(h) = 2.6 hours), and in laboratory batch experiments using streambed sediment (1/?? = 2.7 hours). The modeled depths of subsurface storage zones (d(s) = 4-17 cm) and modeled residence times of water in storage zones (t(s) = 3-12 min) were both consistent with direct measurements in hyporheic flow paths (d(h) = 0-15 cm, and t(h) = 1-25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (f(s) = 8.9%, and f(h) = 9.3%). Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1??(s) ??? 1.3 hours), and the hyporheic porewater residence timescale (t(s) ??? 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (L(s) = stream velocity/storage-zone exchange coefficient ??? 1.3 km) and the length of Pinal Creek (L ??? 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, R(s) = ??(s)t(s)L/L(s) (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of R(s) > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  12. Chemical fluxes and origin of a manganese carbonate-oxide-silicate deposit in bedded chert

    USGS Publications Warehouse

    Huebner, J.S.; Flohr, M.J.K.; Grossman, J.N.

    1992-01-01

    Lens-like rhodochrosite-rich bodies within interbedded chert and shale are associated with basalt and/or graywacke in ophiolitic and orogenic zones. The Buckeye manganese mine in the Franciscan Complex of the California Coast Ranges is associated with metagraywacke. Despite blueschist-facies metamorphism, this deposit preserves the compositions and some textural features of its sedimentary protoliths. For this reason, it is a suitable deposit with which to compare more intensely altered deposits, or deposits originating in different paleoenvironments. Six Mn-rich and three Mn-poor minerals form monomineralic layers and mixtures: rhodochrosite, gageite, Mn-oxides (hausmannite, braunite), divalent Mn-silicates (caryopilite, taneyamalite), chlorite, quartz (metachert) and aegirine-augite. The Mn-rich protoliths have high Mn/Fe combined with relatively low concentrations of Ca, Al, Ti, Co, Ni, Cu, Th and REE. REE patterns of various protoliths are distinct. Rhodochrosite and gageite layers are depleted (seawater ?? 5 ?? 104) and flat, whereas patterns of metachert and the Mn-silicate-rich layers mimic the patterns of metashale and metagraywacke (seawater ?? 106). Hausmannite layers have flat patterns (seawater ?? 7 ?? 104) whereas braunite-rich layers are more enriched (seawater ?? 2 ?? 105) and show a distinct positive Ce anomaly. Factor analysis reveals components and fluxes attributed to sub-seafloor fluids (Ni, As, Zn, Sb, W, Mn), seawater (Mg, Au, V, Mo), detritus and veins (Ca, Ba, Sr). Silica is negatively correlated with the sub-seafloor factor. The observed variances indicate that water from the sediment column mixed with seawater, that deposition occurred near the sediment-seawater interface before mixtures of subsurface fluid and seawater homogenized, and that the system was not entirely closed during metamorphism. The variations in REE enrichment can be related to kinetics of deposition: rhodochrosite and gageite were precipitated most rapidly, and therefore were the protoliths that most effectively diluted the REE-rich background resulting from fine clastic material (derived from distal turbidites). The variation of the Ce anomaly and U/Th among diverse lithologies and the differences in Mn oxidation states are consistent with progressive dilution of reduced subsurface fluids with oxidized seawater. By this scheme, rhodochrosite, gageite and hausmannite were deposited from the most reduced fluids, braunite from intermediate mixtures, and Mn-silicates from the sub-seafloor fluids most diluted with fresh seawater. Comparison of the Buckeye with other lens-like and sheet-like deposits having high Mn/Fe and containing Mn3+ and/or Mn2+ suggests that each had three essential fluxes: a sub-seafloor source of Mn, a local source of very soluble silica and a source of relatively fresh, oxygenated water. Additional fluxes, such as clastics, appear to be more characteristic of the paleoenvironment than the three essential fluxes. ?? 1992.

  13. The ability of oxidative stress to mimic quartz-induced chemokine responses is lung cell line-dependent.

    PubMed

    Ovrevik, Johan; Refsnes, Magne; Schwarze, Per; Låg, Marit

    2008-09-26

    Oxidative stress induced by surface-generated radicals has been a dominating hypothesis to explain how mineral particles and fibers trigger cellular responses. However, conflicting studies suggest that the importance of particle-derived formation of reactive oxygen species (ROS) requires further examination. The present study focuses on whether oxidative stress in the form of H(2)O(2)-exposure may mimic the effects of quartz particles on chemokine responses in epithelial lung cells. The results show that H(2)O(2) and quartz exposure induced almost identical levels of CXCL8 (interleukin-8) release in the alveolar epithelial cell line A549, but in the bronchial epithelial cell line BEAS-2B, H(2)O(2)-exposure did not affect CXCL8 release significantly, whereas quartz induced a 16-fold increase. Among 17 different cytokine and chemokine genes H(2)O(2) induced up-regulation of only IL-5 in BEAS-2B cells, while quartz increased the expression of 8 different cytokines and chemokines. In A549 cells, however, there was a moderate but significant correlation between the cytokine/chemokine gene-expression profiles induced by the two agents. Thus, the response to oxidative stress may vary considerably between different lung cell lines. Moreover, the results from the BEAS-2B cells strengthen the notion that non-oxidant initiation mechanisms may also be important to the effects of mineral particles and fibers. PMID:18662758

  14. The Role of High Molecular Weight Polyethylene Oxide in Reducing Quartz Gangue Entrainment in Chalcopyrite Flotation by Xanthate Collectors

    NASA Astrophysics Data System (ADS)

    Gong, Jihua

    Fine particles pose two challenging problems to all mineral processors around the world today. The problems are the inefficient collection of hydrophobic particles (low recovery), and mechanical/hydraulic entrainment of hydrophilic gangue particles (low concentrate grade). Extensive research has been conducted to improve the flotation recovery of fine hydrophobic particles. However, much less effort was made to lower the mechanical/hydraulic entrainment of fine gangue mineral particles. In this study, polyethylene oxide (PEO) was used to flocculate and depress fine quartz particles. Batch flotation results indicated that the addition of low dosages of PEO improved value mineral recovery and concentrate grade in the flotation of artificial mixtures of chalcopyrite/quartz and a commercial Au-Cu sulfide ore sample. It was found that PEO adsorbed on both minerals mainly through hydrogen bonding and caused non-selective flocculation of quartz and chalcopyrite, forming large hetero-aggregates. However, the addition of potassium amyl xanthate (KAX), a specific sulfide mineral collector, adsorbed on chalcopyrite through chemical interaction, replaced PEO and caused the chalcopyrite particles to break away from the hetero-aggregates, forming separate homo-aggregates of quartz and chalcopyrite. The flotation of the chalcopyrite and the depression of the quartz were thus both improved due to the larger sizes of the homo-aggregates compared to the discrete particles. It was also observed that a completely solubilized PEO solution could not flocculate quartz, while a partially solubilized PEO solution was most effective. This was attributed to the better “bridging” functions of the undissolved PEO aggregates when it was partially solubilized. When the PEO was fully solubilized, the individual PEO molecules were probably too flexible and tended to flatten on the adsorbed solid surface and thus could not function as an effective bridging flocculant. Furthermore, it was found that PEO could function as a “collector” for quartz due to its affinity to air-water interface and quartz, and it could increase quartz entrainment when used at high dosages. Selective flocculation and depression of the quartz gangue during chalcopyrite flotation could only be achieved at low PEO dosages. The implication of these observations on how to utilize the polyethylene oxide in industrial flotation was discussed.

  15. Fischer-Tropsch kinetic studies with cobalt-manganese oxide catalysts

    SciTech Connect

    Keyser, M.J.; Everson, R.C.; Espinoza, R.L.

    2000-01-01

    An investigation was undertaken to establish the reaction mechanism for the Fischer-Tropsch reaction, in the presence of the water-gas shift reaction, over a cobalt-manganese oxide catalyst under conditions favoring the formation of gaseous, liquid, and solid (waxes) hydrocarbons (210--250 C and 6--26 bar). A micro-fixed-bed reactor was used with a cobalt-manganese oxide catalyst prepared by a coprecipitation method. An integral reactor model involving both Fischer-Tropsch and water-gas shift reaction kinetics was used to describe the overall performance. Reaction rate equations based on Langmuir-Hinshelwood-Hougen-Watson models for the Fischer-Tropsch reaction (hydrocarbon forming) and empirical reaction rate equations for the water-gas shift reaction from the literature were tested. Different combinations of the reaction rate equation were evaluated with the aid of a nonlinear regression procedure. It was found that a reaction rate equation for the Fischer-Tropsch reaction based on the enolic theory performed slightly better than a reaction rate equation based on the carbide theory. Reaction rate constants for the cobalt-manganese oxide catalyst are reported, and it is concluded that this catalyst also behaves very much like iron-based catalysts.

  16. Synthesis and Electrochemical Analyses of Manganese Oxides for Super-Capacitors.

    PubMed

    Kim, Taewoo; Hwang, Hyein; Jang, Jaeyong; Park, Inyeong; Shim, Sang Eun; Baeck, Sung-Hyeon

    2015-11-01

    δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure. PMID:26726613

  17. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-01-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  18. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  19. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    PubMed

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life. PMID:26758444

  20. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment.

    PubMed

    Najafpour, Mohammad Mahdi; Moghaddam, Atefeh Nemati; Yang, Young Nam; Aro, Eva-Mari; Carpentier, Robert; Eaton-Rye, Julian J; Lee, Choon-Hwan; Allakhverdiev, Suleyman I

    2012-10-01

    The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster. PMID:22941557

  1. [Synthesis of manganese oxide octahedral molecular sieve and their application in catalytic oxidation of benzene].

    PubMed

    Li, Dong-Yan; Liu, Hai-Di; Chen, Yun-Fa

    2011-12-01

    Manganese oxide octahedral molecular sieves (OMS-2) for VOCs catalytic combustion were synthesized by refluxing method. The crystal structure, particle morphology, pore structure and H2-reduction ability were characterized by XRD, SEM, N2 adsorption-desorption and H2-TPR techniques. The catalytic activities of the OMS-2 calcined at different temperatures in benzene combustion and the stability of the sample calcined at 300 degrees C were evaluated. The results indicated that the effect of calcinations temperature on the surface characters of catalysts was remarkable. With higher calcination temperature, the samples showed lower surface area and pore volume, but larger average pore size. At the same time, high calcination temperature leaded to low activity. The benzene conversion of the sample calcined at 300 degrees C was 50% degrees C at 200 degrees C and 90% at 250 degrees C, respectively. The catalytic activity exhibited only 5% reduction after reaction at 260 degrees C for 70 h, which indicated that the as-made catalysts were very stable after calcination at 300 degrees C. PMID:22468535

  2. Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    PubMed Central

    Johnson, Jena E.; Webb, Samuel M.; Thomas, Katherine; Ono, Shuhei; Kirschvink, Joseph L.; Fischer, Woodward W.

    2013-01-01

    The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2—multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains—reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn. PMID:23798417

  3. Manganese-oxidizing photosynthesis before the rise of cyanobacteria.

    PubMed

    Johnson, Jena E; Webb, Samuel M; Thomas, Katherine; Ono, Shuhei; Kirschvink, Joseph L; Fischer, Woodward W

    2013-07-01

    The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2--multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains--reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn. PMID:23798417

  4. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist.

    PubMed

    Chen, Hongliang; Liu, Renlong; Shu, Jiancheng; Li, Wensheng

    2015-01-01

    Leaching tests of electrolytic manganese residue (EMR) indicated that high contents of soluble manganese and ammonia-nitrogen posed a high environmental risk. This work reports the results of simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese by air under calcium oxide assist. The ammonia-nitrogen stripping rate increased with the dosage of CaO, the air flow rate and the temperature of EMR slurry. Stripped ammonia-nitrogen was absorbed by a solution of sulfuric acid and formed soluble (NH4)2SO4 and (NH4)3H(SO4)3. The major parameters that effected soluble manganese precipitation were the dosage of added CaO and the slurry temperature. Considering these two aspects, the efficient operation conditions should be conducted with 8 wt.% added CaO, 60°C, 800 mL min(-1) air flow rate and 60-min reaction time. Under these conditions 99.99% of the soluble manganese was precipitated as Mn3O4, which was confirmed by XRD and SEM-EDS analyses. In addition, the stripping rate of ammonia-nitrogen was 99.73%. Leaching tests showed the leached toxic substances concentrations of the treated EMR met the integrated wastewater discharge standard of China (GB8978-1996). PMID:26301855

  5. Adsorption of Ribose Nucleotides on Manganese Oxides with Varied Mn/O Ratio: Implications for Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Shanker, Uma; Kamaluddin

    2011-10-01

    Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn2O3), Hausmannite (Mn3O4) and Pyrolusite (MnO2) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X m and K L values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.

  6. Adsorption of ribose nucleotides on manganese oxides with varied mn/o ratio: implications for chemical evolution.

    PubMed

    Bhushan, Brij; Shanker, Uma; Kamaluddin

    2011-10-01

    Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn(2)O(3)), Hausmannite (Mn(3)O(4)) and Pyrolusite (MnO(2)) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X( m ) and K( L ) values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts. PMID:21626404

  7. Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction.

    SciTech Connect

    Lee, Ji-Hoon; Kennedy, David W.; Dohnalkova, Alice; Moore, Dean A.; Nachimuthu, Ponnusamy; Reed, Samantha B.; Fredrickson, Jim K.

    2011-09-27

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 produced γ-MnS (rambergite) nanoparticles under the concurrent reduction of synthetic MnO2 and thiosulfate coupled to H2 oxidation. Using two MR-1 mutants defective in outer membrane c-type cytochromes (ΔmtrC/ΔomcA and ΔmtrC/ΔomcA/ΔmtrF) to eliminate the direct reduction pathway for solid electron acceptors, it was determined that respiratory reduction of MnO2 was dominant relative to chemical reduction by biogenic sulfide generated from bacterial thiosulfate reduction. Although bicarbonate was excluded from the medium, incubations of MR-1 using lactate as the sole electron donor produced MnCO3 (rhodochrosite) as well as MnS in nearly equivalent amounts as estimated by micro X-ray diffraction (micro-XRD) analysis. It was concluded that carbonate released from lactate metabolism promoted MnCO3 formation and that Mn(II) mineralogy was strongly affected by carbonate ions even in the presence of abundant sulfide and weakly alkaline conditions that favor the precipitation of MnS. Formation of the biogenic MnS, as determined by a combination of micro-XRD, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction analyses was consistent with equilibrium speciation modeling predictions. Although biogenic MnS likely only forms and is stable over a relatively narrow range of conditions, it may be a significant sink for Mn in anoxic marine basins and terrestrial subsurface sediments where Mn and sulfur compounds are undergoing concurrent reduction.

  8. Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn₄ cluster in photosystem II.

    PubMed

    Najafpour, Mohammad Mahdi

    2011-06-01

    In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II. PMID:20814743

  9. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    PubMed Central

    Fenske, Daniela; Bardenhagen, Ingo; Westphal, Anne; Knipper, Martin; Plaggenborg, Thorsten; Kolny-Olesiak, Joanna; Parisi, Jürgen

    2015-01-01

    Summary Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx + oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species. PMID:25671151

  10. Gamma radiation induced formation and characterization of the nano-oxides of manganese

    NASA Astrophysics Data System (ADS)

    Puspalata, R.; Sumathi, S.; Chandramohan, P.; Bera, S.; Rangarajan, S.; Sudha, R.; Narasimhan, S. V.; Velmurugan, S.

    2013-04-01

    Nano-crystalline oxide powders of manganese were formed by the radiolytic reduction of permanganate (MnO4-) at ambient temperature and pressure in (i) acid (ii) neutral and (iii) alkali mediums. Gamma radiolysis generated brown/black precipitates of manganese oxides were analyzed by X-ray powder diffraction, Raman spectroscopy, XPS, AFM and SEM. The influence of oxygen on the nature of oxides formed was studied. Permanganic acid (HMnO4), at low concentrations (2.5 mM) and irradiated to 123 kGy, produced λ-MnO2 with an average crystallite size of 30 nm whereas at high concentrations (8 mM) and absorbed dose of 300 kGy, MnOOH was formed. The XRD pattern of the oxide powder obtained in all other cases showed broad peaks indicating nano-crystalline nature. The results of nitrogen adsorption-desorption experiments showed high specific surface area of ˜53 m2/g corresponding to ˜5 nm average pore size for the oxide obtained from 8 mM HMnO4 irradiated to 300 kGy. Atomic force microscopy (AFM) indicated a minimum particle size of ˜13 nm for the same oxide whereas the SEM images showed presence of nano-rods.

  11. Characterization of Manganese Oxide Precipitates from Appalachian Coal Mine Mine Drainage Treatment Systems

    SciTech Connect

    Tan, H.; Zhang, G; Heaney, P; Webb, S; Burgos, W

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO{sub x}). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction ({+-}inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO{sub x} precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnOx precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO{sub x} precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnOx mineral assemblages in CMD treatment systems.

  12. c-Type cytochromes and manganese oxidation in Pseudomonas putida MnB1

    SciTech Connect

    Caspi, R.; Tebo, B.M.; Haygood, M.G.

    1998-10-01

    Pseudomonas putida MnB1 is an isolate from an Mn oxide-encrusted pipeline that can oxidize Mn(II) to Mn oxides. The authors used transposon mutagenesis to construct mutants of strain MnB1 that are unable to oxidize manganese, and they characterized some of these mutants. The mutants were divided into three groups: mutants defective in the biogenesis of c-type cytochromes, mutants defective in genes that encode key enzymes of the tricarboxylic acid cycle, and mutants defective in the biosynthesis of tryptophan. The mutants in the first two groups were cytochrome c oxidase negative and did not contain c-type cytochromes. Mn(II) oxidation capability could be recovered in a c-type cytochrome biogenesis-defective mutant by complementation of the mutation.

  13. Microbial reduction of manganese oxides - Interactions with iron and sulfur

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.

  14. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  15. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  16. Oxide Formation Mechanisms in High Manganese Steel Welds

    NASA Astrophysics Data System (ADS)

    Kim, Dooyoung; Han, Kyutae; Lee, Bongkeun; Han, Ilwook; Park, Joo Hyun; Lee, Changhee

    2014-04-01

    Oxide inclusions in high-Mn steel welds were analyzed and almost all of which were found to belong to the MnO-Al2O3-SiO2 system. In this study, the inclusions were categorized based on MnS morphology into the following two types: (1) aluminosilicate with a MnS patch, or (2) aluminosilicate with a MnS shell. The most frequently detected was type 1, the formation mechanism of which was investigated using commercially available thermochemical computing software, FactSage (ver. 6.3). The thermodynamic calculations predicted that galaxite (MnAl2O4), tephroite (Mn2SiO4), and MnS could precipitate during solidification. However, because of the fast cooling rate in welding processes, galaxite and tephroite phases were unable to fully crystallize, but rather were supercooled as glassy phases. In order to confirm the validity of the thermodynamic calculations, the composition of the observed inclusions was compared with the MnO-SiO2-Al2O3 ternary phase diagram, resulting in remarkably good agreement. Furthermore, it was found that the type of the oxide inclusions was dependent on their location ( i.e., MnS shell- and MnS patch-type oxides were detected at the dendritic core and interdendritic boundary, respectively). Both types of oxides were occasionally found in one oxide, near the interdendritic boundary. This indicates that the morphology variation originates from the redistribution of solute due to fast solidification.

  17. Manganese-oxidizing photosynthesis before the rise of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Webb, S.; Thomas, K. S.; Ono, S.; Kirschvink, J. L.; Fischer, W. W.

    2012-12-01

    The evolution of oxygenic photosynthesis was a singularity that fundamentally transformed our planet's core biogeochemical cycles and changed the redox structure of Earth's surface, crust, and mantle. To date, understanding the evolution of this molecular machinery has largely been derived from comparative biology. Several biochemical innovations enabled water-splitting, including a central photosynthetic pigment with a higher redox potential and coupled photosystems. However the critical photochemical invention was the water oxidizing complex (WOC) of photosystem II, a cubane cluster of four redox-active Mn atoms and a Ca atom bound by oxo bridges, that couple the single electron photochemistry of the photosystem to the four-electron oxidation of water to O2. Transitional forms of the WOC have been postulated, including an Mn-containing catalase-like peptide using an H2O2 donor, or uptake and integration of environmental Mn-oxides. One attractive hypothesis from the perspective of modern photo-assembly of the WOC posits an initial Mn(II)-oxidizing photosystem as a precursor to the WOC (Zubay, 1996; Allen and Martin, 2007). To test these hypotheses, we studied the behavior of the ancient Mn cycle captured by 2415 ± 6 Ma scientific drill cores retrieved by the Agouron Drilling Project through the Koegas Subgroup in Griqualand West, South Africa. This succession contains substantial Mn-enrichments (up to 17 wt.% in bulk). To better understand the petrogenesis and textural context of these deposits, we employed a novel X-ray absorption spectroscopy microprobe to make redox maps of ultra-thin sample sections at a 2μm scale. Coupled to light and electron microscopy and C isotopic measurements, we observe that all of the Mn is present as Mn(II), contained within carbonate minerals produced from early diagenetic reduction of Mn-oxide phases with organic matter. To assay the environmental oxidant responsible for the production of the Mn-oxides we examined two independent techniques sensitive to low levels of environmental O2—multiple sulfur isotopes analyzed using whole-rock IRMS and texture-specific SIMS techniques, and the presence of redox-sensitive detrital grains. Despite the conspicuous oxidation of Mn, both proxies reveal a lack of significant molecular oxygen present in the environment at this time (O2 << 1 ppm). These results provide strong geological support for the idea that an early Mn-oxidizing photosystem once existed as a transitional form prior to the evolution of the WOC of photosystem II and oxygenic photosynthesis. [Refs: Zubay J (1996) Origins of Life on the Earth and in the Cosmos, Academic Press: San Diego. Allen JF, Martin W (2007) Evolutionary biology: Out of thin air, Nature, 445, 610-612.

  18. Facile synthesis of manganese oxide loaded hollow silica particles and their application for methylene blue degradation.

    PubMed

    Meng, Qingnan; Xiang, Siyuan; Cheng, Wei; Chen, Qiaonan; Xue, Pengfei; Zhang, Kai; Sun, Hongchen; Yang, Bai

    2013-09-01

    A facile poly acrylic acid (PAA) soft templating method was developed to fabricate manganese oxide loaded hollow silica particles (MHSPs). The synthesis involves PAA-Mn aggregation to form spherical particles and silica coating layer formation on the outer surface of the particles. Subsequent calcination in air at 500 C removes the polymer inside the particles, and hollow silica spheres with trapped metal oxide particles are thus formed. The PAA traps the Mn ions and forms aggregates which template the silica shell formation in this process. The Mn content and the structure of the MHSPs can be tuned by changing doses of the Mn salt initially added. Moreover, decomposition of PAA during calcination endows high surface areas of the MHSPs. Catalytic oxidation of methylene blue (MB) with H2O2 was tested on the MHSPs. The results show that the MHSPs with hollow structure and high surface areas enhance the catalytic activity compare to the corresponding manganese oxide solid particles (MSPs). This strategy can also be used to synthesize other metal oxides (such as MgO and NiO) loaded hollow silica particles. PMID:23777863

  19. Nanophase Manganese Oxides: Chemisorbed Water and Small Particle Size Promote Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria

    NASA Astrophysics Data System (ADS)

    Birkner, N.; Navrotsky, A.

    2011-12-01

    Manganese oxides are important in terrestrial and Martian settings, and changes in oxidation state (Mn 2+, 3+, 4+) produce different phases. This study focuses on changes in redox energetics at the nanoscale in the Mn-O system with water present. Nanophase hausmannite (Mn3O4), bixbyite (Mn2O3), and pyrolusite (MnO2) were synthesized using minor modifications of previously published methods, stored at room temperature, and then analyzed by powder-XRD, BET surface area measurement, and TGA for total water content. High-temperature oxide-melt drop solution calorimetry was performed on a series of characterized samples with known surface area and water content. The differential heat of water adsorption as a function of coverage was also measured. The surface enthalpies of manganese oxide phases, hausmannite (Mn3O4), bixbyite (Mn2O3), and pyrolusite (MnO2), were determined using the data from high-temperature oxide melt calorimetry and water adsorption calorimetry. Surface energy for the hydrous Mn3O4 tetragonal spinel phase is 0.96±0.08 J/m2, for Mn2O3 cubic phase is 1.29±0.10 J/m2, and for MnO2 cubic rutile phase is 1.64±0.10 J/m2. Surface energy for the anhydrous Mn3O4 is 1.31±0.08 J/m2, for Mn2O3 is 1.57±0.10 J/m2, and for MnO2 is 1.99±0.10 J/m2. Supporting preliminary findings, the spinel phase (hausmannite) has a lower surface energy than bixbyite, while the latter has a smaller surface energy than pyrolusite. We also observed phase changes, some of them rapidly reversible, associated with water adsorption/desorption for the nanophase manganese oxide assemblages. There are geochemical consequences. (1) At the nanoscale, both the pyrolusite/bixbyite and bixbyite/hausmannite equilibria are shifted to higher oxygen fugacity because the reduced phase has the lower surface energy. (2) The ready inter-conversion of phases with different oxidation states under aqueous conditions implies that, after a manganese oxide nanophase forms, it can easily transform to other phases with different oxidation states and water contents and perhaps record changes in environmental conditions after, as well as during, its initial formation.

  20. Manganese oxide-supported iron Fischer-Tropsch synthesis catalysts: physical and catalytic characterization

    SciTech Connect

    Kreitman, K.M.

    1986-01-01

    In this study, manganese oxide-supported iron (Fe/MnO) was prepared by impregnation of powdered manganese (II) oxide with aqueous iron(III) nitrate and subjected to various calcination and reduction treatments. It was then employed as a catalyst for Fischer-Tropsch Synthesis (FTS) and its steady-state activity and selectivity behavior was observed. The FTS reaction studies were run with nearly equimolal carbon monoxide/hydrogen feed at 515 and 540 K, 7.9 and 14.8 bar pressure. Feed conversion level was kept low in order to avoid transport limitations, and was varied by adjusting space velocity. The FTS reaction rate decreased strongly with increasing conversion. Compared to unpromoted iron catalysts, the Fe/MnO catalysts were more active for the water-gas shift reaction and less selective for methane and alcohols, especially at higher conversion, lower temperature and higher pressure. The olefin selectivity was high and secondary hydrogenation was not apparent. Catalysts calcined at higher temperature exhibited stronger effects of promotion, and yielded unusually high selectivity for C/sub 2/ to C/sub 4/ hydrocarbons at low temperature and high pressure. The general conclusion is that manganese promotion or iron can promote FTS selectivity towards low molecular weight olefins, but at the expense of high carbon dioxide formation. The Fe/MnO was also physically examined using Moessbauer spectroscopy and X-ray diffraction. Iron and manganese were found to interact strongly in the calcined catalyst, though extensive phase separation occurred during reduction. The promoting effects are apparently due to partial surface coverage of iron with MnO, the extent of which is enhanced by wetter reducing conditions.

  1. Significant role of Mn(III) sites in e(g)(1) configuration in manganese oxide catalysts for efficient artificial water oxidation.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias

    2015-11-01

    Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation. PMID:25542875

  2. Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay.

    PubMed

    Najafpour, M M; Moghaddam, Atefeh N; Dau, Holger; Zaharieva, Ivelina

    2014-05-21

    A binuclear manganese molecular complex [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](3+) (1) is the most prominent structural and functional model of the water-oxidizing Mn complex operating in plants and cyanobacteria. Supported on montmorillonite clay and using Ce(IV) as a chemical oxidant, 1 has been reported to be one of the best Mn-based molecular catalysts toward water oxidation. By X-ray absorption spectroscopy and kinetic analysis of the oxygen evolution reaction, we show that [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](3+) is transformed into layered type Mn-oxide particles which are the actual water oxidation catalyst. PMID:24798550

  3. Geology, alteration, age, and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Ghaderi, Majid; Corfu, Fernando; Neubauer, Franz; Bernroider, Manfred; Prokofiev, Vsevolod; Honarmand, Maryam

    2014-02-01

    Iron oxide-apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U-Pb dating of monazite inclusions in the apatite indicates an age of 39.99 ± 0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide-apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic-hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.

  4. A Highly Sensitive Immunosorbent Assay Based on Biotinylated Graphene Oxide and the Quartz Crystal Microbalance.

    PubMed

    Deng, Xudong; Chen, Mengsu; Fu, Qiang; Smeets, Niels M B; Xu, Fei; Zhang, Zhuyuan; Filipe, Carlos D M; Hoare, Todd

    2016-01-27

    A high-sensitivity flow-based immunoassay is reported based on a gold-coated quartz crystal microbalance (QCM) chip functionalized directly in the QCM without requiring covalent conjugation steps. Specifically, the irreversible adsorption of a biotinylated graphene oxide-avidin complex followed by loading of a biotinylated capture antibody is applied to avoid more complex conventional surface modification chemistries and enable chip functionalization and sensing all within the QCM instrument. The resulting immunosensors exhibit significantly lower nonspecific protein adsorption and stronger signal for antigen sensing relative to simple avidin-coated sensors. Reproducible quantification of rabbit IgG concentrations ranging from 0.1 ng/mL to 10 μg/mL (6 orders of magnitude) can be achieved depending on the approach used to quantify the binding with simple mass changes used to detect higher concentrations and a horseradish peroxidase-linked detection antibody that converts its substrate to a measurable precipitate used to detect very low analyte concentrations. Sensor fabrication and assay performance take ∼5 h in total, which is on par with or faster than other techniques. Quantitative sensing is possible in the presence of complex protein mixtures, such as human plasma. Given the broad availability of biotinylated capture antibodies, this method offers both an easy and flexible platform for the quantitative sensing of a variety of biomolecule targets. PMID:26725646

  5. Study of quartz crystal microbalance NO2 sensor coated with sputtered indium tin oxide film

    NASA Astrophysics Data System (ADS)

    Georgieva, V.; Aleksandrova, M.; Stefanov, P.; Grechnikov, A.; Gadjanova, V.; Dilova, T.; Angelov, Ts

    2014-12-01

    A study of NO2 gas sorption ability of thin indium tin oxide (ITO) deposited on 16 MHz quartz crystal microbalance (QCM) is presented. ITO films are grown by RF sputtering of indium/tin target with weight proportion 95:5 in oxygen environment. The ITO films have been characterized by X-ray photoelectron spectroscopy measurements. The ITO surface composition in atomic % is defined to be: In-40.6%, Sn-4.3% and O-55%. The thickness and refractive index of the films are determined by ellipsometric method. The frequency shift of QCM-ITO is measured at different NO2 concentrations. The QCM-ITO system becomes sensitive at NO2 concentration >= 500 ppm. The sorbed mass for each concentration is calculated according the Sauerbrey equation. The results indicated that the 1.09 ng of the gas is sorbed into 150 nm thick ITO film at 500 ppm NO2 concentration. When the NO2 concentration increases 10 times the calculated loaded mass is 5.46 ng. The sorption process of the gas molecules is defined as reversible. The velocity of sorbtion /desorption processes are studied, too. The QCM coated with thin ITO films can be successfully used as gas sensors for detecting NO2 in the air at room temperature.

  6. Oxidative transformation of tetrachlorophenols and trichlorophenols by manganese dioxide.

    PubMed

    Zhao, Ling; Yu, Zhiqiang; Peng, Ping'an; Huang, Weilin; Dong, Yuanhua

    2009-06-01

    This study examined the transformation kinetics of three tetrachlorophenols (TeCPs) and three trichlorophenols (TCPs) in the presence of MnO2 under different solution chemistry conditions. The reaction rate measured for each CP decreased as a function of solution pH, and under the same solution chemistry conditions, the measured rates may depend primarily on both the adsorbability at the MnO2 surfaces and the isomeric structures of the CPs. Isomeric effects indicated that chloro substituent on ortho or para positions exhibited faster rates of transformation than on meta positions. Gas chromatography-mass spectrometry analysis with a derivatization method showed that dimers including polychlorinated phenoxyphenols and chlorinated polyhydroxybiphenyl were among the major products for all CPs. Monomeric products were among the major products of 2,4,6-TCP, 2,3,4-TCP, and 2,3,4,6-TeCP, whereas trimeric products also were among the major products of 2,3,4-TCP and 2,4,5-TCP. It appeared that hydroxylation of CPs and formation of dimeric or trimeric products via oxidative coupling were the major reaction mechanisms involved in the oxidation of CPs by MnO2. PMID:19132822

  7. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  8. Effects of solar radiation on manganese oxide reactions with selected organic compounds

    SciTech Connect

    Bertino, D.J.; Zepp, R.G. )

    1991-07-01

    The effects of sunlight on aqueous redox reactions between manganese oxides (MnO{sub x}) and selected organic substances are reported. No sunlight-induced rate enhancement was observed for the MnO{sub x} oxidation of substituted phenols, anisole, o-dichlorobenzene, or p-chloroaniline. On the other hand, solar radiation did accelerate the reduction of manganese oxides by dissolved organic matter (DOM) from aquatic environments. The photoreduction of MnO{sub x} by DOM was little affected by molecular oxygen in air-saturated water (250 {mu}M), but was inhibited by 2,6-dichloroindophenol (0.5-6 {mu}M), and excellent electron acceptor. MnO{sub x} reduction also was photosensitized by anthraquinone-2-sulfonate. These results indicate that the photoreduction probably involves electron transfer from excited states of sorbed DOM to the oxide surface. Wavelength studies indicated that ultraviolet-B radiation (280-320 nm) plays an important role in this photoreduction.

  9. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant correlations were found between EC50 values and reduction potential, electronegativity and the covalent index. Thus, metal toxicity in P. putida GB-1 appears to be modulated by the metals’ propensity to participate in covalent interactions and generate oxidative stress. This study provides a quantitative measure of metal tolerance in P. putida GB-1, as well as operational limits for Mn oxidation in this model system, both of which have important implications for the reactivity of P. putida-MnO2 assemblages formed in metal-impacted ecosystems.

  10. Influence of extractable soil manganese on oxidation capacity of different soils in Korea

    NASA Astrophysics Data System (ADS)

    Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun

    2008-08-01

    We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).

  11. Manganese-oxide-supported iron Fischer-Tropsch synthesis catalysts: physical and catalytic characterization

    SciTech Connect

    Kreitman, K.M.; Baerns, M.; Butt, J.B.

    1987-06-01

    It has been claimed that catalysts containing iron and manganese are especially selective for production of low molecular weight olefins in the Fischer-Tropsch (FT) synthesis. In this study a new system, manganese-oxide-supported iron, Fe/MnO, was prepared, subjected to various calcination and reduction treatments, and then employed as a FT catalyst. Reaction studies were run with approximately 1/1: CO/H/sub 2/ feed at 515 and 540 K and 7.8 and 14.8 bar pressure. Although low conversions were employed, the synthesis rate decreased strongly with increasing conversion. Compared to conventional Fe catalysts, the Fe/MnO was more active for water-gas shift and less selective for methane and alcohols, especially at higher conversions, lower temperature, and higher pressure. Olefin selectivity was high, hydrogen chemisorption was depressed, and secondary hydrogenation was not apparent. In general it is concluded that the manganese-supported iron does promote FT selectivity for low molecular weight olefins, but at the expense of high CO/sub 2/ formation.

  12. Manganese(II)-Oxidizing Bacillus Spores in Guaymas Basin Hydrothermal Sediments and Plumes

    PubMed Central

    Dick, Gregory J.; Lee, Yifan E.; Tebo, Bradley M.

    2006-01-01

    Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor. PMID:16672456

  13. Illumina sequencing of fungi associated with manganese oxide deposits in cave systems

    NASA Astrophysics Data System (ADS)

    Zorn, B. T.; Santelli, C. M.; Carmichael, S. K.; Pepe-Ranney, C. P.; Roble, L.; Carmichael, M.; Bräuer, S.

