Science.gov

Sample records for quasi rotational levels

  1. Application of quasi-degenerate perturbation theory to the calculation of rotational energy levels of methane vibrational polyads

    NASA Astrophysics Data System (ADS)

    Cassam-Chenaï, P.; Rousseau, G.; Ilmane, A.; Bouret, Y.; Rey, M.

    2015-07-01

    In previous works, we have introduced an alternative perturbation scheme to find approximate solutions of the spectral problem for the rotation-vibration molecular Hamiltonian. An important feature of our approach is that the zero order Hamiltonian is the direct product of a purely vibrational Hamiltonian with the identity on the rotational degrees of freedom. The convergence of our method for the methane vibrational ground state was very satisfactory and our predictions were quantitative. In the present article, we provide further details on the implementation of the method in the degenerate and quasi-degenerate cases. The quasi-degenerate version of the method is tested on excited polyads of methane, and the results are assessed with respect to a variational treatment. The optimal choice of the size of quasi-degenerate spaces is determined by a trade-off between speed of convergence of the perturbation series and the computational effort to obtain the effective super-Hamiltonian.

  2. Application of quasi-degenerate perturbation theory to the calculation of rotational energy levels of methane vibrational polyads.

    PubMed

    Cassam-Chenaï, P; Rousseau, G; Ilmane, A; Bouret, Y; Rey, M

    2015-07-21

    In previous works, we have introduced an alternative perturbation scheme to find approximate solutions of the spectral problem for the rotation-vibration molecular Hamiltonian. An important feature of our approach is that the zero order Hamiltonian is the direct product of a purely vibrational Hamiltonian with the identity on the rotational degrees of freedom. The convergence of our method for the methane vibrational ground state was very satisfactory and our predictions were quantitative. In the present article, we provide further details on the implementation of the method in the degenerate and quasi-degenerate cases. The quasi-degenerate version of the method is tested on excited polyads of methane, and the results are assessed with respect to a variational treatment. The optimal choice of the size of quasi-degenerate spaces is determined by a trade-off between speed of convergence of the perturbation series and the computational effort to obtain the effective super-Hamiltonian. PMID:26203014

  3. Application of quasi-degenerate perturbation theory to the calculation of rotational energy levels of methane vibrational polyads

    SciTech Connect

    Cassam-Chenaï, P. Rousseau, G.; Ilmane, A.; Bouret, Y.; Rey, M.

    2015-07-21

    In previous works, we have introduced an alternative perturbation scheme to find approximate solutions of the spectral problem for the rotation-vibration molecular Hamiltonian. An important feature of our approach is that the zero order Hamiltonian is the direct product of a purely vibrational Hamiltonian with the identity on the rotational degrees of freedom. The convergence of our method for the methane vibrational ground state was very satisfactory and our predictions were quantitative. In the present article, we provide further details on the implementation of the method in the degenerate and quasi-degenerate cases. The quasi-degenerate version of the method is tested on excited polyads of methane, and the results are assessed with respect to a variational treatment. The optimal choice of the size of quasi-degenerate spaces is determined by a trade-off between speed of convergence of the perturbation series and the computational effort to obtain the effective super-Hamiltonian.

  4. The Ten-Rotation Quasi-periodicity in Sunspot Areas

    NASA Astrophysics Data System (ADS)

    Getko, R.

    2014-06-01

    Sunspot-area fluctuations over an epoch of 12 solar cycles (12 - 23) are investigated in detail using wavelets. Getko ( Universal Heliophysical Processes, IAU Symp. 257, 169, 2009) found three significant quasi-periodicities at 10, 17, and 23 solar rotations, but two longer periods could be treated as subharmonics of the ten-rotation quasi-periodicity. Therefore we focused the analysis on the occurrence of this quasi-periodicity during the low- and high-activity periods of each solar cycle. Because of the N - S asymmetry, each solar hemisphere was considered separately. The skewness of each fluctuation-probability distribution suggests that the positive and negative fluctuations could be examined separately. To avoid the problem that occurs when a few strong fluctuations create a wavelet peak, we applied fluctuation transformations for which the amplitudes at the high- and the low-activity periods are almost the same. The wavelet analyses show that the ten-rotation quasi-periodicity is mainly detected during the high-activity periods, but it also exists during a few low-activity periods. The division of each solar hemisphere into 30∘-wide longitude bins and the wavelet calculations for the areas of sunspot clusters belonging to these 30∘ bins enable one to detect longitude zones in which the ten-rotation quasi-periodicity exists. These zones are present during the whole high-activity periods and dominate the integrated spectra.

  5. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group. Final report, 1990 - 1993

    SciTech Connect

    Hougen, J.T.

    1993-12-31

    Spectroscopy was used to study the vibrational quasi-continuum arising from internal rotation of the methyl group in acetaldehyde. We now understand the torsion-rotation levels from all 3 torsional states below the top of the torsional barrier. Investigations of four ordinary vibrational states in acetaldehyde are in progress.

  6. KIC 10526294: a slowly rotating B star with rotationally split, quasi-equally spaced gravity modes

    NASA Astrophysics Data System (ADS)

    Pápics, P. I.; Moravveji, E.; Aerts, C.; Tkachenko, A.; Triana, S. A.; Bloemen, S.; Southworth, J.

    2014-10-01

    Context. Massive stars are important for the chemical enrichment of the universe. Since internal mixing processes influence their lives, it is very important to place constraints on the corresponding physical parameters, such as core overshooting and the internal rotation profile, so as to calibrate their stellar structure and evolution models. Although asteroseismology has been shown to be able to deliver the most precise constraints so far, the number of detailed seismic studies delivering quantitative results is limited. Aims: Our goal is to extend this limited sample with an in-depth case study and provide a well-constrained set of asteroseismic parameters, contributing to the ongoing mapping efforts of the instability strips of the β Cep and slowly pulsating B (SPB) stars. Methods: We derived fundamental parameters from high-resolution spectra using spectral synthesis techniques. We used custom masks to obtain optimal light curves from the original pixel level data from the Kepler satellite. We used standard time-series analysis tools to construct a set of significant pulsation modes that provide the basis for the seismic analysis carried out afterwards. Results: We find that KIC 10526294 is a cool SPB star, one of the slowest rotators ever found. Despite this, the length of Kepler observations is sufficient to resolve narrow rotationally split multiplets for each of its nineteen quasi-equally spaced dipole modes. The number of detected consecutive (in radial order) dipole modes in this series is higher than ever before. The observed amount of splitting shows an increasing trend towards longer periods, which - largely independent of the seismically calibrated stellar models - points towards a non-rigid internal rotation profile. From the average splitting we deduce a rotation period of ~188 days. From seismic modelling, we find that the star is young with a central hydrogen mass fraction Xc> 0.64; it has a core overshooting αov ≤ 0.15. Based on

  7. Rotation elastogram: a novel method to visualize local rigid body rotation under quasi-static compression

    NASA Astrophysics Data System (ADS)

    Sowmiya, C.; Kothawala, Ali Arshad; Thittai, Arun K.

    2016-04-01

    During manual palpation of breast masses, the perception of its stiffness and slipperiness are the two commonly used information by the physician. In order to reliably and quantitatively obtain this information several non-invasive elastography techniques have been developed that seek to provide an image of the underlying mechanical properties, mostly stiffness-related. Very few approaches have visualized the "slip" at the lesion-background boundary that only occurs for a loosely-bonded benign lesion. It has been shown that axial-shear strain distribution provides information about underlying slip. One such feature, referred to as "fill-in" was interpreted as a surrogate of the rotation undergone by an asymmetrically-oriented-loosely bonded-benign-lesion under quasi-static compression. However, imaging and direct visualization of the rotation itself has not been addressed yet. In order to accomplish this, the quality of lateral displacement estimation needs to be improved. In this simulation study, we utilize spatial compounding approach and assess the feasibility to obtain good quality rotation elastogram. The angular axial and lateral displacement estimates were obtained at different insonification angles from a phantom containing an elliptical inclusion oriented at 45°, subjected to 1% compression from the top. A multilevel 2D-block matching algorithm was used for displacement tracking and 2D-least square compounding of angular axial and lateral displacement estimates was employed. By varying the maximum steering angle and incremental angle, the improvement in the lateral motion tracking accuracy and its effects on the quality of rotational elastogram were evaluated. Results demonstrate significantly-improved rotation elastogram using this technique.

  8. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    SciTech Connect

    Hougen, J.T.

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  9. Hydrodynamic turbulence in quasi-Keplerian rotating flows?

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Avila, Marc; Hof, Bjoern; Liang Shi Team; Marc Avila Team; Bjoern Hof Team

    2013-11-01

    The origin of turbulence in astrophysical accretion discs has been under scrutiny for decades and remains still unclear. The velocity profiles of discs (Keplerien profiles) are centrifugally stable and therefore a different instability mechanism is required for turbulence to arise. While in hot discs turbulence can be triggered through magnetorotational instability, cooler discs lack sufficient ionization and it is unclear how turbulence sets in. In analogy to other linearly stable flows like pipe and Couette flow, subcritical transition to turbulence may be the mechanism. Recently, experimental studies of Taylor-Couette flow in quasi-Keplerian regime have given conflicting results and numerical simulations of above experimental flows showed that the top and bottom end-wall leads to strong deviations from the Keplerian velocity profile and drives turbulence. In order to clarify this, we perform direct numerical simulations of incompressible Taylor-Couette flow without end walls in the quasi Keplerian regime for Re up to 200000. Strong transient growth is observed and gives rise to strongly disorted motion, suggesting that for large enough Re this mechanism may lead to turbulence even for Keplerian flows. This work is supported by Deutsche Forschungsgemeinschaft (DFG) under project SFB 963 and Max Planck Society.

  10. Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

    SciTech Connect

    Correia, Alexandre C. M.; Robutel, Philippe

    2013-12-10

    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n ± kν/2, where n is the orbital mean motion, ν the orbital libration frequency, and k an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ, has the same magnitude as ν, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ν << σ, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.

  11. Quasi-3D Navier-Stokes model for a rotating airfoil

    SciTech Connect

    Shen, W.Z.; Soerensen, J.N.

    1999-04-10

    The design of blade shapes for wind turbines is typically based on employing the blade-element momentum-theory (BEM) with lift and drag forces determined from 2D measurements. The results obtained are reasonable in the vicinity of the design point, but in stalled conditions the BEM is known to underpredict the forces acting on the blades. Here, a quasi-3D model of the unsteady Navier-Stokes equations in a rotating frame of reference has been developed. The equations governing the flow past a rotating blade are approximated using an order of magnitude analysis on the spanwise derivatives. The model takes into account rotational effects and spanwise outflow at computing expenses in the order of what is typical for similar 2D calculations. Results are presented for both laminar and turbulent flows past blades in pure rotation. In the turbulent case the influence of small-scale turbulence is modelled by the one-equation Baldwin-Barth turbulence model. The computations demonstrate that the main influence of rotation is to increase the maximum lift.

  12. Quasi four-level Tm:LuAG laser

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor); Barnes, Norman P. (Inventor); Hutcheson, Ralph L. (Inventor); Rodriguez, Waldo J. (Inventor)

    1997-01-01

    A quasi four-level solid-state laser is provided. A laser crystal is disposed in a laser cavity. The laser crystal has a LuAG-based host material doped to a final concentration between about 2% and about 7% thulium (Tm) ions. For the more heavily doped final concentrations, the LuAG-based host material is a LuAG seed crystal doped with a small concentration of Tm ions. Laser diode arrays are disposed transversely to the laser crystal for energizing the Tm ions.

  13. Experimental and theoretical investigation of barotropic blocking in quasi-two-dimensional rotating flows

    NASA Astrophysics Data System (ADS)

    Chkhetiani, Otto; Gledzer, Alexey; Gledzer, Evgeny; Kalashnik, Maxim; Khapaev, Alexey; Chernous'ko, Yurii

    2015-04-01

    Experiments on the excitation of zonal flows in a barotropic rotating annulus with conical bottom have been performed [1,2]. The flow was produced by two methods: mechanical pumping and suction - sourse-sink method [1] and MHD method [2]. The velocity fields have been reconstructed by the particle image velocimetry (PIV) method. Diagrams of regimes are presented in parameters of the dimensionless angular velocity of the zonal flow averaged over the channel width and the dimensionless angular velocity of transport of vortex perturbations of cyclonic and anticyclonic types. Attention is focused on the results for the regions of the diagram with slow motion of vortices with respect to the rotating coordinate system near the parameters for stationary Rossby waves (blocking of circulation). For some parameters of the flow the system with almost immobile blocked anticyclones in the outer part of the flow and rapidly moving cyclones in the main stream appears. We consider some simple linear estimation of blocking conditions [1,2]. It is obatined the solution of Obukhov-Charney equation admitting a long quasi-stationary stage of evolution in which the meridional wave number and value of the total wave energy (close to the maximum value) remained virtually unchanged over long time [3]. This effect is realized in a dominant contribution of the free surface deformation in the potential vorticity. It was shown that this effect can lead to new scenarios phase and amplitude Rossby wave blocking. This work was supported by the Russian Sciense Foundation (Project No 14-05-00847) References [1] Gledzer, A. E., Gledzer, E. B., Khapaev, A. A., & Chernous'ko, Y. L. (2014). Zonal flows, Rossby waves, and vortex transport in laboratory experiments with rotating annular channel. Izvestiya, Atmospheric and Oceanic Physics, 50(2), 122-133. [2] Gledzer, A. E. E., Gledzer, E. B., Khapaev, A. A., & Chkhetiani, O. G. (2013). Experimental manifestation of vortices and Rossby wave blocking at

  14. Cold testing of quasi-optical mode converters using a generator for non-rotating high-order gyrotron modes.

    PubMed

    Kim, S G; Kim, D S; Choe, M S; Lee, W; So, J; Choi, E M

    2014-10-01

    In this paper, we test the performance of a quasi-optical, internal-gyrotron mode converter. When cold testing mode converters, a rotating higher-order mode is commonly used. However, this requires a nontrivial design and precise alignment. We thus propose a new technique for testing gyrotron mode converters by using a simple, non-rotating, higher-order mode generator. We demonstrate the feasibility of this technique for a W-band gyrotron quasi-optical mode converter by examining the excitation of a TE6,2 mode from a non-rotating mode generator. Our results demonstrate that this new cold-test scheme is an easy and efficient method for verifying the performance of quasi-optical mode converters. PMID:25362436

  15. Differential rotation in a solar-driven quasi-axisymmetric circulation. [of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Chan, K. L.

    1984-01-01

    The concept of a quasi-axisymmetric circulation is used to explore the global scale dynamics of planetary atmospheres. A numerical circulation model applicable to Jupiter is presented, and an analytical study is performed elucidating the conditions leading to differential rotation in an atmosphere which is convectively unstable. A linear system forced by solar differential heating is considered, with nonlinear effects arising from advection being represented in the form of eddy diffusion. An empirical, latitudinal spectrum of the observed zonal wind field on Jupiter is discussed. Numerical solutions are presented which reveal banded wind fields with alternating and equatorial zonal jets and a multicellular Ferrel-Thomson meridional circulation consistent with the observed cloud striations on Jupiter. The vertical derivatives are parameterized to construct a simplified one-layer model.

  16. Kinetic theory of quasi-stationary collisionless axisymmetric plasmas in the presence of strong rotation phenomena

    SciTech Connect

    Cremaschini, Claudio; Stuchlík, Zdeněk; Tessarotto, Massimo

    2013-05-15

    The problem of formulating a kinetic treatment for quasi-stationary collisionless plasmas in axisymmetric systems subject to the possibly independent presence of local strong velocity-shear and supersonic rotation velocities is posed. The theory is developed in the framework of the Vlasov-Maxwell description for multi-species non-relativistic plasmas. Applications to astrophysical accretion discs arising around compact objects and to plasmas in laboratory devices are considered. Explicit solutions for the equilibrium kinetic distribution function (KDF) are constructed based on the identification of the relevant particle adiabatic invariants. These are shown to be expressed in terms of generalized non-isotropic Gaussian distributions. A suitable perturbative theory is then developed which allows for the treatment of non-uniform strong velocity-shear/supersonic plasmas. This yields a series representation for the equilibrium KDF in which the leading-order term depends on both a finite set of fluid fields as well as on the gradients of an appropriate rotational frequency. Constitutive equations for the fluid number density, flow velocity, and pressure tensor are explicitly calculated. As a notable outcome, the discovery of a new mechanism for generating temperature and pressure anisotropies is pointed out, which represents a characteristic feature of plasmas considered here. This is shown to arise as a consequence of the canonical momentum conservation and to contribute to the occurrence of temperature anisotropy in combination with the adiabatic conservation of the particle magnetic moment. The physical relevance of the result and the implications of the kinetic solution for the self-generation of quasi-stationary electrostatic and magnetic fields through a kinetic dynamo are discussed.

  17. QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.

    2008-09-01

    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.

  18. QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.

    2009-04-01

    The QUAGMIRE model has recently been made freely available for public use. QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. This presentation describes the model's main features. QUAGMIRE uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.

  19. QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.

    2009-02-01

    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.

  20. Quasi-periodical variations of pulsars spin as mimicry of differential rotation

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Gusev, A.

    2008-09-01

    ABSTRACT Observation of pulsars is a powerful source of information for studying the dynamics and internal structure of neutron stars. Known about quasi-periodical fluctuations of the time-of-arrival of radiation(TOA) for some pulsars, which we explain as Chandler wobble, Free core nutation, Free inner core nutation and Inner core wobble in case three layer model. Using hamilton approximation to theory rotation of multilayer celestial bodies we estimate dynamical flattening for different layers for PSR B1828-11. It is known that an innate feature of pulsar radiation is high stability of the time-of-arrival (TOA) of pulses, and therefore the analysis of TOA fluctuations can reflect subtle effects of neutron stars dynamics. TOA variations of pulsars can be interpreted by three reasons: gravitational perturbation of pulsar by planetary bodies, peculiarities of a pulsar interior like Tkachenko oscillations and free precession motion, when axis of rotation do not coincide with vectors of the angular moment of solid crust, liquid outer core and crystal core. The radial velocity of a star is obtained by measuring the magnitude of the Doppler effect in its spectrum. Stars showing a small amplitude variation of the radial velocity can be interpreted as systems having planetary companions. Assuming that the pulsar PSR B1257+12 has a mass of 1:35M¯, the Keplerian orbital radii are 0.9, 1.4 and 2.1 AU and with masses are 3:1M©=sin(i), 10:2M©=sin(i), 4:6M©=sin(i), where i is the orbital inclination [7]. In 2000, Stairs, Lyne and Shemar reported about their discovery of long-term, highly-periodic and correlated variations of pulse shape and the rate of slow-down of the pulsar PSR B182811 with period variations approximately 1000, 500, 250 and 167 days, which may be a result of the spin axis caused by an asymmetry in the shape of the pulsar. The long-periodic precession phenomenon was also detected for a few pulsars: PSR 2217+47, PSR 0531+21, PSR B083345, PSR B182811, PSR B

  1. QSONIC- FULL POTENTIAL TRANSONIC, QUASI-THREE DIMENSIONAL FLOW THROUGH A ROTATING TURBOMACHINERY BLADE ROW

    NASA Technical Reports Server (NTRS)

    Farrell, C. A.

    1994-01-01

    A computer program, QSONIC, has been developed for calculating the full potential, transonic quasi-three-dimensional flow through a rotating turbomachinery blade row. The need for lighter, more efficient turbomachinery components has led to the consideration of machines with fewer stages, each with blades capable of higher speeds and higher loading. As speeds increase, the numerical problems inherent in the transonic regime have to be resolved. These problems include the calculation of imbedded shock discontinuities and the dual nature of the governing equations, which are elliptic in the subcritical flow regions but become hyperbolic for supersonic zones. QSONIC provides the flow analyst with a fast and reliable means of obtaining the transonic potential flow distribution on a blade-to-blade stream surface of a stationary or rotating turbomachine blade row. QSONIC combines several promising transonic analysis techniques. The full potential equation in conservative form is discretized at each point on a body-fitted period mesh. A mass balance is calculated through the finite volume surrounding each point. Each local volume is corrected in the third dimension for any change in stream-tube thickness along the stream tube. The nonlinear equations for all volumes are of mixed type (elliptic or hyperbolic) depending on the local Mach number. The final result is a block-tridiagonal matrix formulation involving potential corrections at each grid point as the unknowns. The residual of each system of equations is solved along each grid line. At points where the Mach number exceeds unity, the density at the forward (sweeping) edge of the volume is replaced by an artificial density. This method calculates the flow field about a cascade of arbitrary two-dimensional airfoils. Three-dimensional flow is approximated in a turbomachinery blade row by correcting for stream-tube convergence and radius change in the through flow direction. Several significant assumptions were made in

  2. Multiple Quasi-Equilibria of the ITCZ and the Origin of Monsoon Onset. Part 2; Rotational ITCZ Attractors

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Chao's numerical and theoretical work on multiple quasi-equilibria of the intertropical convergence zone (ITCZ) and the origin of monsoon onset is extended to solve two additional puzzles. One is the highly nonlinear dependence on latitude of the "force" acting on the ITCZ due to earth's rotation, which makes the multiple quasi-equilibria of the ITCZ and monsoon onset possible. The other is the dramatic difference in such dependence when different cumulus parameterization schemes are used in a model. Such a difference can lead to a switch between a single ITCZ at the equator and a double ITCZ, when a different cumulus parameterization scheme is used. Sometimes one of the double ITCZ can diminish and only the other remain, but still this can mean different latitudinal locations for the single ITCZ. A single idea based on two off-equator attractors for the ITCZ, due to earth's rotation and symmetric with respect to the equator, and the dependence of the strength and size of these attractors on the cumulus parameterization scheme solves both puzzles. The origin of these rotational attractors, explained in Part I, is further discussed. The "force" acting on the ITCZ due to earth's rotation is the sum of the "forces" of the two attractors. Each attractor exerts on the ITCZ a "force" of simple shape in latitude; but the sum gives a shape highly varying in latitude. Also the strength and the domain of influence of each attractor vary, when change is made in the cumulus parameterization. This gives rise to the high sensitivity of the "force" shape to cumulus parameterization. Numerical results, of experiments using Goddard's GEOS general circulation model, supporting this idea are presented. It is also found that the model results are sensitive to changes outside of the cumulus parameterization. The significance of this study to El Nino forecast and to tropical forecast in general is discussed.

  3. Common oscillations in Global Earth Temperature, Sea Level, and Earth rotation

    NASA Astrophysics Data System (ADS)

    Zotov, Leonid; Bizouard, Christian; Sidorenkov, Nikolay

    2014-05-01

    Singular Spectrum Analysis (SSA) of Global Mean Sea Level (GMSL) and Global Average Earth Temperature (HadCRUT4) data after global warming trends subtraction revealed presence of quasi-periodic components with periods of 60, 20 and 10 years in both time series. 60-year component of sea level is anticorrelated with long-periodic changes in temperature, while 10 and 20-year components are correlated. Simultaneous presence of 60-year component in secular Earth rotation rate changes rises a question of interrelations between Earth rotation and Climate. Quasi-20-year changes in GMSL and HadCRUT4 have maxima and minima well corresponding to the amplitude changes of recently reconstructed Chandler wobble excitation, which could be caused by the 18.6-year cycle of the Moon orbital nodes regression. The cause of 10-year oscillations in climate characteristics is enigmatic. It could be related to El Nino variability, Volcanoes, or Solar activity, but correlation with each of those processes found to be small. Looks like it is correlated with 9.3 yr tidal wave.

  4. A quasi-three-dimensional blade surface boundary layer analysis for rotating blade rows

    NASA Technical Reports Server (NTRS)

    Thompkins, W. T., Jr.; Usab, W. J., Jr.

    1981-01-01

    A quasi-three-dimensional approximation has been developed for a blade boundary layer which involves the calculation of the effect of nonzero pressure gradients, turbulent flow, and blade twist, but includes only a simple coupling between streamlines. The resulting set of equations is solved using Keller's box scheme. The solution scheme is checked against available incompressible flow solutions and then applied to a NASA low aspect ratio transonic compressor stage for which extensive experimental and computational data are available. It is found that the three-dimensional boundary layer separates significantly sooner and has a much larger influence on rotor performance than would be expected from a two-dimensional analysis.

  5. Modeling and optimization of actively Q-switched Nd-doped quasi-three-level laser

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Yu, Xin; Li, Xudong; Chen, Deying; Gao, Jing

    2013-09-01

    The energy transfer upconversion and the ground state absorption are considered in solving the rate equations for an active Q-switched quasi-three-level laser. The dependence of output pulse characters on the laser parameters is investigated by solving the rate equations. The influence of the energy transfer upconversion on the pulsed laser performance is illustrated and discussed. By this model, the optimal parameters could be achieved for arbitrary quasi-three-level Q-switched lasers. An acousto-optical Q-switched Nd:YAG 946 nm laser is constructed and the reliability of the theoretical model is demonstrated.

  6. Geometry of Landau Level without Galilean or Rotational Symmetry

    NASA Astrophysics Data System (ADS)

    Shen, Yu; Haldane, F. D. M.

    The integer quantum Hall effect is usually modeled using Galilean-invariant or rotationally-invariant Landau levels. However, these are not generic symmetries of electrons moving in a crystalline background. We explicitly break both symmetries by considering a inversion-symmetric Hamiltonian with quartic terms. We carry out exact diagonalization numerically with a truncated Hilbert space, and define an emergent metric gabn for each Landau level as the expectation value of a bilinear form in momentum. With an appropriate choice of the guiding center coherent state, the Landau level wavefunctions are holomorphic functions of z* times a Gaussian (this is distinct from a well-known property of rotationally-invariant lowest-Landau-level wavefunctions). We show that the zeroes of the wavefunction define a ``topological spin sn'', with its original definition as an ``intrinsic angular momentum'' no longer valid without rotational symmetry. This is now related to the number of zeroes n encircled by the classical orbit by sn = n +1/2 . Finally we introduce a mass tensor mabn for each Landau level using a Lagrangian formalism. We conclude that topological and geometric information can be extracted without resort to Galilean or Rotational symmetries. This work is partly supported by DOE Grant No. DE-SC0002140 and the W. M. Keck Foundation.

  7. Effects of propeller rotation direction on airplane interior noise levels

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.; Daniels, E. F.

    1985-01-01

    Interior noise measurements for upsweeping and downsweeping movement of the propeller blade tips past the fuselage were made on a twin-engine airplane and on two simplified fuselage models. Changes in interior noise levels of as much as 8 dB reversal of propeller rotation direction were measured for some configurations and test conditions.

  8. An inverse inviscid method for the design of quasi-three dimensional rotating turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Bonataki, E.; Chaviaropoulos, P.; Papailiou, K. D.

    1991-01-01

    A new inverse inviscid method suitable for the design of rotating blade sections lying on an arbitrary axisymmetric stream-surface with varying streamtube width is presented. The geometry of the axisymmetric stream-surface and the streamtube width variation with meridional distance, the number of blades, the inlet flow conditions, the rotational speed and the suction and pressure side velocity distributions as functions of the normalized arc-length are given. The flow is considered irrotational in the absolute frame of reference and compressible. The output of the computation is the blade section that satisfies the above data. The method solves the flow equations on a (phi 1, psi) potential function-streamfunction plane for the velocity modulus, W and the flow angle beta; the blade section shape can then be obtained as part of the physical plane geometry by integrating the flow angle distribution along streamlines. The (phi 1, psi) plane is defined so that the monotonic behavior of the potential function is guaranteed, even in cases with high peripheral velocities. The method is validated on a rotating turbine case and used to design new blades. To obtain a closed blade, a set of closure conditions were developed and referred.

  9. Rotational Energies in Various Torsional Levels of CH_2DOH

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Hilali, A. El; Margulès, L.; Motiyenko, R. A.; Klee, S.

    2012-06-01

    Using an approach accounting for the hindered internal rotation of a monodeuterated methyl group, an analysis of the torsional spectrum of the monodeuterated species of methanol CH_2DOH has been carried out recently and led to the assignment of 76 torsional subbands in its microwave, FIR, and IR spectra. Although this approach also allowed us to account for subband centers, the rotational structure of the torsional subbands is not well understood yet. In this paper, we will deal with the rotational energies of CH_2DOH. Analyses of the rotational structure of the available subbands^b have been performed using the polynomial-type expansion introduced in the case of the normal species of methanol. For each subband, FIR or IR transitions and a-type microwave lines, within the lower torsional level, were fitted. The frequencies of the latters were taken from previous investigations or from new measurements carried out from 50 to 950 GHz with the submillimeterwave solid state spectrometer in Lille. Subbands involving lower levels with v_t=0 and K ≥ 3 could be satisfactorily analyzed. For levels characterized by lower K-values, the expansion fails. In the case of the K=1, v_t=1 level, the frequencies of a-type microwave transitions involving the lower member of the K-type doublet cannot be well reproduced. For K=0 levels with v_t=1 and 2, a large number of terms is needed in the expansion. We will try to understand why the rotational energies of these levels cannot be reproduced. The results of the analyses will be compared to those obtained with a global approach based on the rotation-torsion Hamiltonian of the molecule. [2] El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309. [3] Ioli, Moruzzi, Riminucci, Strumia, Moraes, Winnewisser, and Winnewisser, J. Mol. Spec. 171 (1995) 130. [4] Quade and Suenram, J. Chem. Phys. 73 (1980) 1127; and Su and Quade, J. Mol. Spec. 134 (1989) 290. [5] Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009

  10. Conserved Quantities in General Relativity: From the Quasi-Local Level to Spatial Infinity

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung

    2015-08-01

    We define quasi-local conserved quantities in general relativity by using the optimal isometric embedding in Wang and Yau (Commun Math Phys 288(3):919-942, 2009) to transplant Killing fields in the Minkowski spacetime back to the 2-surface of interest in a physical spacetime. To each optimal isometric embedding, a dual element of the Lie algebra of the Lorentz group is assigned. Quasi-local angular momentum and quasi-local center of mass correspond to pairing this element with rotation Killing fields and boost Killing fields, respectively. They obey classical transformation laws under the action of the Poincaré group. We further justify these definitions by considering their limits as the total angular momentum and the total center of mass of an isolated system. These expressions were derived from the Hamilton-Jacobi analysis of the gravitational action and thus satisfy conservation laws. As a result, we obtained an invariant total angular momentum theorem in the Kerr spacetime. For a vacuum asymptotically flat initial data set of order 1, it is shown that the limits are always finite without any extra assumptions. We also study these total conserved quantities on a family of asymptotically flat initial data sets evolving by the vacuum Einstein evolution equation. It is shown that the total angular momentum is conserved under the evolution. For the total center of mass, the classical dynamical formula relating the center of mass, energy, and linear momentum is recovered, in the nonlinear context of initial data sets evolving by the vacuum Einstein evolution equation. The definition of quasi-local angular momentum provides an answer to the second problem in classical general relativity on Penrose's list (Proc R Soc Lond Ser A 381(1780):53-63, 1982).

