Science.gov

Sample records for quartz particle size

  1. Effect of particle size in the TL response of natural quartz sensitized with high gamma dose

    NASA Astrophysics Data System (ADS)

    Carvalho, A. B., Jr.; Guzzo, P. L.; Sullasi, H. L.; Khoury, H. J.

    2010-11-01

    The aim of this study is to investigate the effect of particle size in the thermoluminescence (TL) response of natural quartz sensitized with high gamma dose. For this, fragments of a single crystal taken from the Solonópole district (Brazil) were crushed and classified into ten size fractions ranging from 38 μm to 5 mm. Aliquots of each size fraction were sensitized with 25 kGy of gamma dose of 60Co and heat-treated in a muffle furnace at 400oC. The non-sensitized samples were exposed to test doses between 50 Gy and 5 kGy and the sensitized samples were exposed to a unique test dose equal to 50 mGy. For non-sensitized samples, the TL peak near 325 °C increases with the particle size decreasing. However, in the case of sensitized samples, the TL output near 280 °C increases with the increasing of particle size up to mean grain size equal to 308 μm. Above 308 μm, an abrupt reduction in the TL intensity was noticed. These effects are discussed in relation to the specific surface area and the different interaction of high gamma doses with fine and coarse particles of quartz.

  2. Dynamic High-Pressure Behavior of Quartz Silica Sand of Two Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Kennedy, Gregory; Thadhani, Naresh

    2015-06-01

    The dynamic high-pressure behavior of customized high purity quartz silica sand is presented. The silica was chosen to have rounded grains and controlled size, size distribution, and water content. The customized sand was selected with two narrow size ranges, approximately 100 μm and 500 μm, to provide a range of responses to compare with meso-scale simulations. The materials were pressed into a copper capsule ring connected to a copper driver plate and backed by a PMMA window. Experiments were performed in plate impact light gas gun and powder gun, using VISAR and PDV velocity measurement techniques, and PVDF piezoelectric pressure gauges. The compaction wave velocity was calculated from transit times measured by PVDF gauges placed on either side of the silica samples. Interface particle velocity profiles were recorded by VISAR and PDV at the rear surface of the sample in contact with a PMMA window. Analysis of the details of the shapes of the rise and plateaus in the VISAR and PDV measured velocities reveal a dependence on the size of the particles.

  3. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    SciTech Connect

    MARCIAL J; KRUGER AA; HRMA PR; SCHWEIGER MJ; SWEARINGEN KJ; TEGROTENHUIS WE; HENAGER SH

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro

  4. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    SciTech Connect

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J; Swearingen, Kevin J; Tegrotenhuis, Nathan E; Henager, Samuel H

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.

  5. Effects of quartz particle size and water-to-solid ratio on hydrothermal synthesis of tobermorite studied by in-situ time-resolved X-ray diffraction

    SciTech Connect

    Kikuma, J.; Tsunashima, M.; Ishikawa, T.; Matsuno, S.; Ogawa, A.; Matsui, K.; Sato, M.

    2011-08-15

    Hydrothermal synthesis process of tobermorite (5CaO.6SiO{sub 2}.5H{sub 2}O) has been investigated by in-situ X-ray diffraction using high-energy X-rays from a synchrotron radiation source in combination with a purpose-build autoclave cell. Dissolution rates of quartz were largely affected by its particle size distribution in the starting mixtures. However, the composition (Ca/Si) of non-crystalline C-S-H at the start of tobermorite formation was identical regardless of the quartz dissolution rate. An effect of water-to-solid ratio (w/s) was investigated for samples using fine particle quartz. Tobermorite did not occur with w/s of 1.7 but occurred with w/s higher than 3.0. Surprisingly, however, the dissolution curves of quartz were nearly identical for all samples with w/s from 1.7 to 9, indicating that the dissolution rate is predominated by surface area. Possible reaction mechanism for tobermorite formation will be discussed in terms of Ca and/or silicate ion concentration in the liquid phase and distribution of Ca/Si in non-crystalline C-S-H. - Graphical abstract: Time-resolved XRD data set was obtained at up to 190 deg. C under a saturated steam pressure. Tobermorite (5CaO.6SiO{sub 2}.5H{sub 2}O) formation reaction was investigated in detail for several different starting materials. Highlights: > Hydrothermal formation of tobermorite was monitored by in-situ XRD. > Ca/Si of C-S-H at the start time of tobermorite formation was determined. > The Ca/Si value was identical regardless of the quartz particle size in the starting mixture.

  6. The Occurrence of Quartz in Coal Fly Ash Particles.

    PubMed

    Meij, R; Nagengast, S; Te Winkel, H

    2000-01-01

    In spite of the presence of quartz, coal fly ash can be considered as a nuisance or inert dust. Respirable crystalline silica (e.g., quartz) is notorious for the induction of, for example, progressive massive fibrosis (PMF); besides, in 1997 the IARC stated that crystalline silica in the form of quartz or cristobalite from occupational sources is carcinogenic to humans. Quartz is present in both coal and residual ash. Ash originates from combustion of pulverised coal and, once removed from the flue gases by electrostatic precipitators (ESPs), it is called pulverized fuel ash (PFA). Thus, occupational exposure to PFA could also include exposure to silica. However, epidemiological studies did not show evidence of progressive massive fibrosis (PMF). In vitro tests demonstrated that PFA is less toxic than silica, and in vivo data of PFA did not support the importance of silica content for toxicity. Commissioned by the Dutch coal-fired power plants, KEMA has started a research project to determine the quartz content in coal and the corresponding PFA. It appears that on average 50% of the a-quartz in coal is found again in the total fraction of PFA (D50(ae) 31 µm, where Dsotae) is the aerodynamically mass median diameter), whereas 16% is found in an even finer fraction (D50(ae) 10 µm). The remaining part of the quartz is embedded in a glass phase. Scanning electron microscopy (SEM) with x-ray microanalyses (XMA) of cross-sections of 11,130 ash particles showed that quartz in PFA is present as unmelted sand particles. These quartz particles are angularly shaped. However, two types are to be distinguished: free coarse angular quartz particles (not respirable) and small angular quartz particles within the PFA particles. From the SEM/XMA results, it has to be concluded that the quartz in the respirable fraction is predominantly present within the original molten PFA particle. Since the effects of quartz are surface related, this elucidates the negative results of quartz

  7. Particle Size Analysis.

    ERIC Educational Resources Information Center

    Barth, Howard G.; Sun, Shao-Tang

    1989-01-01

    Presents a review of research focusing on scattering, elution techniques, electrozone sensing, filtration, centrifugation, comparison of techniques, data analysis, and particle size standards. The review covers the period 1986-1988. (MVL)

  8. Conversion of batch to molten glass, II: Dissolution of quartz particles

    SciTech Connect

    Hrma, Pavel R.; Marcial, Jose; Swearingen, Kevin J.; Henager, Samuel H.; Schweiger, Michael J.; Tegrotenhuis, Nathan E.

    2011-01-28

    Quartz dissolution during the batch-to-glass conversion influences the melt viscosity and ultimately the temperature at which the glass forms. Batches to make a high-alumina borosilicate glass (formulated for the vitrification of nuclear waste) were heated as 5°C min-1 and quenched from the temperatures of 400-1200°C at 100°C intervals. As a silica source, the batches contained quartz with particles ranging from 5 to 195 µm. The content of unreacted quartz in the samples was determined with x-ray diffraction. Most of fine quartz has dissolved during the early batch reactions (at temperatures <800°C), whereas coarser quartz dissolved mostly in a continuous glass phase via diffusion. The mass-transfer coefficients were assessed from the data as functions of the initial particle sizes and the temperature. A series of batch was also tested that contained nitrated components and additions of sucrose known to accelerate melting. While sucrose addition had no discernible impact on quartz dissolution, nitrate batches melted somewhat more slowly than batches containing carbonates and hydroxides in addition to nitrates.

  9. Particle-Size Analysis

    SciTech Connect

    Gee, Glendon W. ); Or, Dani; J.H. Dane and G.C. Topp

    2002-11-01

    Book Chapter describing methods of particle-size analysis for soils. Includes a variety of classification schemes. Standard methods for size distributions using pipet and hydrometer techniques are described. New laser-light scattering and related techniques are discussed. Complete with updated references.

  10. Transitional grain-size-sensitive flow of milky quartz aggregates

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2014-12-01

    Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse

  11. Abundance, Grain Size and PDF Orientations of Shocked Quartz Grains Around the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Goto, K.; Nakano, Y.; Matsui, T.; Tada, R.; Tajika, E.

    2011-03-01

    We measured abundance, grain size, and PDF orientations of shocked quartz grains around the Chicxulub crater in order to investigate the distribution and variation of shocked quartz grains produced by the Chicxulub impact.

  12. Soil signature simulation of complex mixtures and particle size distributions

    NASA Astrophysics Data System (ADS)

    Carson, Tyler; Bachmann, Charles M.; Salvaggio, Carl

    2015-09-01

    Soil reflectance signatures were modeled using the digital imaging and remote sensing image generation model and Blender three-dimensional (3-D) graphic design software. Using these tools, the geometry, radiometry, and chemistry of quartz and magnetite were exploited to model the presence of particle size and porosity effects in the visible and the shortwave infrared spectrum. Using the physics engines within the Blender 3-D graphic design software, physical representations of granular soil scenes were created. Each scene characterized a specific particle distribution and density. Chemical and optical properties of pure quartz and magnetite were assigned to particles in the scene based on particle size. This work presents a model to describe an observed phase-angle dependence of beach sand density. Bidirectional reflectance signatures were simulated for targets of varying size distribution and density. This model provides validation for a phenomenological trade space between density and particle size distribution in complex, heterogeneous soil mixtures. It also confirms the suggestion that directional reflectance signatures can be defined by intimate mixtures that depend on pore spacing. The study demonstrated that by combining realistic target geometry and spectral measurements of pure quartz and magnetite, effects of soil particle size and density could be modeled without functional data fitting or rigorous analysis of material dynamics. This research does not use traditional function-based models for simulation. The combination of realistic geometry, physically viable particle structure, and first-principles ray-tracing enables the ability to represent signature changes that have been observed in experimental observations.

  13. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  14. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    NASA Astrophysics Data System (ADS)

    Volokitin, Oleg; Vlasov, Viktor; Volokitin, Gennady; Skripnikova, Nelli; Shekhovtsov, Valentin

    2016-01-01

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ rp ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ rp ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  15. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. PMID:26561451

  16. Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to quartz particles.

    PubMed

    Ale-Agha, Niloofar; Albrecht, Catrin; Klotz, Lars-Oliver

    2009-12-01

    Chronic inhalation of quartz particles has been implicated in lung diseases including silicosis and cancer. The aim of this study was to investigate whether quartz particles affect gap junctional intercellular communication (GJIC) in rat lung epithelial cells (RLE-6TN). Here, we demonstrate that exposure of RLE-6TN cells to subtoxic doses of DQ12 standard quartz resulted in an up to 55% reduction of GJIC, as determined in a dye transfer assay. We show that connexin-43 (Cx43) is the major connexin responsible for intercellular communication in these lung epithelial cells and that exposure to quartz particles induces a significant internalization of Cx43. Downregulation of GJIC was attenuated by N-acetyl cysteine, suggesting the involvement of reactive oxygen species and/or cellular thiol homeostasis in the regulation of GJIC. Furthermore, an inhibitor of activation of extracellular signal-regulated kinases prevented the loss of GJIC in cells exposed to DQ12 quartz, although no direct phosphorylation of Cx43 upon exposure to DQ12 was detected. PMID:19766597

  17. Effects of grain size and temperature on virus attachment onto quartz sand

    NASA Astrophysics Data System (ADS)

    Aravantinou, Andriana F.; Chrysikopoulos, Constantinos V.

    2014-05-01

    Virus transport in groundwater is controlled mainly by attachment onto the solid matrix and inactivation. Therefore, understanding how the various parameters affect virus attachment can lead to improved virus transport predictions and better health risk evaluations. This study is focused on the attachment of viruses onto quartz sand under batch experimental conditions. The bacteriophages ΦX174 and MS2 were used as model viruses. Three different sand grain sizes were employed for the static and dynamic experiments. The batch sorption experiments were performed under static conditions at 4°C and 20°C and dynamic conditions at 4°C. The experimental data were adequately described by the Freudlich isotherm. It was shown that temperature significantly affects virus attachment under static conditions. The attachment of both MS2 and ΦX174 onto quartz sand was greater at 20°C than 4°C. Higher virus attachment was observed under dynamic than static conditions, and in all cases, the affinity of MS2 for quartz sand was greater than that of ΦX174. Furthermore, in most of the cases considered, bacteriophage attachment was shown to decrease with increasing quartz sand size.

  18. Quartz in Coal Dust Deposited on Internal Surface of Respirable Size Selective Samplers

    PubMed Central

    Soo, Jhy-Charm; Lee, Taekhee; Kashon, Michael; Kusti, Mohannad; Harper, Martin

    2016-01-01

    The objective of the present study is to quantify quartz mass in coal dust deposited on the internal cassette surface of respirable size-selective samplers. Coal dust was collected with four different respirable size-selective samplers (10 mm Dorr-Oliver nylon [Sensidyne, St. Petersburg, Fla.], SKC Aluminum [SKC Inc., Eighty Four, Pa.], BGI4L [BGI USA Inc., Waltham, Mass.], and GK2.69 cyclones [BGI USA Inc.]) with two different cassette types (polystyrene and static-dissipative polypropylene cassettes). The coal dust was aerosolized in a calm air chamber by using a fluidized bed aerosol generator without neutralization under the assumption that the procedure is similar to field sampling conditions. The mass of coal dust was measured gravimetrically and quartz mass was determined by Fourier transform infrared spectroscopy according to the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods, Method 7603. The mass fractions of the total quartz sample on the internal cassette surface are significantly different between polystyrene and static-dissipative cassettes for all cyclones (p < 0.05). No consistent relationship between quartz mass on cassette internal surface and coal dust filter mass was observed. The BGI4L cyclone showed a higher (but not significantly) and the GK2.69 cyclone showed a significantly lower (p < 0.05) internal surface deposit quartz mass fraction for polystyrene cassettes compared to other cyclones. This study confirms previous observations that the interior surface deposits in polystyrene cassettes attached to cyclone pre-selectors can be a substantial part of the sample, and therefore need to be included in any analysis for accurate exposure assessment. On the other hand, the research presented here supports the position that the internal surface deposits in static-dissipative cassettes used with size-selective cyclones are negligible and that it is only necessary to analyze the filter catch. PMID:25204985

  19. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  20. Grain size dependence of elastic anomalies accompanying the α β phase transition in polycrystalline quartz

    NASA Astrophysics Data System (ADS)

    McKnight, Ruth E. A.; Moxon, T.; Buckley, A.; Taylor, P. A.; Darling, T. W.; Carpenter, M. A.

    2008-02-01

    The effects of grain size on the elastic properties of quartz through the α-β phase transition have been investigated by resonant ultrasound spectroscopy. It is found that there are three regimes, dependent on grain size, within which elastic properties show different evolutions with temperature. In the large grain size regime, as represented by a quartzite sample with ~100-300 µm grains, microcracking is believed to occur in the vicinity of the transition point, allowing grains to pull apart. In the intermediate grain size regime, as represented by novaculite (1-5 µm grain size) and Ethiebeaton agate (~120 nm grain size), bulk and shear moduli through the transition follow closely the values expected from averages of single crystal data. The novaculite sample, however, has a transition temperature ~7 °C higher than that of single crystal quartz. This is assumed to be due to the development of internal pressure arising from anisotropic thermal expansion. In the small grain size region, agates from Mexico (~65 nm) and Brazil (~50 nm) show significant reductions in the amount of softening of the bulk modulus as the transition point is approached from below. This is consistent with a tendency for the transition to become more second order in character. The apparent changes towards second order character do not match quantitative predictions for samples with homogeneous strain across elastically clamped nanocrystals, however. Some of the elastic variations are also due to the presence of moganite in these samples. True 'nanobehaviour' for quartz in ceramic samples thus appears to be restricted to grain sizes of less than ~50 nm.

  1. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'. PMID:26323505

  2. In situ production of alpha particles and alpha recoil particles in quartz applied to ESR studies of oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Rink, W. J.; Yonezawa, C.; Matsue, H.; Kagami, T.

    2001-12-01

    The intensity of an ESR signal associated with oxygen vacancies in quartz (E 1' center and heat-treated E 1' center) are correlated with the radiometric age of their host rocks. Two natural processes are responsible for the production of oxygen vacancies (1) lattice damage along alpha recoil and alpha particle tracks and (2) randomly distributed ionization damage from energetic electrons (beta particles) and gamma photons. The aim of this paper was to determine whether the track damage process is dominant relative to the ionization processes. Heat-treated E 1' centers are considered a proxy measure of the oxygen vacancy concentration. In situ alpha irradiation of quartz was accomplished by neutron irradiation of lithium and boron-bearing quartz. We found that the oxygen vacancy population measured by ESR was a factor of 2 higher than estimated from calculations of the damage using Ziegler's TRIM software. Considering the uncertainties in absolute determinations of spin concentration from ESR signals, the agreement is very good and supports the theory that alpha particle damage is largely responsible for oxygen vacancy production during natural irradiation of quartz over intervals of hundreds of millions of years.

  3. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty

    NASA Astrophysics Data System (ADS)

    Sarangi, Bighnaraj; Aggarwal, Shankar G.; Sinha, Deepak; Gupta, Prabhat K.

    2016-03-01

    In this work, we have used a scanning mobility particle sizer (SMPS) and a quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyser (DMA), where size segregation is done based on particle electrical mobility. Downstream of the DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas the other one is sent to the QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of the SMPS and mass concentration data obtained from the QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10-478 nm), i.e. AS, SC and AN, is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm-3, values which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm-3, respectively. Using this technique, the percentage contribution of error in the measurement of effective density is calculated to be in the range of 9-17 %. Among the individual uncertainty components, repeatability of particle mass obtained by the QCM, the QCM crystal frequency, CPC counting efficiency, and the equivalence of CPC- and QCM-derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of the winter period in New Delhi was measured to be 1.28 ± 0.12 g cm-3

  4. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty

    NASA Astrophysics Data System (ADS)

    Sarangi, B.; Aggarwal, S. G.; Sinha, D.; Gupta, P. K.

    2015-12-01

    In this work, we have used scanning mobility particle sizer (SMPS) and quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyzer (DMA), where size segregation was done based on particle electrical mobility. At the downstream of DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas other one is sent to QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of SMPS and mass concentration data obtained from QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10 to 478 nm), i.e. AS, SC and AN is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm-3, which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm-3, respectively. Among individual uncertainty components, repeatability of particle mass obtained by QCM, QCM crystal frequency, CPC counting efficiency, and equivalence of CPC and QCM derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of winter period in New Delhi is measured to be 1.28 ± 0.12 g cm-3. It was found that in general, mid-day effective density of ambient aerosols increases with increase in CMD of particle size measurement but particle photochemistry is an important

  5. PARTICLE SIZE DEFINITIONS FOR PARTICULATE DATA ANALYSIS

    EPA Science Inventory

    The report gives results of a survey to identify all equations required to represent particle size data according to each of three particle diameter definitions: Stokes, classical aerodynamic, and aerodynamic impaction (or Lovelace diameter). Although the particle diameter defini...

  6. Recent trends in particle size analysis techniques

    NASA Technical Reports Server (NTRS)

    Kang, S. H.

    1984-01-01

    Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.

  7. Intracellular influx of calcium induced by quartz particles in alveolar macrophages.

    PubMed

    Tian, Feng; Zhu, Tong; Shang, Yu

    2010-01-15

    Historical studies report that cellular injury and silicosis are related to cytosolic free calcium (Ca2+). Moreover, reactive oxygen species (ROS) have been linked to cellular injury. However, the detail mechanism of the increase in [Ca2+]i and the relationship between [Ca2+]i and ROS production remains unknown. Quartz particle has been found to increase [Ca2+]i and activate the generation of ROS. Our hypothesis is that [Ca2+]i increase induced by quartz particle is from extracellular Ca2+ through the Ca2+ channel, and [Ca2+]i increase is believed to activate ROS production. In order to examine this hypothesis, we treated rat alveolar macrophages with quartz (SiO2) particles and used laser scanning confocal microscopy to measure [Ca2+]i and the fluorescence intensity of ROS. Time- and dose-dependent increases in [Ca2+]I and ROS in macrophages as well as cell viability were observed. Through chelating extracellular Ca2+ with ethylene glycol tetraacetic acid and releasing intracellular Ca2+ with thapsigargin, we found that 72.7% of the [Ca2+]i increase was due to the influx of Ca2+ from the extracellular environment, via Ca2+ channels in the plasma membrane. By adding mannitol to scavenge hydroxyl radicals (OH(.)), and removing surface iron from the quartz particles to reduce OH(.) generation, we observed a reduced level of ROS generation, whereas the increase in [Ca2+]i was unaffected. When using EGTA to reduce [Ca2+]i, we observed a decrease in ROS production. This study suggests that the [Ca2+]i influx was independent of OH(.) production, and the [Ca2+]i increase resulted in ROS production. These results further indicate that there is a strong relationship between cytosolic free Ca2+ content and cellular injury as well as silica exposure. PMID:19835900

  8. Calibration-less sizing and quantitation of polymeric nanoparticles and viruses with quartz nanopipets.

    PubMed

    Terejánszky, Péter; Makra, István; Fürjes, Péter; Gyurcsányi, Róbert E

    2014-05-20

    The feasibility of using quartz nanopipets as simple and cost-effective Coulter counters for calibration-less quantitation and sizing of nanoparticles by resistive pulsing sensing (RPS) was investigated. A refined theory was implemented to calculate the size distribution of nanoparticles based on the amplitude of resistive pulses caused by their translocation through nanopipets of known geometry. The RPS provided diameters of monodisperse latex nanoparticles agreed within the experimental error with those measured by using scanning electron microscopy (SEM), dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). The nanopipet-based counter, by detecting individual nanoparticles, could resolve with similar resolution as SEM mixtures of monodisperse nanoparticles having partially overlapping size distributions, which could not be discriminated by DLS or NTA. Furthermore, by calculating the hydrodynamic resistance of the nanopipets and consequently the volume flow through the tip enabled for the first time the calibration-less determination of nanoparticle concentrations with nanopipets. The calibration-less methodology is applied to sizing and quantitation of inactivated poliovirus of ~26 nm diameter, which is the smallest size spherical shape virus ever measured by resistive pulse sensing. PMID:24773609

  9. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions. PMID:24911544

  10. Coagulation of quartz particles in aqueous solutions of copper(II)

    SciTech Connect

    Larson, I.; Pugh, R.J.