    2013-12-01

    The environmental cycling of manganese (Mn) remains relatively poorly characterized when compared with other metals such as iron. However, fungi have been observed to produce Mn(III/IV) oxides resembling buserite, birnessite, and todorokite on the periphery of vegetative hyphae, hyphal branching points and at the base of fruiting bodies. Recent studies indicate that some of these oxides may be generated by a two-stage reaction with soluble Mn(II) and biogenic reactive oxygen species for some groups of fungi, in particular the Ascomycota. These oxides can provide a versatile protective barrier or aid in the capture of trace metals in the environment, although the exact evolutionary function and trigger is unclear. In this study, two caves in the southern Appalachians, a pristine cave and an anthropogenically impacted cave, were compared by analyzing fungal community assemblages in manganese oxide rich deposits. Quantitative PCR data indicated that fungi are present in a low abundance (<1%) in all locations sampled within the caves. Among amplified DNA sequences retrieved in an 18S rDNA clone library, over 88% were representative of the phylum Basidiomycota (predominantly Agaricomycetes), 2.74% of Ascomycota, 2.28% of Blastocladiomycota and Chytridiomycota, 0.46% of Zygomycota, and 3.65% of Eukarya or Fungi incertae sedis. Using Illumina's MiSeq to sequence amplicons of the fungal ITS1 gene has yielded roughly 100,000-200,000 paired-end reads per sample. These data are currently being analyzed to compare fungal communities before and after induced Mn oxidation in the field. In addition, sites within the pristine cave are being compared with analogous sites in the impacted cave. Culturing efforts have thus far yielded Mn oxide producing members of the orders Glomerales and Pleosporales as well as two Genus incertae sedis (Fungal sp. YECT1, and Fungal sp. YECT3, growing on discarded electrical tape) that do not appear to be closely related to any other known Mn oxidizing fungi.

  14. Metalloradical Complexes of Manganese and Chromium Featuring an Oxidatively Rearranged Ligand

    PubMed Central

    Çelenligil-Çetin, Remle; Paraskevopoulou, Patrina; Lalioti, Nikolia; Sanakis, Yiannis; Staples, Richard J.; Rath, Nigam P.; Stavropoulos, Pericles

    2009-01-01

    Redox events involving both metal and ligand sites are receiving increased attention since a number of biological processes direct redox equivalents toward functional residues. Metalloradical synthetic analogs remain scarce and require better definition of their mode of formation and subsequent operation. The trisamido-amine ligand [(RNC6H4)3N]3−, where R is the electron-rich 4-t-BuPh, is employed in this study to generate redox active residues in manganese and chromium complexes. Solutions of [(L1)Mn(II)–THF]− in THF are oxidized by dioxygen to afford [(L1re–1)Mn(III)–(O)2–Mn(III)(L1re–1)]2− as the major product. The rare dinuclear manganese (III,III) core is stabilized by a rearranged ligand that has undergone an one-electron oxidative transformation, followed by retention of the oxidation equivalent as a π radical in an o-diiminobenzosemiquinonate moiety. Magnetic studies indicate that the ligand-centered radical is stabilized by means of extended antiferromagnetic coupling between the S = ½ radical and the adjacent S = 2 Mn(III) site, as well as between the two Mn(III) centers via the dioxo bridge. Electrochemical and EPR data suggest that this system can store higher levels of oxidation potency. Entry to the corresponding Cr(III) chemistry is achieved by employing CrCl3 to access both [(L1)Cr(III)–THF] and [(L1re–1)Cr(III)–THF(Cl)], featuring the intact and the oxidatively rearranged ligands, respectively. The latter is generated by ligand-centered oxidation of the former compound. The rearranged ligand is perceived to be the product of an one-electron oxidation of the intact ligand to afford a metal-bound aminyl radical that subsequently mediates a radical 1,4-(N-to-N) aryl migration. PMID:18937446

  15. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  16. Copper Core-Porous Manganese Oxide Shell Nanoparticles

    SciTech Connect

    Subramanian, Nachal D.; Moreno, Juana; Spivey, James J.; Kumar, Challa S.S.R.

    2011-01-01

    Core–shell nanoparticles, especially those with nanoporous oxide shells, exhibit chemical and physical properties that are distinct from those of the bulk materials due to the atomic-level proximity and morphology of the core and shell atoms. Here, we demonstrate a wet-chemical method for the synthesis of Cu core (~6.1 nm)–porous Mn₃O₄ shell (~3.4 nm thick) nanoparticles. Various characterization techniques, including synchrotron radiation-based small-angle X-ray scattering (SAXS) and X-ray absorption near edge structure (XANES) tools, confirm the core–shell structure. Both the chemical and physical properties of these Cu-based nanoparticles are influenced by the Mn₃O₄ shell. For example, the magnetic properties of the core–shell particles are found to be similar to those of Mn₃O₄ nanoparticles reported in the literature. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results demonstrate that these materials are catalytically active for CO adsorption and hydrogenation.

  17. Simulation of the surface structure of lithium manganese oxide spinel

    NASA Astrophysics Data System (ADS)

    Benedek, R.; Thackeray, M. M.

    2011-05-01

    Simulations of the surface structure of low-index surfaces of LiMn2O4 (LMO), a candidate Li-ion battery electrode material, have been performed within the GGA+U approximation, using the VASP code. Surfaces of (001), (110), and (111) orientation were considered, with at least two terminations treated in each case. A slab geometry was employed, with termination-layer vacancies introduced to remove the bulk dipole moment while maintaining ideal stoichiometry. To complement static-structure relaxation calculations, molecular-dynamics simulations were performed to explore the phase space of possible surface reconstructions. A reconstruction is predicted for the Mn-terminated (111) surface, in which the top layers mix in stoichiometric proportions to form an LMO termination layer with square-planar-coordinated Mn. Average surface Mn oxidation states are reduced, relative to the bulk, for all surfaces considered, as a consequence of the lower-energy cost of Jahn-Teller distortion at the surface. Threefold-coordinated surface Mn, found for two terminations, is divalent, which may enhance its vulnerability to dissolution. The Li-terminated (001) surface is lowest in energy, consistent with previous classical-potential simulations for MgAl2O4 that showed the Mg-terminated (001) surface to be lowest in energy.

  18. Defect Physics, Delithiation Mechanism, and Electronic and Ionic Conduction in Layered Lithium Manganese Oxide Cathode Materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2015-02-01

    Layered Li Mn O2 and Li2Mn O3 are of great interest for lithium-ion battery cathodes because of their high theoretical capacities. The practical application of these materials is, however, limited due to poor electrochemical performance. We herein report a comprehensive first-principles study of defect physics in Li Mn O2 and Li2Mn O3 using hybrid density-functional calculations. We find that manganese antisites have low formation energies in Li Mn O2 and may act as nucleation sites for the formation of impurity phases. The antisites can also occur with high concentrations in Li2Mn O3 ; however, unlike in Li Mn O2 , they can be eliminated by tuning the experimental conditions during preparation. Other intrinsic point defects may also occur and have an impact on the materials' properties and functioning. An analysis of the formation of lithium vacancies indicates that lithium extraction from Li Mn O2 is associated with oxidation at the manganese site, resulting in the formation of manganese small hole polarons; whereas in Li2Mn O3 the intrinsic delithiation mechanism involves oxidation at the oxygen site, leading to the formation of bound oxygen hole polarons ηO+ . The layered oxides are found to have no or negligible bandlike carriers, and they cannot be doped n or p type. The electronic conduction proceeds through hopping of hole and/or electron polarons; the ionic conduction occurs through lithium monovacancy and/or divacancy migration mechanisms. Since ηO+ is not stable in the absence of negatively charged lithium vacancies in bulk Li2Mn O3 , the electronic conduction near the start of delithiation is likely to be poor. We suggest that the electronic conduction associated with ηO+ and, hence, the electrochemical performance of Li2Mn O3 can be improved through nanostructuring and/or ion substitution.

  19. The Structure and Properties of Plasma Sprayed Iron Oxide Doped Manganese Cobalt Oxide Spinel Coatings for SOFC Metallic Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Lagerbom, Juha; Hyvärinen, Leo; Kylmälahti, Mikko; Himanen, Olli; Pihlatie, Mikko; Kiviaho, Jari; Vuoristo, Petri

    2011-01-01

    Manganese cobalt oxide spinel doped with Fe2O3 was studied as a protective coating on ferritic stainless steel interconnects. Chromium alloying causes problems at high operation temperatures in such oxidizing conditions where chromium compounds evaporate and poison the cathode active area, causing the degradation of the solid oxide fuel cell. In order to prevent chromium evaporation, these interconnectors need a protective coating to block the chromium evaporation and to maintain an adequate electrical conductivity. Thermal spraying is regarded as a promising way to produce dense and protective layers. In the present work, the ceramic Mn-Co-Fe oxide spinel coatings were produced by using the atmospheric plasma spray process. Coatings with low thickness and low amount of porosity were produced by optimizing deposition conditions. The original spinel structure decomposed because of the fast transformation of solid-liquid-solid states but was partially restored by using post-annealing treatment.

  20. Chemical and optical properties of thermally evaporated manganese oxide thin films

    SciTech Connect

    Al-Kuhaili, M. F.

    2006-09-15

    Manganese oxide thin films were deposited using thermal evaporation from a tungsten boat. Films were deposited under an oxygen atmosphere, and the effects of thickness, substrate temperature, and deposition rate on their properties were investigated. The chemical properties of the films were studied using x-ray photoelectron spectroscopy and x-ray fluorescence. The optical properties were determined from normal-incidence transmittance and reflectance. Based on the chemical and optical characterizations, the optimum conditions for the deposition of the films were investigated. Subsequently, the optical properties (refractive index, extinction coefficient, and band gap) of these films were determined.

  1. Nanostructured and layered lithium manganese oxide and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Singhal, Amit (Inventor); Skandan, Ganesh (Inventor)

    2005-01-01

    Nanostructured and layered lithium manganese oxide powders and methods of producing same. The powders are represented by the chemical formula, LixMn1-yMyO2, where 0.5

  2. The Structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2

    NASA Astrophysics Data System (ADS)

    Saratovsky, Ian; Gurr, Sarah J.; Hayward, Michael A.

    2009-06-01

    Manganese oxides are observed to form by the oxidation of aqueous solutions of Mn(II) catalyzed by the action of microorganisms. In contrast to the widely studied material produced by bacteria, manganese oxide phases produced by the action of fungi have received only limited attention. A detailed study of the MnO x material produced by the action of the fungus Acremonium KR21-2, utilizing X-ray diffraction, XANES, EXAFS and transmission electron microscopy is reported. The MnO x material is produced as small crystalline particles which adopt a todorokite-like tunnel structure, in striking contrast to previously reported microbial MnO x materials which adopt layered birnessite-type structures. ICPMS measurements reveal there are no templating metal ions present in the fungally mediated MnO x material, in contrast to analogous bacterially mediated material, suggesting these cations play a critical role in determining the structure of the material precipitated. A phylogenetic analysis places KR21-2 with other Acremonium species in the Hypocreales.

  3. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    USGS Publications Warehouse

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  4. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-01-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu].

  5. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas.

    PubMed

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-12-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu]. PMID:26744146

  6. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece

    USGS Publications Warehouse

    Hein, J.R.; Stamatakis, G.; Dowling, J.S.

    2000-01-01

    The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and filling dilatational fractures along with barite.

  7. Characterization of the manganese oxide produced by pseudomonas putida strain MnB1

    NASA Astrophysics Data System (ADS)

    Villalobos, Mario; Toner, Brandy; Bargar, John; Sposito, Garrison

    2003-07-01

    Manganese oxides form typically in natural aqueous environments via Mn(II) oxidation catalyzed by microorganisms, primarily bacteria, but little is known about the structure of the incipient solid-phase products. The Mn oxide produced by a Pseudomonas species representative of soils and freshwaters was characterized as to composition, average Mn oxidation number, and N 2 specific surface area. Electron microscopy, X-ray diffraction, and X-ray absorption near edge structure spectroscopy were applied to complement the physicochemical data with morphological and structural information. A series of synthetic Mn oxides also was analyzed by the same methods to gain better comparative understanding of the structure of the biogenic oxide. The latter was found to be a poorly crystalline layer type Mn(IV) oxide with hexagonal symmetry, significant negative structural charge arising from cation vacancies, and a relatively small number of randomly stacked octahedral sheets per particle. Its properties were comparable to those of δ-MnO 2 (vernadite) and a poorly crystalline hexagonal birnessite ("acid birnessite") synthesized by reduction of permanganate with HCl, but they were very different from those of crystalline triclinic birnessite. Overall, the structure and composition of the Mn oxide produced by P. putida were similar to what has been reported for other freshly precipitated Mn oxides in natural weathering environments, yielding further support to the predominance of biological oxidation as the pathway for Mn oxide formation. Despite variations in the degree of sheet stacking and Mn(III) content, all poorly crystalline oxides studied showed hexagonal symmetry. Thus, there is a need to distinguish layer type Mn oxides with structures similar to those of natural birnessites from the synthetic triclinic variety. We propose designating the unit cell symmetry as an addition to the current nomenclature for these minerals.

  8. Role of Reactive Intermediates in Manganese Oxide Formation By Filamentous Ascomycete Fungi

    NASA Astrophysics Data System (ADS)

    Zeiner, C. A.; Anderton, C.; Wu, S.; Purvine, S.; Zink, E.; Paša-Tolić, L.; Santelli, C. M.; Hansel, C. M.

    2014-12-01

    Biogenic manganese (Mn) oxide minerals are ubiquitous in the environment, and their high reactivity can profoundly impact the fate of contaminants and cycling of carbon and nutrients. In contrast to bacteria, the pathways utilized by fungi to oxidize Mn(II) to Mn(III,IV) oxides remain largely unknown. Here, we explore the mechanisms of Mn(II) oxidation by a phylogenetically diverse group of filamentous Ascomycete fungi using a combination of chemical assays and bulk and spatially-resolved mass spectrometry. We show that the mechanisms of Mn(II) oxidation vary with fungal species, over time during secretome compositional changes, and in the presence of other fungi. Specifically, our work implicates a dynamic transition in Mn(II) oxidation pathways that varies between species. In particular, while reactive oxygen species (ROS) produced via transmembrane NADPH oxidases are involved in initial oxidation, over time, secreted enzymes become important Mn(II) oxidation mediators for some species. In addition, the overall secretome oxidation capacity varies with time and fungal species. Secretome analysis reveals a surprising absence of enzymes currently considered to be Mn(II)-oxidizing enzymes in these organisms, and instead highlights a wide variety of redox-active enzymes. Furthermore, we implicate fungal cell defense mechanisms in the formation of distinct Mn oxide patterns when fungi are grown in head-to-head competition. The identification and regulation of these secreted enzymes are under current investigation within the bulk secretome and within the interaction zone of structured fungal communities. Overall, our findings illustrate that Ascomycete Mn(II) oxidation mechanisms are highly variable and are dictated by complex environmental and ecological interactions. Future work will explore the connection between Ascomycete Mn(II) oxidation and the ability to degrade cellulose, a key carbon reservoir for biofuel production.

  9. Manganese Oxide Nanoarchitectures as Broad-Spectrum Sorbents for Toxic Gases.

    PubMed

    Long, Jeffrey W; Wallace, Jean M; Peterson, Gregory W; Huynh, Kim

    2016-01-20

    We demonstrate that sol-gel-derived manganese oxide (MnOx) nanoarchitectures exhibit broad-spectrum filtration activity for three chemically diverse toxic gases: NH3, SO2, and H2S. Manganese oxides are synthesized via the reaction of NaMnO4 and fumaric acid to form monolithic gels of disordered, mixed-valent Na-MnOx; incorporated Na(+) is readily exchanged for H(+) by subsequent acid rinsing to form a more crystalline H-MnOx phase. For both Na-MnOx and H-MnOx forms, controlled pore-fluid removal yields either densified, yet still mesoporous, xerogels or low-density aerogels (prepared by drying from supercritical CO2). The performance of these MnOx nanoarchitectures as filtration media is assessed using dynamic-challenge microbreakthrough protocols. We observe technologically relevant sorption capacities under both dry conditions and wet (80% relative humidity) for each of the three toxic industrial chemicals investigated. The Na-MnOx xerogels and aerogels provide optimal performance with the aerogel exhibiting maximum sorption capacities of 39, 200, and 680 mg g(-1) for NH3, SO2, and H2S, respectively. Postbreakthrough characterization using X-ray photoelectron spectroscopy (XPS) and diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) confirms that NH3 is captured and partially protonated within the MnOx structure, while SO2 undergoes oxidation by the redox-active oxide to form adsorbed sulfate at the MnOx surface. Hydrogen sulfide is also oxidized to form a combination of sulfate and sulfur/polysulfide products, concomitant with a decrease in the average Mn oxidation state from 3.43 to 2.94 and generation of a MnOOH phase. PMID:26741498

  10. Solution Layer Deposition: A Technique for the Growth of Ultra-Pure Manganese Oxides on Silica at Room Temperature.

    PubMed

    Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Beche, Eric; Esvan, Jérôme; Collière, Vincent; Chaudret, Bruno; Fau, Pierre

    2016-02-01

    With the ever increasing miniaturization in microelectronic devices, new deposition techniques are required to form high-purity metal oxide layers. Herein, we report a liquid route to specifically produce thin and conformal amorphous manganese oxide layers on silicon substrate, which can be transformed into a manganese silicate layer. The undesired insertion of carbon into the functional layers is avoided through a solution metal-organic chemistry approach named Solution Layer Deposition (SLD). The growth of a pure manganese oxide film by SLD takes place through the decoordination of ligands from a metal-organic complex in mild conditions, and coordination of the resulting metal atoms on a silica surface. The mechanism of this chemical liquid route has been elucidated by solid-state (29) Si MAS NMR, XPS, SIMS, and HRTEM. PMID:26822812

  11. The simple preparation of birnessite-type manganese oxide with flower-like microsphere morphology and its remarkable capacity retention

    SciTech Connect

    Zhu, Gang; Deng, Lingjuan; Wang, Jianfang; Kang, Liping; School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 ; Liu, Zong-Huai; School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062

    2012-11-15

    Graphical abstract: Flower-like birnessite-type manganese oxide microspheres with large specific surface area and excellent electrochemical properties have been prepared by a facile hydrothermal method. Highlights: ► Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area. ► A facile low-temperature hydrothermal method. ► Novel flower-like microsphere consists of the thin nano-platelets. ► Birnessite-type manganese oxide exhibits an ideal capacitive behavior and excellent cycling stability. -- Abstract: Birnessite-type manganese oxide with flower-like microsphere morphology and large specific surface area has been prepared by hydrothermal treating a mixture solution of KMnO{sub 4} and (NH{sub 4}){sub 2}SO{sub 4} at 90 °C for 24 h. The obtained material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N{sub 2} adsorption–desorption. Results indicate that the birnessite-type manganese oxide shows novel flower-like microsphere morphology and a specific surface area of 280 m{sup 2} g{sup −1}, and the flower-like microsphere consists of the thin nano-platelets. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with a capacitance value of 278 F g{sup −1} in 1 mol L{sup −1} Na{sub 2}SO{sub 4} aqueous solution at a scan rate of 5 mV s{sup −1}. Moreover, the prepared manganese oxide electrode shows excellent cycle stability, and the specific capacitance can maintain 98.6% of the initial one after 5000 cycles.

  12. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  13. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G

    2016-05-17

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory). PMID:27074054

  14. Pulsed laser deposition of manganese oxide thin films for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang

    2011-10-01

    Thin films of manganese oxides have been grown by the pulsed laser deposition (PLD) process on silicon wafer and stainless steel substrates at different substrate temperatures and oxygen gas pressures. By proper selection of processing parameters such as temperature and oxygen pressure during the PLD process, pure crystalline phases of Mn2O3, Mn3O4 as well as amorphous phase of MnOx were successfully fabricated as identified by X-ray diffraction. The pseudo-capacitance behaviours of these different phases of manganese oxides have also been evaluated by the electrochemical cyclic voltammetry measured in 0.1 M Na2SO4 aqueous electrolyte at different scan rates. Their specific current and capacitance determined by electrochemical measurements were compared and the results show that crystalline Mn2O3 phase has the highest specific current and capacitance, while the values for crystalline Mn3O4 films are the lowest. The specific current and capacitance values of the amorphous MnOx films are lower than Mn2O3 but higher than Mn3O4. The specific capacitance of Mn2O3 films of 120 nm thick reaches 210 F g-1 at 1 mV s-1 scan rate with excellent stability and cyclic durability. This work has demonstrated that PLD is a very promising technique for screening high performance active materials for supercapacitor applications due to its excellent flexibility and capability of easily controlling chemical composition, microstructures and phases of materials.

  15. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide.

    PubMed

    Migliaccio, Oriana; Castellano, Immacolata; Romano, Giovanna; Palumbo, Anna

    2014-11-01

    Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by l-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos. PMID:25181703

  16. Nano-sized Lithium Manganese Oxide Dispersed on Carbon Nanotubes for Energy Storage Applications

    SciTech Connect

    Bak, S.B.

    2009-08-01

    Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 C for 30 min using MnO{sub 2}-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.

  17. Sodium manganese oxide thin films as cathodes for Na-ion batteries

    SciTech Connect

    Baggetto, Loic; Carroll, Kyler J; Unocic, Raymond R; Bridges, Craig A; Meng, Ying Shirley; Veith, Gabriel M

    2014-01-01

    This paper presents the fabrication and characterization of sodium manganese oxide cathode thin films for rechargeable Na-ion batteries. Layered oxide compounds of nominal compositions Na0.6MnO2 and Na1.0MnO2 have been prepared by radio frequency magnetron sputtering and post-annealing at high temperatures under various conditions. The Na0.6MnO2 thin films possess either a hexagonal or orthorhombic structure while the Na1.0MnO2 films crystallize in a monoclinic structure, as shown by X-ray diffraction and X-ray absorption spectroscopy results. The potential profiles of the film cathodes are characterized by features similar to those measured for the powders and exhibit reversible storage capacities in the range of 50-60 Ah cm-2 m-1, which correspond to about 120-140 mAh g-1, and are maintained over 80 cycles.

  18. Fully Converting Graphite into Graphene Oxide Hydrogels by Preoxidation with Impure Manganese Dioxide.

    PubMed

    Sun, Jiaojiao; Yang, Ningxin; Sun, Zhe; Zeng, Mengqi; Fu, Lei; Hu, Chengguo; Hu, Shengshui

    2015-09-30

    Potassium permanganate (KMnO4) has been proved to be an efficient oxidant for converting graphite into graphite oxide, but its slow diffusion in the interlayer of graphite seriously restricts the production of graphene oxide (GO). Here, we demonstrate that the preoxidation of graphite by impure manganese dioxide (MnO2) in a mixture of concentrated sulfuric acid (H2SO4) and phosphorus pentoxide (P2O5) can efficiently improve the synthesis of GO when KMnO4 is employed as the oxidant. The prepared honey-like GO hydrogels possess a high yield of single-layer sheets, large sizes (average lateral size up to 20 μm), wide ranges of stable dispersion concentrations (from dilute solutions, viscous hydrogels, to dry films), and good conductivity after reduction (~2.9 × 10(4) S/m). The mechanism for the improved synthesis of GO by impure MnO2 was explored. The enhanced exfoliation and oxidation of graphite by oxidative Mn ions (mainly Mn(3+)), which are synergistically produced by the reaction of impure MnO2 with H2SO4 and P2O5, are found to be responsible for the improved synthesis of such GO hydrogels. Particularly, preoxidized graphite (POG) can be partially dispersed in water with sonication, which allows the facile construction of flexible and highly conductive graphene nanosheet film electrodes with excellent electrochemical sensing properties. PMID:26352992

  19. In Situ X-ray Absorption Study of a Layered Manganese-chromium Oxide-based Cathode Material

    SciTech Connect

    Balasubramanian, M.; McBreen, J; Davidson, I; Whitfield, P; Kargina, I

    2010-01-01

    We have investigated the electronic and atomic structure of a manganese-chromium-based layered oxide material Li[Li{sub 0.2}Cr{sub 0.4}Mn{sub 0.4}]O{sub 2} during electrochemical cycling using in situ X-ray absorption spectroscopy. Our results indicate that charge compensation in the cathode material is achieved by the oxidation/reduction of octahedral Cr(III) ions to tetrahedral Cr(VI) ions during delithiation/lithiation. Manganese ions are present predominantly in the Mn(IV) oxidation state and do not appear to actively participate in the charge compensation process. To accommodate the large changes in coordination symmetry of the Cr(III) and Cr(VI) ions, the chromium ions have to move between the regular octahedral sites in the R{bar 3}m-like lattice to interstitial tetrahedral sites during the charge/discharge process. The highly reversible (at least after the first charge) three-electron oxidation/reductions and the easy mobility of the chromium between octahedral and tetrahedral sites are very unusual and interesting. Equally interesting is the fact that chromium is the active metal undergoing oxidation/reduction rather than manganese. Our results also suggest that in the local scale manganese and chromium ions are not evenly distributed in the as-prepared material, but are present in separate domains of Mn and Cr-rich regions.

  20. Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flame-Made Manganese Oxide Nanocrystals.

    PubMed

    Liu, Guanyu; Hall, Jeremy; Nasiri, Noushin; Gengenbach, Thomas; Spiccia, Leone; Cheah, Mun Hon; Tricoli, Antonio

    2015-12-21

    Chemical energy storage by water splitting is a promising solution for the utilization of renewable energy in numerous currently impracticable needs, such as transportation and high temperature processing. Here, the synthesis of efficient ultra-fine Mn3O4 water oxidation catalysts with tunable specific surface area is demonstrated by a scalable one-step flame-synthesis process. The water oxidation performance of these flame-made structures is compared with pure Mn2O3 and Mn5O8, obtained by post-calcination of as-prepared Mn3O4 (115 m(2)  g(-1)), and commercial iso-structural polymorphs, probing the effect of the manganese oxidation state and synthetic route. The structural properties of the manganese oxide nanoparticles were investigated by XRD, FTIR, high-resolution TEM, and XPS. It is found that these flame-made nanostructures have substantially higher activity, reaching up to 350 % higher surface-specific turnover frequency (0.07 μmolO2  m(-2)  s(-1)) than commercial nanocrystals (0.02 μmolO2  m(-2)  s(-1)), and production of up to 0.33 mmolO2  molMn (-1)  s(-1). Electrochemical characterization confirmed the high water oxidation activity of these catalysts with an initial current density of 10 mA cm(-2) achieved with overpotentials between 0.35 and 0.50 V in 1 m NaOH electrolyte. PMID:26601653

  1. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs.

  2. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    SciTech Connect

    Arulraj, James; Rajamathi, Michael

    2013-02-15

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni{sub 3}Zn{sub 2}(OH){sub 8}(OAc){sub 2}{center_dot}2H{sub 2}O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: Black-Right-Pointing-Pointer Anionic and cationic layered solid composites prepared. Black-Right-Pointing-Pointer Ni-Zn hydroxyoxalate reacted with KMnO{sub 4} to deposit MnO{sub 2} in the interlayer. Black-Right-Pointing-Pointer Birnessite layers coexist with anionic clay layers in the composites. Black-Right-Pointing-Pointer Birnessite/anionic clay ratio controlled by amount of KMnO{sub 4} used and reaction time.

  3. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  4. Stability of manganese-oxide-modified lanthanum strontium cobaltite in the presence of chromia

    NASA Astrophysics Data System (ADS)

    Ou, Ding Rong; Cheng, Mojie

    2014-12-01

    In order to restrain the decomposition and conductivity degradation of perovskite-type conductive material in the presence of chromia, manganese oxide modification of lanthanum strontium cobaltite has been studied. La0.7Sr0.3CoO3-δ (LSC) and MnO2-modified LSC coatings are applied onto Ni-Cr alloy and exposed to long-term oxidation text to examine their chemical stability. In a LSC coating, chromium species migrating from the Ni-Cr alloy could induce the decomposition of LSC and produce SrCrO4 and Co-Cr spinel oxides. In contrast, in the MnO2-modified LSC, Sr is stable and the low-conductivity phase SrCrO4 phase is rarely seen even the coated alloy has gone through 1000 h of oxidation tests at 800 °C. It highlights that MnO2 modification could greatly improve the stability of LSC under Cr-rich conditions. The study of solid state reactions reveals that the influence of MnO2 is mainly due to the reaction between MnO2 and LSC, instead of the direct reaction between MnO2 and chromium oxides.

  5. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    SciTech Connect

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  6. Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst.

    PubMed

    Nam, Ki Min; Cheon, Eun Ah; Shin, Won Jung; Bard, Allen J

    2015-10-01

    We describe a composite of the n-type semiconductors for the photoelectrochemical oxygen evolution reaction (OER). A simple drop-casting technique of mixed precursors and a one-step annealing process were used in the synthesis of the WO3/CuWO4 composite. The composite showed improved photocurrent for water oxidation compared to either of the two compounds individually. We discuss possible electron-hole separation mechanisms in two semiconductors comprising a primary photon-absorbing semiconductor of CuWO4 with a secondary semiconductor of WO3. When the WO3/CuWO4 composite is simultaneously irradiated, the photogenerated hole from the WO3 valence band transfers to CuWO4, which results in an enhanced charge separation of CuWO4. Furthermore, the OER catalytic activity of manganese phosphate (MnPO) was compared to manganese oxide nanoparticles (Mn2O3) by electrochemical measurements, showing that the manganese phosphate was more efficient for the OER reaction. To investigate the effect of catalysts on semiconductors, manganese phosphate was deposited on the WO3/CuWO4 composite. The result demonstrates the promise of manganese phosphate for improving the photocurrent as well as the stability of the WO3/CuWO4 composite. PMID:26371544

  7. Mesostructured amorphous manganese oxides: facile synthesis and highly durable elimination of low-concentration NO at room temperature in air.

    PubMed

    Du, Yanyan; Hua, Zile; Huang, Weimin; Wu, Meiying; Wang, Min; Wang, Jin; Cui, Xiangzhi; Zhang, Lingxia; Chen, Hangrong; Shi, Jianlin

    2015-04-01

    At a high space velocity of 120 000 mL g(-1) h(-1) and a relative humidity of 50-90%, 98% removal of 10 ppm NO has been achieved for over 237 h and no sign of deactivation was observed with mesostructured amorphous manganese oxides (AMO), due to the prevention of the catalyst active sites from deactivation. PMID:25728967

  8. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles.

    PubMed

    McDonagh, Birgitte Hjelmeland; Singh, Gurvinder; Hak, Sjoerd; Bandyopadhyay, Sulalit; Augestad, Ingrid Lovise; Peddis, Davide; Sandvig, Ioanna; Sandvig, Axel; Glomm, Wilhelm Robert

    2016-01-01

    Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested. PMID:26619158

  9. Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T1-weighted tumor MR imaging.

    PubMed

    Luo, Yu; Yang, Jia; Li, Jingchao; Yu, Zhibo; Zhang, Guixiang; Shi, Xiangyang; Shen, Mingwu

    2015-12-01

    We report the polyethyleneimine (PEI)-enabled synthesis and functionalization of manganese oxide (Mn3O4) nanoparticles (NPs) for targeted tumor magnetic resonance (MR) imaging in vivo. In this work, monodispersed PEI-coated Mn3O4 NPs were formed by decomposition of acetylacetone manganese via a solvothermal approach. The Mn3O4 NPs with PEI coating were sequentially conjugated with fluorescein isothiocyanate, folic acid (FA)-linked polyethylene glycol (PEG), and PEG monomethyl ether. Followed by final acetylation of the remaining PEI surface amines, multifunctional Mn3O4 NPs were formed and well characterized. We show that the formed multifunctional Mn3O4 NPs with a mean diameter of 8.0 nm possess good water-dispersibility, colloidal stability, and cytocompatibility and hemocompatibility in the given concentration range. Flow cytometry and confocal microscopic observation reveal that the multifunctional Mn3O4 NPs are able to target FA receptor-overexpressing cancer cells in vitro. Importantly, the FA-targeted Mn3O4 NPs can be used as a nanoprobe for efficient T1-weighted MR imaging of cancer cells in vitro and the xenografted tumor model in vivo via an active FA-mediated targeting pathway. With the facile PEI-enabled formation and functionalization, the developed PEI-coated Mn3O4 NPs may be modified with other biomolecules for different biomedical imaging applications. PMID:26454057

  10. Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery.

    PubMed

    Yang, Yan; Shi, Haili; Wang, Yapei; Shi, Benzhao; Guo, Linlin; Wu, Dongmei; Yang, Shiping; Wu, Huixia

    2016-01-01

    Superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been deposited on graphene oxide (GO) by the thermal decomposition of manganese (II) acetylacetonate and iron (III) acetylacetonate precursors in triethylene glycol. The resulting GO/MnFe2O4 nanohybrids show very low cytotoxicity, negligible hemolytic activity, and imperceptible in vivo toxicity. In vitro and in vivo magnetic resonance imaging experiments demonstrate that GO/MnFe2O4 nanohybrids could be used as an effective T2 contrast agent. The strong optical absorbance in the near-infrared (NIR) region and good photothermal stability of GO/MnFe2O4 nanohybrids result in the highly efficient photothermal ablation of cancer cells. GO/MnFe2O4 nanohybrids can be further loaded with doxorubicin (DOX) by π-π conjugate effect for chemotherapy. DOX release from GO/MnFe2O4 is significantly influenced by pH and can be triggered by NIR laser. The enhanced cancer cell killing by GO/MnFe2O4/DOX composites has been achieved when irradiated with near-infrared light, suggesting that the nanohybrids could deliver both DOX chemotherapy and photothermal therapy with a synergistic effect. PMID:26296777

  11. Purification and Characterization of the Manganese(II) Oxidizing Protein from Erythrobacter sp. SD-21

    NASA Astrophysics Data System (ADS)

    Nakama, K. R.; Lien, A.; Johnson, H. A.

    2013-12-01

    The manganese(II) oxidizing protein (Mop) found in the alpha-proteobacterium Erythrobacter sp. SD-21 catalyzes the formation of insoluble Mn(III/IV) oxides from soluble Mn(II). These Mn(III/IV) oxides formed are one of the strongest naturally occurring oxides, next to oxygen, and can be used to adsorb and oxidize toxic chemicals from the surrounding environment. Because of the beneficial use in the treatment of contaminated sources, the mechanism and biochemical properties of this novel enzyme are being studied. Due to low expression levels in the native host strain, purification of Mop has been problematic. To overcome this problem the gene encoding Mop, mopA, was cloned from the native host into a C-terminal histidine tag vector and expressed in Escherichia coli cells. Affinity chromatography under denaturing conditions have been applied in attempts to purify an active Mop. Western blots have confirmed that the protein is being expressed and is at the expected size of 250 kDa. Preliminary characterization on crude extract containing Mop has shown a Km and vmax value of 2453 uM and 0.025 uM min-1, respectively. Heme and pyrroloquinoline quinone can stimulate Mn(II) oxidizing activity, but hydrogen peroxide does not affect activity, despite the sequence similarity to animal heme peroxidase proteins. Research has been shown that calcium is essential for Mop activity. Purifying an active Mn(II) oxidizing protein will allow for a better understanding behind the enigmatic process of Mn(II) oxidation.

  12. Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate.

    PubMed

    Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang

    2015-01-01

    Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2. PMID:25437924

  13. Surface complexation modeling of Cd(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite.

    PubMed

    Schaller, Melinda S; Koretsky, Carla M; Lund, Tracy J; Landry, Christopher J

    2009-11-15

    Cadmium adsorption was measured as a function of ionic strength (0.001-0.1M NaNO(3)), and spanning a range of sorbate/sorbent ratios, on pure hydrous ferric oxide (HFO), kaolinite, and quartz and also on binary and ternary mixtures of the three solids. Diffuse- layer surface complexation models (DLMs) were parameterized to fit Cd sorption data for the pure kaolinite and quartz systems. Cd adsorption on kaolinite was modeled using a two-site DLM, with formation of a monodentate Cd complex on a variable charge site and Cd binding to a permanent exchange site; Cd adsorption on quartz was described using a one-site DLM with formation of a mondentate Cd complex on a variable charge site. These DLMs, together with the Dzombak and Morel DLM for HFO, were used to predict Cd adsorption on the binary and ternary mineral mixtures using a simple component additivity approach. In general, the predicted adsorption edges were in good agreement with measured data, with statistically similar goodness of fit compared to that obtained for the pure mineral systems. However, in some cases the model overpredicted Cd sorption, possibly indicating that interaction of the solids may prevent Cd from accessing all of the sorption sites. PMID:19740474

  14. Coprecipitation mechanisms and products in manganese oxidation in the presence of cadmium

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.