  11. Tunneling Spectroscopy by Level Matching in the Spin Rotating Frame.

    NASA Astrophysics Data System (ADS)

    Choi, Changho

    In this thesis it is reported how the level-matching NMR in the spin rotating frame can be used to establish the tunneling-state manifold of a methyl group. The energy levels are identified from the spectrum of Zeeman-tunneling level matching resonances where fast CH_3 group population transfers take place. The three -pulse sequence (ABC) used for observing such resonances consists of a spin-locking sequence (AB) followed in ~500 mus by an r.f. pulse C with a comb of pi/2 pulses preceding it. With this new experimental method both the Zeeman to tunneling polarization transfer (during the pulse B) and the reverse transfer (during the pulse C) are detected. The proton Zeeman energy splitting homega_ {rm Z} is varied by changing, point by point, the magnitude of the effective field in the proton nuclear spin rotating frame from a few Gauss to 50 Gauss. The tilt of the effective field in the rotating frame can be set at any angle, from Theta=90^circ (normal rotating frame) to Theta=45 ^circ (45^circ tilted rotating frame). Since dipole-dipole interaction is dependent on tilt, changing the tilt allows us to manipulate the dipole-dipole interaction. In this way the resolution is improved (to better than 10 KHz). In addition the symmetry of the transitions can be identified. This tunneling spectroscopy is limited to tunneling splittings less than ~ 800 KHz. Tunneling spectra of strongly hindered CH _3 torsional oscillator pairs (of methylmalonic acid, dimethyl sulfide, propionic acid and hexane) are reported. The level matching resonances in all these materials were detected at omega_{rm Z}=nomega_{rm T} with n = 1/4, 1/3, 1/2, 2/3 and 1. In one case n = 2 spectral peak was observed. Two noninteracting CH_3 particles manifold, composed of AA, AE and EE states, explains the observed multi-quanta transitions driven by intra- and/or inter-methyl group dipole-dipole interactions to first or second order. Level matching resonances at omega_{rm Z}=2omega _{rm T}/3 and omega

  12. Numerical Simulations of Three-dimensional Quasi-geostrophic Convection in the Rotating Cylindrical Annulus

    NASA Astrophysics Data System (ADS)

    Calkins, M. A.; Marti, P.; Julien, K. A.

    2014-12-01

    Efforts to understand the dynamics of the Earth's core are hampered by the intrinsic numerical stiffness of the governing equations. It is thought, however, that motions in the core are balanced in the sense that fluid acceleration is subdominant in comparison to the other forces present (Coriolis, pressure, Lorentz, etc.). By exploiting the idea of balanced motions, Busse (J. Fluid Mech., vol. 173, 1986, p. 545) developed a simplified analogue of the Earth's core by restricting the flow to lie within a radially narrow, axially-aligned cylindrical annulus, though the model is limited to motions that are invariant in the direction of the rotation axis and thus outer boundaries that are of small slope. Calkins, Julien and Marti (J. Fluid Mech., vol. 732, 2013, p. 214) extended the two-dimensional annulus model of Busse to three dimensions such that the more physically realistic case of steeply sloping endwalls can be studied. Numerical simulations of this new model show that it can reproduce phenomena that are thought to be present in the Earth's core and other natural systems, such as large-scale vortices and strong zonal jets. We find that the predominantly axially-aligned convective cells that form when the thermal forcing is weak quickly break down into strongly three-dimensional flows as the forcing is increased; the resulting Reynolds stresses lead to axially-aligned mean flows that dominate the kinetic energy spectrum (see figure). Furthermore, this new model has the advantage that it employs physically realistic parameters that are not currently accessible to simulations of the full governing equations.

  13. Paleocene sea level movements with a 430,000 year quasi-periodic cyclicity

    SciTech Connect

    Briskin, M. ); Fluegeman, R. )

    1990-04-01

    Sea level movements with quasi-periodicity of 430,000 years are identified in the marine sedimentary units of the Eastern Gulf Coastal Plain of Mississippi, Alabama and Georgia which represent a 5.8 million year record of strandline displacement during Paleocene time. Principal component analysis of the benthic foraminiferal fauna yielded six assemblages which when combined with two other qualitatively derived assemblages provided paleoecologic information which clearly reflects the influence of paleocirculation and paleoclimatic regime of the Eastern Gulf Coastal Plain. The presence of the planktonic foraminiferal taxa Subbotina trinidadensis and Planorotalites pseudomenardii as well as paleolatitudes ranging from 15{degree} N (for the Campeche Shelf) to 25{degree} N (for the Coastal Plain) emphasizes a paleoclimatic regime which is dominantly tropical. A paleoceanographic model was derived which suggests that normal marine waters were brought into the Gulf of Mexico by two major currents. Strandline displacements are related to transgressive and regressive sea level movements in an ice free Paleocene world. The well delineated 430,000 year quasi-periodic cycle observed in the sea level curve is identified as being astronomical in character. These results support the view that changes in the Earth's orbit may trigger changes in the geometry of the Earth's surface in a way which causes sea level to oscillate with a quasi-periodicity of 430,000 years.

  14. Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Pourmand, Seyed Ebrahim; Sidi Ahmad, Muhamad Fakaruddin; Khrisnan, Ganesan; Mohd Taib, Nur Athirah; Nadia Adnan, Nurul; Bakhtiar, Hazri

    2013-02-01

    The influence of temperature and pumping energy on stimulated emission cross section and the laser output of quasi-three level laser transition are reported. Flashlamp is used to pump Nd:YAG laser rod. Distilled water is mixed with ethylene glycol to vary the temperature of the cooling system between -30 and 60 °C. The capacitor voltage of flashlamp driver is verified to manipulate the input energy within the range of 10-70 J. The line of interest in quasi-three level laser comprised of 938.5 and 946 nm. The stimulated emission cross section of both lines is found to be inversely proportional to the temperature but directly proportional to the input energy. This is attributed from thermal broadening effect. The changes of stimulated emission cross section and the output laser with respect to the temperature and input energy on line 946 nm are realized to be more dominant in comparison to 938.5 nm.

  15. Quantum Calculation of Inelastic CO Collisions with H. II. Pure Rotational Quenching of High Rotational Levels

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Song, L.; Yang, B. H.; Groenenboom, G. C.; van der Avoird, A.; Balakrishnan, N.; Forrey, R. C.; Stancil, P. C.

    2015-09-01

    Carbon monoxide is a simple molecule present in many astrophysical environments, and collisional excitation rate coefficients due to the dominant collision partners are necessary to accurately predict spectral line intensities and extract astrophysical parameters. We report new quantum scattering calculations for rotational deexcitation transitions of CO induced by H using the three-dimensional potential energy surface (PES) of Song et al. State-to-state cross sections for collision energies from 10-5 to 15,000 cm-1 and rate coefficients for temperatures ranging from 1 to 3000 K are obtained for CO (v = 0, j) deexcitation from j=1-45 to all lower j‧ levels, where j is the rotational quantum number. Close-coupling and coupled-states calculations were performed in full-dimension for j=1-5, 10, 15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate rate coefficients for all other intermediate rotational states. The current rate coefficients are compared with previous scattering results using earlier PESs. Astrophysical applications of the current results are briefly discussed.

  16. Variability of Rotational Temperatures from Different OH Rovibrational Levels

    NASA Astrophysics Data System (ADS)

    Vimal, D. V.; Slanger, T. G.

    2011-12-01

    TThe Meinel band emission lines from rovibrationally excited OH in its electronic ground state in the nightglow are widely used as a diagnostic tool to investigate key mesospheric variables such as temperature, tides, and gravity waves. The OH rotational temperature has been extensively studied to ascertain both long- and short-term variability in the upper atmosphere. Current controversy in the literature regarding the possible variability of temperatures deduced from different OH rovibrational levels limits our ability to compare data from different sources. Researchers tend to use a monitoring vibrational level for OH Meinel bands that is most convenient for their instrument. Background sky spectra captured by astronomical instruments provide detailed records of optical emissions in the upper atmosphere. For this study we utilized existing sky spectra from the Keck telescopes in Mauna Kea and the Very Large Telescope in Chile for the OH Meinel bands bound by the extremes (υ = 3, 8). We compared these results with the temperatures deduced from the O2 0-1 Atmospheric band at 865 nm. This latter emission, emanating from a long-lived species, should represent the true kinetic temperature at the altitude of emission and therefore puts a cap on how high the temperature difference can be between the nominal OH altitude (87 km) and the 95-km altitude of the O2 emission. We present the results of our analysis and discuss the implications for mesospheric temperature retrievals from OH emissions. This work was supported by NSF grant ATM-0924781 from NSF CEDAR.

  17. Quasi-Radial Modes of Pulsating Neutron Stars: Numerical Results for General-Relativistic Rigidly Rotating Polytropic Models

    NASA Astrophysics Data System (ADS)

    Geroyannis, Vassilis; Tzelati, Eleftheria

    In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of $\\sim 10 \\, \\mathrm{km}$ and mass between $\\sim 1.4$ and $3.2$ solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.

  18. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence

    SciTech Connect

    Katahara, John K.; Hillhouse, Hugh W.

    2014-11-07

    A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) the local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or

  19. Soil carbon levels in irrigated Western Corn Belt rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proposals promoting the use of massive amounts of crop residues and other lignocellulosic biomass for biofuel production have increased need for evaluation of the sustainability of cropping practices and their effect on environment quality. Our objective was to evaluate the effects of crop rotation ...

  20. The Calculation of Rotational Energy Levels Using Tunneling Hamiltonians

    NASA Astrophysics Data System (ADS)

    Hougen, Jon T.

    2009-06-01

    The present talk will present a pedagogical introduction and review of 25 years of using tunneling Hamiltonians to parameterize and fit rotationally resolved spectra of small polyatomic molecules with one or more large-amplitude motions (LAMs). This tunneling formalism does not require a quantitative knowledge of the potential surface, but instead makes use only of its symmetry properties. Topics planned for discussion include: the user communities for such Hamiltonians; the range of applicability and achievable accuracy; a representative list of molecules treated to date and their various combinations of internal-rotation, inversion, hydrogen-bond-exchange, and H-atom-transfer LAMs; a way of organizing the LAMs of these molecules in the mind using the piston-and-crankshaft vocabulary of the reciprocating engine; how the theoretical tools of point-groups, permutation-inversion groups, extended groups, and time reversal are used in the tunneling-Hamiltonian formalism; and finally a brief report on the present status of two unfinished applications of the tunneling-Hamiltonian formalism, namely cis/trans bent acetylene (HCCH) and protonated acetylene (C_2H_3^+).

  1. Towards Understanding Quantum Monodromy in Quasi-Symmetric Molecules: Fassst Rotational Spectra of CH_3NCO and CH_3NCS

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Fortman, Sarah; Medvedev, Ivan R.; Winnewisser, Manfred; De Lucia, Frank C.; Koput, Jacek

    2010-06-01

    The recent studies of the rotational spectrum of the NCNCS molecule demonstrated the success of quantum monodromy in describing the quasilinear behavior of this molecule, inclusive of the abrupt transition of spectroscopic behavior from the bent to the linear molecule regime. Similar, quasisymmetric behaviour, is known to be present in symmetric top molecules, and has been studied at lowest-J transitions for two such molecules, CH_3NCO and CH_3NCS. Further progress requires more experimental data and presently we report FASSST rotational spectra of CH_3NCO and CH_3NCS. The spectra provide practically continuous 117-376 GHz coverage and are very rich, since the ladder of excited vibrational states associated with the qusilinear bending coordinate is multiplied by the nearly free internal rotation of the methyl group. Initial stages of the analysis leading up to an analysis in an extension of the framework used for NCNCS are described. B.P.Winnewisser, et al., Phys. Rev. Lett. 95. 243002 (2005). M.Winnewisser, et al., J. Mol. Struct. 798, 1 {2006}. B.P.Winnewisser, et al., Phys. Chem. Chem. Phys. DOI:10.1039/B922023B (2010). J.Koput, J. Mol. Spectrosc. 115, 131 (1986) J.Koput, J. Mol. Spectrosc. 118, 189 (1986)

  2. Quasi-bound complexes in collisions of different linear molecules: Classical trajectory study of their manifestations in rotational relaxation and spectral line broadening

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergey V.

    2016-07-01

    Stable bimolecular complexes (tightly bound dimers) in the gas phase are usually created during third body stabilization of their unstable precursors-quasi-bound complexes (QCs). The latter can arise under the condition that at least one of the colliding partners has an internal degree of freedom. In this article, the principal difference between "orbitings" and QCs is demonstrated in the classical nonreactive scattering picture. Additionally, fractions of QCs in binary collisions of different linear molecules are compared. Also in the article the influence of QCs on rotational R-T relaxation and on vibration-rotational spectral line broadening is discussed. Explicit formulae shedding light on the QCs contribution to the R-T relaxation cross section and the line width and shift are presented. The obtained results emphasize the need for including QCs in every theoretical modeling of spectroscopic manifestation of intermolecular interactions. Besides the topics above, the possible manifestation of non-impact effects in the central regions of spectral lines due to QCs is stated. And finally, special consideration is given to the problem of adequate simulation of QCs formation at different pressures.

  3. Effects of orientation on the identification of rotated objects depend on the level of identity.

    PubMed

    Hamm, J P; McMullen, P A

    1998-04-01

    Matching names and rotated line drawings of objects showed effects of object orientation that depended on name level. Large effects, in the same range as object naming, were found for rotations between 0 degrees and 120 degrees from upright with subordinate names (e.g., collie), whereas nonsignificant effects were found with superordinate (e.g., animal) and basic names (e.g., dog). These results support image normalization, after contact with orientation-invariant representations, that provide basic-level identity. They consequently fail to support theories of object recognition in which rotated object images are normalized to the upright position before contact with long-term object representations. PMID:9606109

  4. Fluctuations of the Caspian Sea level in the quasi-two-year and 11-year cycles of solar activity

    SciTech Connect

    Nuzhdina, M.A.

    1995-07-01

    Fluctuations of the Caspian Sea level due to dynamics of solar activity in its quasi-two-year and 11-year cycles, as well as to the influence of the 22-to 23-year magnetic cycle are analyzed. Perturbation of the geomagnetic field and the atmospheric circulation are regarded as a transmitting mechanism of the Sun`s influence on the Earth`s hydrosphere.

  5. Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials

    NASA Astrophysics Data System (ADS)

    Rezakhani, Roozbeh; Cusatis, Gianluca

    2016-03-01

    Discrete fine-scale models, in the form of either particle or lattice models, have been formulated successfully to simulate the behavior of quasi-brittle materials whose mechanical behavior is inherently connected to fracture processes occurring in the internal heterogeneous structure. These models tend to be intensive from the computational point of view as they adopt an "a priori" discretization anchored to the major material heterogeneities (e.g. grains in particulate materials and aggregate pieces in cementitious composites) and this hampers their use in the numerical simulations of large systems. In this work, this problem is addressed by formulating a general multiple scale computational framework based on classical asymptotic analysis and that (1) is applicable to any discrete model with rotational degrees of freedom; and (2) gives rise to an equivalent Cosserat continuum. The developed theory is applied to the upscaling of the Lattice Discrete Particle Model (LDPM), a recently formulated discrete model for concrete and other quasi-brittle materials, and the properties of the homogenized model are analyzed thoroughly in both the elastic and the inelastic regime. The analysis shows that the homogenized micropolar elastic properties are size-dependent, and they are functions of the RVE size and the size of the material heterogeneity. Furthermore, the analysis of the homogenized inelastic behavior highlights issues associated with the homogenization of fine-scale models featuring strain-softening and the related damage localization. Finally, nonlinear simulations of the RVE behavior subject to curvature components causing bending and torsional effects demonstrate, contrarily to typical Cosserat formulations, a significant coupling between the homogenized stress-strain and couple-curvature constitutive equations.

  6. Elevated plasma levels of TIMP-1 in patients with rotator cuff tear

    PubMed Central

    2012-01-01

    Background and purpose Extracellular matrix remodeling is altered in rotator cuff tears, partly due to altered expression of matrix metalloproteinases (MMPs) and their inhibitors. It is unclear whether this altered expression can be traced as changes in plasma protein levels. We measured the plasma levels of MMPs and their tissue inhibitors (TIMPs) in patients with rotator cuff tears and related changes in the pattern of MMP and TIMP levels to the extent of the rotator cuff tear. Methods Blood samples were collected from 17 patients, median age 61 (39–77) years, with sonographically verified rotator cuff tears (partial- or full-thickness). These were compared with 16 age- and sex-matched control individuals with sonographically intact rotator cuffs. Plasma levels of MMPs and TIMPs were measured simultaneously using Luminex technology and ELISA. Results The plasma levels of TIMP-1 were elevated in patients with rotator cuff tears, especially in those with full-thickness tears. The levels of TIMP-1, TIMP-3, and MMP-9 were higher in patients with full-thickness tears than in those with partial-thickness tears, but only the TIMP-1 levels were significantly different from those in the controls. Interpretation The observed elevation of TIMP-1 in plasma might reflect local pathological processes in or around the rotator cuff, or a genetic predisposition in these patients. That the levels of TIMP-1 and of certain MMPs were found to differ significantly between partial and full-thickness tears may reflect the extent of the lesion or different etiology and pathomechanisms. PMID:23043271

  7. Rotation vibration energy level clustering in the XB1 ground electronic state of PH2

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Thiel, W.; Jensen, Per; Bunker, P. R.

    2006-10-01

    We use previously determined potential energy surfaces for the Renner-coupled XB1 and AA1 electronic states of the phosphino (PH 2) free radical in a calculation of the energies and wavefunctions of highly excited rotational and vibrational energy levels of the X˜ state. We show how spin-orbit coupling, the Renner effect, rotational excitation, and vibrational excitation affect the clustered energy level patterns that occur. We consider both 4-fold rotational energy level clustering caused by centrifugal distortion, and vibrational energy level pairing caused by local mode behaviour. We also calculate ab initio dipole moment surfaces for the X˜ and A˜ states, and the X˜-A˜ transition moment surface, in order to obtain spectral intensities.

  8. Effects of the axis of rotation and primordially solicited limb of high level athletes in a mental rotation task.

    PubMed

    Habacha, Hamdi; Lejeune-Poutrain, Laure; Margas, Nicolas; Molinaro, Corinne

    2014-10-01

    A recent set of studies has investigated the selective effects of particular physical activities that require full-body rotations, such as gymnastics and wrestling (Moreau, Clerc, Mansy-Dannay, & Guerrien, 2012; Steggemann, Engbert, & Weigelt, 2011), and demonstrated that practicing these activities imparts a clear advantage in in-plane body rotation performance. Other athletes, such as handball and soccer players, whose activities do require body rotations may have more experience with in-depth rotations. The present study examined the effect of two components that are differently solicited in sport practices on the mental rotation ability: the rotation axis (in-plane, in-depth) and the predominantly used limb (arms, legs). Handball players, soccer players, and gymnasts were asked to rotate handball and soccer strike images mentally, which were presented in different in-plane and in-depth orientations. The results revealed that handball and soccer players performed the in-depth rotations faster than in-plane rotations; however, the two rotation axes did not differ in gymnasts. In addition, soccer players performed the mental rotations of handball strike images slower. Our findings suggest that the development of mental rotation tasks that involve the major components of a physical activity allows and is necessary for specifying the links between this activity and the mental rotation performance. PMID:25064695

  9. A diode-pumped Nd3+-doped gadolinium gallium garnet quasi-three-level laser at 933 nm

    NASA Astrophysics Data System (ADS)

    Liu, J. H.; Han, Y. H.; Zhao, Y. D.

    2013-11-01

    We report for the first time a Nd3+-doped gadolinium gallium garnet (Nd:GGG) laser operating on a quasi-three-level laser at 933 nm, based on the 4F3/2-4I9/2 transition. Continuous wave 691 mW output power at 933 nm is obtained under 10.2 W of incident pump power. Moreover, intracavity second-harmonic generation has also been achieved with a blue power of 89 mW by using a LiB3O5 (LBO) nonlinear crystal.

  10. Iterative algorithm for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution

    NASA Astrophysics Data System (ADS)

    Quan, Haiyang; Wu, Fan; Hou, Xi

    2015-10-01

    New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.

  11. Establishing the level of cylindrical rotation in boxy/peanut bulges

    NASA Astrophysics Data System (ADS)

    Molaeinezhad, A.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Khosroshahi, H. G.; Balcells, M.; Peletier, R. F.

    2016-02-01

    We present SAURON integral-field observations of a sample of 12 mid-to-high-inclination disc galaxies, to unveil hidden bars on the basis of their kinematics, i.e. the correlation between velocity and h3 profiles, and to establish their degree of cylindrical rotation. For the latter, we introduce a method to quantify cylindrical rotation that is robust against inner disc components. We confirm high levels of cylindrical rotation in boxy/peanut bulges, but also observe this feature in a few galaxies with rounder bulges. We suggest that these are also barred galaxies with end-on orientations. Re-analysing published data for our own Galaxy using this new method, we determine that the Milky Way bulge is cylindrically rotating at the same level as the strongest barred galaxy in our sample. Finally, we use self-consistent three-dimensional N-body simulations of bar-unstable discs to study the dependence of cylindrical rotation on the bar's orientation and host galaxy inclination.

  12. On the ro-vibrational energies for the lithium dimer; maximum-possible rotational levels

    NASA Astrophysics Data System (ADS)

    Mustafa, Omar

    2015-03-01

    The Deng-Fan potential is used to discuss the reliability of the improved Greene-Aldrich approximation and the factorization recipe of Badawi et al [17] for the central attractive/repulsive core J≤ft( J+1 \\right)/2μ {{r}2}. The factorization recipe is shown to be a more reliable approximation and is used to obtain the rotational-vibrational energies for the {{a}3}Σ u+-7Li2 dimer. For each vibrational state only a limited number of the rotational levels are found to be supported by the {{a}3}Σ u+-7Li2 dimer.

  13. Robust Level Coincidences in the Subband Structure of Quasi 2D Systems

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Wang, L. Y.; Lin, Y. H.; Chu, C. S.

    2011-03-01

    Recently, level crossings in the energy bands of crystals have been identified as a key signature for topological phase transitions. In general, three independent parameters must be tuned appropriately to bring two quantum levels into degeneracy. Using realistic models we show that for Bloch electrons in a crystal the parameter space controlling the occurrence of level coincidences has a much richer structure than anticipated previously. In particular, we identify cases where level coincidences depend on only two independent parameters thus making the level coincidences robust, i.e., they cannot be removed by a small perturbation of the Hamiltonian compatible with the crystal symmetry. We consider HgTe/CdTe quantum wells as a specific example. (See arXiv:1011.xxxx) Work supported by Taiwan NSC (Contract No. 99-2112-M-009-006) and a MOE-ATU grant. Work at Argonne supported by DOE BES under Contract No. DE-AC02-06CH11357.

  14. Sea level variations during snowball Earth formation and evolution: 2. The influence of Earth's rotation

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Peltier, W. Richard

    2013-08-01

    Preliminary analyses are described of the influence of snowball Earth formation on the rotational state of the Earth as well as its feedback onto relative sea level. We demonstrate that a sufficiently large excess ellipticity of the Earth as might be expected to arise due to the mantle convection process acts to stabilize the rotational axis significantly so that the associated relative sea level change would be negligible. If no such excess ellipticity were characteristic of Neoproterozoic time, then increasing the thickness of the elastic lithosphere significantly promotes true polar wander (TPW) and the associated relative sea level change. On the contrary, increasing the viscosity of the lower mantle has an equally significant but opposite effect. TPW due to ice sheets formation for the 720 Ma and 570 Ma continental configurations (approximate Marinoan) can reach more than 5° and 10° in 10 Myr for viscosity model VM5a, and the associated maximum relative sea level changes at this time reach 26 m and 49 m, respectively. However, if a 1°/Myr TPW due to the action of the mantle convection process is assumed to be superimposed, then these values increase to 70 m and 101 m respectively. Compared to the analyses in which rotational influence is entirely neglected, the probability density distribution of freeboard values obtained here is almost the same except that the tails of the distribution are broadened, making it more difficult to accurately infer continental ice volume during snowball Earth events from observed freeboard changes.

  15. Tunneling spectroscopy by matching energy levels in the spin-rotating frame

    NASA Astrophysics Data System (ADS)

    Choi, Changho; Pintar, M. M.

    1997-09-01

    Tunneling spectra of strongly hindered CH3 in methylmalonic acid, dimethyl sulfide, propionic acid, and hexane are reported. The Zeeman-tunneling level-matching resonances are detected at ωZ=nωT, n=14, 13, 12, 23, 1, and 2 when the level matching is maintained for 10 ms in the 54.7° tilted proton spin-rotating frame. A ground-state manifold of two noninteracting but equivalent methyl groups accounts for these spectra. All the transitions, which bring about the population equalization whenever a matching resonance occurs, are driven by time-independent dipole-dipole interactions. The resonance peaks at ωZ=23ωT and ωZ=2ωT, which are observed in a tilted rotating frame only, indicate that pairs of methyl groups undergo a symmetry conversion simultaneously. The calculated magnetization changes, which are the consequence of population equilibration, reproduce the observed resonance peaks intensities well.

  16. Children's physical activity levels during school recess: a quasi-experimental intervention study

    PubMed Central

    Ridgers, Nicola D; Stratton, Gareth; Fairclough, Stuart J; Twisk, Jos WR

    2007-01-01

    Background Recess provides a daily opportunity for children to engage in moderate-to-vigorous (MVPA) and vigorous physical activity (VPA). Limited research has investigated the effects of recess-based interventions on physical activity using large sample sizes whilst investigating variables that may influence the intervention effect. The aim of the study was to investigate the short-term effects of a playground markings and physical structures intervention on recess physical activity. A secondary aim was to investigate the effects of covariates on the intervention. Methods 150 boys and 147 girls were randomly selected from 26 elementary schools to wear uni-axial accelerometers that quantified physical activity every 5 seconds during recess. Fifteen schools located in deprived areas in one large urban city in England received funding through a national initiative to redesign the playground environment. Eleven schools served as matched socioeconomic controls. Data were collected at baseline and 6-weeks following playground intervention. Recess MVPA and VPA levels adjusted for pupil- and school-level covariates (baseline physical activity, age, gender, recess length, body mass index) were analysed using multilevel analyses. Results Positive but non-significant intervention effects were found for MVPA and VPA when confounding variables were added to the model. Gender was a significant predictor of recess physical activity, with boys engaging in more MVPA and VPA than girls. Significant interactions for MVPA revealed that the intervention effect was stronger for younger elementary aged school children compared to older children, and the intervention effect increased as daily recess duration increased. Conclusion The playground redesign intervention resulted in small but non-significant increases in children's recess physical activity when school and pupil level variables were added to the analyses. Changing the playground environment produced a stronger intervention

  17. The mixed level damping of the single-axial rotation of INS

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhu, Hai; Li, Gang; Gao, Dayuan

    2011-12-01

    In order to improve the accuracy of the Single-axial Rotation of INS (SRINS), the idea of the level damping of the platform INS is introduced to the system, and the principle of the damping is offered. On the basic of analyzing on both of inner level damping and outer level damping, the mixed level damping is put forward. The results show that by introducing the damping network to the system, both of the Schuler oscillation and the Foucault oscillation are eliminated, and the precision of the SRINS is greatly enhanced; At the same time, by used of the mixed level damping, which can not only reduce the effect of the vehicle power-driven to the precision of the system, but also avoid the limit of the accurate reference velocity.

  18. Comparative Evaluation of Ciprofloxacin Levels in GCF and Plasma of Chronic Periodontitis Patients: Quasi Experimental Study

    PubMed Central

    Denthumdas, Sunil Kumar; Wadgave, Umesh; Pharne, Pooja Mohan; Patil, Sandeep Jambukumar; Kondreddi, Sirisha; Deshpande, Pavan; Koppikar, Rajesh Suresh

    2016-01-01

    Introduction For any antimicrobial approach to be successful in periodontal therapy, it is important that the antimicrobial agent targets the sub-gingival biofilm by attaining sufficient concentration at the sub-gingival site. Aim The purpose of the present study was to determine and compare the concentrations of ciprofloxacin present in Gingival Crevicular Fluid (GCF) and plasma after its systemic administration. Materials and Methods A total of 20 subjects, in the age group of 30-60 years satisfying the inclusion and exclusion criteria, were chosen from the outpatient Department of Periodontology, Government Dental College and Hospital, Hyderabad and consent was obtained. Subjects were put on oral ciprofloxacin therapy (Baycip, Bayer Corporation) of 500mg twice daily doses for five days to establish steady state tissue levels of the agent. GCF and serum samples were collected at the 72nd hour after the first dose of ciprofloxacin and were compared using unpaired t test. Results The mean gingival index value of the subjects was 1.8 ± 0.59 and the mean probing depth of the subjects taken in the study was 5.724 ± 0.47mm. The results of this study showed that ciprofloxacin concentrations were significantly higher (p<0.001) in GCF than in plasma. Conclusion Results from the present study and those from the earlier studies clearly indicate the ciprofloxacin’s ability to reach and concentrate in infected periodontal sites via GCF. This property of ciprofloxacin may be useful for eradication of periodontal pathogens, thus improving the outcome of periodontal therapy. PMID:27504410

  19. Zeeman-tuned rotational level-crossing spectroscopy in a diatomic free radical.

    PubMed

    Cahn, S B; Ammon, J; Kirilov, E; Gurevich, Y V; Murphree, D; Paolino, R; Rahmlow, D A; Kozlov, M G; DeMille, D

    2014-04-25

    Rotational levels of molecular free radicals can be tuned to degeneracy by using laboratory-scale magnetic fields. Because of their intrinsically narrow width, these level crossings of opposite-parity states have been proposed for use in the study of parity-violating interactions and other applications. We experimentally study a typical manifestation of this system using BaF138. Using a Stark-mixing method for detection, we demonstrate level-crossing signals with spectral width as small as 6 kHz. We use our data to verify the predicted line shapes, transition dipole moments, and Stark shifts and to precisely determine molecular magnetic g factors. Our results constitute an initial proof of concept for use of this system to study nuclear spin-dependent parity-violating effects. PMID:24815646

  20. Lifetimes of Vibro-Rotational Levels in Excited Electronic States of Diatomic Hydrogen Isotopologues

    SciTech Connect

    Astashkevich, S. A. Lavrov, B. P.

    2015-06-15

    The current situation in studies of lifetimes of excited rovibronic levels for the H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, and DT molecules is analyzed. All measured lifetime values (792 entries for 618 different vibro-rotational levels of 33 electronic states) reported in 61 publications before April 2015 are compiled and listed in tabular format together with an annotated bibliography. Experimental data are only available for the H{sub 2}, HD, and D{sub 2} molecules. The data collected in the present work show fragmentariness of experimental data. For the vast majority of the levels, the lifetime values were reported in one paper only and up to now are without independent experimental verification. A complete bibliography of publications concerning semiempirical determination and nonempirical calculations of the lifetimes is presented. Numerical results obtained in the framework of these two approaches are listed only in cases when experimental data are available. For more than half of the levels, the differences between measured and calculated values are three times higher than experimental errors. These discrepancies show necessity of more precise experimental and nonempirical studies. For some 79 rovibronic levels, our analysis makes it possible to propose certain set of recommended lifetime values.