    1998-12-15

    The colloidal stability of quartz suspension was determined over a wide range of pH in aqueous copper nitrate where the state of Cu(II) is changed from mainly aqua ions and monohydroxyl complexes in the acid and neutral pH to polynuclear hydroxo complexes and colloidal precipitated copper hydroxide at higher pH. Two regions of instability were observed and in both cases the particles were shown to have low electrophoretic mobility. In the neutral pH region, the uptake of Cu(II) was sufficient to reduce the mobility of the particles to zero, while in the high-pH region evidence suggested coagulation between precipitated Cu(OH){sub 2} and the quartz particles. It was shown that in all cases the coagulation was reversible and that the uptake of Cu(II) was dependent on the uncharged surface hydroxyl density. Studies of the coagulation kinetics showed that extended time scales were involved (several minutes in the neutral pH region to tens of minutes at high pH).

  11. Intracellular influx of calcium induced by quartz particles in alveolar macrophages

    SciTech Connect

    Feng Tian; Tong Zhu; Yu Shang

    2010-01-15

    Historical studies report that cellular injury and silicosis are related to cytosolic free calcium (Ca{sup 2+}). Moreover, reactive oxygen species (ROS) have been linked to cellular injury. However, the detail mechanism of the increase in [Ca{sup 2+}]{sub i} and the relationship between [Ca{sup 2+}]{sub i} and ROS production remains unknown. Quartz particle has been found to increase [Ca{sup 2+}]{sub i} and activate the generation of ROS. Our hypothesis is that [Ca{sup 2+}]{sub i} increase induced by quartz particle is from extracellular Ca{sup 2+} through the Ca{sup 2+} channel, and [Ca{sup 2+}]{sub i} increase is believed to activate ROS production. In order to examine this hypothesis, we treated rat alveolar macrophages with quartz (SiO{sub 2}) particles and used laser scanning confocal microscopy to measure [Ca{sup 2+}]{sub i} and the fluorescence intensity of ROS. Time- and dose-dependent increases in [Ca{sup 2+}]{sub I} and ROS in macrophages as well as cell viability were observed. Through chelating extracellular Ca{sup 2+} with ethylene glycol tetraacetic acid and releasing intracellular Ca{sup 2+} with thapsigargin, we found that 72.7% of the [Ca{sup 2+}]{sub i} increase was due to the influx of Ca{sup 2+} from the extracellular environment, via Ca{sup 2+} channels in the plasma membrane. By adding mannitol to scavenge hydroxyl radicals (OH.), and removing surface iron from the quartz particles to reduce OH. generation, we observed a reduced level of ROS generation, whereas the increase in [Ca{sup 2+}]{sub i} was unaffected. When using EGTA to reduce [Ca{sup 2+}]{sub i}, we observed a decrease in ROS production. This study suggests that the [Ca{sup 2+}]{sub i} influx was independent of OH. production, and the [Ca{sup 2+}]{sub i} increase resulted in ROS production. These results further indicate that there is a strong relationship between cytosolic free Ca{sup 2+} content and cellular injury as well as silica exposure.

  12. Measuring shape and size of micrometric particles from the analysis of the forward scattered field

    NASA Astrophysics Data System (ADS)

    Villa, S.; Sanvito, T.; Paroli, B.; Pullia, A.; Delmonte, B.; Potenza, M. A. C.

    2016-06-01

    Characterizing nano- and micro-particles in fluids still proves to be a significant challenge for both science and industry. Here, we show how to determine shape and size distributions of polydisperse water suspensions of micron-sized particles by the analysis of the field scattered in the forward direction by single particles illuminated by a laser beam. We exploit the novel Single Particle Extinction and Scattering method in connection with shear conditions which give preferred orientations to the particles passing through the scattering volume. Water suspensions of calibrated non-spherical particles, polydisperse standard monophasic mineral samples of quartz and kaolinite, and a mixture of quartz and illite are studied in detail. Application and limitation of the method are discussed.

  13. Particle size distribution instrument. Topical report 13

    SciTech Connect

    Okhuysen, W.; Gassaway, J.D.

    1995-04-01

    The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.

  14. PROCEDURE FOR DETERMINATION OF SEDIMENT PARTICLE SIZE (GRAIN SIZE)

    EPA Science Inventory

    Sediment quality and sediment remediation projects have become a high priority for USEPA. Sediment particle size determinations are used in environmental assessments for habitat characterization, chemical normalization, and partitioning potential of chemicals. The accepted met...

  15. Size dependent cytotoxicity of fly ash particles

    SciTech Connect

    Liu, W.K.; Tam, J.S.K.; Wong, M.H.

    1988-01-01

    Fly ash samples were collected from the electrostatic precipitator of a coal-fired power plant in Hong Kong. The particles of the respirable range (smaller than 10 {mu}m) were divided into 4 groups according to their particle size (mass median aerodynamic diameters). The surface morphology and the metal contents (Fe, Mn, Al and Zn) of fly ash particles were examined by a scanning electron microscopy and an inductively coupled plasma spectrophotometer, respectively. The particles were very heterogeneous in size and shape as well as the concentration of metals. The cytotoxicity of these four groups of fly ash particles were evaluated using an in vitro rat alveolar macrophages culture assay. The viability of alveolar macrophages was lower when incubated with smaller size particles. This relationship was also reflected by the damage of the surface morphology of the cells and the release of cytoplasmic (lactate dehydrogenase) and lysosomal (acid phosphatase and {beta}-glucuronidase) marker enzymes into the culture media.

  16. Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.

    1991-01-01

    Samples of 'evolved' lithologies, felsite, quartz monzodiorite (QMD), and whitlockite-rich quartz monzodiorite, were identified compositionally and petrographically among 2-4-mm soil particles from Apollo 14. Fragments of QMD were found to be extremely rare in the Apollo 14 samples. Felsite is similar to previously reported samples. QMD 14161,7069 is similar to 15405 QMD and has ITE concentrations in KREEP-like concentration ratios of about twice the ITE concentrations of average high-K KREEP. QMD cumulate has the highest measured REE concentrations of any lunar sample to date with the exception of individual whitlockite grains. Felsite and whitlockite-rich lithologies appear to be petrogenetically related and have complementary compositions representing separated fractions of the QMD or KREEP-like parental melt. Felsite is a silica-rich fraction of the residual liquid or it is a derivative of the silica-rich fraction. Felsite or lunar granite of this type results from residual liquid separation following crystal-liquid separation of a QMD-like parent melt with concentration ratios of ITEs similar to those of KREEP.

  17. APSAS; an Automated Particle Size Analysis System

    USGS Publications Warehouse

    Poppe, Lawrence J.; Eliason, A.H.; Fredericks, J.J.

    1985-01-01

    The Automated Particle Size Analysis System integrates a settling tube and an electroresistance multichannel particle-size analyzer (Coulter Counter) with a Pro-Comp/gg microcomputer and a Hewlett Packard 2100 MX(HP 2100 MX) minicomputer. This system and its associated software digitize the raw sediment grain-size data, combine the coarse- and fine-fraction data into complete grain-size distributions, perform method of moments and inclusive graphics statistics, verbally classify the sediment, generate histogram and cumulative frequency plots, and transfer the results into a data-retrieval system. This system saves time and labor and affords greater reliability, resolution, and reproducibility than conventional methods do.

  18. Magnetite Particle Size Distribution and Pellet Oxidation

    NASA Astrophysics Data System (ADS)

    Cho, Hyeon Jeong; Tang, Ming; Pistorius, Petrus Christiaan

    2014-08-01

    Oxidation of magnetite pellets is commonly performed to prepare strong pellets for ironmaking. This article presents a contribution to quantitative understanding of fundamental pellet oxidation kinetics, based on measured oxidation kinetics of magnetite particles and pellets. The commonly observed "plateau" oxidation behavior is confirmed to be consistent with the effect of very large differences in magnetite particle sizes in the concentrate from which pellets are produced. The magnetite particles range in size from less than a micron to several tens of a microns; changing the size distribution by inert sintering of pellets decreases both the plateau level of oxidation and the specific surface area, in ways that are compatible with an assumed Rosin-Rammler magnetite particle size distribution.

  19. Size distributions of solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Cliver, E.; Reames, D.; Kahler, S.; Cane, H.

    1991-01-01

    NASA particle detectors on the IMP-8 are employed to determine the size distributions of the peak fluxes of events related to solar-energetic particles including protons and electrons. The energetic proton events show a flatter size distribution which suggests that not all flares are proton flares. Both the electron and proton events are classified as either 'impulsive' or 'gradual', and the impulsive events tend to have a steeper power-law distribution.

  20. Hazards of explosives dusts: Particle size effects

    SciTech Connect

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  1. The suitability of scanning angle reflectometry for colloidal particle sizing

    NASA Astrophysics Data System (ADS)

    van der Zeeuw, E. A.; Sagis, L. M. C.; Koper, G. J. M.; Mann, E. K.; Haarmans, M. T.; Bedeaux, D.

    1996-07-01

    We investigated the suitability of reflectometry as a sizing method for polystyrene latex particles. This technique, where the particles are adsorbed at a quartz/water interface, involves the analysis of the reflection around the Brewster angle of light polarized in the plane of incidence. A computation of a full reflectivity curve containing about 20 datapoints, taking into account all electromagnetic interactions, is extremely complex and may take up to 100 h on an Indy R4600 computer (Silicon Graphics, Mountain View, CA). To use the complete electromagnetic theory for analysis of experiments therefore is impractical. We analyzed the experimental reflectivity curves using an approximate theory (free-sphere model), which neglects all electromagnetic interactions between different particles and their images in the substrate. To assess the errors introduced by neglecting these interactions, we have calculated reflectivity curves using the full electromagnetic theory for this system, and analyzed them with the free-sphere model. We found that the diameters determined with the free-sphere model deviate at most 2% from the actual values. The surface coverage determined with the free-sphere model is systematically smaller than the actual coverage. The difference can be as large as 15% at a coverage of 9%. We also show that size polydispersity of the sample plays a minor role in the analysis of the data. We illustrate the usefulness of the free-sphere model, by analyzing measurements in which polystyrene latex particles are swollen by an organic solvent that is miscible with water.

  2. Effect of fluid motion on the impact erosion by a micro-particle on quartz crystals

    NASA Astrophysics Data System (ADS)

    Cai, D. H.; Qi, H.; Wen, D. H.; Zhang, L.; Yuan, Q. L.; Chen, Z. Z.

    2016-08-01

    Abrasive slurry jet (ASJ) is a promising technology to process a variety of materials with advantages of high flexibility, no heat affected zone and high cutting efficiency. In this paper, the impressions generated on a quartz crystal specimen by the impacts of micro-particles laden in a water flow and the associated impact erosion mechanisms are presented and discussed in order to effectively and efficiently control the machining quality. Both brittle and ductile mode erosions coexist in the machining process due to the influence of the fluid motion on the trajectories of particles near the target surface. Large-scale craters produced by brittle conchoidal fractures associated with crashed zone, radial and lateral cracks, dominate the erosion process at large jet impact angles while small-scale craters involving micro-ploughing and micro-cutting are produced by the ductile mode erosion at small jet impact angles. The relation between the process parameters and the overall average volume of craters has also been quantitatively analyzed. A combination of small jet impact angle and abrasive particles and low water pressure is preferred for improving the surface quality after the ASJ machining process caused by the more formation of ductile mode induced craters on the target material, but it is at the sacrifice of the material removal rate as well.

  3. Complex Plasma with Two Distinct Particle Sizes

    NASA Astrophysics Data System (ADS)

    Smith, Bernard; Matthews, Lorin; Hyde, Truell

    2008-10-01

    Dust particle clouds can be found in almost all plasma processing environments including both plasma etching devices and in plasma deposition processes. Dust particles suspended within such plasmas acquire an electric charge from collisions with free electrons in the plasma. If the ratio of inter-particle potential energy to the average kinetic energy is sufficient, the particles will form either a ``liquid'' structure with short range ordering or a crystalline structure with long range ordering. Otherwise, the dust particle system will remain in a gaseous state. The preponderance of prior experiments used monodisperse spheres to form complex plasma systems. In order to determine the effects of a size distribution, multiple monodisperse particle sizes need to be examined to determine the manner in which phase transitions and other thermodynamic properties depend upon the overall dust grain size distribution. In this experiment, two-dimensional plasma crystals were formed from mixtures of 11.9 μm and 6.50 μm monodisperse particles in Argon plasma. With the use of various optical techniques, the pair correlation function was determined at different pressures and powers and then compared to measurements obtained for experiments employing a single size distribution of monodisperse spheres. Additionally, vibrational data was examined to determine other dust and plasma parameters.

  4. The techniques of holographic particle sizing

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    Depending on the mechanism of particle production, the resultant particle size and velocity distribution may range over several orders of magnitude. In general, if particle size information is desired from a given type generator, one must resort to some form of experimental determination of the distribution. If the source of particle production is a dynamic one involving a reasonable volume, holography provides a tailor-made particle size and velocity distribution detector. This is evidenced by the fact that holography allows the entire volume to be recorded on one exposure without any interference with the volume of interest. Herein lies a very important characteristic of the holographic particle detection technique: It provides a holographic nondestructive testing technique in the fullest sense of the definition of nondestructive testing. This report provides a description of three different systems useful in this technique and includes the experimental results from one of the holographic systems which was used to detect particle size and velocity distribution from the Skylab waste tank.

  5. Investigation of plasma particle interactions with variable particle sizes

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2015-11-01

    In dusty plasmas, the dust particles are subjected to many forces of different origins. Both the gas and plasma directly affect the dust particles through electric fields, neutral drag, ion drag and thermophoretic forces, while the particles themselves interact with one another through a screened coulomb potential, which can be influenced by flowing ions. Recently, micron sized particles have been used as probes to analyze the electric fields in the plasma directly. A proper analysis of the resulting data requires a full understanding of the manner in which these forces couple to the dust particles. In most cases each of the forces exhibit unique characteristics, many of which are partially dependent on the particle size. In this study, five different particle sizes are used to investigate the forces resident in the sheath above the lower electrode of a GEC RF reference cell. The particles are tracked using a high-speed camera, yielding two-dimensional force maps allowing the force on the particles to be described as a polynomial series. It will be shown that the data collected can be analyzed to reveal information about the origins of the various forces. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  6. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  7. Augmentation of pulmonary reactions to quartz inhalation by trace amounts of iron-containing particles.

    PubMed Central

    Castranova, V; Vallyathan, V; Ramsey, D M; McLaurin, J L; Pack, D; Leonard, S; Barger, M W; Ma, J Y; Dalal, N S; Teass, A

    1997-01-01

    Fracturing quartz produces silica-based radicals on the fracture planes and generates hydroxyl radicals (.OH) in aqueous media. .OH production has been shown to be directly associated with quartz-induced cell damage and phagocyte activation in vitro. This .OH production in vitro is inhibited by desferrioxamine mesylate, an Fe chelator, indicating involvement of a Fenton-like reaction. Our objective was to determine if Fe contamination increased the ability of inhaled quartz to cause inflammation and lung injury. Male Fischer 344 rats were exposed 5 hr/day for 10 days to filtered air, 20 mg/m3 freshly milled quartz (57 ppm Fe), or 20 mg/m3 freshly milled quartz contaminated with Fe (430 ppm Fe). High Fe contamination of quartz produced approximately 57% more reactive species in water than quartz with low Fe contamination. Compared to inhalation of quartz with low Fe contamination, high Fe contamination of quartz resulted in increases in the following responses: leukocyte recruitment (537%), lavageable red blood cells (157%), macrophage production of oxygen radicals measured by electron spin resonance or chemiluminescence (32 or 90%, respectively), nitric oxide production by macrophages (71%), and lipid peroxidation of lung tissue (38%). These results suggest that inhalation of freshly fractured quartz contaminated with trace levels of Fe may be more pathogenic than inhalation of quartz alone. PMID:9400745

  8. Determination of particle size using measurement of scatter

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1976-01-01

    Scatter from glass beads placed on a mirror was measured using a quartz lamp and laser. Data were obtained in the plane containing the normal to the surface and the incident beam. For the quartz lamp the best correlation can be obtained for data measured at a zenith of 55 deg and 180 deg from the incident beam. The best correlation when the laser is used is obtained at about the same position. However, the correlation variables are angular spacing of the minimums of the data versus the size. Whereas, with the quartz lamp the correlation variables are the amount of scattered energy versus size.

  9. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. PMID:24021928

  10. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    NASA Astrophysics Data System (ADS)

    Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; Martins dos Santos, Sebastiao; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred

    2016-04-01

    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5-3 µm

  11. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  12. Measurement of nonvolatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA

  13. Alpha-quartz-induced chemokine expression by rat lung epithelial cells: effects of in vivo and in vitro particle exposure.

    PubMed

    Driscoll, K E; Howard, B W; Carter, J M; Asquith, T; Johnston, C; Detilleux, P; Kunkel, S L; Isfort, R J

    1996-11-01

    Chemokines are chemotactic cytokines that can play a key role in leukocyte recruitment to sites of tissue injury or infection. Previous studies have demonstrated that exposure to alpha-quartz as well as other noxious particles increases chemokine gene expression in rat lung, although the cells responsible for chemokine expression and the mechanisms underlying this response have remained unclear. The present studies demonstrate that exposure of rats to alpha-quartz induced expression of mRNA for the chemokine macrophage-inflammatory protein (MIP)-2 in epithelial cells lining the terminal bronchioles and alveolar ducts as well as macrophages and alveolar type II cells in the more distal lung. Treatment of rats with an anti-MIP-2 antiserum before alpha-quartz exposure markedly attenuated neutrophilic infiltration of the lungs demonstrating an important role for MIP-2 in alpha-quartz-induced pulmonary inflammation. In vitro exposure of primary cultures of rat alveolar type II cells or the rat alveolar type II cell line RLE-6TN to tumor necrosis factor-alpha, endotoxin, or alpha-quartz increased mRNA for MIP-2 as well as the structurally and functionally similar chemokine cytokine-induced neutrophil chemoattractant but not the chemokine MIP-1 alpha. The alpha-quartz-induced increase in epithelial MIP-2 mRNA resulted, at least in part, from increased gene transcription and was associated with the release of active MIP-2 protein. Induction of RLE-6TN MIP-2 and cytokine-induced neutrophil chemoattractant mRNA expression was not unique to alpha-quartz, being also increased by crocidolite asbestus fibers but not by titanium dioxide or MMVF-10 glass fibers. These findings indicate that epithelial cells contribute to chemokine expression in rat lung after exposure to alpha-quartz and potentially other noxious particles and suggest that alpha-quartz-activated MIP-2 expression in vivo results, at least in part, from a direct action of the particles on the lung epithelium. PMID

  14. Particle Size Distributions in Atmospheric Clouds

    NASA Technical Reports Server (NTRS)

    Paoli, Roberto; Shariff, Karim

    2003-01-01

    In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

  15. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.

    PubMed

    Wang, Dengjun; Zhang, Wei; Hao, Xiuzhen; Zhou, Dongmei

    2013-01-15

    Land application of biochar is increasingly being considered for potential agronomic and environmental benefits, e.g., enhancing carbon sequestration, nutrient retention, water holding capacity, and crop productivity; and reducing greenhouse gas emissions and bioavailability of environmental contaminants. However, little is known about the transport of biochar particles in the aqueous environment, which represents a critical knowledge gap because biochar particles can facilitate the transport of adsorbed contaminants. In this study, column experiments were conducted to investigate biochar particle transport and retention in water-saturated quartz sand. Specific factors considered included biochar feedstocks (wheat straw and pine needle), pyrolysis temperature (350 and 550 °C), and particle size (micrometer-particle (MP) and nanoparticle (NP)). Greater mobility was observed for the biochars of lower pyrolysis temperatures and smaller particle sizes. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) calculations that considered measured zeta potentials and Lewis acid-base interactions were used to better understand the influence of pyrolysis temperature on biochars particle transport. Most biochars exhibited attractive acid-base interactions that impeded their transport, whereas the biochar with the greatest mobility had repulsive acid-base interaction. Nonetheless, greater retention of the MPs than that of the NPs was in contrast with the XDLVO predictions. Straining and biochar surface charge heterogeneity were found to enhance the retention of biochar MPs, but played an insignificant role in the biochar NP retention. Experimental breakthrough curves and retention profiles were well-described using a two-site kinetic retention model that accounted for depth-dependent retention at one site. Modeled first-order retention coefficients on both sites 1 and 2 increased with increasing pyrolysis temperature and particle size. PMID:23249307

  16. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts.

    PubMed

    Geh, Stefan; Yücel, Raif; Duffin, Rodger; Albrecht, Catrin; Borm, Paul J A; Armbruster, Lorenz; Raulf-Heimsoth, Monika; Brüning, Thomas; Hoffmann, Eik; Rettenmeier, Albert W; Dopp, Elke

    2006-02-01

    Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Ø< 10 microm) with an alpha-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane. PMID:16059726

  17. Electronic cigarette aerosol particle size distribution measurements.

    PubMed

    Ingebrethsen, Bradley J; Cole, Stephen K; Alderman, Steven L

    2012-12-01

    The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution. PMID:23216158

  18. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  19. Particle size reduction of propellants by cryocycling

    SciTech Connect

    Whinnery, L.; Griffiths, S.; Lipkin, J.

    1995-05-01

    Repeated exposure of a propellant to liquid nitrogen causes thermal stress gradients within the material resulting in cracking and particle size reduction. This process is termed cryocycling. The authors conducted a feasibility study, combining experiments on both inert and live propellants with three modeling approaches. These models provided optimized cycle times, predicted ultimate particle size, and allowed crack behavior to be explored. Process safety evaluations conducted separately indicated that cryocycling does not increase the sensitivity of the propellants examined. The results of this study suggest that cryocycling is a promising technology for the demilitarization of tactical rocket motors.

  20. Cataclasis and processes of particle size reduction

    NASA Astrophysics Data System (ADS)

    Blenkinsop, Tom G.

    1991-05-01

    The particle size distribution (P.S.D.) of fragmented geological materials is affected by the fragmentation process, initial size distribution, number of fracturing events, energy input, strain, and confining pressure. A summary of literature shows that the fractal dimension ( D) of the P.S.D. is increased by the number of fracturing events, energy input, strain, and confining pressure. Cenozoic cataclasis of granite, granodiorites, gneisses and arkose seen in cores from the Cajon Pass drillhole, southern California, produced P.S.D.s with values of D that varied from 1.88 to 3.08. Each rock type has a characteristic and more limited range of D. Areas of dilatant texture and mode I fracture-fillings have low average values (2.32 and 2.37) compared to an average value of 2.67 in shear fracture-fillings D has a good inverse correlation with average particle size. Data from fault rocks in the San Gabriel fault zone, southern California ( Anderson et al., 1983) have been reanalyzed to show that values of D are higher (2.10 5.52) and average particle size is lower than the Cajon Pass samples, but the ranges of values overlap, and the inverse correlation between D and average particle size is extended. Microstructural observations combined with these results suggest that three processes contributed to particle size reduction during cataclasis. The first process of feldspar alteration, which leads to low values of D, has not been previously recognized. The second process is probably constrained comminution ( Sammis et al., 1987), since the average D in shear fracture-fillings is close to the value of 2.58 predicted by this theory. A further stage of particle size reduction is demonstrated by an increase of D with cataclasis. This third process is selective fracture of larger particles, which may also operate during localization and the cataclastic flow-to-faulting transition as observed in experiments. A transition from constrained comminution to selective fracture of

  1. High-accuracy particle sizing by interferometric particle imaging

    NASA Astrophysics Data System (ADS)

    Qieni, Lü; Wenhua, Jin; Tong, Lü; Xiang, Wang; Yimo, Zhang

    2014-02-01

    A method of high-accuracy estimation of fringes number/fringes frequency of interferogram based on erosion match and the Fourier transform technique is proposed. The edge images of the interference pattern of particles and the particle mask image are detected respectively by erosion operating firstly and then subtracted with the respective original image, and the center coordinate of particles can be extracted through the 2D correlation operation for the two edge images obtained. The interference pattern of each particle can then be achieved using the center coordinate, the shape and size of the particle image. The number of fringes/fringe spacing of the interferogram of the particle is extracted by Fourier transform and the modified Rife algorithm, and sub-pixel accuracy of the extracted frequency is acquired. Its performance is demonstrated by numerical simulation and experimental measurement. The measurement uncertainty is ±0.91 μm and the relative error 1.13% for the standard particle of diameter 45 μm. The research results show that the algorithm presented boasts high accuracy for particle sizing as well as location measurement.