    1991-01-01

    Manganese oxidation products were precipitated in an aerated open-aqueous system where a continuous influx of mixed Mn2+ and Cd2+ solution was supplied and pH was maintained with an automated pH-stat adding dilute NaOH. X-ray diffraction and electron diffraction identified the solids produced as mixtures of Cd2Mn34+O8, Mn2+2Mn4+3O8, MnO2 (ramsdellite), and CdCO3. Mean oxidation numbers of the total precipitated Mn as great as 3.6 were reached during titrations. During subsequent aging in solution, oxidation numbers between 3.8 and 3.9 were reached in some precipitates in less than 40 days. Conditional oxidation rate constants calculated from a crystal-growth equation applied to titration data showed the overall precipitation rate, without considering manganese oxidation state in the precipitate, was increased by a factor of ~4 to ~7 when the mole ratio (Cd/Mn + Cd) of cadmium in the feed solution was 0.40 compared with rate constants for hausmannite (Mn2+Mn23+O4 precipitation under similar conditions but without accessory metals. Kinetic experiments were made to test effects of various Cd/Mn + Cd mole ratios and rates of addition of the feed solution, different temperatures from 5.0 to 35??C, and pH from 8.0 to 9.0. Oxidation rates were slower when the Cd mole ratio was less than 0.40. The rate increased by a factor of ~10 when pH was raised one-half unit. The effect of temperature on the rate constants was also substantial, but the meaning of this is uncertain because the rate of formation of Mn4+ oxide in the absence of Cd or other accessory metals was too slow to be measurable in titration experiments. The increased rate of Mn4+ oxide formation in the presence of Cd2+ can be ascribed to the formation of a labile adsorbed intermediate, CdMn2O4 Int, an analog of hausmannite, formed on precipitate surfaces at the beginning of the oxidation process. The increased lability of this structure, resulting from coordination-chemical behavior of Cd2+ during the titration, causes a rapid second-stage rearrangement and facilitates disproportionation of the Mn3+ ions. The Mn2+ ions thus released provide a positive feedback mechanism that couples the two steps of the conversion of Mn2+ to Mn4+ more closely than is possible when other metal ions besides manganese are not present. During aging of precipitates in contact with solutions, proportions of Cd2Mn3O8 and MnO2 increased at the expense of other precipitate components. ?? 1991.

  15. Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Junlong; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, HuiLing; Yang, Guangjin

    2014-08-01

    Polyvinylpyrrolidone (PVP)/reduced graphene oxide (RGO) nanocomposites are sprayed on quartz crystal microbalance (QCM) for NO2 sensing. The thin films are characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The experimental results reveal that PVP/RGO sensor exhibits higher sensitivity and shorter recovery time than those of PVP. Besides, the response to 20 ppm NO2 is higher than other gases such as CO, CO2 and NH3 even at 100ppm. When the PVP/RGO sensor is exposed to these gases, the good selectivity to NO2 makes the sensor ideal for NO2 detection.

  16. Surface characteristics and in vitro biocompatibility of a manganese-containing titanium oxide surface

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee

    2011-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 μm thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.

  17. Mesoporous iron–manganese oxides for sulphur mustard and soman degradation

    SciTech Connect

    Štengl, Václav; J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem ; Grygar, Tomáš Matys; J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem ; Bludská, Jana; Opluštil, František; Němec, Tomáš

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ► The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ► One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electron microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn{sub 7}5 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn{sub 3}7U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.

  18. THEORETICAL TECHNIQUE FOR DETERMINING THE CUMULATIVE IMPACT OF IRON AND MANGANESE OXIDATION IN STREAMS RECEIVING COAL-MINE DISCHARGE.

    USGS Publications Warehouse

    Bobay, Keith E.; Banaszak, Konrad J.

    1985-01-01

    Two U. S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge on the dissolved-chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved-iron, dissolved-manganese, and dissolved-oxygen concentrations, and the pH of surface water downstream from the discharge. The cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to determine the effectiveness and sensitivity of the coupled programs.

  19. Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium

    NASA Astrophysics Data System (ADS)

    Abdel Hameed, R. M.; Fetohi, Amani E.; Amin, R. S.; El-Khatib, K. M.

    2015-12-01

    The modification of Pt/C by incorporating metal oxides for electrocatalytic oxidation of methanol has gained major attention because of the efficiency loss during the course of long-time operation. This work describes the preparation of Pt-MnO2/C electrocatalysts through a chemical route using ethylene glycol or a mixture of ethylene glycol and sodium borohydride as a reducing agent. The crystallite structure and particle size of synthesized electrocatalysts are determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The addition of MnO2 improves the dispersion of Pt nanoparticles. The electrocatalytic activity of Pt-MnO2/C towards methanol oxidation in H2SO4 solution is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The onset potential value of methanol oxidation peak is negatively shifted by 169 mV when MnO2 is introduced to Pt/C. Moreover, the charge transfer resistance value at Pt-MnO2/C is about 10 times as low as that at Pt/C. Chronoamperometry and chronopotentiometry show that CO tolerance is greatly improved at Pt-MnO2/C. The increased electrocatalytic activity and enhanced ability to clean platinum surface elect manganese oxide as a suitable promoter for the anode performance in direct methanol fuel cells (DMFCs).

  20. Heterologous expression and characterization of the manganese-oxidizing protein from Erythrobacter sp. strain SD21.

    PubMed

    Nakama, Katherine; Medina, Michael; Lien, Ahn; Ruggieri, Jordan; Collins, Krystle; Johnson, Hope A

    2014-11-01

    The manganese (Mn)-oxidizing protein (MopA) from Erythrobacter sp. strain SD21 is part of a unique enzymatic family that is capable of oxidizing soluble Mn(II). This enzyme contains two domains, an animal heme peroxidase domain, which contains the catalytic site, followed by a C-terminal calcium binding domain. Different from the bacterial Mn-oxidizing multicopper oxidase enzymes, little is known about MopA. To gain a better understanding of MopA and its role in Mn(II) oxidation, the 238-kDa full-length protein and a 105-kDa truncated protein containing only the animal heme peroxidase domain were cloned and heterologously expressed in Escherichia coli. Despite having sequence similarity to a peroxidase, hydrogen peroxide did not stimulate activity, nor was activity significantly decreased in the presence of catalase. Both pyrroloquinoline quinone (PQQ) and hemin increased Mn-oxidizing activity, and calcium was required. The Km for Mn(II) of the full-length protein in cell extract was similar to that of the natively expressed protein, but the Km value for the truncated protein in cell extract was approximately 6-fold higher than that of the full-length protein, suggesting that the calcium binding domain may aid in binding Mn(II). Characterization of the heterologously expressed MopA has provided additional insight into the mechanism of bacterial Mn(II) oxidation, which will aid in understanding the role of MopA and Mn oxidation in bioremediation and biogeochemical cycling. PMID:25172859

  1. Heterologous Expression and Characterization of the Manganese-Oxidizing Protein from Erythrobacter sp. Strain SD21

    PubMed Central

    Nakama, Katherine; Medina, Michael; Lien, Ahn; Ruggieri, Jordan; Collins, Krystle

    2014-01-01

    The manganese (Mn)-oxidizing protein (MopA) from Erythrobacter sp. strain SD21 is part of a unique enzymatic family that is capable of oxidizing soluble Mn(II). This enzyme contains two domains, an animal heme peroxidase domain, which contains the catalytic site, followed by a C-terminal calcium binding domain. Different from the bacterial Mn-oxidizing multicopper oxidase enzymes, little is known about MopA. To gain a better understanding of MopA and its role in Mn(II) oxidation, the 238-kDa full-length protein and a 105-kDa truncated protein containing only the animal heme peroxidase domain were cloned and heterologously expressed in Escherichia coli. Despite having sequence similarity to a peroxidase, hydrogen peroxide did not stimulate activity, nor was activity significantly decreased in the presence of catalase. Both pyrroloquinoline quinone (PQQ) and hemin increased Mn-oxidizing activity, and calcium was required. The Km for Mn(II) of the full-length protein in cell extract was similar to that of the natively expressed protein, but the Km value for the truncated protein in cell extract was approximately 6-fold higher than that of the full-length protein, suggesting that the calcium binding domain may aid in binding Mn(II). Characterization of the heterologously expressed MopA has provided additional insight into the mechanism of bacterial Mn(II) oxidation, which will aid in understanding the role of MopA and Mn oxidation in bioremediation and biogeochemical cycling. PMID:25172859

  2. Complex manganese oxides with the brownmillerite structure: synthesis, crystal chemistry and properties

    NASA Astrophysics Data System (ADS)

    Abakumov, Artem M.; Rozova, Marina G.; Antipov, Evgenii V.

    2004-09-01

    Structural features and methods for the synthesis of complex manganese oxides with the brownmillerite structure A2MnB'O5+δ (A = Ca, Sr; B' = Ga, Al) and of their derivatives are surveyed. Modern approaches to the description of crystal structures containing various types of chains of tetrahedra are considered and possible ordering patterns of these chains are discussed. The effects of the electronic structure and crystal chemical properties of the B' cations on the possibility of formation of a layered ordered structure is noted. The emphasis is placed on the anion non-stoichiometry of the brownmillerite phases and the influence of the excess oxygen (fluorine) on the structure of the compounds. A comparative analysis of properties of oxygen- and fluorine-doped brownmillerites is given. The data on the magnetic structures, transport and magnetoresistive properties of Mn-containing brownmillerites are generalised.

  3. Preparation and Characterization of a PEDOT-Manganese Oxide Composite, and Its Application to Electrochemical Sensing

    NASA Astrophysics Data System (ADS)

    Arena, A.

    2016-03-01

    Stable and transparent aqueous dispersions of a hybrid organic-inorganic composite, are prepared by electrochemically doping Manganese Oxide into Polyethylendioxythiophene (PEDOT). Films deposited from the PEDOT-MnOx dispersions, are characterized by means of electrical and optical measurements, and by means of Atomic Force Microscopy (AFM) investigations. The PEDOT-MnOx composite is then used to modify one of the gold electrodes of a simple electrochemical cell, in which Nafion is used as a solid electrolyte. The cell is characterized using time domain electrical measurements. It is found that distinguishable redox peaks arise in the current-voltage loops of the cell, as nanomolar amounts of either acetic acid and ammonia, are added to the deionized water into which the cell is immersed. The intensity of such current peaks, is linearly related to the concentration of the analytes, in the nanomolar range of concentrations.

  4. Aerobic oxidation of anthracene in the presence of manganese porphyrinates and NaBH/sub 4/ reducing agent

    SciTech Connect

    Lukashova, E.A.; Solov'ev, A.B.; Chugreev, A.L.; Enikolopyan, N.S.

    1987-12-01

    The authors investigate the kinetics of anthracene oxidation by molecular oxygen in the presence of manganese, iron, and cobalt porphyrinate catalysts and a sodium borohydride reducing agent at room temperature in solutions of ethanol or ethanol with chloroform and benzene. Effective rate constants for the reactions are determined based on the amount of anthraquinone formed in the reaction. In all cases with the exception of cobalt tetraphenylporphyrinate the only oxidation product was anthraquinone. Its structure was verified by NMR and IR spectroscopy.

  5. Theory of chemical bonds in metalloenzymes - Manganese oxides clusters in the oxygen evolution center -

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K.; Shoji, M.; Saito, T.; Isobe, H.; Yamada, S.; Nishihara, S.; Kawakami, T.; Kitagawa, Y.; Yamanaka, S.; Okumura, M.

    2012-12-01

    In early 1980 we have initiated broken-symmetry (BS) MO theoretical calculations of transition-metal oxo species M = O (M = Ti,V,Cr,Mn,Fe,Ni,Cu) to elucidate the nature of dσ-pσ and dπ-pπ bonds. It has been concluded that high-valent M = O species such as [Mn(IV) = O]2+ and [Fe(IV) = O]2+ exhibit electrophilic property in a sharp contrast with nucleophilic character of low-valent M = O bonds: [M(II)O2-]0, and closed-shell dπ-pπ bonds of high-valent M = O species often suffer the triplet-instability, giving rise to open-shell (BS) configurations with significant metal-diradical (MDR) character: •M-O•: note that these bonds are therefore regarded as typical examples of strongly correlated electron systems. Because of the MDR character, 1,4-metal diradical mechanism was indeed preferable to four-centered mechanism in the case of addition reaction of naked Mn(IV) = O to ethylene. Recently the manganese-oxo species have been receiving renewed interest in relation to catalytic cycle of oxygen evolution from water molecules in the photosynthesis II (PSII) system. Accumulated experimental results indicate that this process is catalyzed with four manganese oxide clusters coordinated with calcium ion (CaMn4O4). Past decade we have performed BS MO theoretical investigations of manganese oxide clusters related to CaMn4O4. These calculations have elucidated that high-valent Mn(X) = O (X = IV,V) bonds exhibit intermediate MDR character (y=40-60%) in the case of total low-spin (LS) configuration but the MDR character decreases with coordination of Ca2+ and water molecules. While the MDR character of the Mn-oxo bonds becomes very high at the high-spin (HS) configuration. Our computational results enabled us to propose two possible mechanisms on the theoretical ground: (A) electrophilic (EP) mechanism and (B) radical coupling (RC) mechanism. The theoretical results indicate that the EP mechanism is preferable for the low-spin (LS) state in polar media like in the protein environments (native OEC), whereas the RC mechanism is feasible at the state without such environmental stabilization: local singlet and local triplet diradical mechanisms are proposed for the OO coupling process. Possibilities of EP and RC mechanisms are examined in comparison with a lot of experimental results accumulated and theoretical results with several groups.

  6. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    PubMed

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs. PMID:23562448

  7. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children.

    PubMed

    Nascimento, Sabrina; Baierle, Marília; Göethel, Gabriela; Barth, Anelise; Brucker, Natália; Charão, Mariele; Sauer, Elisa; Gauer, Bruna; Arbo, Marcelo Dutra; Altknecht, Louise; Jager, Márcia; Dias, Ana Cristina Garcia; de Salles, Jerusa Fumagalli; Pierre, Tatiana Saint'; Gioda, Adriana; Moresco, Rafael; Garcia, Solange Cristina

    2016-05-01

    Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this study suggest an important association between environmental exposure to Mn and toxic effects on neuropsychological function, oxidative damage and kidney function in children. PMID:26844420

  8. Structure-property relationships in manganese oxide--mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery.

    PubMed

    Chen, Yu; Chen, Hangrong; Zhang, Shengjian; Chen, Feng; Sun, Shikuan; He, Qianjun; Ma, Ming; Wang, Xia; Wu, Huixia; Zhang, Lingxia; Zhang, Linlin; Shi, Jianlin

    2012-03-01

    The extremely low longitudinal relaxivity (r(1)) of manganese oxide has severely impeded their substitution for cytotoxic gadolinium-based contrast agents for safe clinical magnetic resonance imaging (MRI). Here, we report on a synthetic strategy of chemical oxidation/reduction reaction in-situ in mesopores, followed by hydrogen reduction, for the fabrication of non-toxic manganese oxide/MSNs-based MRI-T(1) contrast agents with highly comparable imaging performance to commercial Gd-based agents. This strategy involves a "soft-templating" process to prepare mesoporous silica nanoparticles, in-situ reduction of MnO(4)(-) by the "soft templates" in mesopores and heat treatment under reducing atmosphere, to disperse manganese oxide nanoparticles within mesopores. This special nanostructure combines the merits of nanopores for maximum manganese paramagnetic center accessibility for water molecules for enhanced MRI performance and encapsulation/sustained release/intracellular delivery of drugs. The synthesized manganese oxide/MSNs were successfully assessed as a high performance contrast agent for MRI-T(1) both in intro and in vivo, and meanwhile, was also demonstrated as an effective anti-cancer drug delivery (doxorubicin) vehicle, therefore, a family of manganese-based theranostics was successfully demonstrated based on the manganese oxide/MSNs composite. PMID:22177841

  9. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent.

    PubMed

    Warner, Cynthia L; Chouyyok, Wilaiwan; Mackie, Katherine E; Neiner, Doinita; Saraf, Laxmikant V; Droubay, Timothy C; Warner, Marvin G; Addleman, R Shane

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load ~1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance. PMID:22329500

  10. Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury

    PubMed Central

    Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira

    2013-01-01

    Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600

  11. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia.

    PubMed

    Torres, Natascha T; Och, Lawrence M; Hauser, Peter C; Furrer, Gerhard; Brandl, Helmut; Vologina, Elena; Sturm, Michael; Bürgmann, Helmut; Müller, Beat

    2014-04-01

    Distinct layers of iron(III) and manganese(IV) (Fe/Mn) oxides are found buried within the reducing part of the sediments in Lake Baikal and cause considerable complexity and steep vertical gradients with respect to the redox sequence. For the on-site investigation of the responsible biogeochemical processes, we applied filter tube samplers for the extraction of sediment porewater combined with a portable capillary electrophoresis instrument for the analyses of inorganic cations and anions. On the basis of the new results, the sequence of diagenetic processes leading to the formation, transformation, and dissolution of the Fe/Mn layers was investigated. With two exemplary cores we demonstrate that the dissolution of particulate Fe and Mn is coupled to the anaerobic oxidation of CH₄ (AOM) either via the reduction of sulphate (SO₄(2-)) and the subsequent generation of Fe(II) by S(-II) oxidation, or directly coupled to Fe reduction. Dissolved Fe(II) diffuses upwards to reduce particulate Mn(IV) thus forming a sharp mineral boundary. An alternative dissolution pathway is indicated by the occurrence of anaerobic nitrification of NH₄(+) observed at locations with Mn(IV). Furthermore, the reasons and consequences of the non-steady-state sediment pattern and the resulting redox discontinuities are discussed and a suggestion for the burial of active Fe/Mn layers is presented. PMID:24619231

  12. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  13. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    SciTech Connect

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.

  14. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  15. Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br(.).

    PubMed

    Lin, Kunde; Song, Lianghui; Zhou, Shiyang; Chen, Da; Gan, Jay

    2016-07-01

    Brominated phenolic compounds (BPCs) are a class of persistent and potentially toxic compounds ubiquitously present in the aquatic environment. However, the origin of BPCs is not clearly understood. In this study, we investigated the formation of BPCs from natural manganese oxides (MnOx)-catalyzed oxidation of phenol in the presence of Br(-). Experiments at ambient temperature clearly demonstrated that BPCs were readily produced via the oxidation of phenol by MnOx in the presence of Br(-). In the reaction of MnOx sand with 0.213 μmol/L phenol and 0.34 mmol/L Br(-) for 10 min, more than 60% of phenol and 56% of Br(-) were consumed to form BPCs. The yield of BPCs increased with increasing concentrations of phenol and Br(-). Overall, a total of 14 BPCs including simple bromophenols (4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol), hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and hydroxylated polybrominated biphenyls (OH-PBBs) were identified. The production of BPCs increased with increasing concentrations of Br(-) or phenol. It was deduced that Br(-) was first oxidized to form active bromine, leading to the subsequent bromination of phenol to form bromophenols. The further oxidation of bromophenols by MnOx resulted in the formation of OH-PBDEs and OH-PBBs. In view of the ubiquity of phenol, Br(-), and MnOx in the environment, MnOx-mediated oxidation may play a role on the natural production of BPCs. PMID:27131033

  16. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite.

    PubMed

    Sakthinathan, Subramanian; Lee, Hsin Fang; Chen, Shen-Ming; Tamizhdurai, P

    2016-04-15

    In the present work, a reduced graphene oxide (RGO) supported manganese tetraphenylporphyrin (Mn-TPP) nanocomposite was electrochemically synthesized and used for the highly selective and sensitive detection of dopamine (DA). The nuclear magnetic resonance, scanning electron microscopy and elemental analysis were confirmed the successful formation of RGO/Mn-TPP nanocomposite. The prepared RGO/Mn-TPP nanocomposite modified electrode exhibited an enhanced electrochemical response to DA with less oxidation potential and enhanced response current. The electrochemical studies revealed that the oxidation of the DA at the composite electrode is a surface controlled process. The cyclic voltammetry, differential pulse voltammetry and amperometry methods were enable to detect DA. The working linear range of the electrode was observed from 0.3 to 188.8μM, limit of detection was 8nM and the sensitivity was 2.606μAμM(-1)cm(-2). Here, the positively charged DA and negatively charged porphyrin modified RGO can accelerate the electrocatalysis of DA via electrostatic attraction, while the negatively charged ascorbic acid (AA) repulsed by the negatively charged electrode surface which supported for good selectivity. The good recovery results obtained for the determination of DA present in DA injection samples and human pathological sample further revealed the good practicality of RGO/Mn-TPP nanocomposite film modified electrode. PMID:26835582

  17. Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Seok; Choi, Suneui; Song, JunHo; Woo, Sang-Gil; Jo, Yong Nam; Choi, Jungkyu; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-01

    Lithium-nickel-cobalt-manganese oxide, Li[NixCoyMnz]O2 (NCM) is a low-cost cathode material with a high capacity and a moderately high rate capability, however, it still suffers from poor electrochemical performance. In this study, several types of additives are attempted to enhance the surface stability of high-Ni-content (Ni ≥ 60%) cathodes and the most effective additive turns out to be PS. The cycle performance in the presence of 2% PS is much improved at a high temperature of 60 °C: (1) 98.9% of its initial capacity is preserved, (2) the increase in thickness is only 17.9%, preventing undesired swellings, and (3) gases are not generated in large amounts with the internal pressure being 56.4 kPa. The FT-IR spectroscopy results suggest that the surface of the cathode in the presence of 2% PS is covered with a film of alkyl sulfone components (RSOSR and RSO2SR), which is possibly formed by the electrochemical oxidation of PS. The current results confirm that the electrochemical performance of Ni-rich cathodes can be improved via the appropriate use of additives. They also indicate that among the tested additive candidates in this study, PS is highly desirable for enhancing the electrochemical performance of Ni-rich cathodes.

  18. Nutrient input influences fungal community composition and size and can stimulate manganese (II) oxidation in caves.

    PubMed

    Carmichael, Sarah K; Zorn, Bryan T; Santelli, Cara M; Roble, Leigh A; Carmichael, Mary J; Bräuer, Suzanna L

    2015-08-01

    Little is known about the fungal role in biogeochemical cycling in oligotrophic ecosystems. This study compared fungal communities and assessed the role of exogenous carbon on microbial community structure and function in two southern Appalachian caves: an anthropogenically impacted cave and a near-pristine cave. Due to carbon input from shallow soils, the anthropogenically impacted cave had an order of magnitude greater fungal and bacterial quantitative-polymerase chain reaction (qPCR) gene copy numbers, had significantly greater community diversity, and was dominated by ascomycotal phylotypes common in early phase, labile organic matter decomposition. Fungal assemblages in the near-pristine cave samples were dominated by Basidiomycota typically found in deeper soils (and/or in late phase, recalcitrant organic matter decomposition), suggesting more oligotrophic conditions. In situ carbon and manganese (II) [Mn(II)] addition over 10 weeks resulted in growth of fungal mycelia followed by increased Mn(II) oxidation. A before/after comparison of the fungal communities indicated that this enrichment increased the quantity of fungal and bacterial cells, yet decreased overall fungal diversity. Anthropogenic carbon sources can therefore dramatically influence the diversity and quantity of fungi, impact microbial community function, and stimulate Mn(II) oxidation, resulting in a cascade of changes that can strongly influence nutrient and trace element biogeochemical cycles in karst aquifers. PMID:25865809

  19. Inducible nitric oxide synthase gene methylation and parkinsonism in manganese-exposed welders

    PubMed Central

    Nielsen, Susan Searles; Checkoway, Harvey; Criswell, Susan R.; Farin, Federico M.; Stapleton, Patricia L.; Sheppard, Lianne; Racette, Brad A.

    2015-01-01

    Introduction Neurologist-assessed parkinsonism signs are prevalent among workers exposed to manganese (Mn)-containing welding fume. Neuroinflammation may possibly play a role. Inducible nitric oxide synthase, coded by NOS2, is involved in inflammation, and particulate exposure increases the gene’s expression through methylation of CpG sites in the 5′ region. Methods We assessed DNA methylation at three CpG sites in the NOS2 exon 1 from blood from 201 welders. All were non-Hispanic Caucasian men 25–65 years old who were examined by a neurologist specializing in movement disorders. We categorized the workers according to their Unified Parkinson Disease Rating Scale motor subsection 3 (UPDRS3) scores as parkinsonism cases (UPDRS3 ≥ 15; n = 49), controls (UPDRS3 < 6; n = 103), or intermediate (UPDRS3 ≥6 to <15; n = 49). Results While accounting for age, examiner and experimental plate, parkinsonism cases had lower mean NOS2 methylation than controls (p-value for trend = 0.04), specifically at CpG site 8329 located in an exonic splicing enhancer of NOS2 (p-value for trend = 0.07). These associations were not observed for the intermediate UPDRS3 group (both p-value for trend ≥ 0.59). Conclusions Inflammation mediated by inducible nitric oxide synthase may possibly contribute to the association between welding fume and parkinsonism, but requires verification in a longitudinal study. PMID:25634431

  20. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-12-01

    Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnOx) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnOx/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnOx layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO4 and then surface-deposition of MnOx particles from the bulk phase. The MnOx particles assembled with nanosheets were uniformly coated on the PET fibers. MnOx/PET showed good activity for HCHO decomposition at room temperature which followed the Mars-van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m3, space velocity ∼17,000 h-1 and relative humidity∼50%. This research provides a facile method to deposit active MnOx onto polymers with low air resistance, and composite MnOx/PET material is promising for indoor air purification.

  1. Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines

    NASA Astrophysics Data System (ADS)

    Jassal, Vidhisha; Shanker, Uma; Gahlot, Sweta; Kaith, B. S.; Kamaluddin; Iqubal, Md Asif; Samuel, Pankaj

    2016-04-01

    A green route was successfully used to synthesize some manganese oxides (MO) nanoparticles like MnO2, Mn2O3 and Mn3O4 with varied Mn/O ratio. This approach involved utilization of Sapindus mukorossi (raw reetha)-water as a natural surfactant-solvent system. The most important feature of present work was that during the synthesis of nanoparticles, no harmful toxic solvent or chemicals were used in order to follow the principles of green chemistry. The size of nanoparticles was recorded below 100 nm with different shapes and morphologies. MnO2 nanoparticles were found to have needle shape, Mn2O3: spherical and Mn3O4: cubic shape. The synthesized nanoparticles were characterized by powder X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The synthesized MO nanoparticles were found to act as a solid support cum catalysts for the oxidation and polymerization of some aromatic amines like p-anisidine, p-toluidine, p-chloroaniline and aniline.

  2. Growth of different phases of yttrium manganese oxide thin films by pulsed laser deposition

    SciTech Connect

    Kumar, Manish; Choudhary, R. J.; Phase, D. M.

    2012-06-05

    Various phases of yttrium manganese oxide (YMO) thin films have been synthesized on different substrates from a single target of h-YMnO{sub 3}. It is observed that the phase stability and crystallinity of YMO thin films depend on the substrate used and oxygen partial pressure (OPP). (110) oriented and polycrystalline growth of h-YMnO{sub 3} are observed on the Al{sub 2}O{sub 3} (0001) and NGO (110) substrates respectively, when grown in OPP {approx_equal} 10{sup -6} Torr. While for similar OPP value, growth of mixed phases (h-YMnO{sub 3} and o-YMn{sub 2}O{sub 5}) is observed on Si (001) substrate. Oriented growth of O-YMn{sub 2}O{sub 5} phase film on Si (001) substrate is observed first time, when deposited at OPP value of 225 and 350 mTorr. +3 and mixed oxidation states (+3 and +4) of Mn were confirmed by x-ray photoelectron spectroscopy in pure YMnO{sub 3} phase and YMn{sub 2}O{sub 5} phase respectively.

  3. Spatially Resolved Characterization of Biogenic Manganese Oxide Production within a Bacterial Biofilm

    PubMed Central

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2005-01-01

    Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2(aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2(aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained. PMID:15746332

  4. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in acidic soil environments.

  5. Chemical oxidation of phenolic acids by soil iron and manganese oxides

    SciTech Connect

    Lehmann, R.G.

    1986-01-01

    The oxidation of six phenolic acids by soil Fe and Mn oxides was demonstrated by changes in phenolic acid extractability from soil with time, by production of Fe(II) and soluble Mn from the oxidation reaction, by quantitative recoveries of added phenolic acids from soil pretreated with dithionite-citrate to remove Fe and Mn oxides, and by the reactivity of phenolic acids in the presence of pure Mn and Fe oxides. The reactivities of phenolic acids were associated with the structures of the chemicals. Increasing methoxy substitution on the aromatic ring increased reactivity, and cinnamic acid derivatives were more reactive than benzoic acid derivatives. Oxidation products of /sup 14/C labeled ferulic acid were sorbed to MnO/sub 2/ within minutes and were unextractable by organic solvents unless the mineral was pretreated with 6 M HCl or 0.5 M NaOH. The oxidation rate of ferulic acid by MnO/sub 2/ approached zero after four days even with a surplus of reactants.

  6. Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System

    PubMed Central

    Elder, Alison; Gelein, Robert; Silva, Vanessa; Feikert, Tessa; Opanashuk, Lisa; Carter, Janet; Potter, Russell; Maynard, Andrew; Ito, Yasuo; Finkelstein, Jacob; Oberdörster, Günter

    2006-01-01

    Background Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; < 100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb. Methods To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; ~ 500 μg/m3) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses. Results After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-α mRNA (~ 8-fold) and protein (~ 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was < 1.5% per day. Conclusions We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans. PMID:16882521

  7. Effect of Copper Oxide and Manganese Oxide on Properties and Low Temperature Degradation of Sintered Y-TZP Ceramic

    NASA Astrophysics Data System (ADS)

    Khan, M. M.; Ramesh, S.; Bang, L. T.; Wong, Y. H.; Ubenthiran, S.; Tan, C. Y.; Purbolaksono, J.; Misran, H.

    2014-12-01

    The effect of copper oxide (CuO) and manganese oxide (MnO2) co-dopant on the densification behavior of 3 mol% yttria-stabilized zirconia was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1250 to 1500 °C with a short holding time of 12 min. Sintered bodies were characterized to determine the phase stability, bulk density, hardness, fracture toughness, Young's modulus and grain size. In addition, the aging-induced tetragonal to monoclinic phase transformation of the sintered zirconia was evaluated. It was revealed that the addition of CuO-MnO2 co-dopant was beneficial in enhancing the densification and mechanical properties of the ceramic particularly at low temperatures. A high fracture toughness of 5.5 MPam1/2 coupled with high hardness of 14.5 GPa was obtained for co-doped samples sintered at 1350 °C. However, the undoped ceramic exhibited better properties when sintered above 1350 °C. The study also found that the dopants did not prevent grain coarsening and hence did not suppress the aging-induced phase transformation particularly for samples sintered above 1350 °C.

  8. Effect of Copper Oxide and Manganese Oxide on Properties and Low Temperature Degradation of Sintered Y-TZP Ceramic

    NASA Astrophysics Data System (ADS)

    Khan, M. M.; Ramesh, S.; Bang, L. T.; Wong, Y. H.; Ubenthiran, S.; Tan, C. Y.; Purbolaksono, J.; Misran, H.

    2014-09-01

    The effect of copper oxide (CuO) and manganese oxide (MnO2) co-dopant on the densification behavior of 3 mol% yttria-stabilized zirconia was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1250 to 1500 °C with a short holding time of 12 min. Sintered bodies were characterized to determine the phase stability, bulk density, hardness, fracture toughness, Young's modulus and grain size. In addition, the aging-induced tetragonal to monoclinic phase transformation of the sintered zirconia was evaluated. It was revealed that the addition of CuO-MnO2 co-dopant was beneficial in enhancing the densification and mechanical properties of the ceramic particularly at low temperatures. A high fracture toughness of 5.5 MPam1/2 coupled with high hardness of 14.5 GPa was obtained for co-doped samples sintered at 1350 °C. However, the undoped ceramic exhibited better properties when sintered above 1350 °C. The study also found that the dopants did not prevent grain coarsening and hence did not suppress the aging-induced phase transformation particularly for samples sintered above 1350 °C.

  9. Development of optically transparent water oxidation catalysts using manganese pyrophosphate compounds.

    PubMed

    Takashima, Toshihiro; Hotori, Yuki; Irie, Hiroshi

    2015-11-01

    One challenge in artificial photosynthetic systems is the development of active oxygen evolution catalysts composed of abundant elements. The oxygen evolution activities of manganese pyrophosphate compounds were examined in electrochemical and photochemical experiments. Electrocatalysis using calcium-manganese pyrophosphate exhibited good catalytic ability under neutral pH and an oxygen evolution reaction was driven with a small overpotential (η<100 mV). UV-vis diffuse reflectance measurements revealed that manganese pyrophosphates exhibit weak absorption in the visible light region while commonly used oxygen evolution catalysts exhibit intense absorption. Therefore, the efficient light absorption of a photocatalyst was retained even after surface modification with a manganese pyrophosphate, and photochemical oxygen evolution was achieved by using magnesium ferrite modified with manganese pyrophosphate nanoparticles under the illumination of visible light at wavelength of over 420 nm. PMID:25648929

  10. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    SciTech Connect

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-09-08

    Lithium manganese oxides substituted with nickel or cobalt were characterized electrochemically in lithium cell configurations. The compounds studied were either single-phase layered structures with either primarily O2 or O3 stacking arrangements, or O2/O3 intergrowths, prepared from P2, P3 and P2/P3 sodium-containing precursors, respectively. The stacking arrangements are extremely sensitive to the Na/T. M. (T. M. = transition metal) ratios and the level of substitution. Phase diagrams showing the stability regions of the various arrangements for the Na-Ni-Mn-O system are presented. A possible correlation between vacancies and electrochemical performance is suggested. For high levels of substitution with Ni, fewer defects are possible for materials containing more O3 component and higher discharge capacities can be achieved, but spinel conversion upon cycling also occurs more rapidly as the O3 content increases. Intergrowths show intermediate behavior and represent a potential route towards designing stable, high capacity electrodes.

  11. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect

    Francis, Todd M; Lichty, Paul R; Perkins, Christopher; Tucker, Melinda; Kreider, Peter B; Funke, Hans H; Lewandowski, A; Weimer, Alan W

    2012-10-24

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar-driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  12. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  13. The Influence of Manganese Oxide on the Sintering Behavior of Yttria Tetragonal Zirconia

    NASA Astrophysics Data System (ADS)

    Meenaloshini, S.; Amiriyan, M.; Sankar, U.; Tolouei, R.; Ramesh, S.

    2011-01-01

    The sintering behavior of yttria-stabilized zirconia, with the influence of small additions of MnO2 (up to 1 wt %) sintered over the temperature range from 1250° C to 1500° C was investigated. It was found that the mechanical properties of Y-TZP were dependent on the dopant amount and sintering temperature. The results revealed that relative densities above 97.5% of theoretical (i.e. >5.95 Mgm-3) could be obtained in Y-TZPs sintered at low temperatures, 1250° C and 1300° C, with the additions of ≤0.3 wt% MnO2. In comparison to the undoped samples, the additions of up to 1 wt% MnO2 and for sintering up to 1350° C was found to be beneficial in enhancing the Vickers hardness of the ceramic. The fracture toughness of Y-TZP however, was found to increase only in the 1 wt% MnO2-doped samples when sintered above 1400° C. The relation between the measured mechanical properties is discussed with the emphasis on the role of the manganese oxide.