  1. Individual Differences in ERPs during Mental Rotation of Characters: Lateralization, and Performance Level

    ERIC Educational Resources Information Center

    Beste, Christian; Heil, Martin; Konrad, Carsten

    2010-01-01

    The cognitive process of imaging an object turning around is called mental rotation. Many studies have been put forward analyzing mental rotation by means of event-related potentials (ERPs). Event-related potentials (ERPs) were measured during mental rotation of characters in a sample (N = 82) with a sufficient size to obtain even small effects. A…

  2. Analytical treatment of the continuous wave driving of a two-level atom without making the rotating wave approximation

    NASA Astrophysics Data System (ADS)

    O'Brien, Chris; Scully, Marlan O.

    2016-01-01

    In a straightforward manner, we utilize Floquet theory and adiabatic elimination to derive an analytic expression for a monochromatically driven two-level atom, without making the rotating wave approximation. We show that the counter-rotating terms dropped in the rotating wave approximation are responsible for three major effects. First an ac-Stark phase shift of the driven transition, second increased excited state population from far-detuned driving of the Lorentzian line, and third extra frequencies in the population dynamics that result in "wiggles." The analytic result agrees well with numerical simultations over a wide range of parameters.

  3. Quasi-three-level room-temperature Nd:YAG ring laser with high single-frequency output power at 946 nm

    SciTech Connect

    Freitag, I.; Henking, R.; Tuennermann, A.; Welling, H.

    1995-12-01

    Efficient room-temperature operation of a diode-pumped Nd:YAG laser is demonstrated for the quasi-three-level transition at 946 nm. Continuous-wave output powers of more than 800 mW cw in single-frequency operation are generated by application of a composite-cavity nonplanar ring laser. High amplitude and frequency stability of the emitted radiation is observed. {copyright} {ital 1995 Optical Society of America.}

  4. Theoretical and experimental study on reabsorption effect and temperature characteristic of a quasi-three-level 946nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Wan, Yuan; Chen, Weibiao

    2015-02-01

    The influence of temperature and incident pump power on reabsorption loss is theoretically discussed. Temperature characteristic and reabsorption loss rate of a diode-pumped quasi-three-level 946 nm Nd:YAG laser are investigated. Reabsorption effect has a significant impact on laser performance. The results indicate that reabsorption loss increases as the working temperature rises and decreases with the increased incident pump power.

  5. Detailed photoluminescence studies of thin film Cu{sub 2}S for determination of quasi-Fermi level splitting and defect levels

    SciTech Connect

    Sträter, H. Brüggemann, R.; Bauer, G. H.; Siol, S.; Klein, A.; Jaegermann, W.

    2013-12-21

    We have studied chalcocite (Cu{sub 2}S) layers prepared by physical vapor deposition with varying deposition parameters by calibrated spectral photoluminescence (PL) and by confocal PL with lateral resolution of Δ x≈0.9 μm. Calibrated PL experiments as a function of temperature T and excitation fluxes were performed to obtain the absolute PL-yield and to calculate the splitting of the quasi-Fermi levels (QFLs) μ=E{sub f,n}−E{sub f,p} at an excitation flux equivalent to the AM 1.5 spectrum and the absorption coefficient α(ℏω), both in the temperature range of 20 K≤T≤400 K. The PL-spectra reveal two peaks at E{sub #1}=1.17 eV and E{sub #2}=1.3 eV. The samples show a QFL-splitting of μ>700 meV associated with a pseudo band gap of E{sub g}=1.25 eV. The high-energy peak shows an unexpected temperature behavior, namely, an increase of PL-yield with rising temperature at variance with the behavior of QFL-splitting that decreases with rising T. Our observations indicate that, contrary to common believe, it is not the PL-yield, but rather the QFL-splitting that is the comprehensive indicator of the quality of the excited state in an illuminated semiconductor. A further examination of the lateral variation of opto-electronic properties by confocal PL and the surface contour shows no detectable correlation between Cu{sub 2}S grains/grain boundaries and the PL-yield or QFL-splitting.

  6. Acceleration forces at eye level experienced with rotation on the horizontal bar.

    PubMed

    Beck, G R; Rabinovitch, P; Brown, A C

    1979-06-01

    Negative acceleration forces (-Gz) experienced at eye level have been associated with preretinal hemorrhage and headache. These signs and symptoms were found in individuals who experienced negative (toward the head) force while rotating on a horizontal bar or hanging from a trapeze. Lightweight accelerometers were used to measure -Gz experienced at eye level in children and adult gymnasts performing a single-knee backswing on a horizontal bar. Rate of onset of -Gz, peak -Gz, time experiencing -Gz, area of curve (G.second), and mean force (area/time) were calculated. There was no significant difference between the children and the adult gymnasts in any of the above parameters. The best gymnast had a maximum rate of onset of 38.15 G/s and the maximum negative force experienced was 5.52 G. The maximum rate of onset for a child was 41.56 G/s and the maximum negative force experienced was 5.73 G. Compared with -Gz tolerance curves generated on a centrifuge the best gymnast would have become symptomatic while performing this maneuver in 6 s. The best child would have become symptomatic in 25 s. These tolerance limits can be easily exceeded by gymnasts and by the monkey-bar enthusiast. PMID:468634

  7. Reconciling past changes in Earth's rotation with 20th century global sea-level rise: Resolving Munk's enigma.

    PubMed

    Mitrovica, Jerry X; Hay, Carling C; Morrow, Eric; Kopp, Robert E; Dumberry, Mathieu; Stanley, Sabine

    2015-12-01

    In 2002, Munk defined an important enigma of 20th century global mean sea-level (GMSL) rise that has yet to be resolved. First, he listed three canonical observations related to Earth's rotation [(i) the slowing of Earth's rotation rate over the last three millennia inferred from ancient eclipse observations, and changes in the (ii) amplitude and (iii) orientation of Earth's rotation vector over the last century estimated from geodetic and astronomic measurements] and argued that they could all be fit by a model of ongoing glacial isostatic adjustment (GIA) associated with the last ice age. Second, he demonstrated that prevailing estimates of the 20th century GMSL rise (~1.5 to 2.0 mm/year), after correction for the maximum signal from ocean thermal expansion, implied mass flux from ice sheets and glaciers at a level that would grossly misfit the residual GIA-corrected observations of Earth's rotation. We demonstrate that the combination of lower estimates of the 20th century GMSL rise (up to 1990) improved modeling of the GIA process and that the correction of the eclipse record for a signal due to angular momentum exchange between the fluid outer core and the mantle reconciles all three Earth rotation observations. This resolution adds confidence to recent estimates of individual contributions to 20th century sea-level change and to projections of GMSL rise to the end of the 21st century based on them. PMID:26824058

  8. Effects of pairing correlations on the inverse level density parameter of hot rotating nuclei

    NASA Astrophysics Data System (ADS)

    Thi Quynh Huong, Le; Quang Hung, Nguyen; Thi Quynh Trang, Le

    2016-06-01

    Angular momentum dependence of the inverse level density parameter K in the excitation-energy region of ∼ 30 – 40 MeV is studied within the finite-temperature Bardeen-Cooper-Schrieffer (FTBCS) theory and the FTBCS theory that includes the effect due to quasiparticle-number fluctuations (FTBCS1). The two theories take into account the noncollective rotation of the nucleus at nonzero values of z-projection M of the total angular momentum. The comparison between the results obtained within the FTBCS and FTBCS1 as well as the case without pairing correlations and the experimental data for two medium-mass even-even nuclei 108Cd and 122Te shows that by including the pairing corrections the FTBCS and FTBCS1 reproduces quite well all the experimental data, whereas the non-pairing case always overestimates the data. Due to the effect of quasiparticle-number fluctuations, the FTBCS1 gaps at different M values do not collapse at critical temperature TC as in the FTBCS ones but monotonously decrease with increasing T and being finite even at high T. As the result, the values of K obtained within the FTBCS1 are always closer to the experimental data than those obtained within the FTBCS.

  9. Calculation of the water vapor line intensities for rotational transitions between high-excited energy levels

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Voitsekhovskaya, O. K.; Kashirskii, D. E.

    2015-11-01

    The intensities of water vapor in the range of pure rotational transitions were calculated up to high quantum numbers (Jmax ~ 30 and Ka max ~ 25). The diagonalization of the effective rotational Hamiltonian, approximated by Pade-Borel method, is applied to obtain the eigenvectors. The centrifugal distortion perturbations in line intensities were taken into account by the traditional equations for matrix elements of the transformed dipole moment, including eight parameters, and previously developed by authors Pade approximant. Moreover, to conduct the calculations, the rotational wavefunctions of the symmetric rotor molecule were applied. The results were compared with the known theoretical data.

  10. Effects of temperature and input energy on a quasi-three-level emission cross section of Nd3+:YAG pumped by a flashlamp

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahim, Pourmand; Noriah, Bidin; Hazri, Bakhtiar

    2012-09-01

    The influence of temperature and input energy on the fluorescence emission cross section of Nd3+:YAG crystal is studied. The stimulated emission cross sections of quasi-three-level systems are determined in a temperature range from -30 to 60°C and an input energy range from 18 to 75 J. The cross section is found to be decreased when the temperature and the input energy are increased. This is attributed to the thermal broadening mechanism of the emission line. This study is relevant for the development of laser design.

  11. Earth Rotation and Geoid Constraints Upon The Modern Rate of Global Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.

    The explanation for the tide gauge inferred rate of secular sea level rise that has been ongoing over the last century remains enigmatic. Various explanations have been pro- posed for the fact that there is a large shortfall between the sum of the estimates of the steric and small ice sheets and glaciers contributions, respectively 0.6 mm yr-1 and ~0.3 mm yr-1 and the tide gauge inferred rate of ~1.8 mm yr-1( see Douglas and Peltier, Physics Today, March 2002 for a recent discussion). Possible explanations in- clude climate induced melting of the great polar ice sheets on Greenland and Antarc- tica, substantial upwards bias in the tide gauge inferred rates ( Cabanes et al., Science, 2002), or substantial underestimation of the steric rate most recently analysed in de- tail be Levitus and others(Science 2001,2002). Strong arguments exist as to why the second explanation is not likely to be correct. If we accept that the steric and small ice sheets estimates are reliable then we are forced to accept a significant contribution due to the modern day melting of polar ice. Yet the extent to which this contribution could be significant is strongly constrained by Earth rotation observations. I will ad- dress the issue as to how firm these constraints actually are. Grace observations of the time dependent geoid height, a signal which is also contaminated by the GIA process, as are Topex/Poseidon observations, once filtered to remove this effect, are expected to be immensely valuable in resolving the remaining uncertainties.

  12. Rotational energy surface and quasiclassical analysis of the rotational energy level cluster formation in the ground vibrational state of PH 3

    NASA Astrophysics Data System (ADS)

    Petrov, Sergey V.; Kozlovskii, Borislav M.

    2007-06-01

    We report and substantiate a method for constructing the rotational energy surface (RES) of a molecule as a pure classical object. For an arbitrary molecule we start from the potential energy surface rather than from a conventional "effective Hamiltonian". The method is used for constructing the RES of the PH 3 molecule in its ground vibrational state. We have used an ab initio potential energy surface [D. Wang, Q. Shi, Q.-S. Zhu, J. Chem. Phys. 112 (2000) 9624-9631; S.N. Yurchenko, M. Carvajal, P. Jensen, F. Herregodts, T.R. Huet, Chem. Phys. 290 (2003) 59-67.]. The shape of the RES is shown not to change for J from 0 to 120. The procedure of quasiclassical quantization of the RES was also undertaken, yielding a set of quasiclassical critical values of the angular momentum. The results explain the structure of quantum rotational energy levels obtained by variational calculations [S.N. Yurchenko, W. Thiel, S. Patchkovskii, P. Jensen, Phys. Chem. Chem. Phys. 7 (2005) 573-582].

  13. Microwave studies of collision-induced transitions between rotational levels. VIII. Collisions between NH/sub 3/ and polar molecules

    SciTech Connect

    Fabris, A.R.; Oka, T.

    1983-03-15

    The technique of four-level microwave double resonance has been applied to the study of rotation-inversion transitions of NH/sub 3/ induced by collisions with various polar molecules. H/sub 2/O, D/sub 2/O, CH/sub 3/OH, CH/sub 3/X and CHX/sub 3/ (X = F, Cl, Br, I), NO, CO, and OCS were used as collision partners. The values of eta = ..delta..I/I observed for many four-level systems which are connected by dipole-type transitions (..delta..J = +- 1, ..delta..K = 0, parity +bold-arrow-left-right-) are given and qualitatively explained taking into account the long-range dipole--dipole interaction and the pattern of rotational energy levels of the collision partners.

  14. Late Holocene shoreline behavior in embayments of Lake Michigan: Influence of quasi-periodic lake-level variations and sediment supply

    SciTech Connect

    Thompson, T.A.; Baedke, S.J. . Indiana Geological Survey)

    1994-04-01

    Lake Michigan contains numerous former embayments into glacial deposits or bedrock. Many of the embayments contain dunes, spits, and captured lakes, but others contain arcuate strandplains of beach ridges. The strandplains are a geologic record of shoreline behavior and lake-level variation throughout the late Holocene. The larger strandplains show similar long-term patterns of beach-ridge development. The similar patterns are expected because variations in lake level are a primary control on shoreline behavior, and all embayments would have experienced relatively the same lake-level changes. Some variations in the long-term pattern of shoreline development do occur between strandplains. These dissimilarities are primarily a function of different rates of sediment supply to the shoreline of each embayment. Beach-ridge development within embayments can be represented on a rate of water level change versus rate of sediment supply diagram (Curray diagram) as three superimposed ovals on the positive rate of sediment supply side of the diagram. The three stacked ovals represent the three quasi-periodic lake-level variations defined by Thompson (1992) and show the position of the shoreline for a given time within the Curray diagram fields. For shorelines with a high rate of sediment supply, only the 30-year quasi-periodic variation would reach the aggradation line. For shorelines having significantly less sediment supply, rising lake level on the 150- and 600-year variations would force the 30-year oval across the aggradation line and well into the depositional and possibly the erosional transgression fields. Under these conditions erosion would occur that may remove, stack, or at least prevent one or more beach ridges from being developed.

  15. Accuracy level of pointing movements performed during slow passive whole-body rotations.

    PubMed

    Bourdin, C; Nougier, V; Bringoux, L; Gauthier, G M; Barraud, P A; Raphel, C

    2001-05-01

    Seated observers requested to detect low-velocity passive rotations show a high motion-detection threshold. However, when standing on a slowly rotating platform, their equilibrium is preserved, suggesting that cognitive sensing and sensorimotor reactions do not share the same central processes. The present experiments investigated the ability of observers seated on a slowly rotating chair in total darkness to indicate with their hand the position of briefly flashed targets (Experiment 1) and to indicate the subjective horizon with an outstretched arm (Experiment 2) or with a target driven by a joystick (Experiment 3). The overall hypothesis stated that egocentric coding of the position of a target should not be affected by sensing or not-sensing body rotation (Experiment 1), while geocentric positioning may (Experiments 2 and 3). Our data partially supported the hypothesis. Subjects pointed accurately to the memorized targets (Experiment 1), whereas misperception of body orientation was a source of inaccuracy for actions referred to a geocentric frame (Experiments 2 and 3). More interestingly, subjects' perceptions changed as a single, smooth, and monotonic function of tilt, independent of whether the perception of body orientation was present or not. PMID:11374084

  16. Observation of b2 symmetry vibrational levels of the SO2 C̃ (1)B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants.

    PubMed

    Park, G Barratt; Jiang, Jun; Saladrigas, Catherine A; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X̃ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C̃ state below 1600 cm(-1) of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C̃ electronic state. PMID:27083725

  17. Observation of b2 symmetry vibrational levels of the SO2C 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    DOE PAGESBeta

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-14

    Here, the C 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X~ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C state below 1600 cm–1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, itmore » allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less

  18. Observation of b2 symmetry vibrational levels of the SO2 C ˜ 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    NASA Astrophysics Data System (ADS)

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ˜ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C ˜ state below 1600 cm-1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C ˜ electronic state.

  19. Vortex lattices in a rotating Fermi superfluid in the BCS-BEC crossover with many Landau levels

    SciTech Connect

    Song, Tie-ling; Ma, C.R.; Ma, Yong-li

    2012-08-15

    We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross-Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS-BEC crossover. - Highlights: Black-Right-Pointing-Pointer We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. Black-Right-Pointing-Pointer Decomposing the vortex from the condensate, we can explain the vortex lattice. Black-Right-Pointing-Pointer The calculation is consistent with numerical and experimental data. Black-Right-Pointing-Pointer It can characterize experimentally properties in different regimes of the BCS-BEC crossover.

  20. Lowest-Landau-level description of a Bose-Einstein condensate in a rapidly rotating anisotropic trap

    NASA Astrophysics Data System (ADS)

    Fetter, Alexander L.

    2007-01-01

    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional trap can be described with the lowest Landau-level set of states. In this case, the condensate wave function ψ(x,y) is a Gaussian function of r2=x2+y2 , multiplied by an analytic function P(z) of the single complex variable z=x+iy ; the zeros of P(z) denote the positions of the vortices. Here, a similar description is used for a rapidly rotating anisotropic two-dimensional trap with arbitrary anisotropy (ωx/ωy⩽1) . The corresponding condensate wave function ψ(x,y) has the form of a complex anisotropic Gaussian with a phase proportional to xy , multiplied by an analytic function P(ζ) , where ζ∝x+iβ-y and 0⩽β-⩽1 is a real parameter that depends on the trap anisotropy and the rotation frequency. The zeros of P(ζ) again fix the locations of the vortices. Within the set of lowest Landau-level states at zero temperature, an anisotropic parabolic density profile provides an absolute minimum for the energy, with the vortex density decreasing slowly and anisotropically away from the trap center.

  1. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation.

    PubMed

    Courtens, Emilie N P; Boon, Nico; De Clippeleir, Haydée; Berckmoes, Karla; Mosquera, Mariela; Seuntjens, Dries; Vlaeminck, Siegfried E

    2014-03-01

    With oxygen supply playing a crucial role in an oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor (RBC), its controlling factors were investigated in this study. Disc rotation speeds (1.8 and 3.6rpm) showed no influence on the process performance of a lab-scale RBC, although abiotic experiments showed a significant effect on the oxygenation capacity. Estimations of the biological oxygen uptake rate revealed that 85-89% of the oxygen was absorbed by the microorganisms during the air exposure of the discs. Indeed, increasing the disc immersion (50 to 75-80%) could significantly suppress undesired nitratation, on the short and long term. The presented results demonstrated that nitratation could be controlled by the immersion level and revealed that oxygen control in an OLAND RBC should be predominantly based on the atmospheric exposure percentage of the discs. PMID:24457304

  2. Quasi-Fermi level splitting evaluation based on electroluminescence analysis in multiple quantum-well solar cells for investigating cell performance under concentrated light

    NASA Astrophysics Data System (ADS)

    Inoue, Tomoyuki; Toprasertpong, Kasidit; Delamarre, Amaury; Watanabe, Kentaroh; Paire, Myriam; Lombez, Laurent; Guillemoles, Jean-François; Sugiyama, Masakazu; Nakano, Yoshiaki

    2016-03-01

    Insertion of InGaAs/GaAsP strain-balanced multiple quantum wells (MQWs) into i-regions of GaAs p-i-n solar cells show several advantages against GaAs bulk p-i-n solar cells. Particularly under high-concentration sunlight condition, enhancement of the open-circuit voltage with increasing concentration ratio in thin-barrier MQW cells has been reported to be more apparent than that in GaAs bulk cells. However, investigation of the MQW cell mechanisms in terms of I-V characteristics under high-concentration sunlight suffers from the increase in cell temperature and series resistance. In order to investigate the mechanism of the steep enhancement of open-circuit voltage in MQW cells under high-concentration sunlight without affected by temperature, the quasi-Fermi level splitting was evaluated by analyzing electroluminescence (EL) from a cell. Since a cell under current injection with a density Jinjhas similar excess carrier density to a cell under concentrated sunlight with an equivalent short-circuit current Jsc = Jinj, EL measurement with varied Jinj can approximately evaluate a cell performance under a variety of concentration ratio. In addition to the evaluation of quasi-Fermi level splitting, the external luminescence efficiency was also investigated with the EL measurement. The MQW cells showed higher external luminescence efficiency than the GaAs reference cells especially under high-concentration condition. The results suggest that since the MQW region can trap and confine carriers, the localized excess carriers inside the cells make radiative recombination more dominant.

  3. Pure rotational spectrometers for trace-level VOC detection and chemical sensing

    NASA Astrophysics Data System (ADS)

    Neill, Justin L.; Harris, Brent J.; Pulliam, Robin L.; Muckle, Matt T.; Reynolds, Roger; McDaniel, David; Pate, Brooks H.

    2014-05-01

    Pure rotational spectroscopy in the centimeter, millimeter, and THz regions of the electromagnetic spectrum is a powerful technique for the characterization of polar molecules in the gas phase. Although this technology has a long history in the research sector for structural characterization, recent advances in digital electronics have only recently made commercial instruments competitive with established chemical analysis techniques. BrightSpec is introducing a platform of pure rotational spectrometers in response to critical unmet needs in chemical analysis. These instruments aim to deliver the operational simplicity of Fourier transform infrared spectrometers in conjunction with the chemical analysis capabilities of mass spectrometers. In particular, the BrightSpec ONE instrument a broadband gas mixture analyzer with full capabilities for chemical analysis. This instrument implements Fourier transform millimeter-wave emission spectroscopy, wherein a brief excitation pulse is applied to the sample, followed by the measurement of the coherent free induction decay responses of all molecular transitions within the excitation bandwidth. After sample injection and characterization, the spectrometer returns a list of all known species detected in the sample, along with their concentrations in the mixture. No prior knowledge about the sample composition is required. The instrument can then perform double-resonance measurements (analogous to 2-D COSY NMR), direct mass determination through analysis of the time profile of the molecular signal, and automated isotopic identification as part of a suite of tools that can return the structural identity of the unknowns in the sample.

  4. Exposure levels due to WLAN devices in indoor environments corrected by a time-amplitude factor of distribution of the quasi-stochastic signals.

    PubMed

    Miclaus, Simona; Bechet, Paul; Stratakis, Dimitrios

    2014-12-01

    With the development of radiofrequency technology, radiating quasi-stochastic signals like the wireless local area networks (WLAN), a proper procedure of exposure level assessment is needed. No standardised procedure exists at the moment. While channel power measurement proved to overestimate the field strength, weighting techniques were proposed. The paper compares the exposure levels determined by three different procedures, two of them correcting the field level by weighting. Twenty-three experimental cases of WLAN traffic load are analysed in an indoor environment in controlled conditions. The results show the differences obtained when the duty cycle (DC) method is applied comparatively with the application of weighting based on an amplitude-time correction. Significant exposure level reductions of 52.6-79.2 % from the field determined by frequency domain method and of 36.5-72.8 % from the field determined by the DC weighting method were obtained by time-amplitude method. Specificities of weighting factors probability density functions were investigated and regression analysis was applied for a detailed characterisation of this procedure. PMID:24591729

  5. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca2+ release during the quasi-steady level of release in twitch fibers from frog skeletal muscle

    PubMed Central

    Fénelon, Karine; Lamboley, Cédric R.H.; Carrier, Nicole

    2012-01-01

    Experiments were performed to characterize the properties of the intrinsic Ca2+ buffers in the sarcoplasmic reticulum (SR) of cut fibers from frog twitch muscle. The concentrations of total and free calcium ions within the SR ([CaT]SR and [Ca2+]SR) were measured, respectively, with the EGTA/phenol red method and tetramethylmurexide (a low affinity Ca2+ indicator). Results indicate SR Ca2+ buffering was consistent with a single cooperative-binding component or a combination of a cooperative-binding component and a linear binding component accounting for 20% or less of the bound Ca2+. Under the assumption of a single cooperative-binding component, the most likely resting values of [Ca2+]SR and [CaT]SR are 0.67 and 17.1 mM, respectively, and the dissociation constant, Hill coefficient, and concentration of the Ca-binding sites are 0.78 mM, 3.0, and 44 mM, respectively. This information can be used to calculate a variable proportional to the Ca2+ permeability of the SR, namely d[CaT]SR/dt ÷ [Ca2+]SR (denoted release permeability), in experiments in which only [CaT]SR or [Ca2+]SR is measured. In response to a voltage-clamp step to −20 mV at 15°C, the release permeability reaches an early peak followed by a rapid decline to a quasi-steady level that lasts ∼50 ms, followed by a slower decline during which the release permeability decreases by at least threefold. During the quasi-steady level of release, the release amplitude is 3.3-fold greater than expected from voltage activation alone, a result consistent with the recruitment by Ca-induced Ca2+ release of 2.3 SR Ca2+ release channels neighboring each channel activated by its associated voltage sensor. Release permeability at −60 mV increases as [CaT]SR decreases from its resting physiological level to ∼0.1 of this level. This result argues against a release termination mechanism proposed in mammalian muscle fibers in which a luminal sensor of [Ca2+]SR inhibits release when [CaT]SR declines to a low level

  6. Beach-ridge development in Lake Michigan: Shoreline behavior in response to quasi-periodic lake-level events

    USGS Publications Warehouse

    Thompson, T.A.; Baedke, S.J.

    1996-01-01

    Strandplains of arcuate beach ridges are common in coastal embayments in parts of the Great Lakes. Similarities in beach-ridge development and geomorphology are recognizable in many of the embayments in the Lake Michigan basin despite differences in size and shape, available sediment type and supply, predepositional slope and topography, and hydrographic regime between the embayments. These similarities are primarily a product of three scales of quasiperiodic lake-level variation ranging in time from 30 to 600 years and in water level change from 0.5 to 3.7 m. The interaction of these three lake-level variations can be represented on a Curray (1964) diagram (rate of water level change versus rate of sediment supply). The position of any shoreline on the diagram and the type of behavior the shoreline is experiencing is a product of the interaction of the three variations. Two large Strandplains of late Holocene beach ridges occur at opposite ends of Lake Michigan (Toleston Beach and Thompson embayment). The two areas exhibit similar patterns of beach-ridge development for the past 2600 calendar years. That is, both areas form beach ridges about every 30 years. Groups of 4 to 6 beach ridges reflect a longer-term lake-level variation of about 150 years. Only during the largest variation of about 600 years in duration do the two areas differ. The rise to the 1700 cal yr B.P. high caused the erosion of beach ridges back to 2800 cal yrs B.P. in northern Lake Michigan. In southern Lake Michigan, no erosion occurred during this lake level high. Differences in shoreline development between the two areas are related to the rate of sediment supply to the shorelines. As the sediment sink for the southern half of Lake Michigan, the southern strandplain received a greater sediment flux than the northern strandplain during the latter part of the late Holocene and produced a continuous record of beach-ridge development. ?? 1995 Elsevier Science B.V. All rights reserved.

  7. Is there a relationship between the performance in a chronometric mental-rotations test and salivary testosterone and estradiol levels in children aged 9-14 years?

    PubMed

    Quaiser-Pohl, Claudia; Jansen, Petra; Lehmann, Jennifer; Kudielka, Brigitte M

    2016-01-01

    The consistent gender differences favoring males in some spatial abilities like mental rotation have raised the question of whether testosterone or other gonadal hormones contribute to these differences--especially because such gender differences seem to appear mainly from the age of puberty on. Studies generally suggest that spatial ability is facilitated by moderately high testosterone levels (i.e., levels that are relatively high for females and relatively low for males). However, the role of sex steroids for mental-rotation performance of (pre-) pubertal children has not been the focus of research, yet. In our study, the relationships between different aspects of mental-rotation performance (accuracy, reaction time, rotation speed) and salivary testosterone and estradiol levels were investigated. Subjects were 109 children (51 boys and 58 girls) aged between 9 and 14 years (M = 11.41, SD = 1.74). They performed a chronometric mental-rotations test, in which the stimuli consisted of three-dimensional drawings of Shepard and Metzler cube figures. In addition, saliva samples were gathered for the analysis of free testosterone and estradiol levels. Results showed a significant gender difference in reaction time and rotational speed in favor of boys, and a significant age, but no gender difference in testosterone and estradiol levels. We found no significant relationships between hormonal levels and any measure of mental-rotation performance. PMID:26173010

  8. Pedicle Screw Instrumentation for Adolescent Idiopathic Scoliosis: The Insertion Technique, the Fusion Levels and Direct Vertebral Rotation

    PubMed Central

    2011-01-01

    The pedicle is a power nucleus of the vertebra and offers a secure grip of all 3 columns. Pedicle screw instrumentation has advantages of rigid fixation with improved three-dimensional (3D) correction and it is accepted as a reliable method with a high margin of safety. Accurate placement of the pedicle screws is important to reduce possible irreversible complications. Many methods of screw insertion have been reported. The author has been using the K-wire method coupled with the intraoperative single posteroanterior and lateral radiographs, which is the most safe, accurate and fast method. Identification of the curve patterns and determining the fusion levels are very important. The ideal classification of adolescent idiopathic scoliosis should address the all patterns, predict the extent of accurate fusion and have good inter/intraobserver reliability. My classification system matches with the ideal classification system, and it is simple and easy to learn; and my classification system has only 4 structural curve patterns and each curve has 2 types. Scoliosis is a 3D deformity; the coronal and sagittal curves can be corrected with rod rotation, and rotational deformity has to be corrected with direct vertebral rotation (DVR). Rod derotation and DVR are true methods of 3D deformity correction with shorter fusion and improved correction of both the fused and unfused curves, and this is accomplished using pedicle screw fixation. The direction of DVR is very important and it should be opposite to the direction of the rotational deformity of the vertebra. A rigid rod has to be used to prevent rod bend-out during the derotation and DVR. PMID:21629468

  9. Accurate Determination of Rotational Energy Levels in the Ground State of ^{12}CH_4

    NASA Astrophysics Data System (ADS)

    Abe, M.; Iwakuni, K.; Okubo, S.; Sasada, H.

    2013-06-01

    We have measured absolute frequencies of saturated absorption of 183 allowed and 21 forbidden transitions in the νb{3} band of ^{12}CH_4 using an optical comb-referenced difference-frequency-generation spectrometer from 86.8 to 93.1 THz (from 2890 to 3100 wn). The pump and signal sources are a 1.06-μ m Nd:YAG laser and a 1.5-μ m extended-cavity laser diode. An enhanced-cavity absorption cell increases the optical electric field and enhances the sensitivity. The typical uncertainty is 3 kHz for the allowed transitions and 12 kHz for the forbidden transitions. Twenty combination differences are precisely determined, and the scalar rotational and centrifugal distortion constants of the ground state are thereby yielded as r@ = l@ r@ = l B_{{s}} (157 122 614.2 ± 1.5) kHz, D_{{s}} (3 328.545 ± 0.031) kHz, H_{{s}} (190.90 ± 0.26) Hz, and L_{{s}} (-13.16 ± 0.76) mHz. Here, B_{{s}} is the rotational constant and D_{{s}}, H_{{s}} and L_{{s}} are the scalar quartic, sextic, octic distortion constants. The relative uncertainties are considerably smaller than those obtained from global analysis of Fourier-transform infrared spectroscopy. S. Okubo, H. Nakayama, K. Iwakuni, H. Inaba and H. Sasada, Opt. Express 19, 23878 (2011). M. Abe, K. Iwakuni, S. Okubo, and H. Sasada, J. Opt. Soc. Am. B (to be published). S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J. -P. Champion, M. Loëte, A. Nikitin, and M. Quack, Chem. Phys. 356, 131 (2009).