  2. Underlying Asymmetry with Particle-Size Segregation

    NASA Astrophysics Data System (ADS)

    Gajjar, Parmesh; van der Vaart, Kasper; Epely-Chauvin, Gael; Andreini, Nicolas; Gray, Nico; Ancey, Christophe

    2015-11-01

    Granular media have a natural tendency to self-organise when sheared, with different sized constituents counter-intuitively separating from each other. Not only does the segregation produce a rich diversity of beautiful patterns, but it can also have serious implications in both industrial and geophysical environments. Despite the universal importance, the individual particle dynamics during segregation are still poorly understand, with such an analysis proving to be difficult with conventional techniques such as binning and sidewall observation. This talk will present results of recent experiments that studied particle scale segregation dynamics during oscillatory shear. Refractive index matched scanning allowed examination of the interior of the flow, where it was observed that large and small particles have an underlying asymmetry that is dependant on the local particle concentration. Small particles were seen to segregate faster through regions of many large particles, whilst large particles rise slower through regions of many small particles. The asymmetry is quantified on both bulk and particle length scales, and is shown to have good agreement with a continuum model that uses a cubic segregation flux.

  3. Constraining Particle Sizes of Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Becker, T. M.; Colwell, J.; Esposito, L. W.

    2011-12-01

    Saturn's beauty is often attributed to the magnificent rings that encircle the planet. Although admired for hundreds of years, we are now just beginning to understand the complexity of the rings as a result of new data from the Cassini orbiter. Studying occultations of the rings provides information about the distribution and sizes of the particles that define the rings. During one solar occultation, the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini was slightly misaligned with the Sun, decreasing the amount of direct solar signal to ~1% of the normal value. As a result, UVIS detected a peak in photon counts above the non-occulted signal due to forward-scattered light diffracted by the small particles in the F Ring. There is a direct relationship between the size of the particles and the intensity of the light scattered. We utilize this relationship in a model that replicates the misalignment and calculates the amount of light that would be detected as a function of the particle sizes in the ring. We present new results from the model that constrain the size distribution of the dynamically active F Ring, contributing to the study of the origin and evolution of Saturn's ring system.

  4. Acoustical concept for measuring particle size distributions

    SciTech Connect

    Mahler, D.S.; Kaufman, M.

    1981-02-01

    A new concept is investigated for measuring particle size and distribution for air pollution control applications. This study illustrates that the proposed device--the Acoustic Particulate Monitor (APM)--can measure total mass loading, mean particle diameter, and width of particle size distributions on an in-situ basis. The concept for such an instrument is based upon experimental and theoretical observations that the presence of dust in air causes a reduction in the speed of sound as a function of the transmitted frequency. These percentage reductions in the speed of sound are small and the research results illustrate how the accompanying shift in the acoustical phase is a highly sensitive method for detecting such effects. The magnitudes of the phase shift are related to mass loading. The frequency associated with the maximum phase shift is defined as the acoustic frequency, fA. Experimentally determining fA provides a measure of the mean particle size of the distribution. The detailed shape of the phase shift as a function of frequency is a measure of the spread in the size distribution of the entrained particulate. Experiments were performed using several configurations. Results were verified using direct mass measurements and microphotographs.

  5. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  6. Remote Laser Diffraction Particle Size Distribution Analyzer

    SciTech Connect

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  7. Photographic techniques for characterizing streambed particle sizes

    USGS Publications Warehouse

    Whitman, M.S.; Moran, E.H.; Ourso, R.T.

    2003-01-01

    We developed photographic techniques to characterize coarse (>2-mm) and fine (???2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wade-able and contained gravel - cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.

  8. Frequency-scanning particle size spectrometer

    NASA Technical Reports Server (NTRS)

    Fymat, Alain L. (Inventor)

    1982-01-01

    A particle size spectrometer having a fixed field of view within the forward light scattering cone at an angle .theta..sub.s between approximately 100 and 200 minutes of arc (preferably at 150 minutes), a spectral range extending approximately from 0.2 to 4.0 inverse micrometers (.mu.m.sup.-1), and a spectral resolution between about 0.1 and 0.2 .mu.m.sup.-1 (preferably toward the lower end of this range of spectral resolution), is employed to determine the distribution of particle sizes, independently of the chemical composition of the particles, from measurements of incident light, I.sub.o, at each frequency, .sigma. (=1/.lambda.), and scattered light, I(.sigma.), according to the equation: ##EQU1## where l=2.pi.sin.theta., .theta. being the fixed viewing angle .theta..sub.s at which scattered light is measured, r is particle size, .sigma. is the reciprocal of wavelength, J.sub.1 is a Bessel function of first kind and order unity, Y.sub.1 is a Bessel function of second kind and order unity. The quantity, I.sub..sigma., is the ratio of scattered light to incident light at each frequency interval. The apparatus is a passive remote sensor that can be used in laboratories, field stations, flying aircrafts and airships, and on board an orbiting satellite.

  9. Infrared (8-14 microns) remote sensing of soil particle size

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; D'Aria, Dana M.

    1992-01-01

    Particle size of soils plays a significant role in erosion potential and other mechanical properties. Most soils are dominated by the residual mineral quartz, which displays prominent reststrahlen bands in the 8-14 microns atmospheric window. The Earth Observing System will likely provide world-wide multispectral imagery in the 8-14 microns region via the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. The ratio of ASTER bands 10/14 can be used to estimate particle size in soils, if other ASTER bands are used to minimize the confusion factors provided by soil moisture, vegetation cover, soil organic content, and the presence of abundant minerals other than quartz. Use of band ratios minimizes the effects of poor surface temperature estimates, but maximizes the need for high signal-to-noise data.

  10. Langevin granulometry of the particle size distribution

    NASA Astrophysics Data System (ADS)

    Kákay, Attila; Gutowski, M. W.; Takacs, L.; Franco, V.; Varga, L. K.

    2004-06-01

    The problem of deriving the particle size distribution directly from superparamagnetic magnetization curves is studied by three mathematical methods: (1) least-squares deviation with regularization procedure, (2) simulated annealing and (3) genetic algorithm. Software has been developed for the latest versions of all these methods and its performance compared for various models of underlying particle size distributions (Dirac dgr-like, lognormal- and Gaussian-shaped). For single peak distributions all three methods give reasonable and similar results, but for bimodal distributions the genetic algorithm is the only acceptable one. The genetic algorithm is able to recover with the same precision both the lognormal and Gaussian single and double (mixed) model distributions. The sensitivity of the genetic algorithm—the most promising method—to uncertainty of measurements was also tested; correct peak position and its half width were recovered for Gaussian distributions, when the analysed data were contaminated with noise of up to 5% of MS.

  11. Colloid particle size-dependent dispersivity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Katzourakis, V. E.

    2014-12-01

    Laboratory and field studies have demonstrated that dispersion coefficients evaluated by fitting advection-dispersion transport models to nonreactive tracer breakthrough curves do not adequately describe colloid transport under the same flow field conditions. Here an extensive laboratory study was undertaken to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size and interstitial velocity. A total of 49 colloid transport experiments were performed in columns packed with glass beads under chemically unfavorable colloid attachment conditions. Nine different colloid diameters, and various flow velocities were examined. The breakthrough curves were successfully simulated with a mathematical model describing colloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity is positively correlated with colloid particle size, and increases with increasing velocity.

  12. Complex Plasmas with Two Distinct Particle Sizes

    NASA Astrophysics Data System (ADS)

    Smith, Bernard; Matthews, Lorin; Hyde, Truell

    2008-11-01

    Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. The majority of past and current experiments employed monodisperse spheres to form their complex plasma system. As a result, the manner in which the basic thermodynamic properties of the system are dependent upon the overall dust grain size distribution is still not well understood. In this experiment, two-dimensional plasma crystals were formed from mixtures of 11.93 μm, 8.89 μm and 6.50 μm monodisperse particles in Argon plasma. The pair correlation function and vibrational data were determined for varying pressures and powers and then compared with measurements obtained for experiments employing a single size distribution of monodisperse spheres.

  13. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. PMID:26490430

  14. Method of producing non-agglomerating submicron size particles

    DOEpatents

    Bourne, Roy S.; Eichman, Clarence C.; Welbon, William W.

    1989-01-01

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in "metallic inks".

  15. Method of producing submicron size particles and product produced thereby

    DOEpatents

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  16. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: The use of a-quartz and nano zinc oxide particles as benchmark

    NASA Astrophysics Data System (ADS)

    Beyerle, Andrea; Schulz, Holger; Kissel, Thomas; Stoeger, Tobias

    2009-02-01

    Nanotechnology is a broad, revolutionary field with promising advantages for new medicine. In this context the rapid development and improvement of so called nanocarriers is of high pharmaceutical interest and some devices are already on the market. In our project we aim to develop well characterized nanoscaled drug delivery systems for an inhalative application. To this end, we focus on the most adverse side-effects within the lung, the cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and proinflammatory effects of the investigated particles on two murine lung target cell lines, the alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). Three different endpoints were estimated, (i) cellular metabolic activity, determined by the WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and (iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose two reference particles as benchmarks, (i) fine a-quartz, and (ii) ultrafine ZnO particles. The investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the named cell lines provide an insight to a close evaluation of our cell based screening strategy. oc-quartz is well known for its inflammatory and toxic potential caused by inhalation, and nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. Preliminary experiments indicated not only particle and cell specific inflammatory responses, but also different susceptibilities of the cell types being exposed to our benchmark particles regarding their size and surface activities. Exposure to the μm-sized a-quartz particles affected the viability of epithelia cells less than that of

  17. Method for determining aerosol particle size device for determining aerosol particle size

    DOEpatents

    Novick, Vincent J.

    1998-01-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  18. Chaotic mixing of finite-sized particles

    NASA Astrophysics Data System (ADS)

    Omurtag, Ahmet Can

    1997-10-01

    Dynamical systems concepts have been used to analyze the behavior of rigid spherical finite-sized particles in chaotic flows in the eccentric annular system. If the particles are sufficiently small they follow the fluid streamlines. Then the dynamical system is Hamiltonian as a result of the presence of a streamfunction for the two- dimensional incompressible flow. The Stokes number characterizes the significance of particle inertia. It is shown that the bifurcations of the dynamical system can be harnessed for separating particles with different physical properties. These results are numerically obtained for finite-sized particles in Stokes flows. Departure from Stokes flow toward higher Reynolds numbers results in longer transients in the fluid velocity field. It also changes the steady state pattern of the streamlines. Mixing under chaotic stirring procedures with up to Re=100 indicates a general tendency toward poorer mixing per cycle. Results obtained by the numerically generated fluid velocity field demonstrated good agreement with experimental results. The extent and shape of the chaotic regions are not, in general, radically modified as the Reynolds number increases. It was shown that the unstable manifolds of the underlying mapping based on Stokes flow provides a template for deformations in the flow even beyond the Stokes regime as well as with particle inertia and q/not=1. It was also shown that the stable and unstable manifolds can be located by calculating the finite-time Lyapunov exponents of a very large number of trajectories in the domain. Mixing in the eccentric annulus is applied to the problem of collecting fetal cells from maternal circulation of blood. Fetal cells were modeled as small spherical particles suspended in a Newtonian fluid filling the gap in a small eccentric annular mixing device. Two separate model collecting devices are used. The first model utilizes vertically placed and antibody coated fibers that adhere to fetal cells on

  19. Initial size distributions and hygroscopicity of indoor combustion aerosol particles

    SciTech Connect

    Li, W.; Hopke, P.K.

    1993-10-01

    Cigarette smoke, incense smoke, natural gas flames, propane fuel flames, and candle flames are contributors of indoor aerosol particles. To provide a quantitative basis for the modeling of inhaled aerosol deposition pattern, the hygroscopic growth of particles from these five sources as well as the source size distributions were measured. Because the experiments were performed on the bases of particles of single size, it provided not only the averaged particle`s hygroscopic growth of each source, but also the detailed size change for particles of different sizes within the whole size spectrum. The source particle size distribution measurements found that cigarette smoke and incense smoke contained particles in the size range of 100-700 nm, while the natural gas, propane, and candle flames generated particles between 10 and 100 nm. The hygroscopic growth experiments showed that these combustion aerosol particles could grow 10% to 120%, depending on the particle sizes and origins. 18 refs., 15 figs., 3 tabs.

  20. Spatial Variability of CCN Sized Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  1. Comparative measurements using different particle size instruments

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    This paper discusses the measurement and comparison of particle size and velocity measurements in sprays. The general nature of sprays and the development of standard, consistent research sprays are described. The instruments considered in this paper are: pulsed laser photography, holography, television, and cinematography; laser anemometry and interferometry using visibility, peak amplitude, and intensity ratioing; and laser diffraction. Calibration is by graticule, reticle, powders with known size distributions in liquid cells, monosize sprays, and, eventually, standard sprays. Statistical analyses including spatial and temporal long-time averaging as well as high-frequency response time histories with conditional sampling are examined. Previous attempts at comparing instruments, the making of simultaneous or consecutive measurements with similar types and different types of imaging, interferometric, and diffraction instruments are reviewed. A program of calibration and experiments for comparing and assessing different instruments is presented.

  2. Particle size distribution of typical ceramic raw materials by laser granulometry

    NASA Technical Reports Server (NTRS)

    Wojnarovitsne, I. H.; Lenkel, M.

    1984-01-01

    The principles of the method are explained and the working of the CILAS 715 laser granulometer is described. The particle size distributions of milled glazes, quartz, feldspar and china clay were determined by this instrument and by Andreasen sedimentation. The agreement was good for isometric particles, but the china clay appears finer by sedimentation, because the platelets arrange themselves horizontally during sedimentation, while in the laser granulometer preferred orientation is prevented by circulation between the sample holder and the vibrated and stirred reservoir of the slip.

  3. Characterization of Nanometer-Sized Particles

    NASA Astrophysics Data System (ADS)

    Choi, Eugine

    1990-01-01

    New methods for characterizing nanometer sized particles produced by the multiple expansion cluster source (MECS) were developed. The cluster beam from the MECS was analyzed directly with a time of flight mass spectrometer (TOFMS) using excimer laser photoionization. The mass spectrometer was designed and built with perpendicular molecular beam and time of flight axis to combine high resolution and high mass range to study metal clusters. The TOFMS can resolve individual clusters containing upto 100 atoms per cluster and detect heavy clusters of upto 5 nm. diameter. The mass spectra of high masses were obtained by reducing the velocity of clusters in the molecular beam before ionization. The slower initial velocities permitted easier deflection of heavy particles. The TOFMS was used to analyze the growth of Sn clusters in the MECS. Sn cluster growth was found to depend solely on the concentration of Sn atoms and the residence time in the reactor. The MECS produced a normal distribution of cluster diameters. This is in good agreement with growth prediction based on pure birth growth kinetics. The standards deviation of this normal distribution is between 0.3 and 0.5 nm when the mean particle diameter is less than 2.5 nm. A secondary growth region beyond 2.5 nm diameter cluster was observed with He gas in the MECS reactor. The clusters in this growth region show bimodal peak size distribution with the heavier peak located at twice the mass of the first peak when the clusters in the beam are first slowed down with deceleration gas. The deceleration gas slows down the clusters in the beam based on their cross section area to mass ratio. This effect is due to growth from cluster to cluster collisions forming a loosely bound aggregate. These small aggregates do not change structure since the cross sectional area to mass ratio is unchanged as observed by the bimodal peak distribution. Au clusters ranging from 1 to 10 nm diameter deposited on flat Au substrates and on

  4. Mineralogical, optical, geochemical, and particle size properties of four sediment samples for optical physics research

    NASA Technical Reports Server (NTRS)

    Bice, K.; Clement, S. C.

    1981-01-01

    X-ray diffraction and spectroscopy were used to investigate the mineralogical and chemical properties of the Calvert, Ball Old Mine, Ball Martin, and Jordan Sediments. The particle size distribution and index of refraction of each sample were determined. The samples are composed primarily of quartz, kaolinite, and illite. The clay minerals are most abundant in the finer particle size fractions. The chemical properties of the four samples are similar. The Calvert sample is most notably different in that it contains a relatively high amount of iron. The dominant particle size fraction in each sample is silt, with lesser amounts of clay and sand. The indices of refraction of the sediments are the same with the exception of the Calvert sample which has a slightly higher value.

  5. Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase.

    PubMed

    Pomorska, Agata; Shchukin, Dmitry; Hammond, Richard; Cooper, Matthew A; Grundmeier, Guido; Johannsmann, Diethelm

    2010-03-15

    By specifically binding derivatized colloidal particles and physisorbing nonderivatized particles to the surface of a quartz crystal microbalance (QCM), we have observed positive shifts of frequency, Deltaf, in contrast to the negative frequency shifts typically found in adsorption experiments. Evidently, the Sauerbrey relation does not apply to this situation. A comparison of frequencies shifts and bandwidths on different overtones reveals a coupled resonance: at low overtones, Deltaf is negative, whereas it is positive at high overtones, with maximal resonance bandwidth observed at the crossover point. As predicted by the Dybwad model, the spheres bound to the surface form resonating systems on their own. A composite resonator is formed, consisting of a large crystal with resonance frequency omega and the adsorbed spheres with resonance frequency omega(S). In the case in which the resonance frequency of the small spheres (firmly attached to crystal), omega(S), is higher than the resonance frequency of the crystal, omega, Deltaf of the composite system is negative (leading to the Sauerbrey limit). In the opposite limit (that is, in the case of large adsorbed particles bound to the sensor surface via a sufficiently weak bridge) Deltaf is positive. Such a behavior is known from sphere-plate contacts in the dry state. Finite element calculation demonstrates that this phenomena is also plausible in liquid phase media, with Deltaf critically dependent on the strength of the sphere-plate contact. Operated in this mode, the QCM most likely probes the contact strength, rather than the mass of the particle. PMID:20166672

  6. Method for determining aerosol particle size, device for determining aerosol particle size

    DOEpatents

    Novick, V.J.

    1998-10-06

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data. 2 figs.

  7. Some new results on the frequency characteristics on quartz crystals irradiated by ionizing and particle radiations

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1981-01-01

    The frequency behavior of AT-cut quartz crystals irradiated by X -, gamma rays and fast neutrons. Initial instability in frequency for gamma and neutron irradiated crystals was found. All the different radiations first give a negative frequency shift at lower doses which are followed by positive frequency shift for increased doses. Results are explained in terms of the fundamental crystal structure. Applications of the frequency results for radiation hardening are proposed.

  8. The determination and optimization of (rutile) pigment particle size distributions

    NASA Technical Reports Server (NTRS)

    Richards, L. W.

    1972-01-01

    A light scattering particle size test which can be used with materials having a broad particle size distribution is described. This test is useful for pigments. The relation between the particle size distribution of a rutile pigment and its optical performance in a gray tint test at low pigment concentration is calculated and compared with experimental data.

  9. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Warrier, Anish Kumar; Pednekar, Hemant; Mahesh, B. S.; Mohan, Rahul; Gazi, Sahina

    2016-03-01

    In this study we report the sediment grain size parameters and surface textural observations (using scanning electron microscopy (SEM)) of quartz grains from sediments of Sandy Lake, Schirmacher Oasis, East Antarctica. The sediment core spans the last 43 cal ka B.P. The statistical parameters of grain size data (sorting, skewness, kurtosis, mean grain size, D10, D50, D90 and SPAN index) indicate that the sediments are primarily transported by melt-water streams and glaciers. However, during the last glacial period, sediments seem to be transported due to wind activity as evident by the good correlation between rounded quartz data and dust flux data from EPICA ice-core data. The mean grain size values are low during the last glacial period indicating colder climatic conditions and the values increase after the last glacial maximum suggesting an increase in the energy of the transporting medium, i.e., melt-water streams. The sediments are poorly sorted and finely skewed and show different modes of grain size distribution throughout the last 43 cal ka B.P. SEM studies of selected quartz grains and analyses of various surface textures indicate that glacigenic conditions must have prevailed at the time of their transport. Semi-quantitative analyses of mineral (quartz, feldspar, mica, garnet and rock fragments & other minerals) counts suggest a mixed population of minerals with quartz being the dominant mineral. Higher concentration of quartz grains over other minerals indicates that the sediments are compositionally mature. The study reveals the different types of physical weathering, erosive signatures, and chemical precipitation most of them characteristic of glacial environment which affected these quartz grains before final deposition as lake sediments. The palaeoclimatic signals obtained from this study show similarities with ice-core and lake sediment records from Schirmacher Oasis and other ice-free regions in East Antarctica.

  10. Study on the Particle Size Distribution Nano-Particles of Mining Minerals on Whiteness of Triaxial Body

    NASA Astrophysics Data System (ADS)

    Mathur, Ravi; Soni, Aditi

    White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.

  11. Disposition of disodium cromoglycate administered in three particle sizes.

    PubMed Central

    Curry, S H; Taylor, A J; Evans, S; Godfrey, S; Zeidifard, E

    1975-01-01

    1 Disodium cromoglycate (DSCG) was administered in three particle sizes to five human subjects. 2 Urinary excretion of DSCG, as a proportion of the dose, was highest following small particles; the lower values recorded following intermediate-sized and large particles were similar. 3 DSCG deposited in the mouth was highest following large particles; the lower values recorded following intermediate-sized and small particles were similar. 4 The data were examined in relation to the recent observation that the protective effect of small particles of DSCG is dramatically superior to that of large particles. PMID:825134

  12. Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team

    Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.

  13. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening

    SciTech Connect

    Kronenberg, A.K.; Tullis, J.