  14. XAS studies of Ni and Zn sorbed to hydrous manganese oxide.

    PubMed

    Trivedi, P; Axe, L; Tyson, T A

    2001-11-15

    Adsorption mechanisms of Zn2+ and Ni2+ on hydrous manganese oxide (HMO) were investigated using XAS. Analyses reveal that both metal ions retain their primary hydration shell when sorbed to HMO, which is consistent with physical sorption. These local structures are invariant of pH (3.0-7.0) and adsorbate loading (10(-4) - 10(-2) mol (g of HMO)-1), suggesting one average type of adsorption mechanism. In addition to the first shell, a second shell was observed with 6-8 O atoms at 3.34 A for Ni and 8-10 O atoms at 3.49 A for Zn. The lack of Ni or Zn contributions in the second shell eliminates the possibility of surface precipitation or polymerization. Likewise, the absence of Mn atoms in the second shell suggests outer-sphere adsorption. Interestingly, the local structure of Ni and Zn sorbed to HMO did not change with reaction time when as much as 90% of the sorbed contribution was due to the slow sorption process, thus supporting intraparticle diffusion as the rate-limiting mechanism. This result demonstrates that adsorption sites located along the micropore walls of HMO are similar to ones located on the external surface. Overall, metals from the same group in the Periodic Table appear to form similar adsorption complexes with HMO. PMID:11757610

  15. Effect of pH on morphology and supercapacitive properties of manganese oxide/polypyrrole nanocomposite

    NASA Astrophysics Data System (ADS)

    Gan, John Kevin; Lim, Yee Seng; Huang, Nay Ming; Lim, Hong Ngee

    2015-12-01

    In the present work, manganese oxide/polypyrrole (MnO2/PPy) nanocomposites with compact sheet, fibrous-porous, and granular morphologies were successfully synthesized using a simple, one step in situ chemical synthesis method. Their morphologies were tunable by varying the pH of the reactant's solution, which was very simple and scalable. Moreover, their electrochemical behaviors were greatly influenced by the pH of the reactant's solution. The optimum pH condition was found to be 4.0, producing an MnO2/PPy nanocomposite with high porosity. The porosity of the nanocomposite effectively improved its specific surface area, and its pore accessibility enabled the rapid intercalation/deintercalation of the electrolyte. As a result, a high specific capacitance of up to 312 F g-1 at 10 mV s-1 was obtained for the porous nanocomposite. A symmetric supercapacitor device built from the porous MnO2/PPy nanocomposite yielded a specific capacitance of 142 F g-1 per mass of one electrode and exhibited remarkable cycling stability, with 93.2% capacitance retention over 1000 charge/discharge cycles. These features show the promise of porous MnO2/PPy nanocomposite as an electrode material for high-performance supercapacitors.

  16. Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Zhang, Lina; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Che, Hongwei; Bai, Yongmei; Hou, Junxian

    2016-03-01

    In this study, manganese ferrite/graphene oxide (MnFe2O4/GO) nanocomposites as controlled targeted drug delivery were prepared by a facile sonochemical method. It was found that GO nanosheets were fully exfoliated and decorated with MnFe2O4 nanoparticles having diameters of 5-13 nm. The field-dependent magnetization curve indicated superparamagnetic behavior of the obtained MnFe2O4/GO with saturation magnetization of 34.9 emu/g at room temperature. The in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared MnFe2O4/GO even at the concentration as high as 150 μg/mL. Doxorubicin hydrochloride (DOX) as an anti-tumor model drug was utilized to explore the application potential of MnFe2O4/GO for controlled drug delivery. The drug loading capacity of this nanocarrier was as high as 0.97 mg/mg and the drug release behavior showed a sustained and pH-responsive way.

  17. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model

    USGS Publications Warehouse

    Tonkin, J.W.; Balistrieri, L.S.; Murray, J.W.

    2004-01-01

    Manganese oxides are important scavengers of trace metals and other contaminants in the environment. The inclusion of Mn oxides in predictive models, however, has been difficult due to the lack of a comprehensive set of sorption reactions consistent with a given surface complexation model (SCM), and the discrepancies between published sorption data and predictions using the available models. The authors have compiled a set of surface complexation reactions for synthetic hydrous Mn oxide (HMO) using a two surface site model and the diffuse double layer SCM which complements databases developed for hydrous Fe (III) oxide, goethite and crystalline Al oxide. This compilation encompasses a range of data observed in the literature for the complex HMO surface and provides an error envelope for predictions not well defined by fitting parameters for single or limited data sets. Data describing surface characteristics and cation sorption were compiled from the literature for the synthetic HMO phases birnessite, vernadite and ??-MnO2. A specific surface area of 746 m2g-1 and a surface site density of 2.1 mmol g-1 were determined from crystallographic data and considered fixed parameters in the model. Potentiometric titration data sets were adjusted to a pH1EP value of 2.2. Two site types (???XOH and ???YOH) were used. The fraction of total sites attributed to ???XOH (??) and pKa2 were optimized for each of 7 published potentiometric titration data sets using the computer program FITEQL3.2. pKa2 values of 2.35??0.077 (???XOH) and 6.06??0.040 (???YOH) were determined at the 95% confidence level. The calculated average ?? value was 0.64, with high and low values ranging from 1.0 to 0.24, respectively. pKa2 and ?? values and published cation sorption data were used subsequently to determine equilibrium surface complexation constants for Ba2+, Ca2+, Cd 2+, Co2+, Cu2+, Mg2+, Mn 2+, Ni2+, Pb2+, Sr2+ and Zn 2+. In addition, average model parameters were used to predict additional sorption data for which complementary titration data were not available. The two-site model accounts for variability in the titration data and most metal sorption data are fit well using the pKa2 and ?? values reported above. A linear free energy relationship (LFER) appears to exist for some of the metals; however, redox and cation exchange reactions may limit the prediction of surface complexation constants for additional metals using the LFER. ?? 2003 Elsevier Ltd. All rights reserved.

  18. Heavy metals and manganese oxides in the genesee watershed, New York state: effects of geology and land use

    USGS Publications Warehouse

    Whitney, P.R.

    1981-01-01

    Manganese oxide coatings on gravels from 255 sites on tributary streams in the Genesee River Watershed were analyzed for Mn, Fe, Zn, Cd, Co, Ni, Pb, and Cu. The results were compared with data on bedrock geology, surficial geology and land use, using factor analysis and stepwise multiple regression. All metals except Pb show strong positive correlation with Mn. This association results from the well-known tendency of Mn oxide precipitates to adsorb and incorporate dissolved trace metals. Pb may be present in a separate phase on the gravel surfaces; alternatively Pb abundance may be so strongly influenced by environmental factors that the effect of varying abundance of the carrier phase becomes relatively unimportant. When the effects of varying Mn abundance are allowed for, Pb and to a lesser extent Zn and Cu abundances are seen to be related to commercial, industrial and residential land use. In addition to this pollution effect, all the trace metals, Cd and Ni most strongly, tend to be more abundant in oxide coatings from streams in the forested uplands in the southern part of the area. This probably reflects increased geochemical mobility of the metals in the more acid soils and groundwater of the southern region. A strong Zn anomaly is present in streams draining areas underlain by the Lockport Formation. Oxide coatings in these streams contain up to 5% Zn, originating from disseminated sphalerite in the Lockport and secondary Zn concentrations in the overlying muck soils. The same group of metals, plus calcium and loss on ignition, were determined in the silt and clay (minus 230 mesh) fraction of stream sediments from 129 of the same sites, using a hot nitric acid leach. The amounts of manganese in the sediments are low (average 1020 ppm) and manganese oxides are, at most, of relatively minor significance in the trace-metal geochemistry of these sediments. The bulk of the trace metals in sediment appears to be associated with iron oxides, clays and organic matter. ?? 1981.

  19. Structural Distortion of Molybdenum-Doped Manganese Oxide Octahedral Molecular Sieves for Enhanced Catalytic Performance.

    PubMed

    Chen, Chun-Hu; Njagi, Eric C; Chen, Sheng-Yu; Horvath, Dayton T; Xu, Linping; Morey, Aimee; Mackin, Charles; Joesten, Raymond; Suib, Steven L

    2015-11-01

    Due to the excellent catalytic performance of manganese oxide (K-OMS-2) in a wide range of applications, incorporation of various dopants has been commonly applied for K-OMS-2 to acquire additional functionality or activities. However, the understanding of its substitution mechanism with respect to the catalytic performance of doped K-OMS-2 materials remains unclear. Here we present the structural distortion (from tetragonal to monoclinic cell) and morphological evolution in K-OMS-2 materials by doping hexavalent molybdenum. With a Mo-to-Mn ratio of 1:20 (R-1:20) in the preparation, the resultant monoclinic K-OMS-2 shows a small equidimensional particle size (∼15 nm), a high surface area of 213 m(2) g(-1), and greatly improved catalytic activity toward CO oxidation with lower onset temperatures (40 °C) than that of pristine K-OMS-2 (above 130 °C). HR-TEM analyses reveal direct evidence of structural distortion on the cross-section of 2 × 2 tunnels with the absence of 4-fold rotation symmetry expected for a tetragonal cell, which are indexed using a monoclinic cell. Our results suggest that substitution of Mo(6+) for Mn(3+) (rather than Mn(4+)) coupled with the vacancy generation results in a distorted structure and unique morphology. The weakened Mn-O bonds and Mn vacancies associated with the structural distortion may be mainly responsible for the enhanced catalytic activity of monoclinic K-OMS-2 instead of dopant species. PMID:26451851

  20. Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    SciTech Connect

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-02-15

    Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 Degree-Sign C for 2 h and also possesses high total pore volumes (0.41 cm Superscript-Three g{sup -1}) and high specific BET surface area (161 m{sup 2} g{sup -1}), which is nine times larger than that of the pristine (19 m{sup 2} g{sup -1}). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic-inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: Black-Right-Pointing-Pointer A two-step synthesis method was used to prepare the CTAB-Al-MO. Black-Right-Pointing-Pointer The CTAB-Al-MO has the large basal spacing and high specific BET surface area. Black-Right-Pointing-Pointer The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. Black-Right-Pointing-Pointer The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  1. New divalent manganese complex with pyridine carboxylate N-oxide ligand: Synthesis, structure and magnetic properties

    SciTech Connect

    Liu Fuchen; Xue Min; Wang Haichao; Ouyang Jie

    2010-09-15

    Two new manganese complexes, [Mn{sub 3}(L{sup 1}){sub 4}(NO{sub 3}){sub 2}]{sub n} (1, HL{sup 1}=nicotinate N-oxide acid) and [MnL{sup 2}Cl]{sub n} (2, HL{sup 2}=isonicotinate N-oxide acid)], have been hydrothermally synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. In 1, the L{sup 1} ligands take two different coordinated modes bridging four and three Mn{sup II} ions. The nitrate anions take chelating coordination modes, leading one type of the Mn{sup II} ions as a 4-connected node. The whole net can be viewed as a 3, 4, 6-connected 4-nodal net with Schlaefli notation {l_brace}4{sup 3{r_brace}}2{l_brace}4{sup 4}; 6{sup 2{r_brace}}4{l_brace}4{sup 6}; 6{sup 6}; 8{sup 3{r_brace}}. Complex 2 has a honeycomb layer mixed bridged by chlorine, N-oxide and carboxylate. The adjacent layers are linked by the phenyl ring of L{sup 2} ligand, giving a 3D framework with a {l_brace}3{sup 4}; 5{sup 4{r_brace}} {l_brace}3{sup 2};4;5{sup 6};6{sup 6{r_brace}} 4, 6-connect net. Magnetic studies indicate that 1 is an antiferromagnet with low-dimensional characteristic, in which a -J{sub 1}J{sub 1}J{sub 2}- coupled alternating chain is predigested. Fitting the data of 1 gives the best parameters J{sub 1}=-2.77, J{sub 2}=-0.67 cm{sup -1}. The magnetic properties of complex 2 represent the character of the 2D honeycomb layer with the J{sub 1}=-2.05 and J{sub 2}=0.55 cm{sup -1}, which results in a whole antiferromagnetic state. - Graphical abstract: The synthesis, crystal structure and magnetic properties of two new MnII complexes with pyridyl-carboxylate N-oxide ligands are reported.

  2. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    PubMed

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential for rapid (re)formation of dissolved Cr(vi) above regulatory levels. PMID:26452013

  3. Kinetics of the catalytic oxidation of phenol over manganese oxide in supercritical water

    SciTech Connect

    Oshima, Yoshito; Tomita, Kengo; Koda, Seiichiro

    1999-11-01

    A kinetic analysis was made for the phenol disappearance rate in catalytic oxidation of phenol over MnO{sub 2} in supercritical water at a fixed temperature of 425 C and pressures between 22.7 and 27.2 MPa. The nonsupported MnO{sub 2} catalyst possessed a strong activity for promoting phenol oxidation, though the overall reaction rate was appreciably influenced by internal mass-transfer resistance. From the kinetic analysis on the reaction rate of the phenol disappearance, the global rate expression of the surface reaction was obtained, where the reaction orders with respect to phenol, oxygen, and water were almost unity, 0.7, and {minus}2.0, respectively. A Langmuir-type mechanism, in which phenol and oxygen adsorbed on the catalytic sites and water adsorbed on the same site to inhibit the phenol and oxygen adsorption, was proposed to explain the reaction orders for phenol, oxygen, and water.

  4. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    PubMed Central

    2015-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269

  5. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation.

    PubMed

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F

    2014-04-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x). PMID:24661269

  6. Manganese-Cobalt Mixed Spinel Oxides as Surface Modifiers for Stainless Steel Interconnects of Solid Oxide Fuel Cells

    SciTech Connect

    Xia, Gordon; Yang, Z Gary; Stevenson, Jeffry W.

    2006-11-06

    Ferritic stainless steels are promising candidates for interconnect applications in low- and mid-temperature solid oxide fuel cells (SOFCs). A couple of issues however remain for the particular application, including the chromium poisoning due to chromia evaporation, and long-term surface and electrical stability of the scale grown on these steels. Application of a manganese colbaltite spinel protection layer on the steels appears to be an effective approach to solve the issues. For an optimized performance, Mn{sub 1+x}Co{sub 2-x}O{sub 4} (-1 {le} x {le} 2) spinels were investigated against properties relative for protection coating applications on ferritic SOFC interconnects. Overall it appears that the spinels with x around 0.5 demonstrate a good CTE match to ceramic cell components, a relative high electrical conductivity, and a good thermal stability up to 1,250 C. This was confirmed by a long-term test on the Mn{sub 1.5}Co{sub 1.5}O{sub 4} protection layer that was thermally grown on Crofer22 APU, indicating the spinel protection layer not only significantly decreased the contact resistance between a LSF cathode and the stainless steel interconnects, but also inhibited the sub-scale growth on the stainless steels.

  7. PROGRESS REPORT. TRANSURANIC INTERFACIAL REACTION STUDIES ON MANGANESE OXIDE HYDROXIDE MINERAL SURFACES

    EPA Science Inventory

    Several DOE sites have been contaminated by transuranic radionuclide (TRU) discharges including neptunium and plutonium. Their interaction with the surrounding geological media can affect the transport and remediation of these radionuclides in the environment. Manganese based min...

  8. Low-potential Amperometric Determination of Hydrogen Peroxide with a Carbon Paste Electrode Modified with Nanostructured Cryptomelane-type Manganese Oxides

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli; Li, Liyu

    2005-02-01

    Nanostructured cryptomelane-type manganese oxides were synthesized, characterized, and evaluated for chemical sensing. Cryptomelane-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. Carbon paste electrodes (CPEs), modified with the nanostructured cryptomelane-type manganese oxides, were investigated for amperometric detection of hydrogen peroxide. With an operating potential of +0.3 V versus Ag/AgCl, H{sub 2}O{sub 2} produces catalytic oxidation currents at the modified CPE, which can be exploited for quantitative determinations. The amperometric signals are linearly proportional to H{sub 2}O{sub 2} concentration in the range 1.0 x 10{sup -4}-6.9 x 10{sup -4} M with a correlation coefficient of 0.995 (n = 7). At a signal-to-noise ratio of 3, a detection limit of 2 {micro}M can be observed for the carbon paste electrode modified with 5.5 wt% cryptomelane-type manganese oxides. In addition, the sensor has a good stability and reproducibility. The construction and renewal are simple and inexpensive. A possible response mechanism was proposed and discussed. The significant electrocatalytic activity of the modified CPE may result from the nanostructure of cryptomelane-type manganese oxides.

  9. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites.

    PubMed

    Wan, Shunli; He, Feng; Wu, Jiayu; Wan, Wubo; Gu, Yawei; Gao, Bin

    2016-08-15

    To overcome the limits of graphene oxide (GO) as a novel sorbent for heavy metal removal (e.g., low sorption selectivity and difficulty in solid-liquid separation), a nanocomposite (HMO@GO) with excellent settling ability (<2min) was fabricated through in situ growing nanosized hydrated manganese oxide (HMO) (10.8±4.1nm) on GO. As a graphene-based adsorbent, HMO@GO exhibited fast sorption kinetics (<20min). Meanwhile, the introduced HMO endowed HMO@GO with outstanding sorption selectivity and capacity toward Pb(II) (>500mgg(-1)) in the presence of high-level competing Ca(II). Cyclic sorption batches showed that 1kg HMO@GO can treat at least 22m(3) Pb(II)-laden synthetic industrial drainage (5mgL(-1) Pb(II)) and 40m(3) drinking water (0.5mgL(-1) Pb(II)) to their corresponding limits (0.1mgL(-1) for wastewater and 10μgL(-1) for drinking water) enforced in China. Additionally, the exhausted HMO@GO can be effectively regenerated using 0.3 M HCl for repeated uses. The eminent performance of HMO@GO was attributed to its specific structure, that is, the abundant oxygen-containing groups on GO mediated the growth of highly dispersed HMO that preferably sequestrated Pb(II) through specific interaction, and the host GO offered the preconcentration of Pb(II) for enhanced sequestration through the Donnan membrane effect. PMID:27107233

  10. Chemical syntheses of manganese and tantalum oxide octahedral molecular sieves and their structural characterization by powder x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Duan, Niangao

    This research consists of soft chemical synthesis and structural investigations of manganese and tantalum oxide octahedral molecular sieves. These include the use of sol-gel, hydrothermal and reflux methods for syntheses and the employment of various techniques for characterization, especially the Rietveld analysis of powder X-ray diffraction data for structural refinements. The manganese oxide cryptomelane (K-OMS-2) with a tunnel structure and birnessite layered materials (OL-1) were prepared by the sol gel method. The synthesis consists of reacting MnO4- solutions with fumaric acid or glucose to form a gel, and heating the xerogels at a temperature effective to produce the final manganese oxide materials. These sol-gel methods give many advantages, such as high thermal stabilities of products, over other preparation routes. The synthetic parameters have been optimized to prepare pure K-OMS-2 and OL-1. The crystal structure of K-OMS-2 has been refined by the Rietveld method from in-house powder X-ray diffraction data. The potassium tantalate defect pyrochlores were prepared by hydrothermal methods at a temperature of 200°C. The materials were crystallized from tantalum pentoxide in a potassium hydroxide solution, with a uniform crystal size of about 1 mum. They were ion-exchanged with H+ at low temperatures in a nitric acid solution. A BET surface area of 15 m 2/g was obtained. The structure of this defect pyrochlore and its acid exchanged form were determined by Rietveld refinement from powder X-ray diffraction data. The reflux method was also employed to search for new manganese oxide microporous materials. A ramsdellite material with a 1 x 2 tunnel structure and high surface area of 70 m2/g was prepared. Catalytic oxidations of hexane and cyclohexane with tert-butyl hydroperoxide have shown good activities with this catalyst. This investigation suggests that shape selectivity plays a role in the high catalytic activities of the oxidations of these saturated hydrocarbons.

  11. Removal and Recovery of Toxic Silver Ion Using Deep-Sea Bacterial Generated Biogenic Manganese Oxides

    PubMed Central

    Pei, Yuanjun; Chen, Xiao; Xiong, Dandan; Liao, Shuijiao; Wang, Gejiao

    2013-01-01

    Products containing silver ion (Ag+) are widely used, leading to a large amount of Ag+-containing waste. The deep-sea manganese-oxidizing bacterium Marinobacter sp. MnI7-9 efficiently oxidizes Mn2+ to generate biogenic Mn oxide (BMO). The potential of BMO for recovering metal ions by adsorption has been investigated for some ions but not for Ag+. The main aim of this study was to develop effective methods for adsorbing and recovering Ag using BMO produced by Marinobacter sp. MnI7-9. In addition, the adsorption mechanism was determined using X-ray photoelectron spectroscopy analysis, specific surface area analysis, adsorption kinetics and thermodynamics. The results showed that BMO had a higher adsorption capacity for Ag+ compared to the chemical synthesized MnO2 (CMO). The isothermal absorption curves of BMO and CMO both fit the Langmuir model well and the maximum adsorption capacities at 28°C were 8.097 mmol/g and 0.787 mmol/g, for BMO and CMO, respectively. The change in enthalpy (ΔHθ) for BMO was 59.69 kJ/mol indicating that it acts primarily by chemical adsorption. The change in free energy (ΔGθ) for BMO was negative, which suggests that the adsorption occurs spontaneously. Ag+ adsorption by BMO was driven by entropy based on the positive ΔSθ values. The Ag+ adsorption kinetics by BMO fit the pseudo-second order model and the apparent activation energy of Ea is 21.72 kJ/mol. X-ray photoelectron spectroscopy analysis showed that 15.29% Ag+ adsorbed by BMO was transferred to Ag(0) and meant that redox reaction had happened during the adsorption. Desorption using nitric acid and Na2S completely recovered the Ag. The results show that BMO produced by strain MnI7-9 has potential for bioremediation and reutilization of Ag+-containing waste. PMID:24312566

  12. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  13. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  14. Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus

    PubMed Central

    Moen, Mark A.; Hammel, Kenneth E.

    1994-01-01

    The manganese peroxidase (MnP) of Phanerochaete chrysosporium supported Mn(II)-dependent, H2O2-independent lipid peroxidation, as shown by two findings: linolenic acid was peroxidized to give products that reacted with thiobarbituric acid, and linoleic acid was peroxidized to give hexanal. MnP also supported the slow oxidation of phenanthrene to 2,2?-diphenic acid in a reaction that required Mn(II), oxygen, and unsaturated lipids. Phenanthrene oxidation to diphenic acid by intact cultures of P. chrysosporium occurred to the same extent that oxidation in vitro did and was stimulated by Mn. These results support a role for MnP-mediated lipid peroxidation in phenanthrene oxidation by P. chrysosporium. PMID:16349285

  15. Effects of cadmium on manganese peroxidase competitive inhibition of MnII oxidation and thermal stabilization of the enzyme.

    PubMed

    Youngs, H L; Sundaramoorthy, M; Gold, M H

    2000-03-01

    Inhibition of manganese peroxidase by cadmium was studied under steady-state and transient-state kinetic conditions. CdII is a reversible competitive inhibitor of MnII in the steady state with Ki approximately 10 microM. CdII also inhibits enzyme-generated MnIII-chelate-mediated oxidation of 2,6-dimethoxyphenol with Ki approximately 4 microM. CdII does not inhibit direct oxidation of phenols such as 2,6-dimethoxyphenol or guaiacol (2-methoxyphenol) in the absence of MnII. CdII alters the heme Soret on binding manganese peroxidase and exhibits a Kd approximately 8 microM, similar to Mn (Kd approximately 10 microM). Under transient-state conditions, CdII inhibits reduction of compound I and compound II by MnII at pH 4.5. However, CdII does not inhibit formation of compound I nor does it inhibit reduction of the enzyme intermediates by phenols in the absence of MnII. Kinetic analysis suggests that CdII binds at the MnII-binding site, preventing oxidation of MnII, but does not impair oxidation of substrates, such as phenols, which do not bind at the MnII-binding site. Finally, at pH 4.5 and 55 degrees C, MnII and CdII both protect manganese peroxidase from thermal denaturation more efficiently than CaII, extending the half-life of the enzyme by more than twofold. Furthermore, the combination of half MnII and half CdII nearly quadruples the enzyme half-life over either metal alone or either metal in combination with CaII. PMID:10712608

  16. Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes

    SciTech Connect

    Nam,K.W.; Yang,X.

    2009-03-01

    Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ∼6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

  17. Microarray genomic profile of mitochondrial and oxidant response in Manganese Chloride treated PC12 cells

    PubMed Central

    Taka, Equar; Mazzio, Elizabeth; Soliman, Karam FA; Reams, R. Renee

    2012-01-01

    Environmental or occupational exposure to high levels of manganese (Mn) can lead to manganism, a symptomatic neuro-degenerative disorder similar to idiopathic Parkinson’s disease. The underlying mechanism of Mn neurotoxicity remains unclear. In this study, we evaluate the primary toxicological events associated with MnCl2 toxicity in rat PC12 cells using whole genome cDNA microarray, RT-PCR, western blot and functional studies. The results show that a sub-lethal dose range (38–300 µM MnCl2) initiated slight metabolic stress evidenced by heightened glycolytic rate and induction of enolase / aldolase - gene expression. The largest shift observed in the transcriptome was MnCl2 induction of heme-oxygenase 1 (HO-1) [7.7 fold, p <0.001], which was further corroborated by RT-PCR and western blot studies. Concentrations in excess of 300 µM corresponded to dose dependent loss of cell viability which was associated with enhanced production of H2O2 concomitant to elevation of of gene expression for diverse antioxidant enzymes; biliverdin reductase, arsenite inducible RNA associated protein, dithiolethione-inducible gene-1 (DIG-1) and .thioredoxin reductase 1. Moreover, Mn initiated significant reduction of gene expression of mitochondrial glutaryl-coenzyme A dehydrogenase (GCDH) -, an enzyme involved with glutaric acidemia, oxidative stress, lipid peroxidation and striatal degeneration observed in association with severe dystonic dyskinetic movement disorder. Future research will be required to elucidate a defined role for HO-1 and GCDH in Mn toxicity. PMID:22281203

  18. Bare and Polymer-Coated Indium Tin Oxide as Working Electrodes for Manganese Cathodic Stripping Voltammetry.

    PubMed

    Rusinek, Cory A; Bange, Adam; Warren, Mercedes; Kang, Wenjing; Nahan, Keaton; Papautsky, Ian; Heineman, William R

    2016-04-19

    Though an essential metal in the body, manganese (Mn) has a number of health implications when found in excess that are magnified by chronic exposure. These health complications include neurotoxicity, memory loss, infertility in males, and development of a neurologic psychiatric disorder, manganism. Thus, trace detection in environmental samples is increasingly important. Few electrode materials are able to reach the negative reductive potential of Mn required for anodic stripping voltammetry (ASV), so cathodic stripping voltammetry (CSV) has been shown to be a viable alternative. We demonstrate Mn CSV using an indium tin oxide (ITO) working electrode both bare and coated with a sulfonated charge selective polymer film, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-sulfonate (SSEBS). ITO itself proved to be an excellent electrode material for Mn CSV, achieving a calculated detection limit of 5 nM (0.3 ppb) with a deposition time of 3 min. Coating the ITO with the SSEBS polymer was found to increase the sensitivity and lower the detection limit to 1 nM (0.06 ppb). This polymer modified electrode offers excellent selectivity for Mn as no interferences were observed from other metal ions tested (Zn(2+), Cd(2+), Pb(2+), In(3+), Sb(3+), Al(3+), Ba(2+), Co(2+), Cu(2+), Ni(3+), Bi(3+), and Sn(2+)) except Fe(2+), which was found to interfere with the analytical signal for Mn(2+) at a ratio 20:1 (Fe(2+)/Mn(2+)). The applicability of this procedure to the analysis of tap, river, and pond water samples was demonstrated. This simple, sensitive analytical method using ITO and SSEBS-ITO could be applied to a number of electroactive transition metals detectable by CSV. PMID:26980322

  19. Characterization of the Fe-Doped Mixed-Valent Tunnel Structure 2 Manganese Oxide KOMS-2

    SciTech Connect

    Hanson J. C.; Shen X.; Morey A.M.; Liu J.; Ding Y.; Cai J.; Durand J.; Wang Q.; Wen W.; Hines W.A.; Bai J.; Frenkel A.I.; Reiff W.; Aindow M.; Suib S.L.

    2011-11-10

    A sol-gel-assisted combustion method was used to prepare Fe-doped manganese oxide octahedral molecular sieve (Fe-KOMS-2) materials with the cryptomelane structure. Characterization of the nanopowder samples over a wide range of Fe-doping levels (0 {le} Fe/Mn {le} 1/2) was carried out using a variety of experimental techniques. For each sample, Cu K{alpha} XRD and ICP-AES were used to index the cryptomelane structure and determine the elemental composition, respectively. A combination of SEM and TEM images revealed that the morphology changes from nanoneedle to nanorod after Fe doping. Furthermore, TGA scans indicated that the thermal stability is also enhanced with the doping. Anomalous XRD demonstrated that the Fe ions replace the Mn ions in the cryptomelane structure, particularly in the (211) planes, and results in a lattice expansion along the c axis, parallel to the tunnels. Reasonable fits to EXAFS data were obtained using a model based on the cryptomelane structure. Moessbauer spectra for selected Fe-KOMS-2 samples indicated that the Fe is present as Fe{sup 3+} in an octahedral environment similar to Mn in the MnO{sub 6} building blocks of KOMS-2. Magnetization measurements detected a small amount of {gamma}-Fe{sub 2}O{sub 3} second phase (e.g., 0.6 wt % for the Fe/Mn = 1/10 sample), the vast majority of the Fe being in the structure as Fe{sup 3+} in the high-spin state.

  20. Different Arsenate and Phosphate Incorporation Effects on the Nucleation and Growth of Iron(III) (Hydr)oxides on Quartz

    SciTech Connect

    Neil, Chelsea W.; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration ( R g ) of heterogeneously formed precipitates grew from 1.5 to 2.5 ( ± 1.0) nm within 1 h. For the system containing 10-5 M arsenate, R g grew from 3.6 to 6.1 ( ± 0.5) nm, and for the system containing 10-5 M phosphate, R g grew from 2.0 to 4.0 ( ± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new fi ndings are important because di ff erences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  1. Theoretical technique for predicting the cumulative impact of iron and manganese oxidation in streams receiving discharge from coal mines

    USGS Publications Warehouse

    Bobay, Keith E.

    1986-01-01

    Two U.S. Geological Survey computer programs are modified and linked to predict the cumulative impact of iron and manganese oxidation in coal-mine discharge water on the dissolved chemical quality of a receiving stream. The coupled programs calculate the changes in dissolved iron, dissolved manganese, and dissolved oxygen concentrations; alkalinity; and, pH of surface water downstream from the point of discharge. First, the one-dimensional, stead-state stream, water quality program uses a dissolved oxygen model to calculate the changes in concentration of elements as a function of the chemical reaction rates and time-of-travel. Second, a program (PHREEQE) combining pH, reduction-oxidation potential, and equilibrium equations uses an aqueous-ion association model to determine the saturation indices and to calculate pH; it then mixes the discharge with a receiving stream. The kinetic processes of the first program dominate the system, whereas the equilibrium thermodynamics of the second define the limits of the reactions. A comprehensive test of the technique was not possible because a complete set of data was unavailable. However, the cumulative impact of representative discharges from several coal mines on stream quality in a small watershed in southwestern Indiana was simulated to illustrate the operation of the technique and to determine its sensitivity to changes in physical, chemical, and kinetic parameters. Mine discharges averaged 2 cu ft/sec, with a pH of 6.0, and concentrations of 7.0 mg/L dissolved iron, 4.0 mg/L dissolved manganese, and 8.08 mg/L dissolved oxygen. The receiving stream discharge was 2 cu ft/sec, with a pH of 7.0, and concentrations of 0.1 mg/L dissolved iron, 0.1 mg/L dissolved manganese, and 8.70 mg/L dissolved oxygen. Results of the simulations indicated the following cumulative impact on the receiving stream from five discharges as compared with the effect from one discharge: 0.30 unit decrease in pH, 1.82 mg/L increase in dissolved iron, 1.50 mg/L increase in dissolved manganese, and 0.24 mg/L decrease in dissolved oxygen concentration. (Author 's abstract)

  2. Experimental and theoretical study of the reactions of iron and manganese oxides with dinitrogen in a cryogenic matrix

    NASA Astrophysics Data System (ADS)

    Lu, Zhang-Hui; Xu, Qiang

    2011-02-01

    Reactions of laser-ablated iron and manganese oxides with dinitrogen in excess argon have been investigated by matrix-isolation infrared spectroscopy. The NNMO (M = Fe, Mn), (NN)2FeO, and NNFeO2 complexes are formed as reaction products during sample deposition and/or further annealing. These complexes are characterized on the basis of the results of the isotopic substitution and comparison with theoretical calculations. The agreement between the experimental and calculated vibrational frequencies and isotopic shifts supports the identification of these complexes from the matrix infrared spectra. Reaction mechanisms have been proposed for the formation of these products.

  3. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods. PMID:25843280

  4. The Staphylococcus aureus ABC-Type Manganese Transporter MntABC Is Critical for Reinitiation of Bacterial Replication Following Exposure to Phagocytic Oxidative Burst

    PubMed Central

    Coady, Alison; Xu, Min; Phung, Qui; Cheung, Tommy K.; Bakalarski, Corey; Alexander, Mary Kate; Lehar, Sophie M.; Kim, Janice; Park, Summer; Tan, Man-Wah; Nishiyama, Mireille

    2015-01-01

    Manganese plays a central role in cellular detoxification of reactive oxygen species (ROS). Therefore, manganese acquisition is considered to be important for bacterial pathogenesis by counteracting the oxidative burst of phagocytic cells during host infection. However, detailed analysis of the interplay between bacterial manganese acquisition and phagocytic cells and its impact on bacterial pathogenesis has remained elusive for Staphylococcus aureus, a major human pathogen. Here, we show that a mntC mutant, which lacks the functional manganese transporter MntABC, was more sensitive to killing by human neutrophils but not murine macrophages, unless the mntC mutant was pre-exposed to oxidative stress. Notably, the mntC mutant formed strikingly small colonies when recovered from both type of phagocytic cells. We show that this phenotype is a direct consequence of the inability of the mntC mutant to reinitiate growth after exposure to phagocytic oxidative burst. Transcript and quantitative proteomics analyses revealed that the manganese-dependent ribonucleotide reductase complex NrdEF, which is essential for DNA synthesis and repair, was highly induced in the mntC mutant under oxidative stress conditions including after phagocytosis. Since NrdEF proteins are essential for S. aureus viability we hypothesize that cells lacking MntABC might attempt to compensate for the impaired function of NrdEF by increasing their expression. Our data suggest that besides ROS detoxification, functional manganese acquisition is likely crucial for S. aureus pathogenesis by repairing oxidative damages, thereby ensuring efficient bacterial growth after phagocytic oxidative burst, which is an attribute critical for disseminating and establishing infection in the host. PMID:26379037

  5. Dissociation of manganese(III) oxide as part of a thermochemical water splitting cycle

    NASA Astrophysics Data System (ADS)

    Francis, Todd Michael

    A three-step thermochemical cycle to produce renewable hydrogen was proposed, which utilizes manganese(III) oxide and thermal energy to produce hydrogen. Most work on the cycle has focused on the hydrogen generating and product recovery steps with little work on the dissociation. It is essential to understand the dissociation because the feasibility of the cycle is based on this reaction having a high conversion. Because of the importance of the reduction step, this reaction has been selected as the topic of this dissertation. Additionally, because the dispersion of Mn2O3 particles into an Aerosol Flow Reactor (AFR) is important, feeding concepts were developed as well. Two powder feeding systems were developed: a Spinning Wheel Feeder (SWF) and a Fluidized Bed Feeder (FBF). Results of statistical particle size distribution studies indicated that the FBF was the better choice to disperse Mn2O3 powder. Additionally, results in an AFR demonstrated that the FBF was able to produce higher dissociation conversions. A study in a Thermogravimetric Analyzer (TGA) indicated multiple mechanisms were controlling Mn2O3 dissociation. The first half reaction of the dissociation was calculated to be controlled by an Avrami-Erofeev mechanism and had an activation energy of 106.4+/-1.9 kJ/mol. The second half reaction had a duel mechanism utilizing an Avrami-Erofeev and Order of Reaction (OOR) mechanism. The mechanisms had activation energies of 251.2+/-6.5 and 110.7+/-24.6 kJ/mol respectively. Mn2O3 dissociation investigations were done in an AFR. They revealed oxygen is a significant factor and to effectively control the dissociation with temperature and gas flow rate, the oxygen concentration must be below 0.25%. Experimental runs that had oxygen concentrations less than 0.25% were used to calculate reaction rate constants. The Avrami-Erofeev mechanisms were combined into a single mechanism. Rate constants for the Avrami-Erofeev and OOR mechanisms were 1.8E7+/-1.3E7 and 5.6E3+/-4.1E3 s -1 respectively. The results of a CFD model compared favorably with what was observed experimentally. A heavy feed concentration case predicted this as well. When the gas flow rate was higher the r-velocity was concluded to transport the more reacted powder near the wall to the center of the reactor, leading to higher conversions for the high gas flow rate.