  10. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    PubMed

    Koput, Jacek

    2016-10-01

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state. PMID:27481562

  11. Rotational spectrum of SO3 and theoretical evidence for the formation of sixfold rotational energy-level clusters in its vibrational ground state

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Jensen, Per

    2014-06-01

    The structure of the purely rotational spectrum of sulphur trioxide 32S16O3 is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an ab initio dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called 6-fold rotational energy clusters at high rotational excitation are investigated. The SO3 molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S-O bonds. This behaviour is characterized theoretically in the J range from 100-250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.

  12. Rotational Spectrum of SO_3 and Theoretical Evidence for the Formation of Rotational Energy Level Clusters in its Vibrational Ground State

    NASA Astrophysics Data System (ADS)

    Underwood, Daniel S.; Yurchenko, Sergei N.; Tennyson, Jonathan; Jensen, Per

    2014-06-01

    The structure of the purely rotational spectrum of sulphur trioxide SO_3 is investigated using a new synthetic line list. The list combines line positions from an empirical model with line intensities determined, in the form of Einstein coefficients, from variationally computed ro-vibrational wavefunctions in conjunction with an ab initio dipole moment surface. The empirical model providing the line positions involves an effective, Watsonian-type rotational Hamiltonian with literature parameter values resulting from least-squares fittings to observed transition frequencies. The formation of so-called rotational energy clusters at high rotational excitation are investigated. The SO_3 molecule is planar at equilibrium and exhibits a unique type of rotational-energy clustering associated with unusual stabilization axes perpendicular to the S--O bonds. This behaviour is characterized theoretically in the J range from 100 through 250. The wavefunctions for these cluster states are analysed, and the results are compared to those of a classical analysis in terms of the rotational-energy-surface formalism.

  13. Role of Serum Fibrinogen Levels in Patients with Rotator Cuff Tears

    PubMed Central

    Longo, Umile Giuseppe; Petrillo, Stefano; Berton, Alessandra; Spiezia, Filippo; Loppini, Mattia; Maffulli, Nicola; Denaro, Vincenzo

    2014-01-01

    Although rotator cuff (RC) tendinopathy is a frequent pathology of the shoulder, the real understanding of its aetiopathogenesis is still unclear. Several studies showed that RC tendinopathy is more frequent in patients with hyperglycemia, diabetes, obesity, or metabolic syndrome. This paper aims to evaluate the serum concentration of fibrinogen in patients with RC tears. Metabolic disorders have been related to high concentration of serum fibrinogen and the activity of fibrinogen has been proven to be crucial in the development of microvascular damage. Thus, it may produce progression of RC degeneration by reducing the vascular supply of tendons. We report the results of a cross-sectional frequency-matched case-control study comparing the serum concentration of fibrinogen of patients with RC tears with that of a control group of patients without history of RC tears who underwent arthroscopic meniscectomy. We choose to enrol in the control group patients with pathology of the lower limb with a likely mechanic, not metabolic, cause, different from tendon pathology. We found no statistically significant differences in serum concentration of fibrinogen when comparing patients with RC tears and patients who underwent arthroscopic meniscectomy (P = 0.5). Further studies are necessary to clarify the role of fibrinogen in RC disease. PMID:24817887

  14. Calculated rotation-bending energy levels of CH 5+ and a comparison with experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2016-05-01

    We report J > 0 CH 5+ levels computed by fixing stretch coordinates. They are computed by using a simple product basis, exploiting symmetry, and carefully parallelizing the calculation. The J > 0 CH 5+ levels are compared with those obtained from other theoretical methods and with experimental ground state combination differences of Asvany et al. [Science, 347, 1346 (2015)]. If the assignment of Asvany et al. is correct, there are important differences between the levels we compute and those observed. We propose a different assignment of the experimental levels that reduces the maximum error from 34 to 2 cm-1. The new assignment can only be correct if states of both parities exist in the experiment. Although, ro-vibrational levels of CH 5+ cannot be associated with individual vibrational states, they do occur in blocks separated by gaps.

  15. Calculated rotation-bending energy levels of CH5 (+) and a comparison with experiment.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2016-05-28

    We report J > 0 CH5 (+) levels computed by fixing stretch coordinates. They are computed by using a simple product basis, exploiting symmetry, and carefully parallelizing the calculation. The J > 0 CH5 (+) levels are compared with those obtained from other theoretical methods and with experimental ground state combination differences of Asvany et al. [Science, 347, 1346 (2015)]. If the assignment of Asvany et al. is correct, there are important differences between the levels we compute and those observed. We propose a different assignment of the experimental levels that reduces the maximum error from 34 to 2 cm(-1). The new assignment can only be correct if states of both parities exist in the experiment. Although, ro-vibrational levels of CH5 (+) cannot be associated with individual vibrational states, they do occur in blocks separated by gaps. PMID:27250303

  16. Investigation of the Torsion Rotation Energy Levels of the Carbon-Hydrogen Asymmetric Stretches in Methanol

    NASA Astrophysics Data System (ADS)

    Bignall, Orville Newton

    The CH asymmetric stretching region of the methanol spectrum has been measured from 2900 to 3200 cm ^{-1} using the newly constructed Fourier transform spectrometer (FTS). The nominal resolution, the reciprocal of twice the maximum optical path difference, is 0.004 cm^{-1}. The objectives of this investigation were to identify, assign, and analyze the torsion-rovibrational transitions of the CH_3 asymmetric stretching fundamentals v_2 and v_9 . The theory used in the investigation is principally that used by Lees and Baker with the modifications described by Y. Y. Kwan. It is here assumed that this model is suitable for fundamentals other than the torsion rotation. A total of 13 P branch and 11 R branch series were assigned (13 series representing 6 excited states belonging to the v_2 fundamental and 11 series representing 5 excited states belonging to the v_9 fundamental). A partial nonlinear least squares analysis of the series origins yields a band center of 2999.44 cm^{ -1}, a barrier height of 405.62 cm ^{-1}, and a value of 5.29 cm ^{-1} for the moment of inertia of the methyl group about the symmetry axis for the v _2 fundamental. The corresponding values for the v_9 fundamental are 2970.18 cm^{-1}, 529.71 cm ^{-1}, and 5.34 cm^ {-1} respectively. These parameters give a quality of fit with rms deviations of 1.15 cm ^{-1} and 1.26 cm^ {-1} for the v_2 and v_9 bands respectively. A criterion was used to divide the assignments between two separate bands. A comparison between the asymmetric stretch data of methyl fluoride, the OH and CO stretch data of methanol indicates that our assignments are reasonable. Tentative assignments of several series observed in the spectra based on calculations, using the fitted parameters and normal state parallel combination differences, are also given.

  17. The IUPAC Database of Rotational-Vibrational Energy Levels and Transitions of Water Isotopologues from Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Furtenbacher, T.; Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.

    2014-06-01

    The results of an IUPAC Task Group formed in 2004 on "A Database of Water Transitions from Experiment and Theory" (Project No. 2004-035-1-100) are presented. Energy levels and recommended labels involving exact and approximate quantum numbers for the main isotopologues of water in the gas phase, H216O, H218O, H217O, HD16O, HD18O, HD17O, D216O, D218O, and D217O, are determined from measured transition wavenumbers. The transition wavenumbers and energy levels are validated using the MARVEL (measured active rotational-vibrational energy levels) approach and first-principles nuclear motion computations. The extensive data, e.g., more than 200,000 transitions have been handled for H216O, including lines and levels that are required for analysis and synthesis of spectra, thermochemical applications, the construction of theoretical models, and the removal of spectral contamination by ubiquitous water lines. These datasets can also be used to assess where measurements are lacking for each isotopologue and to provide accurate frequencies for many yet-to-be measured transitions. The lack of high-quality frequency calibration standards in the near infrared is identified as an issue that has hindered the determination of high-accuracy energy levels at higher frequencies. The generation of spectra using the MARVEL energy levels combined with transition intensities computed using high accuracy ab initio dipole moment surfaces are discussed.

  18. High temperature heat source generation with quasi-continuous wave semiconductor lasers at power levels of 6 W for medical use.

    PubMed

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Ito, Shinobu; Kanazawa, Hideko; Yamaguchi, Shigeru

    2014-01-01

    We investigate a technology to create a high temperature heat source on the tip surface of the glass fiber proposed for medical surgery applications. Using 4 to 6 W power level semiconductor lasers at a wavelength of 980 nm, a laser coupled fiber tip was preprocessed to contain a certain amount of titanium oxide powder with a depth of 100 μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus, the laser treatment can be performed without suffering from any optical characteristic of the material. A semiconductor laser was operated quasi-continuous wave mode pulse time duration of 180 ms and >95% of the laser energy was converted to thermal energy in the fiber tip. Based on two-color thermometry, by using a gated optical multichannel analyzer with a 0.25 m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be in excess 3100 K. PMID:24853040

  19. Evaluation of the lubrication mechanism at various rotation speeds and granule filling levels in a container mixer using a thermal effusivity sensor.

    PubMed

    Uchiyama, Jumpei; Aoki, Shigeru

    2015-01-01

    To research the detailed mechanism of the lubrication process using the thermal effusivity sensor, the relationships of the lubrication progress with the pattern of powder flow, the rotation speed and the filling level were investigated. The thermal effusivity profile was studied as a function of the number of rotations at various rotation speeds. It was observed that at lower rotation speeds, the profiles of the lubrication progress were almost the same, regardless of the rotation speed. In this region, the highest speed was defined as the critical rotation speed (CRS), which was found to be one of the important factors. The CRS had close relations with avalanche flow in the blender. The first and the second phases were observed in the lubrication process. The first phase was influenced by the CRS and the filling level in the blender. The second phase was influenced by the rotation speed. The mechanism of two-phase process was proposed as a macro progression of the dispersion of the lubricant (first phase) and micro progression of the coating of the powder particles with lubricant (second phase). The accurate monitoring by the thermal effusivity sensor was able to help a better understanding in the lubrication process. PMID:25000482

  20. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    NASA Astrophysics Data System (ADS)

    Delahaye, Thibault; Nikitin, Andrei; Rey, Michaël; Szalay, Péter G.; Tyuterev, Vladimir G.

    2014-09-01

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C2H4 obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C2H4 molecule was obtained with a RMS(Obs.-Calc.) deviation of 2.7 cm-1 for fundamental bands centers and 5.9 cm-1 for vibrational bands up to 7800 cm-1. Large scale vibrational and rotational calculations for 12C2H4, 13C2H4, and 12C2D4 isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm-1 are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of 13C2H4 and 12C2D4 and rovibrational levels of 12C2H4.

  1. Linear and nonlinear Faraday rotations of light polarization in a four-level active-Raman-gain medium

    NASA Astrophysics Data System (ADS)

    Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2013-08-01

    We investigate linear and nonlinear Faraday effects in a room-temperature, coherently driven four-level active-Raman-gain (ARG) medium. By using the multiple-scale method, we derive two nonlinear coupled envelope equations governing the dynamics of left- and right-polarized components of a linearly polarized probe field. Under the weak probe field approximation, we demonstrate a factor of four increase of the Faraday rotation angle by the linear and nonlinear response of the ARG scheme without probe field loss. We further compare this ARG system with an M-type five-state electromagnetically induced transparency (EIT) scheme and demonstrate the superiority of the ARG scheme over the conventional EIT scheme.

  2. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  3. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments. PMID:26178101

  4. Novel patterns of torsion-inversion-rotation energy levels in the ν11 asymmetric CH-stretch spectrum of methylamine.

    PubMed

    Dawadi, Mahesh B; Michael Lindsay, C; Chirokolava, Andrei; Perry, David S; Xu, Li-Hong

    2013-03-14

    The high-resolution infrared spectrum of methylamine (CH3NH2) has been recorded using slit-jet direct absorption spectroscopy in the ν11 CH-stretch region (2965-3005 cm(-1)) with a resolution of 0.0025 cm(-1). The 621 lines assigned by ground state combination differences represent 27 substates with |K(')| ≤ 2 for the A, B, E1, and E2 symmetries. The spectrum of CH3NH2 is complicated by torsion and inversion tunneling connecting six equivalent minima. The upper states K(') = 0, ± 1 for E1 and E2 are substantially perturbed by "dark" states. The result in the spectrum is multiplets of 2 or 3 states with mixed bright∕dark character. The analysis of the spectrum reveals two qualitative differences in the energy level pattern relative to the vibrational ground state and relative to available data on the lower frequency vibrations (NH2 wag and CN stretch). First at J(') = 0, there is a different ordering of the levels connected by torsion-inversion tunneling. Second, the low-J splittings indicative of torsion-rotation coupling are greatly reduced in the ν11 excited state relative to the vibrational ground state for both the E1 and E2 species, suggesting the partial suppression of torsional tunneling in the ν11 CH-stretch excited state. PMID:23514487

  5. Analysis of the Rotation-Torsion Spectrum of CH_2DOH Within the e_0, e_1, and o_1 Torsional Levels

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Pearson, John C.; Yu, Shanshan; Margules, L.; Motiyenko, R. A.; Klee, S.

    2013-06-01

    Since the first assignments of Quade and coworkers, a more satisfactory understanding of the spectrum of CH_2DOH has now been achieved. Thanks to a multidimensional potential energy surface and to a new theoretical approach accounting for the internal rotation of a partially deuterated methyl group, 76 torsional subbands could be identified in the microwave and FIR domains. 8356 rotation and rotation-torsion transitions were also assigned for the three lowest lying torsional levels, e_0, e_1, and o_1, in the microwave and terahertz domains and were analyzed with empirical models. In this paper, a new approach aimed at accounting for the rotation-torsion energy levels of CH_2DOH will be presented. It is based on the exact expression of the generalized 4× 4 inertia tensor of the molecule and accounts for the C_s symmetry of the partially deuterated methyl group, for the dependence of the rotational constants on the angle of internal rotation, and for the rotation-torsion Coriolis coupling. This approach will be used to analyze high-resolution data involving the three lowest lying torsional levels, up to k=11. In addition to the microwave data reported recently,^d new transitions recorded in the terahertz domain at JPL will be analyzed. The results of the analysis will be presented in the paper and the parameters determined in the analysis will be discussed. Quade and Suenram, J. Chem. Phys. {73} (1980) 1127; and Su and Quade, J. Mol. Spec. {134} (1989) 290. Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. {256} (2009) 204. El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. {135} (2011) 194309. Pearson, Yu, and Drouin, J. Mol. Spec. {280} (2012) 119. Quade and Lin, J. Chem. Phys. {38} (1963) 540.

  6. Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: Resolving Munk’s enigma

    PubMed Central

    Mitrovica, Jerry X.; Hay, Carling C.; Morrow, Eric; Kopp, Robert E.; Dumberry, Mathieu; Stanley, Sabine

    2015-01-01

    In 2002, Munk defined an important enigma of 20th century global mean sea-level (GMSL) rise that has yet to be resolved. First, he listed three canonical observations related to Earth’s rotation [(i) the slowing of Earth’s rotation rate over the last three millennia inferred from ancient eclipse observations, and changes in the (ii) amplitude and (iii) orientation of Earth’s rotation vector over the last century estimated from geodetic and astronomic measurements] and argued that they could all be fit by a model of ongoing glacial isostatic adjustment (GIA) associated with the last ice age. Second, he demonstrated that prevailing estimates of the 20th century GMSL rise (~1.5 to 2.0 mm/year), after correction for the maximum signal from ocean thermal expansion, implied mass flux from ice sheets and glaciers at a level that would grossly misfit the residual GIA-corrected observations of Earth’s rotation. We demonstrate that the combination of lower estimates of the 20th century GMSL rise (up to 1990) improved modeling of the GIA process and that the correction of the eclipse record for a signal due to angular momentum exchange between the fluid outer core and the mantle reconciles all three Earth rotation observations. This resolution adds confidence to recent estimates of individual contributions to 20th century sea-level change and to projections of GMSL rise to the end of the 21st century based on them. PMID:26824058

  7. Association between exposure to rotating night shift versus day shift using levels of 6-sulfatoxymelatonin and cortisol and other sex hormones in women.

    PubMed

    Gómez-Acebo, Inés; Dierssen-Sotos, Trinidad; Papantoniou, Kyriaki; García-Unzueta, María Teresa; Santos-Benito, María Francisca; Llorca, Javier

    2015-02-01

    The present study aims to compare 6-sulfatoxymelatonin (aMT6s) secretion patterns and levels of cortisol and sex hormones (estradiol, progesterone, DHEA, DHEAS, and testosterone) among rotating night-shift workers and day-shift workers. We performed a cross-sectional study in Cantabria (northern Spain) including 136 women (73 day-shift workers and 63 rotating night-shift workers). Blood and urine samples were obtained after two consecutive working days. Differences in means were estimated using ANCOVA, stratified by menopausal status, ovulation phase, and adjusted for season, age, body mass index, consumption of cigarettes in the last 24 h. aMT6s circadian rhythm was analyzed using the cosinor analysis. The present study showed that rotating night-shift workers had lower excretion of aMT6s than day-shift workers (mesor = 50.26 ng aMT6s/mg creatinine in women with rotating night shift versus 88.79 ng aMT6s/mg creatinine in women with day shift), lower fluctuation (amplitude = 45.24 ng aMT6s/mg creatinine in rotating night-shift workers versus 79.71 ng aMT6s/mg creatinine in day-shift workers), and a later acrophase (aMT6s peak time: 08:31 in rotating night-shift workers versus 07:13 h in day-shift workers). Additionally, women with rotating night shift had higher estradiol and progesterone levels, compared to day workers, especially in the follicular phase on the menstrual cycle. PMID:25216206

  8. Hot water emission spectra: Rotational energy levels of the (0 0 0) and (0 1 0) states of HD17O

    NASA Astrophysics Data System (ADS)

    Mellau, Georg Ch.; Mikhailenko, Semen N.; Tyuterev, Vladimir G.

    2015-02-01

    The rotational transitions of the HD17O water isotopologue have been assigned in a high temperature emission spectrum between 320 and 520 cm-1 of water vapor enriched by deuterium and 17O. We assigned 169 emission lines to 189 partly overlapping transitions of pure rotational and the ν2-ν2 rotational bands. A new extended set of 390 rotational energy levels for the (0 0 0) and (0 1 0) vibration states of HD17O up to J = 17 and Ka = 13 was obtained by combination of the new line transitions with those reported in previous studies. We constructed an effective rotational Hamiltonian based on the generation function approach. For this Hamiltonian the deviation between calculated and measured eigenenergies is in the order of 0.001 cm-1. We report a new calculated linelist based on our new energy level list. Our linelist supersedes the IUPAC linelist for the HD17O water isotopologue as it is based on a substantially extended set of accurate transition wavenumbers.

  9. Effects of Age, Gender and Level of Co-contraction on Elbow and Shoulder Rotational Stiffness and Damping in the Impulsively End-Loaded Upper Extremity.

    PubMed

    Lee, Yunju; Ashton-Miller, James A

    2015-05-01

    Whether an arm will buckle under an impulsive end-load should partly depend on the elastic and viscous properties of the pretensed arm muscles. In measuring these properties we hypothesized that neither age, gender, nor muscle pre-contraction level would affect the bilinear elbow or shoulder lumped rotational stiffness or damping parameters in the impulsively end-loaded upper extremity of 38 healthy men and women. Subjects were instructed to preactivate triceps to either 25, 50 or 75% of maximum myoelectric activity levels. Then a standardized impulsive end-load was applied via a 6-axis load cell to the wrist of the slightly flexed arm in the prone posture. Arm kinematic responses were acquired at 280 Hz and an inverse dynamics analysis was used to estimate the bilinear rotational stiffnesses and damping parameters at the elbow and shoulder. The results show that pre-contraction level affected normalized joint rotational stiffness and damping coefficients (p < 0.02). Age affected the initial stiffness for the elbow (p < 0.05), and gender affected that of the shoulder in the sagittal plane (p < 0.006). Arm muscle strength was positively related to normalized stiffness at the elbow, but not the shoulder. We conclude that age, gender and pre-contraction level each affect the viscoelastic behavior of the end-loaded upper extremity in healthy adults. PMID:25395216

  10. Excited vibrational level rotational constants for SiC2: A sensitive molecular diagnostic for astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Müller, Holger S. P.

    2015-11-01

    Silacyclopropynylidene, SiC2, is a known and highly abundant circumstellar molecule. Its spectrum has been established as a major component of lines observed toward the carbon-rich star IRC +10216 (CW Leonis). It has been detected in its low-lying v3 = 1 and 2 vibrational states as well as in various isotopic compositions. Increasing sensitivity and spatial resolution will enable many more emission or absorption lines to be detected. In order to detect new molecular species, unassigned lines of known species must be identified. This work uses established ab initio quartic force fields to produce data necessary for this classification of lines related to SiC2. Agreement between the theoretical vibrational frequencies and known rotational and spectroscopic constants is quite good, as good as 5 cm-1 and 3 MHz, respectively in some cases. In addition, experimentally unknown vibrational frequencies and rotational constants are provided for the first overtones and combination bands in addition to 3ν3, the second overtone of the low-lying antisymmetric stretch/carbide rotation mode. Frequencies of v3 = 3 low-J rotational transitions of the main isotopic species are also estimated from published data for v3 ≤ 2. Further, we determine rotational and centrifugal distortion parameters for which in most cases vibrational effects due to the ν3 mode were reduced to first, and in several cases also to second order. These values may approximate equilibrium values better than the ground state values. The data produced herein will aid in the experimental and observational characterization of this known astromolecule in order to identify some of the unassigned lines for a known entity.

  11. Optimized Quasi-Interpolators for Image Reconstruction.

    PubMed

    Sacht, Leonardo; Nehab, Diego

    2015-12-01

    We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost. PMID:26390452

  12. You Should Be the Specialist! Weak Mental Rotation Performance in Aviation Security Screeners – Reduced Performance Level in Aviation Security with No Gender Effect

    PubMed Central

    Krüger, Jenny K.; Suchan, Boris

    2016-01-01

    Aviation security screeners analyze a large number of X-ray images per day and seem to be experts in mentally rotating diverse kinds of visual objects. A robust gender-effect that men outperform women in the Vandenberg & Kuse mental rotation task has been well documented over the last years. In addition it has been shown that training can positively influence the overall task-performance. Considering this, the aim of the present study was to investigate whether security screeners show better performance in the Mental Rotation Test (MRT) independently of gender. Forty-seven security screeners of both sexes from two German airports were examined with a computer based MRT. Their performance was compared to a large sample of control subjects. The well-known gender-effect favoring men on mental rotation was significant within the control group. However, the security screeners did not show any sex differences suggesting an effect of training and professional performance. Surprisingly this specialized group showed a lower level of overall MRT performance than the control participants. Possible aviation related influences such as secondary effects of work-shift or expertise which can cumulatively cause this result are discussed. PMID:27014142

  13. You Should Be the Specialist! Weak Mental Rotation Performance in Aviation Security Screeners - Reduced Performance Level in Aviation Security with No Gender Effect.

    PubMed

    Krüger, Jenny K; Suchan, Boris

    2016-01-01

    Aviation security screeners analyze a large number of X-ray images per day and seem to be experts in mentally rotating diverse kinds of visual objects. A robust gender-effect that men outperform women in the Vandenberg & Kuse mental rotation task has been well documented over the last years. In addition it has been shown that training can positively influence the overall task-performance. Considering this, the aim of the present study was to investigate whether security screeners show better performance in the Mental Rotation Test (MRT) independently of gender. Forty-seven security screeners of both sexes from two German airports were examined with a computer based MRT. Their performance was compared to a large sample of control subjects. The well-known gender-effect favoring men on mental rotation was significant within the control group. However, the security screeners did not show any sex differences suggesting an effect of training and professional performance. Surprisingly this specialized group showed a lower level of overall MRT performance than the control participants. Possible aviation related influences such as secondary effects of work-shift or expertise which can cumulatively cause this result are discussed. PMID:27014142

  14. Quasi-axially symmetric stellarators

    PubMed Central

    Garabedian, Paul R.

    1998-01-01

    Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544

  15. Quasi-axially symmetric stellarators.

    PubMed

    Garabedian, P R

    1998-08-18

    Confinement of a plasma for controlled thermonuclear fusion is studied numerically. Toroidal equilibria are considered, with an emphasis on the Modular Helias-like Heliac 2 (MHH2), which is a stellarator of low aspect ratio with just two field periods surrounded by 16 modular coils. The geometry is fully three-dimensional, but there is an axial symmetry of the magnetic structure that is calculated to give confinement competitive with that in circular tokamaks. Additional vertical and toroidal field coils, together with a current drive, provide the flexibility and the control of rotational transform necessary for a successful experiment. An MHH3 device with three field periods and comparable quasi-axial symmetry is presented, too, and because of reversed shear, its physical properties may be better. Variational analysis of equilibrium and stability is shown to give a more reliable prediction of performance for these stellarators than linearized or local theories that suffer from a failure of differentiability and convergence. PMID:9707544

  16. Experimental Study of the Ion Critical-Gradient Length and Stiffness Level and the Impact of Rotation in the JET Tokamak

    SciTech Connect

    Mantica, P.; Strintzi, D.; Tala, T.; Giroud, C.; Leggate, H.; Sharapov, S.; Vries, P. C. de; Zabeo, L.; Zastrow, K.-D.; Lerche, E.; Van Eester, D.; Peeters, A. G.; Salmi, A.

    2009-05-01

    Experiments were carried out in the JET tokamak to determine the critical ion temperature inverse gradient length (R/L{sub Ti}=R|{nabla}T{sub i}|/T{sub i}) for the onset of ion temperature gradient modes and the stiffness of T{sub i} profiles with respect to deviations from the critical value. Threshold and stiffness have been compared with linear and nonlinear predictions of the gyrokinetic code GS2. Plasmas with higher values of toroidal rotation show a significant increase in R/L{sub Ti}, which is found to be mainly due to a decrease of the stiffness level. This finding has implications on the extrapolation to future machines of present day results on the role of rotation on confinement.

  17. Generalized quasi variational inequalities

    SciTech Connect

    Noor, M.A.

    1996-12-31

    In this paper, we establish the equivalence between the generalized quasi variational inequalities and the generalized implicit Wiener-Hopf equations using essentially the projection technique. This equivalence is used to suggest and analyze a number of new iterative algorithms for solving generalized quasi variational inequalities and the related complementarity problems. The convergence criteria is also considered. The results proved in this paper represent a significant improvement and refinement of the previously known results.

  18. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Lodi, Lorenzo; Mizus, Irina I.

    2013-03-01

    This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O containstwo components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system

  19. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: effects of heating concentration, homogenizer rotating speed, and salt addition level.

    PubMed

    Cui, Zhumei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei

    2014-02-19

    The adsorption of heat-denatured soy proteins at the oil/water (O/W) interface during emulsification was studied. Protein samples were prepared by heating protein solutions at concentrations of 1-5% (w/v) and were then diluted to 0.3% (w/v). The results showed that soy proteins that had been heated at higher concentrations generated smaller droplet size of emulsion. Increase in homogenizer rotating speed resulted in higher protein adsorption percentages and lower surface loads at the O/W interface. Surface loads for both unheated and heated soy proteins were linearly correlated with the unadsorbed proteins' equilibrium concentration at various rotating speeds. With the rise in NaCl addition level, protein adsorption percentage and surface loads of emulsions increased, whereas lower droplet sizes were obtained at the ionic strength of 0.1 M. The aggregates and non-aggregates displayed different adsorption behaviors when rotating speed or NaCl concentration was varied. PMID:24460091

  20. Rotation-torsion analysis of the Si2H6 infrared fundamental ν, perturbed by excited torsional levels of the vibrational ground state

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.; Horneman, V.-M.

    The lowest infrared active perpendicular fundamental ν9 of disilane has been analysed on a Fourier transform spectrum between 320 and 430 cm-1, at the spectral resolution of 0.0012 cm-1. The rotation-torsion structure of this band is affected by x,y Coriolis interactions with excited torsional levels of the vibrational ground state, correlating with components of 3ν4 and 4ν4 in the high barrier limit. The interaction of ν9 and 4ν4, forbidden in the D3d symmetry limit, is allowed between components of E torsional symmetry under the G36(EM) extended molecular group, because of the large amplitude of the internal rotation motion. We could determine the values of the main vibration-rotation-torsion parameters of ν9, interaction parameters, and the vibrational wavenumbers of the four torsional components of 3ν4 and of the E3d component of 4ν4. The intrinsic torsional splitting of ν9 is found to be smaller than in the ground vibrational state by 0.0066 cm-1, in good agreement with our theoretical predictions. The possibility of observing the effects of D3d-forbidden interactions in the spectra of ethane-like molecules is also discussed.

  1. Reversible control of F(1)-ATPase rotational motion using a photochromic ATP analog at the single molecule level.

    PubMed

    Sunamura, Ei-Ichiro; Kamei, Takashi; Konno, Hiroki; Tamaoki, Nobuyuki; Hisabori, Toru

    2014-03-28

    Motor enzymes such as F1-ATPase and kinesin utilize energy from ATP for their motion. Molecular motions of these enzymes are critical to their catalytic mechanisms and were analyzed thoroughly using a single molecule observation technique. As a tool to analyze and control the ATP-driven motor enzyme motion, we recently synthesized a photoresponsive ATP analog with a p-tert-butylazobenzene tethered to the 2' position of the ribose ring. Using cis/trans isomerization of the azobenzene moiety, we achieved a successful reversible photochromic control over a kinesin-microtubule system in an in vitro motility assay. Here we succeeded to control the hydrolytic activity and rotation of the rotary motor enzyme, F1-ATPase, using this photosensitive ATP analog. Subsequent single molecule observations indicated a unique pause occurring at the ATP binding angle position in the presence of cis form of the analog. PMID:24607907

  2. Range of motion and leg rotation affect electromyography activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen M; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-09-01

    Leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed 8 LE REP at their 8 repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP × ROM interaction was detected (p < 0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, and 8 (p ≤ 0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p < 0.001). For vastus lateralis (VL), EMG increased across REP (p < 0.001) with NEU and TO EMG increasing linearly throughout ROM and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO, the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM. PMID:25148303

  3. Range of motion and leg rotation affect EMG activation levels of the superficial quadriceps muscles during leg extension.

    PubMed

    Signorile, Joseph F; Lew, Karen; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-06-30

    The leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed eight LE REP at their 8-repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP x ROM interaction was detected (p<0.02). The middle 0.524 rad produced significantly higher EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, 8 (p<0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p<0.001). For vastus lateralis (VL), EMG increased across REP (p<0.001) with NEU and TO EMG increasing linearly throughout ROM, and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM. PMID:24983846

  4. Quasi-steady state microgravity analysis for the Space Station Freedom using multibody dynamic simulator

    NASA Astrophysics Data System (ADS)

    Henry, Alan; Chipman, Richard; Hu, Tsay-Hsin G.