    1984-06-10

    Novaculites and quartzite ranging in grain size from 1.2--211 ..mu..m have been experimentally deformed at confining pressures of 350--1620 MPa under conditions of constant displacement rate and constant deviatoric stress in order to determine the effect of both grain size and pressure on the rheology of quartizite. The amount of water available to the samples was varied so that flow strengths for the entire suite of samples could be compared at several, nominally equal water concentrations; samples were vacuum dried at 800 /sup 0/C for 12 hours, left as is, or sealed in Pt jackets with 0.03--0.4 wt % water added. Novaculties deformed at 800 /sup 0/C for 12 hours, left as is, or sealed in Pt jackets with 0.03--0.4 wt% water added. Novaculities deformed at 800 /sup 0/C and 10/sup 0 -6//s/sup -1/ in the presence of 0.4 wt % water show a continuous decrease in flow strength with increasing confining pressure over the range 350--1590 MPa. At high confining pressures 950--1600 MPa, constant displacement rate experiments show three distinct grain size effects, corresponding to the three levels of water concentrations: (1) ''grain boundary hardening'' for vacuum-dried samples, (2) grain size independent strength for as is samples, and (3) ''grain boundaries weakening'' for samples deformed in the presence of water. Although grain boundary-dislocation interactions may lead to grain boundary hardening and grain boundary sliding to weakening the details of the mechanical data, in combination with microstructural observations, are inconsistent with existing models of intrinsic grain boundary effects.

  14. Knife mill operating factors effect on switchgrass particle size distributions

    SciTech Connect

    Bitra, V.S.P.; Womac, A.R.; Yang, Y.T.; Igathinathane, C.; Miu, P.I; Chevanan, Nehru; Sokhansanj, Shahabaddine

    2009-06-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin Rammler function fit the chopped switchgrass size distribution data with an R2 > 0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced strongly fine skewed mesokurtic particles with 12.7 25.4 mm screens and fine skewed mesokurtic particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.

  15. Comparison of particle sizes determined with impactor, AFM and SEM

    NASA Astrophysics Data System (ADS)

    Gwaze, Patience; Annegarn, Harold J.; Huth, Joachim; Helas, Günter

    2007-11-01

    Particles size comparisons were made between conventional aerodynamic and mobility sizing techniques and physical geometric sizes measured by high resolution microscopes. Atmospheric particles were collected during the wet and dry seasons in the Amazonian ecosystems. Individual particles deposited on four stages of the MOUDI (Micro-Orifice Uniform Deposition Impactor) were characterised for particle volumes, projected surface diameters and morphologies with an Atomic Force Microscope (AFM) and a Scanning Electron Microscope (SEM). AFM and SEM size distributions were verified against distributions derived from response functions of individual MOUDI stages as specified by Winklmayr et al. [Winklmayr, W., Wang, H.-C., John, W., 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Science and Technology 13, 322-331.]. Particles indicated inherent discrepancies in sizing techniques. Particle volumes were systematically lower than expected by factors of up to 3.6. Differences were attributed to loss of mass, presumably water adsorbed on particles. Losses were high and could not be accounted for by measured humidity growth factors suggesting significant losses of other volatile compounds as well, particularly on particles that were collected during the wet season. Microscopy results showed that for hygroscopic particles, microscopy sizes depend on the relative humidity history of particles before and after sampling. Changes in relative humidity significantly altered particle morphologies. Depending on when changes occur, such losses will bias not only microscopy particle sizes but also impactor mass distributions and number concentrations derived from collected particles.

  16. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by

  17. Monitoring the particle size in CFB using fuzzy neural network

    SciTech Connect

    Ma, L.; Chen, H.; Tian, Z.; He, W.

    1999-07-01

    The particle size and particle size distributions (PSDs) affect the performance of a circulating fluidized (CFB) boiler. For improving the efficiency of analysis of particle size to monitor the particle size and particle size distribution, a fuzzy neural network (FNN) model is presented. Because the pressure fluctuant frequency and particle size have some non-linear relationship, the FNN models the relationship between the pressure fluctuant frequencies along CFB boiler height and particle size sampled from CFB boiler by neural network training. A hybrid fuzzy neural network parameter training method is presented to identify the model parameters, which combine the gradient back propagation (BP) algorithm and least square estimation (LSE) algorithm to estimate unknown non-linear parameter and linear parameter respectively. When the FNN training procedure converges, the parameters, which reflect the non-linear relationship between frequency and particle, are determined for a given operational condition of CFB boiler. In operating CFB boilers, the coal particle size at high temperature changes with combustion and its values are unknown, however, pressure fluctuation frequency can be obtained easily. In this case, FNN can predict the particle size and PSDs along the CFB boiler height according to the pressure fluctuation frequency. To validate the FNN model effect of analyzing the particle size, data from experiment are used with fluidized gas velocity equal to 41.82 cm/s. The predictive error of FNN model is 3.839%. It is proved that the model not only identifies the non-linear relationship between particle size and pressure fluctuation frequency with high precision but also can adaptively learn the data information without expert knowledge by adjusting its own parameters. It operates quickly and can satisfy the real-time request of monitoring the particle size and its distribution in CFB boilers.

  18. Preference of food particle size among several urban ant species.

    PubMed

    Hooper-Bùi, Linda M; Appel, Arthur G; Rust, Michael K

    2002-12-01

    Appropriate particle size may be a critical characteristic for effective granular ant baits. We examined the particle size preference of six species of pest ants to an anchovy-based bait. We also examined head capsule widths of Argentine ants, Linepithema humile (Mayr) (mean = 0.54 mm), California harvester ants, Pogonomyrmex californicus (Buckley) (mean = 1.63 mm), red imported fire ants, Solenopsis invicta Buren (mean = 0.9 mm), and southern fire ants, Solenopsis xyloni McCook (mean = 0.76 mm) and compared them with the first and second most preferred particle size. There were differences between particle size of which the most mass was removed and of which there were more particles removed by ants. California Argentine ants, southern fire ants, and Alabama Argentine ants removed more 840 to 1,000-microm particle mass of the anchovy diet but had more visits to dishes containing 420 to 590 microm particles. California harvester ants and Allegheny mound ants, Formica spp., removed more >2,000 microm particle mass but visited dishes containing 1,000 to 2,000 microm particles more often. Red imported fire ants also removed more >2,000 microm particle mass but visited dishes with 590 to 840-microm particles most often. Pharaoh ants, Monomorium pharaonis (L.), removed and visited 420 to 590-microm particles more than any other size. A linear regression model determined that particle size preferred by each ant species relates to forager head width. The majority of particles of commercial ant bait, including Amdro, Ascend, Award, Bushwhacker, Max Force with fipronil, and old and new formulations of Max Force with hydramethylnon, were 1,000 to 2,000 microm, but the majority of Niban particles were <420 microm. Altering the size of particles of toxic ant baits to fit the particle size preference of each pest ant species may increase the efficacy of ant baits. PMID:12539835

  19. Process for preparation of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)

    1981-01-01

    Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.

  20. Evaluation of process for sludge particle size reduction

    SciTech Connect

    Precechtel, D.R.; Packer, M.J., Fluor Daniel Hanford

    1997-03-18

    This document evaluates the available technology for K Basin sludge particle size. The results can be used to demonstrate the sensitivity or lack thereof, of K Basin sludge to available reduction processes and TWRS proposed particle acceptance criteria.

  1. The biological response to nanometre-sized polymer particles.

    PubMed

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2015-09-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1-1.0μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20nm, 60nm, 200nm and 1.0μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100μm(3) particles per cell after 12 and 24h. The micrometre-size UHMWPE wear particles (0.1-1.0μm) and 60nm, 200nm and 1.0μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. PMID:26004221

  2. Quantification of Cigarette Smoke Particle Deposition In Vitro Using a Triplicate Quartz Crystal Microbalance Exposure Chamber

    PubMed Central

    Adamson, Jason; Thorne, David; McAughey, John; Dillon, Deborah; Meredith, Clive

    2013-01-01

    There are a variety of smoke exposure systems available to the tobacco industry and respiratory toxicology research groups, each with their own way of diluting/delivering smoke to cell cultures. Thus a simple technique to measure dose in vitro needs to be utilised. Dosimetry—assessment of dose—is a key element in linking the biological effects of smoke generated by various exposure systems. Microbalance technology is presented as a dosimetry tool and a way of measuring whole smoke dose. Described here is a new tool to quantify diluted smoke particulate deposition in vitro. The triplicate quartz crystal microbalance (QCM) chamber measured real-time deposition of smoke at a range of dilutions 1 : 5–1 : 400 (smoke : air). Mass was read in triplicate by 3 identical QCMs installed into one in vitro exposure chamber, each in the location in which a cell culture would be exposed to smoke at the air-liquid interface. This resulted in quantification of deposited particulate matter in the range 0.21–28.00 μg/cm2. Results demonstrated that the QCM could discriminate mass between dilutions and was able to give information of regional deposition where cell cultures would usually be exposed within the chamber. Our aim is to use the QCM to support the preclinical (in vitro) evaluation of tobacco products. PMID:23484139

  3. Seed particle response and size characterization in high speed flows

    NASA Technical Reports Server (NTRS)

    Rudoff, Roger C.; Bachalo, William D.

    1991-01-01

    The response of seed particles ranging between 0.7 and 8.7 micron is determined using a phase Doppler particle analyzer which simultaneously measures particle size and velocity. The stagnant seed particles are entrained into a high speed free jet at velocities ranging from 40 to 300 m/s. The size-mean axial velocity correlation and size-rms velocity correlations are used to determine the particle response to the sudden acceleration. It was determined that at the lower speeds, seed particles up to approximately 5 microns are adequate, but as velocities approach 300 m/s only particles on the order of one micron are suitable. The ability to determine size and velocity simultaneously is essential if seeding with polydispersions is used since it allows the rejection of data which will not accurately represent the flow field.

  4. Selective follicular targeting by modification of the particle sizes.

    PubMed

    Patzelt, Alexa; Richter, Heike; Knorr, Fanny; Schäfer, Ulrich; Lehr, Claus-Michael; Dähne, Lars; Sterry, Wolfram; Lademann, Juergen

    2011-02-28

    Hair follicles represent interesting target sites for topically applied substances such as topical vaccinations or agents used in the field of regenerative medicine. In recent years, it could be shown that particles penetrate very effectively into the hair follicles. In the present study, the influence of particle size on the follicular penetration depths was examined. The penetration depths of two different types of particles sized 122 to 1000 nm were determined in vitro on porcine skin. The results revealed that the particles of medium size (643 and 646 nm, respectively) penetrated deeper into the porcine hair follicles than smaller or larger particles. It was concluded that by varying the particle size, different sites within the porcine hair follicle can be targeted selectively. For the human terminal hair follicle, the situation can be expected to be similar due to a similar size ratio of the hair follicles. PMID:21087645

  5. Online sizing of pneumatically conveyed particles by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Hu, Yonghui; Qian, Xiangchen; Huang, Xiaobin; Gao, Lingjun; Yan, Yong

    2014-04-01

    Accurate determination of particle size distribution is critical to achieving optimal combustion efficiency and minimum pollutant emissions in both biomass and biomass/coal fired power plants. This paper presents an instrumentation system for online continuous measurement of particle size distribution based on acoustic emission (AE) method. Impulsive AE signals arising from impacts of particles with a metallic waveguide protruding into the flow carry information about the particle size. With detailed information about the generation, propagation and detection of impact AE signals, the particle size can be quantitatively characterized. Experimental results obtained with glass beads demonstrate the capability of the system to discriminate particles of different sizes from the recorded AE signals. The system has several appealing features such as online measurement, high sensitivity, simple structure, minimum invasiveness and low cost, which make it well suited for industrial applications.

  6. Particle size dependent chemistry from laser ablation of brass.

    PubMed

    Liu, Chunyi; Mao, Xianglei; Mao, Sam S; Greif, Ralph; Russo, Richard E

    2005-10-15

    The proportion of zinc and copper in particles formed by laser ablation of brass was found to vary with the particle diameter. Energy-dispersive X-ray analysis showed that smaller particles were zinc enhanced while larger particles were composed mostly of copper. A model based on condensation of vapor onto large droplets ejected from a melted liquid layer is proposed to describe the change in particle composition versus size. PMID:16223257

  7. Particle size distributions of polyaniline-silica colloidal composites

    SciTech Connect

    Gill, M.; Armes, S.P. ); Fairhurst, D. ); Emmett, S.N. ); Idzorek, G.; Pigott, T. )

    1992-09-01

    We have characterized a new polyaniline-silica composite colloid by various particle sizing techniques. Our transmission electron microscopy studies have confirmed for the first time an unusual raspberry morphology, with the small silica particles held together by the polyaniline [open quotes]binder[close quotes]. These particles have average diameters in the size range 150-500 nm. Charge-velocity analysis experiments indicated a number-average particle diameter of 300 [plus minus] 80 nm, but only poor statistics were obtained (172 particles counted). Photon correlation spectroscopy studies suggested an intensity-average particle diameter of 380 nm. Disk centrifuge photosedimentometry (DCP) turned out to be our preferred sizing technique for the polyaniline-silica colloids, since it was both quick and reliable and, more importantly, produced the true particle size distribution (PSD) curve with excellent statistics. The DCP data indicated a weight-average and number-average particle diameter of 330 [plus minus] 70 nm and 280 [plus minus] 70 nm, respectively, and moreover confirmed the PSD to be both broad and unimodal. Finally, these colloidal composites were sized using the Malvern Aerosizer. Using this instrument in conjunction with a nebulizer attachment (which allowed particle sizing of the [open quotes]wet[close quotes] dispersion) rather than in the conventional [open quotes]dry powder[close quotes] mode, we obtained particle size data which were in reasonable agreement with the DCP results. 31 refs., 5 figs., 1 tab.

  8. Size Effects on the Magnetic Properties of Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Chen, Jianping

    Finite size effects on the magnetic properties of nanoscale particles have been studied in this work. The first system studied was MnFe_2O _4 prepared by coprecipitation followed by digestion. The particles were single crystals with an average diameter controllable from 5 nm to 25 nm. These particles have a higher inversion degree of metal ion distribution between the tetrahedral sites and octahedral sites of the spinel structure than those synthesized with ceramic methods. This higher inversion leads to a higher Curie temperature. We found that the structure of the particles can be varied by heat treatment. The Curie temperature of the particles decreased after heat treatment in inert gas, however, it increased after heat treatment in air. The size effects show in two aspects on the MnFe_2O _4 particles. First, the Curie temperature decreased as particles size was reduced, which was explained by finite size scaling. Second, the saturation magnetization decreased as particle size decreased because of the existence of a nonmagnetic layer on the surface of MnFe_2 O_4 particles. The second system studied was Co particles synthesized with an inverse micelle technique. The particles were small (1-5 nm) and had a narrow size distribution. The Co particles were superparamagnetic at room temperature and showed a set of consistent magnetic data in magnetic moment per particle, coercivity, and blocking temperature. We found the anisotropy constant and saturation magnetization of Co particles had a strong size dependence. The anisotropy constant was above the bulk value of Co and increased as particle size decreased. The saturation magnetization increased as the particle became smaller. The magnetic properties of Co particles also strongly suggested a core/shell structure in each particle. But no physical inhomogeneity was observed. We have also studied ligand effects on the magnetic properties of Co particles. The magnetization of the Co particles was quenched by 36%, 27

  9. Assessment of cigarette smoke particle deposition within the Vitrocell® exposure module using quartz crystal microbalances

    PubMed Central

    2013-01-01

    Background Cigarette smoking is a cause of a variety of serious diseases, and to understand the toxicological impact of tobacco smoke in vitro, whole smoke exposure systems can be used. One of the main challenges of the different whole smoke exposure systems that are commercially available is that they dilute and deliver smoke in different ways, limiting/restricting the cross-comparison of biological responses. This is where dosimetry – dose quantification – can play a key role in data comparison. Quartz crystal microbalance (QCM) technology has been put forward as one such tool to quantify smoke particle deposition in vitro, in real-time. Results Using four identical QCMs, installed into the Vitrocell® mammalian 6/4 CF Stainless exposure module, we were able to quantify deposited smoke particle deposition, generated and diluted by a Vitrocell® VC 10 Smoking Robot. At diluting airflows 0.5-4.0 L/min and vacuum flow rate 5 ml/min/well through the exposure module, mean particle deposition was in the range 8.65 ± 1.51 μg/cm2-0.72 ± 0.13 μg/cm2. Additionally, the effect of varying vacuum flow rate on particle deposition was assessed from 5 ml/min/well - 100 ml/min/well. Mean deposited mass for all four airflows tested per vacuum decreased as vacuum rate was increased: mean deposition was 3.79, 2.75, 1.56 and 1.09 μg/cm2 at vacuum rates of 5, 10, 50 and 100 ml/min/well respectively. Conclusions QCMs within the Vitrocell® exposure module have demonstrated applicability at defining particle dose ranges at various experimental conditions. This tool will prove useful for users of the Vitrocell® system for dose–response determination and QC purposes. PMID:23497606

  10. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  11. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  12. Hydrodynamic model for particle size segregation in granular media

    NASA Astrophysics Data System (ADS)

    Trujillo, Leonardo; Herrmann, Hans J.

    2003-12-01

    We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.

  13. Stability and size of particle pairs in complex plasmas

    SciTech Connect

    Nosenko, V.; Ivlev, A. V.; Kompaneets, R.; Morfill, G.

    2014-11-15

    Particle pairing in a complex plasma was experimentally studied with the emphasis on pair spatial extent and stability. Micron-size particles were suspended in the (pre)sheath area above the lower electrode in a capacitively coupled radio-frequency discharge in argon. They formed vertical pairs due to the ion wakes created by the flow of ions past particles. We discuss the confinement mechanism for the lower particle, resulting from a combination of the wake field and the field of non-uniform sheath. A model of particle pairs is proposed, which provides good description for the dependence of pair size and stability on experimental parameters.

  14. Acoustic measurements of clay-size particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of sediment concentration is important in the study of streams and rivers. The work presented explores using high frequency (20 MHz) acoustic signal attenuation to measure the concentration of fine sediment particles (0.2-5.0 microns) in a fluvial environment. A small laboratory tank with...

  15. Influence of particle size on diffusion-limited aggregation.

    PubMed

    Tan, Z J; Zou, X W; Zhang, W B; Jin, Z Z

    1999-11-01

    The influence of particle size on diffusion-limited aggregation (DLA) has been investigated by computer simulations. For DLA clusters consisting of two kinds of particles with different sizes, when large particles are in the minority, the patterns of clusters appear asymmetrical and nonuniform, and their fractal dimensions D(f) increase compared with one-component DLA. With increasing size of large particles, D(f) increases. This increase can be attributed to two reasons: one is that large particles become new growth centers; the other is the big masses of large particles. As the concentration ratio x(n) of large particles increases, D(f) will reach a maximum value D(f(m)) and then decrease. When x(n) exceeds a certain value, the morphology and D(f) of the two-component DLA clusters are similar to those of one-component DLA clusters. PMID:11970534

  16. A hybrid mathematical model for controlling particle size, particle size distribution, and color properties of toner particles

    NASA Astrophysics Data System (ADS)

    Ataeefard, Maryam; Shadman, Alireza; Saeb, Mohammad Reza; Mohammadi, Yousef

    2016-08-01

    A mathematical modeling approach was proposed combining the capabilities of response surface methodology (RSM) and desirability function (DF) and implemented successfully in production of printing toner particles. Toner powders were systematically synthesized through suspension copolymerization process. Applying RSM, a series of experiments were designed and toner particles were prepared and the effects of monomer ratio, colorant and surfactant content on the particle size (PS), particle size distribution (PSD), thermal and colorimetric properties (∆ E) of the resulting toner were monitored and discussed. The second-order models corresponding to each target characteristic, i.e., PS, PSD, and ∆ E of different types of toner powders, were obtained by individual optimization to express variation of each property in terms of polymerization parameters. Applying statistical calculations, the best reduced models were identified to be fed in the second step of optimization. Since toners with appropriate PS, PSD, and CP were needed, we applied multi-objective optimization based on DF approach. The results show that exact tuning of toner properties is closely possible with the aid of hybrid mathematical model developed in this work. Noticeably, desirabilities are very close to 100 %.

  17. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  18. MODELING REFLECTANCE AND TRANSMITTANCE OF QUARTZ-FIBER FILTER SAMPLES CONTAINING ELEMENTAL CARBON PARTICLES: IMPLICATIONS FOR THERMAL/OPTICAL ANALYSIS. (R831086)

    EPA Science Inventory

    A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...

  19. Particle Size: A sediment tracing challenge or opportunity?

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Evrard, Olivier

    2016-04-01

    Tracing sediment back to their sources with biogeochemical fingerprints involves multiple assumptions. One of the most fundamental assumptions is the conservative behavior of tracer properties during sediment generation, transportation, and deposition processes. Essentially, the biogeochemical fingerprints used to trace sediment must remain constant, or conservative, during these erosion processes, or they must vary in a predictable way. At the core of this assumption of conservative behavior are potential particle size impacts. Owing to the significance of particle size for sediment tracing research, we believe it is important to present an overview of past and present techniques used to address particle size, along with possibilities for future research. The two primary approaches utilized to address particle size impacts are fractionation (e.g., <10μm and <63μm fractions) and corrections (e.g. specific surface area), with both approaches often used simultaneously. The effectiveness of fractionation and corrections to address particle size has received increasing attention, testing fundamental assumptions central to the applicability of sediment tracing and fingerprinting. Alternative approaches to addressing particle size have also been presented. For example, researchers applying the tributary tracing approach or sampling sediment generated directly on hillslopes may potentially address particle size impacts in their sampling design. Although these approaches have been presented in the literature, their effectiveness has yet to be determined. For the future, we boldly suggest that there are likely situations where particle size may be potentially used as a fingerprint in and of itself. Indeed, potential particle size impacts are directly related to the biogeochemical fingerprints used to trace sediments and we believe that there is a fantastic opportunity to obtain further sediment source information through comprehensively investigating and unravelling

  20. Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets

    SciTech Connect

    Igathinathane, C; Pordesimo, L.O.

    2009-08-01

    Dust management strategies in industrial environment, especially of airborne dust, require quantification and measurement of size and size distribution of the particles. Advanced specialized instruments that measure airborne particle size and size distribution apply indirect methods that involve light scattering, acoustic spectroscopy, and laser diffraction. In this research, we propose a simple and direct method of airborne dust particle dimensional measurement and size distribution analysis using machine vision. The method involves development of a user-coded ImageJ plugin that measures particle length and width and analyzes size distribution of particles based on particle length from high-resolution scan images. Test materials were airborne dust from soft pine wood sawdust pellets and ground pine tree bark pellets. Subsamples prepared by dividing the actual dust using 230 mesh (63 m) sieve were analyzed as well. A flatbed document scanner acquired the digital images of the dust particles. Proper sampling, layout of dust particles in singulated arrangement, good contrast smooth background, high resolution images, and accurate algorithm are essential for reliable analysis. A halo effect around grey-scale images ensured correct threshold limits. The measurement algorithm used Feret s diameter for particle length and pixel-march technique for particle width. Particle size distribution was analyzed in a sieveless manner after grouping particles according to their distinct lengths, and several significant dimensions and parameters of particle size distribution were evaluated. Results of the measurement and analysis were presented in textual and graphical formats. The developed plugin was evaluated to have a dimension measurement accuracy in excess of 98.9% and a computer speed of analysis of <8 s/image. Arithmetic mean length of actual wood and bark pellets airborne dust particles were 0.1138 0.0123 and 0.1181 0.0149 mm, respectively. The airborne dust particles of

  1. Planar particle/droplet size measurement technique using digital particle image velocimetry image data

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor); Kadambi, Jaikrishnan R. (Inventor)

    2005-01-01

    A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.