  6. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    SciTech Connect

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-12-15

    Graphical abstract: DC conductivity variation of CaCe{sub 1−x}Mn{sub x}SnNbO{sub 7−δ} (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ► We have observed that the structural ordering as well as grain size increase with Mn substitution. ► Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ► Activation energy as well as electrical conductivity increases with increase in Mn substitution. ► Localization of electrons associated with Mn{sup 2+} and structural ordering are the key factors for the increased activation energy with Mn substitution. ► All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe{sub 1−x}Mn{sub x}SnNbO{sub 7−δ} (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn{sup 2+} ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy contrastingly. This unusual behavior has been explained by correlating the structure, microstructure, defect states, electron localization and intersite separation with the conductivity data of the samples.

  7. A theoretical study of the mechanisms of oxidation of ethylene by manganese oxo complexes.

    PubMed

    Aniagyei, Albert; Tia, Richard; Adei, Evans

    2013-10-28

    The mechanisms of oxidation of ethylene by manganese-oxo complexes of the type MnO3L (L = O(-), Cl, CH3, OCH3, Cp, NPH3) have been explored on the singlet, doublet, triplet and quartet potential energy surfaces at the B3LYP/LACVP* level of theory and the results discussed and compared with those of the technetium and rhenium oxo complexes we reported earlier, thereby drawing group trends in the reactions of this important class of oxidation catalysts. In the reactions of MnO3L (L = O(-), Cl(-), CH3, OCH3, Cp, NPH3) with ethylene, it was found that the formation of the dioxylate intermediate along the concerted [3 + 2] addition pathway on the singlet potential energy is favored kinetically and thermodynamically over its formation by a two-step process via the metallaoxetane by [2 + 2] addition. The activation barriers for the formation of the dioxylate and the product stabilities on the singlet PES for the ligands studied are found to follow the order: NPH3 < Cl(-) < CH3O(-) < Cp < O(-) < CH3. On the doublet PES, the activation barriers for the formation of the dioxylate intermediate for the ligands are found to follow the order: CH3O(-) < Cl(-) < Cp < CH3 while the order of product stabilities is: Cl(-) < CH3O(-) < Cp < CH3. The order of dioxylate product stabilities on the triplet surface for the ligands studied is: Cl(-) < CH3O(-) < Cp < CH3 < NPH3 < O(-) and the order on the quartet surface is O(-) < Cp < CH3 < NPH3 < Cl(-) < CH3O(-). The re-arrangement of the metallaoxetane intermediate to the dioxylate is not a feasible reaction for all the ligands studied. Of the group VII B metal oxo complexes studied, MnO4(-) and MnO3(OCH3) appear to be the best catalysts for the exclusive formation of the dioxylate intermediate, MnO3(OCH3) being better so on both kinetic and thermodynamic grounds. The best epoxidation catalyst for the Mn complexes is MnO3Cl; the formation of the epoxide precursor will not result from the reaction of LMnO3 (L = O(-), Cp) with ethylene on any of the surfaces studied. The trends observed for the oxidation reactions of the Mn complexes with ethylene compare closely with those reported by us for the ReO3L and TcO3L (L = O(-), Cl, CH3, OCH3, Cp, NPH3) complexes, but there is far greater similarity between the Re and Tc complexes than between Mn and either of the other two. There does not appear to be any singlet-triplet or doublet-quartet spin-crossover in any of the pathways studied. PMID:23963205

  8. Multi-functional porous mix-valent manganese oxide nano-materials and ruthenium/titanium dioxide for magnetic, electronic, and catalytic applications

    NASA Astrophysics Data System (ADS)

    Shen, Xiongfei

    This thesis contains two parts: (1) development of porous mixed-valent manganese oxide octahedral molecular sieve (OMS) nano-materials with controlled tunnel structures and muilt-functionalities and (2) application of H 2 adsorption for metal particle size evaluation on TiO2 supported Ru Fischer-Tropsch catalysts. Manganese oxide OMS with different nano-scale tunnel sizes may result in various microporosities for different selective catalysis and separation applications. A hydrothermal method was developed to synthesize manganese oxide nano-materials with controlled nano-scale tunnel sizes by hydrothermal treatments of layered structure manganese oxides under different pH conditions. Manganese oxides with increasing tunnel sizes of 2.3 A x 2.3 A (1x1 tunnel structure), 4.6 A x 6.9 A (2x3 tunnel structure), and 4.6 A x 9.2 A (2x4 tunnel structure) were synthesized with increasing pH value from 1.0, 7.0, to 13.0, respectively. Phase transformation mechanism of layered precursors to tunnel structures was obtained by characterization of the materials during synthesis using in situ synchrotron X-ray diffraction. The obtained phase transformation mechanism was used for synthesis of better materials such as new lxl/1x2 tunnel structures and controlled BET surface areas. Most manganese oxide OMS materials show paramagnetism at temperatures from 100 to 350 K. A new method was established to measure the average oxidation state (AOS) of mix-valent manganese in OMS materials by describing their paramagnetic behavior using the Curie-Weiss law. Measurement results show a maximum 7% deviation error compared to the reference titration method for 10 different samples. Magnetism of OMS was further explored by doping Fe into KOMS-2 (a 2x2 tunnel structure manganese oxide) to create high temperature ferromagnetism. The possession of both semiconducting and high temperature ferromagnetism in the Fe-doped KOMS-2 created a highly promising new group of functional materials for spintronics applications. In the second part, effects of temperatures, H2 pressures and adsorption equilibration times on H2 adsorption on Ru/TiO 2 were investigated. By assuming that exposed Ru atoms equally contribute to the three low index planes with the highest atomic density [(001), (100), and (110) planes], the average Ru particle size calculated from monolayer H2 chemisorption (4.6 nm) showed good agreement with the TEM measurement results (4.1 nm).

  9. Structural study of biotic and abiotic poorly-crystalline manganese oxides using atomic pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Mengqiang; Farrow, Christopher L.; Post, Jeffrey E.; Livi, Kenneth J. T.; Billinge, Simon J. L.; Ginder-Vogel, Matthew; Sparks, Donald L.

    2012-03-01

    Manganese (Mn) oxides are among the most reactive natural minerals and play an important role in elemental cycling in oceanic and terrestrial environments. A large portion of naturally-occurring Mn oxides tend to be poorly-crystalline and/or nanocrystalline, with not fully resolved crystal structures. In this study, the crystal structures of their synthetic analogs including acid birnessite (AcidBir), δ-MnO2, polymeric MnO2 (PolyMnO2) and a bacteriogenic Mn oxide (BioMnOx), have been revealed using atomic pair distribution function (PDF) analysis. Results unambiguously verify that these Mn oxides are layered materials. The best models that accurately allow simulation of pair distribution functions (PDFs) belong to the monoclinic C12/m1 space group with a disk-like shape. The single MnO6 layers in the average structures deviate significantly from hexagonal symmetry, in contrast to the results of previous studies based on X-ray diffraction analysis in reciprocal space. Manganese occupancies in MnO6 layers are estimated to be 0.936, 0.847, 0.930 and 0.935, for AcidBir, BioMnOx, δ-MnO2 and PolyMnO2, respectively; however, occupancies of interlayer cations and water molecules cannot be accurately determined using the models in this study. The coherent scattering domains (CSDs) of PolyMnO2, δ-MnO2 and BioMnOx are at the nanometer scale, comprising one to three MnO6 layers stacked with a high disorder in the crystallographic c-axis direction. Overall, the results of this study advance our understanding of the mineralogy of Mn oxide minerals in the environment.

  10. Graphene-Based Hybrids with Manganese Oxide Polymorphs as Tailored Interfaces for Electrochemical Energy Storage: Synthesis, Processing, and Properties

    NASA Astrophysics Data System (ADS)

    Gupta, S.; van Meveren, M. M.; Jasinski, J.

    2015-01-01

    Technological progress is determined to a greater extent by developments of novel materials or new combinations of known materials with different dimensionality and diverse functionality. In this work, we report on the synthesis and characterization of graphene-based hybrid nanomaterials coupled with transition-metal oxide polymorphs (nano/micro-manganese oxides, i.e., β-MnO2 [Mn(IV)] and Mn3O4 [Mn(II, III)]). This lays the groundwork for high-performance electrochemical electrodes for alternative energy devices owing to their higher specific capacitance, wide operational potential window and stability through charge-discharge cycling, environmentally benignity, cost-effectiveness, easy processing, and reproducibility on a larger scale. To accomplish this, we strategically designed these hybrids by direct anchoring or physical adsorption of β-MnO2 and Mn3O4 on variants of graphene, namely graphene oxide and its reduced form, via mixing dispersions of the constituents under mild ultrasonication and drop-casting, resulting in four different combinations. This facile approach affords strong chemical/physical attachment and is expected to result in coupling between the pseudocapacitive transition-metal oxides and supercapacitive nanocarbons showing enhanced activity/reactivity and reasonable areal density of tailored interfaces. We used a range of complementary analytical characterization tools to determine the structure and physical properties, such as scanning electron microscopy combined with energy-dispersive x-ray spectroscopy, atomic force microscopy, x-ray diffraction, resonance Raman spectroscopy combined with elemental Raman mapping, and transmission electron microscopy in conjunction with selected-area electron diffraction. All of these techniques reveal surface morphology, local (lattice dynamical) and average structure, and local charge transfer due to the physically (or chemically) adsorbed manganese oxide of synthesized hybrids that helps to establish microscopic structure-property-function correlations highlighting the surface structure and interfaces to further investigate their electrochemical supercapacitor properties.

  11. Structural Study of Biotic and Abiotic Poorly-crystalline Manganese Oxides Using Atomic Pair Distribution Function Analysis

    SciTech Connect

    Billinge S. J.; Zhu, M.; Farrow, C.L.; Post, J.E.; Livi, K.J.T.; Ginder-Vogel, M.; Sparks, D.L.

    2012-03-15

    Manganese (Mn) oxides are among the most reactive natural minerals and play an important role in elemental cycling in oceanic and terrestrial environments. A large portion of naturally-occurring Mn oxides tend to be poorly-crystalline and/or nanocrystalline, with not fully resolved crystal structures. In this study, the crystal structures of their synthetic analogs including acid birnessite (AcidBir), {delta}-MnO{sub 2}, polymeric MnO{sub 2} (PolyMnO{sub 2}) and a bacteriogenic Mn oxide (BioMnO{sub x}), have been revealed using atomic pair distribution function (PDF) analysis. Results unambiguously verify that these Mn oxides are layered materials. The best models that accurately allow simulation of pair distribution functions (PDFs) belong to the monoclinic C12/m1 space group with a disk-like shape. The single MnO{sub 6} layers in the average structures deviate significantly from hexagonal symmetry, in contrast to the results of previous studies based on X-ray diffraction analysis in reciprocal space. Manganese occupancies in MnO{sub 6} layers are estimated to be 0.936, 0.847, 0.930 and 0.935, for AcidBir, BioMnO{sub x}, {delta}-MnO{sub 2} and PolyMnO{sub 2}, respectively; however, occupancies of interlayer cations and water molecules cannot be accurately determined using the models in this study. The coherent scattering domains (CSDs) of PolyMnO{sub 2}, {delta}-MnO{sub 2} and BioMnO{sub x} are at the nanometer scale, comprising one to three MnO{sub 6} layers stacked with a high disorder in the crystallographic c-axis direction. Overall, the results of this study advance our understanding of the mineralogy of Mn oxide minerals in the environment.

  12. Structural study of biotic and abiotic poorly-crystalline manganese oxides using atomic pair distribution function analysis

    SciTech Connect

    Zhu, Mengqiang; Farrow, Christopher L.; Post, Jeffrey E.; Livi, Kenneth J.T.; Billinge, Simon J.L.; Ginder-Vogel, Matthew; Sparks, Donald L.

    2012-03-15

    Manganese (Mn) oxides are among the most reactive natural minerals and play an important role in elemental cycling in oceanic and terrestrial environments. A large portion of naturally-occurring Mn oxides tend to be poorly-crystalline and/or nanocrystalline, with not fully resolved crystal structures. In this study, the crystal structures of their synthetic analogs including acid birnessite (AcidBir), {delta}-MnO{sub 2}, polymeric MnO{sub 2} (PolyMnO{sub 2}) and a bacteriogenic Mn oxide (BioMnO{sub x}), have been revealed using atomic pair distribution function (PDF) analysis. Results unambiguously verify that these Mn oxides are layered materials. The best models that accurately allow simulation of pair distribution functions (PDFs) belong to the monoclinic C12/m1 space group with a disk-like shape. The single MnO{sub 6} layers in the average structures deviate significantly from hexagonal symmetry, in contrast to the results of previous studies based on X-ray diffraction analysis in reciprocal space. Manganese occupancies in MnO{sub 6} layers are estimated to be 0.936, 0.847, 0.930 and 0.935, for AcidBir, BioMnOx, {delta}-MnO{sub 2} and PolyMnO{sub 2}, respectively; however, occupancies of interlayer cations and water molecules cannot be accurately determined using the models in this study. The coherent scattering domains (CSDs) of PolyMnO{sub 2}, {delta}-MnO{sub 2} and BioMnO{sub x} are at the nanometer scale, comprising one to three MnO{sub 6} layers stacked with a high disorder in the crystallographic c-axis direction. Overall, the results of this study advance our understanding of the mineralogy of Mn oxide minerals in the environment.

  13. Oxidant Selection for the Treatment of Manganese (II), Iron (II), and Arsenic (III) in Groundwaters

    EPA Science Inventory

    In order to comply with the United States Environmental Protection Agency’s (U.S. EPA’s) arsenic standard and the manganese and iron secondary maximum contaminant levels (MCLs) in water (10µg/L, 50µg/L, and 300µg/L, respectively), many Midwestern water utilities must add a strong...

  14. Selective Alkane Oxidation by Manganese Oxide: Site Isolation of MnOx Chains at the Surface of MnWO4 Nanorods.

    PubMed

    Li, Xuan; Lunkenbein, Thomas; Pfeifer, Verena; Jastak, Mateusz; Nielsen, Pia Kjaer; Girgsdies, Frank; Knop-Gericke, Axel; Rosowski, Frank; Schlögl, Robert; Trunschke, Annette

    2016-03-14

    The electronic and structural properties of vanadium-containing phases govern the formation of isolated active sites at the surface of these catalysts for selective alkane oxidation. This concept is not restricted to vanadium oxide. The deliberate use of hydrothermal techniques can turn the typical combustion catalyst manganese oxide into a selective catalyst for oxidative propane dehydrogenation. Nanostructured, crystalline MnWO4 serves as the support that stabilizes a defect-rich MnOx surface phase. Oxygen defects can be reversibly replenished and depleted at the reaction temperature. Terminating MnOx zigzag chains on the (010) crystal planes are suspected to bear structurally site-isolated oxygen defects that account for the unexpectedly good performance of the catalyst in propane activation. PMID:26913704

  15. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.

    PubMed

    Liu, Ruiping; Xu, Wei; He, Zan; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui; Prasai, Tista

    2015-11-01

    Manganese(IV) oxide [Mn(IV)] potentially oxidizes antimony(III) [Sb(III)] to antimony(V) [Sb(V)] and improves Sb removal by FeMn binary oxide (FMBO) through an oxidation-adsorption mechanism. This study focused on the effect of Mn(IV) reductive dissolution by potassium sulfite (K2SO3) on Sb(V) adsorption onto manganese oxide (Mn-oxide) and FMBO. The maximum Sb(V) adsorption (Qmax,Sb(V)) increased from 1.0 to 1.1 mmol g(-1) for FMBO and from 0.4 to 0.6 mmol g(-1) for Mn-oxide after pretreatment with 10 mmol L(-1) K2SO3. The addition of 2.5 mmol L(-1) Mn(2+) also significantly improved Sb(V) adsorption, and the observed Qmax,Sb(V) increased to 1.4 and 1.0 mmol g(-1) for FMBO and Mn-oxide, respectively, with pre-adsorbed Mn(2+). Neither K2SO3 nor Mn(2+) addition had any effect on Sb(V) adsorption onto iron oxide (Fe-oxide). Mn(2+) introduced by either Mn(IV) dissolution or addition tended to form outer-sphere surface complexes with hydroxyl groups on Mn-oxide surfaces (MnOOH). Mn(2+) at 2.5 mmol L(-1) shifted the isoelectric point (pHiep) from 7.5 to 10.2 for FMBO and from 4.8 to 9.2 for Mn-oxide and hence benefited Sb(V) adsorption. The adsorption of Sb(V) onto Mn(2+)-enriched surfaces contributed to the release of Mn(2+), and the X-ray photoelectron spectra also indicated increased binding energy of Mn 2p3/2 after the adsorption of Sb(V) onto K2SO3-pretreated FMBO and Mn-oxide. Sb(V) adsorption involved the formation of inner-sphere complexes and contributed to the release of Mn(2+). In the removal of Sb(III) by Mn-based oxides, the oxidation of Sb(III) to Sb(V) by Mn(IV) oxides had an effect; however, Mn(IV) dissolution and Mn(2+)-enrichment also played an important role. PMID:26218341

  16. Manganese, Metallogenium, and Martian Microfossils

    NASA Technical Reports Server (NTRS)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  17. Cesium and cobalt adsorption on synthetic nano manganese oxide: A two dimensional infra-red correlation spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Al Lafi, Abdul G.; Al Abdullah, Jamal

    2015-08-01

    Molecular scale information is of prime importance to understand ions coordination to mineral surfaces and consequently to aid in the design of improved ion exchange materials. This paper reports on the use of two-dimensional correlation infra-red spectroscopy (2D-COS-IR) to investigate the time dependent adsorptions of cesium and cobalt ions onto nano manganese oxide (NMO). The metal ions uptake was driven mainly by inner-sphere complex formation as demonstrated by the production of new absorption bands at 1160, 1100, 585 and 525 cm-1, which were assigned to the O-O bond vibration and the coupled vibrations of M-O and Mn-O bonds. The progressive development of the 3100 cm-1 band, which is attributed to the stretching vibration of the lattice-OH group, indicates an M+/H+ ion-exchange reaction. The new bands at 700 and 755 cm-1 in the case of cobalt ion adsorption and at 800 and 810 cm-1 in the case of cesium ion adsorption, and the splitting of other bands at 1135 and 875 cm-1 indicate the presence of different O-O bond lengths. This suggests different coordination of the two metal ions with oxygen. The infrared spectroscopy combined with 2D-COS provides a powerful tool to investigate the mechanism of interaction between heavy metals and manganese oxide.

  18. Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Lin, C. K.

    2011-04-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ'-jɛ″) and permeability (μ'-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ'. The lower the heat-treating temperature, the larger the decrease in ɛ'. The relative decrease in ɛ', compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ˜100% compared to that of uncoated NPs and can be of practical use for microwave components.

  19. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    SciTech Connect

    Mohebbi, Sajjad Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT and new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.

  20. Catalytic oxidation of NO with O2 over FeMnOx/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study

    NASA Astrophysics Data System (ADS)

    Zhang, Mengying; Li, Caiting; Qu, Long; Fu, Mengfan; Zeng, Guangming; Fan, Chunzhen; Ma, Jinfeng; Zhan, Fuman

    2014-05-01

    FeMnOx/TiO2 with different iron and manganese oxides adding orders were prepared through isovolumetric impregnation and tested for catalytic oxidation of NO with O2. It was found that the sample obtained from one-step impregnation method had better catalytic activity. The excellent activity was attributed to higher surface area, lower crystalline of manganese oxides, abundant Mn3+, Fe3+ and chemisorbed oxygen species on the surface. Furthermore, effects of loading sequences on FeMnOx/TiO2 catalysts were investigated. The study showed that Fe and Mn would affect each other and change the surface physicochemical properties of FeMnOx/TiO2 when they were loaded step-by-step. In addition, the inhibiting effect of H2O on catalytic activity was reversible while the conversion of NO recovered to 40% when SO2 was cut off. XPS analysis between used and fresh catalysts revealed the electron transfer between Fen+ and Mnn+ ions in FeMnOx/TiO2. Possible reaction mechanism was put forward by comprehensive analysis of XPS and FT-IR results.

  1. Oxidation of aniline and other primary aromatic amines by manganese dioxide

    SciTech Connect

    Laha, S.; Luthy, R.G. )

    1990-03-01

    This investigation evaluated the redox reaction between a manganese dioxide, {sigma}-MnO{sub 2}, and anilines and other aromatic reductants in aqueous suspensions at pH values ranging from 3.7 to 6.5. The reaction with manganese dioxide may represent a pathway for transformation of aniline and other primary aromatic amines in acidic mineralogical and soil/water environments in the absence of oxygen and substantial microbial activity. The reaction rate with aniline is pH-dependent, increasing with decreasing pH, and first order with respect to {sigma}-MnO{sub 2} and organic solute. Aniline and p-toluidine are demonstrated to be 2-equiv reductants, as is believed to be the case for the other aromatic solutes considered in this study, including the substituted anilines, and hydroquinone and catechol and their alkyl substituents. Ring-bound nitrogen-containing aromatic solutes (methylimidazole, quinoline, and 5,5-dimethylhydantion) were unreactive with manganese dioxide at pH 6.4. The order of the reactivity of para-substituted anilines was methoxy >> methyl > chloro > carboxy >> nitro; the relative reactivity of these compounds correlated with the solute's half-wave potential and Hammett constant.

  2. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn{sub 3}O{sub 4} nanoparticles

    SciTech Connect

    Laffont, L.; Gibot, P.

    2010-11-15

    Manganese oxides particularly Mn{sub 3}O{sub 4} Hausmannite are currently used in many industrial applications such as catalysis, magnetism, electrochemistry or air contamination. The downsizing of the particle size of such material permits an improvement of its intrinsic properties and a consequent increase in its performances compared to a classical micron-sized material. Here, we report a novel synthesis of hydrophilic nano-sized Mn{sub 3}O{sub 4}, a bivalent oxide, for which a precise characterization is necessary and for which the determination of the valency proves to be essential. X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and particularly High Resolution Electron Energy Loss Spectroscopy (HREELS) allow us to perform these measurements on the nanometer scale. Well crystallized 10-20 nm sized Mn{sub 3}O{sub 4} particles with sphere-shaped morphology were thus successfully synthesized. Meticulous EELS investigations allowed the determination of a Mn{sup 3+}/Mn{sup 2+} ratio of 1.5, i.e. slightly lower than the theoretical value of 2 for the bulk Hausmannite manganese oxide. This result emphasizes the presence of vacancies on the tetrahedral sites in the structure of the as-synthesized nanomaterial. - Research Highlights: {yields}Mn{sub 3}O{sub 4} bulk and nano were studied by XRD, TEM and EELS. {yields}XRD and TEM determine the degree of crystallinity and the narrow grain size. {yields}HREELS gave access to the Mn{sup 3+}/Mn{sup 2+} ratio. {yields}Mn{sub 3}O{sub 4} nano have vacancies on the tetrahedral sites.

  3. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  4. The development of manganese oxide coated ceramic membranes for combined catalytic ozonation and ultrafiltration of drinking water

    NASA Astrophysics Data System (ADS)

    Corneal, Lindsay Marie

    A novel method for the preparation of hydrated MnO2 by the ozonation of MnCl2 in water is described. The hydrated MnO 2 was used to coat titania water filtration membranes using a layer-by-layer technique. The coated membranes were then sintered in air at 500°C for 45 minutes. Upon sintering, the MnO2 is converted to alpha-Mn 2O3 (as characterized by x-ray and electron diffraction). Atomic force microscopy (AFM) imaging showed no significant change in the roughness or height of the surface features of coated membranes, while scanning electron microscopy (SEM) imaging showed an increase in grain size with increasing number of coating layers. Energy dispersive x-ray spectroscopy (EDS) mapping and line scans revealed manganese present throughout the membrane, indicating that manganese dispersed into the porous membrane during the coating process and diffused into the titania grains during sintering. Selected area diffraction (SAD) of the coated and sintered membrane was used to index the surface layer as alpha-Mn2O3. The surface layer was uneven, although there was a trend of increasing thickness with increasing coating layers. The coating acts as a catalyst for the oxidation of organic matter when coated membranes are used in a hybrid ozonation-membrane filtration system. A trend of decreasing total organic carbon (TOC) in the permeate water was observed with increasing number of coating layers. The catalytic activity also manifests itself as improved recovery of the water flux due to oxidation of foulants on the membrane surface. Ceramic nanoparticle coatings on ceramic water filtration membranes must undergo high temperature sintering. However, this means that the underlying membrane, which has been engineered for a given molecular weight cut-off (MWCO), also undergoes a high temperature heat treatment that serves to increase pore size that have resulted in increases in permeability of titania membranes. Coating the titania membrane with manganese oxide followed by sintering in air at 500°C maintains the MWCO of the membranes, with high DI water permeability, which may be favorable in terms of membrane use. SEM micrographs of titania membrane samples sintered between 500°C to 900°C were analyzed to identify a statistically significant increase in grain size with increasing sintering temperature. The grains however, generally retain a uniform shape until the 900°C sintering temperature, where large, irregularly shaped grains were observed. AFM analysis showed a corresponding increase in the surface roughness of the membrane for the sample sintered at 900°C.

  5. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control

    NASA Astrophysics Data System (ADS)

    Huang, Guoming; Li, Hui; Chen, Jiahe; Zhao, Zhenghuan; Yang, Lijiao; Chi, Xiaoqin; Chen, Zhong; Wang, Xiaomin; Gao, Jinhao

    2014-08-01

    In this paper, we demonstrate the tunable T1 and T2 contrast abilities of engineered iron oxide nanoparticles with high performance for liver contrast-enhanced magnetic resonance imaging (MRI) in mice. To enhance the diagnostic accuracy of MRI, large numbers of contrast agents with T1 or T2 contrast ability have been widely explored. The comprehensive investigation of high-performance MRI contrast agents with controllable T1 and T2 contrast abilities is of high importance in the field of molecular imaging. In this study, we synthesized uniform manganese-doped iron oxide (MnIO) nanoparticles with controllable size from 5 to 12 nm and comprehensively investigated their MRI contrast abilities. We revealed that the MRI contrast effects of MnIO nanoparticles are highly size-dependent. By controlling the size of MnIO nanoparticles, we can achieve T1-dominated, T2-dominated, and T1-T2 dual-mode MRI contrast agents with much higher contrast enhancement than the corresponding conventional iron oxide nanoparticles.In this paper, we demonstrate the tunable T1 and T2 contrast abilities of engineered iron oxide nanoparticles with high performance for liver contrast-enhanced magnetic resonance imaging (MRI) in mice. To enhance the diagnostic accuracy of MRI, large numbers of contrast agents with T1 or T2 contrast ability have been widely explored. The comprehensive investigation of high-performance MRI contrast agents with controllable T1 and T2 contrast abilities is of high importance in the field of molecular imaging. In this study, we synthesized uniform manganese-doped iron oxide (MnIO) nanoparticles with controllable size from 5 to 12 nm and comprehensively investigated their MRI contrast abilities. We revealed that the MRI contrast effects of MnIO nanoparticles are highly size-dependent. By controlling the size of MnIO nanoparticles, we can achieve T1-dominated, T2-dominated, and T1-T2 dual-mode MRI contrast agents with much higher contrast enhancement than the corresponding conventional iron oxide nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02680b

  6. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    NASA Astrophysics Data System (ADS)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 76, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  7. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity.

    PubMed Central

    Masaphy, S; Henis, Y; Levanon, D

    1996-01-01

    Manganese enhanced atrazine transformation by the fungus Pleurotus pulmonarius when added to a liquid culture medium at concentrations of up to 300 microM. Both N-dealkylated and propylhydroxylated metabolites accumulated in the culture medium, with the former accumulating to a greater extent than did the latter. Lipid peroxidation, oxygenase and peroxidase activities, and the cytochrome P-450 concentration increased. In addition, an increase in the spectral interactions between atrazine and components in the cell extract was observed. Antioxidants, mainly nordihydroguaiaretic acid, which inhibits lipoxygenase, peroxidase, and P-450 activities, and piperonyl butoxide, which inhibits P-450 activity, inhibited atrazine transformation by the mycelium. It is suggested that the stimulation of oxidative activity by Mn might be responsible for increasing the biotransformation of atrazine and for nonspecific transformations of other xenobiotic compounds. PMID:8967773

  8. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M. João; Silva, Teresa M.; Montemor, M. Fátima

    2015-07-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g-1 at 1 A g-1. The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g-1 to 20 A g-1. The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  9. Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid.

    PubMed

    Yang, Li-Xia; Zhu, Ying-Jie; Wang, Wei-Wei; Tong, Hua; Ruan, Mei-Ling

    2006-04-01

    Single-crystalline cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2) nanoneedles and nanorods were prepared by a solution-phase approach in the presence of an ionic liquid 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). [BMIM]BF4 can act as a cosolvent, structure-directing agent, and reducing reagent in the reaction system. Based on the redox reaction of MnCl2 and KMnO4 in the mixed solvents of water and [BMIM]BF4, the formation of OMS-2 nanoneedles followed the rolling mechanism with lamellae as an intermediate. However, the direct reaction of KMnO4 with [BMIM]BF4 resulted in the formation of OMS-2 nanorods with diameters as small as 3-6 nm. The formation mechanism of OMS-2 nanostructures was discussed. PMID:16570961

  10. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.

    PubMed

    Lee, Jang-Soo; Park, Gi Su; Lee, Ho Il; Kim, Sun Tai; Cao, Ruiguo; Liu, Meilin; Cho, Jaephil

    2011-12-14

    A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity of MnOx while acting as a supporting matrix for the catalyst. The large surface area of the amorphous MnOx nanowires, together with other microscopic features (e.g., high density of surface defects), potentially offers more active sites for oxygen adsorption, thus significantly enhancing ORR activity. In particular, a Zn-air battery based on this composite air electrode exhibits a peak power density of ?190 mW/cm2, which is far superior to those based on a commercial air cathode with Mn3O4 catalysts. PMID:22050041

  11. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Yubin; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-01

    Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO2)/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO4-) and MWCNTs. The results indicate that the MnO2/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO2 (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  12. Oxidative aliphatic C-H fluorination with manganese catalysts and fluoride ion

    PubMed Central

    Liu, Wei; Huang, Xiongyi; Groves, John T

    2014-01-01

    Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp3)-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREAT·HF), as the source of fluorine. Typically, the reactions afford 50–70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250–300 mg, ~50% yield) of fluorinated material over periods of 1–8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required. PMID:24177292

  13. Oxidative aliphatic C-H fluorination with manganese catalysts and fluoride ion.

    PubMed

    Liu, Wei; Huang, Xiongyi; Groves, John T

    2013-12-01

    Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp(3))-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREATHF), as the source of fluorine. Typically, the reactions afford 50-70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250-300 mg, ~50% yield) of fluorinated material over periods of 1-8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required. PMID:24177292

  14. Design, synthesis, and characterization of materials for controlled line deposition, environmental remediation, and doping of porous manganese oxide material

    NASA Astrophysics Data System (ADS)

    Calvert, Craig A.

    This thesis covers three topics: (1) coatings formed from sol-gel phases, (2) environmental remediation, and (3) doping of a porous manganese oxide. Synthesis, characterization, and application were investigated for each topic. Line-formations were formed spontaneously by self-assembly from vanadium sol-gels and other metal containing solutions on glass substrates. The solutions were prepared by the dissolution of metal oxide or salt in water. A more straightforward method is proposed than used in previous work. Analyses using optical microscopy, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and infrared spectroscopy showed discreet lines whose deposition could be controlled by varying the concentration. A mechanism was developed from the observed results. Microwave heating, the addition of graphite rods, and oxidants, can enhance HCB remediation from soil. To achieve remediation, a TeflonRTM vessel open to the atmosphere along with an oxidant, potassium persulfate (PerS) or potassium hydroxide, along with uncoated or aluminum oxide coated, graphite rods were heated in a research grade microwave oven. Microwave heating was used to decrease the heating time, and graphite rods were used to increase the absorption of the microwave energy by providing thermal centers. The results showed that the percent HCB removed was increased by adding graphite rods and oxidants. Tungsten, silver, and sulfur were investigated as doping agents for K--OMS-2. The synthesis of these materials was carried out with a reflux method. The doping of K--OMS-2 led to changes in the properties of a tungsten doped K--OMS-2 had an increased resistivity, the silver doped material showed improved epoxidation of trans-stilbene, and the addition of sulfur produced a paper-like material. Rietveld refinement of the tungsten doped K--OMS-2 showed that the tungsten was doped into the framework.

  15. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese

    PubMed Central

    Lovley, Derek R.; Phillips, Elizabeth J. P.

    1988-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments. Images PMID:16347658

  16. Protective effect of manganese in cadmium-induced hepatic oxidative damage, changes in cadmium distribution and trace elements level in mice

    PubMed Central

    Eybl, Vladislav; Kotyzová, Dana

    2010-01-01

    Oxidative tissue damage is considered an early sign of cadmium (Cd) toxicity and has been linked with carcinogenesis. Manganese(II)-at low doses, was found to act as a potent antioxidant against oxidative stress in different in vitro systems producing lipid peroxidation conditions. The present study investigates in vivo antioxidant effects of Mn2+ pretreatment in acute Cd intoxication with regard to lipid peroxidation, antioxidant defense system and cadmium distribution in the tissues of mice. Four groups of male mice (n=7–8) were used: Cd group was injected sc a single dose of CdCl2 · 2½ H2O · (7 mg/kg b.w.); Cd+Mn group was treated ip with MnCl2 · 4H2O (20 mg/kg b.w.) 24 hours before Cd intoxication; Mn group received manganese treatment only; Control group received saline only. Twenty-four hours after Cd intoxication an increased lipid peroxidation (p<0.05), depleted GSH level (p<0.01), increased activity of GSH-Px (p<0.05) and inhibited CAT activity (p<0.01) were found in Cd-treated group compared to controls. Manganese(II) pre-treatment either completely prevented (LP, GSH, GSH-Px) or significantly attenuated (CAT) these changes. Manganese(II) treatment alone decreased LP, enhanced hepatic GSH level and had no effect on antioxidant enzymes compared to control group. A significant increase of Cd concentration in the liver and decreased Cd concentration in the kidneys and testes were found in Cd+Mn treated mice compared to Cd-only treated group. The effect of manganese may result from a different metallothionein induction in particular organs. Manganese(II) pretreatment attenuated the interference of cadmium with Ca homeostasis, the alteration in Zn and Cu levels remained mostly unaffected. PMID:21217875

  17. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation

    NASA Astrophysics Data System (ADS)

    Wang, John; Purewal, Justin; Liu, Ping; Hicks-Garner, Jocelyn; Soukazian, Souren; Sherman, Elena; Sorenson, Adam; Vu, Luan; Tataria, Harshad; Verbrugge, Mark W.

    2014-12-01

    We examine the aging and degradation of graphite/composite metal oxide cells. Non-destructive electrochemical methods were used to monitor the capacity loss, voltage drop, resistance increase, lithium loss, and active material loss during the life testing. The cycle life results indicated that the capacity loss was strongly impacted by the rate, temperature, and depth of discharge (DOD). Lithium loss and active electrode material loss were studied by the differential voltage method; we find that lithium loss outpaces active material loss. A semi-empirical life model was established to account for both calendar-life loss and cycle-life loss. For the calendar-life equation, we adopt a square root of time relation to account for the diffusion limited capacity loss, and an Arrhenius correlation is used to capture the influence of temperature. For the cycle life, the dependence on rate is exponential while that for time (or charge throughput) is linear.