    1993-04-01

    An efficient simulation has been successfully developed to analyze the dynamics and control of spacecraft comprised of multiple rigid/flexible articulating bodies. The implementation employs a typical order-(N) multi-body dynamic approach coupled with a state-of-the-art symbolic equation optimization algorithm. The simulation has been modified to compute the instantaneous acceleration at any arbitrary location on an orbiting body. Gravity gradient, rotational and aerodynamic accelerations contribute to the total quasi-steady state microgravity environment. The simulation is used to evaluate the microgravity levels within Space Station Freedom to demonstrate the excellent microgravity environment which it can provide for scientific experiments.

  5. Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yumi; Nakamura, Kimihito; Horino, Haruhiko; Kawashima, Shigeto

    2014-12-01

    Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73-98 % relative to no crop rotation.

  6. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  7. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  8. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.

    2015-03-01

    Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.

  9. Photonic quasi-crystal terahertz lasers

    PubMed Central

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-01-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102

  10. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  11. THE QUASI NONGOVERNMENTAL ORGANIZATION.

    ERIC Educational Resources Information Center

    PIFER, ALAN

    ORGANIZED TO MEET URGENT NATIONAL NEEDS, PROVIDE INDEPENDENT JUDGMENT, AND OFFER FRESH SOLUTIONS TO COMPLEX PROBLEMS, THE QUASI NONGOVERNMENTAL ORGANIZATION IS DEFINED AS A NONPROFIT ASSOCIATION OR INSTITUTION LODGED IN THE PRIVATE SECTOR OF SOCIETY BUT FINANCED LARGELY OR ENTIRELY BY THE FEDERAL GOVERNMENT, RESPONSIBLE TO ITS OWN BOARD OF…

  12. Riemann quasi-invariants

    SciTech Connect

    Pokhozhaev, Stanislav I

    2011-06-30

    The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.

  13. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  14. Study of the rotational-level and temperature dependence of the quenching rate of OH fluorescence due to collisions with water molecules

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1995-01-01

    The importance of the OH radical as an intermediate in many combustion reactions and in atmospheric photochemistry has led many researchers to use it as a diagnostic tool in these processes. The amount of data that has been acquired over the years for this radical is quite considerable. However, the quenching rate of OH with water molecules as a function of temperature and the rotational level of the excited state is not very well understood. The motivation of the studies undertaken is to bridge the gap between the low temperature measurements and the high temperature ones reported in the literature. The technique generally employed in these diagnostics is laser-induced fluorescence (LIF), through which rotational state selective excitation of the radical is possible. Furthermore, in a combustion medium, water is produced in abundance so that knowledge of the quenching rate of OH due to water molecules plays a crucial role in interpreting the data. In general, the precursor to an understanding of the collisional quenching rates of OH involves a characterization of the mode in which the radical is produced; the resulting rotational and translational distribution, followed by a measurement of the OH temperature; and ultimately obtaining the rate constants from the pressure dependence of the fluorescence signal. The experimental implementation of these measurements therefore involved, as a first step, the production of the OH radicals in a microwave discharge cell using water vapor as the source, wherein a hydrogen atom is abstracted from H2O. The second step involved the absorption of photons from the frequency-doubled output of a pulsed amplified, single-frequency cw ring dye laser. By tuning the laser to the peak of the transition and observing the fluorescence decay after the laser pulse, the lifetime of the OH in a particular rotational electronic state was determined (tau = 1.4 microseconds for Q(sub 1)(3)). Knowledge of this parameter led to a determination of

  15. Vibrational and rotational energy transfers involving the CH B 2Σ- v=1 vibrational level in collisions with Ar, CO, and N2O

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Tsai, Ming-Tsang; Lin, King-Chuen

    2006-04-01

    With photolysis-probe technique, we have studied vibrational and rotational energy transfers of CH involving the B Σ-2 (v =1, 0⩽N⩽6, F) state by collisions with Ar, CO, and N2O. For the vibrational energy transfer (VET) measurements, the time-resolved fluorescence of the B-X(0,0) band is monitored following the (1,0) band excitation. For the rotational energy transfer (RET) measurements, the laser-induced fluorescence of the initially populated state is dispersed using a step-scan Fourier transform spectrometer. The time-resolved spectra obtained in the nanosecond regime may yield the RET information under a single pressure of the collider. The rate constants of intramolecular energy transfers are evaluated with simulation of kinetic models. The VET lies in the range of 4×10-12to4×10-11cm3molecule-1s-1, with efficiency following the order of Ar rotational distribution. The RET rates are more rapid by one to two orders of magnitude, comparable to the gas kinetic, with the trend of Ar level reported previously. In general, the propensity rules obeyed in the v =0 collision with Ar are valid in v =1, but the latter case shows a weaker tendency. It might be caused by the anisotropy difference of interaction potential when vibrational excitation is considered. For the polyatomic collider, the strong long-range dipole-dipole interaction

  16. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    NASA Astrophysics Data System (ADS)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  17. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  18. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Astrophysics Data System (ADS)

    Wahr, John

    1993-03-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  19. Arthroscopic rotator cuff repair.

    PubMed

    Burkhart, Stephen S; Lo, Ian K Y

    2006-06-01

    Arthroscopic rotator cuff repair is being performed by an increasing number of orthopaedic surgeons. The principles, techniques, and instrumentation have evolved to the extent that all patterns and sizes of rotator cuff tear, including massive tears, can now be repaired arthroscopically. Achieving a biomechanically stable construct is critical to biologic healing. The ideal repair construct must optimize suture-to-bone fixation, suture-to-tendon fixation, abrasion resistance of suture, suture strength, knot security, loop security, and restoration of the anatomic rotator cuff footprint (the surface area of bone to which the cuff tendons attach). By achieving optimized repair constructs, experienced arthroscopic surgeons are reporting results equal to those of open rotator cuff repair. As surgeons' arthroscopic skill levels increase through attendance at surgical skills courses and greater experience gained in the operating room, there will be an increasing trend toward arthroscopic repair of most rotator cuff pathology. PMID:16757673

  20. Simulation of Non-resonant Internal Kink Mode with Toroidal Rotation in NSTX

    SciTech Connect

    Fu, Guoyong

    2013-07-16

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q pro le and minimum q above but close to unity, are susceptible to an non-resonant (m, n ) = (1, 1) internal kink mode. This mode can saturate and persist and can induce a (2; 1) seed island for Neoclassical Tearing Mode (NTMs)1 . The mode can also lead to large energetic particle transport and signi cant broadening of beam-driven current. Motivated by these important e ects, we have carried out extensive nonlinear simulations of the mode with nite toroidal rotation using parameters and pro les of an NTSX plasma with a weakly reversed shear pro le. The numerical results show that, at the experimental level, plasma rotation has little e ect on either equilibrium or linear stability. However, rotation can signi cantly inuence the nonlinear dynamics of the (1, 1) mode and the the induced (2, 1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at nite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the e ects of rotation are found to greatly suppress the (2, 1) magnetic island even at a low level.

  1. Quasi-critical orbits for artificial lunar satellites

    NASA Astrophysics Data System (ADS)

    Tzirti, S.; Tsiganis, K.; Varvoglis, H.

    2009-07-01

    We study the problem of critical inclination orbits for artificial lunar satellites, when in the lunar potential we include, besides the Keplerian term, the J 2 and C 22 terms and lunar rotation. We show that, at the fixed points of the 1-D averaged Hamiltonian, the inclination and the argument of pericenter do not remain both constant at the same time, as is the case when only the J 2 term is taken into account. Instead, there exist quasi-critical solutions, for which the argument of pericenter librates around a constant value. These solutions are represented by smooth curves in phase space, which determine the dependence of the quasi-critical inclination on the initial nodal phase. The amplitude of libration of both argument of pericenter and inclination would be quite large for a non-rotating Moon, but is reduced to <0°.1 for both quantities, when a uniform rotation of the Moon is taken into account. The values of J 2, C 22 and the rotation rate strongly affect the quasi-critical inclination and the libration amplitude of the argument of pericenter. Examples for other celestial bodies are given, showing the dependence of the results on J 2, C 22 and rotation rate.

  2. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  3. The Trend of "Quasi-Religiosity" among Krasnoiarsk College Students

    ERIC Educational Resources Information Center

    Nemirovskii, V. G.; Starikov, P. A.

    2005-01-01

    This article is devoted to a study of the structure and dynamics of "quasi-religious" ideas in the everyday consciousness of Russian college students. What is meant by the term quasi-religiosity is a whole set of unsystematized ideas, the respondents' belief in idealistic concepts that are popular on the level of mass consciousness. The study's…

  4. Enhanced low-level LSC performance for carbon-14 dating using a bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}) quasi-active guard

    SciTech Connect

    Cook, G.T.

    1995-12-31

    The Packard 2770TR/SL is a novel low-level liquid scintillation spectrometer which employs bismuth germanate (BGO - Bi{sub 4}Ge{sub 3}O{sub 12}) as a quasi-active guard to reduce background count rates and improve limits of detection. The results of this study indicate that this system shows tremendous potential for radiocarbon dating. Its great advantage is that it can give exceptional performance using standard low {sup 40}K borosilicate glass vials costing only a few cents each. For example, in an optimized counting window, 4.6-mL {sup 14}C benzene contained in a standard 7-mL glass vial produced a background count rate of 0.49 cpm and an efficiency of 70.3%, yielding a figure of merit (E{sup 2}V{sup 2}/B) value of 213,000 {+-}9,000 (where B = background count rate in counts per minute [cpm], E = percentage efficiency, and V = volume of benzene). This performance is comparable to published data for low-level instruments which employ active coincidence guard detectors and standard glass vials. When the same vials were recounted in vial holders, specially fabricated from BGO, the corresponding optimum values for background, efficiency and figure of merit, respectively, were 0.24 cpm, 61.0% and 328,000 {+-} 19,000. This performance is comparable to that of other low-level counting instruments when they are used in combination with specialized Teflon and silica vials. The BGO vial holders were also used in previous generations of Packard instruments which employ time resolved liquid scintillation counting (TR-LSC) for electronic background reduction and this resulted in significant improvements in performance.

  5. Supergranulation rotation

    NASA Astrophysics Data System (ADS)

    Schou, Jesper; Beck, John G.

    2001-01-01

    Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.

  6. Turbulence at quasi-parallel and quasi-perpendicular bow shocks

    NASA Astrophysics Data System (ADS)

    Pitna, Alexander; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana

    2016-07-01

    A solar wind is a highly turbulent medium carrying various modes of magnetohydrodynamic and kinetic instabilities. During its supersonic expansion, it meets obstacles like planetary magnetospheres and bow shocks are formed. Depending on the orientation of the ambient magnetic field with respect to the local shock normal, either quasi-parallel or quasi-perpendicular shocks can be formed. Particles reflected at the ramp of the quasi-parallel shock are streaming far upstream along the magnetic field lines, giving rise to all sorts of instabilities like SLAMS and ULF waves. In the case of the quasi-perpendicular bow shock, the reflected particles influence only a narrow upstream region of the order of the proton gyroradius but the downstream plasma becomes highly turbulent regardless of the shock type. We analyze the high cadence (31 ms) data from the BMSW instrument onboard the Spektr-R spacecraft and compare the frequency spectra of observed turbulence in MHD and kinetic ranges in upstream and downstream regions of the supercritical quasi-parallel and quasi-perpendicular bow shocks. We found that the change in the fluctuation level (from upstream to downstream) as well as the spectral indices differ substantially in the MHD and kinetic ranges for both types of bow shock.

  7. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  8. Rotational aerophones

    NASA Astrophysics Data System (ADS)

    Fletcher, N. H.; Tarnopolsky, A. Z.; Lai, J. C. S.

    2002-03-01

    Free rotational aerophones such as the bullroarer, which consists of a wooden slat whirled around on the end of a string, and which emits a loud pulsating roar, have been used in many ancient and traditional societies for ceremonial purposes. This article presents an experimental and theoretical investigation of this instrument. The aerodynamics of rotational behavior is elucidated, and relates slat rotation frequency to slat width and velocity through the air. Analysis shows that sound production is due to generation of an oscillating-rotating dipole across the slat, the role of the vortices shed by the slat being relatively minor. Apparent discrepancies between the behavior of a bullroarer slat and a slat mounted on an axle in a wind tunnel are shown to be due to viscous friction in the bearings of the wind-tunnel experiment.

  9. Probabilistic stellar rotation periods with Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Aigrain, Suzanne; Foreman-Mackey, Daniel

    2015-08-01

    Stellar rotation has many applications in the field of exoplanets. High-precision photometry from space-based missions like Kepler and K2 allows us to measure stellar rotation periods directly from light curves. Stellar variability produced by rotation is usually not sinusoidal or perfectly periodic, therefore sine-fitting periodograms are not well suited to rotation period measurement. Autocorrelation functions are often used to extract periodic information from light curves, however uncertainties on rotation periods measured by autocorrelation are difficult to define. A ‘by eye’ check, or a set of heuristic criteria are used to validate measurements and rotation periods are only reported for stars that pass this vetting process. A probabilistic rotation period measurement method, with a suitable generative model bypasses the need for a validation stage and can produce realistic uncertainties. The physics driving the production of variability in stellar light curves is still poorly understood and difficult to model. We therefore use an effective model for stellar variability: a Gaussian process with a quasi-periodic covariance function. By injecting fake signals into Kepler light curves we show that the GP model is well suited to quasi-periodic, non-sinusoidal signals, is capable of modelling noise and physical signals simultaneously and provides probabilistic rotation period measurements with realistic uncertainties.

  10. Trends in the components of extreme water levels signal a rotation of winds in strong storms in the eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pindsoo, Katri; Soomere, Tarmo

    2016-04-01

    high water levels are different, vary markedly along the coast and provide a useful quantification of the vulnerability of single coastal segments with respect to coastal flooding. The formal linear trends in the extreme values of these water level components exhibit radically different spatial variations. The slopes of the trends in the weekly average are almost constant (~4 cm/decade for 8-day running average) along the entire eastern Baltic Sea coast. This first of all indicates that the duration of storm sequences has increased. The trends for maxima of local storm surge heights represent almost the entire spatial variability in the water level extremes. Their slopes are almost zero at the open Baltic Proper coasts of the Western Estonian archipelago. Therefore, an increase in wind speed in strong storms is unlikely in this area. In contrast, the slopes in question reach 5-7 cm/decade in the eastern Gulf of Finland and Gulf of Riga. This feature suggests that wind direction in strongest storms may have rotated in the northern Baltic Sea.

  11. Quasi-Random Sequence Generators.

    Energy Science and Technology Software Center (ESTSC)

    1994-03-01

    Version 00 LPTAU generates quasi-random sequences. The sequences are uniformly distributed sets of L=2**30 points in the N-dimensional unit cube: I**N=[0,1]. The sequences are used as nodes for multidimensional integration, as searching points in global optimization, as trial points in multicriteria decision making, as quasi-random points for quasi Monte Carlo algorithms.

  12. Vortices in a rotating Bose-Einstein condensate under extreme elongation

    SciTech Connect

    Sanchez-Lotero, P.; Palacios, J.J.

    2005-10-15

    We investigate a nonaxisymmetric rotating Bose-Einstein condensate (BEC) in the limit of rotation frequency for which the BEC transforms into a quasi-one-dimensional system. We compute the vortex lattice wave function by minimizing the Gross-Pitaevskii energy functional in the lowest Landau level approximation for different confinement potentials. The condensate typically presents a changing number of vortex rows as a function of the interaction strength or rotation-confinement ratio. More specifically, the vortex lattices can be classified into two classes according to their symmetry with respect to the longitudinal axis. These two classes correspond to different local minima of the energy functional and evolve independently as a function of the various parameters.

  13. Rotational Orientation Effects in NO(X) + Ar Inelastic Collisions.

    PubMed

    Brouard, M; Chadwick, H; Gordon, S D S; Hornung, B; Nichols, B; Aoiz, F J; Stolte, S

    2015-12-17

    Rotational angular momentum orientation effects in the rotationally inelastic collisions of NO(X) with Ar have been investigated both experimentally and theoretically at a collision energy of 530 cm(-1). The collision-induced orientation has been determined experimentally using a hexapole electric field to select the ϵ = -1 Λ-doublet level of the NO(X) j = 1/2 initial state. Fully quantum state resolved polarization-dependent differential cross sections were recorded experimentally using a crossed molecular beam apparatus coupled with a (1 + 1') resonance-enhanced multiphoton ionization detection scheme and subsequent velocity-map imaging. To determine the NO sense of rotation, the probe radiation was circularly polarized. Experimental orientation polarization-dependent differential cross sections are compared with those obtained from quantum mechanical scattering calculations and are found to be in good agreement. The origin of the collision-induced orientation has been investigated by means of close-coupled quantum mechanical, quantum mechanical hard shell, quasi-classical trajectory (QCT), and classical hard shell calculations at the same collision energy. Although there is evidence for the operation of limiting classical mechanisms, the rotational orientation cannot be accounted for by QCT calculations and is found to be strongly influenced by quantum mechanical effects. PMID:26413997

  14. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system.

    PubMed

    Lin, Hui; Sun, Wanchun; Zhang, Zulin; Chapman, Stephen J; Freitag, Thomas E; Fu, Jianrong; Zhang, Xin; Ma, Junwei

    2016-04-01

    This work investigated the responses of antibiotic resistance genes (ARGs) and the soil microbial community in a paddy-upland rotation system to mineral fertilizer (NPK) and different application dosages of manure combined with NPK. The occurrence of five tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), two sulfonamide ARGs (sul1 and sul2) and one genetic element (IntI1) was quantified. NPK application showed only slight or no impact on soil ARGs abundances compared with the control without fertilizer. Soil ARGs abundances could be increased by manure-NPK application but was related to manure dosage (2250-9000 kg ha(-1)). Principal component analysis (PCA) showed that the soil ARG profile of the treatment with 9000 kg ha(-1) manure separated clearly from the other treatments; the ARGs that contributed most to the discrimination of this treatment were tetA, tetG, tetW, sul1, sul2 and IntI1. Community level physiological profile (CLPP) analysis showed that increasing manure dosage from 4500 kg ha(-1) to 9000 kg ha(-1) induced a sharp increase in almost all of the detected ARGs but would not change the microbial community at large. However, 9000 kg ha(-1) manure application produced a decline in soil microbial activity. Determination of antibiotics and heavy metals in soils suggested that the observed bloom of soil ARGs might associate closely with the accumulation of copper and zinc in soil. PMID:26774780

  15. Finite rotation and nonlinear beam kinematics

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.

    1987-01-01

    Standard means of representing finite rotation in rigid-body kinematics, including orientation angles, Euler parameters, and Rodrigues parameters, are reviewed and compared. General kinematical relations for a beam theory that treats arbitrarily large rotation are then presented. The standard methods of representing finite rotations are applied to these kinematical expressions, and comparison is made among the standard methods and additional methods found in the literature, such as quasi-coordinates and linear combinations of projection angles. The method of Rodrigues parameters is shown to stand out for both its simplicity and generality when applied to beam kinematics, a result that is really missing from the literature.

  16. Quasi-continuous magnets

    SciTech Connect

    Sims, J.R.; Naumovich, G.J.; Hoang, T.A.; Dent, P.C.

    1996-05-01

    The National High Magnetic Field Laboratory is completing a quasi-continuous magnet which will sustain a constant field of 60 T for 100 ms in a 32-mm 77 K bore. This magnet consists of 9 mechanically independent, nested, liquid nitrogen-cooled coils which are individually reinforced by high-strength stainless steel outer shells. The coils were wound from rectangular large cross-section, high-strength, high-conductivity copper conductor insulated wtih polyimide and fiberglass tapes. After winding, the coils were inserted into closely fitted, stainless steel reinforcing shells and impregnated with epoxy resin. Design, analysis, material, fabrication and operational issues for this class of magnets are reviewed. Fabrication and quality assurance testing of the 60 T coil set are covered in detail. Future growth of and possible links from this technology to other magnet systems are discussed. Needed improvements in design, analysis, materials, and fabrication are outlined.

  17. Energy Spectra of Strongly Stratified and Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Mahalov, Alex; Nicolaenko, Basil; Zhou, Ye

    1998-01-01

    Turbulence under strong stratification and rotation is usually characterized as quasi-two dimensional turbulence. We develop a "quasi-two dimensional" energy spectrum which changes smoothly between the Kolmogorov -5/3 law (no stratification), the -2 scalings of Zhou for the case of strong rotation, as well as the -2 scalings for the case of strong rotation and stratification. For strongly stratified turbulence, the model may give the -2 scaling predicted by Herring; and the -5/3 scaling indicated by some mesoscale observations.

  18. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  19. Quasi-active suspension design using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Potter, Jack N.; Neild, Simon A.; Wagg, David J.

    2011-05-01

    Quasi-active damping is a method of coupled mechanical and control system design using multiple semi-active dampers. By designing the systems such that the desired control force may always be achieved using a combination of the dampers, quasi-active damping seeks to approach levels of vibration isolation achievable through active damping, whilst retaining the desirable attributes of semi-active systems. In this article a design is proposed for a quasi-active, base-isolating suspension system. Control laws are firstly defined in a generalised form, where semi-active dampers are considered as idealised variable viscous dampers. This system is used to demonstrate in detail the principles of quasi-active damping, in particular the necessary interaction between mechanical and control systems. It is shown how such a system can produce a tunable, quasi-active region in the frequency response of very low displacement transmissibility. Quasi-active control laws are then proposed which are specific for use with magnetorheological dampers. These are validated in simulation using a realistic model of the damper dynamics, again producing a quasi-active region in the frequency response. Finally, the robustness of the magnetorheological, quasi-active suspension system is demonstrated.

  20. Rotation Measurement

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In aircraft turbine engine research, certain investigations require extremely precise measurement of the position of a rotating part, such as the rotor, a disc-like part of the engine's compressor which revolves around a shaft at extremely high speeds. For example, in studies of airflow velocity within a compressor, researchers need to know-for data correlation the instantaneous position of a given spot on the rotor each time a velocity measurement is made. Earlier methods of measuring rotor shaft angle required a physical connection to the shaft, which limited the velocity of the rotating object.

  1. High resolution analysis of the rotational levels of the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states of 34S16O2

    SciTech Connect

    Lafferty, Walter; Flaud, Jean-marie; Sams, Robert L.; Ngom, El Hadji A.

    2008-11-01

    A high resolution (0.0018 cm-1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3 %) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 - ν2 , ν1, ν1 + ν2 - ν2, ν3, ν2 + ν3 - ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fitted together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fitted. For the (010), (110), (011) states, a simple Watson type Hamilton sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (020), (100) and (101) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK=2 term to model the Fermi interaction between the (020) and (100) levels and a ΔK=3 term to model the Coriolis interaction between the (100) and (001) levels. Precise Hamiltonian constants were derived for the (000), (010), (100), (001), (020), (110) and (011) vibrational states.

  2. On the absence of rotational levels for J{sup π}K = 0{sup +}0{sub 2} and 2{sup +}2{sub 2} nonrotational states in {sup 164}Dy and {sup 166}Er

    SciTech Connect

    Govor, L. I. Demidov, A. M.; Kurkin, V. A.; Mikhailov, I. V.

    2015-03-15

    Various reasons for the absence of rotational levels for J{sup π}K = 0{sup +}0{sub 2} and 2{sup +}2{sub 2} nonrotational states in {sup 164}Dy and {sup 166}Er are considered. Preference is given to the effect of the excitation of an anharmonic two-phonon state in pair vibrations of the superconducting type.

  3. Rotational Spectrum of Sarin

    NASA Astrophysics Data System (ADS)

    Walker, A. R. Hight; Suenram, R. D.; Samuels, Alan; Jensen, James; Ellzy, Michael W.; Lochner, J. Michael; Zeroka, Daniel

    2001-05-01

    As part of an effort to examine the possibility of using molecular-beam Fourier-transform microwave spectroscopy to unambiguously detect and monitor chemical warfare agents, we report the first observation and assignment of the rotational spectrum of the nerve agent Sarin (GB) (Methylphosphonofluoridic acid 1-methyl-ethyl ester, CAS #107-44-8) at frequencies between 10 and 22 GHz. Only one of the two low-energy conformers of this organophosphorus compound (C4H10FO2P) was observed in the rotationally cold (Trot<2 K) molecular beam. The experimental asymmetric-rotor ground-state rotational constants of this conformer are A=2874.0710(9) MHz, B=1168.5776(4) MHz, C=1056.3363(4) MHz (Type A standard uncertainties are given, i.e., 1σ), as obtained from a least-squares analysis of 74 a-, b-, and c-type rotational transitions. Several of the transitions are split into doublets due to the internal rotation of the methyl group attached to the phosphorus. The three-fold-symmetry barrier to internal rotation estimated from these splittings is 677.0(4) cm-1. Ab initio electronic structure calculations using Hartree-Fock, density functional, and Moller-Plesset perturbation theories have also been made. The structure of the lowest-energy conformer determined from a structural optimization at the MP2/6-311G** level of theory is consistent with our experimental findings.

  4. Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Fu, G. Y.; Breslau, J. A.; Tritz, Kevin; Liu, J. Y.

    2013-07-01

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.

  5. Simulation of non-resonant internal kink mode with toroidal rotation in the National Spherical Torus Experiment

    SciTech Connect

    Wang, Feng; Liu, J. Y.; Fu, G. Y.; Breslau, J. A.; Tritz, Kevin

    2013-07-15

    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.

  6. New Classes of Quasi-helically Symmetric Stellarators

    SciTech Connect

    L.P. Ku and A.H. Boozer

    2010-08-09

    New classes of quasi-helically symmetric stellarators with aspect ratios ≤ 10 have been found which are stable to the perturbation of magnetohydrodynamic modes at plasma pressures of practical interest. These configurations have large rotational transform and good quality of flux surfaces. Characteristics of some selected examples are discussed in detail. The feasibility of using modular coils for these stellarators has been investigated. It is shown that practical designs for modular coils can be achieved.

  7. Flow Structure on a Flapping Wing: Quasi-Steady Limit

    NASA Astrophysics Data System (ADS)

    Ozen, Cem; Rockwell, Donald

    2011-11-01

    The flapping motion of an insect wing typically involves quasi-steady motion between extremes of unsteady motion. This investigation characterizes the flow structure for the quasi-steady limit via a rotating wing in the form of a thin rectangular plate having a low aspect ratio (AR =1). Particle Image Velocimetry (PIV) is employed, in order to gain insight into the effects of centripetal and Coriolis forces. Vorticity, velocity and streamline patterns are used to describe the overall flow structure with an emphasis on the leading-edge vortex. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75° and it is observed that at each angle of attack the flow structure remains relatively same over the Reynolds number range from 3,600 to 14,500. The dimensionless circulation of the leading edge vortex is found to be proportional to the effective angle of attack. Quasi-three-dimensional construction of the flow structure is used to identify the different regimes along the span of the wing which is then complemented by patterns on cross flow planes to demonstrate the influence of root and tip swirls on the spanwise flow. The rotating wing results are also compared with the equivalent of translating wing to further illustrate the effects of the rotation.

  8. Rotational clutter metric

    NASA Astrophysics Data System (ADS)

    Salem, Salem; Halford, Carl; Moyer, Steve; Gundy, Matthew

    2009-08-01

    A new approach to linear discriminant analysis (LDA), called orthogonal rotational LDA (ORLDA) is presented. Using ORLDA and properly accounting for target size allowed development of a new clutter metric that is based on the Laplacian pyramid (LP) decomposition of clutter images. The new metric achieves correlation exceeding 98% with expert human labeling of clutter levels in a set of 244 infrared images. Our clutter metric is based on the set of weights for the LP levels that best classify images into clutter levels as manually classified by an expert human observer. LDA is applied as a preprocessing step to classification. LDA suffers from a few limitations in this application. Therefore, we propose a new approach to LDA, called ORLDA, using orthonormal geometric rotations. Each rotation brings the LP feature space closer to the LDA solution while retaining orthogonality in the feature space. To understand the effects of target size on clutter, we applied ORLDA at different target sizes. The outputs are easily related because they are functions of orthogonal rotation angles. Finally, we used Bayesian decision theory to learn class boundaries for clutter levels at different target sizes.

  9. Quasi-periodic oscillations of perturbed tori

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Varadarajan; Manousakis, Antonios; Kluźniak, Włodzimierz

    2016-05-01

    We performed axisymmetric hydrodynamical simulations of oscillating tori orbiting a non-rotating black hole. The tori in equilibrium were constructed with a constant distribution of angular momentum in a pseudo-Newtonian potential (Kluźniak-Lee). Motions of the torus were triggered by adding subsonic velocity fields: radial, vertical and diagonal to the tori in equilibrium. As the perturbed tori evolved in time, we measured L2 norm of density and obtained the power spectrum of L2 norm which manifested eigenfrequencies of tori modes. The most prominent modes of oscillation excited in the torus by a quasi-random perturbation are the breathing mode and the radial and vertical epicyclic modes. The radial and the plus modes, as well as the vertical and the breathing modes will have frequencies in an approximate 3:2 ratio if the torus is several Schwarzschild radii away from the innermost stable circular orbit. Results of our simulations may be of interest in the context of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries, as well as in supermassive black holes.

  10. Quasi-periodicity in relative quasi-periodic tori

    NASA Astrophysics Data System (ADS)

    Fassò, Francesco; García-Naranjo, Luis C.; Giacobbe, Andrea

    2015-10-01

    At variance from the cases of relative equilibria and relative periodic orbits of dynamical systems with symmetry, the dynamics in relative quasi-periodic tori (namely, subsets of the phase space that project to an invariant torus of the reduced system on which the flow is quasi-periodic) is not yet completely understood. Even in the simplest situation of a free action of a compact and abelian connected group, the dynamics in a relative quasi-periodic torus is not necessarily quasi-periodic. It is known that quasi-periodicity of the unreduced dynamics is related to the reducibility of the reconstruction equation, and sufficient conditions for it are virtually known only in a perturbation context. We provide a different, though equivalent, approach to this subject, based on the hypothesis of the existence of commuting, group-invariant lifts of a set of generators of the reduced torus. Under this hypothesis, which is shown to be equivalent to the reducibility of the reconstruction equation, we give a complete description of the structure of the relative quasi-periodic torus, which is a principal torus bundle whose fibers are tori of a dimension which exceeds that of the reduced torus by at most the rank of the group. The construction can always be done in such a way that these tori have minimal dimension and carry ergodic flow.

  11. A comparative study of rapidly and slowly rotating dynamical regimes in a terrestrial general circulation model

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Suozzo, Robert J.