  2. The Size of Gelatin Sponge Particles: Differences with Preparation Method

    SciTech Connect

    Katsumori, Tetsuya Kasahara, Toshiyuki

    2006-12-15

    Purpose. To assess whether the size distribution of gelatin sponge particles differed according to the method used to make them and the type of original sheet. Methods. Gelatin sponge particles of approximately 1-1.5 x 1-1.5 x 2 mm were made from either Spongel or Gelfoam sheets by cutting with a scalpel and scissors. Particles were also made of either Spongel or Gelfoam sheets by pumping with two syringes and a three-way stopcock. The size distribution of the particles in saline was compared among the groups. Results. (1) Cutting versus pumping: When Spongel was used, cutting produced lower rates of smaller particles {<=}500 {mu}m and larger particles >2000 {mu}m compared with pumping back and forth 30 times (1.1% vs 37.6%, p < 0.0001; 2.2% vs 14.4%, p = 0.008). When Gelfoam was used, cutting produced lower rates of smaller and larger particles compared with pumping (8.5% vs 20.4%, p = 0.1809; 0% vs 48.1%, p < 0.0001). (2) Spongel versus Gelfoam: There was no significant difference in the size distribution of the particles between Spongel and Gelfoam (p = 0.2002) when cutting was used. Conclusion. The size distribution of gelatin sponge particles differed according to the method used to make them. More uniform particle sizes can be achieved by cutting than by pumping.

  3. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  4. Particle size and particle-particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewable corn flour has a significant reinforcement effect in natural rubber. The corn flour was hydrolyzed and microfluidized to reduce its particle size. Greater than 90% of the hydrolyzed corn flour had an average size of ~300 nm, a reduction of 33 times compared to unhydrolyzed corn flour. Comp...

  5. Particle size and shape distributions of hammer milled pine

    SciTech Connect

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  6. The vertical distribution of Martian aerosol particle size

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Smith, Michael D.; Wolff, Michael J.

    2014-12-01

    Using approximately 410 limb-viewing observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), we retrieve the vertical distribution of Martian dust and water ice aerosol particle sizes. We find that dust particles have an effective radius of 1.0 µm over much of the atmospheric column below 40 km throughout the Martian year. This includes the detached tropical dust layers detected in previous studies. Little to no variation with height is seen in dust particle size. Water ice clouds within the aphelion cloud belt exhibit a strong sorting of particle size with height, however, and the effective radii range from >3 µm below 20 km to near 1.0 µm at 40 km altitude. Conversely, water ice clouds in the seasonal polar hoods show a near-uniform particle size with an effective radius of approximately 1.5 µm throughout the atmospheric column.

  7. Particle size distributions of several commonly used seeding aerosols

    NASA Technical Reports Server (NTRS)

    Crosswy, F. L.

    1985-01-01

    During the course of experimentation, no solid particle powder could be found which produced an aerosol with a narrow particle size distribution when fluidization was the only flow process used in producing the aerosol. The complication of adding particle size fractionation processes to the aerosol generation effort appears to be avoidable. In this regard, a simple sonic orifice is found to be effective in reducing the percentage of agglomerates in the several metal oxide powders tested. Marginally beneficial results are obtained for a 0.5/99.5 percent by weight mixture of the flow agent and metal oxide powder. However, agglomeration is observed to be enhanced when the flow agent percentage is increased to 5 percent. Liquid atomization using the Collison nebulizer as well as a version of the Laskin nozzle resulted in polydispersed aerosols with particle size distributions heavily weighted by the small particle end of the size spectrum. The aerosol particle size distributions produced by the vaporization/condensation seeder are closer to the ideal monodispersed aerosol than any of the other aerosols tested. In addition, this seeding approach affords a measure of control over particle size and particle production rate.

  8. Sonochemical synthesis of silica particles and their size control

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan

    2016-09-01

    Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  9. Particle size measurement in intravenous fluids.

    PubMed

    Haines-Nutt, R F; Munton, T J

    1984-08-01

    The level of particulate contamination in a range of large volume injections has been measured using electrical resistance (Coulter) and light blockage (HIAC) techniques. Particle counts showed large variations between the two techniques and although a correlation could be shown for ionic solutions no such correlation could be found for sugar containing solutions. Shape factors alone cannot explain these discrepancies but other differences fundamental to the physics of the two measuring techniques play an important part. We conclude that results obtained using one technique cannot be correlated, theoretically or actually, with those obtained from the other technique. PMID:6148396

  10. Backscattering measurements of micron-sized spherical particles.

    PubMed

    Heffernan, Brendan M; Heinson, Yuli W; Maughan, Justin B; Chakrabarti, Amitabha; Sorensen, Christopher M

    2016-04-20

    An apparatus was designed and assembled to measure scattered light in the range of 180°±6° where enhanced backscattering, the cause of a glory, occurs. The apparatus was calibrated and tested using Fraunhofer circular aperture diffraction, angle of incidence correction, and a diffuse reflector. Theory indicates that backscattering is strongly dependent on particle size, refractive index, and shape. Experimental measurements from polystyrene latex spheres of two sizes and water droplets showed good agreement with Mie theory, but also indicated the extreme sensitivity of the backscattering to particle parameters. The results presented should have use in the fields of particle scattering, particle metrology, and LIDAR. PMID:27140090

  11. Saturn's rings - Particle size distributions for thin layer model

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Marouf, E. A.; Tyler, G. L.

    1985-01-01

    A model incorporating limited interaction between the incident energy and particles in the ring is considered which appears to be consistent with the multiple scattering process in Saturn's rings. The model allows for the small physical thickness of the rings and can be used to relate Voyager 1 observations of 3.6- and 13-cm wavelength microwave scatter from the rings to the ring particle size distribution function for particles with radii ranging from 0.001 to 20 m. This limited-scatter model yields solutions for particle size distribution functions for eight regions in the rings, which exhibit approximately inverse-cubic power-law behavior.

  12. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    PubMed

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. PMID:14704966

  13. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    SciTech Connect

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.

  14. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line.

    PubMed

    Li, Hui; van Berlo, Damien; Shi, Tingming; Speit, Günter; Knaapen, Ad M; Borm, Paul J A; Albrecht, Catrin; Schins, Roel P F

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1beta) and tumour necrosis factor-alpha (TNFalpha). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure. PMID:18001810

  15. Cytotoxicity of Metal and Ceramic Particles in Different Sizes

    NASA Astrophysics Data System (ADS)

    Yoshida, Kazuhiro; Morita, Masafumi; Mishina, Hiroshi

    The wear debris caused by joint prosthesis is well known to induce an inflammation in the peripheral tissue. The authors carried out two kinds of experiments, to clarify the phagocytable size of wear particles and the cytotoxicity of macrophage related to the size and materials. The test materials were Al2O3, SiO2, TiO2 fine particles and Ti-6Al-4V, Co-28Cr-6Mo wear particles. The results showed that the phagocytable particle size was less than 11.9±11.2µm. It appears that the cytotoxicity did not depend on the particle size, even if the particles were phagocytable size. In the relationship between material type and inflammation, damage levels were found to be different between SiO2 and TiO2 particles, even if neither material released metal ions. The cells were damaged more severely by SiO2 particles than by Co-28Cr-6Mo for which the eluted ion could not be ignored (damage levels; SiO2>Co-28Cr-6Mo>Ti-6Al-4V>Al2O3≧TiO2). For these reasons, it was confirmed that there was a factor in addition to the toxicity of the eluted metal ion (i. e., the implant material's corrosion resistance ability), which influenced the inflammation.

  16. Evaluation of the Malvern optical particle monitor. [Volumetric size distribution

    SciTech Connect

    Anderson, R. J.; Johnson, E.

    1983-07-01

    The Malvern 2200/3300 Particle Sizer is a laser-based optical particle sizing device which utilizes the principle of Fraunhofer Diffraction as the means of particle size measurement. The instrument is designed to analyze particle sizes in the range of 1 to 1800 microns diameter through a selection of lenses for the receiving optics. It is not a single-particle counter but rather an ensemble averager over the distribution of particles present in the measuring volume. Through appropriate measurement techniques, the instrument can measure the volumetric size distribution of: solids in gas or liquid suspension; liquid droplets in gas or other immiscible liquids; and, gas bubbles in liquid. (Malvern Handbook, Version 1.5). This report details a limited laboratory evaluation of the Malvern system to determine its operational characteristics, limitations, and accuracy. This investigation focused on relatively small particles in the range of 5 to 150 microns. Primarily, well characterized particles of coal in a coal and water mixture were utilized, but a selection of naturally occurring, industrially generated, and standard samples (i.e., glass beads) wer also tested. The characteristic size parameter from the Malvern system for each of these samples was compared with the results of a Coulter particle counter (Model TA II) analysis to determine the size measurement accuracy. Most of the particulate samples were suspended in a liquid media (water or isoton, plus a dispersant) for the size characterization. Specifically, the investigations contained in this report fall into four categories: (a) Sample-to-lense distance and sample concentration studies, (b) studies testing the applicability to aerosols, (c) tests of the manufacturer supplied software, and (d) size measurement comparisons with the results of Coulter analysis. 5 references, 15 figures, 2 tables.

  17. Particle sizing experiments with the laser Doppler velocimeter: Final report

    SciTech Connect

    Giel, T.V. Jr.; Son, J.Y.

    1988-06-01

    Measurement techniques for in-situ simultaneous measurements of particle size distributions and particle velocities using the dual beam laser Doppler velocimeter (LV) were analytically and experimentally investigated. This investigation examined the different signal characteristics of the LV for determination of particle size and particle velocity, simultaneously. The different size related signal components were evaluated not only singularly but also as simultaneous measurements to determine which characteristic, or combination of characteristics, provided the best measure of particle size. The evaluation concentrated on the 0.5 to 5 ..mu..m particle size range, in which the LV light scattering characteristics are complex often non-monotonic functions of the particle size as well as functions of index of refraction, the laser light wavelength, laser intensity and polarization, and the location and response characteristics of the detector. Different components of the LV signal were considered, but analysis concentrated on Doppler phase, visibility and scatter-intensity because they show the greatest promise. These signals characteristics were initially defined analytically for numerous optical configurations over the 0.5 to 5 ..mu..m diameter range with 0.1 ..mu..m segmentation, for refractive index values from 1.0 to 3.0 with absorptive (imaginary) components varied form 0 to 1.0. Collector orientation and effective f/No., as well as fringe spacing, beam polarization and wavelength, were varied in this analytical evaluation. 18 refs., 42 figs., 5 tabs.

  18. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-11-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  19. Particle size distributions in the Eastern Mediterranean troposphere

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-04-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm-10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1-1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  20. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  1. Experimental analysis of particle sizes for PIV measurements

    NASA Astrophysics Data System (ADS)

    van Overbrüggen, Timo; Klaas, Michael; Soria, Julio; Schröder, Wolfgang

    2016-09-01

    The right choice of seeding particles strongly influences the outcome of a particle-image velocimetry (PIV) measurement. Particles have to scatter enough light to be seen by cameras and follow the flow faithfully. As the flow following behavior depends on the inertia and therefore the size of the particle, smaller particles are desirable. Unfortunately, larger particles possess better light scattering behavior, which is especially important for volumetric PIV measurements. In this paper, the particle response of two exemplary solid particles to an oscillatory air flow created by a piston movement is analyzed and compared to analytic results by Hjelmfelt and Mockros (1966 Appl. Sci. Res. 16 149–61) concerning phase lag and amplitude ratio between particle movement and flow field. To achieve realistic experimental boundary conditions, polydispersed particles are used for the analysis. The analytic results show a strong dependence on the diameter. That is, using the volumetric mean diameter an overestimation of the phase lag of the particles is determined, whereas an underestimation of phase lag is computed for the number mean diameter. Hence, for polydispersed particles a more general analysis than that based on the particle mean diameter is required to determine in detail the particle following behavior.

  2. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    EPA Science Inventory

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  3. Effect of Cobalt Particle Size on Acetone Steam Reforming

    SciTech Connect

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  4. Effect of sonication on the particle size of montmorillonite clays.

    PubMed

    Poli, Alessandra L; Batista, Tatiana; Schmitt, Carla C; Gessner, Fergus; Neumann, Miguel G

    2008-09-15

    This paper reports on the effect of sonication on SAz-1 and SWy-1 montmorillonite suspensions. Changes in the size of the particles of these materials and modifications of their properties have been investigated. The variation of the particle size has been analyzed by DLS (dynamic light scattering). In all cases the clay particles show a bimodal distribution. Sonication resulted in a decrease of the larger modal diameter, as well as a reduction of its volume percentage. Simultaneously, the proportion of the smallest particles increases. After 60 min of sonication, SAz-1 presented a very broad particle size distribution with a modal diameter of 283 nm. On the other hand, the SWy-1 sonicated for 60 min presents a bimodal distribution of particles at 140 and 454 nm. Changes in the properties of the clay suspensions due to sonication were evaluated spectroscopically from dye-clay interactions, using Methylene Blue. The acidic sites present in the interlamellar region, which are responsible for dye protonation, disappeared after sonication of the clay. The changes in the size of the scattering particles and the lack of acidic sites after sonication suggest that sonication induces delamination of the clay particles. PMID:18572177

  5. Gravity induced densification of floating crude oil by granular materials: Effect of particle size and surface morphology.

    PubMed

    Boglaienko, Daria; Tansel, Berrin

    2016-06-15

    Densification and sedimentation of floating crude oil to the bottom of water column reduces the radius of a spill and its mobility, preventing direct contamination of beaches, coastal flora and fauna. Performances of different natural granular materials were evaluated for capturing efficiency of floating fresh South Louisiana crude oil. The granular materials studied were quartz sand with medium (20-30mesh) and fine (40-100mesh) particle size, limestone with coarse (4-10mesh) and medium (16-40mesh) particle size, beach sand (20-80mesh), and clay (kaolin with ferric oxide; passing 200mesh). Beach sand (mixture of quartz and limestone 20-80mesh) and limestone (16-40mesh) demonstrated better performance for capture, densification and submergence of the crude oil among the materials evaluated. The behavior of granular particles with the hydrophobic phase can be classified as (1) immersion entrapment inside the hydrophobic phase (slurry), and (2) partial encapsulation of the hydrophobic phase by a single layer of particles (raft). With crude oil, the particles were primarily entrapped within the hydrophobic phase. Study of the effect of particle size and morphology (i.e., porosity) of the granular materials on capture performance showed that average surface pore size did not have a significant effect on aggregation with oil, however, higher capture efficiency was observed with materials of higher surface porosity (beach sand and limestone). The experiments revealed that there is a critical particle size range (passing 10mesh) which resulted in more effective aggregation of the granular materials with crude oil. PMID:26971215

  6. A system for aerodynamically sizing ultrafine environmental radioactive particles

    SciTech Connect

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  7. Finite size effect of harmonic measure estimation in a DLA model: Variable size of probe particles

    NASA Astrophysics Data System (ADS)

    Menshutin, Anton Yu.; Shchur, Lev N.; Vinokour, Valery M.

    2008-11-01

    A finite size effect in the probing of the harmonic measure in simulation of diffusion-limited aggregation (DLA) growth is investigated. We introduce a variable size of probe particles, to estimate harmonic measure and extract the fractal dimension of DLA clusters taking two limits, of vanishingly small probe particle size and of infinitely large size of a DLA cluster. We generate 1000 DLA clusters consisting of 50 million particles each, using an off-lattice killing-free algorithm developed in the early work. The introduced method leads to unprecedented accuracy in the estimation of the fractal dimension. We discuss the variation of the probability distribution function with the size of probing particles.

  8. The Effect of Particle Size on Iron Solubility in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Marcotte, A. R.; Majestic, B. J.; Anbar, A. D.; Herckes, P.

    2012-12-01

    The long range transport of mineral dust aerosols, which contain approximately 3% iron by mass, results in an estimated 14-16 Tg of iron deposited into the oceans annually; however, only a small percentage of the deposited iron is soluble. In high-nutrient, low chlorophyll ocean regions iron solubility may limit phytoplankton primary productivity. Although the atmospheric transport processes of mineral dust aerosols have been well studied, the role of particle size has been given little attention. In this work, the effect of particle size on iron solubility in atmospheric aerosols is examined. Iron-containing minerals (illite, kaolinite, magnetite, goethite, red hematite, black hematite, and quartz) were separated into five size fractions (10-2.5, 2.5-1, 1-0.5, 0.5-0.25, and <0.25μm) and extracted into buffer solutions simulating environments in the transport of aerosol particles for 150 minutes. Particle size was confirmed by scanning electron microscopy (SEM). Soluble iron content of the extracted mineral solutions was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Extracted mineral solutions were also analyzed for Fe(II) and Fe(III) content using a ferrozine/UV-VIS method. Preliminary results show that differences in solution composition are more important than differences in size. When extracted into acetate and cloudwater buffers (pH 4.25-4.3), < 0.3% of the Fe in iron oxides (hematite, magnetite, and goethite) is transferred to solution as compared to ~0.1-35% for clays (kaolinite and illite). When extracted into a marine aerosol solution (pH 1.7), the percentage of Fe of the iron oxides and clays transferred to solution increases to approximately 0.5-3% and 5-70%, respectively. However, there is a trend of increased %Fe in the minerals transferred to solution in the largest and smallest size fractions (~0.01-0.3% and ~0.5-35% for iron oxides and clays, respectively), and decreased %Fe in the minerals transferred to solution in the mid

  9. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system.

    PubMed

    Bilici, Mihai A; Toth, Joseph R; Sankaran, R Mohan; Lacks, Daniel J

    2014-10-01

    Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain. PMID:25362412

  10. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system

    SciTech Connect

    Bilici, Mihai A.; Toth, Joseph R.; Sankaran, R. Mohan; Lacks, Daniel J.

    2014-10-15

    Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.

  11. Airborne Particle Size Distribution Measurements at USDOE Fernald

    SciTech Connect

    Harley, N.H.; Chittaporn, P.; Heikkinen, M.; Medora, R.; Merrill, R.

    2003-03-27

    There are no long term measurements of the particle size distribution and concentration of airborne radionuclides at any USDOE facility except Fernald. Yet the determinant of lung dose is the particle size, determining the airway and lower lung deposition. Beginning in 2000, continuous (6 to 8 weeks) measurements of the aerosol particle size distribution have been made with a miniature sampler developed under EMSP. Radon gas decays to a chain of four short lived solid radionuclides that attach immediately to the resident atmospheric aerosol. These in turn decay to long lived polonium 210. Alpha emitting polonium is a tracer for any atmospheric aerosol. Six samplers at Fernald and four at QC sites in New Jersey show a difference in both polonium concentration and size distribution with the winter measurements being higher/larger than summer by almost a factor of two at all locations. EMSP USDOE Contract DE FG07 97ER62522.

  12. Measuring droplet size distributions from overlapping interferometric particle images.

    PubMed

    Bocanegra Evans, Humberto; Dam, Nico; van der Voort, Dennis; Bertens, Guus; van de Water, Willem

    2015-02-01

    Interferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images. The emphasis is not on a precise identification of droplets, but on obtaining a good estimate of the PDF of droplet sizes in the case of overlapping particle images. The algorithm is tested using synthetic and experimental data. We next use these methods to measure the PDF of droplet sizes produced by spinning disk aerosol generators. The mean primary droplet diameter agrees with predictions from the literature, but we find a broad distribution of satellite droplet sizes. PMID:25725854

  13. Influences of Substrate Adhesion and Particle Size on the Shape Memory Effect of Polystyrene Particles.

    PubMed

    Cox, Lewis M; Killgore, Jason P; Li, Zhengwei; Long, Rong; Sanders, Aric W; Xiao, Jianliang; Ding, Yifu

    2016-04-19

    Formulations and applications of micro- and nanoscale polymer particles have proliferated rapidly in recent years, yet knowledge of their mechanical behavior has not grown accordingly. In this study, we examine the ways that compressive strain, substrate surface energy, and particle size influence the shape memory cycle of polystyrene particles. Using nanoimprint lithography, differently sized particles are programmed into highly deformed, temporary shapes in contact with substrates of differing surface energies. Atomic force microscopy is used to obtain in situ measurements of particle shape recovery kinetics, and scanning electron microscopy is employed to assess differences in the profiles of particles at the conclusion of the shape memory cycle. Finally, finite element models are used to investigate the growing impact of surface energies at smaller length scales. Results reveal that the influence of substrate adhesion on particle recovery is size-dependent and can become dominating at submicron length scales. PMID:27023181

  14. Retrieval of particle size distribution from aerosol optical thickness using an improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Mao, Jiandong; Li, Jinxuan

    2015-10-01

    Particle size distribution is essential for describing direct and indirect radiation of aerosols. Because the relationship between the aerosol size distribution and optical thickness (AOT) is an ill-posed Fredholm integral equation of the first type, the traditional techniques for determining such size distributions, such as the Phillips-Twomey regularization method, are often ambiguous. Here, we use an approach based on an improved particle swarm optimization algorithm (IPSO) to retrieve aerosol size distribution. Using AOT data measured by a CE318 sun photometer in Yinchuan, we compared the aerosol size distributions retrieved using a simple genetic algorithm, a basic particle swarm optimization algorithm and the IPSO. Aerosol size distributions for different weather conditions were analyzed, including sunny, dusty and hazy conditions. Our results show that the IPSO-based inversion method retrieved aerosol size distributions under all weather conditions, showing great potential for similar size distribution inversions.

  15. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  16. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  17. Nano-sized and micro-sized polystyrene particles affect phagocyte function

    PubMed Central

    Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.

    2015-01-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270

  18. A simple way to measure particle size in fluegases

    SciTech Connect

    Gomes, J.F.P.

    1998-03-01

    The size range of particles found in fluegases from stationary emission sources, such as combustion stacks, is an important process parameter. Particle-size range not only affects plume opacity and dispersion modeling, but it is a key factor in the selection and design of air-pollution-control equipment, such as cyclones, bag filters and electrostatic precipitators. The particle-size distribution of a fluegas stream is also a useful parameter for analyzing the performance efficiency of combustion equipment and particulate-removal systems. While several laboratories use costly, laser-beam techniques to carry out this task, no standard method to date has been developed to determine the size range of particles in stationary sources. This article discusses a method (described in US EPA Method 5) in which particles in gases circulating in a stack are collected isokinetically in a filter. Once collected, the particles are measured using an optical microscope. Despite some limitations, this relatively inexpensive method gives reproducible results in many applications. Several are described.