  18. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production.

    PubMed

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-03-01

    Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g(-1) adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na3MnPO4CO3. Results suggested the complexity of natural microbe-mediated Mn transformation. PMID:26606462

  19. Rational design of coaxial structured carbon nanotube-manganese oxide (CNT-MnO2) for energy storage application

    NASA Astrophysics Data System (ADS)

    Salunkhe, Rahul R.; Ahn, Heejoon; Kim, Jung Ho; Yamauchi, Yusuke

    2015-05-01

    Recently, there has been great research interest in the development of composites (core-shell structures) of carbon nanotubes (CNTs) with metal oxides for improved electrochemical energy storage, photonics, electronics, catalysis, etc. Currently, the synthetic strategies for metal oxides/hydroxides are well established, but the development of core-shell structures by robust, cost-effective chemical methods is still a challenge. The main drawbacks for obtaining such electrodes are the very complex synthesis methods which ultimately result in high production costs. Alternatively, the solution based method offers the advantages of simple and cost effective synthesis, as well as being easy to scale up. Here, we report on the development of multi-walled carbon nanotube-manganese oxide (CNT-MnO2) core-shell structures. These samples were directly utilized for asymmetric supercapacitor (ASC) applications, where the CNT-MnO2 composite was used as the positive electrode and ZIF-8 (zeolitic imidazolate framework, ZIF) derived nanoporous carbon was used as the negative electrode. This unconventional ASC shows a high energy density of 20.44 W h kg-1 and high power density of 16 kW kg-1. The results demonstrate that these are efficient electrodes for supercapacitor application.

  20. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.

    PubMed

    Han, Bing; Zhang, Man; Zhao, Dongye; Feng, Yucheng

    2015-03-01

    Manganese oxide (MnO₂) was reported to be effective for degrading aqueous pharmaceutical chemicals. However, little is known about its potential use for degrading soil-sorbed contaminants. To bridge this knowledge gap, we synthesized, for the first time, a class of stabilized MnO₂ nanoparticles using carboxymethyl celluloses (CMC) as a stabilizer, and tested their effectiveness for degrading aqueous and soil-sorbed estradiol. The most desired particles (highest reactivity and soil deliverability) were obtained at a CMC/MnO₂ molar ratio of 1.39 × 10(-3), which yielded a mean hydrodynamic size of 39.5 nm and a narrow size distribution (SD = 0.8 nm). While non-stabilized MnO₂ particles rapidly aggregated and were not transportable through a soil column, CMC-stabilized nanoparticles remained fully dispersed in water and were soil deliverable. At typical aquatic pH (6-7), CMC-stabilized MnO₂ exhibited faster degradation kinetics for oxidation of 17β-estradiol than non-stabilized MnO₂. The reactivity advantage becomes more evident when used for treating soil-sorbed estradiol owing to the ability of CMC to complex with metal ions and prevent the reactive sites from binding with inhibitive soil components. A retarded first-order rate model was able to interpret the oxidation kinetics for CMC-stabilized MnO₂. When used for degrading soil-sorbed estradiol, several factors may inhibit the oxidation effectiveness, including desorption rate, soil-MnO₂ interactions, and soil-released metals and reductants. CMC-stabilized MnO₂ nanoparticles hold the potential for facilitating in situ oxidative degradation of various emerging contaminants in soil and groundwater. PMID:25543239

  1. Daily Manganese Intake Status and Its Relationship with Oxidative Stress Biomarkers under Different Body Mass Index Categories in Korean Adults

    PubMed Central

    Bu, So-Young

    2012-01-01

    Manganese (Mn) is an essential micronutrient for human and plays an important role as a cofactor for several enzymes involving fatty acid synthesis, hepatic gluconeogenesis, and oxidative stresses. Also, Mn intake status has been reported to have beneficial effects in reversing metabolic dysfunction including obesity and nonalcoholic steatosis which is linked to mitochondrial dysfunction and oxidative stresses, however, information on dietary Mn intake in Koreans are limited. Hence we investigated the relationship between dietary Mn intake and antioxidant defense factors in healthy and obese subjects. Total of 333 healthy subjects were recruited in the study and were assigned to one of three study groups: a normal group (18.5-22.9), a overweight group (23-24.9), and a obesity group (>25) according to their body mass index (BMI). We assessed Mn intakes (24-hr recall method) and several indicators for antioxidative defenses such as glutathione (GSH), glutathione peroxidase (GPx) and urinary malonaldehyde (MDA). Results showed that body weight and blood pressure of study subjects were increased in dependent of their BMI (p < 0.01). However dietary Mn intakes and oxidative stress biomarkers (GSH, GPx, and MDA) were not significantly different by groups defined by BMI. In correlation analysis adjusting for age, sex and energy intake, dietary Mn intake of the subjects in different BMI categories were not significantly correlated with GSH, GPx, MDA and showed a weak or no association with these oxidative stress markers. In conclusion dietary Mn intake at least in this study has a little or no influence on markers of oxidative status in both healthy and obese subjects. PMID:23431039

  2. Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration.

    PubMed

    Deng, Yu; Jiao, Congcong; Mi, Chao; Xu, Bin; Li, Yuehui; Wang, Fei; Liu, Wei; Xu, Zhaofa

    2015-02-01

    Excessive manganese (Mn) induces oxidative stress and dopaminergic neurodegeneration. However, the relationship between them during Mn neurotoxicity has not been clarified. The purpose of this study was to investigate the probable role of melatonin (MLT) against Mn-induced motor dysfunction and neuronal loss as a result of antagonizing oxidative stress and dopaminergic neurodegeneration. Mice were randomly divided into five groups as follows: control, MnCl2, low MLT + MnCl2, median MLT + MnCl2, and high MLT + MnCl2. Administration of MnCl2 (50 mg/kg) for 2 weeks significantly induced hypokinesis, dopaminergic neurons degeneration and loss, neuronal ultrastructural damage, and apoptosis in the substantia nigra and the striatum. These conditions were caused in part by the overproduction of reactive oxygen species, malondialdehyde accumulation, and dysfunction of the nonenzymatic (GSH) and enzymatic (GSH-Px, superoxide dismutase, quinone oxidoreductase 1, glutathione S-transferase, and glutathione reductase) antioxidative defense systems. Mn-induced neuron degeneration, astrocytes, and microglia activation contribute to the changes of oxidative stress markers. Dopamine (DA) depletion and downregulation of DA transporter and receptors were also found after Mn administration, this might also trigger motor dysfunction and neurons loss. Pretreatment with MLT prevented Mn-induced oxidative stress and dopaminergic neurodegeneration and inhibited the interaction between them. As a result, pretreatment with MLT significantly alleviated Mn-induced motor dysfunction and neuronal loss. In conclusion, Mn treatment resulted in motor dysfunction and neuronal loss, possibly involving an interaction between oxidative stress and dopaminergic neurodegeneration in the substantia nigra and the striatum. Pretreatment with MLT attenuated Mn-induced neurotoxicity by means of its antioxidant properties and promotion of the DA system. PMID:24969583

  3. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells.

    PubMed

    Chen, Yu; Yin, Qi; Ji, Xiufeng; Zhang, Shengjian; Chen, Hangrong; Zheng, Yuanyi; Sun, Yang; Qu, Haiyun; Wang, Zheng; Li, Yaping; Wang, Xia; Zhang, Kun; Zhang, Linlin; Shi, Jianlin

    2012-10-01

    Nano-biotechnology has been introduced into cancer theranostics by engineering a new generation of highly versatile hybrid mesoporous composite nanocapsules (HMCNs) for manganese-based pH-responsive dynamic T(1)-weighted magnetic resonance imaging (MRI) to efficiently respond and detect the tumor acidic microenvironment, which was further integrated with ultrasonographic function based on the intrinsic unique hollow nanostructures of HMCNs for potentially in vitro and in vivo dual-modality cancer imaging. The manganese oxide-based multifunctionalization of hollow mesoporous silica nanoparticles was achieved by an in situ redox reaction using mesopores as the nanoreactors. Due to the dissolution nature of manganese oxide nanoparticles under weak acidic conditions, the relaxation rate r(1) of manganese-based mesoporous MRI-T(1) contrast agents (CAs) could reach 8.81 mM(-1)s(-1), which is a 11-fold magnitude increase compared to the neutral condition, and is almost two times higher than commercial Gd(III)-based complex agents. This is also the highest r(1) value ever reported for manganese oxide nanoparticles-based MRI-T(1) CAs. In addition, the hollow interiors and thin mesoporous silica shells endow HMCNs with the functions of CAs for efficient in vitro and in vivo ultrasonography under both harmonic- and B-modes. Importantly, the well-defined mesopores and large hollow interiors of HMCNs could encapsulate and deliver anticancer agents (doxorubicin) intracellularly to circumvent the multidrug resistance (MDR) of cancer cells and restore the anti-proliferative effect of drugs by nanoparticle-mediated endocytosis process, intracellular drug release and P-gp inhibition/ATP depletion in cancer cells. PMID:22789722

  4. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    NASA Astrophysics Data System (ADS)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  5. An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.

    PubMed

    Ereath Beeran, Ansar; Nazeer, Shaiju S; Fernandez, Francis Boniface; Muvvala, Krishna Surendra; Wunderlich, Wilfried; Anil, Sukumaran; Vellappally, Sajith; Ramachandra Rao, M S; John, Annie; Jayasree, Ramapurath S; Varma, P R Harikrishna

    2015-02-14

    Despite the success in the use of superparamagnetic iron oxide nanoparticles (SPION) for various scientific applications, its potential in biomedical fields has not been exploited to its full potential. In this context, an in situ substitution of Mn(2+) was performed in SPION and a series of ferrite particles, MnxFe1-xFe2O4 with a varying molar ratio of Mn(2+) : Fe(2+) where 'x' varies from 0-0.75. The ferrite particles obtained were further studied in MRI contrast applications and showed appreciable enhancement in their MRI contrast properties. Manganese substituted ferrite nanocrystals (MnIOs) were synthesized using a novel, one-step aqueous co-precipitation method based on the use of a combination of sodium hydroxide and trisodium citrate (TSC). This approach yielded the formation of highly crystalline, superparamagnetic MnIOs with good control over their size and bivalent Mn ion crystal substitution. The presence of a TSC hydrophilic layer on the surface facilitated easy dispersion of the materials in an aqueous media. Primary characterizations such as structural, chemical and magnetic properties demonstrated the successful formation of manganese substituted ferrite. More significantly, the MRI relaxivity of the MnIOs improved fourfold when compared to SPION crystals imparting high potential for use as an MRI contrast agent. Further, the cytocompatibility and blood compatibility evaluations demonstrated excellent cell morphological integrity even at high concentrations of nanoparticles supporting the non-toxic nature of nanoparticles. These results open new horizons for the design of biocompatible water dispersible ferrite nanoparticles with good relaxivity properties via a versatile and easily scalable co-precipitation route. PMID:25586703

  6. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-05-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  7. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    SciTech Connect

    Li, Junnan E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun; Gong, Rongzhou E-mail: rzhgong@hust.edu.cn; Feng, Zekun; Chen, Yajie; Harris, V. G.

    2015-05-07

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that the Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.

  8. Single pot synthesis of pyridine-N-oxide based polymeric complexes of cadmium and manganese: Crystal structure and luminescence property

    NASA Astrophysics Data System (ADS)

    Mondal, Sandip; Guha, Averi; Suresh, Eringathodi; Jana, Atish Dipankar; Banerjee, Arpita

    2012-12-01

    Two new polymeric complexes of cadmium(II) and manganese(II) with Pyridine-N-oxide (pyo) mediated by thiocyanate and dicyanamide (dca) anions have been synthesized and characterized by X-ray single crystal structure analysis. The structural analyses reveal that complexes [Cd(pyo)2(SCN)2]n (1) and [Mn(pyo)2(dca)2]n (2) [where, pyo = pyridine-N-oxide; dca = dicyanamide] are 2D coordination polymers. In complex 1 hexa-coordinated Cd(II) centers posses distorted octahedral coordination environments. Each Cd(II) is coordinated by four SCN- in end to end fashion forming a zigzag chain and two pyo monodentate ligands bridge two adjacent Cd(II) centers leading to a two-dimensional sheet structure. In complex 2 hexa-coordinated Mn(II) centers posses octahedral coordination environments. The coordination polymer constitute a 2D polymeric sheet and has a (4, 4) grid network architecture Successive stacking of coordination polymeric sheets are enforced by inter layer OH⋯O and OH⋯N hydrogen bonding. The luminescence properties of these two polynuclear complexes in solid state were studied and complex 1 exhibits higher luminescence intensity than 2.

  9. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    PubMed

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications. PMID:26918615

  10. Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress.

    PubMed

    Jia, Haihong; Sun, Rujiang; Shi, Weina; Yan, Yan; Li, Han; Guo, Xingqi; Xu, Baohua

    2014-01-01

    Mitochondrial manganese superoxide dismutase (mMnSOD) plays a vital role in the defense against reactive oxygen species (ROS) in eukaryotic mitochondria. In this study, we isolated and identified a mMnSOD gene from Apis cerana cerana, which we named AccSOD2. Several putative transcription factor-binding sites were identified within the 5'-flanking region of AccSOD2, which suggests that AccSOD2 may be involved in organismal development and/or environmental stress responses. Quantitative real-time PCR analysis showed that AccSOD2 is highly expressed in larva and pupae during different developmental stages. In addition, the expression of AccSOD2 could be induced by cold (4 °C), heat (42 °C), H2O2, ultraviolet light (UV), HgCl2, and pesticide treatment. Using a disc diffusion assay, we provide evidence that recombinant AccSOD2 protein can play a functional role in protecting cells from oxidative stress. Finally, the in vivo activities of AccSOD2 were measured under a variety of stressful conditions. Taken together, our results indicate that AccSOD2 plays an important role in cellular stress responses and anti-oxidative processes and that it may be of critical importance to honeybee survival. PMID:24269344

  11. Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI).

    PubMed

    Pan, Ning; Li, Long; Ding, Jie; Li, Shengke; Wang, Ruibing; Jin, Yongdong; Wang, Xiangke; Xia, Chuanqin

    2016-05-15

    Manganese dioxide decorated graphene oxide (GOM) was prepared via fixation of crystallographic MnO2 (α, γ) on the surface of graphene oxide (GO) and was explored as an adsorbent material for simultaneous removal of thorium/uranium ions from aqueous solutions. In single component systems (Th(IV) or U(VI)), the α-GOM2 (the weight ratio of GO/α-MnO2 of 2) exhibited higher maximum adsorption capacities toward both Th(IV) (497.5mg/g) and U(VI) (185.2mg/g) than those of GO. In the binary component system (Th(IV)/U(VI)), the saturated adsorption capacity of Th(IV) (408.8mg/g)/U(VI) (66.8mg/g) on α-GOM2 was also higher than those on GO. Based on the analysis of various data, it was proposed that the adsorption process may involve four types of molecular interactions including coordination, electrostatic interaction, cation-pi interaction, and Lewis acid-base interaction between Th(IV)/U(VI) and α-GOM2. Finally, the Th(IV)/U(VI) ions on α-GOM2 can be separated by a two-stage desorption process with Na2CO3/EDTA. Those results displayed that the α-GOM2 may be utilized as an potential adsorbent for removing and separating Th(IV)/U(VI) ions from aqueous solutions. PMID:26878706

  12. One-pot synthesis of ultrathin manganese dioxide nanosheets and their efficient oxidative degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Sun, Hang; Xu, Kongliang; Huang, Majia; Shang, Yinxing; She, Ping; Yin, Shengyan; Liu, Zhenning

    2015-12-01

    Ultrathin manganese dioxide (MnO2) nanosheets have been synthesized in aqueous solution by a facile one-step method. MnO2 nanosheets show a typical 2D lamellar morphology, possessing an average lateral dimension of 100-300 nm, and a typical thickness of 3.1-7.5 nm, corresponding to 4-10 layers of δ-MnO2. The resultant MnO2 nanosheets have been demonstrated to possess superior oxidative degradation ability to Rhodamine B (RhB) by investigating the decomposition rate and comparing the results with the commercial MnO2 powder. Typically, ultrathin MnO2 nanosheets have shown a high oxidation degradation performance of RhB solution (97.9% removed within 30 min) in acid solution (pH 2.0), which can be attributed to special lamellar morphology and the large surface area of the layered MnO2 nanosheets. It is believed that such a convenient approach for the cost-effective and environmentally friendly synthesis of ultrathin MnO2 nanosheets holds great promise for the degradation of complex and various dye wastewater in practical application.

  13. One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Park, Gle; Bartolome, Leian; Lee, Kyoung G.; Lee, Seok Jae; Kim, Do Hyun; Park, Tae Jung

    2012-06-01

    Ultrasound-assisted synthesis of a graphene oxide (GO)-manganese oxide nanocomposite (GO-Mn3O4) was conducted without further modification of GO or employing secondary materials. With the GO nanoplate as a support, potassium permanganate oxidizes the carbon atoms in the GO support and gets reduced to Mn3O4. An intensive ultrasound method could reduce the number of reaction steps and temperature, enhance the reaction rate and furthermore achieve a Mn3O4 phase. The composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The coverage and crystallinity of Mn3O4 were controlled by changing the ratio of permanganate to GO dispersion. The synthesized nanocomposite was used as a catalyst for poly(ethylene terephthalate) (PET) depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET). The highest monomer yield of 96.4% was obtained with the nanocomposite containing the lowest amount of Mn3O4, while PET glycolysis with the Mn3O4 without GO yielded 82.7% BHET.Ultrasound-assisted synthesis of a graphene oxide (GO)-manganese oxide nanocomposite (GO-Mn3O4) was conducted without further modification of GO or employing secondary materials. With the GO nanoplate as a support, potassium permanganate oxidizes the carbon atoms in the GO support and gets reduced to Mn3O4. An intensive ultrasound method could reduce the number of reaction steps and temperature, enhance the reaction rate and furthermore achieve a Mn3O4 phase. The composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The coverage and crystallinity of Mn3O4 were controlled by changing the ratio of permanganate to GO dispersion. The synthesized nanocomposite was used as a catalyst for poly(ethylene terephthalate) (PET) depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET). The highest monomer yield of 96.4% was obtained with the nanocomposite containing the lowest amount of Mn3O4, while PET glycolysis with the Mn3O4 without GO yielded 82.7% BHET. Electronic supplementary information (ESI) available: XPS spectra of GO-Mn3O4 A and B, EDS mapping images of GO-Mn3O4 C, AFM analysis and TEM image of Mn3O4. See DOI: 10.1039/c2nr30168g

  14. Effects of Cobalt on Manganese Oxidation by Pseudomonas putida MnB1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Bargar, J.; Sposito, G.

    2005-12-01

    The oxidation of Mn(II) in the environment is thought to occur predominantly through biologically mediated pathways. During the stationary phase of growth, the well-characterized freshwater and soil bacterium Pseudomonas putida MnB1 oxidizes soluble Mn(II) to a poorly crystalline layer type Mn(IV) oxide. These Mn oxide particles (2 - 5 nm thickness) are deposited in a matrix of extracellular polymeric substances (EPS) surrounding the cell, creating a multi-component system distinct from commonly studied synthetic Mn oxides. Accurate characterization of the reactivity of these biomineral assemblages is essential to understanding trace metal biogeochemistry in natural waters and sediments. Moreover, these biogenic oxides may potentially be used for the remediation of surface and ground waters impacted by mining, industrial pollution, and other anthropogenic activities. In this study, we consider the interactions between Co, P. putida MnB1, and its biogenic Mn oxide. Cobalt is a redox-active transition metal which exists in the environment as Co(II) and Co(III). While Co is not generally found in the environment at toxic concentrations, it may be released as a byproduct of mining activities (e.g. levels of up to 20 μM are found in Pinal Creek, AZ, a stream affected by copper mining). In addition, the radionuclide 60Co, formed by neutron activation in nuclear reactors, is of concern at Department of Energy sites, such as that at Hanford, and has several industrial applications, including radiotherapy. We address the following questions: Do high levels of Co inhibit enzymatic processes such as Mn(II) oxidation? Can the multicopper oxidase enzyme involved in Mn(II) oxidation facilitate Co(II) oxidation? Lastly, does the organic matter surrounding the oxides affect Co or Mn oxide reactivity? These issues were approached via wet chemical analysis, synchrotron radiation X-ray diffraction (SR-XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy. In the presence of both Mn (1 mM) and Co (10-40 μM), Mn oxidation proceeded as it does in the absence of Co; SR-XRD data did not indicate the formation of a separate Co oxide phase, and EXAFS data showed that Co is incorporated into the biooxide structure as Co(III). In the absence of Mn, Co oxide formation was not observed; EXAFS data showed that Co remains as Co(II) and is complexed to cells or EPS. While it cannot be ascertained that Co(II) oxidation and incorporation into the bioxides is completely abiotic, Co(II) is not oxidized by P. putida MnB1 in the absence of Mn.

  15. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    PubMed Central

    Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050

  16. Oxidation Of Manganese At Kimberley, Gale Crater: More Free Oxygen In Mars' Past?

    NASA Technical Reports Server (NTRS)

    Lanza, N. L.; Wiens, R. C.; Arvidson, R. E.; Clark, B. C.; Fischer, W. W.; Gellert, R.; Grotzinger, J. P.; Hurowitz, J. A.; McLennan, S. M.; Morris, R. V.; Rice, M. S.; Bell, J. F., III; Berger, J. A.; Blaney, D. L.; Bridges, N. T.; Calef, F., III; Campbell, J. L.; Clegg, S. M.; Cousin, A.; Edgett, K. S.; Fabre, C.; Fisk, M. R.; Forni, O.; Frydenvang, J.; Ming, D. W.

    2015-01-01

    High Mn concentrations provide unique indicators of water-rich environments and their redox state. Very high-potential oxidants are required to oxidize Mn to insoluble, high-valence oxides that can precipitate and concentrate Mn in rocks and sediments; these redox potentials are much higher than those needed to oxidize Fe or S. Consequently, Mn-rich rocks on Earth closely track the rise of atmospheric oxygen. Given the association between Mn-rich rocks and the redox state of surface environments, observations of anomalous Mn enrichments on Mars raise similar questions about redox history, solubility and aqueous transport, and availability as a metabolic substrate. Our observations suggest that at least some of the high Mn present in Gale crater occurs in the form of Mn-oxides filling veins that crosscut sand-stones, requiring post-depositional precipitation as highly oxidizing fluids moved through the fractured strata after their deposition and lithification.

  17. PerR-Regulated Manganese Ion Uptake Contributes to Oxidative Stress Defense in an Oral Streptococcus

    PubMed Central

    Wang, Xinhui; Dong, Xiuzhu

    2014-01-01

    Metal homeostasis plays a critical role in antioxidative stress. Streptococcus oligofermentans, an oral commensal facultative anaerobe lacking catalase activity, produces and tolerates abundant H2O2, whereas Dpr (an Fe2+-chelating protein)-dependent H2O2 protection does not confer such high tolerance. Here, we report that inactivation of perR, a peroxide-responsive repressor that regulates zinc and iron homeostasis in Gram-positive bacteria, increased the survival of H2O2-pulsed S. oligofermentans 32-fold and elevated cellular manganese 4.5-fold. perR complementation recovered the wild-type phenotype. When grown in 0.1 to 0.25 mM MnCl2, S. oligofermentans increased survival after H2O2 stress 2.5- to 23-fold, and even greater survival was found for the perR mutant, indicating that PerR is involved in Mn2+-mediated H2O2 resistance in S. oligofermentans. Mutation of mntA could not be obtained in brain heart infusion (BHI) broth (containing ∼0.4 μM Mn2+) unless it was supplemented with ≥2.5 μM MnCl2 and caused 82 to 95% reduction of the cellular Mn2+ level, while mntABC overexpression increased cellular Mn2+ 2.1- to 4.5-fold. Thus, MntABC was identified as a high-affinity Mn2+ transporter in S. oligofermentans. mntA mutation reduced the survival of H2O2-pulsed S. oligofermentans 5.7-fold, while mntABC overexpression enhanced H2O2-challenged survival 12-fold, indicating that MntABC-mediated Mn2+ uptake is pivotal to antioxidative stress in S. oligofermentans. perR mutation or H2O2 pulsing upregulated mntABC, while H2O2-induced upregulation diminished in the perR mutant. This suggests that perR represses mntABC expression but H2O2 can release the suppression. In conclusion, this work demonstrates that PerR regulates manganese homeostasis in S. oligofermentans, which is critical to H2O2 stress defenses and may be distributed across all oral streptococci lacking catalase. PMID:24487543

  18. Muti-component nanocomposite of nickel and manganese oxides with enhanced stability and catalytic performance for non-enzymatic glucose sensors.

    PubMed

    Wang, Dandan; Cai, Daoping; Wang, Chenxia; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2016-06-24

    A muti-component nanocomposite of nickel and manganese oxides with a uniformly dispersed microspherical structure has been fabricated by a hydrothermal synthesis method. The as-prepared nanocomposite has been employed as a sensing material for non-enzymatic glucose detection and shown excellent electrocatalytic activity, such as high sensitivities of 82.44 μA mM(-1) cm(-2) and 27.92 μA mM(-1) cm(-2) over the linear range of 0.1-1 mM and 1-4.5 mM, respectively, a low detection limit of 0.2 μM and a fast response time of <3 s. Moreover, satisfactory specificity and excellent stability have also been achieved. The results demonstrate that a muti-component nanocomposite of nickel and manganese oxides has great potential applications as glucose sensors. PMID:27181988

  19. Quartz ball value

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M.

    1979-01-01

    Quartz ball valve consisting of two quartz joints sealed back-to-back and seated in quartz sockets perform at temperatures of up to 1,250 C and in corrosive chemical environments without contamination or degradation.

  20. Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Babakhani, Banafsheh

    The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the nucleation and growth mechanisms of Mn oxide electrodes, the effects of supersaturation ratio on the morphology and crystal structure of electrodeposited Mn oxide were studied. By changing deposition parameters, including deposition current density, electrolyte composition, pH and temperature, a series of nanocrystalline Mn oxide electrodes with various morphologies (continuous coatings, rod-like structures, aggregated rods and thin sheets) and an antifluorite-type crystal structure was obtained. Mn oxide thin sheets showed instantaneous nucleation and single crystalline growth; rods had a mix of instantaneous/progressive nucleation and polycrystalline growth and continuous coatings formed by progressive nucleation and polycrystalline growth. Electrochemical analysis revealed the best capacitance behaviour obtained for Mn oxide thin sheets followed by Mn oxide rods, with dimensions on the microscale, and then continuous coatings. The highest specific capacitance (˜230 Fg-1) and capacitance retention rates (˜88%) were obtained for Mn oxide thin sheets after 250 cycles in 0.5 M Na2 SO4 at 20 mVs-1.

  1. Silica-F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity

    NASA Astrophysics Data System (ADS)

    Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John

    2013-12-01

    To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c3nr04378a

  2. [Removal Kinetics and Mechanism of Aniline by Manganese-oxide-modified Diatomite].

    PubMed

    Xiao, Shao-dan; Liu, Lu; Jiang, Li-ying; Chen, Jian-meng

    2015-06-01

    A novel rapid green one-step method was developed for the preparation of manganese modified diatomite (Mn-D) by treating roasted diatomite with an acidic permanganate solution. The effects of calcination temperature and mass ratio of KMnO4 and diatomite (p) on aniline removal efficiency of Mn-D were investigated. The removal kinetics and mechanism of aniline by Mn-D were also discussed. The results showed that when the optimal calcination temperature was 450 degrees C, p was 1.6, and the loading amounts of δ-MnO2 was 0.82 g x g(-1), Mn-D had a great performance for aniline removal, and more than 80% of aniline was adsorbed within 10 minutes, accompanied with the release of Mn2+. In acidic conditions, the adsorption process on Mn-D followed pseudo-second-order and was mainly controlled by intra-particle diffusion. The best fitting of the experimental adsorption data was given by the Freundlich equation. Gas chromatograph-mass spectrometer was applied to identify the reaction intermediates at different times, and azobenzene was found to be the main reaction intermediate in the degradation system. Based on the above observations, the possible degradation pathway of aniline by Mn-D was proposed. PMID:26387323

  3. Oxidation state of manganese in zinc pyrophosphate: Probed by luminescence and EPR studies

    SciTech Connect

    Gupta, Santosh K. Kadam, R. M. Natarajan, V. Godbole, S. V.

    2014-04-24

    Zn{sub 2}P{sub 2}O{sub 7}: Mn was synthesized by wet chemical route and characterized by X-ray diffraction (XRD), photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques. Photoluminescence spectrum shows two bands, one at 500 nm (green emission), which is attributed to the {sup 4}T{sub 1}({sup 4}G)-{sup 6}A{sub 1}({sup 6}S) transition of Mn{sup 2+} and other centered at 686 nm (red emission) is attributed to the electronic transition between {sup 2}E and {sup 4}A{sub 2} of Mn{sup 4+} accompanied with vibronic transitions. EPR spectroscopic studies also confirmed the presence of both Mn2+ and Mn4+ ions in zinc pyrophosphate with difference in the number of fine transitions and g values (Mn{sub 4+}, S=3/2, three fine transitions and g < 2.00; Mn{sup 2+} S=5/2, five fine transitions and g=2.00).Mn{sup 2+} is attributed to presence of Mn at 6-ccordinated Zn{sup 2+} site whereas Mn{sup 4+} is due to presence substitution of Mn{sup 4+} at Zn{sup 2+} site thereby invoking charge compensation by presence of interstitial oxygen ions around Mn{sup 4+} ion or due to substitution of manganese at distorted 5-coordinated zinc site.

  4. Manganese intoxication.

    PubMed

    Hine, C H; Pasi, A

    1975-08-01

    We have reported two cases of chronic manganese poisoning. Case 1 followed exposure to manganese fumes in cutting and burning manganese steel. Case 2 resulted from exposure to dusts of manganese dioxide, an ingredient used in glazing of ceramics. There were initial difficulties in establishing the correct diagnosis. Prominent clinical features were severe and persistent chronic depressive psychosis (Case 1), transient acute brain syndrome (Case 2) and the presence of various extrapyramidal symptoms in both cases. Manganese intoxication has not previously been reported as occurring in California. With increasing use of the metal, the disease should be considered in the differential diagnosis of neurologic and psychiatric disease. Our observations were made in the period 1964 through 1968. Recently the prognosis of victims of manganese poisoning has been improved dramatically by the introduction of levodopa as a therapeutic agent. PMID:1179714

  5. The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1

    SciTech Connect

    Vrind, J.P.M. de; Brouwers, G.J.; Corstijens, P.L.A.M.; Dulk, J. den; Vrind-de Jong, E.W. de

    1998-10-01

    A Pseudomonas putida strain, strain GB-1, oxidizes Mn{sup 2+} to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn{sup 2+} oxidation and/or secretion of the Mn{sup 2+}-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn{sup 2+} oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn{sup 2+}-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn{sup 2+} oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed.

  6. Thermal chemistry of Mn{sub 2}(CO){sub 10} during deposition of thin manganese films on silicon oxide and on copper surfaces

    SciTech Connect

    Qin Xiangdong; Sun Huaxing; Zaera, Francisco

    2012-01-15

    The surface chemistry of dimanganese decacarbonyl on the native oxide of Si(100) wafers was characterized with the aid of x-ray photoelectron spectroscopy. Initial experiments in a small stainless-steel reactor identified a narrow range of temperatures, between approximately 445 and 465 K, in which the deposition of manganese could be achieved in a self-limiting fashion, as is desirable for atomic layer deposition. Deposition at higher temperatures leads to multilayer growth, but the extent of this Mn deposition reverses at even higher temperatures (about 625 K), and also ifhydrogen is added to the reaction mixture. Extensive decarbonylation takes place below room temperature, but limited C-O bond dissociation and carbon deposition are still seen after high exposures at 625 K. The films deposited at low ({approx}450 K) temperatures are mostly in the form of MnO, but at 625 K that converts to a manganese silicate, and upon higher doses a manganese silicide forms at the SiO{sub 2}/Si(100) interface as well. No metallic manganese could be deposited with this precursor on either silicon dioxide or copper surfaces.

  7. Manganese oxidation in pH and O2 microenvironments produced by phytoplankton

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Aguilar, Carmen; Nealson, Kenneth H.

    1988-01-01

    This paper reports on the oxidation of Mn(II) by pure cultures of Chlorella. It is shown that these cultures establish strong microgradients of pH and O2 concentration due to their photosynthetic activity, and it is demonstrated that Mn oxidation in the pelagic zone of Oneida Lake, New York, is limited to a microzone of high pH and O2 associated with the near-surface aggregates of phytoplankton cells. The data suggest that visible light is important in catalyzing Mn oxidation by driving the photosynthetic removal of CO2 with concomitant increases in pH.

  8. Effects of NOM on oxidative reactivity of manganese dioxide in binary oxide mixtures with goethite or hematite.

    PubMed

    Zhang, Huichun; Taujale, Saru; Huang, Jianzhi; Lee, Gang-Juan

    2015-03-10

    MnO2 typically coexists with iron oxides as either discrete particles or coatings in soils and sediments. This work examines the effect of Aldrich humic acid (AHA), alginate, and pyromellitic acid (PA) as representative natural organic matter (NOM) analogues on the oxidative reactivity of MnO2, as quantified by pseudo-first-order rate constants of triclosan oxidation, in mixtures with goethite or hematite. Adsorption studies showed that there was low adsorption of the NOMs by MnO2, but high (AHA and alginate) to low (PA) adsorption by the iron oxides. Based on the ATR-FTIR spectra obtained for the adsorbed PA on goethite or goethite + MnO2, the adsorption of PA occurred mainly through formation of outer-sphere complexes. The Fe oxides by themselves inhibited MnO2 reactivity through intensive heteroaggregation between the positively charged Fe oxides and the negatively charged MnO2; the low solubility of the iron oxides limited surface complexation of soluble Fe(3+) with MnO2. In ternary mixtures of MnO2, Fe oxides, and NOM analogues, the reactivity of MnO2 varied from inhibited to promoted as compared with that in the respective MnO2 + NOM binary mixtures. The dominant interaction mechanisms include an enhanced extent of homoaggregation within the Fe oxides due to formation of oppositely charged patches within the Fe oxides but an inhibited extent of heteroaggregation between the Fe oxide and MnO2 at [AHA] < 2-4 mg-C/L or [alginate/PA] < 5-10 mg/L, and an inhibited extent of heteroaggregation due to the largely negatively charged surfaces for all oxides at [AHA] > 4 mg-C/L or [alginate/PA] > 10 mg/L. PMID:25652230

  9. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    SciTech Connect

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-10-24

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redox conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.

  10. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    NASA Astrophysics Data System (ADS)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-08-01

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence (μ-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redox conditions in the cave stream. μ-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.

  11. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions.