    1987-01-01

    As a preliminary step in the development of a general circulation model for general planetary use, a simplified vesion of thef GISS Model I GCM has been run at various rotation periods to investigate differences between the dynamical regimes of rapidly and slowly rotating planets. To isolate the dynamical processes, the hydrologic cycle is suppressed and the atmosphere is forced with perpetual annual mean solar heating. All other parameters except the rotation period remain fixed at their terrestrial values. Experiments were conducted for rotation periods of 2/3, 1, 2, 4, 8, 16, 64 and 256 days. The results are in qualitative agreement with similar experiments carried out previously with other GCMs and with certain aspects of one Venus GCM simulation. As rotation rate decreases, the energetics shifts from baroclinc to quasi-barotropic when the Rossby radius of deformation reaches planetary scale. The Hadley cell expands poleward and replaces eddies as the primary mode of large-scale heat transport. Associated with this is a poleward shift of the baroclinic zone and jet stream and a reduction of the equator-pole temperature contrast. Midlatitude jet strength peaks at 8 days period, as does the weak positive equatorial zonal wind which occurs at upper levels at all rotation periods. Eddy momentum transport switches from poleward to equatorward at the same period. Tropospheric mean static stability generally increases in the tropics and decreases in midlatitudes as rotation rate decreases, but the global mean static stability is independent of rotation rate. The peak in the eddy kinetic energy spectrum shifts toward lower wavenumbers, reaching wavenumber 1 at a period of 8 days. Implications of these results for the dynamics of Venus and Titan are discussed. Specifically, it is suggested that the extent of low-level convection determines whether the Gierasch mechanism contributes significantly to equatorial superrotation on these planets.

  12. Quasi-Ideal Memory System.

    PubMed

    Sun, Junwei; Shen, Yi

    2015-07-01

    The definition for ideal memory system is so strict that some physical elements cannot exist in the real world. In this paper, an ideal memory system can be extended to generate 15 different kinds of quasi-ideal memory systems, which are included in memory systems as its special cases and are different from ideal memory system. For a system to be a quasi-ideal memory system, it should show three unique fingerprints: 1) the pinched hysteretic loop of a quasi-ideal memory system must be odd symmetrical in the plane; 2) the pinched hysteretic loop of a quasi-ideal memory system must be "self-crossing"; and 3) the slope of tangent line for the pinched hysteresis loop must be strictly monotone in a given period. PMID:25204007

  13. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main

  14. Quasi-bound state lifetimes and classical periodic orbits in HOCl

    NASA Astrophysics Data System (ADS)

    Barr, Alex; Na, Kyungsun; Reichl, Linda

    2011-03-01

    We use a discrete variable representation together with reaction matrix theory to calculate the quasi-bound states of a Chlorine atom scattering off a diatomic molecule of Hydrogen and Oxygen. The lifetimes of these quasi-bound states are found to vary over six orders of magnitude in a very small energy window. By examining Husimi distributions for various quasi-bound states we show that the longest-lived quasi- bound states are anchored by an island of stability surrounding a stable periodic orbit in the otherwise chaotic classical phase space. This stable periodic orbit, which corresponds to Chlorine rotating around the HO molecule, is responsible for the very long lifetimes of these quasi-bound states.

  15. Numerical investigation of the Earth's rotation during a complete precession cycle

    NASA Technical Reports Server (NTRS)

    Richardson, David L.

    1992-01-01

    A theory for the long-term rotational motion of the quasi-rigid Earth was constructed by numerical integration. The theory spans 72,000 years centered about 1968 A.D., and provides accurate rotational and positional data for the Earth in the recent past and the near future. The physical model is termed dynamically consistent because developments for the active forces and torques are truncated based solely on their magnitudes regardless of their origin. The model includes all appropriate forces and torques due to the geopotential and tidal effects as well as lunisolar and planetary contributions. The elastic and inelastic deformations due to tidal action were too small to affect the mass properties of the Earth at the truncation level of the model. However, long-term dissipative effects of the tidal forces and torques were not negligible. These considerations gave the model its quasi-rigid characterization. The numerical output provided both rotational and orbital-element data. The data were fitted throughout the 72,000-year range using Chebyshev polynomial series.

  16. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    NASA Astrophysics Data System (ADS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-07-01

    Inelastic structure factors for rotational transitions of uniaxial NH3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling. Present address: LPCM, CNRS-Université de Bordeaux I, 351 Cours de Libération, Talence F-33405, France.

  17. Experimental Avalanches in a Rotating Drum

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; O'Hern, Corey; Shattuck, Mark

    We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.

  18. Visualizing Compound Rotations with Virtual Reality

    ERIC Educational Resources Information Center

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  19. Vortex structures of rotating Bose-Einstein condensates in an anisotropic harmonic potential

    SciTech Connect

    Matveenko, S. I.

    2010-09-15

    We found an analytical solution for the vortex structure in a rapidly rotating trapped Bose-Einstein condensate in the lowest Landau level approximation. This solution is exact in the limit of a large number of vortices and is obtained for the case of a condensate in a anisotropic harmonic potential. The solution describes as limiting cases both a triangle vortex lattice in the symmetric potential trap and a quasi-one-dimensional structure of vortex rows in an asymmetric case, when the rotation frequency is very close to the lower trapping potential frequency. The shape of the density profile is found to be close to the Thomas-Fermi inverted paraboloid form, except in the vicinity of edges of a condensate cloud.

  20. Quasi-Static Hydrodynamic Limits

    NASA Astrophysics Data System (ADS)

    De Masi, Anna; Olla, Stefano

    2015-12-01

    We consider hydrodynamic limits of interacting particles systems with open boundaries, where the exterior parameters change in a time scale slower than the typical relaxation time scale. The limit deterministic profiles evolve quasi-statically. These limits define rigorously the thermodynamic quasi static transformations also for transitions between non-equilibrium stationary states. We study first the case of the symmetric simple exclusion, where duality can be used, and then we use relative entropy methods to extend to other models like zero range systems. Finally we consider a chain of anharmonic oscillators in contact with a thermal Langevin bath with a temperature gradient and a slowly varying tension applied to one end.

  1. Quasi-biennial oscillation above 10 mb

    SciTech Connect

    Baldwin, M.P. Dunkerton, T.J. )

    1991-07-01

    It is shown that the quasi-biennial oscillation of the equatorial lower stratosphere was correlated with mean zonal wind in the upper stratosphere, 1979-90. Correlations were positive near 60{degree}N and 30{degree}S during northern hemisphere (NH) winter and negative in the equatorial upper stratosphere during all seasons. Spatial autocorrelation of mean zonal wind during NH winter was actually largest in the upper stratosphere, between 10{degree}S and 62{degree}N, due to strong coupling between tropical and extratropical flow at upper levels.

  2. Quasi-periodic continuation along a continuous symmetry

    NASA Astrophysics Data System (ADS)

    Salomone, Matthew David

    Given a system of differential equations which admits a continuous group of symmetries and possesses a periodic solution, we show that under certain nondegeneracy assumptions there always exists a continuous family containing infinitely many periodic and quasi-periodic trajectories. This generalizes the continuation method of Poincaré to orbits which are not necessarily periodic. We apply these results in the setting of the Lagrangian N -body problem of homogeneous potential to characterize an infinite family of rotating nonplanar "hip-hop" orbits in the four-body problem of equal masses, and show how some other trajectories in the N -body theory may be extended to infinite families of periodic and quasi-periodic trajectories.

  3. Energy Transfer in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the

  4. The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems

    PubMed Central

    Calkins, Michael A.; Julien, Keith; Marti, Philippe

    2015-01-01

    The linear theory for rotating compressible convection in a plane layer geometry is presented for the astrophysically relevant case of low Prandtl number gases. When the rotation rate of the system is large, the flow remains geostrophically balanced for all stratification levels investigated and the classical (i.e. incompressible) asymptotic scaling laws for the critical parameters are recovered. For sufficiently small Prandtl numbers, increasing stratification tends to further destabilize the fluid layer, decrease the critical wavenumber and increase the oscillation frequency of the convective instability. In combination, these effects increase the relative magnitude of the time derivative of the density perturbation contained in the conservation of mass equation to non-negligible levels; the resulting convective instabilities occur in the form of compressional quasi-geostrophic oscillations. We find that the anelastic equations, which neglect this term, cannot capture these instabilities and possess spuriously growing eigenmodes in the rapidly rotating, low Prandtl number regime. It is shown that the Mach number for rapidly rotating compressible convection is intrinsically small for all background states, regardless of the departure from adiabaticity. PMID:25792951

  5. Quasi-Monte Carlo integration

    SciTech Connect

    Morokoff, W.J.; Caflisch, R.E.

    1995-12-01

    The standard Monte Carlo approach to evaluating multidimensional integrals using (pseudo)-random integration nodes is frequently used when quadrature methods are too difficult or expensive to implement. As an alternative to the random methods, it has been suggested that lower error and improved convergence may be obtained by replacing the pseudo-random sequences with more uniformly distributed sequences known as quasi-random. In this paper quasi-random (Halton, Sobol`, and Faure) and pseudo-random sequences are compared in computational experiments designed to determine the effects on convergence of certain properties of the integrand, including variance, variation, smoothness, and dimension. The results show that variation, which plays an important role in the theoretical upper bound given by the Koksma-Hlawka inequality, does not affect convergence, while variance, the determining factor in random Monte Carlo, is shown to provide a rough upper bound, but does not accurately predict performance. In general, quasi-Monte Carlo methods are superior to random Monte Carlo, but the advantage may be slight, particularly in high dimensions or for integrands that are not smooth. For discontinuous integrands, we derive a bound which shows that the exponent for algebraic decay of the integration error from quasi-Monte Carlo is only slightly larger than {1/2} in high dimensions. 21 refs., 6 figs., 5 tabs.

  6. Quasi-Monte Carlo Integration

    NASA Astrophysics Data System (ADS)

    Morokoff, William J.; Caflisch, Russel E.

    1995-12-01

    The standard Monte Carlo approach to evaluating multidimensional integrals using (pseudo)-random integration nodes is frequently used when quadrature methods are too difficult or expensive to implement. As an alternative to the random methods, it has been suggested that lower error and improved convergence may be obtained by replacing the pseudo-random sequences with more uniformly distributed sequences known as quasi-random. In this paper quasi-random (Halton, Sobol', and Faure) and pseudo-random sequences are compared in computational experiments designed to determine the effects on convergence of certain properties of the integrand, including variance, variation, smoothness, and dimension. The results show that variation, which plays an important role in the theoretical upper bound given by the Koksma-Hlawka inequality, does not affect convergence, while variance, the determining factor in random Monte Carlo, is shown to provide a rough upper bound, but does not accurately predict performance. In general, quasi-Monte Carlo methods are superior to random Monte Carlo, but the advantage may be slight, particularly in high dimensions or for integrands that are not smooth. For discontinuous integrands, we derive a bound which shows that the exponent for algebraic decay of the integration error from quasi-Monte Carlo is only slightly larger than {1}/{2} in high dimensions.

  7. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    SciTech Connect

    S.R. Hudson; C.C. Hegna; R. Torasso; A. Ware

    2003-12-05

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation.

  8. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O, and D218O

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Dénes, Nóra; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Hu, Shui-Ming; Szidarovszky, Tamás; Vasilenko, Irina A.

    2014-07-01

    This paper is the fourth of a series of papers reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: D216O, D217O, and D218O. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-14 016, 0-7969, and 0-9108 cm-1 for D216O, D217O, and D218O, respectively. For D216O, D217O, and D218O, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for D216O, D217O, and D218O, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm-1, from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved.

  9. New Classes of Quasi-Axisymmetric Stellarator Configurations

    SciTech Connect

    Ku LP, Garabedian PR

    2005-10-03

    We have identified and developed new classes of quasi-axially symmetric configurations which have attractive properties from the standpoint of both near-term physics experiments and long-term power producing reactors. These new configurations were developed as a result of surveying the aspect ratio-rotational transform space to identify regions endowed with particularly interesting features. These include configurations with very small aspect ratios ({approx}2.5) having superior quasi-symmetry and energetic particle confinement characteristics, and configurations with strongly negative global magnetic shear from externally supplied rotational transforms so that the overall rotational transform, when combined with the transform from bootstrap currents at finite plasma pressures, will yield a small but positive shear, making the avoidance of low order rational surfaces at a given operating beta possible. Additionally, we have found configurations with NCSX-like characteristics but with the biased components in the magnetic spectrum that allow us to improve the confinement of energetic particles. For each new class of configurations, we have designed coils as well to ensure that the new configurations are realizable and engineering-wise feasible. The coil designs typically have coil aspect ratios R/{Delta}{sub min}(C-P) {le} 6 and coil separation ratios R/{Delta}{sub min}(C-C) {le} 10, where R is the plasma major radius, {Delta}{sub min}(C-P) and {Delta}{sub min}(C-C) are the minimum coil to plasma and coil to coil separations, respectively. These coil properties allow power producing reactors be designed with major radii less than 9 meters for DT plasmas with a full breeding blanket. The good quasi-axisymmetry limits the energy loss of {alpha} particles to below 10%.

  10. Quasi-Linear Circuit

    NASA Technical Reports Server (NTRS)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  11. Kinetic energy cascades in quasi-geostrophic convection

    NASA Astrophysics Data System (ADS)

    Hejda, P.; Reshetnyak, M.

    2012-04-01

    The rapid rotation of planets causes cyclonic thermal turbulence in their cores, which may generate the large-scale magnetic fields observed outside the planets. In spite of the recent progress in modeling planetary dynamos, the models cannot cover the enormous span of scales required for a realistic parameter set. Our contribution is devoted to the study of geostrophic convection by tools of the turbulent community. This approach helps understanding of the origin of kinetic transport in the system as well as of the locality of energy transfer. We investigate numerically a model of thermal convection in two geometries: Cartesian coordinates (rectangular box) and a spherical shell. For the 3D homogeneous isotropic turbulence (in the absence of rotation) there is a direct cascade of the kinetic energy from the large scales to the small scales, where dissipation takes place. The fluxes of kinetic energy are negative for large scales and positive for small scales, i.e. the large scales are donors and provide energy to the system, whereas the small scales absorb energy. The situation changes in 2D, where the cascade of kinetic energy is inverse: from the small to the large scales. Quasi-geostrophic flow is somewhere between 3D and 2D. In such a flow, one has still 3 dimensions, but the dependence of the fields on the vertical direction along the axis of rotation is degenerated. This flow is known by its columnar structures elongated along axis of rotation. The leading order wave number corresponds to the diameter of the columns. Two cascades of the energy (direct and inverse) thus take place simultaneously (Reshetnyak and Hejda, 2008; Hejda and Reshetnyak, 2009). The spherical geometry changes partly the previous picture. Near the onset of convection, the graph of spectra of kinetic energy of quasi-geostrophic flow has saw-like shape with the largest maximum corresponding to the diameter of the vertical columns. Increase of Rayleigh number leads to the filling of the

  12. Hyperfine, rotational, and Zeeman structure of the lowest vibrational levels of the {sup 87}Rb{sub 2} (1) {sup 3{Sigma}}{sub g}{sup +} state

    SciTech Connect

    Takekoshi, T.; Lang, F.; Strauss, C.; Denschlag, J. Hecker; Lysebo, Marius; Veseth, Leif

    2011-06-15

    We present the results of an experimental and theoretical study of the electronically excited (1){sup 3{Sigma}}{sub g}{sup +} state of {sup 87}Rb{sub 2} molecules. The vibrational energies are measured for deeply bound states from the bottom up to v{sup '}=15 using laser spectroscopy of ultracold Rb{sub 2} Feshbach molecules. The spectrum of each vibrational state is dominated by a 47-GHz splitting into 0{sub g}{sup -} and 1{sub g} components caused mainly by a strong second-order spin-orbit interaction. Our spectroscopy fully resolves the rotational, hyperfine, and Zeeman structure of the spectrum. We are able to describe this structure to the first order using a simplified effective Hamiltonian.

  13. Rotator Cuff Tears

    MedlinePlus

    ... doctors because of a rotator cuff problem. A torn rotator cuff will weaken your shoulder. This means ... or more of the rotator cuff tendons is torn, the tendon no longer fully attaches to the ...

  14. Rotator Cuff Injuries

    MedlinePlus

    ... others can be very painful. Treatment for a torn rotator cuff depends on age, health, how severe ... is, and how long you've had the torn rotator cuff. Treatment for torn rotator cuff includes: ...

  15. Rotator cuff problems

    MedlinePlus

    ... days, such as in painting and carpentry Poor posture over many years Aging Rotator cuff tears TEARS ... also help prevent rotator cuff problems. Practice good posture to keep your rotator cuff tendons and muscles ...

  16. Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock

    SciTech Connect

    Greenstadt, E.W. )

    1991-02-01

    Computer-drawn diagrams of the boundaries between quasi-perpendicular and quasi-parallel areas of Earth's bow shock are displayed for a few selected cone angles of static interplanetary magnetic field (IMF). The effect on the boundary of variable IMF in the foreshock is also discussed and shown for one nominal case. The boundaries demand caution in applying them to the realistic, dynamic conditions of the solar wind and in interpreting the effects of small cone angles on the distributions of structures at the shock. However, the calculated, first-order boundaries are helpful in defining areas of the shock where contributions from active structures inherent in quasi-parallel geometry may be distinguishable from those derived secondarily from upstream reflected ion dynamics. The boundaries are also compatible with known behavior of daytime ULF geomagnetic waves and pulsations according to models postulating that cone angle-controlled, time-dependent ULF activity around the subsolar point of the bow shock provides the source of geomagnetic excitation.

  17. Equatorial symmetry of Boussinesq convective solutions in a rotating spherical shell allowing rotation of the inner and outer spheres

    SciTech Connect

    Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio

    2014-08-15

    We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outer spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.

  18. Quasi-10-day wave in the atmosphere

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey M.; Zhang, Xiaoli

    2015-11-01

    In the classical theory of oscillations on a spherical-rotating Earth, the quasi-10-day wave (Q10DW) exists as a westward propagating "free" or "unforced" normal mode oscillation with zonal wave number s = 1. In the present study, we employ Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry temperature measurements between 20 and 100 km and ±50° latitude, and extending from 2002 to 2013, to provide a comprehensive perspective on the Q10DW as it actually exists in the atmosphere. Climatological seasonal-latitudinal structures are presented which demonstrate that the Q10DW is weakest during summer months and equatorward of ±50° latitude but otherwise has amplitudes ranging from 1.0 K at ˜45 km to ˜5 K at 100 km. Seasonal asymmetries and significant interannual variability also exist. The mean period of the Q10DW is 9.8 days with a standard deviation of about 0.4 day. On average the Q10DW conforms reasonably well with theoretical expectations for a normal mode subject to the effects of dissipation and mean winds, at least below 80 km. Above 80 km this conformity often breaks down. Several factors potentially contributing to this nonconformity are discussed.

  19. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  20. Renormalized vacuum polarization of rotating black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  1. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NASA Astrophysics Data System (ADS)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-12-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in the presence of a strong Lyman-Werner radiation background. Particularly, we investigate the impact of turbulence and rotation on the fragmentation behaviour of the gas cloud. We accomplish this goal by varying the initial turbulent and rotational velocities. Methods: We performed 3D adaptive mesh refinement simulations with a resolution of 64 cells per Jeans length using the ENZO code, simulating the formation of a protostar up to unprecedentedly high central densities of 1021 cm-3 and spatial scales of a few solar radii. To achieve this goal, we employed the KROME package to improve modelling of the chemical and thermal processes. Results: We find that the physical properties of the simulated gas clouds become similar on small scales, irrespective of the initial amount of turbulence and rotation. After the highest level of refinement was reached, the simulations have been evolved for an additional ~5 freefall times. A single bound clump with a radius of 2 × 10-2 AU and a mass of ~7 × 10-2 M⊙ is formed at the end of each simulation, marking the onset of protostar formation. No strong fragmentation is observed by the end of the simulations, regardless of the initial amount of turbulence or rotation, and high accretion rates of a few solar masses per year are found. Conclusions: Given such high accretion rates, a quasi-star of 105 M⊙ is expected to form within 105 years. Appendix A is available in electronic form at http://www.aanda.org

  2. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  3. Bose-Einstein condensate in a rapidly rotating nonsymmetric trap

    SciTech Connect

    Fetter, Alexander L.

    2010-03-15

    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function {psi}(x,y) is a Gaussian {proportional_to}exp(-r{sup 2}/2), multiplied by an analytic function f(z) of the complex variable z=x+iy. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here a similar description applies to a rapidly rotating nonsymmetric two-dimensional trap with arbitrary quadratic anisotropy ({omega}{sub x}{sup 2}<{omega}{sub y}{sup 2}). The corresponding condensate wave function {psi}(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z=x+i{beta}{sub -}y is a stretched complex variable and 0{<=}{beta}{sub -{<=}}1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/L{sub z}, which suggests that a nonsymmetric trap should make it easier to observe this transition, or (2) in terms of a 'fragmented' correlated state, which suggests that a nonsymmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion et al., Phys. Rev. A 79, 011603(R) (2009).

  4. Rotation of tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2012-05-15

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity v{sub a}(r) with respect to that of the magnetic kink, v{sub k}, where v{sub a}(r) is set by the radial electric field required for ambipolarity. The plasma velocity, v{sub pl}=v{sub a}+v{sub k}, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy {delta}{phi}<{+-}{pi}/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  5. Rotation of tokamak halo currents

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2012-05-01

    During tokamak disruptions, halo currents, which can be tenths of the total plasma current, can flow at the plasma edge along the magnetic field lines that intercept the chamber walls. Non-axisymmetric halo currents are required to maintain force balance as the plasma kinks when the edge safety factor drops to about two in a vertical displacement event. The plasma quickly assumes a definite toroidal velocity va(r) with respect to that of the magnetic kink, vk, where va(r) is set by the radial electric field required for ambipolarity. The plasma velocity, vpl=va+vk, near the edge is influenced by the interaction with neutrals and with the potential in the halo required for quasi-neutrality on open magnetic field lines, and the plasma velocity in the core is influenced by external error fields. When plasma effects dominate magnetic locking, the magnetic kink should rotate at a diamagnetic speed of either the edge or the core. If the magnetic field lines of the halo plasma intercept the wall at locations of very different electrical conductivity, the toroidal rotation of the halo currents can intermittently stall at wall locations of high conductivity. Such stalling is seen in experiments. The toroidal phase difference between the stalled halo currents and the kink, which is expected to rotate smoothly, must satisfy δϕ <±π/2. A concern cited by ITER engineers is that the time varying force of the rotating halo could substantially increase the disruption loads on in-vessel components.

  6. Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  7. Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper

    PubMed Central

    Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-01-01

    A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM0 mode into the TE1 mode, which will output as the TE0 mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a < 0.5 dB insertion loss with < −17 dB crosstalk in C optical communication band. Fabrication tolerance analysis is also performed with respect to the deviations of MMI coupler width, PS width, slab height and upper-cladding refractive index, showing that this device could work well even when affected by considerable fabrication errors. With such a robust performance with a large bandwidth, this device offers potential applications for CMOS-compatible polarization diversity, especially in the booming 100 Gb/s coherent optical communications based on silicon photonics technology. PMID:25402029

  8. Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper.

    PubMed

    Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-11-17

    A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM(0) mode into the TE(1) mode, which will output as the TE(0) mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a < 0.5 dB insertion loss with < -17 dB crosstalk in C optical communication band. Fabrication tolerance analysis is also performed with respect to the deviations of MMI coupler width, PS width, slab height and upper-cladding refractive index, showing that this device could work well even when affected by considerable fabrication errors. With such a robust performance with a large bandwidth, this device offers potential applications for CMOS-compatible polarization diversity, especially in the booming 100 Gb/s coherent optical communications based on silicon photonics technology. PMID:25402029

  9. A 20-dB quasi-integrated horn antenna

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.

    1992-01-01

    A multimode quasi-integrated dipole-fed horn antenna is presented with a performance comparable to that of waveguide-fed corrugated horn antennas. The antenna has been designed using fullwave analysis and has been fabricated and tested at 91 GHz. The horn has a gain of 20 dB with very symmetric patterns, a Gaussian coupling efficiency of 97 percent, and a cross-polarization level of -22.7 dB. The antenna provides a significant improvement in integrated antenna designs and is suitable for millimeter-wave communication and radar systems and as a Gaussian-beam launcher in quasi-optical receiver systems.

  10. Solar generated quasi-biennial geomagnetic variation

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1977-01-01

    The existence of highly correlated quasi-biennial variations in the geomagnetic field and in solar activity is demonstrated. The analysis uses a numerical filter technique applied to monthly averages of the geomagnetic horizontal component and of the Zurich relative sunspot number. Striking correlations are found between the quasi-biennial geomagnetic variations determined from several magnetic observatories located at widely different longitudes, indicating a worldwide nature of the obtained variation. The correlation coefficient between the filtered Dst index and the filtered relative sunspot number is found to be -0.79 at confidence level greater than 99% with a time-lag of 4 months, with solar activity preceding the Dst variation. The correlation between the unfiltered data of Dst and of the sunspot number is also high with a similar time-lag. Such a timelag has not been discussed in the literature, and a further study is required to establish the mode of sun-earth relationship that gives this time delay.

  11. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  12. Quasi-Monte Carlo, quasi-random numbers and quasi-error estimates

    NASA Astrophysics Data System (ADS)

    Kleiss, Ronald

    We discuss quasi-random number sequences as a basis for numerical integration with potentially better convergence properties than standard Monte Carlo. The importance of the discrepancy as both a measure of smoothness of distribution and an ingredient in the error estimate is reviewed. It is argued that the classical Koksma-Hlawka inequality is not relevant for error estimates in realistic cases, and a new class of error estimates is presented, based on a generalization of the Woźniakowski lemma.

  13. Quasi-Optical Transmission Line for 94-GHz Radar

    NASA Technical Reports Server (NTRS)

    Perez, Raul M.; Veruttipong, Watt

    2008-01-01

    A quasi-optical transmission line (QOTL) has been developed as a low-loss transmission line for a spaceborne cloudobserving radar instrument that operates at a nominal frequency of 94 GHz. This QOTL could also readily be redesigned for use in terrestrial millimeter-wave radar systems and millimeter-wave imaging systems. In the absence of this or another lowloss transmission line, it would be necessary to use a waveguide transmission line in the original radar application. Unfortunately, transmission losses increase and power-handling capacities of waveguides generally decrease with frequency, such that at 94 GHz, the limitation on transmitting power and the combined transmission and reception losses (greater than 5 dB) in a waveguide transmission line previously considered for the original application would be unacceptable. The QOTL functions as a very-lowloss, three-port circulator. The QOTL includes a shaped input mirror that can be rotated to accept 94-GHz transmitter power from either of two high-power amplifiers. Inside the QOTL, the transmitter power takes the form of a linearly polarized beam radiated from a feed horn. This beam propagates through a system of mirrors, each of which refocuses the beam to minimize diffraction losses. A magnetically biased ferrite disc is placed at one of the foci to utilize the Faraday effect to rotate the polarization of the beam by 45 degrees. The beam is then transmitted via an antenna system. The radar return (scatter from clouds, and/or reflections from other objects) is collected by the same antenna and propagates through the Faraday rotator in the reverse of the direction of propagation of the transmitted beam. In the Faraday rotator, the polarization of the received signal is rotated a further 45 degrees, so that upon emerging from the Faraday rotator, the received beam is polarized at 90 with respect to the transmitted beam. The transmitted and received signals are then separated by a wire-grid polarizer.

  14. Rapidly rotating polytropes in general relativity

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct an extensive set of equilibrium sequences of rotating polytropes in general relativity. We determine a number of important physical parameters of such stars, including maximum mass and maximum spin rate. The stability of the configurations against quasi-radial perturbations is diagnosed. Two classes of evolutionary sequences of fixed rest mass and entropy are explored: normal sequences which behave very much like Newtonian evolutionary sequences, and supramassive sequences which exist solely because of relativistic effects. Dissipation leading to loss of angular momentum causes a star to evolve in a quasi-stationary fashion along an evolutionary sequence. Supramassive sequences evolve towards eventual catastrophic collapse to a black hole. Prior to collapse, the star must spin up as it loses angular momentum, an effect which may provide an observational precursor to gravitational collapse to a black hole.

  15. Radiation characteristics of quasi-periodic radio bursts in the Jovian high-latitude region

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Tsuchiya, Fuminori; Misawa, Hiroaki; Morioka, Akira; Nozawa, Hiromasa

    2008-12-01

    Ulysses had a "distant encounter" with Jupiter in February 2004. The spacecraft passed from north to south, and it observed Jovian radio waves from high to low latitudes (from +80° to +10°) for few months during its encounter. In this study, we present a statistical investigation of the occurrence characteristics of Jovian quasi-periodic bursts, using spectral data from the unified radio and plasma wave experiment (URAP) onboard Ulysses. The latitudinal distribution of quasi-periodic bursts is derived for the first time. The analysis suggested that the bursts can be roughly categorized into two types: one having periods shorter than 30 min and one with periods longer than 30 min, which is consistent with the results of the previous analysis of data from Ulysses' first Jovian flyby [MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., Stone, R.G., 1993. Quasi-periodic Jovian radio bursts: observations from the Ulysses radio and plasma wave. Experiment. Planet. Space Sci. 41, 1059-1072]. It is also suggested that the groups of quasi-periodic bursts showed a dependence on the Jovian longitude of the sub-solar point, which means that these burst groups are triggered during a particular rotational phase of the planet. Maps of the occurrence probability of these quasi-periodic bursts also showed a unique CML/MLAT dependence. We performed a 3D ray tracing analysis of the quasi-periodic burst emission to learn more about the source distribution. The results suggest that the longitudinal distribution of the occurrence probability depends on the rotational phase. The source region of quasi-periodic bursts seems to be located at an altitude between 0.4 and 1.4 Rj above the polar cap region ( L>30).

  16. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  17. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  18. Quasi-Heterodyne Hologram Interferometry

    NASA Astrophysics Data System (ADS)

    Hariharan, P.

    1985-08-01

    Wider use of hologram interferometry for quantitative measure-ments has been delayed by the fact that interpolation between the fringe maxima and minima to obtain the optical path difference at a particular point in the field is laborious and inaccurate. A solution to this problem is quasi-hetero-dyne interferometry, which permits rapid and accurate measurements simultaneously at a number of points distributed over the interference pattern. In this technique a television camera is used in conjunction with digital electronics to measure and store the irradiance values at points on a rectangular sampling grid covering the real-time interference fringes. The phase difference between the interfering wavefronts at each point is then calculated from the irradiance values obtained from successive scans of the camera made while the phase of one of the wavefronts is shifted either continuously or in steps. A practical system is described with which values of the optical path difference for 10,000 data points can be obtained with an accuracy of +/- A/200 in less than 10 s. The application of quasi-heterodyne hologram interferometry to the measurement of vector displacements and to holographic contouring is discussed.