  19. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  20. Diffusion of micrometer-sized soft particles in confinement

    NASA Astrophysics Data System (ADS)

    Jordan, Benjamin; Aptowicz, Kevin

    We investigate the diffusion of micrometer sized poly(N-isopropylacrylamide) (PNIPAM) gel particles in confinement. The influence of confinement on the transport of small particles is becoming increasingly important for microfluidics and bio-fluidics. Analytical solutions to this problem are limited to very unique geometries or gross approximations. Computational methods have provided more insight into the problem as well as experimental investigations. However, most research has focused on the hard-sphere problem. In this work, we will explore the diffusion of soft particles in confinement. The dynamics of the particles confined between two parallel walls is captured with video-microscopy. In addition, we use a recently developed technique to measurement confinement of particles in-situ with a precision of 1%. This poster will present some preliminary results of how confinement affects the diffusion of these soft particles. We acknowledge support from Grant DMR-1206231.

  1. Effect of particle size on the reactivity of supported palladium

    SciTech Connect

    Ichikawa, S.

    1983-01-01

    Carbon monoxide adsorbed on sufficiently small palladium particles disproportionates to surface carbon and carbon dioxide. This does not occur on larger particles. The reaction between carbon monoxide and dioxygen is shown to be structure-insensitive provided the metal surface available for the reaction is estimated correctly. This varies with temperature for the small particles, as at low temperatures the deposited carbon eliminates sites for the reaction while the later become available at higher temperatures at which surface carbon reacts away with dioxygen. As a result of disproportionation of carbon monoxide on small particles, the selectivity of the reactions between carbon monoxide and dihydrogen shifts from methanol on large particles to methane on small ones. The methanation activity increases as the metal particle size decreases, indicating that methanation is a structure-sensitive reaction on palladium.

  2. [Theory and practice of electrospray crystallization in particle size reduction].

    PubMed

    Szunyogh, Tímea; Ambrus, Rita; Szabóné Révész, Piroska

    2015-01-01

    Nowdays, one of the most challenges for the researchers is the formulation of poorly water soluble drugs. Reduction of particle size of active agents to submicron range could result in a faster dissolution rate and higher bioavailability. Integration as crystallization process is an often used particle size decreasing technique. The aim of this study was to show the theoretical background and practical application of the electros pray crystallization as an innovative particle size decreasing technique. Our model drug was the niflumic acid (NIF), which belongs to the BCS Class II. After the optimization of the process parameters, the physico-chemical properties of the samples were characterized. Particle size and shape were visualized by scanning electron microscopy (SEM). Crystalline state of NIF and the samples were investigated using differential scanning calorimetry (DSC) and X-ray powder diffraction. Physico-chemical properties were determined using dissolution test from simulated media. The electrospray crytallization resulted in particle size reduction but the aggregation of nanonized NIF crystals (NIF-nano) could not avoid without excipient. Aggregates with poor secondary forces are suitable for production of the interactive physical mixture. It was found that NIF-nano could be well distributed on the surface of the mannitol as carrier and the Poloxamer R protected the NIF-nano crystals (320 nm)from aggregation. Consequently, the physical mixture resulted in product with higher polarity, better wettability and faster dissolution rate of NIF as raw NIF or NIF-nano. PMID:26390735

  3. Struvite precipitation from urine - Influencing factors on particle size.

    PubMed

    Ronteltap, Mariska; Maurer, Max; Hausherr, Rainer; Gujer, Willi

    2010-03-01

    Struvite crystallisation is a fast and reliable phosphorus removal and recovery process for concentrated waste streams - such as hydrolysed human urine. In order to optimise P-elimination efficiency, it is beneficial to obtain larger particle sizes: they are easier to separate and less prone to wash-out than smaller particles. This paper presents the results of a study on the effect of process parameters on particle size in a single step struvite precipitation. Crystals formed in batch experiments with real hydrolysed urine were shown to have an average size of >90 microm at pH 9 and 20 degrees C. This is reduced to 45 microm when changing stirrer type. Particle size increases with lower supersaturation. The results showed that under otherwise constant conditions, particle size decreases with lower temperature and has a minimum between pH 9 and 10. Deviating trends are observed at pH <8. Struvite formation in a CSTR (continuously stirred tank reactor) process was shown to be a reliable stable process that does not require any pH control. A method based on conductivity measurement is presented to estimate ionic strength, which is needed for equilibrium calculations. PMID:20116825

  4. Particle-Size-Distribution of Nevada Test Site Soils

    SciTech Connect

    Spriggs, G; Ray-Maitra, A

    2007-09-17

    The amount of each size particle in a given soil is called the particle-size distribution (PSD), and the way it feels to the touch is called the soil texture. Sand, silt, and clay are the three particle sizes of mineral material found in soils. Sand is the largest sized particle and it feels gritty; silt is medium sized and it feels floury; and clay is the smallest and if feels sticky. Knowing the particle-size distribution of a soil sample helps to understand many soil properties such as how much water, heat, and nutrients the soil will hold, how fast water and heat will move through the soil, and what kind of structure, bulk density and consistence the soil will have. Furthermore, the native particle-size distribution of the soil in the vicinity of ground zero of a nuclear detonation plays a major role in nuclear fallout. For soils that have a high-sand content, the near-range fallout will be relatively high and the far-range fallout will be relatively light. Whereas, for soils that have a high-silt and high-clay content, the near-range fallout will be significantly lower and the far-range fallout will be significantly higher. As part of a program funded by the Defense Threat Reduction Agency (DTRA), the Lawrence Livermore National Laboratory (LLNL) has recently measured the PSDs from the various major areas at the Nevada Test Site where atmospheric detonations and/or nuclear weapon safety tests were performed back in the 50s and 60s. The purpose of this report is to document those results.

  5. Effect of drug content and drug particle size on the change in particle size during tablet compression.

    PubMed

    Kitamori, N; Makino, T

    1979-08-01

    Three size fractions for each of three poorly soluble drugs were compressed into 10 mm diameter tablets of four different dilution ratios. The compression was carried out on a physical testing instrument at four compression levels of 49.0, 98.1, 196.2 and 294.3 MN m-2. The effect of drug content and drug particle size on the change in particle size during tableting was examined by the determination of the dissolution rate for disintegrated tablets. A linear relation was obtained when plotting 1n(T80%) versus drug content. There was a critical particle size where the phenomena of cleavage and bonding during tableting balanced each other, but this varied with drug content. PMID:39988

  6. Influence of particle size distributions on magnetorheological fluid performances

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Stoian, G.

    2010-01-01

    In this paper we investigate the influence that size distributions of the magnetic particles might have on the magnetorheological fluid performances. In our study, several size distributions have been tailored first by sieving a micrometric Fe powder in order to obtain narrow distribution powders and then by recomposing the new size distributions (different from Gaussian). We used spherical Fe particles (mesh -325) commercially available. The powder was sieved by means of a sieve shaker using a series of sieves with the following mesh size: 20, 32, 40, 50, 63, 80 micrometers. All magnetic powders were characterized through Vibrating Sample Magnetometer (VSM) measurements, particle size analysis and also Scanning Electron Microscope (SEM) images were taken. Magnetorheological (MR) fluids based on the resulted magnetic powders were prepared and studied by means of a rheometer with a magnetorheological module. The MR fluids were measured in magnetic field and in zero magnetic field as well. As we noticed in our previous experiments particles size distribution can also influence the MR fluids performances.

  7. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  8. STREAMBED PARTICLE SIZE FROM PEBBLE COUNTS USING VISUALLY ESTIMATED SIZE CLSASES: JUNK OR USEFUL DATA?

    EPA Science Inventory

    In large-scale studies, it is often neither feasible nor necessary to obtain the large samples of 400 particles advocated by many geomorphologists to adequately quantify streambed surface particle-size distributions. Synoptic surveys such as U.S. Environmental Protection Agency...

  9. The Influence of Particle Size on Infrared Reflectance Spectra

    SciTech Connect

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Johnson, Timothy J.; Richardson, Robert L.

    2014-06-13

    Reflectance spectra of solids are influenced by the absorption coefficient as well as the particle size and morphology. In the infrared, spectral features may be observed as either maxima or minima: in general, the upward-going peaks in the reflectance spectrum result from surface scattering, which are rays that have reflected from the surface without penetration, whereas downward-going peaks result from either absorption or volume scattering, i.e. rays that have penetrated into the sample or refracted into the sample interior and are not reflected. The light signal reflected from solids usually encompasses all these effects which include dependencies on particle size, morphology and sample density. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. The bulk materials were ground with a mortar and pestle and then sieved to separate the samples into various size fractions: 0-45, 45-90, 90-180, 180-250, 250-500, and >500 microns. The directional-hemispherical spectra were recorded using a Fourier transform infrared spectrometer equipped with an integrating sphere to measure the reflectance for all of the particle-size fractions. We have studied both organic and inorganic materials, but this paper focuses on inorganic salts, NaNO3 in particular. Our studies clearly show that particle size has an enormous influence on the measured reflectance spectra for bulk materials and that successful identification requires sufficient representative reflectance data so as to include the particle size(s) of interest. Origins of the effects are discussed.

  10. HDL particle number and size as predictors of cardiovascular disease

    PubMed Central

    Kontush, Anatol

    2015-01-01

    Previous studies indicate that reduced concentrations of circulating high-density lipoprotein (HDL) particles can be superior to HDL-cholesterol (HDL-C) levels as a predictor of cardiovascular disease. Measurements of HDL particle numbers, therefore, bear a potential for the improved assessment of cardiovascular risk. Furthermore, such measurement can be relevant for the evaluation of novel therapeutic approaches targeting HDL. Modern in-depth analyses of HDL particle profile may further improve evaluation of cardiovascular risk. Although clinical relevance of circulating concentrations of HDL subpopulations to cardiovascular disease remains controversial, the negative relationship between the number of large HDL particles and cardiovascular disease suggests that assessment of HDL particle profile can be clinically useful. Reduced mean HDL size is equally associated with cardiovascular disease in large-scale clinical studies. Since HDL-C is primarily carried in the circulation by large, lipid-rich HDL particles, the inverse relationship between HDL size and cardiovascular risk can be secondary to those established for plasma levels of HDL particles, HDL-C, and large HDL. The epidemiological data thereby suggest that HDL particle number may represent a more relevant therapeutic target as compared to HDL-C. PMID:26500551

  11. Spontaneous formation of small sized albumin/acacia coacervate particles.

    PubMed

    Burgess, D J; Singh, O N

    1993-07-01

    Microgel coacervate particles form spontaneously on mixing aqueous solutions of oppositely charged albumin and acacia, under specific conditions of pH, ionic strength, and polyion concentration, close to but not at the optimum conditions for maximum coacervate yield. The mean particle diameter of these coacervate particles is approximately 6 microns when suspended in aqueous media, as determined by HIAC/Royco particle analysis. The geometric standard deviation of the particles falls in the range 1.2-1.9 microns. The particle size was not dependent on the method of emulsification of the coacervate in the equilibrium phase, or on the stirring speed applied during the manufacturing process. The microgel particles were stable on storage, for periods up to forty-six days, without the addition of a chemical cross-linking agent, or the application of heat. Stability was measured with respect to the change in particle size of samples stored at different temperatures. The non-cross-linked microcapsules were also shown to be stable on pH change, to pH values outside the coacervation pH range. At the optimum conditions for maximum coacervate yield the albumin/acacia system formed a very viscous coacervate phase, which was unsuitable for microcapsule preparation. The rheological properties of albumin/acacia and gelatin/acacia complex coacervates optimized for maximum coacervate yield were compared. The albumin/acacia coacervate was shown to be three orders of magnitude more viscous than the gelatin/acacia system. PMID:8105049

  12. Nanosize cobalt boride particles: Control of the size and properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Pileni, M. P.

    1997-02-01

    Cobalt boride is obtained by the reduction of cobalt (2-ethyl hexyl) sulfosuccinate, Co(AOT) 2, by sodium borohydride either in reverse micelles or in a diphasic system. In Co(AOT) 2/Na(AOT)/H 2O reverse micellar solution, the size and polydispersity of the Co 2B particles is controlled by the size of the water droplets, which increases from 4 to 7.5 nm by increasing the water content. In a diphasic system of Co(AOT) 2/isooctane and sodium borohydride in aqueous solution, large and polydisperse particles of cobalt boride are formed (˜ 10 nm), and their magnetization properties are presented. The smallest particles are in a superparamagnetic regime at room temperature, whereas the largest particles show ferromagnetic behavior.

  13. Rapid determination of particle size distribution of microbead catalysts

    SciTech Connect

    Mirshii, Y.V.; Goos, T.V.; Kaviev, V.M.; Kazahov, G.I.; Klimov, A.V.; Nesmeyanova, T.S.

    1986-05-01

    The authors have developed a rapid method for the determination of the particle size distribution of microbead catalysts by a photosedimentation method. This method is based on a determination of the settling velocity of the particles according to the change in optical density of the suspension as the particles settle. The design of the instrument was modified for application to the analysis of microbead cracking catalysts and microbead zeolites; it was originally developed for studies of particle size distribution in other materials. The measuring part of the AFS-2M photosedimentograph is shown schematically. For the high-zeolite catalysts, the results obtained by photosedimenation analysis are somewhat different from those obtained by the pipette method. The photosedimentation method can also be used in the analysis of microbead zeolites that are intended for use in the fluid-bed recovery of liquid paraffins.

  14. Particle size of airborne mouse crude and defined allergens.

    PubMed

    Sakaguchi, M; Inouye, S; Miyazawa, H; Kamimura, H; Kimura, M; Yamazaki, S

    1989-05-01

    Laboratory animal allergy is a serious occupational diseases of many workers and scientists engaged in animal experimentation. Control measures depend upon characterization of allergens including airborne particles. This study measured the particle size of crude mouse urine and pelt aeroallergens generated in mouse housing rooms and compared them with mouse serum albumin, a defined major allergen. Allergens were detected by specific immunological methods. Most crude and defined allergens (74.5-86.4%) concentrated on a filter with a retention size greater than 7 microns. In distrubed air, allergen concentration increased 1.4 (albumin) to 5 (crude) fold and the proportion of small particles increased from 1.4% in calm air to 4.5% in distrubed air. This information on the generation and size distribution of aeroallergens will be important in the development of effective counter measures. PMID:2724924

  15. Determining Sizes of Particles in a Flow from DPIV Data

    NASA Technical Reports Server (NTRS)

    Wernet, M. P.; Mielke, A.; Cadambi, J. R.

    2004-01-01

    A proposed method of measuring the size of particles entrained in a flow of a liquid or gas would involve utilization of data from digital particle-image velocimetry (DPIV) of the flow. That is to say, with proper design and operation of a DPIV system, the DPIV data could be processed according to the proposed method to obtain particle sizes in addition to particle velocities. As an additional benefit, one could then compute the mass flux of the entrained particles from the particle sizes and velocities. As in DPIV as practiced heretofore, a pulsed laser beam would be formed into a thin sheet to illuminate a plane of interest in a flow field and the illuminated plane would be observed by means of a charge-coupled device (CCD) camera aimed along a line perpendicular to the illuminated plane. Unlike in DPIV as practiced heretofore, care would be taken to polarize the laser beam so that its electric field would lie in the illuminated plane, for the reason explained in the next paragraph. The proposed method applies, more specifically, to transparent or semitransparent spherical particles that have an index of refraction different from that of the fluid in which they are entrained. The method is based on the established Mie theory, which describes the scattering of light by diffraction, refraction, and specular reflection of light by such particles. In the case of a particle illuminated by polarized light and observed in the arrangement described in the preceding paragraph, the Mie theory shows that the image of the particle on the focal plane of the CCD camera includes two glare spots: one attributable to light reflected toward the camera and one attributable to light refracted toward the camera. The distance between the glare spots is a known function of the size of the particle, the indices of refraction of the particle material, and design parameters of the camera optics. Hence, the size of a particle can be determined from the distance between the glare spots. The

  16. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  17. Silicon carbide particle size effects in alumina-based nanocomposites

    SciTech Connect

    Carroll, L.; Sternitzke, M.; Derby, B.

    1996-11-01

    Al{sub 2}O{sub 3}/SiC nanocomposites with a systematic variation in their SiC particle size together with monolithic alumina were produced using conventional powder processing, polymer pyrolysis and hot-pressing. The microstructures of the materials were investigated by means of transmission and scanning electron microscopy and correlated to their mechanical properties. All nanocomposites showed a clear increase in strength over similar grain size alumina but no clear dependence on the size of the SiC nano-reinforcement. However, the fracture toughness of the nanocomposites seems to increase with the SiC particle size but with values little changed from the toughness of monolithic alumina as measured by the Vickers indentation technique. The surface and bulk flaw populations were characterized using a Hertzian indentation technique and a Griffith flaw size analysis of strength data. The investigations revealed a significant difference between the monolithic alumina and nanocomposites. The strength increase in the nanocomposites is explained by the observed decrease in both the surface and processing flaw sizes, which further decreased with decreasing SiC particle size.

  18. Spectral attenuation and backscattering as indicators of average particle size.

    PubMed

    Slade, Wayne Homer; Boss, Emmanuel

    2015-08-20

    Measurements of the particulate beam attenuation coefficient at multiple wavelengths in the ocean typically exhibit a power law dependence on wavelength, and the slope of that power law has been related to the slope of the particle size distribution (PSD), when assumed to be a power law function of particle size. Recently, spectral backscattering coefficient measurements have been made using sensors deployed at moored observatories, on autonomous underwater vehicles, and even retrieved from space-based measurements of remote sensing reflectance. It has been suggested that these backscattering measurements may also be used to obtain information about the shape of the PSD. In this work, we directly compared field-measured PSD with multispectral beam attenuation and backscattering coefficients in a coastal bottom boundary later. The results of this comparison demonstrated that (1) the beam attenuation spectral slope correlates with the average particle size as suggested by theory for idealized particles and PSD; and (2) measurements of spectral backscattering also contain information reflective of the average particle size in spite of large deviations of the PSD from a spectral power law shape. PMID:26368762

  19. Ultrasonic characterization of formation damage: effect of particle sizes

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Mohammed, A. H.; Jilani, S. Z.; Menouar, H.; Al-Majed, A. A.

    2003-01-01

    Permeability of a geological formation such as an oil field can be altered locally during drilling operations through penetration of particulates from the drilling fluid into the formation pores. This can adversely affect the overall production rate by constricting the pores. The composition of these fluids, particularly the sizes of the particulates therein, can be critical from the point of view of controlling the extent of 'damage' to the formation. Using our recently reported ultrasonic mapping technique, we have investigated the depth of particle penetration as a function of particle size and contamination time. An important correlation is observed between the diameters of the 'mud' particles and the pore size distribution in the formation. It is further noted that a substantial layer of 'mud cake' is formed on the surface beyond a certain critical particle size and this subsequently acts as a filter allowing only some finer particles to continue penetrating into the formation. The results are discussed in the context of bridging action at the pores.

  20. The Stickiness of Micrometer-sized Water-ice Particles

    NASA Astrophysics Data System (ADS)

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of μm-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ~210 K), μm-sized water-ice particles stick below a threshold velocity of 9.6 m s-1, which is approximately 10 times higher than the sticking threshold of μm-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s-1. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  1. Fine cathode particles prepared by solid-state reaction method using nano-sized precursor particles

    NASA Astrophysics Data System (ADS)

    Ju, Seo Hee; Kang, Yun Chan

    Fine-sized Li-Co-Mn-O cathode particles with various ratios of cobalt and manganese components were prepared by conventional solid-state reaction method using the nano-sized precursor particles. The nano-sized precursor particles of cobalt and manganese components were prepared by spray pyrolysis. The LiCo 1- xMn xO 2 (0.1 ≤ x ≤ 0.3) particles had finer size than that of the pure LiCoO 2 particles. Manganese component disturbed the growth of the LiCo 1- xMn xO 2 cathode particles prepared by solid-state reaction method. The pure LiCoO 2 cathode particles had high initial discharge capacity of 144 mAh g -1. However, the initial discharge capacities of the LiCo 1- xMn xO 2 (0.1 ≤ x ≤ 0.3) cathode particles decreased with increasing the contents of the manganese component. The discharge capacities of the LiMn 2- yCo yO 4 (0 ≤ y ≤ 0.2) cathode particles decreased abruptly with increasing the contents of the cobalt component. The pure LiMn 2O 4 cathode particles had the initial discharge capacities of 119 mAh g -1.

  2. Particle size distribution dynamics during precipitative softening: declining solution composition.

    PubMed

    Nason, Jeffrey A; Lawler, Desmond F

    2009-02-01

    Particle removal is a critical step in the treatment of surface water for potable use, and the majority of drinking water treatment plants employ precipitative coagulation processes such as alum and iron "sweep-floc" coagulation or lime softening for particle pre-treatment. Unfortunately, little is quantitatively known about how particle size distributions are shaped by simultaneous precipitation and flocculation. In an earlier paper, we demonstrated the effects of the saturation ratio, the mixing intensity and the seed concentration on the rates of homogeneous nucleation, precipitative growth and flocculation during precipitation of calcium carbonate at constant solution composition using electronic particle counting techniques. In this work, we extend those findings to systems more closely emulating the conditions in actual softening processes (i.e., declining solution composition). Key findings include the strong dependence of the rate of flocculation on the initial saturation ratio and demonstration of the benefits of seeding precipitative softening from the perspective of optimizing the effluent particle size distribution. The mixing intensity during precipitation was also shown to strongly influence the final particle size distribution. Implications of the findings with respect to softening practice are discussed. PMID:18976791

  3. Miniaturization of powder dissolution measurement and estimation of particle size.

    PubMed

    Avdeef, Alex; Tsinman, Konstantin; Tsinman, Oksana; Sun, Na; Voloboy, Dmytro

    2009-11-01

    The objective was to investigate the applicability and limitations of an approach for estimating particle size from powder dissolution measurement using as little as 50 microg of sample in 1 ml of buffer solutions. The powder dissolution profiles of five sparingly-soluble drugs (hydrochlorothiazide, phenazopyridine hydrochloride, 2-naphthoic acid, indomethacin, and dipyridamole) were evaluated with a novel biexponential spherical particle equation and also the Wang-Flanagan spherical particle non-sink equation. The results were compared to particle sizing based on measured specific surface area by the Brunauer-Emmett-Teller (BET) method, and also based on Coulter counting. With the exception of hydrochlorothiazide, the model compounds indicated some agglomeration in the dissolution media. The dry-state specific surface area was larger than expected from either the Coulter method or the powder-dissolution data, especially for phenazopyridine hydrochloride. The particle radii estimated by the powder dissolution method ranged from 10 to 68 microm, with equilibrium solubilities spanning from 5 microg/ml (dipyridamole) to 911 microg/ml (hydrochlorothiazide). Powder dissolution data collected with the miniaturized apparatus can be used to determine particle size, with estimated values agreeing reasonably with those measured by the Coulter counter method. PMID:19937817

  4. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites.

    PubMed

    Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A

    2016-01-19

    Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size a(e), are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the noncontinuum regime (d < a(e)), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥ a(e) in entangled polymers with varying molecular weight M(w) in order to investigate how the transition from noncontinuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveals a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker M(w) dependence for M(w) > M(e) than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb subchain entangled host segments with sizes comparable to the particle diameter. PMID:26694953

  5. Particle sizing in rocket motor studies utilizing hologram image processing

    NASA Technical Reports Server (NTRS)

    Netzer, David; Powers, John

    1987-01-01

    A technique of obtaining particle size information from holograms of combustion products is described. The holograms are obtained with a pulsed ruby laser through windows in a combustion chamber. The reconstruction is done with a krypton laser with the real image being viewed through a microscope. The particle size information is measured with a Quantimet 720 image processing system which can discriminate various features and perform measurements of the portions of interest in the image. Various problems that arise in the technique are discussed, especially those that are a consequence of the speckle due to the diffuse illumination used in the recording process.