    PubMed

    Gorojod, R M; Alaimo, A; Porte Alcon, S; Pomilio, C; Saravia, F; Kotler, M L

    2015-10-01

    Manganese (Mn) overexposure is frequently associated with the development of a neurodegenerative disorder known as Manganism. The Mn-mediated generation of reactive oxygen species (ROS) promotes cellular damage, finally leading to apoptotic cell death in rat astrocytoma C6 cells. In this scenario, the autophagic pathway could play an important role in preventing cytotoxicity. In the present study, we found that Mn induced an increase in the amount and total volume of acidic vesicular organelles (AVOs), a process usually related to the activation of the autophagic pathway. Particularly, the generation of enlarged AVOs was a ROS- dependent event. In this report we demonstrated for the first time that Mn induces autophagy in glial cells. This conclusion emerged from the results obtained employing a battery of autophagy markers: a) the increase in LC3-II expression levels, b) the formation of autophagic vesicles labeled with monodansylcadaverine (MDC) or LC3 and, c) the increase in Beclin 1/ Bcl-2 and Beclin 1/ Bcl-X(L) ratio. Autophagy inhibition employing 3-MA and mAtg5(K130R) resulted in decreased cell viability indicating that this event plays a protective role in Mn- induced cell death. In addition, mitophagy was demonstrated by an increase in LC3 and TOM-20 colocalization. On the other hand, we proposed the occurrence of lysosomal membrane permeabilization (LMP) based in the fact that cathepsins B and D activities are essential for cell death. Both cathepsin B inhibitor (Ca-074 Me) or cathepsin D inhibitor (Pepstatin A) completely prevented Mn- induced cytotoxicity. In addition, low dose of Bafilomycin A1 showed a similar effect, a finding that adds evidence about the lysosomal role in Mn cytotoxicity. Finally, in vivo experiments demonstrated that Mn induces injury and alters LC3 expression levels in rat striatal astrocytes. In summary, our results demonstrated that autophagy is activated to counteract the harmful effect caused by Mn. These data is valuable to be considered in future research concerning Manganism therapies. PMID:26163003

  12. Manganese Oxide-Coated Carbon Nanotubes As Dual-Modality Lymph Mapping Agents for Photothermal Therapy of Tumor Metastasis.

    PubMed

    Wang, Sheng; Zhang, Qin; Yang, Peng; Yu, Xiangrong; Huang, Li-Yong; Shen, Shun; Cai, Sanjun

    2016-02-17

    Lymph node (LN) status is a major indicator of stage and survival of lung cancer patients. LN dissection is a primary option for lung cancer LN metastasis; however, this strategy elicits adverse effects and great trauma. Therefore, developing a minimally invasive technique to cure LN metastasis of lung cancer is desired. In this study, multiwalled carbon nanotubes (MWNTs) coated with manganese oxide (MnO) and polyethylene glycol (PEG) (namely MWNTs-MnO-PEG) was employed as a lymphatic theranostic agent to diagnose and treat metastatic LNs. After single local injection and lymph drainage were performed, regional LNs were clearly mapped by T1-weighted magnetic resonance (MR) of MnO and dark dye imaging of MWNTs. Meanwhile, metastatic LNs could be simultaneously ablated by near-infrared (NIR) irradiation under the guidance of dual-modality mapping. The excellent result was obtained in mice bearing LNs metastasis models, showing that MWNTs-MnO-PEG as a multifunctional theranostic agent was competent for dual-modality mapping guided photothermal therapy of metastatic LNs. PMID:26653008

  13. In Situ XAS and XRD Studies of Substituted Spinel Lithium Manganese Oxides in the 4-5 V Region

    SciTech Connect

    McBreen, J.; Mukerjee, S.; Yang, X. Q.; Sun, X.; Ein-Eli, Y.

    1998-11-01

    Partial substitution of Mn in lithium manganese oxide spinel materials by Cu and Ni greatly affects the electrochemistry and the phase behavior of the cathode. Substitution with either metal or with a combination of both shortens the 4.2 V plateau and results in higher voltage plateaus. In situ x-ray absorption (XAS) studies indicate that the higher voltage plateaus are related to redox processes on the substituents. In situ x-ray diffraction (XRD) on LiCu{sub 0.5}Mn{sub 1.5}O{sub 4} shows single phase behavior during the charge and discharge process. Three phases are observed for LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and two phases are observed in the case of LiNi{sub 0.25}Cu{sub 0.25}Mn{sub 1.5}O{sub 4}. The electrolyte stability is dependent on both the operating voltage and the cathode composition. Even though Ni substituted materials have lower voltages, the electrolyte is more stable in cells with the Cu substituted materials.

  14. One-pot synthesis of co-substituted manganese oxide nanosheets and physical properties of lamellar aggregates

    SciTech Connect

    Kai, Kazuya; Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 ; Cuisinier, Marine; Institut des Materiaux Jean Rouxel , CNRS UMR 6502, Universite de Nantes, 2 Rue de la Houssiniere, BP32229, 44322 Nantes Cedex 3 ; Yoshida, Yukihiro; Saito, Gunzi; Research Institute, Meijo University, Shiogamaguchi 1-501 Tempaku-ku, Nagoya 468-8502 ; Kobayashi, Yoji; Kageyama, Hiroshi; Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Solid solution nanosheets, (Mn{sub 1−x}Co{sub x})O{sub 2}, synthesized via facile one-pot process. ► The structural characterization of nanosheets revealing a single (Mn,Co)O{sub 2} layer and the solubility limit as x ∼ 0.20. ► The invariant charge density of the layer upon Co substitution. ► Systematic dependence of magnetic and optical properties of the lamellar aggregates. -- Abstract: Co-substituted manganese oxide nanosheets, (Mn{sub 1−x}Co{sub x})O{sub 2} have been synthesized in the form of a colloidal suspension via a simple one-pot method. Substitution effects on the structural, optical absorption, and magnetic properties are investigated for the nanosheets and their lamellar aggregates. The composition of the (Mn{sub 1−x}Co{sub x})O{sub 2} nanosheets can be controlled continuously by adjusting the molar ratio of the starting materials. The solubility limit is x ∼ 0.20 based on the cell volume. In the 0.00 ≤ x ≤ 0.20 range, the band gap energy, magnetic moment, and Weiss temperature change systematically with x. The charge density of the (Mn,Co)O{sub 2} layer is independent of x (i.e., [(Mn,Co)O{sub 2}]{sup 0.2−}) and the cobalt ions are trivalent in low-spin state.

  15. Removal of arsenic from water using manganese (III) oxide: Adsorption of As(III) and As(V).

    PubMed

    Babaeivelni, Kamel; Khodadoust, Amid P

    2016-03-20

    Removal of arsenic from water was evaluated with manganese (III) oxide (Mn2O3) as adsorbent. Adsorption of As(III) and As(V) onto Mn2O3 was favorable according to the Langmuir and Freundlich adsorption equilibrium equations, while chemisorption of arsenic occurred according to the Dubinin-Radushkevich equation. Adsorption parameters from the Langmuir, Freundlich, and Temkin equations showed a greater adsorption and removal of As(III) than As(V) by Mn2O3. Maximum removal of As(III) and As(V) occurred at pH 3-9 and at pH 2, respectively, while removal of As(V) in the pH range of 6-9 was 93% (pH 6) to 61% (pH 9) of the maximum removal. Zeta potential measurements for Mn2O3 in As(III) was likely converted to As(V) solutions indicated that As(III) was likely converted to As(V) on the Mn2O3 surface at pH 3-9. Overall, the effective Mn2O3 sorbent rapidly removed As(III) and As(V) from water in the pH range of 6-9 for natural waters. PMID:26745439

  16. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Bing; Wang, Lidong; Wang, Yang; Yuan, Yinan; Miao, Qinghua; Yang, Ziyue; Fei, Weidong

    2016-03-01

    In this study, a new, effective strategy is reported for the fabrication of composites using manganese oxide (MnO2) grown in situ on three-dimensional (3D) graphene by the reverse microemulsion (water-in-oil) method. A uniform coating of nanoscale MnO2 layers can be observed on the internal surface of 3D graphene, which could benefit rapid ionic and electronic transport. The electrochemical performance of the MnO2/3D graphene composites is optimized by the control of the composite structure and mass loading of MnO2. The MnO2/3D graphene composite thus prepared exhibits a significantly high specific capacitance of 659.7 F g-1 at 0.3 A g-1 and an excellent retention life of 106% after 1000 cycles. The facile synthesis and excellent electrochemical performance of the MnO2/3D graphene composites indicate that the developed method demonstrates potential applications for the fabrication of novel electrode materials for use in energy storage devices.

  17. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. PMID:26547409

  18. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. PMID:26196715

  19. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1989-01-01

    The ability of Alteromonas putrefaciens to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory Fe(III) or Mn(IV) reduction was investigated. A. putrefaciens grew with hydrogen, formate, lactate, or pyruvate as the sole electron donor and Fe(III) as the sole electron acceptor. Lactate and pyruvate were oxidized to acetate, which was not metabolized further. With Fe(III) as the electron acceptor, A. putrefaciens had a high affinity for hydrogen and formate and metabolized hydrogen at partial pressures that were 25-fold lower than those of hydrogen that can be metabolized by pure cultures of sulfate reducers or methanogens. The electron donors for Fe(III) reduction also supported Mn(IV) reduction. The electron donors for Fe(III) and Mn(IV) reduction and the inability of A. putrefaciens to completely oxidize multicarbon substrates to carbon dioxide distinguish A. putrefaciens from GS-15, the only other organism that is known to obtain energy for growth by coupling the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). The ability of A. putrefaciens to reduce large quantities of Fe(III) and to grow in a defined medium distinguishes it from a Pseudomonas sp., which is the only other known hydrogen-oxidizing, Fe(III)-reducing microorganism. Furthermore, A. putrefaciens is the first organism that is known to grow with hydrogen as the electron donor and Mn(IV) as the electron acceptor and is the first organism that is known to couple the oxidation of formate to the reduction of Fe(III) or Mn(IV). Thus, A. putrefaciens provides a much needed microbial model for key reactions in the oxidation of sediment organic matter coupled to Fe(III) and Mn(IV) reduction.

  20. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    SciTech Connect

    Milatovic, Dejan; Gupta, Ramesh C.; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael; Pharmacology and the Kennedy Center for Research on Human Development, Nashville, TN

    2011-11-15

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p < 0.01) increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 {mu}M) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F{sub 2}-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 {mu}g/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F{sub 2}-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative processes. -- Research highlights: Black-Right-Pointing-Pointer Mn exposure leads to neurotoxicity in vitro and in vivo. Black-Right-Pointing-Pointer Antioxidants and anti-inflammatory agents attenuate Mn-induced oxidative injury. Black-Right-Pointing-Pointer These agents also protect the striatal neurons from dendritic atrophy and spine loss. Black-Right-Pointing-Pointer These prophylactic strategies may be effective against Mn neurotoxicity.

  1. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System.

    PubMed

    Sujith, P P; Mourya, B S; Krishnamurthi, S; Meena, R M; Loka Bharathi, P A

    2014-01-01

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral deposition. We also hypothesized that, the Mn-oxidizing microbes may respond reversibly to pulses of fresh organic carbon introduced into the water column by mobilizing the Mn in Mn-oxides. To test these two hypotheses, we enumerated the number of Mn-oxidizers and -reducers and carried out studies on the mobilization of Mn by microbial communities associated with basalt. In medium containing 100 μM Mn(2+), 10(3) colony forming units (CFU) were recovered with undetectable number of reducers on Mn-oxide amended medium, suggesting that the community was more oxidative. Experiments were then conducted with basalt fragments at 4±2 °C in the presence 'G(+)' and absence 'G(-)' of glucose (0.1%). Controls included set-ups, some of which were poisoned with 15 mM azide and the others of which were heat-killed. The mobilization of Mn in the presence of glucose was 1.76 μg g(-1) d(-1) and in the absence, it was 0.17 μg g(-1) d(-1) after 150 d. Mn mobilization with and without added glucose was 13 and 4 times greater than the corresponding azide treated controls. However, rates in 'G(+)' were 16 times and 'G(-)' 24 times more than the respective heat killed controls. The corresponding total counts in the presence of added glucose increased from 1.63×10(6) to 6.71×10(7) cells g(-1) and from 1.41×10(7) to 3.52×10(7) cells g(-1) in its absence. Thus, the addition of glucose as a proxy for organic carbon changed the community's response from Mn(II)-oxidizing to Mn(IV)-reducing activity. The results confirm the participation of Mn oxidizing bacteria in the mobilization of Mn. Identification of culturable bacteria by 16S rRNA gene analysis showed taxonomic affiliations to Bacillus, Exiguobacterium, Staphylococcus, Brevibacterium and Alcanivorax sp. PMID:24183631

  2. Relationship of manganese-iron oxides and associated heavy metals to grain size in stream sediments

    USGS Publications Warehouse

    Whitney, P.R.

    1975-01-01

    The distribution of ammonium citrate-leachable lead, zinc and cadmium among size fractions in stream sediments is strongly influenced by the presence of hydrous Mn-Fe oxides in the form of coatings on sediment grains. Distribution curves showing leachable metals as a function of particle size are given for eight samples from streams in New York State. These show certain features in common; in particular two concentrations of metals, one in the finest fractions, and a second peak in the coarse sand and gravel fraction. The latter can be explained as a result of the increasing prevalence and thickness of oxide coatings with increasing particle size, with the oxides serving as collectors for the heavy metals. The distribution of Zn and Cd in most of the samples closely parallels that of Mn; the distribution of Pb is less regular and appears to be related to Fe in some samples and Mn in others. The concentration of metals in the coarse fractions due to oxide coatings, combined with the common occurrence of oxide deposition in streams of glaciated regions, raises the possibility of using coarse materials for geochemical surveys and environmental heavy-metal studies. ?? 1975.

  3. YREE sorption on hydrous manganese oxide (MnOx) in 0.5 M NaCl

    NASA Astrophysics Data System (ADS)

    Marshall, K. S.; Schijf, J.

    2010-12-01

    Cerium is the only member of the yttrium and rare earth element (YREE) series that can be oxidized in natural waters from Ce(III) to less soluble Ce(IV), causing anomalous sorption behavior with respect to its strictly trivalent YREE neighbors. Sedimentary Ce anomaly records have been interpreted in terms of episodic shifts in the bottom water oxygenation of the paleo-ocean. However, Ce anomalies also form due to catalytic Ce oxidation on certain sorbent surfaces regardless of ambient redox conditions, thus creating a ‘preformed’ signal that may instead reflect variations in the composition of settling particles. We investigate YREE sorption in 0.5 M NaCl on mixtures of three major components of marine particulate matter: Fe and Mn oxides, and algal debris. Here we report our results for one pure endmember, hydrous manganese oxide (MnOx). Batch experiments with freshly prepared MnOx were conducted under nitrogen atmosphere, to prevent aerobic Ce oxidation and YREE complexation with carbonate, over a range of pH (4-8) at 25.0±0.1°C. After at least 6 hours of equilibration at each pH, solution samples were filtered to 0.22 μm and dissolved YREE concentrations analyzed by ICP-MS to determine their solid/solution distribution coefficient, K. Under the same experimental conditions, log K increases less steeply with pH for MnOx than for hydrous ferric oxide (HFO). This may result from the lower pHzpc of MnOx as well as its higher tendency than HFO to form bidentate edge-sharing YREE surface complexes, as determined by others using X-ray Absorption Fine Structure (XAFS) spectroscopy. A non-electrostatic surface complexation model is being developed to further elucidate these findings. Preferential Ce sorption, implying catalytic Ce oxidation at the mineral-water interface, was observed on MnOx but never on HFO or organic surfaces, in agreement with prior research. This may be related to the generally higher Gibbs free energy gain associated with oxidation reactions in which MnOx is the electron acceptor, although some large organic ligands, such as siderophores, have also been reported to catalyze Ce(III) oxidation. The enhanced Ce removal in anoxic 0.5 M NaCl solutions increases with pH from about 10- to 100-fold relative to the other YREEs, which show comparatively little fractionation among themselves. Sedimentary Ce anomalies are therefore unlikely to provide a reliable and lasting record of bottom water oxygenation when Mn oxides are an important constituent of settling particles and their interpretation as a proxy of paleo-redox conditions should be undertaken with appropriate caution.

  4. Surface complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite

    NASA Astrophysics Data System (ADS)

    Landry, Christopher J.; Koretsky, Carla M.; Lund, Tracy J.; Schaller, Melinda; Das, Soumya

    2009-07-01

    Co sorption was measured as a function of pH, ionic strength (0.001-0.1 M NaNO 3) and sorbate/sorbent ratio on pure quartz, HFO and kaolinite and on binary and ternary mixtures of the three solids. Sorption data measured for the pure solids were used to derive internally-consistent diffuse layer surface complexation model (DLM) stability constants for Co sorption. Co sorption on HFO could be adequately modeled over a broad range of ionic strengths and sorbate/sorbent ratios with a two variable-charge site model. Fits based on a single variable-charge site model were reasonable, but were improved by using ionic-strength dependent stability constants. A single variable-charge site model with an additional permanent ion exchange site produced the best fit to Co edges measured on kaolinite over a range of ionic strength and sorbate/sorbent ratios. These DLM fits were also improved by using ionic-strength dependent stability constants. The DLM approach could not adequately describe the slope of Co sorption edges on quartz. This study demonstrates that for accurate prediction of Co sorption over wide ranges of ionic strength and sorbate/sorbent ratio, the DLM may require ionic-strength dependent stability constants. DLM stability constants for Co sorption derived for the pure solids were used to predict sorption as a function of pH and solid concentration on binary and ternary mixtures of the three solids. Discrepancies between predictions and measurements were quantitatively similar to those observed for the pure mineral systems. Thus, a simple component additivity approach provides useful predictions of metal sorption in the mixed solid systems.

  5. Understanding the capacity fade mechanisms of spinel manganese oxide cathodes and improving their performance in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Won Chang

    Lithium ion batteries have been successful in portable electronics market due to their high energy density, adopting the layered LiCoO2 as the cathode material in commercial lithium ion cells. However, increasing interest in lithium ion batteries for electric vehicle and hybrid electric vehicle applications requires alternative cathode materials due to the high cost, toxicity, and limited power capability of the layered LiCoO2 cathode. In this regard, spinel LiMn2O4 has become appealing as manganese is inexpensive and environmentally benign, but LiMn2O 4 is plagued by severe capacity fade at elevated temperatures. This dissertation explores the factors that control and limit the electrochemical performance of spinel LiMn2O4 cathodes and focuses on improving the performance parameters such as the capacity, cyclability, and rate capability of various spinel cathodes derived from LiMn2O 4. From a systematic investigation of a number of cationic and anionic (fluorine) substituted spinel oxide compositions, the improvements in electrochemical properties and performances are found to be due to the reduced manganese dissolution and suppressed lattice parameter difference between the two cubic phases formed during the charge-discharge process. Investigations focused on fluorine substitution reveal that spinel LiMn 2-y-zLiyZnzO4-etaFeta oxyfluoride cathodes synthesized by solid-state reactions at 800°C employing ZnF2 as a raw material and spinel LiMn2-y-zLiy NizO4-etaFeta oxyfluoride cathodes synthesized by firing the cation-substituted LiMn2-y-zLiy NizO4 oxides with NH4HF2 at a moderate temperature of 450°C show superior cyclability, increased capacity, reduced Mn dissolution, and excellent storage performance compared to the corresponding oxide analogs and the conventional LiMn2O 4. Spinel-layered composite cathodes are found to exhibit better electrochemical performance with graphite anode when charged to 4.7 V in the first cycle followed by cycling at 4.3--3.5 V compared to the normal cycling at 4.3--3.5 V. The improved performance is explained to be due to the trapping of trace amounts of protons that may be present in the electrolyte within the layered oxide lattice during the first charge to 4.7 V and the consequent reduction in Mn dissolution. Electrochemical performances of 3 V spinel Li4Mn5O 12 cathodes are also improved by fluorine substitution due to the suppression of the disproportionation of Li4Mn5O12 during synthesis and the formation of the Li2MnO3 phase.

  6. Patterns of sheath elongation, cell proliferation, and manganese(II) oxidation in Leptothrix cholodnii.

    PubMed

    Takeda, Minoru; Kawasaki, Yuta; Umezu, Takuto; Shimura, Shoichi; Hasegawa, Makoto; Koizumi, Jun-ichi

    2012-08-01

    Leptothrix cholodnii is a Mn(II)-oxidizing and sheath-forming member of the class β-Proteobacteria. Its sheath is a microtube-like filament that contains a chain of cells. From a chemical perspective, the sheath can be described as a supermolecule composed of a cysteine-rich polymeric glycoconjugate, called thiopeptidoglycan. However, the mechanism that controls the increase in sheath length is unknown. In this study, we attempted to detect sheath elongation through microscopic examination by using conventional reagents. Selective fluorescent labeling of preexisting or newly formed regions of the sheath was accomplished using combinations of biotin-conjugated maleimide, propionate-conjugated maleimide, and a fluorescent antibiotin antibody. Epifluorescence microscopy indicated that the sheath elongates at the terminal regions. On the bases of this observation, we assumed that the newly secreted thiopeptidoglycan molecules are integrated into the preexisting sheath at its terminal ends. Successive phase-contrast microscopy revealed that all cells proliferate at nearly the same rate regardless of their positions within the sheath. Mn(II) oxidation in microcultures was also examined with respect to cultivation time. Results suggested that the deposition of Mn oxides is notable in the aged regions. The combined data reveal the spatiotemporal relationships among sheath elongation, cell proliferation, and Mn oxide deposition in L. cholodnii. PMID:22392226

  7. MOLECULAR-LEVEL PROCESS GOVERNING THE INTERACTION OF CONTAMINANTS WITH IRON AND MANGANESE OXIDES

    EPA Science Inventory

    Many of the inorganic and organic contaminants present in sediments at DOE sites can bealtered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on stru...

  8. Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine.

    PubMed

    Hu, Yichen; Chen, Xiao; Liu, Zhiqiang; Wang, Gejiao; Liao, Shuijiao

    2016-01-15

    Indigo carmine (IC) is one of the oldest, most important, and highly toxic dyes which is released from the effluents of many industries and results in serious pollution in water. In this study, the biogenic Mn oxides were activated by NaOH and then heated for 3 h at 350 °C to produce activated carbon doped with Mn oxide (Bio-MnOx-C), which were produced by culturing Mn (II)-oxidizing bacterial strain MnI7-9 in liquid A medium at 28 °C with 10 mmol/L MnCl2. Bio-MnOx-C was characterized by SEM, TEM, IR, XPS, XRD, etc. It contained C, O, and Mn which comprised Mn (IV) and Mn (III) valence states at a ratio of 3.81:1. It had poorly crystalline ε-MnO2 with a specific surface area of 130.94 m(2)/g. A total of 0.1 g Bio-MnOx-C could remove 45.95 g IC from 500 mg/L IC solution after 0.5 h contact time. IC removal by Bio-MnOx-C included a rapid oxidation reaction and the removal reaction followed second-order kinetic equation. These results confirmed that Bio-MnOx-C could be a potential material for wastewater remediation. PMID:26595178

  9. Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction.

    PubMed

    Seitz, Linsey C; Hersbach, Thomas J P; Nordlund, Dennis; Jaramillo, Thomas F

    2015-10-15

    Developing improved catalysts for the oxygen evolution reaction (OER) is key to the advancement of a number of renewable energy technologies, including solar fuels production and metal air batteries. In this study, we employ electrochemical methods and synchrotron techniques to systematically investigate interactions between metal oxides and noble metals that lead to enhanced OER catalysis for water oxidation. In particular, we synthesize porous MnOx films together with nanoparticles of Au, Pd, Pt, or Ag and observe significant improvement in activity for the combined catalysts. Soft X-ray absorption spectroscopy (XAS) shows that increased activity correlates with increased Mn oxidation states to 4+ under OER conditions compared to bare MnOx, which exhibits minimal OER current and remains in a 3+ oxidation state. Thickness studies of bare MnOx films and of MnOx films deposited on Au nanoparticles reveal trends suggesting that the enhancement in activity arises from interfacial sites between Au and MnOx. PMID:26722794

  10. Magnetic resonance evidence of manganese-graphene complexes in reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Panich, Alexander M.; Shames, Alexander I.; Aleksenskii, Aleksandr E.; Dideikin, Artur

    2012-03-01

    We report on EPR and NMR study of reduced graphene oxide (RGO) produced by the Hummers method. We show that this RGO sample reveals isolated Mn2+ ions, which originate from potassium permanganate used in the process of the sample preparation. These ions form paramagnetic charge-transfer complexes with the graphene planes and contribute to the 13C spin-lattice relaxation.

  11. ROLE OF IRON AND MANGANESE OXIDES IN BIOSOLIDS AND BIOSOLIDS-AMENDED SOILS ON METAL BINDING

    EPA Science Inventory

    Biosolids contain high levels of Fe, Mn, and Al. Surfaces of freshly precipitated metal oxides, especially Fe and Mn, are known to be highly active sites for most dissolved metal ion species. We nw have metal sorption/desorption data that illustrate the importance of Fe and Mn fr...

  12. The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain

    PubMed Central

    Santos, Dinamene; Milatovic, Dejan; Andrade, Vanda; Camila, Batoreu M.; Aschner, Michael; Marreilha dos Santos, A.P.

    2011-01-01

    Background Manganese (Mn) is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated, at least in part, by oxidative stress. Objectives The present study was undertaken to test the hypothesis that a decrease in acetylcholinesterase (AChE) activity mediates Mn-induced neurotoxicity. Methods Groups of 6 rats received 4 or 8 intraperitoneal (i.p.) injections of 25 mg MnCl2/kg/day, every 48 hours. Twenty-four hours after the last injection, brain AChE activity and the levels of F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NPs) (biomarkers of oxidative stress), as well as prostaglandin E2 (PGE2) (biomarker of neuroinflammation) were analyzed. Results The results showed that after either 4 or 8 Mn doses, brain AChE activity was significantly decreased (p<0.05), to 60 ± 16 % and 55 ± 13 % of control levels, respectively. Both treated groups exhibited clear signs of neurobehavioral toxicity, characterized by a significant (p<0.001) decrease in ambulation and rearings in open-field. Furthermore, Mn treatment caused a significant increase (p<0.05) in brain F2-IsoPs and PGE2 levels, but only after 8 doses. In rats treated with 4 Mn doses, a significant increase (p<0.05) in brain F4-NPs levels was found. To evaluate cellular responses to oxidative stress, we assessed brain nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and Mn-superoxide dismutase (Mn-SOD, SOD2) protein expression levels. A significant increase in Mn-SOD protein expression (p<0.05) and a trend towards increased Nrf2 protein expression was noted in rat brains after 4 Mn doses vs. the control group, but the expression of these proteins was decreased after 8 Mn doses. Taken together, these results suggest that the inhibitory effect of Mn on AChE activity promotes increased neuronal oxidative stress and neuroinflammatory biomarkers. PMID:22154916

  13. Effects of subchronic manganese chloride exposure on tambaqui (Colossoma macropomum) tissues: oxidative stress and antioxidant defenses.

    PubMed

    Gabriel, Diogo; Riffel, Ana Paula K; Finamor, Isabela A; Saccol, Etiane M H; Ourique, Giovana M; Goulart, Luis O; Kochhann, Daiani; Cunha, Mauro A; Garcia, Luciano O; Pavanato, Maria A; Val, Adalberto L; Baldisserotto, Bernardo; Llesuy, Susana F

    2013-05-01

    This study aimed to evaluate oxidative stress parameters in juvenile tambaqui (Colossoma macropomum) exposed to 3.88 mg l(-1) Mn(2+) for 96 hours. Biomarkers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities, as well as content of reduced glutathione (GSH), were analyzed in gill, liver, brain, and kidney. The presence of Mn(2+) in the water corresponded to increased levels of Mn(2+) accumulation according to the following sequence: gill > kidney > brain > liver. There was a significant increase in TBARS levels (40 %) and SOD activity (80 %) in addition to a significant decrease in GSH content (41 %) in gills of fish exposed to waterborne Mn(2+). In hepatic tissue of the exposed animals, TBARS levels decreased significantly (35 %), whereas SOD (82 %) and GST activities (51 %) as well as GSH content (43 %) increased significantly. In brain of exposed juvenile fish, only significant decreases in SOD (32 %) and CAT activities (65 %) were observed. Moreover, the kidney of exposed fish showed a significant increase in TBARS levels (53 %) and a significant decrease in SOD activity (41 %) compared with the control. Thus, the changes in biomarkers of oxidative stress were different in the tissues, showing a specific toxicity of this metal to each organ. PMID:23440445

  14. The oxidation of toluene sorbed on activated carbon in the presence of H(2)O(2) and manganese oxide.

    PubMed

    Do, Si-Hyun; Kong, Sung-Ho

    2012-01-01

    We investigated the oxidation of toluene sorbed on activated carbon (AC) in the presence of hydrogen peroxide (H(2)O(2)) and pyrolusite (MnO(2)). Sorbed toluene was prepared by reacting a toluene-saturated solution and AC. The amounts of sorbed toluene (mg of toluene/g of AC) decreased as the amounts of AC were increased. The reaction was conducted in a gas-purging (GP) reactor and the gas flow at the outlet of a GP reactor was carefully maintained. As a result, the percentage of toluene captured by ORBO tube was 28% in the control system with pure water. When H(2)O(2) was catalyzed by AC (i.e. this forms a hydroxyl radical by electron transfer), approximately 17% of the desorbed toluene was oxidized and 68% of toluene remained on AC which was similar to the control system. However, when pyrolusite (650 mg/L) was added together with H(2)O(2) (10,000 mg/L), only 5% of toluene was captured by the ORBO tube and 55% of toluene remained on AC, which indicated that both desorbed and sorbed toluene was oxidized. Moreover, toluene oxidation increased when concentrations of pyrolusite and H(2)O(2) were increased. It was suggested that superoxide anion, which is generated by the reaction of H(2)O(2) and pyrolusite, might stimulate toluene desorption and then toluene in the aqueous phase could be oxidized by hydroxyl radical. PMID:23032764

  15. Spatial Distribution of Iron in Soils and Vegetation Cover Close to an Abandoned Manganese Oxide Ore Mine, Botswana

    NASA Astrophysics Data System (ADS)

    Ekosse, Georges Ivo E.

    This study aimed at establishing the spatial distribution of iron (Fe) in soils and vegetation cover within the periphery of the Kgwakgwe Manganese (Mn) oxides ore abandoned mine in Botswana. Four hundred soil samples and two hundred vegetation samples were obtained from a 4 km2 area close to the mine. Determination of Fe concentrations after acid digestion of samples was performed using an atomic absorption spectrometer equipped with a deuterium background correction. Tests for soil pH and soil colour were complementary to soil chemical analysis. Results were processed using Geographical Information Systems (GIS) and Remote Sensing (RS) techniques with integrated Land and Water Information System (ILWIS), Geosoft Oasis Montaj, ArcGIS and Microsoft Excel software packages. Concentrations of Fe in soils was from 1116.59 to 870766.00 μg g-1 with a mean of 17593.52 μg g-1 and for leaves, levels were from 101.2 to 3758.09 μg g-1 with a mean of 637.07 μg g-1. Soil pH values ranged from 2.92 to 7.26 and soil colour shades ranged from yellowish red to very dark grey. Gridded soils and vegetation maps show Fe anomalies in different parts of the study area. Values were low in areas located at the mine workings and in the Northwestern part of the study area and high in the north and southern part. Where concentrations of Fe were high in soils, correspondingly high figures were obtained for vegetation cover. Similar trends were obtained for soil pH distribution in the study area. Bedrock geology, topography, Mn mineralization, soil acidity and prevailing oxidizing conditions were governing factors that influenced the concentration and spatial distribution of Fe in the soils and vegetation. The findings further confirm that Fe distribution and its chemistry in the soils and environment around the Kgwakgwe abandoned Mn oxides ore mine have affected the vegetation cover.

  16. Manganese Complexes: Diverse Metabolic Routes to Oxidative Stress Resistance in Prokaryotes and Yeast

    PubMed Central

    2013-01-01

    Abstract Significance: Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn2+, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn2+ with superoxide and specifically shield proteins from oxidative damage. Recent Advances: There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn2+ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. Critical Issues: What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn2+-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. Future Directions: Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn2+. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes. Antioxid. Redox Signal. 19, 933–944. PMID:23249283

  17. A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-08-01

    The purpose of this review is to present recent advances in the structural and functional studies of water-oxidizing center of Photosystem II and its surrounding protein matrix in order to synthesize artificial catalysts for production of clean and efficient hydrogen fuel. PMID:24560883

  18. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides.

    PubMed

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-01-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects. PMID:26510508

  19. Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity.

    PubMed

    Arafa, Wael A A; Kärkäs, Markus D; Lee, Bao-Lin; Åkermark, Torbjörn; Liao, Rong-Zhen; Berends, Hans-Martin; Messinger, Johannes; Siegbahn, Per E M; Åkermark, Björn

    2014-06-28

    During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O2 and solar fuels, such as H2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process. In particular catalysts based on earth-abundant metals are highly attractive compared to catalysts comprised of noble metals. We have now synthesized a library of dinuclear Mn2(II,III) catalysts for H2O oxidation and studied how the incorporation of different substituents affected the electronics and catalytic efficiency. It was found that the incorporation of a distal carboxyl group into the ligand scaffold resulted in a catalyst with increased catalytic activity, most likely because of the fact that the distal group is able to promote proton-coupled electron transfer (PCET) from the high-valent Mn species, thus facilitating O-O bond formation. PMID:24554036

  20. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    NASA Astrophysics Data System (ADS)

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-10-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.

  1. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    PubMed Central

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-01-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects. PMID:26510508

  2. Removal of manganese ions from synthetic groundwater by oxidation using KMnO(4) and the characterization of produced MnO(2) particles.

    PubMed

    Phatai, P; Wittayakun, J; Grisdanurak, N; Chen, W H; Wan, M W; Kan, C C

    2010-01-01

    The aim of this study is to investigate the conditions for the removal of manganese ions from synthetic groundwater by oxidation using KMnO(4) to keep the concentration below the allowed level (0.05 mg/L). The process includes low-level aeration and addition of KMnO(4) in a Jar test system with Mn(2 + ) concentration of 0.50 mg/L, similar to that of natural groundwater in Taiwan. Different parameters such us aeration-pH, oxidant dose, and stirring speed were studied. Aeration alone was not sufficient to remove Mn(2 + ) ions completely even when the pH was increased. When a stoichiometric amount of KMnO(4) (0.96 mg/L) was used, a complete Mn(2 + ) removal was achieved within 15 min at an optimum pH of 8.0. As the amount of KMnO(4) was doubled, lower removal efficiency was obtained because the oxidant also generated manganese ions. The removal of Mn(2 + ) ions could be completed at pH 9.0 using an oxidant dose of 0.48 mg/L because Mn(2 + ) could be sorbed onto the MnO(2) particles. Finally, The MnO(2) particles were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). PMID:20962386

  3. Shewanella-mediated biosynthesis of manganese oxide micro-/nanocubes as efficient electrocatalysts for the oxygen reduction reaction.

    PubMed

    Jiang, Congcong; Guo, Zhaoyan; Zhu, Ying; Liu, Huan; Wan, Meixiang; Jiang, Lei

    2015-01-01

    Developing efficient electrocatalysts for the oxygen reduction reaction (ORR) is critical for promoting the widespread application of fuel cells and metal-air batteries. Here, we develop a biological low-cost, ecofriendly method for the synthesis of Mn2 O3 micro-/nanocubes by calcination of MnCO3 precursors in an oxygen atmosphere. Microcubic MnCO3 precursors with an edge length of 2.5 μm were fabricated by dissimilatory metal-reducing Shewanella loihica PV-4 in the presence of MnO4 (-) as the sole electron acceptor under anaerobic conditions. After calcining the MnCO3 precursors at 500 and 700 °C, porous Mn2 O3 -500 and Mn2 O3 -700 also showed microcubic morphology, while their edge lengths decreased to 1.8 μm due to thermal decomposition. Moreover, the surfaces of the Mn2 O3 microcubes were covered by granular nanoparticles with average diameters in the range of 18-202 nm, depending on the calcination temperatures. Electrochemical measurements demonstrated that the porous Mn2 O3 -500 micro-/nanocubes exhibit promising catalytic activity towards the ORR in an alkaline medium, which should be due to a synergistic effect of the overlapping molecular orbitals of oxygen/manganese and the hierarchically porous structures that are favorable for oxygen absorption. Moreover, these Mn2 O3 micro-/nanocubes possess better stability than commercial Pt/C catalysts and methanol-tolerance property in alkaline solution. Thus the Shewanella-mediated biosynthesis method we provided here might be a new strategy for the preparation of various transition metal oxides as high-performance ORR electrocatalysts at low cost. PMID:25425435

  4. Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer.