  19. On the rotation of viscoelastic satellites

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoit

    2016-05-01

    Most of the natural satellites are thought to be synchronous. For some of them, the presence of a thin, outer crust coating a global ocean motivates the consideration of their elasticity for modeling their rotation. Some attempts have been made to include it as an additional effect in the rotational theories.Actually, the shapes of these bodies are partly fossil, partly due to internal processes, and partly due to the tidal and rotational distortions, driving them to the hydrostatic equilibrium.I here present a fully consistent model of viscoelastic rotation of these bodies, in which the tensor of inertia is time-dependent and ruled by these distorting effects. The influence of the different frequencies affecting the motion of the satellite and the tidal parameters is considered. For that, I use an iterative numerical algorithm, in which the tensor of inertia and the rotational variables are decomposed under a quasi-periodic form. The motion of the satellite is modeled with planetary ephemerides, and the frequency-dependency of the tides is based on the Maxwell model. This results in an improved theory of the librations and the obliquity, which I validate by analytical calculations. I show that not only the amplitudes of these quantities are affected, but also their phases. I finally apply this theory on Mimas and Epimetheus, for which librations have been measured. This implies an updated interpretation of their interiors.

  20. Active longitudes: Structure, dynamics, and rotation

    NASA Astrophysics Data System (ADS)

    Ivanov, E. V.

    Greenwich data for 1879-2005 (cycles 12-23) are used to study the longitude distribution of sunspot group areas summed over a Carrington rotation s(CR) separately in the southern and northern hemispheres. The zones of active longitudes (AL) are identified, and their behaviour (location, shift, and intensity variations) is analyzed over the time interval under consideration. In particular, we have studied the active longitudes in two reference frames corresponding to the rotation periods T = 27.2753 and T = 27.00 days. The AL zones are shown to consist of a set of individual narrow sunspot formation zones rotating rigidly with the Carrington period T ˜ 27.2753 days. The lifetime of the sunspot formation zones exceeds significantly that of individual sunspots and may reach 15-20 rotations. Besides the rigidly rotating active longitudes we have revealed the active longitudes that migrate in the Carrington reference frame at different (greater and smaller than Carrington) angular velocities. Quasi-biennial oscillations (QBO) of the total sunspot areas in the northern and southern longitudinal sectors corresponding to AL zones are studied for the period 1879-2004 using the spectral and correlation analysis methods. The relationships between the antipodal, symmetric about the equator, and adjoining AL zones are analyzed.

  1. Development of quasi-isodynamic stellarators

    NASA Astrophysics Data System (ADS)

    Nührenberg, Jürgen

    2010-12-01

    Theoretical stellarator research from MHD-stable stellarators via quasi-helically symmetric ones to Wendelstein 7-X, quasi-axisymmetric tokamaks and quasi-isodynamic stellarators is sketched. Research strategy, computational aspects and various favorable properties are emphasized. The results found, but only together with the completion of according experimental devices and their scientific exploitation, may form a basis for selecting the confinement geometry most viable for fusion.

  2. Hydrogen rotation-vibration oscillator

    DOEpatents

    Rhodes, C.K.

    1974-01-29

    A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

  3. A simple quasi-diabatization scheme suitable for spectroscopic problems based on one-electron properties of interacting states

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Stanton, John F.

    2016-02-01

    We present a simple quasi-diabatization scheme applicable to spectroscopic studies that can be applied using any wavefunction for which one-electron properties and transition properties can be calculated. The method is based on rotation of a pair (or set) of adiabatic states to minimize the difference between the given transition property at a reference geometry of high symmetry (where the quasi-diabatic states and adiabatic states coincide) and points of lower symmetry where quasi-diabatic quantities are desired. Compared to other quasi-diabatization techniques, the method requires no special coding, facilitates direct comparison between quasi-diabatic quantities calculated using different types of wavefunctions, and is free of any selection of configurations in the definition of the quasi-diabatic states. On the other hand, the method appears to be sensitive to multi-state issues, unlike recent methods we have developed that use a configurational definition of quasi-diabatic states. Results are presented and compared with two other recently developed quasi-diabatization techniques.

  4. Unstable quasi-gaseous media

    NASA Astrophysics Data System (ADS)

    Trubnikov, B. A.; Zhdanov, S. K.

    1987-11-01

    The present work shows that in the long-wave approximation many-about 30-unstable media are described by the equations >ϱdot;=-ϱ divoverlineν, overline∸ =c 20m∇ϱ {1}/{m}which differ from the equations of ideal gas motion only in the sign on the right-hand side. Various quantities can be taken as an “effective density” ϱ and the parameter m, referred to as the “azimuthal number”, is generally an integer or half-integer varying as m=-2, -1, {-1}/{2}, {1}/{2}, 1, {3}/{2}. Historically, the earliest example of the systems under consideration is the hypothetical “Chaplygin gas”, i.e. a gas with the adiabetic exponent γ=-1, which corresponds to the azimuthal number m= {-1}/{2} (it was studied by S.A. Chaplygin in 1896-1902). That is why the authors refer to such media as “quasi-gas” or “quasi-Chaplygin” media. They include, in particular, the “overturned shallow water”, constrictions on current-carrying pinches, self-focusing of light, the Buneman, modulation and tearing instabilities in plasmas, as well as many other instabilities. Similar “quasi-Chaplygin” equations describe perturbations of various solitons, such as the Korteweg-de Vries and Kadomtsev-Petviashvili solitons, those of the non-linear Schrödinger equations, as well as cnoidal waves. These equations are shown to have particular self-similar solutions of the form ν∼ r/ t in the multi-dimensional case. Of greater interest, however, is the possibility of their complete integrability under any initial conditions either in a one-dimensional unsteady-state case when ϱ= ϱ( t, x) or in a two-dimensional steady-state case when ϱ= ϱ( x, y). In these cases, the original non-linear equations are reduced by hodograph transformations to two linear equations and then to the classical Laplace equation ∇ 2ψ( r, ϕ, z)=0 in a certain three-dimensional “phase” space. The two simplest “electrostatic” solutions-the Coulomb and dipole ones-give four forms of the most

  5. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  6. Robust rotational-velocity-Verlet integration methods

    NASA Astrophysics Data System (ADS)

    Rozmanov, Dmitri; Kusalik, Peter G.

    2010-05-01

    Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.

  7. Trirotron: triode rotating beam radio frequency amplifier

    DOEpatents

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  8. Quasi-steady plasma acceleration.

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Von Jaskowsky, W. F.; Clark, K. E.

    1973-01-01

    A coaxial plasma accelerator driven by protracted pulses of current in the range of 10,000 to 100,000 A and synchronized mass flows from 1.0 to 36 g/sec argon attains, after some tens of microseconds, a stable magnetoplasmadynamic acceleration mode. This 'quasi-steady' discharge form is characterized by constant terminal voltage and current, a diffuse, fixed current distribution within the discharge, and a steady plasma efflux at velocities of approximately 20 km/sec. Measured potential distributions reveal that the bulk of the arc voltage gradient, exclusive of the electrode falls, occurs within two diameters of the cathode, and is normal to it. The anode fall voltage varies inversely with local current density, implying substantially lower anode losses at higher power arc operation. Spectroscopic, potential, and velocity measurements indicate the existence of a characteristic mass flow rate for a given current, below which arc operation becomes erratic.

  9. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  10. Mechanism of rotational relaxation.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    A model is presented which describes the characteristic pattern of relaxation of a nonthermal rotational distribution of hydrogen halide, peaked initially at high rotational quantum number J, to a thermal distribution without generating a peak at intermediate J. A method for correcting infrared chemiluminiscence data for modest rotational relaxation is also suggested.

  11. Minimax discrimination of quasi-Bell states

    SciTech Connect

    Kato, Kentaro

    2014-12-04

    An optimal quantum measurement is considered for the so-called quasi-Bell states under the quantum minimax criterion. It is shown that the minimax-optimal POVM for the quasi-Bell states is given by its square-root measurement and is applicable to the teleportation of a superposition of two coherent states.

  12. Physics of untied rotating space elevators

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven; Golubović, Leonardo

    2015-12-01

    We explore fundamental aspects of the physics of a novel class of dynamical systems, Rotating Space Elevators (RSE) (L. Golubović, S. Knudsen, Europhys. Lett. 86, 34001 (2009) and S. Knudsen, L. Golubović, Eur. Phys. J. Plus 129, 242 (2014)). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a double rotating motion due to which the objects sliding along the RSE string (climbers) can be transported far away from the Earth's surface without using internal engines or propulsion. By extensive numerical simulations and analytic calculations, this study addresses an interesting and provocative question at the very heart of the RSE physics: What will happen if one unties the rotating space elevator from the Earth? We find that the untied RSE exhibits rich nonlinear dynamics. In particular, strikingly, we find that the untied RSE may still behave as if it were tied to the planet. Such a quasi-tied yet untied RSE remains close to the Earth and exhibits persistent shape and enduring double rotating motion. Moreover, the climbers sliding along such a quasi-tied RSE move in much the same way as they do along a tied RSE. Under some conditions however we find that the untied RSE may undergo an instability leading it to a dynamical state in which the RSE hops well above the Earth surface. By changing the untied RSE parameters, the maximum height reached during hopping may be made to diverge. Such an untied RSE unbinds from the Earth to infinity, i.e., to interplanetary space.

  13. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  14. Quasi-Freestanding multilayer graphene films on the carbon face of SiC

    SciTech Connect

    Siegel, D. A.; Hwang, C. G.; Fedorov, A. V.; Lanzara, A.

    2010-06-30

    The electronic band structure of as-grown and doped graphene grown on the carbon face of SiC is studied by high-resolution angle-resolved photoemission spectroscopy, where we observe both rotations between adjacent layers and AB-stacking. The band structure of quasi-freestanding AB-bilayers is directly compared with bilayer graphene grown on the Si-face of SiC to study the impact of the substrate on the electronic properties of epitaxial graphene. Our results show that the C-face films are nearly freestanding from an electronic point of view, due to the rotations between graphene layers.

  15. Photonic quasi-crystals in Fourier and Fourier-Bessel space

    NASA Astrophysics Data System (ADS)

    Newman, S. R.; Gauthier, R. C.

    2013-02-01

    Photonic crystals that are aperiodic or quasi-crystalline in nature have been the focus of research due to their complex spatial distributions, resulting in high order rotational symmetries. Recently we proposed aperiodic patterns that were rotationally symmetric while being random in the radial direction. The structures are designed by segmenting the circular design space, randomly populating one segment, and repeating that segment about a center of rotation. Studying the symmetries and geometrical attributes of aperiodic structures is typically performed in reciprocal Fourier space by examining the distribution of the Fourier coefficients. This allows the translational symmetry to be directly extracted and the rotational nature to be interpreted. Instead we propose comparing the typical Fourier analysis with the use of a Fourier-Bessel space. The Fourier-Bessel approach expands the dielectric layout in cylindrical coordinates using exponential and Bessel functions as the angular and radial basis functions. The coefficients obtained in this fashion directly provide the rotational symmetries that are present. This work will examine both the Fourier and Fourier-Bessel distributions of the proposed structures as well as other quasi-crystals in order to explore the strengths and weaknesses of both techniques.

  16. Quasi experimental designs in pharmacist intervention research.

    PubMed

    Krass, Ines

    2016-06-01

    Background In the field of pharmacist intervention research it is often difficult to conform to the rigorous requirements of the "true experimental" models, especially the requirement of randomization. When randomization is not feasible, a practice based researcher can choose from a range of "quasi-experimental designs" i.e., non-randomised and at time non controlled. Objective The aim of this article was to provide an overview of quasi-experimental designs, discuss their strengths and weaknesses and to investigate their application in pharmacist intervention research over the previous decade. Results In the literature quasi experimental studies may be classified into five broad categories: quasi-experimental design without control groups; quasi-experimental design that use control groups with no pre-test; quasi-experimental design that use control groups and pre-tests; interrupted time series and stepped wedge designs. Quasi-experimental study design has consistently featured in the evolution of pharmacist intervention research. The most commonly applied of all quasi experimental designs in the practice based research literature are the one group pre-post-test design and the non-equivalent control group design i.e., (untreated control group with dependent pre-tests and post-tests) and have been used to test the impact of pharmacist interventions in general medications management as well as in specific disease states. Conclusion Quasi experimental studies have a role to play as proof of concept, in the pilot phases of interventions when testing different intervention components, especially in complex interventions. They serve to develop an understanding of possible intervention effects: while in isolation they yield weak evidence of clinical efficacy, taken collectively, they help build a body of evidence in support of the value of pharmacist interventions across different practice settings and countries. However, when a traditional RCT is not feasible for

  17. The Supine Internal Rotation Test

    PubMed Central

    Moulton, Samuel G.; Cram, Tyler R.; James, Evan W.; Dornan, Grant J.; Kennedy, Nicholas I.; LaPrade, Robert F.

    2015-01-01

    Background: Biomechanical studies have reported that the posterior cruciate ligament (PCL) functions as a restraint against excessive tibial internal rotation at higher degrees of knee flexion. Purpose: To investigate the use of a supine internal rotation (IR) test for the diagnosis of grade III PCL injuries. The hypothesis was that internal rotation would be greater in patients with grade III PCL injuries compared with other knee injuries and that the supine IR test would demonstrate excellent diagnostic accuracy. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: A consecutive series of 309 patients underwent arthroscopic and/or open knee ligament reconstruction surgery. Seven patients were excluded based on the inability to perform a side-to-side comparison of internal rotation. Tibial internal rotation was assessed bilaterally on 302 patients during examination under anesthesia by a single orthopaedic surgeon measuring tibial tubercle excursion (mm) while applying internal rotation torque. Internal rotation was graded from 0 to 4 at 60°, 75°, 90°, 105°, and 120° of knee flexion. Data were collected and stored prospectively. The optimal threshold for the supine IR test was chosen based on maximization of the Youden index. Diagnostic accuracy parameters were calculated. Multiple logistic regression models were constructed to assess the influence of other knee pathologies on diagnostic accuracy. Results: Examination of the 22 PCL-deficient knees demonstrated an increase in tibial internal rotation at 60°, 75°, 90°, 105°, and 120° of knee flexion. The supine IR test had a sensitivity of 95.5%, a specificity of 97.1%, a positive predictive value of 72.4%, and a negative predictive value of 99.6% for the diagnosis of grade III PCL injuries. Posterolateral corner injury had a significant interaction with the supine IR test, increasing its sensitivity and decreasing its specificity. Conclusion: PCL-deficient knees demonstrated an increase

  18. A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.

    SciTech Connect

    Siefert, Christopher; Robinson, Allen Conrad

    2009-09-01

    We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.

  19. Quasi-local conserved charges in Lorenz-diffeomorphism covariant theory of gravity

    NASA Astrophysics Data System (ADS)

    Adami, H.; Setare, M. R.

    2016-04-01

    In this paper, using the combined Lorenz-diffeomorphism symmetry, we find a general formula for the quasi-local conserved charge of the covariant gravity theories in a first order formalism of gravity. We simplify the general formula for the Lovelock theory of gravity. Afterwards, we apply the obtained formula on BHT gravity to obtain the energy and angular momentum of the rotating OTT black hole solution in the context of this theory.

  20. On Obliquely Magnetized and Differentially Rotating Stars

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Goodman, Jeremy

    2015-06-01

    We investigate the interaction of differential rotation and a misaligned magnetic field. The incompressible magnetohydrodynamic equations are solved numerically for a free-decay problem. In the kinematic limit, differential rotation annihilates the non-axisymmetric field on a timescale proportional to the cube root of magnetic Reynolds number (Rm), as predicted by Rädler. Nonlinearly, the outcome depends upon the initial energy in the non-axisymmetric part of the field. Sufficiently weak fields approach axisymmetry as in the kinematic limit; some differential rotation survives across magnetic surfaces, at least on intermediate timescales. Stronger fields enforce uniform rotation and remain non-axisymmetric. The initial field strength that divides these two regimes does not follow the scaling R{{m}-1/3} predicted by quasi-kinematic arguments, perhaps because our Rm is never sufficiently large or because of reconnection. We discuss the possible relevance of these results to tidal synchronization and tidal heating of close binary stars, particularly double white dwarfs.

  1. Resonance tongues in the quasi-periodic Hill-Schrödinger equation with three frequencies

    NASA Astrophysics Data System (ADS)

    Puig, Joaquim; Simó, Carles

    2011-02-01

    In this paper we investigate numerically the following Hill's equation x″ + ( a + bq( t)) x = 0 where q(t) = \\cos t + \\cos sqrt {2t} + \\cos sqrt {3t} is a quasi-periodic forcing with three rationally independent frequencies. It appears, also, as the eigenvalue equation of a Schrödinger operator with quasi-periodic potential. Massive numerical computations were performed for the rotation number and the Lyapunov exponent in order to detect open and collapsed gaps, resonance tongues. Our results show that the quasi-periodic case with three independent frequencies is very different not only from the periodic analogs, but also from the case of two frequencies. Indeed, for large values of b the spectrum contains open intervals at the bottom. From a dynamical point of view we numerically give evidence of the existence of open intervals of a, for large b, where the system is nonuniformly hyperbolic: the system does not have an exponential dichotomy but the Lyapunov exponent is positive. In contrast with the region with zero Lyapunov exponents, both the rotation number and the Lyapunov exponent do not seem to have square root behavior at endpoints of gaps. The rate of convergence to the rotation number and the Lyapunov exponent in the nonuniformly hyperbolic case is also seen to be different from the reducible case.

  2. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    SciTech Connect

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  3. Quasi steady MPD performance analysis

    NASA Astrophysics Data System (ADS)

    Guarducci, F.; Paccani, G.; Lehnert, J.

    2011-04-01

    Pulsed (quasi-steady) solid propellant magnetoplasmadynamic thruster operation has been investigated both in the self-induced and applied magnetic field cases. Input parameters have been varied in order to analyze performance (in particular impulse bit) dependance on these parameters. The stored energy per shot has been set to four values between 2000 and 3000 J, while magnetic field has been set to six values between 0 and 159 mT. Impulse bit has been evaluated through a thrust stand technique: a brief overview of this method is given together with a description of the data processing procedure. Current measurements allow to use Maeker's formula as a reference for comparison between theoretical and empirical results as well as between self and applied field operation. Appreciable improvements of the thruster impulse bit performance have been noticed for defined sets of stored energy and applied field values. An inductive interaction between the magnet coil and the laboratory facilities, resulting in thrust stand displacement, has been observed: this phenomenon and its consequences on measurements have been investigated. A target used as a ballistic pendulum, insensitive to magnetic coupling, has been employed to acquire a new set of measurements: the results obtained with the target technique show a maximum discrepancy of 5% when compared with the measurements derived from the thrust stand technique. Finally, the thrust stand measurements appear to be affected by the inductive interactions only for very high values of the applied field.

  4. Analysis of the FASSST rotational spectrum of NCNCS in view of quantum monodromy.

    PubMed

    Winnewisser, Brenda P; Winnewisser, Manfred; Medvedev, Ivan R; De Lucia, Frank C; Ross, Stephen C; Koput, Jacek

    2010-08-01

    Quantum monodromy has a strong impact on the ro-vibrational energy levels of chain molecules whose bending potential energy function has the form of the bottom of a champagne bottle (i.e. with a hump or punt) around the linear configuration. NCNCS, cyanogen iso-thiocyanate, is a particularly good example of such a molecule and clearly exhibits a distinctive monodromy-induced dislocation of the energy level pattern at the bending-rotation energy at the top of the potential energy hump. Indeed, NCNCS [B. P. Winnewisser et al., Phys. Rev. Lett. 2005, 95, 243002] and the water molecule [N. F. Zobov et al., Chem. Phys. Lett. 2005, 414, 193-197] were the first two molecules for which experimental confirmation of quantum monodromy was obtained. We used the fast scan sub-millimetre spectroscopic technique (FASSST) to extend the measurements and spectral analysis to pure rotational transitions (end-over-end) in bending vibrational states lying well above the monodromy point. The analysis of 9204 lines assigned to 7 vibrational states, presented here, shows that the topological properties of the bending potential function are mapped onto every aspect of the ro-vibrational energy levels involving excitation of the quasi-linear bending vibration. In order to model the large amplitude dynamics of such a molecular system, and also to achieve some insight beyond satisfactory parameters for reproducing the spectrum, we used the generalized semi-rigid bender (GSRB) Hamiltonian, which is described in some detail. This Hamiltonian provides a good description of the energy levels over the seven bending states observed, coming close to experimental accuracy. Due to high J values of the measured rotational transitions (J

  5. Three-Dimensional Modeling of Quasi-Homologous Solar Jets

    NASA Technical Reports Server (NTRS)

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-01-01

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (31)) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet, and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  6. THREE-DIMENSIONAL MODELING OF QUASI-HOMOLOGOUS SOLAR JETS

    SciTech Connect

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2010-05-10

    Recent solar observations (e.g., obtained with Hinode and STEREO) have revealed that coronal jets are a more frequent phenomenon than previously believed. This higher frequency results, in part, from the fact that jets exhibit a homologous behavior: successive jets recur at the same location with similar morphological features. We present the results of three-dimensional (3D) numerical simulations of our model for coronal jets. This study demonstrates the ability of the model to generate recurrent 3D untwisting quasi-homologous jets when a stress is constantly applied at the photospheric boundary. The homology results from the property of the 3D null-point system to relax to a state topologically similar to its initial configuration. In addition, we find two distinct regimes of reconnection in the simulations: an impulsive 3D mode involving a helical rotating current sheet that generates the jet and a quasi-steady mode that occurs in a 2D-like current sheet located along the fan between the sheared spines. We argue that these different regimes can explain the observed link between jets and plumes.

  7. Global Rotation of Non-Rotating Origin

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2001-11-01

    At its 24th General Assembly held at Manchester last year, the IAU has adopted the Celestial Ephemeris Origin (CEO) as a new longitude origin of the celestial coordinate system (Capitaine et al. 2000, IAU 2001). The CEO is the application of Guinot's non-rotating origin (NRO) to the Earth's equator (Guinot 1979, Capitaine et al. 1986, Capitaine 1990). By using the current IAU precession/nutation theory, we integrated the global orbit of CEO. It is a slightly curved zigzag pattern of the amplitude of around 23o moving secularly along the ecliptic. Among its kinematical features, we note that CEO has a large secular component of rotation with respect to the inertial reference frame. The current speed of this global rotation is as large as around -4.15 ''/yr. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north celestial pole. Unfortunately this is a general property of NROs. On the other hand, such secular rotation does not exist for some geometrically-defined longitude origins like K, H, and Σ already discussed in Kovalevsky and McCarthy (1998). We think that the existence of a global secular rotaion means that the CEO, and NROs in general, is not appropriate to be specified as the x-axis of celestial coordinate systems.

  8. Rotational dynamics of methyl groups in m-xylene

    NASA Astrophysics Data System (ADS)

    Kirstein, O.; Prager, M.; Dimeo, R. M.; Desmedt, A.

    2005-01-01

    Methyl group dynamics of m-xylene was investigated by using incoherent inelastic and quasi-elastic neutron scattering. Inelastic measurements were carried out at the high flux backscattering spectrometer HFBS at the National Institute of Standards, quasi-elastic measurements at the time-of-flight spectrometer NEAT at the Hahn-Meitner-Institute. Rotational potentials are derived which describe the tunnel splittings, first librational, and activation energies of the two inequivalent CH3 groups. Indications for coupling of the methyl rotation to low-energy phonons have been found. The finite width of one tunneling transition at He temperature is described by direct methyl-methyl coupling. The combined results of the experiments and the calculations allow a unique assignment of rotor excitations to crystallographic sites.

  9. Quasi-static self-powered sensing and data logging

    NASA Astrophysics Data System (ADS)

    Lajnef, Nizar; Chakrabartty, Shantanu; Burgueño, Rigoberto; Borchani, Wassim

    2014-04-01

    Many signals of interest in the assessment of structural systems lie in the quasi-static range (frequency << 1Hz). This poses a significant challenge for the development of self-powered sensors that are required not only to monitor these events but also to harvest the energy for sensing, computation and storage from the signal being monitored. This paper combines the use of mechanically-equivalent frequency modulators and piezo-powered threshold detection modules capable of computation and data storage with a total current less than 10nA. The system is able to achieve events counting for input deformations at frequencies lower than 0.1Hz. The used mechanically-equivalent frequency modulators allow the transformation of the low-amplitude and low-rate quasi-static deformations into an amplified input to a piezoelectric transducer. The sudden transitions in unstable mode branch switching, during the elastic postbuckling response of slender columns and plates, are used to generate high-rate deformations. Experimental results show that an oscillating semi-crystalline plastic polyvinylidene fluoride (PVDF), attached to the up-converting modules, is able to generate a harvestable energy at levels between 0.8μJ to 2μJ. In this work, we show that a linear injection response of our combined frequency up-converter / piezo-floating-gate sensing system can be used for self-powered measurement and recording of quasi-static deformations levels. The experimental results demonstrate that a sensor fabricated in a 0.5- μm CMOS technology can count and record the number of quasi-static input events, while operating at a power level significantly lower than 1μW.

  10. Research on the characteristics of quasi-steady cavitation in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Lu, J. X.; Yuan, S. Q.; Li, X. J.; Si, Q. R.; Luo, Y.

    2015-01-01

    With the pressure decreasing, the process of cavitation in a centrifugal pump could be summarized as incipient cavitation, quasi-steady cavitation and unsteady cavitation. Quasi-steady cavitation is the condition that is between the incipient cavitation and unsteady cavitation in a centrifugal pump. Under this condition, the intensity of cavitation is relatively weak, and the head of the pump almost remains unchanged, but the cavitation exists, causing damage to the impeller by pitting and erosion. So it is important to investigate the quasi-steady cavitation. In this paper, both the numerical and experimental methods had been carried out to investigate the characteristics of quasi-steady cavitation. The internal flow in the pump, the performance of cavitation and the inlet and outlet pressure pulsation of the pump measured through experimental method have been studied under different NPSHa conditions. It was found that the head decreases about 0.77%-1.38% from non-cavitation condition and it could be regarded as the quasi-steady cavitation. Little change has been found from the internal flow between non-cavitation condition and quasi-steady cavitation condition. The period of inlet pressure pulsation changes from the time that the blade passes by to the period of shaft rotating with the development of cavitation. The dominant frequency of the inlet pressure pulsation is two times of shaft frequency whose amplitudes decrease firstly and then increase to a peak value, followed by a decrease to a low value in quasi-steady cavitation conditions. The dominant frequency of the outlet pressure pulsation is blade passing frequency whose amplitudes increase firstly and then decrease gradually with the decrease of NPSHa.

  11. Quantum and quasi-classical calculations for the S⁺ + H₂(v,j) → SH⁺(v',j') + H reactive collisions.

    PubMed

    Zanchet, Alexandre; Roncero, Octavio; Bulut, Niyazi

    2016-04-28

    State-to-state cross-sections for the S(+) + H2(v,j) → SH(+)(v',j') + H endothermic reaction are obtained using quantum wave packet (WP) and quasi-classical (QCT) methods for different initial ro-vibrational H2(v,j) over a wide range of translation energies. The final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient that vibrational energy is the most favorable for the reaction, and rotational excitation significantly enhances the reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid to an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2. An interesting resonant behaviour found in WP calculations is also discussed and associated with the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al. for S(+) + HD and S(+) + D2 reactions exhibits a reasonably good agreement with those results. PMID:27055725

  12. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  13. Quasi-Particle Self-Consistent GW for Molecules.

    PubMed

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives. PMID:27168352

  14. Mass formula for quasi-black holes

    SciTech Connect

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-12-15

    A quasi-black hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body's quasihorizon. We consider the mass contributions and the mass formula for a static quasi-black hole. The analysis involves careful scrutiny of the surface stresses when the limiting configuration is reached. It is shown that there exists a strict correspondence between the mass formulas for quasi-black holes and pure black holes. This perfect parallelism exists in spite of the difference in derivation and meaning of the formulas in both cases. For extremal quasi-black holes the finite surface stresses give zero contribution to the total mass. This leads to a very special version of Abraham-Lorentz electron in general relativity in which the total mass has pure electromagnetic origin in spite of the presence of bare stresses.

  15. Hermite polynomials and quasi-classical asymptotics

    SciTech Connect

    Ali, S. Twareque; Engliš, Miroslav

    2014-04-15

    We study an unorthodox variant of the Berezin-Toeplitz type of quantization scheme, on a reproducing kernel Hilbert space generated by the real Hermite polynomials and work out the associated quasi-classical asymptotics.

  16. Principle of bio-inspired insect wing rotational hinge design

    NASA Astrophysics Data System (ADS)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  17. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  18. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  19. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  20. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  1. THE OLD ROTATION, 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Old Rotation (circa 1896) is the oldest, continuous cotton experiment in the world. Its 13 plots on 1 acre of land on the campus of Auburn University continue to document the long-term effects of crop rotations with and without winter legumes (crimson clover) as a source of nitrogen for cotton,...

  2. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    SciTech Connect

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.

  3. The long-term rotation dynamics of neutron stars with differentially rotating unmagnetized core

    NASA Astrophysics Data System (ADS)

    Barsukov, D. P.; Goglichidze, O. A.; Tsygan, A. I.

    2014-10-01

    We consider the pulsar long-term rotation dynamics taking into account the non-rigidity of neutron star rotation. We restrict our attention to the models with two essential assumptions: (1) crust-core interaction occurs via the viscosity (magnetic coupling is not important); (2) neutron star shape is symmetrical over the magnetic axis. The neutron star core is described by linearized quasi-stationary Newtonian hydrodynamical equations in one-fluid and two-fluid (neutron superfluidity) approximations. It is shown that in this case the pulsar inclination angle evolves to 0° or 90° very quickly. Since such fast evolution seems to contradict the observation data, either neutron stars are triaxial or the magnetic field plays the leading role in crust-core coupling.

  4. Interferometry for rotating sources

    NASA Astrophysics Data System (ADS)

    Velle, S.; Mehrabi Pari, S.; Csernai, L. P.

    2016-06-01

    The two particle interferometry method to determine the size of the emitting source after a heavy ion collision is extended. Following the extension of the method to spherical expansion dynamics, here we extend the method to rotating systems. It is shown that rotation of a cylindrically symmetric system leads to modifications, which can be perceived as spatial asymmetry by the "azimuthal HBT" method. We study an exact rotating and expanding solution of the fluid dynamical model of heavy ion reactions. We consider a source that is azimuthally symmetric in space around the axis of rotation, and discuss the features of the resulting two particle correlation function. This shows the azimuthal asymmetry arising from the rotation. We show that this asymmetry leads to results similar to those given by spatially asymmetric sources.

  5. Rotation sensor switch

    DOEpatents

    Sevec, John B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops comprises a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal.