  6. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  7. Particle size and velocity measurement in flames by laser anemometer

    NASA Technical Reports Server (NTRS)

    Chigier, N. A.; Ungut, A.; Yule, A. J.

    1979-01-01

    Simultaneous droplet size and velocity measurements by a particle counting Laser Doppler Anemometer (LDA) in kerosene fuel sprays under burning and non-burning conditions are presented. Particle sizes are derived from pulse height analysis of the mean LDA signals and velocities are simultaneously determined by measuring Doppler shift frequencies. The measurements show that droplet velocity is a function of droplet diameter for burning and non-burning conditions, and spatially averaged size distributions are derived from velocity data. A comparison of results obtained under burning and non-burning conditions show changes in size distribution due to preferential vaporization of small droplets, acceleration due to thermal expansion of gases, and corresponding changes in droplet momentum.

  8. Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.

    2015-04-01

    In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).

  9. Size-dependent dielectrophoretic crossover frequency of spherical particles.

    PubMed

    Weng, Ping-You; Chen, I-An; Yeh, Che-Kai; Chen, Pin-Yi; Juang, Jia-Yang

    2016-01-01

    Dielectrophoresis (DEP) has been extensively used in lab-on-a-chip systems for trapping, separating, and manipulating of micro particles suspended in a liquid medium. The most widely used analytic model, the dipole model, provides an accurate prediction on the crossover frequency of submicron particles, but cannot explain the significant drop in crossover frequency of larger particles. Here, we present numerical simulations using the Maxwell stress tensor (MST) and finite element method to study the size effect of the DEP crossover frequency of spherical polystyrene particles suspended in de-ionized water. Our results show that the surface conductance due to the electrical double layer plays a key role, and the size dependency of crossover frequency obtained by the MST method agrees reasonably well with published experimental data. The exponents of the power law are approximately -1.0 and -4.3 for smaller (diameter < 4.6 μm) and larger particles (diameter  > 4.6 μm), respectively. The free surface charge distribution reveals that the charge begins accumulating on the particle equator for particle diameters larger than a critical diameter of 4.6 μm, a result not captured by the dipolar approximation. This method may be extended to analyze bioparticles with complex shapes and composition, and provides new insights into the interpretation of dielectrophoresis applications using lab-on-a-chip systems. PMID:26909121

  10. Effects of Particle Size and Shape, and Soil Structure on Thermal Properties of Non-aggregated and Aggregated Soils

    NASA Astrophysics Data System (ADS)

    Kamoshida, T.; Hamamoto, S.; Kawamoto, K.; Sakaki, T.; Komatsu, T.; Hu, Q.

    2012-12-01

    Thermal properties including thermal conductivity and heat capacity are very important for understanding heat transport processes in landfill site cover soil to control the microbial processes in the cover soil. Previous studies have shown effects of soil conditions such as moisture content and degree of compaction on the thermal properties for differently-textured soils. However, there are few studies on the relations between the thermal properties and micro-scale soil information such as particle size and shape although the size and shape of soil particles highly affect soil packing configuration. In addition, it is not fully understood that soil structure (i.e., aggregate structure) affects behaviors of thermal properties. In this study, non-aggregated (sandy) and aggregated soils with different size fractions at variably-saturated conditions were used for measuring thermal properties. Micro-scale characterizations of soil-pore structure and soil particle configuration using a X-ray CT device were also performed for sandy soils. For sandy soils, the relation between measured thermal properties and mineral composition (i.e., quartz content), roundness/sphericity of soil particles, and particle size, and solid-phase tortuosity based on X-ray CT images, were investigated. For aggregated soils, the measured thermal conductivities at variably-saturated conditions were discussed based on the water retention characteristics and pore-size distribution in inter- and intra-aggregate pore regions.

  11. Particle size-dependent radical generation from wildland fire smoke.

    PubMed

    Leonard, Stephen S; Castranova, Vince; Chen, Bean T; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M

    2007-07-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H(2)O(2) generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more *OH radicals in the acellular Fenton-like reaction. The

  12. Particle Size Distribution in Saturn’s Ring C

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; Wong, K.; French, R.; Rappaport, N.

    2012-10-01

    Information about particle sizes in Saturn’s rings is provided by two complementary types of Cassini radio occultation measurements. The first is differential extinction of three coherent sinusoidal signals transmitted by Cassini through the rings back to Earth (wavelength = 0.94, 3.6, and 13 cm, respectively). The differential measurements strongly constraint three parameters of an assumed power-law size distribution n(a) = n0 (a/a0)q, amin ≤ a ≤ amax: namely, the power law index q, the minimum radius amin, and reference abundance n0 at reference radius a0. The differential measurements are particularly sensitive to radii in the range 0.1 mm < a < 1 m. Complementing this capability, is a second type of measurements that is particularly sensitive to the larger radii 1 m < a < 20 m and their abundance. Signature of the collective near-forward scattering by these particles is captured in power spectrum measurements as broadened component of width, shape, and strength that depend on ring particle sizes, their spatial distribution, and observation geometry. Contributions of ring features of width as small several hundred kilometers can be identified and isolated in the measured spectra for a small subset of Cassini orbits of favorable geometry. We use three inverse scattering algorithms (Bayes, constrained linear inversion, generalized singular-value-decomposition) to recover the size distribution of particles of resolved ring features over the size range 1 m < a < 20 m without assuming an explicit size distribution model. We also investigate consistency of the results with a single power-law model extending over 0.1 mm < a < 20 m and implications to the spatial distribution of ring particles normal to the ring plane (vertical ring thickness). We present example results for selected features across Saturn’s Ring C where little evidence for gravitational wakes is present, hence the approaches above are applicable.

  13. Taylor length-scale size particles in Isotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Lucci, Francesco

    The present study investigates the two-way coupling effects of finite-size solid spherical particles on decaying isotropic turbulence using an immersed boundary method. The conventional point particle assumption is valid only in the case of particles with a diameter, dp, much smaller than the Kolmogorov length scale, eta. In a simulation with particles of diameter dp > eta the flow around each particle needs to be resolved. In this study, we use a method similar to that of Uhlmann(2005) [55] that adapts the Immersed Boundary(IB) Method developed by Peskin [38] to simulate the flow around suspended spherical solid particles. The main idea of the method is to distribute a number of Lagrangian points uniformly over the surface of the particle. A force is applied at each Lagrangian point to represent the momentum exchange between the particle and the surrounding fluid. An analytic three-point delta function is used to distribute the force to the Eulerian grid points saddling the spherical surface to satisfy the no-slip condition at each Lagrangian point. Decaying turbulence is simulated in a periodic box with a uniform mesh of up to (512)3 grid points and an initial microscale Reynolds number of up to Relambda0 = 110. We compare the single phase flow (SPF) with particle-laden flows with particles of different diameters. The density of the particle varies from 2.56 to 10 times that of the fluid. The effects of the particles on the temporal development of turbulence kinetic energy E(t), its dissipation rate epsilon( t), its two-way coupling rate of change Ψp( t) and frequency spectra E(o) are discussed. In this study, in contrast to particles with dp < eta [15], particles with dp > eta always increase the dissipation rate of turbulence kinetic energy, epsilon( t). In addition, Ψp(t) is always positive, whereas it can be positive or negative for particles with dp < eta. The balance between these two effects caused E(t) to be smaller than that of the single-phase flow

  14. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. PMID:27268595

  15. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  16. Tracing Particle Size Distribution Curves Using an Analogue Circuit.

    ERIC Educational Resources Information Center

    Bisschop, F. De; Segaert, O.

    1986-01-01

    Proposes an analog circuit for use in sedimentation analysis of finely divided solid materials. Discusses a method of particle size distribution analysis and provides schematics of the circuit with list of components as well as a discussion about the operation of the circuit. (JM)

  17. Effective particle sizes of cohesive sediment in north Mississippi streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the size of cohesive sediment particles transported in streams is important information for predicting how the sediment and contaminants the sediment may be carrying will be transported by the flow. Cohesive sediments (less than 0.062 mm in diameter) generally are not transported in th...

  18. ELEMENTAL COMPOSITION OF SIZED PARTICLES EMITTED FROM STATIONARY SOURCES

    EPA Science Inventory

    This paper discusses several approaches for obtaining the elemental and, in a few cases, inorganic compound identification in sized particles. The elemental analyses are done by wavelength dispersion x-ray fluorescence (WXRF). Fourier Transform infrared is being used for inorgani...

  19. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  20. Particle size distributions in and exhausted from a poultry house

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we describe a study looking at the full particulate size range of particles in a poultry house. Agricultural particulates are typically thought of as coarse mode dust. But recent emphasis of PM2.5 regulations on pre-cursors such as ammonia and volatile organic compounds increasingly makes it ne...

  1. A combination of size-resolved particle samplers and XRF microprobe technique for single particle study

    NASA Astrophysics Data System (ADS)

    Ma, Chang-Jin; Kim, Ki-Hyun

    It is important to understand the properties of individual airborne particulates that are determined by the processes of various physicochemical reactions occurring in their generation, transformation, and transport. This study describes the application of the X-ray fluorescence (XRF) microprobe technique to the analysis of size-resolved individual particles as well as the results of an experimental study on the comparison of three different particle collection instruments for single particle analysis: a two-stage filter pack, a low pressure Andersen impactor (LPAI), and a micro-orifice uniform deposit impactor (MOUDI). Though LPAI and MOUDI are relatively suitable for multisize-segregated particles sampling compared with the two-stage filter pack sampler, they can easily form particle clusters and finally these particle clusters impede single particle analysis. Even though more particle mass can be collected without overloading on the substrate using MOUDI, by stage rotating, particles are still deposited and form clusters on the concentric circles. When particles are forming a spot (or other shapes of particle cluster), single particle analysis using the XRF micro-beam technique is restricted to individual particles deposited at the edge of the spot. Thus, the sampling duration time depending on the sampler stage should be adjusted for single particle study.

  2. Particle size distribution effects in an irradiated turbulent gas-particle mixture

    NASA Astrophysics Data System (ADS)

    Rahmani, Mona; Geraci, Gianluca; Iaccarino, Gianluca; Mani, Ali

    2015-11-01

    The effects of particle size distribution on thermodynamic and hydrodynamic behavior of solid particle solar receivers, that involve a turbulent mixture of gas and particles in a radiation environment, are investigated, using DNS with point particles. The turbulent flow is seeded with monodisperse and polydisperse particles, where the mass loading and total frontal area of particles are matched between the two systems. The results show that the variability of the Stokes number for polydisperse particles can significantly influence the particle clustering, and consequently the thermal performance of the system. In all cases studied, the preferential concentration is less pronounced for polydisperse as opposed to monodisperse particles. This reduced preferential concentration results in less heating of the particles, but more efficient energy release to the gas phase. Due to their different clustering patterns, polydisperse particles influence the Taylor scale of the flow in the turbulent gas phase. Polydispersity also implies variable thermodynamic and hydrodynamic properties of the particles. Our results show that the thermal behavior of the system with polydisperse particles is set by the integral measures for particle and gas momentum and thermal relaxation times.

  3. Comparison of ice particle size variations across Ganymede and Callisto

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Hoffmann, Harald; Hibbitts, Karl; Wagner, Roland; Jaumann, Ralf

    2016-04-01

    Ratios of band depths of different H2O ice absorptions as measured by the Near Infrared Spectrometer NIMS onboard the Galileo spacecraft [1] have been found to be semi-quantitative indicator of changes in the particle size of ice across the surfaces of the Jovian satellite Ganymede [2]. This method is now applied to Ganymede's neighboring satellite Callisto. On Ganymede, sizes reach from 1 μm near the poles to 1 mm near the equator [2]. Smallest particles occur at latitudes higher than ±30° where the closed magnetic field lines of Ganymede's magnetic field change into open ones and Ganymede's polar caps become apparent. Thus, the formation of these polar caps has often been attributed to brightening effects due to plasma bombardment of the surface [3,4]. Callisto, which does not exhibit an intrinsic magnetic field, however, also shows the same trend as observed on Ganymede with slightly larger particle sizes on Callisto than on Ganymede at low and mid latitude but similar particle sizes in the polar regions. Similar trends in the particle size variations on Callisto and on Ganymede imply that these variations are caused by similar surface processes. Our measurements rather point to a continuous decreasing of ice particle sizes toward the poles on both satellites related to changes of the surface temperatures [5]. Maximum temperatures during the day reach 150 K and 165 K near the equator of Ganymede and Callisto [6, 7], respectively and sublimation of ice particles and crystal growth [8] is expected to be the dominant surface process in these regions. In contrast, polar temperatures do not exceed 80 ± 5 K [5]. Larger particles in the equatorial region of Callisto than on Ganymede could be explained due to the slight higher maximum temperature but also a longer Callistoan day (Callisto: ~ 17 Earth days; Ganymede: ~ 7 Earth days). References: [1] Carlson et al.. (1999) Science 274, 385-388, 1996; [2] Stephan et al., 2009, EPSC, Abstract #EPSC2009-633; [3] Johnson

  4. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  5. Evolution of Particle Size Distributions in Fragmentation Over Time

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under

  6. Ultrasonic cavitation for obtainment of nanometric sized particles

    NASA Astrophysics Data System (ADS)

    Santos, A.; Guzmán, R.; Espinosa, J.; Estrada, J.

    2016-02-01

    This project aims to determine the possibility of obtaining nanometric size particles of aluminium oxide (Al2O3) and titanium dioxide (TiO2) from commercial micron-sized powders, through the physical principle of ultrasonic cavitation, in order to be used as supply material in coatings made through a process of thermal spray by flame. The tests are performed on a Hielscher UIP 1000hd Ultrasonics equipment, in a 20 micron wave amplitude and in times of 6, 8, 12, 18 and 24 hours. The determination of the particle size is done through image processing using ImageJ software, obtained by the technique of scanning electron microscopy (SEM); while the elemental composition of the processed samples is analyzed through the technique of energy dispersing spectroscopy (EDS). The results show that Al2O3 and TiO2 have a reduction behaviour of the particles size after being subjected to ultrasonic cavitation, however is only reached the nanometric size in the TiO2 samples.

  7. Particle Sizes and Self Gravity Wakes in Saturn's A Ring

    NASA Astrophysics Data System (ADS)

    Jerousek, R. G.; Colwell, J. E.; Esposito, L. W.; Nicholson, P. D.

    2015-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) and Visual and Infrared Mapping Spectrometer (VIMS) have measured normal optical depths throughout Saturn's rings by stellar occultations covering a wide range of viewing geometries. The UVIS photometer has an effective wavelength of 0.15 µm and a relatively wide (6.0 mrad × 6.4 mrad) field-of-view. VIMS, in occultation mode, measures at an effective wavelength of 2.9 µm and over a single pixel of angular dimensions 0.25 mrad × 0.5 mrad. Occultations measured by VIMS at the same viewing geometry as UVIS occultations overstate the optical depth if particles smaller than 1.22λVIMS/2θ ~ 8.36 mm are present because light diffracted out of the VIMS pixel by those particles is not replaced by neighboring particles. By measuring differential optical depths one can probe the parameters of the ring particle size distribution (i.e. Zebker et al. 1985, Icarus, 64, 531-548). The technique is complicated, however, by the geometric dependence of the optical depth imposed by the non-axisymmetric self-gravity wakes, which are ephemeral elongated aggregates, deformed by Keplerian shear. Beginning with the granola bar wake model of Colwell et al. (2006, Geophys. Res. Lett., 33, L07201), we introduce a free parameter τsmall which represents the excess normal optical depth measured by VIMS due to sub-cm particles between the opaque wakes and combine VIMS and UVIS occultations for particle size analysis while simultaneously determining the properties of the wakes. We find that throughout the A Ring the wake properties generally agree with previously published results (Colwell et al. 2006, Hedman et al. 2007, Astron. J., 133, 2624-2629). We find a significant fraction of sub-cm particles in the inner and outer A Ring and in the troughs of density waves near strong Lindblad resonances. While wake properties vary in the halo regions surrounding these resonances, the abundance of sub-cm particles varies little from 124

  8. Determination of atmospheric particle size distribution from forward scattering data.

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1973-01-01

    Description of an analytic method of reconstructing the particle size distribution of atmospheric aerosols when no a priori information is available regarding the refractive index of the particles, the analytic form of the distribution, the size range, and the size extremal values. The method applies in principle to angle-dependent scattering data at a fixed wave number, or to wave-number-dependent scattering data at a fixed angle, or to a combination of the two. Some results of an angular scan study of the aureole are presented to illustrate the effectiveness of the method. In conclusion, an analysis is made of the efficiency and accuracy of the method, the uniqueness of the inverse solutions, and the stability of the method relative to experimental noise.

  9. EFFECT OF PARTICLE DIAMETER ON EXCLUSION-ZONE SIZE

    PubMed Central

    NHAN, D.T.; POLLACK, G.H.

    2011-01-01

    Particles and solutes are excluded from the vicinity of hydrophilic surfaces, leaving large microsphere-free regions known as exclusion zones (EZs). Prior work had indicated that EZs could extend to distances of up to several hundred micrometers from the nucleating surface. These observations were made on large, extended surfaces, leaving open the question whether EZ size might depend on the characteristic dimension of the excluding surface. We placed one or few ion-exchange-resin beads whose diameters varied from 15 μm to 300 μm in cuvettes. The beads were suffused with aqueous microsphere suspensions for observing the surfaces’ exclusionary behavior. Results showed a direct relation between bead size and EZ size over the full range of bead diameter, implying a similar relation for smaller particles or molecules, perhaps extending beyond the resolution of the light microscope. PMID:22389653

  10. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data

  11. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  12. Particle Sizes in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.

    2013-12-01

    Information about particle sizes in Saturn's rings is provided by differential extinction of three coherent sinusoidal radio signals transmitted by Cassini through the rings back to Earth (wavelength = 0.94, 3.6, and 13 cm, respectively). The measurements are particularly sensitive to radii in the range ~0.1 mm < a < ~1 m. Complementary information is provided by measurements of collective near-forward scattering by the particles. The latter is captured in spectrograms of the received signals. Contributions of ring features of width as small several hundred kilometers can be identified and isolated in the measured spectra for a small subset of Cassini orbits of favorable geometry. Spectrograms measurements are sensitive to particles in the radius range ~1 m < a < ~20 m and to spatially correlated aggregates of such particles (gravitational wakes). We use both inverse scattering and modeling techniques to recover the particle size distribution of 57 sub-regions of Saturn's Ring C. Power-law models of maximum particle radius a_max ~ 5 to 6 m, and power-law index 3.15 ≤ q ≤ 3.35 characterize the Ring C background structure, with some subtle variations in the wavy region. Larger a_max ~ 9 m and smaller q ~3.15 characterize the outer ramp region. Surprisingly, even larger sizes amax ~ 25 m appear to populate 4 of the Ring C 'plateaus,' possibly in aggregates form rather than as individual particles. In sharp contrast, particles of comparatively smaller maximum size appear to populate a fifth plateau region. In almost all Ring C regions, the minimum radius a_min consistently falls in the few millimeters range. In ring regions where gravitational wakes are know to be present, such as Rings A and B, the measured spectrograms show evidence for a strong forward scattering component consistent with scattering by spatially correlated and canted 'cylindrical' structures. We constrain the aggregate sizes, their canting angle, and other physical properties using comparisons

  13. ORIGIN OF QUARTZ IN COAL.

    USGS Publications Warehouse

    Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.

    1984-01-01

    Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.

  14. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  15. Aspects of droplet and particle size control in miniemulsions

    NASA Astrophysics Data System (ADS)

    Saygi-Arslan, Oznur

    Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a

  16. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  17. Size distribution of airborne particles controls outcome of epidemiological studies.

    PubMed

    Harrison, Roy M; Giorio, Chiara; Beddows, David C S; Dall'Osto, Manuel

    2010-12-15

    Epidemiological studies typically using wide size range mass metrics (e.g. PM(10)) have demonstrated associations between airborne particulate matter and several adverse health outcomes. This approach ignores the fact that mass concentration may not correlate with regional lung dose, unlike the case of trace gases. When using measured particle size distributions as the basis for calculating regional lung dose, PM(10) mass concentration is found to be a good predictor of the mass dose in all regions of the lung, but is far less predictive of the surface area and particle number dose. On the other hand, measurements of particle number do not well predict mass dose, indicating that the chosen particle metric is likely to determine the health outcomes detectable by an epidemiological study. Consequently, epidemiological studies using mass metrics (PM(2.5) and PM(10)) may fail to recognise important health consequences of particulate matter exposure, leading to an underestimate of the public health consequences of particle exposure. PMID:21109288

  18. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  19. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of μm-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ∼210 K), μm-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup –1}, which is approximately 10 times higher than the sticking threshold of μm-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup –1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  20. The Size Distribution of Arecibo Interstellar Particles and Its Implications

    NASA Astrophysics Data System (ADS)

    Meisel, David D.; Janches, Diego; Mathews, John D.

    2002-11-01

    Size histograms of all Arecibo ultra-high-frequency radar micrometeors detected in 1997-1998 whose radii were measured by atmospheric drag are presented. Most can be fitted with either a lognormal function or, alternatively, one or more power-law functions. Either form is indicative of significant fragmentation. The interplanetary dust particle (IDP) histogram results are discussed and compared with those considered to be extrasolar particles, including a subset of those deemed to be true interstellar particles (ISPs). The Arecibo IDP power-law results are shown to agree well with those derived from IRAS dust bands and Long-Duration Exposure Facility cratering, thus confirming the applicability of the sample to the derivation of mass estimates. A dichotomy between size histograms of particles with preperihelion Earth encounters and those with postperihelion encounters is evidence that significant size histogram change occurs when the smallest particles, including all ISPs, pass close to the Sun, even if only once. A small sample of previously undetected Arecibo postperihelion ISPs coming from the direction of the known Ulysses gas and dust flow are shown to have a size distribution and solar system dynamical properties similar to other Arecibo ISPs and therefore can be combined with previous ISP results to obtain a more robust sample. Derived mass flux points for the Arecibo ISPs agree well (over 5 orders of magnitude of mass) with a previously derived mass flux distribution function for Ulysses/Galileo spacecraft dust. This combined spacecraft and ground-based mass flux function is then used to infer a number of interesting mass-related solar system and astrophysical quantities.