    PubMed

    Abbasi, Azhar Z; Prasad, Preethy; Cai, Ping; He, Chunsheng; Foltz, Warren D; Amini, Mohammad Ali; Gordijo, Claudia R; Rauth, Andrew M; Wu, Xiao Yu

    2015-07-10

    Multifunctional nanoparticles (NPs) have found important applications in diagnosis, chemotherapy, and image-guided surgery of tumors. In this work, we have developed polymeric theranostic NPs (PTNPs) containing the anticancer drug docetaxel (DTX), a fluorescent dye, and magnetic manganese oxide (MnO) NPs for dual modal imaging and chemotherapy. PTNPs ~150 nm in diameter were synthesized by co-loading hydrophobic DTX and MnO NPs ~5 nm in diameter, into the matrix of a fluorescent dye-labeled amphiphilic polymer. The PTNPs enabled high loading efficiency and sustained in vitro release of DTX. Energy-dependent cellular uptake and extended cytoplasmic retention of the PTNPs in MDA-MB-231 human breast cancer cells were observed by fluorescence microscopy examination. DTX-loaded PTNPs exhibited higher cytotoxicity than free DTX with a 3 to 4.4-fold decrease in drug dose required for 50% cell growth inhibition. The hydrophilic backbone of the amphiphilic polymer improved the fluidity of PTNPs which enhanced the longitudinal relaxivity (r1) of loaded MnO NPs by 2.7-fold with r1=2.4mM(-1)s(-1). Whole body fluorescence imaging (FI) and magnetic resonance imaging (MRI) showed significant accumulation and prolonged retention of PTNPs in orthotopic MDA-MB-231 breast tumors. These results suggest that the new amphiphilic polymer-based PTNP system, able to simultaneously deliver a poorly soluble anticancer drug, enhance MRI contrast, and stain tumor tissue by fluorescence, is a good candidate for cancer theranostic applications. PMID:25908171

  5. Ferromagnetism of manganese-doped indium tin oxide films deposited on polyethylene naphthalate substrates

    SciTech Connect

    Nakamura, Toshihiro; Isozaki, Shinichi; Tanabe, Kohei; Tachibana, Kunihide

    2009-04-01

    Mn-doped indium tin oxide (ITO) films were deposited on polyethylene naphthalate (PEN) substrates using radio-frequency magnetron sputtering. The magnetic, electrical, and optical properties of the films deposited on PEN substrates were investigated by comparing with the properties of films grown on glass substrates at the same growth conditions. Thin films on PEN substrates exhibited low electrical resistivity of the order of 10{sup -4} {omega} cm and high optical transmittance between 75% and 90% in the visible region. Ferromagnetic hysteresis loops were observed at room temperature for the samples grown on PEN substrates. Mn-doped ITO films can be one of the most promising candidates of transparent ferromagnetic materials for flexible spintronic devices.

  6. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications.

    PubMed

    Peng, Erwin; Choo, Eugene Shi Guang; Chandrasekharan, Prashant; Yang, Chang-Tong; Ding, Jun; Chuang, Kai-Hsiang; Xue, Jun Min

    2012-12-01

    In this study, MnFe(2)O(4) nanoparticle (MFNP)-decorated graphene oxide nanocomposites (MGONCs) are prepared through a simple mini-emulsion and solvent evaporation process. It is demonstrated that the loading of magnetic nanocrystals can be tuned by varying the ratio of graphene oxide/magnetic nanoparticles. On top of that, the hydrodynamic size range of the obtained nanocomposites can be optimized by varying the sonication time during the emulsion process. By fine-tuning the sonication time, MGONCs as small as 56.8 ± 1.1 nm, 55.0 ± 0.6 nm and 56.2 ± 0.4 nm loaded with 6 nm, 11 nm, and 14 nm MFNPs, respectively, are successfully fabricated. In order to improve the colloidal stability of MGONCs in physiological solutions (e.g., phosphate buffered saline or PBS solution), MGONCs are further conjugated with polyethylene glycol (PEG). Heating by exposing MGONCs samples to an alternating magnetic field (AMF) show that the obtained nanocomposites are efficient hyperthermia agents. At concentrations as low as 0.1 mg Fe mL(-1) and under an 59.99 kA m(-1) field, the highest specific absorption rate (SAR) recorded is 1588.83 W g(-1) for MGONCs loaded with 14 nm MFNPs. It is also demonstrated that MGONCs are promising as magnetic resonance imaging (MRI) T(2) contrast agents. A T(2) relaxivity value (r(2) ) as high as 256.2 (mM Fe)(-1) s(-1) could be achieved with MGONCs loaded with 14 nm MFNPs. The cytotoxicity results show that PEGylated MGONCs exhibit an excellent biocompatibility that is suitable for biomedical applications. PMID:22962025

  7. Thermochemistry of perovskites in the lanthanum-strontium-manganese-iron oxide system

    NASA Astrophysics Data System (ADS)

    Marinescu, Cornelia; Vradman, Leonid; Tanasescu, Speranta; Navrotsky, Alexandra

    2015-10-01

    The enthalpies of formation from binary oxides of perovskites (ABO3) based on lanthanum strontium manganite La(Sr)MnO3 (LSM) and lanthanum strontium ferrite La(Sr)FeO3 (LSF) and mixed lanthanum strontium manganite ferrite La(Sr)Mn(Fe)O3 (LSMF) were measured by high temperature oxide melt solution calorimetry. Using iodometric titration, the oxygen content was derived. The perovskites with A-site cation deficiency have greater oxygen deficiency than the corresponding A-site stoichiometric series. Stability of LSMF decreases with increasing iron content. Increasing oxygen deficiency clearly destabilizes the perovskites. The results suggest an enthalpy of oxygen incorporation that is approximately independent of composition. 0.35La2O3 (xl, 25 °C)+Mn2O3 (xl, 25 °C)+0.3SrO (xl, 25 °C)+Fe2O3 (xl, 25 °C)+O2 (g, 25 °C)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 °C). (b) ∆ubscriptshift="90%"superscriptshift="90%">Hf, ox * (La0.7Sr0.3Mn1-yFeyO3-δ) .0.35 La2O3 (xl, 25 ººC) + (0.7-y+ 2δ)/2 Mn2O3 (xl, 25 ºC) + 0.3 SrO (xl, 25 ºC) + y/2Fe2O3 (xl, 25 ºC) + (0.3-2δ) MnO2 (xl, 25 ºC)→La0.7Sr0.3Mn1-yFeyO3-δ (xl, 25 ºC).

  8. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  9. The genesis of manganese concretions in the Igarra area, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Bafor, B. E.; Mücke, A.

    An unusual supergene manganese enrichment occurs in the Igarra Formation within the schist belt of southwestern Nigeria. The manganese occurs mainly as peanut-size pisolitic grains or spherical concretions in the weathered schistose units within the formation. The mineralogy of the weathered schists consists of irregularly shaped quartz grains of varying sizes embedded in a matrix composed mainly of sheet-silicates, organic materials and heavy minerals (mostly oxides) which have been almost completely replaced by todorokite. The most abundant of these heavy minerals was probably ilnenite (FeTiO 3) which has now been transformed into pseudo-rutile (Fe 2Ti 3O 9) by the leaching of iron. Ore microscopic studies reveal that the concretions have essentially the same mineralogy as the weathered host rock. But in addition, they also contain some plant remains in the form of decomposing cellular tissues which are generally either completely or partly replaced by todorokite which also replaces the surrounding cement. Microprobe analysis of relicts of the original cement indicates that it was initially thuringitic to chamositic in composition, with FeO content of about 38 weight %. Manganese replacement of the cement was at various stages. The final product of the enrichment process contained over 70 % MnO while the FeO value decreased to only about 2 %. The unusual aspect of this enrichment is the reversal in the usual process of separation of manganese from iron. The reversal is explained as resulting from the transportation of the two elements in the supergene solution in the form of organo-metallic complexes. The manganese complex, being less stable than the iron complex, was precipitated around spots defined by relicts of decomposing plant materials whcih formed a geochemical manganese barrier, while the more stable iron complex still remained in solution. Subsequent erosion concentrated the manganese-rich spots into resistant concretions paving the present surface of the area.

  10. Peroxidase-like oxidative activity of a manganese-coordinated histidyl bolaamphiphile self-assembly

    NASA Astrophysics Data System (ADS)

    Kim, Min-Chul; Lee, Sang-Yup

    2015-10-01

    A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy analysis. The activation energy of the produced catalysts was 55.0 kJ mol-1, which was comparable to other peroxidase-mimetic catalysts. A detailed kinetics study revealed that the prepared catalyst followed a ping-pong mechanism and that the turnover reaction was promoted by increasing the substrate concentration. Finally, application of the prepared catalyst for glucose detection was demonstrated through cascade enzyme catalysis. This study demonstrated a facile way to prepare an enzyme-mimetic catalyst through the self-assembly of an amphiphilic molecule containing amino acid segments.A peroxidase-like catalyst was constructed through the self-assembly of histidyl bolaamphiphiles coordinated to Mn2+ ions. The prepared catalyst exhibited oxidation activity for the organic substrate o-phenylenediamine (OPD) in the presence of hydrogen peroxide (H2O2). The histidyl bolaamphiphiles of bis(N-alpha-amido-histidine)-1,7-heptane dicarboxylates self-assembled to make spherical structures in an aqueous solution. Subsequent association of Mn2+ ions with the histidyl imidazoles in the self-assembly produced catalytic active sites. The optimal Mn2+ ion concentration was determined and coordination of the Mn2+ ion with multiple histidine imidazoles was investigated using spectroscopy analysis. The activation energy of the produced catalysts was 55.0 kJ mol-1, which was comparable to other peroxidase-mimetic catalysts. A detailed kinetics study revealed that the prepared catalyst followed a ping-pong mechanism and that the turnover reaction was promoted by increasing the substrate concentration. Finally, application of the prepared catalyst for glucose detection was demonstrated through cascade enzyme catalysis. This study demonstrated a facile way to prepare an enzyme-mimetic catalyst through the self-assembly of an amphiphilic molecule containing amino acid segments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04893a

  11. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    SciTech Connect

    Liang, W.

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S{sub 2} state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S{sub 2} state with the g{approx}4 electron paramagnetic resonance (EPR) signal (S{sub 2}-g4 state) was compared with that in the S{sub 2} state with multiline signal (S{sub 2}-MLS state) and the S{sub 1} state. The S{sub 2}-g4 state has a higher XAS inflection point energy than that of the S{sub 1} state, indicating the oxidation of Mn in the advance from the S{sub 1} to the S{sub 2}-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S{sub 2}-g4 state is different from that in the S{sub 2}-MLS or the S{sub 1} state. In the S{sub 2}-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 {angstrom} and 2.85 {angstrom}. Very little distance disorder exists in the second shell of the S{sub 1} or S{sub 2}-MLS states. The third shell of the S{sub 2}-g4 state at about 3.3 {angstrom} also contains increased heterogeneity relative to that of the S{sub 2}-MLS or the S{sub 1} state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct {open_quotes}pure{close_quotes} S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S{sub 1} {yields} S{sub 2} transition.

  12. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox.

    PubMed

    Cordova, Fabiano M; Aguiar, Aderbal S; Peres, Tanara V; Lopes, Mark W; Gonçalves, Filipe M; Pedro, Daniela Z; Lopes, Samantha C; Pilati, Célso; Prediger, Rui D S; Farina, Marcelo; Erikson, Keith M; Aschner, Michael; Leal, Rodrigo B

    2013-07-01

    While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its efficacy in reversing the Mn-induced neurodevelopmental effects. PMID:23385959

  13. Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii.

    PubMed

    Asaikkutti, Annamalai; Bhavan, Periyakali Saravana; Vimala, Karuppaiya; Karthik, Madhayan; Cheruparambath, Praseeja

    2016-05-01

    The green synthesized Mn3O4 nanoparticles (manganese-oxide nanoparticles) using Ananas comosus (L.) peel extract was characterized by various techniques. HR-SEM photograph showed that manganese-oxide nanoparticles (Mn-oxide NPs) were spherical in shape, with an average size of 40-50nm. The Zeta potential revealed the surface charge of Mn-oxide NPs to be negative. Further, the Mn-oxide NPs were dietary supplemented for freshwater prawn Macrobrachium rosenbergii. The experimental basal diets were supplemented with Mn-oxide NPs at the rates of 0 (control), 3.0, 6.0, 9.0, 12, 15 and 18mg/kg dry feed weight. The as-supplemented Mn-oxide NPs were fed in M. rosenbergii for a period of 90 days. The experimental study demonstrated that prawns fed with diet supplemented with 3-18mg Mn-oxide NPs/kg shows enhanced (P<0.05) growth performance, including final weight and weight gain (WG). Significant differences (P<0.05) in feed conversion ratio (FCR) were observed in prawn fed with different diets. Additionally, prawns fed with 3.0-18mg/kg Mn-oxide NPs supplemented diets achieved significant (P<0.05) improvement in growth performance, digestive enzyme activities and muscle biochemical compositions, while, the prawns fed with 16mg/kg of Mn-oxide NPs showed enhanced performance. Prawns fed on diet supplemented with 16mg/kg Mn-oxide NPs showed significantly (P<0.05) higher total protein level. The antioxidants enzymatic activity (SOD and CAT) metabolic enzymes status in muscle and hepatopancreas showed no significant (P>0.05) alterations in prawns fed with 3.0-18mg/kg of Mn-oxide NPs supplemented diets. Consequently, the present work proposed that 16mg/kg of Mn-oxide NPs could be supplemented for flexible enhanced survival, growth and production of M. rosenbergii. Therefore, the data of the present study recommend the addition of 16mg/kg of Mn-oxide NPs diet to developed prawn growth and antioxidant defense system. PMID:27049122

  14. Role of Substrate on Quartz Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to experiments using crushed fragments of synthetic quartz (Pepple, 2007), the amount of cement in these natural samples was greater. Cementation followed a common pattern in all samples. Microfractures, which formed during pressurization of the charges, healed very rapidly followed by overgrowths on the quartz grains. Cementation began closest to the amorphous silica, then progressed away. There was no measurable difference in the amount of quartz cement formed in samples of the as-is and cleaned St. Peter Sandstone indicating that iron played no role in the rate of cementation. Although the amount of cement formed increased with increasing temperature and duration of the experiments, the rate of cementation decreased dramatically in longer duration (8 weeks) experiments suggesting a change in the precipitation mechanism/rate. This apparent change in precipitation rate may reflect a decrease in available surfaces for nucleation and/or a decrease in growth rate as euhedral faces develop as proposed by Lander et al (2008).

  15. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode.

    PubMed

    Weng, Yu-Ting; Huang, Tzu-Yang; Lim, Chek-Hai; Shao, Pei-Sian; Hy, Sunny; Kuo, Chao-Yen; Cheng, Ju-Hsiang; Hwang, Bing-Joe; Lee, Jyh-Fu; Wu, Nae-Lih

    2015-12-21

    MnO2 is shown for the first time to be electrochemically active as a conversion anode for Na-ion batteries (NIBs). Space-confined ultrafine (UF)-MnO2, with an average crystal size of 4 nm, synthesized using a porous silicon dioxide templated hydrothermal process exhibits a high reversible sodiation capacity of 567 mA h g(-1), in contrast to the negligible activity shown by the aggregates of larger (14 nm) MnO2 nanocrystallites. The remarkably enhanced sodiation activity of the UF-MnO2 is attributable to its greatly reduced crystal size, which facilitates diffusion of Na ions, along with high surface energy arising from extensive heterogeneous interfacial bonding with the SiO2 surrounding. The UF-MnO2 anode exhibits an exceptional rate and cycle performance, exhibiting >70% capacity retention after 500 cycles. In operando synchrotron X-ray absorption near-edge structural analysis reveals combined charge-storage mechanisms involving conversion reaction between Mn(III) and Mn(II) oxides, Mn(III)-O1.5 + Na(+) + e(-)- ↔ 1/2Na2O + Mn(II)-O, and non-Mn-centered redox reactions. The finding suggests a new strategy for "activating" the potential electrochemical electrode materials that appear inactive in the bulk form. PMID:26567463

  16. Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn(II) thiol scavenging.

    PubMed

    Dittman, Elizabeth K; Buchwalter, David B

    2010-12-01

    Streams below mountaintop removal-valley fill coal mining operations often have elevated Mn concentrations, but it remains unclear if Mn plays a role in biodiversity reduction. We examined various aspects of aqueous Mn interactions with aquatic insects exposed to environmentally relevant Mn concentrations, revealing complex behavior. First, Mn accumulation rates varied widely among 9 species. A significant percentage of total Mn accrued (mean 74%, range 24-95%) was associated with the cuticle, predominantly in the form of Mn-oxides, and to a lesser degree Mn(II). Mn II is also absorbed into tissues, possibly through calcium transporters. Increased ambient calcium concentrations decreased both adsorbed and absorbed Mn accumulation from solution. Though species showed similar Mn efflux rate constants (0.032-0.072 d(-1)), the primary mode of Mn loss was through molting. Both adsorbed and absorbed Mn is lost during the molt. Subcellular compartmentalization studies revealed an overwhelming tendency for internalized Mn to associate with the heat stable cytosolic protein fraction. After short dissolved Mn exposures, intracellular glutathione and cysteine levels were markedly reduced relative to controls. These findings suggest that Mn exposure results in transient physiological stress in aquatic insects which is likely relieved, in part, during the molting process. PMID:21049994

  17. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead.

    PubMed

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Mosa, Ahmed; Zimmerman, Andrew R; Ma, Lena Q; Harris, Willie G; Migliaccio, Kati W

    2015-04-01

    This work explored two modification methods to improve biochar's ability to sorb arsenic (As) and lead (Pb). In one, pine wood feedstock was pyrolyzed in the presence of MnCl2·4H2O (MPB) and in the other it was impregnated with birnessite via precipitation following pyrolysis (BPB). The resulting biochars were characterized using thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray analyses. The dominant crystalline forms of Mn oxides in the MPB and BPB were manganosite and birnessite, respectively. Batch sorption studies were carried out to determine the kinetics and magnitude of As(V) and Pb(II) onto the biochars. As(V) and Pb(II) sorption capacities of MPB (0.59 and 4.91 g/kg) and BPB (0.91 and 47.05 g/kg) were significantly higher than that of the unmodified biochar (0.20 and 2.35 g/kg). BPB showed the highest sorption enhancement because of the strong As(V) and Pb(II) affinity of its birnessite particles. PMID:25625462

  18. Surface chemistry of coated lithium manganese nickel oxide thin film cathodes studied by XPS

    SciTech Connect

    Baggetto, Loic; Dudney, Nancy J; Veith, Gabriel M

    2013-01-01

    The effect of coating high voltage LiMn1.5Ni0.5O4 spinel cathode thin films with three metal oxide thin layers is discussed. The changes in surface chemistry of the electrodes are measured by X-ray photoelectron spectroscopy. ZnO is found to decompose during the first charge whereas Al2O3 and ZrO2 are stable for more than 100 cycles. ZrO2, however, importantly limits the available Li storage capacity of the electrochemical reaction due to poorer kinetics. Al2O3 offers the best results in term of capacity retention. Upon cycling, the evidence of a signal at 75.4 eV in the Al2p binding energy spectrum indicates the partial conversion of Al2O3 into Al2O2F2. Moreover, the continuous formation of PEO , esters and LixPOyFz compounds on the surface of the electrodes is found for all coating materials.

  19. Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples.

    PubMed Central

    Siering, P L; Ghiorse, W C

    1997-01-01

    Comparative sequence analysis of the 16S rRNA genes from several Leptothrix and Sphaerotilus strains led to the design of an oligonucleotide probe (PS-1) based on a sequence within the hypervariable region 1 specific for four Leptothrix strains and for one of the four Sphaerotilus natans strains examined. Another probe (PSP-6) was based on a sequence within the hypervariable region 2. PSP-6 was specific for one of the two evolutionary lineages previously described for Leptothrix spp. (P. L. Siering and W. C. Ghiorse, Int. J. Syst. Bacteriol. 46:173-182, 1996). Fluorescein-labeled oligonucleotide probes were synthesized, and their specificity for fluorescence in situ hybridization identification was confirmed by a laser scanning microscopy technique (W. C. Ghiorse, D. N. Miller, R. L. Sandoli, and P. L. Siering, Microsc. Res. Tech. 33:73-86, 1996) to compare whole-cell hybridizations of closely related bacteria. Probe specificity was also tested in dot blot against total RNA isolated from four Leptothrix strains, four Sphaerotilus strains, and 15 other members of the class Proteobacteria. When the probes were tested on samples from the Sapsucker Woods wetland habitat where Leptothrix spp. are thought to play a role in manganese and iron oxidation, positive signals were obtained from several sheathed filamentous bacteria including some that were morphologically similar to previously isolated strains of "Leptothrix discophora." Other unknown filamentous sheathed bacteria also gave strong positive signals. This work provides a foundation for future studies correlating the presence of members of the Leptothrix-Sphaerotilus group of sheathed bacteria with manganese and iron oxidation activity in habitats where biological iron and manganese oxidation are important environmental processes. PMID:9023942

  20. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Ting; Huang, Tzu-Yang; Lim, Chek-Hai; Shao, Pei-Sian; Hy, Sunny; Kuo, Chao-Yen; Cheng, Ju-Hsiang; Hwang, Bing-Joe; Lee, Jyh-Fu; Wu, Nae-Lih

    2015-11-01

    MnO2 is shown for the first time to be electrochemically active as a conversion anode for Na-ion batteries (NIBs). Space-confined ultrafine (UF)-MnO2, with an average crystal size of 4 nm, synthesized using a porous silicon dioxide templated hydrothermal process exhibits a high reversible sodiation capacity of 567 mA h g-1, in contrast to the negligible activity shown by the aggregates of larger (14 nm) MnO2 nanocrystallites. The remarkably enhanced sodiation activity of the UF-MnO2 is attributable to its greatly reduced crystal size, which facilitates diffusion of Na ions, along with high surface energy arising from extensive heterogeneous interfacial bonding with the SiO2 surrounding. The UF-MnO2 anode exhibits an exceptional rate and cycle performance, exhibiting >70% capacity retention after 500 cycles. In operando synchrotron X-ray absorption near-edge structural analysis reveals combined charge-storage mechanisms involving conversion reaction between Mn(iii) and Mn(ii) oxides, Mn(iii)-O1.5 + Na+ + e-- <--> 1/2Na2O + Mn(ii)-O, and non-Mn-centered redox reactions. The finding suggests a new strategy for ``activating'' the potential electrochemical electrode materials that appear inactive in the bulk form.MnO2 is shown for the first time to be electrochemically active as a conversion anode for Na-ion batteries (NIBs). Space-confined ultrafine (UF)-MnO2, with an average crystal size of 4 nm, synthesized using a porous silicon dioxide templated hydrothermal process exhibits a high reversible sodiation capacity of 567 mA h g-1, in contrast to the negligible activity shown by the aggregates of larger (14 nm) MnO2 nanocrystallites. The remarkably enhanced sodiation activity of the UF-MnO2 is attributable to its greatly reduced crystal size, which facilitates diffusion of Na ions, along with high surface energy arising from extensive heterogeneous interfacial bonding with the SiO2 surrounding. The UF-MnO2 anode exhibits an exceptional rate and cycle performance, exhibiting >70% capacity retention after 500 cycles. In operando synchrotron X-ray absorption near-edge structural analysis reveals combined charge-storage mechanisms involving conversion reaction between Mn(iii) and Mn(ii) oxides, Mn(iii)-O1.5 + Na+ + e-- <--> 1/2Na2O + Mn(ii)-O, and non-Mn-centered redox reactions. The finding suggests a new strategy for ``activating'' the potential electrochemical electrode materials that appear inactive in the bulk form. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07100c

  1. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures.

    PubMed

    Le, Anh-Tuan; Giang, Chu Duy; Tam, Le Thi; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; García, José Ángel; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-15

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ∼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications. PMID:26933975

  2. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Le, Anh-Tuan; Duy Giang, Chu; Thi Tam, Le; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; Ángel García, José; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-01

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ˜17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.

  3. Structure of Highly Divided Nonstoichiometric Iron Manganese Oxide Powders Fe 3- xMn x□ 3 δ/4 O 4+ δ

    NASA Astrophysics Data System (ADS)

    Guillemet-Fritsch, Sophie; Viguié, Sophie; Rousset, Abel

    1999-08-01

    Highly divided iron manganese oxide powders, Fe3-xMnx□3δ/4O4+δ, were prepared at low temperature (T≤560°C) by the thermal decomposition of mixed oxalate precursors Fe1-αMnαC2O4, 2H2O (α=x/3). The manganese-rich compounds (x≥1.5) have a complex structure that can be cubic, tetragonal, or a mixture of both tetragonal and cubic spinel phases that indicates a lack of miscibility existing in the Fe3O4-Mn3O4 phase diagram at low temperature. The structure strongly depends on the chemical composition but also on the nonstoichiometric coefficient (δ). It has been identified as one of the mineral "vredenburgite" and has never been reported before for powders prepared by chimie douce. The oxygen excess, determined by thermogravimetric analyses, is the highest (δ=0.4) when the oxide is prepared at 410°C. Theses oxides are defect spinel phases containing cationic vacancies.

  4. MANGANESE IN NARRAGANSETT BAY

    EPA Science Inventory

    Concentrations of dissolved manganese and particulate manganese and aluminum were determined in samples from Narragansett Bay, Rhode Island, and its surrounding rivers. Total manganese is approximately conservative, but dissolved and particulate manganese are not. Desorption may ...

  5. Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels.

    PubMed

    Furgal, Karolina M; Meyer, Rikke L; Bester, Kai

    2015-10-01

    The oxidation of organic micro-pollutants by biogenic manganese oxide nanoparticles (BioMnOx) has been studied with respect to possible implementation of BioMnOx in wastewater treatment. For this it would be prerequisite that microbial Mn(2+) oxidation and BioMnOx-driven pollutant removal can occur in situ, i.e. in the same reactor as the removal. Here we present the in situ reactivity of BioMnOx produced by Pseudomonas putida towards a range of micro-pollutants at environmentally relevant concentrations (10 μg L(-1)). We found that in situ formed BioMnOx completely removed the steroid hormones estrone and 17-α ethinylestradiol, while only 26% removal of diclofenac was achieved. Ibuprofen, tebuconazole, carbamazepine, carbendazim, and terbutryn were not removed under in situ conditions. PMID:25532770

  6. Copper-manganese mixed oxides: CO2-selectivity, stable, and cyclic performance for chemical looping combustion of methane.

    PubMed

    Mungse, Pallavi; Saravanan, Govindachetty; Uchiyama, Tomoki; Nishibori, Maiko; Teraoka, Yasutake; Rayalu, Sadhana; Labhsetwar, Nitin

    2014-09-28

    Chemical looping combustion (CLC) is a key technology for oxy-fuel combustion with inherent separation of CO2 from a flue gas, in which oxygen is derived from a solid oxygen carrier. Multi-cycle CLC performance and the product selectivity towards CO2 formation were achieved using mixed oxide of Cu and Mn (CuMn2O4) (Fd3[combining macron]m, a = b = c = 0.83 nm) as an oxygen carrier. CuMn2O4 was prepared by the co-precipitation method followed by annealing at 900 °C using copper(II) nitrate trihydrate and manganese(II) nitrate tetrahydrate as metal precursors. CuMn2O4 showed oxygen-desorption as well as reducibility at elevated temperatures under CLC conditions. The lattice of CuMn2O4 was altered significantly at higher temperature, however, it was reinstated virtually upon cooling in the presence of air. CuMn2O4 was reduced to CuMnO2, Mn3O4, and Cu2O phases at the intermediate stages, which were further reduced to metallic Cu and MnO upon the removal of reactive oxygen from their lattice. CuMn2O4 showed a remarkable activity towards methane combustion reaction at 750 °C. The reduced phase of CuMn2O4 containing Cu and MnO was readily reinstated when treated with air or oxygen at 750 °C, confirming efficient regeneration of the oxygen carrier. Neither methane combustion efficiency nor oxygen carrying capacity was altered with the increase of CLC cycles at any tested time. The average oxygen carrying capacity of CuMn2O4 was estimated to be 114 mg g(-1), which was not altered significantly with the repeated CLC cycles. Pure CO2 but no CO, which is one of the possible toxic by-products, was formed solely upon methane combustion reaction of CuMn2O4. CuMn2O4 shows potential as a practical CLC material both in terms of multi-cycle performance and product selectivity towards CO2 formation. PMID:25110101

  7. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process.

    PubMed

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of other ferrofluid drugs currently in clinical practice suggests that there might be sufficient safety margins for further development of our formulation. PMID:24790434

  8. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process

    PubMed Central

    Bellusci, Mariangela; La Barbera, Aurelio; Padella, Franco; Mancuso, Mariateresa; Pasquo, Alessandra; Grollino, Maria Giuseppa; Leter, Giorgio; Nardi, Elisa; Cremisini, Carlo; Giardullo, Paola; Pacchierotti, Francesca

    2014-01-01

    Superparamagnetic iron oxide nanoparticles are candidate contrast agents for magnetic resonance imaging and targeted drug delivery. Biodistribution and toxicity assessment are critical for the development of nanoparticle-based drugs, because of nanoparticle-enhanced biological reactivity. Here, we investigated the uptake, in vivo biodistribution, and in vitro and in vivo potential toxicity of manganese ferrite (MnFe2O4) nanoparticles, synthesized by an original high-yield, low-cost mechanochemical process. Cultures of murine Balb/3T3 fibroblasts were exposed for 24, 48, or 72 hours to increasing ferrofluid concentrations. Nanoparticle cellular uptake was assessed by flow-cytometry scatter-light measurements and microscopy imaging after Prussian blue staining; cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony-forming assays. After a single intravenous injection, in vivo nanoparticle biodistribution and clearance were evaluated in mice by Mn spectrophotometric determination and Prussian blue staining in the liver, kidneys, spleen, and brain at different posttreatment times up to 21 days. The same organs were analyzed for any possible histopathological change. The in vitro study demonstrated dose-dependent nanoparticle uptake and statistically significant cytotoxic effects from a concentration of 50 μg/mL for the MTT assay and 20 μg/mL for the colony-forming assay. Significant increases in Mn concentrations were detected in all analyzed organs, peaking at 6 hours after injection and then gradually declining. Clearance appeared complete at 7 days in the kidneys, spleen, and brain, whereas in the liver Mn levels remained statistically higher than in vehicle-treated mice up to 3 weeks postinjection. No evidence of irreversible histopathological damage to any of the tested organs was observed. A comparison of the lowest in vitro toxic concentration with the intravenously injected dose and the administered dose of other ferrofluid drugs currently in clinical practice suggests that there might be sufficient safety margins for further development of our formulation. PMID:24790434

  9. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice.

    PubMed

    Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav

    2006-01-01

    Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. PMID:16345010

  10. Stability of amorphous hydrous manganese oxide in contrasting soils and implications for its use in chemical stabilization of metals/metalloids in contaminated soil environments

    NASA Astrophysics Data System (ADS)

    Ettler, V.; Knytl, V.; Komarek, M.; Della Puppa, L.; Mihaljevic, M.; Sebek, O.

    2012-04-01

    Amorphous manganese oxides are known to be efficient sorbents in soils and thus useful in remediation technologies. A novel amorphous hydrous manganese oxide (HMO) was prepared by a modified procedure generally used for birnessite synthesis. Its long-term stability in view of possible applications for chemical stabilization of metals/metalloids in polluted soils was evaluated. HMO was sealed in experimental bags prepared from polyamide fabric (pore size 1 um) and placed in the pots containing 200 g of soil. Three contrasting soils were used (two cambisols with pH values of 4.2 and 5.4, respectively, and a chernozem with a pH of 7.3). Each pot was equipped with a rhizon pore water sampler and the water content was maintained at 80% WHC throughout the experiment. HMO and pore waters were sampled after 1, 7, 15, 30, 45, 60, 75 and 90 days of incubation. Up to 113 mg Mn/L was released into pore water at the beginning of the experiment in more acidic soils indicating a slight dissolution of HMO surfaces. Manganese release into the pore water stabilized after 15 days in agreement with mass loss measurements. Mass loss decreased again after 60 days of the incubation for the neutral soil due to the formation of secondary rhodochrosite (MnCO3) detected on the HMO surfaces by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The efficiency of HMO for trace metal retention in soils (e.g., Zn) slightly decreased after 60 days, probably due to the mineralogical transformation of the sorbent leading to decrease of binding surfaces. Nevertheless, only approximately 10% of HMO dissolved after 90 days of experiment showing that this sorbent can be relatively stable in the studied soils. Its binding capacity for metals/metalloids should be further tested in soils with elevated contaminant concentrations.

  11. O-atom transport catalysis by neutral manganese oxide clusters in the gas phase: reactions with CO, C2H4, NO2, and O2.

    PubMed

    Yin, Shi; Wang, Zhechen; Bernstein, Elliot R

    2013-08-28

    Reactions of CO, C2H4, NO2, and O2 with neutral Mn(m)O(n) clusters in a fast flow reactor are investigated both experimentally and theoretically. Single photon ionization at 118 nm is used to detect neutral cluster distributions through time of flight mass spectrometry. Mn(m)O(n) clusters are generated through laser ablation of a manganese target in the presence of 5% O2/He carrier gas. A strong size dependent reactivity of Mn(m)O(n) clusters is characterized. Reactions Mn2O5/Mn3O7 + CO → Mn2O4/Mn3O6 + CO2 are found for CO oxidation by Mn(m)O(n) clusters, while only association products Mn2O(3-5)C2H4 and Mn3O(5-7)C2H4 are observed for reactions of C2H4 with small Mn(m)O(n) clusters. Reactions of Mn(m)O(n) clusters with NO2 and O2 are also investigated, and the small Mn2O(n) clusters are easily oxidized by NO2. This activation suggests that a catalytic cycle can be generated for the Mn2O5 cluster: Mn2O5 + CO + NO2 → Mn2O4 + CO2 + NO2 → Mn2O5 + CO2 + NO. Density functional theory (DFT) calculations are performed to explore the potential energy surfaces for the reactions Mn2O(4,5)/Mn3O7 + CO → Mn2O(3,4)/Mn3O6 + CO2, Mn2O5 + C2H4 → Mn2O4 + CH3CHO, and Mn2O4 + NO2 → Mn2O5 + NO. Barrierless and thermodynamically favorable pathways are obtained for Mn2O5∕Mn3O7 + CO and Mn2O4 + NO2 reactions. A catalytic cycle for CO oxidation by NO2 over a manganese oxide surface is proposed based on our experimental and theoretical investigations. The various atom related reaction mechanisms explored by DFT are in good agreement with the experimental results. Condensed phase manganese oxide is suggested to be a good catalyst for low temperature CO oxidation by NO2, especially for an oxygen rich sample. PMID:24006997

  12. Manganese mineralogy and diagenesis in the sedimentary rock record

    NASA Astrophysics Data System (ADS)

    Johnson, Jena E.; Webb, Samuel M.; Ma, Chi; Fischer, Woodward W.

    2016-01-01

    Oxidation of manganese (II) to manganese (III,IV) demands oxidants with very high redox potentials; consequently, manganese oxides are both excellent proxies for molecular oxygen and highly favorable electron acceptors when oxygen is absent. The first of these features results in manganese-enriched sedimentary rocks (manganese deposits, commonly Mn ore deposits), which generally correspond to the availability of molecular oxygen in Earth surface environments. And yet because manganese reduction is promoted by a variety of chemical species, these ancient manganese deposits are often significantly more reduced than modern environmental manganese-rich sediments. We document the impacts of manganese reduction and the mineral phases that form stable manganese deposits from seven sedimentary examples spanning from modern surface environments to rocks over 2 billion years old. Integrating redox and coordination information from synchrotron X-ray absorption spectroscopy and X-ray microprobe imaging with scanning electron microscopy and energy and wavelength-dispersive spectroscopy, we find that unlike the Mn(IV)-dominated modern manganese deposits, three manganese minerals dominate these representative ancient deposits: kutnohorite (CaMn(CO3)2), rhodochrosite (MnCO3), and braunite (Mn(III)6Mn(II)O8SiO4). Pairing these mineral and textural observations with previous studies of <