  1. The effects of aluminum particle size on aluminized propellant combustion

    NASA Astrophysics Data System (ADS)

    Dokhan, Allan

    The goal of this thesis was to: test current ideas regarding the complex behavior of aluminized propellant combustion, extend understanding to conditions not previously clarified, and demonstrate the applicability of the results in the tailoring of propellant formulations to specific applicational needs. The study focused on ammonium perchlorate (AP), hydrocarbon binder, aluminum (Al) formulations. All formulations had 11% polybutadiene (PBAN) binder and 89% solids (i.e., 18% Al and 71% AP). The primary propellant formulations were Al and fine AP (fAP) particle sizes. The values of these variables were chosen according to current practical standards and ideas on how to tailor the Al behavior. Bimodal size distributions were used for AP and Al. For bimodal Al formulations, the coarse Al particle size was 30mum (nominal) and the fine Al particle size was 0.1mum (nominal), and for bimodal AP, the cAP particle size was 400mum (nominal) and the fAP particle size was either 82.5mum or 10mum (nominal). The effects of the Al particle size, Al c/f ratio, fAP particle size and the AP c/f ratio were examined for monomodal and bimodal aluminized propellants. This experimental investigation challenges conventional thinking with regards to the mechanisms involved with Al combustion and provides guidelines in formulating propellants with minimal losses in performance. The results showed the existence of an intense aluminized burning region (ABR) very close to the propellant surface with ultra-fine Al (UFAl) and 3mum Al that encouraged heat feedback to the flame front and to the propellant surface in the form of radiation and conduction. The high burning rates observed with UFAl were part of a continuum of reducing the size of the Al particles, which also lead to the presence of a dense ABR close to the propellant surface. It was also shown that major modification to the burning rates could be achieved by moderate amounts of UFAl and/or significant reduction in the AP c/f ratio. A

  2. Theory of flotation of small and medium-size particles

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  3. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    SciTech Connect

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  4. Mr Fluids with Nano-Sized Magnetic Particles

    NASA Astrophysics Data System (ADS)

    Kormann, Cl.; Laun, H. M.; Richter, H. J.

    Recently magnetorheological fluids with nanosized magnetic ferrite particles have become available. Their composition, rheological and magnetic properties are described. A comparison with conventional MR fluids based on micron-sized particles is given. The yield stress of nano-MR fluids can be increased by a moderate magnetic field (0,2 T) by 4000 Pa. It can be modulated by the magnetic field with a response time of less than 5 ms. Details are given on the long term thermal stability at 150 °C, on flow properties at elevated temperatures and at high shear rates. Design principles for MR fluid actuator design are outlined.

  5. Photothermal imaging of nanometer-sized metal particles among scatterers.

    PubMed

    Boyer, David; Tamarat, Philippe; Maali, Abdelhamid; Lounis, Brahim; Orrit, Michel

    2002-08-16

    Ambient optical detection of labeled molecules is limited for fluorescent dyes by photobleaching and for semiconducting nanoparticles by "blinking" effects. Because nanometer-sized metal particles do not optically bleach, they may be useful optical labels if suitable detection signals can be found. We demonstrate far-field optical detection of gold colloids down to diameters of 2.5 nanometers with a photothermal method that combines high-frequency modulation and polarization interference contrast. The photothermal image is immune to the effects of scattering background, which limits particle imaging through Rayleigh scattering to diameters larger than 40 nanometers. PMID:12183624

  6. Crystal- and fragment- size distributions of quartz and zircon in pumice: growth and fragmentation conditions in large and small-volume magma chambers

    NASA Astrophysics Data System (ADS)

    Bindeman, I.

    2003-12-01

    I describe an acid (HF and HBF4) technique to extract phenocrysts from individual vesiculated pumice clasts, coupled with camera- and computer-assisted measurements of phenocryst length, width, 3D shape, and vol abundance. CSDs of quartz and zircon are presented for several well-known voluminous ash-flow tuffs and small-volume lavas: Bishop, Lava Creek, Lower Bandelier, Toba, Katmai, and Timber Mt. Measured CSDs of quartz and zircon from these clasts provide a quenched "snapshot" view of growth conditions in preclimactic magma chambers. A common feature of CSDs of unfragmented phenocrysts is a concave-down, lognormal shape in contrast to the reported linear CSDs in more mafic systems.In addition, there are no crystals smaller than a threshold size. These features in silicic magmas are interpreted to be a general result of surface-controlled crystal growth (with growth rate dispersion) by layer nucleation. CSD slopes on log-linear frequency- size graphs in large volume tuffs, and smaller volume intracaldera lavas are similar, and do not simply correlate to the eruptive volume, or SHRIMP-determined zircon ages. CSDs of quartz in clasts with known stratigraphic positions document single evolving reservoir, fingerprint different magma batches (L Bandelier and Lava Creek), and overgrowth and gravitational redistribution (Bishop). Fragment size distributions (FSDs) in the same clasts document fragmentation due to 1) decrepitation of melt inclusions decompression- and heating-induced), and 2)syneruptive breakage. FSDs are treated with lognormal, Weibull, and fractal distributions. Among studied clasts, asymptotic and fractal FSDs are found to be more common. However, the genesis mechanisms (e.g. fractal, scale-invariant vs. size-dependent lognormal) inferred from CSD or FSD should be treated with caution. Decrepitation results in a smaller number of fragments (2-6) than crushing and in shapes that can be distinguished on perimeter/area vs. length diagrams. CSD and FSD

  7. Counting particles emitted by stratospheric aircraft and measuring size of particles emitted by stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    The ER-2 condensation nuclei counter (CNC) has been modified to reduce the diffusive losses of particles within the instrument. These changes have been successful in improving the counting efficiency of small particles at low pressures. Two techniques for measuring the size distributions of particles with diameters less than 0.17 micrometers have been evaluated. Both of these methods, the differential mobility analyzer (DMA) and the diffusion battery, have fundamental problems that limit their usefulness for stratospheric applications. We cannot recommend either for this application. Newly developed, alternative methods for measuring small particles include inertial separation with a low-loss critical orifice and thin-plate impactor device. This technique is now used to collect particles in the multisample aerosol collector housed in the ER-2 CNC-2, and shows some promise for particle size measurements when coupled with a CNC as a counting device. The modified focused-cavity aerosol spectrometer (FCAS) can determine the size distribution of particles with ambient diameters as small as about 0.07 micrometers. Data from this instrument indicates the presence of a nuclei mode when CNC-2 indicates high concentrations of particles, but cannot resolve important parameters of the distribution.

  8. Fine cathode particles prepared by solid-state reaction method using nano-sized precursor particles

    NASA Astrophysics Data System (ADS)

    Ju, Seo Hee; Koo, Hye Young; Hong, Seung Kwon; Jo, Eun Byul; Kang, Yun Chan

    Fine-sized Li-Co-Mn-O cathode particles with various ratios of cobalt and manganese components were prepared by conventional solid-state reaction method using the nano-sized precursor particles. The nano-sized precursor particles of cobalt and manganese components were prepared by spray pyrolysis. The LiCo 1- xMn xO 2 (0.1 ≤ x ≤ 0.3) particles had finer size than that of the pure LiCoO 2 particles. Manganese component disturbed the growth of the LiCo 1- xMn xO 2 cathode particles prepared by solid-state reaction method. The initial discharge capacities of the layered LiCo 1- xMn xO 2 (0 ≤ x ≤ 0.3) cathode particles decreased from 144 to 136 mAh g -1 when the ratios of Co/Mn components were changed from 1/0 to 0.7/0.3. The mean sizes of the spinel LiMn 2- yCo yO 4 (0 ≤ y ≤ 0.2) cathode particles decreased from 650 to 460 nm when the ratios of Mn/Co components were changed from 2/0 to 1.8/0.2. The initial discharge capacities of the LiMn 2- yCo yO 4 (0 ≤ y ≤ 0.2) cathode particles decreased from 119 to 86 mAh g -1 when the ratios of Mn/Co components were changed from 2/0 to 1.8/0.2.

  9. Current Development Status of a Particle Size Analyzer for Coated Particle Fuel

    SciTech Connect

    Nelson, Andrew T; Hunn, John D; Karnowski, Thomas Paul

    2007-08-01

    Work was performed to develop a prototype Particle Size Analyzer (PSA) for application to coated particle fuel characterization. This system was based on a light obscuration method and targeted towards high throughput analysis. Although never matured to the point of replacing existing lower throughput optical microscopy shadowgraph methods, the system was successfully applied to automating the counting of large particle samples for increased accuracy in calculating mean particle properties based on measurements of multiparticle samples. The measurement of particle size with the PSA was compared to current shadowgraph techniques and found to result in considerably greater throughput at the cost of larger measurement uncertainty. The current algorithm used by the PSA is more sensitive to particle shape and this is a likely cause of the greater uncertainty when attempting to measure average particle diameter. The use of the PSA to measure particle shape will require further development. Particle transport through the PSA and stability of the light source/detector are key elements in the successful application of this technique. A number of system pitfalls were studied and addressed.

  10. Inversion method based on stochastic optimization for particle sizing.

    PubMed

    Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix

    2016-08-01

    A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem. PMID:27505357

  11. Particle size and pathogenicity in the respiratory tract

    PubMed Central

    Thomas, Richard James

    2013-01-01

    Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans. PMID:24225380

  12. Comparison of the activities of fine-particle size catalysts

    SciTech Connect

    Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

    1994-12-31

    The objectives of Sandia`s fine-particle size catalyst testing project are to evaluate and compare the activities of the fine-particle size catalysts being developed in DOE/PETCs Advanced Research Coal Liquefaction Program by using standard coal liquefaction test procedures. The standard procedures use Blind Canyon coal, phenanthrene as the reaction solvent, and a factorial experimental design with temperatures from 350{degrees}C to 400{degrees}C, reaction times from 20 to 60 minutes, and catalyst loadings up to 1 wt%. Catalytic activity is measured in terms of tetrahydrofuran conversion, heptane conversion, the amount of 9,10-dihydrophenanthrene in the product, and the gas yield. Several catalysts have been evaluated including a commercially available pyrite, a sulfated iron oxide from the University of Pittsburgh, and several preparations of 6-line ferrihydrites from Pacific Northwest Laboratories. Results have demonstrated that significant differences in activity can be detected among these catalysts.

  13. Size segregation in bedload sediment transport at the particle scale

    NASA Astrophysics Data System (ADS)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles

  14. The comparative study of particle size distribution in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Timko, M.; Kopčanský, P.; Koneracká, M.; Skumiel, A.; Labowski, M.; Jozefczak, A.; Bica, Doina; Bâlâu, Oana; Vékás, L.; Fannin, P. C.; Giannitsis, A. T.

    2002-01-01

    Water- and physiology-solution-based biocompatible magnetic fluids have been studied in order to determine the size of magnetic particles and their colloidal stability. The results of magnetorheological measurements at room temperature and measurements of the frequency-dependent complex magnetic susceptibility indicate that the fluids have good stability and that the particles are finely dispersed without aggregation. The mean particle diameter for physiology-solution-based magnetic fluid, estimated from measurements of anisttropy of the magnetic susceptibility, was found to be 9.4 nm. This value is in good agreement with an estimate of 11.6 nm obtained from transmission electron microscopy (TEM) particularly when allowance is made for the thickness of surfactant layer (approx. 2 nm).

  15. Particle size distribution dynamics during precipitative softening: constant solution composition.

    PubMed

    Nason, Jeffrey A; Lawler, Desmond F

    2008-08-01

    In the treatment of surface water for potable use, precipitative coagulation (e.g., lime softening, alum or iron sweep coagulation) is widely utilized prior to particle removal processes. The particle size distribution (PSD) formed during such processes is a prime determinant of the removal efficiency for suspended and dissolved contaminants, but little is known quantitatively about how PSDs change by simultaneous precipitation and flocculation. Using precipitative softening as an example, detailed measurements of the PSD (using electronic particle counting) were made during precipitation of CaCO(3) under conditions of constant solution composition. Examination of the time-varying PSDs revealed dramatic changes resulting from nucleation, crystal growth, and flocculation. The influence of the saturation ratio, seed concentration, and mixing intensity on those processes was quantified. Implications with respect to the design and operation of water treatment facilities are discussed. PMID:18656223

  16. Thermal levitation of 10 um size particles in low vacuum

    NASA Astrophysics Data System (ADS)

    Fung, Long Fung Frankie; Kowalski, Nicholas; Parker, Colin; Chin, Cheng

    2016-05-01

    We report on experimental methods for trapping 10 micron-sized ice, glass, ceramic and polyethylene particles with thermophoresis in medium vacuum, at pressures between 5 Torr and 25 Torr. Under appropriate conditions particles can launch and levitate robustly for up to an hour. We describe the experimental setup used to produce the temperature gradient necessary for the levitation, as well as our procedure for generating and introducing ice into the experimental setup. In addition to analyzing the conditions necessary for levitation, and the dependence of levitation on the experimental parameters, we report on the behavior of particles during levitation and ejection, including position and stability, under different pressures and temperatures. We also note a significant discrepancy between theory and data, suggesting the presence of other levitating forces.

  17. Laser diffraction particle sizing: Instrument probe volume relocation and elongation

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buchele, Donald R.; Hovenac, Edward A.; Lock, James A.

    1990-01-01

    The effective probe volume of laser diffraction particle sizing instruments depends on many instrument parameters. In particular the probe volume axial boundaries and its location along laser beam are essentially defined by the onset of a vignetting effect where light scattered at large angles from small particles misses the transform lens. This vignetting effect results in a probe volume that must be inconveniently close to the lens in order to detect smaller diameter particles (less than 100 micrometers). With the addition of an appropriately designed Keplerian telescope, the probe volume may be relocated and elongated. The theory of operation of this supplemental optical system is described. Design considerations for these supplemental optical systems are described, including recommendations for lens specifications, assembly and use. An image transfer system is described which has been designed for use on a Malvern 2600HSD instrument. Experimental validation of this image transfer system is described.

  18. Multiple-Instrument Analyses of Single Micron-Size Particles

    NASA Astrophysics Data System (ADS)

    Admon, Uri; Donohue, David; Aigner, Helmut; Tamborini, Gabriele; Bildstein, Olivier; Betti, Maria

    2005-08-01

    Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 [mu]m and 20 [mu]m, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.

  19. Bulk particle size distribution and magnetic properties of particle-sized fractions from loess and paleosol samples in Central Asia

    NASA Astrophysics Data System (ADS)

    Zan, Jinbo; Fang, Xiaomin; Yang, Shengli; Yan, Maodu

    2015-01-01

    studies demonstrate that particle size separation based on gravitational settling and detailed rock magnetic measurements of the resulting fractionated samples constitutes an effective approach to evaluating the relative contributions of pedogenic and detrital components in the loess and paleosol sequences on the Chinese Loess Plateau. So far, however, similar work has not been undertaken on the loess deposits in Central Asia. In this paper, 17 loess and paleosol samples from three representative loess sections in Central Asia were separated into four grain size fractions, and then systematic rock magnetic measurements were made on the fractions. Our results demonstrate that the content of the <4 μm fraction in the Central Asian loess deposits is relatively low and that the samples generally have a unimodal particle distribution with a peak in the medium-coarse silt range. We find no significant difference between the particle size distributions obtained by the laser diffraction and the pipette and wet sieving methods. Rock magnetic studies further demonstrate that the medium-coarse silt fraction (e.g., the 20-75 μm fraction) provides the main control on the magnetic properties of the loess and paleosol samples in Central Asia. The contribution of pedogenically produced superparamagnetic (SP) and stable single-domain (SD) magnetic particles to the bulk magnetic properties is very limited. In addition, the coarsest fraction (>75 μm) exhibits the minimum values of χ, χARM, and SIRM, demonstrating that the concentrations of ferrimagnetic grains are not positively correlated with the bulk particle size in the Central Asian loess deposits.

  20. Determination of particle size using measurement of scatter

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1978-01-01

    A literature search was conducted to determine the state of the art particle size measurement by the light scatter technique. This technique may involve diffraction pattern analysis, location of minima and maxima in angular dependence of scattered light, magnitude of intensity verses angle, forward lobe scattered intensity ratio using two small angles, forward scatter in a small cone, and total scatter. Some of the more modern recordings and detection systems are video, holographic, and systems using optical processing.

  1. Ultrasonic Diffraction Grating Spectroscopy and the Measurement of Particle Size

    SciTech Connect

    Greenwood, Margaret S.; Ahmed, Salahuddin

    2006-12-22

    The results of measurements using ultrasonic diffraction grating spectroscopy (UDGS) are found to be dependent upon the particle size of the slurry. This illustrates the emergence of a new technique for measuring particle size. Theoretical calculations are underway to describe and predict them as well. The ultrasonic grating surface is in contact with the slurry. The diffraction grating was formed by machining triangular grooves with a periodicity of 483 microns on the flat surface of an aluminum unit with send and receive transducers fastened to it. For this experimental configuration, the ultrasonic beam strikes the back of the grating at an incident angle of 30° and produces a transmitted beam of spectral order m = 1 in the slurry. The angle of this transmitted beam changes with frequency and, at the critical frequency of 3.47 MHz, it is located at an angle of 90º. The receive transducer measures the reflected m = 0 beam at an angle of 30°. At a frequency slightly less than the critical frequency, the m = 1 transmitted beam no longer exists and its energy is shared with all other beams. Therefore, due to energy conservation, the signal in the receive transducer exhibits a peak at the critical frequency. During the transition, the wave interacts with the particles of the slurry and ultrasound amplitude is reduced. Therefore, the peak observed by the receive transducer is reduced, compared to that for water. Data have been obtained for slurries of polystyrene spheres, ranging in size from 215 microns to 463 microns, and for weight percentages of 1% to 12%. Polystyrene spheres of different diameter show differing amounts of energy loss and thus, particle size identification is possible.

  2. Particle Size Control of Polyethylene Glycol Coated Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivasan, B.; Bonder, M. J.; Zhang, Y.; Gallo, D.; Hadjipanayis, G. C.

    2006-03-01

    Recent interest in Fe nanoparticles with high magnetization is driven by their potential use in biomedical applications such as targeted drug delivery, MRI contrast enhancement and hyperthermia treatment of cancer. This study looks at the use of a polyethylene glycol (PEG) solution to mediate the particle size and therefore control the coercivity of the resulting nanoparticles. Iron nanoparticles were synthesized using an aqueous sodium borohydride reduction of ferrous chloride by a simultaneous introduction of reagents in a Y- junction. The resulting product was collected in a vessel containing a 15 mg/ml carboxyl terminated polyethylene glycol (cPEG) in ethyl alcohol solution located under the Y junction. By varying the length of tubing below the Y junction, the particle size was varied from 5-25 nm. X-ray diffraction data indicates the presence of either amorphous Fe-B or crystalline alpha Fe, depending on the molar ratio of reagents. Magnetic measurements indicate the particles are ferromagnetic with values of coercivity ranging from 200-500 Oe and a saturation magnetization in range of 70-110 emu/g. The XRD shows that the particles are not affected by the polymer coating.

  3. Particles size segregation and roll waves in dense granular flows

    NASA Astrophysics Data System (ADS)

    Viroulet, Sylvain; Baker, James; Kokelaar, Peter; Gray, Nico

    2015-11-01

    Geophysical granular flows, such as landslides, snow avalanches and pyroclastic flows commonly involve particles with different sizes which are prone to segregate during the flow. This particle-size segregation may lead to the formation of regions with different frictional properties which can have a feedback on the flow. This study aims to understand this effect in the context of bi-disperse roll waves in shallow granular free-surface flows. Experiments have been performed in a 3 meter long chute using several mixtures of spherical glass beads of diameter 75-150 and 400-600 microns flowing on a rough bed. These show that the waves propagate at constant speed that depends on the initial mixture composition. In addition, during their propagation, a higher concentration of large particles is localized at the front of the waves. A theoretical and numerical approach is presented using depth-averaged equations for the conservation of mass, momentum and depth-averaged small particle concentration. Results without frictional feedback are investigated and compared to those that include the enhanced frictional resistance to motion of the large grains.

  4. Packing fraction of particles with a Weibull size distribution

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.

  5. Packing fraction of particles with a Weibull size distribution.

    PubMed

    Brouwers, H J H

    2016-07-01

    This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ_{1}, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1-φ_{1})β as function of φ_{1} is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data. PMID:27575204

  6. Particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  7. Nano sized clay detected on chalk particle surfaces

    NASA Astrophysics Data System (ADS)

    Skovbjerg, L. L.; Hassenkam, T.; Makovicky, E.; Hem, C. P.; Yang, M.; Bovet, N.; Stipp, S. L. S.

    2012-12-01

    Chalk is a sedimentary rock consisting mostly of micrometer sized particles of biogenic calcite (CaCO3). It forms the reservoirs for oil in the Danish part of the North Sea and important drinking water aquifers in northern Europe. The interaction between organic molecules and the particle surfaces has a strong influence on the migration of oil in the reservoirs. Adhesion of oil components to chalk particle surfaces is thought to significantly reduce production and efforts are being made to determine the mechanisms behind enhanced/improved oil recovery (EOR/IOR) during water flooding. Aquifers beneath industrial areas can be heavily polluted with organic compounds and similar adsorption mechanisms could influence the geographical extent of the contaminant plume. Chalk, as a sedimentary rock, has been studied extensively for many years but the properties of the particle surfaces, where adsorption takes place, are largely unknown. In this study, we have used atomic force microscopy (AFM) to show that the grain surfaces in offshore and onshore chalk are more heterogeneous than previously assumed. The particles are not simply calcite surfaces but are partially covered by clay that is only 1-4 nm thick. With chemical force mapping (CFM), we have probed the surface using a tip coated with organic molecules to represent a tiny, mono-functionalized oil droplet. The functional groups of the self assembled monolayer on the tip were either -CH3 or -COO-. From maps of adhesion, it is evident that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs.

  8. Production of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.

    1984-01-01

    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.

  9. Size distribution analysis of influenza virus particles using size exclusion chromatography.

    PubMed

    Vajda, Judith; Weber, Dennis; Brekel, Dominik; Hundt, Boris; Müller, Egbert

    2016-09-23

    Size exclusion chromatography is a standard method in quality control of biopharmaceutical proteins. In contrast, vaccine analysis is often based on activity assays. The hemagglutination assay is a widely accepted influenza quantification method, providing no insight in the size distribution of virus particles. Capabilities of size exclusion chromatography to complement the hemagglutination assay are investigated. The presented method is comparatively robust regarding different buffer systems, ionic strength and additive concentrations. Addition of 200mM arginine or sodium chloride is necessary to obtain complete virus particle recovery. 0.5 and 1.0M arginine increase the hydrodynamic radius of the whole virus particles by 5nm. Sodium citrate induces virus particle aggregation. Results are confirmed by dynamic light scattering. Retention of a H1N1v strain correlates with DNA contents between 5ng/mL and 670ng/mL. Quantitative elution of the virus preparations is verified on basis of hemagglutination activity. Elution of hemagglutination inducing compounds starts at a flow channel diameter of 7000nm. The universal applicability is demonstrated with three different influenza virus samples, including an industrially produced, pandemic vaccine strain. Size distribution of the pandemic H1N1v 5258, H1N1 PR/8/34, and H3N2 Aichi/2/68 preparations spreads across inter- and intra-particle volume and extends to the secondary interaction dominated range. Thus, virus particle debris seems to induce hemagglutination. Fragments generated by 0.5% Triton™ X-100 treatment increase overall hemagglutination activity. PMID:27578410

  10. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials. PMID:27314444