  6. Quasi-Biennial Oscillation as the Result of Planetary Motion

    NASA Astrophysics Data System (ADS)

    Retejum, Alexey

    QUASI-BIENNIAL OSCILLATION AS THE RESULT OF PLANETARY MOTION A.Ju.Retejum Lomonosov Moscow State University, aretejum@yandex.ru A remarkable phenomenon of quasi-biennial oscillation (QBO) attracts a growing attention for its unclear origin and possible global impact. A comprehensive theory of this phenomenon should answer the following questions: 1. Why does the phase change of the atmospheric circulation on average occur every 800 days? 2. When does the cycle length decreases or increases? 3. Wherefore the regular wind shift is observed in the equatorial stratosphere only? 4. What could cause a sudden reverse in zonal wind direction? 5. Why the generating impulse travels from the border between the atmosphere and outer space downwards without significant loss of power? 6. What is the reason of known differences in behavior patterns between west and east winds? 7. How do middle and upper latitudes respond to the remote signal? Unfortunately all the explanation of QBO that have been given so far, unable to meet the above criteria. The author proposes an alternative idea of the external forcing due to motion of Mars, Jupiter and Venus. This study is based on the QBO Index data at the 30-hPa Height for the 1979-2013 period (http://www.cpc.ncep.noaa.gov/data/indices/qbo.u30.index). Having in mind that the oscillation is symmetric about the Equator, where the Earth rotation speed is highest, one examined on the first stage relationships between the QBO manifestation and the length of day. A ten-year comparison of slow and fast spinning periods (1979-1983, 1991-1995 and 2000-2006, 2009-2011 respectively) reveals a significant difference in west and east winds strengths. The same picture can be observed if mean monthly data for March-April (the length of day maximum) and July (the length of day minimum) are collated. This is the answer to the question # 3. The exact answers to questions # 1 and # 2 give an analysis of the dependence of the wind reverse time on the moments

  7. Angular velocity distribution of a granular planar rotator in a thermalized bath.

    PubMed

    Piasecki, J; Talbot, J; Viot, P

    2007-05-01

    The kinetics of a granular planar rotator with a fixed center undergoing inelastic collisions with bath particles is analyzed both numerically and analytically by means of the Boltzmann equation. The angular velocity distribution evolves from quasi-Gaussian in the Brownian limit to an algebraic decay in the limit of an infinitely light particle. In addition, we compare this model to that of a planar rotator with a free center and discuss the prospects for experimental confirmation of these results. PMID:17677054

  8. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  9. Rieger quasi-periodicity in solar indices

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.

    2012-05-01

    Using wavelet analysis and Fourier analysis, the temporal behavior of ≈156-day quasi-periodicity (Rieger quasi-periodicity, RQ) is investigated for series of daily solar indices: Wolf numbers W for 161 years (from 1849), the flux F10.7 of the Sun's radio emission at a frequency of 2800 MHz for 63 years (from 1947), the number of X-ray flares N X for 29 years (from 1981), and the number of optical flares N α for 11 years in cycle 21. The N α series are studied for four quadrants of the solar disk. It is found for the W series that there is no stable dependence of the amplitude RQ on the cycle phase and the W value. It is associated with the fact that, corresponding to a period of around eight years, in the power spectrum changes in the amplitude of the Rieger quasiperiodicity of the index W are dominated by the peak. Moreover, the peaks corresponding to the 11-year cyclicity are also significant. The comparative study of the temporal behavior of the Rieger quasi-periodicity amplitude of the indices W, F10.7, and N X has shown that the quasi-periodicity covers the processes, occurring in active regions on the Sun at different altitudes, almost simultaneously. It is found that for N α, the lag of variations of the Rieger quasi-periodicity amplitude for series of the Sun's western hemisphere, relative to those for series of the eastern hemisphere, is on average less than for the flare series. Thus, if the flare occurrence is modulated by the Rieger quasi-periodicity process as a wave propagating over the Sun's disc, then the wave is not a retrograde one. Different interpretations of the nature of the Rieger quasi-periodicity are discussed including the hypothesis of Rossby waves.

  10. Quasi-equivalent viruses: a paradigm for protein assemblies.

    PubMed

    Johnson, J E; Speir, J A

    1997-06-27

    The structure and assembly of icosahedral virus capsids composed of one or more gene products and displaying quasi-equivalent subunit associations are discussed at three levels. The principles of quasi-equivalence and the related geodesic dome formation are first discussed conceptually and the geometric basis for their construction from two-dimensional assembly units is reviewed. The consequences for such an assembly when three-dimensional protein subunits are the associating components are then discussed with the coordinates of cowpea chlorotic mottle virus (CCMV) used to generate hypothetical structures in approximate agreement with the conceptual models presented in the first section. Biophysical, molecular genetic, and atomic structural data for CCMV are then reviewed, related to each other, and incorporated into an assembly model for CCMV that is discussed with respect to the modular, chemical nature of the viral subunit structure. The concepts of quasi-equivalence are then examined in some larger virus structures containing multiple subunit types and auxiliary proteins and the need for additional control points in their assembly are considered. The conclusion suggests that some viral assembly principles are limited paradigms for protein associations occurring in the broader range of cell biology including signal transduction, interaction of transcription factors and protein trafficking. PMID:9223631

  11. Turbulent plane Couette flow subject to strong system rotation

    NASA Astrophysics Data System (ADS)

    Bech, Knut H.; Andersson, Helge I.

    1997-09-01

    System rotation is known to substantially affect the mean flow pattern as well as the turbulence structure in rotating channel flows. In a numerical study of plane Couette flow rotating slowly about an axis aligned with the mean vorticity, Bech & Andersson (1996a) found that the turbulence level was damped in the presence of anticyclonic system rotation, in spite of the occurrence of longitudinal counter-rotating roll cells. Moreover, the turbulence anisotropy was practically unaffected by the weak rotation, for which the rotation number Ro, defined as the ratio of twice the imposed angular vorticity [Omega] to the shear rate of the corresponding laminar flow, was ±0.01. The aim of the present paper is to explore the effects of stronger anticyclonic system rotation on directly simulated turbulent plane Couette flow. Turbulence statistics like energy, enstrophy and Taylor lengthscales, both componental and directional, were computed from the statistically steady flow fields and supplemented by structural information obtained by conditional sampling.

  12. ROTATING GLOBULAR CLUSTERS

    SciTech Connect

    Bianchini, P.; Varri, A. L.; Bertin, G.; Zocchi, A.

    2013-07-20

    Internal rotation is thought to play a major role in the dynamics of some globular clusters. However, in only a few cases has internal rotation been studied by the quantitative application of realistic and physically justified global models. Here, we present a dynamical analysis of the photometry and three-dimensional kinematics of {omega} Cen, 47 Tuc, and M15, by means of a recently introduced family of self-consistent axisymmetric rotating models. The three clusters, characterized by different relaxation conditions, show evidence of differential rotation and deviations from sphericity. The combination of line-of-sight velocities and proper motions allows us to determine their internal dynamics, predict their morphology, and estimate their dynamical distance. The well-relaxed cluster 47 Tuc is interpreted very well by our model; internal rotation is found to explain the observed morphology. For M15, we provide a global model in good agreement with the data, including the central behavior of the rotation profile and the shape of the ellipticity profile. For the partially relaxed cluster {omega} Cen, the selected model reproduces the complex three-dimensional kinematics; in particular, the observed anisotropy profile, characterized by a transition from isotropy to weakly radial anisotropy and then to tangential anisotropy in the outer parts. The discrepancy found for the steep central gradient in the observed line-of-sight velocity dispersion profile and for the ellipticity profile is ascribed to the condition of only partial relaxation of this cluster and the interplay between rotation and radial anisotropy.

  13. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  14. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  15. Rotator cuff injuries in adolescent athletes.

    PubMed

    Weiss, Jennifer M; Arkader, Alexandre; Wells, Lawrence M; Ganley, Theodore J

    2013-03-01

    The cause of rotator cuff injuries in the young athlete has been described as an overuse injury related to internal impingement. Abduction coupled with external rotation is believed to impinge on the rotator cuff, specifically the supraspinatus, and lead to undersurface tears that can progress to full-thickness tears. This impingement is believed to be worsened with increased range of motion and instability in overhead athletes. A retrospective review of seven patients diagnosed with rotator cuff injuries was performed to better understand this shoulder injury pattern. The type of sport played, a history of trauma, diagnosis, treatment method, and outcome were noted. Six patients were male and one was a female. Baseball was the primary sport for four patients, basketball for one, gymnastics for one, and wrestling for one. The following injury patterns were observed: two patients tore their subscapularis tendon, two sustained avulsion fractures of their lesser tuberosity, one tore his rotator interval, one tore his supraspinatus, and one avulsed his greater tuberosity. Only four patients recalled a specific traumatic event. Three patients were treated with arthroscopic rotator cuff repair, three with miniopen repair, and one was treated with rehabilitation. Six of the seven patients returned to their preinjury level of sport after treatment. Rotator cuff tears are rare in the adolescent age group. The injury patterns suggest that acute trauma likely accounts for many rotator cuff tears and their equivalents in the young patient. Adolescents with rotator cuff tears reliably return to sports after treatment. The possibility of rotator cuff tears in skeletally immature athletes should be considered. The prognosis is very good once this injury is identified and treated. PMID:22668571

  16. CBe5Hn((n-4)) (n = 2-5): Hydrogen-Stabilized CBe5 Pentagons Containing Planar or Quasi-Planar Pentacoordinate Carbons.

    PubMed

    Guo, Jin-Chang; Ren, Guang-Ming; Miao, Chang-Qing; Tian, Wen-Juan; Wu, Yan-Bo; Wang, Xiaotai

    2015-12-31

    The diagonal relationship between beryllium and aluminum and the isoelectronic relationship between BeH unit and Al atom were utilized to design a new series ppC- or quasi-ppC-containing species C5v CBe5H5(+), Cs CBe5H4, C2v CBe5H3(-), and C2v CBe5H2(2-) by replacing the Al atoms in previously reported global minima planar pentacoordinate carbon (ppC) species D5h CAl5(+), C2v CAl4Be, C2v CAl3Be2(-), and C2v CAl2Be3(2-) with BeH units. The three-center two-electron (3c-2e) bonds formed between Be and bridging H atoms were crucial for the stabilization of these ppC species. The natural bond orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses revealed that the central ppCs or quasi-ppCs possess the stable eight electron-shell structures. The AdNDP analyses also disclosed that these species are all 6σ+2π double-aromatic in nature. The aromaticity was proved by the calculated negative nucleus-independent chemical shifts (NICS) values. DFT and high-level CCSD(T) calculations revealed that these ppC- or quasi-ppC species are the global minimum or competitive low-lying local minimum (Cs CBe5H4) on their potential energy surfaces. The Born-Oppenheimer molecular dynamic (BOMD) simulations revealed that the H atoms in C2v CBe5H3(-) and C2v CBe5H2(2-) can easily rotate around the CBe5 cores and the structure of quasi-planar C5v CBe5H5(+) will become the planar structure at room temperature; however, these interesting dynamic behaviors did not indicate the kinetic instability as the basic ppC structures were maintained during the simulations. Therefore, it would be potentially possible to realize these interesting ppC- or quasi-ppc-species in future experiments. PMID:26694982

  17. Chaotic rotation of Hyperion?

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Green, J. R.; Opal, C. B.

    1986-01-01

    Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.

  18. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  19. KIC 10526294: a slowly rotating B star with rotationally split, quasi-equally spaced gravity modes (Corrigendum)

    NASA Astrophysics Data System (ADS)

    Pápics, P. I.; Moravveji, E.; Aerts, C.; Tkachenko, A.; Triana, S. A.; Bloemen, S.; Southworth, J.

    2014-10-01

    Based on observations made with the William Herschel Telescope operated by the Isaac Newton Group on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendices are available in electronic form at http://www.aanda.org

  20. Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1992-01-01

    Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.

  1. Rotation during lifting tasks: effects of rotation frequency and task order on localized muscle fatigue and performance.

    PubMed

    Horton, Leanna M; Nussbaum, Maury A; Agnew, Michael J

    2015-01-01

    Though widely considered to reduce the risk of work-related musculoskeletal disorders, there is limited evidence suggesting that rotating between tasks is effective in doing so. The purpose of the current study was to quantify the effects of rotation and parameters of rotation (frequency and task order) on muscle fatigue and performance. This was done using a simulated lifting task, with rotation between two levels of loading of the same muscle groups. Twelve participants completed six experimental sessions during which repetitive box lifting was performed for one hour either with or without rotation. When rotation was present, it occurred every 15 minutes or every 30 minutes and was between two load levels (box weights). Rotation reduced fatigue and cardiovascular demand compared to the heavier load without rotation, with a mean reduction of ∼33% in perceived discomfort and a ∼17% reduction in percentage of heart rate reserve. Further, rotation increased fatigue and cardiovascular demand compared to the lighter load without rotation, with a mean increase of ∼34% perceived discomfort and a ∼19% increase in percentage of heart rate reserve. Neither rotation frequency nor task order had definitive effects, though maximum discomfort ratings were nearly 20% higher when starting with the lighter load task. These parameters of rotation should be further evaluated under more realistic task conditions. PMID:25551257

  2. Rotator Cuff Injuries

    MedlinePlus

    ... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...

  3. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  4. Rotating mobile launcher

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.

    1977-01-01

    Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.

  5. Rotator cuff problems

    MedlinePlus

    ... tear occurs when one of the tendons is torn from the bone from overuse or injury. Causes ... surgery with a larger incision) to repair the torn tendon. Outlook (Prognosis) With rotator cuff tendinitis, rest, ...

  6. Rotator cuff repair

    MedlinePlus

    ... already torn from chronic rotator cuff problems. A partial tear may not require surgery. Instead, rest and ... Follow any discharge and self-care instructions you are given. You will be wearing a sling when you leave the hospital. ...

  7. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  8. Rotational rate sensor

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  9. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  10. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  11. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  12. Quantitative rotating frame relaxometry methods in MRI.

    PubMed

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27100142

  13. Hybrid simulations of rotational discontinuities. [Alfven wave propagation in astrophysics

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Cargill, P. J.

    1991-01-01

    1D hybrid simulations of rotational discontinuities (RDs) are presented. When the angle between the discontinuity normal and the magnetic field (theta-BN) is 30 deg, the RD broadens into a quasi-steady state of width 60-80 c/omega-i. The hodogram has a characteristic S-shape. When theta-BN = 60 deg, the RD is much narrower (10 c/omega-i). For right handed rotations, the results are similar to theta-BN = 30 deg. For left handed rotations, the RD does not evolve much from its initial conditions and the S-shape in the hodogram is much less visible. The results can be understood in terms of matching a fast mode wavelike structure upstream of the RD with an intermediate mode one downstream.

  14. Asymptotically reduced equations for rapidly rotating and stably stratified flow

    NASA Astrophysics Data System (ADS)

    Nieves, David; Julien, Keith

    2015-11-01

    Observations by van Haren & Millot (2005) of the deep Western Mediterranean Sea and by Timmermans et al. (2006) of the deep Canadian Basin find vertical fluid motions to be as significant as horizontal motions for ocean dynamics. Since the classical quasi-geostrophic equations do not allow for such vertical motions reduced equations for geostrophically balanced flow with O(1) vertical motions are presented alongside their numerical solutions and results. The reduced equations describe flow constrained by rapid rotation and stable stratification and, in fact, are the stably stratified counterpart to the reduced equations used by Julien et al. in successful studies of rapidly rotating Rayleigh-Bénard convection. Specifically, the equations are valid in the small Rossby number (Ro 1) and O(1) Froude number limit. The focus here is a comparison to similar studies of rotating and stratified flow by Smith & Waleffe (2002), Wingate et al. (2011), and Marino et al. (2013) among others.

  15. Supersonic quasi-axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  16. Energy loss of a heavy particle near 3D charged rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Naji, Jalil

    2014-01-01

    In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss.

  17. Spontaneous symmetry breaking in quasi one dimension

    SciTech Connect

    Satpathi, Urbashi Deo, P. Singha

    2015-06-24

    Electronic charge and spin separation leading to charge density wave and spin density wave is well established in one dimension in the presence and absence of Coulomb interaction. We start from quasi one dimension and show the possibility of such a transition in quasi one dimension as well as in two dimensions by going to a regime where it can be shown for electrons that just interact via Fermi statistics. Such density waves arise due to internal symmetry breaking in a many fermion quantum system. We can extend this result to very wide rings with infinitely many electrons including Coulomb interaction.

  18. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  19. Pure Rotational Spectroscopy of Vinyl Mercaptan

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; Zingsheim, Oliver; Thorwirth, Sven; Müller, Holger S. P.; Lewen, Frank; Schlemmer, Stephan

    2014-06-01

    Vinyl mercaptan (ethenethiol, CH_2=CHSH) exists in the gas phase in two distinct rotameric forms, syn (planar) and anti (quasi-planar in the ground vibrational state). The microwave spectra of these two isomers were investigated previously, however not exceeding frequencies of about 65 GHz. In the present investigation, the pure rotational spectra of both species have been investigated at millimeter wavelengths. Vinyl mercaptan was produced in a radiofrequency discharge through a constant flow of ethanedithiol at low pressure. Both syn and anti rotamers were observed and new extensive sets of molecular parameters were obtained. Owing to its close structural relationship to vinyl alcohol and the astronomical abundance of complex sulfur-bearing molecules, vinyl mercaptan is a plausible candidate for future radio astronomical searches. M. Tanimoto et al. J. Mol. Spectrosc. 78, 95--105 & 106--119 (1979)

  20. The relativistic rotation transformation and pulsar electrodynamics

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R. A.

    1994-08-01

    The substitution of the relativistic rotation transformation (RRT) of Trocheris and Takeno to the Galilean type one, establishing a nonlinear relation between speed v and angular velocity omega (upsilon = c tanh (omega/c)), not only sends to infinity the 'light cylinder' and modifies the characteristic parameters of pulsars within the corotating source model (Kichenassamy & Krikorian 1991), but also circumvents the change of type of the differential equations for the electromagnetic potential when a quasi-static constraint is assumed; on the other hand, the resulting equations for a force-free magnetosphere reduce to those of Mestel, at the nonrelativistic approximation, when RRT reduces to the usual 'instantaneous Lorentz transformation;' indeed, difficulties related to energy flow across the light cylinder become ipso facto meaningless.

  1. Spherical shell model description of rotational motion

    SciTech Connect

    Zuker, A.P.; Retamosa, J.; Poves, A.; Caurier, E.

    1995-10-01

    Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another---or the same---major shell, behave systematically as backbending rotors. The dominance of the {ital q}{center_dot}{ital q} component of the interaction is related to an approximate ``quasi-SU3`` symmetry. It is suggested that the onset of rotational motion in the rare earth nuclei is due to the promotion of the eight particle blocks to the major shells above the ones currently filling. Assuming a ``pseudo-SU3`` coupling for the particles in the lower orbits, it is possible to account remarkably well for the observed {ital B}({ital E}2) rates at the beginning of the region.

  2. Fiber vibration sensor multiplexing techniques for quasi-distributed sensing

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Taiwo, Sulaiman; Sahbudin, R. K. Z.; Yaacob, M. H.; Mokhtar, M.

    2014-12-01

    A multiplexing technique for fiber vibration sensors is experimentally investigated using Khazani Syed (KS) code in SAC/OCDMA with direct decoding. The system is proposed to implement vibration sensor multiplexing which can eliminate the Multiple Access Interference (MAI) at low cost and complexity. The results show the proposed system having better SNR, less complex, and low cost when compared with complementary decoding, and higher power level when compared with simplified WDM. A frequency range of 0 to 400 Hz measured shows its suitability for quasi-distributed sensing in bridges, pipelines, transformers, and industrial machine that exhibit low vibrations within this range.

  3. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  4. X-31 Quasi-Tailless (Artist Concept)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a computer enhanced artist's concept of a semi-tailless X-31 Enhanced Fighter Maneuverability Aircraft in flight. In 1994, software was installed in the X-31 to demonstrate the feasibility of stabilizing a tailless aircraft at supersonic speed, using thrust vectoring. This software allowed destabilization through the control laws of the aircraft in incremental steps to the goal of simulation 100 percent tail-off. Quasi-tailless tests began in 1994. The first phase started with supersonic evaluations at Mach 1.2. Later subsonic evaluations were performed. During the flights the aircraft was destabilized with the rudder to stability levels that would be encountered if the aircraft had a reduced size vertical tail. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the

  5. X-31 Quasi-Tailless (Artist Concept)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is a computer enhanced artist's concept of a semi-tailless X-31 Enhanced Fighter Maneuverability Aircraft in flight. In 1994, software was installed in the X-31 to demonstrate the feasibility of stabilizing a tailless aircraft at supersonic speed, using thrust vectoring. This software allowed destabilization through the control laws of the aircraft in incremental steps to the goal of simulation 100 percent tail-off. Quasi-tailless tests began in 1994. The first phase started with supersonic evaluations at Mach 1.2. Later subsonic evaluations were performed. During the flights the aircraft was destabilized with the rudder to stability levels that would be encountered if the aircraft had a reduced-size vertical tail. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the

  6. Single point modeling of rotating turbulent flows

    NASA Technical Reports Server (NTRS)

    Hadid, A. H.; Mansour, N. N.; Zeman, O.

    1994-01-01

    A model for the effects of rotation on turbulence is proposed and tested. These effects which influence mainly the rate of turbulence decay are modeled in a modified turbulent energy dissipation rate equation that has explicit dependence on the mean rotation rate. An appropriate definition of the rotation rate derived from critical point theory and based on the invariants of the deformation tensor is proposed. The modeled dissipation rate equation is numerically well behaved and can be used in conjunction with any level of turbulence closure. The model is applied to the two-equation kappa-epsilon turbulence model and is used to compute separated flows in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden expansion. In general, the rotation modified dissipation rate model shows some improvements over the standard kappa-epsilon model.

  7. Single point modeling of rotating turbulent flows

    NASA Astrophysics Data System (ADS)

    Hadid, A. H.; Mansour, N. N.; Zeman, O.

    1994-12-01

    A model for the effects of rotation on turbulence is proposed and tested. These effects which influence mainly the rate of turbulence decay are modeled in a modified turbulent energy dissipation rate equation that has explicit dependence on the mean rotation rate. An appropriate definition of the rotation rate derived from critical point theory and based on the invariants of the deformation tensor is proposed. The modeled dissipation rate equation is numerically well behaved and can be used in conjunction with any level of turbulence closure. The model is applied to the two-equation kappa-epsilon turbulence model and is used to compute separated flows in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden expansion. In general, the rotation modified dissipation rate model shows some improvements over the standard kappa-epsilon model.

  8. Effect of rotation and imperfection on reflection and transmission of plane waves in anisotropic generalized thermoelastic media

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Singh, Manjeet

    2009-07-01

    The present investigation is concerned with the propagation of plane waves at an imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-spaces with different elastic and thermal properties. The thermoelastic theory with one relaxation time developed by Lord and Shulman [A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15 (1967) 299-309] is used to study the problem. The reflection and transmission coefficients of Quasi Longitudinal (QL-) wave, Quasi Thermal (T-mode) wave and Quasi Transverse (QT-) wave have been derived. The effect of rotation has been studied on the velocities of different waves. Some special cases of boundaries i.e. normal stiffness, transverse stiffness, thermal contact conductance, slip boundary and welded contact boundary have been deduced from an imperfect one. Impact of different boundaries has been studied graphically. It is observed that thermal properties, rotation and imperfect boundary have significant effect on the propagation of waves.

  9. Schramm-Loewner (SLE) analysis of quasi two-dimensional turbulent flows

    NASA Astrophysics Data System (ADS)

    Thalabard, Simon

    2012-02-01

    Quasi two-dimensional turbulence can be observed in several cases: for example, in the laboratory using liquid soap films, or as the result of a strong imposed rotation as obtained in three-dimensional large direct numerical simulations. We study and contrast SLE properties of such flows, in the former case in the inverse cascade of energy to large scale, and in the latter in the direct cascade of energy to small scales in the presence of a fully-helical forcing. We thus examine the geometric properties of these quasi 2D regimes in the context of stochastic geometry, as was done for the 2D inverse cascade by Bernard et al. (2006). We show that in both cases the data is compatible with self-similarity and with SLE behaviors, whose different diffusivities can be heuristically determined.

  10. On quasi-periodic variations of low-energy cosmic rays observed near earth.

    PubMed

    Kudela, Karel; Langer, Ronald

    2015-06-01

    Cosmic ray (CR) may partially, especially at high altitudes, contribute to the dosimetric characteristics. Along with irregular CR variations as Forbush decreases and solar particle events are, the quasi-periodic variations may be of some relevance too. A very short review (with references to original papers) of the present knowledge of various types of such variations is presented, namely (i) diurnal wave, (ii) ~27 d variability due to the solar rotation, (iii) Rieger-type periodicity, and (iv) quasi-biennial oscillations as well as waves on longer time scales related to solar activity and to polarity of magnetic field of the Sun. Variability is illustrated in measurements of secondary CR on the ground including the high-altitude observations at Lomnický štít. PMID:25979741

  11. Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR.

    PubMed

    Yun, G S; Lee, W; Choi, M J; Lee, J; Kim, M; Leem, J; Nam, Y; Choe, G H; Park, H K; Park, H; Woo, D S; Kim, K W; Domier, C W; Luhmann, N C; Ito, N; Mase, A; Lee, S G

    2014-11-01

    A second electron cyclotron emission imaging (ECEI) system has been installed on the KSTAR tokamak, toroidally separated by 1/16th of the torus from the first ECEI system. For the first time, the dynamical evolutions of MHD instabilities from the plasma core to the edge have been visualized in quasi-3D for a wide range of the KSTAR operation (B0 = 1.7∼3.5 T). This flexible diagnostic capability has been realized by substantial improvements in large-aperture quasi-optical microwave components including the development of broad-band polarization rotators for imaging of the fundamental ordinary ECE as well as the usual 2nd harmonic extraordinary ECE. PMID:25430233

  12. Laboratory Studies of Coherent Structures in Quasi - Flows

    NASA Astrophysics Data System (ADS)

    Meyers, Steven David

    1990-01-01

    Laboratory experiments were conducted in a large, rapidly rotating annulus of fluid. Low Rossby and Ekman numbers, 0.1 and 10^{-5} respectively, were achieved while maintaining large Reynolds number (greater than 10^4). The apparatus had a flat lid and conical bottom (slope s = -0.1) to mimic the planetary beta-effect. Motion was forced with six source-sink pairs, distributed symmetrically in a ring in the bottom of the tank. Two primary flow states were studied: marginally stable westward and eastward jets. Westward jets tended to be wide, and developed a central region of strong shear with quasi-uniform potential vorticity. Elliptical vortices of the same sign as the shear always formed. Due to design limitations, only cyclonic vortices were produced. Multiple vortex states were found for relatively narrow jets when the inertial time scale was comparable to the Ekman time scale. At increasingly shorter inertial time scale, produced with stronger forcing, the number of vortices decreased from a maximum of 5 to 1. The multiple vortex states were essentially laminar, inspite of their high Reynolds number; the single vortex state was turbulent, producing many small vortices that merged with the main vortex. The broad region of quasi -uniform potential vorticity was considered necessary for the formation of a single robust vortex. These vortices had many properties in common with vortices found on the large gaseous planets. Eastward jets tended to be narrow and exhibited Rossby wave instability. The number of waves was fairly well predicted by linear theory, except for the low forcing situation, when the pumping geometry strongly influenced the instability. Potential vorticity was quasi-uniform on either side of the jet, with a strong gradient in the jet center. This gradient was a strong barrier to particle transport. A Hamiltonian model of the flow demonstrated the presence of a robust invariant surface at the jet center, with large chaotic seas on either side. The

  13. The Origin of Monsoon Onset. Part 2; Rotational ITCZ Attractors

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Through various specially designed numerical experiments with an aqua-planet general circulation model and theoretical arguments. Chao showed the existence of multiple quasi-equilibria of the intertropical convergence zone (ITCZ). He also showed that monsoon onset could be interpreted as an abrupt transition between the quasi-equilibria of the ITCZ. He further showed that the origin of these quasi-equilibria is related to two different types of attraction pulling the ITCZ in opposite directions. One type of attraction on the ITCZ is due to earth's rotation, which pulls the ITCZ toward the equator or two equatorial latitudes symmetric with respect to the equator depending on the choice of convection scheme, and the other due to the peak of the sea surface temperature (SST, which is given in the experiments a Gaussian profile in latitude and is uniform in longitude), which pulls the ITCZ toward a latitude just poleward of the SST peak. The strength of the attraction due to the earth's rotation has a highly nonlinear dependence on the latitude and that due to the SST peak has a linear (at least in a relative sense) dependence on the latitude.

  14. Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation

    NASA Astrophysics Data System (ADS)

    Wang, Yi

    2012-06-01

    In this paper, one quasi-periodically forced nonlinear beam equation utt+uxxxx+μu+ɛg(ωt,x)u3=0,μ>0,x∈[0,π] with hinged boundary conditions is considered. Here ɛ is a small positive parameter, g( ωt, x) is real analytic in all variables and quasi-periodic in t with a frequency vector ω = ( ω1, ω2, … , ωm). It is proved that the above equation admits small-amplitude quasi-periodic solutions.

  15. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-06-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466 , 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N}, where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0. In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example

  16. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-04-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466, 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N} , where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0 . In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example of mean field diffusions: the Shinomoto-Kuramoto model of coupled rotators (Prog Theoret Phys 75:1105-1110, [74]). This

  17. Analyses of quasi-isotropic composite plates under quasi-static point loads simulating low-velocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Kelkar, A. D.

    1984-01-01

    In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.

  18. Quasi magnetic isotropy and microwave performance of FeCoB multilayer laminated by uniaxial anisotropic layers

    NASA Astrophysics Data System (ADS)

    Li, Shandong; Du, Honglei; Zhang, Yongcheng; Xue, Qian; Gao, Xiaoyang; Shao, Weiquan; Zhou, Ziyao; Nan, Tianxiang; Sun, Nian X.

    2014-05-01

    A Fe0.7Co0.3-B multilayer was laminated by three Fe0.7Co0.3-B ferromagnetic sublayers prepared by composition gradient sputtering. Three Fe0.7Co0.3-B ferromagnetic sublayers have their individual directions of uniaxial magnetic anisotropy, and the easy magnetic axis of neighboring sublayer successively rotates 60° in the film plane. It is exciting that a quasi magnetic isotropy was achieved in the designed multilayer with a quasi-isotropic hysteresis loop and quasi-isotorpic ferromagnetic resonance around 3.7 GHz. This omnidirectional multilayer is promising for the application in inductors since the 100% hard-axis excitation is achieved for any shaped inductors.

  19. Collision-induced rotational excitation in N2 (+)((2)Σg (+),v=0)-Ar: Comparison of computations and experiment.

    PubMed

    Unke, Oliver T; Castro-Palacio, Juan Carlos; Bemish, Raymond J; Meuwly, Markus

    2016-06-14

    The collisional dynamics of N2 (+)((2)Σg (+)) cations with Ar atoms is studied using quasi-classical simulations. N2 (+)-Ar is a proxy to study cooling of molecular ions and interesting in its own right for molecule-to-atom charge transfer reactions. An accurate potential energy surface (PES) is constructed from a reproducing kernel Hilbert space (RKHS) interpolation based on high-level ab initio data. The global PES including the asymptotics is fully treated within the realm of RKHS. From several ten thousand trajectories, the final state distribution of the rotational quantum number of N2 (+) after collision with Ar is determined. Contrary to the interpretation of previous experiments which indicate that up to 98% of collisions are elastic and conserve the quantum state, the present simulations find a considerably larger number of inelastic collisions which supports more recent findings. PMID:27306007

  20. A quasi-Monte Carlo Metropolis algorithm

    PubMed Central

    Owen, Art B.; Tribble, Seth D.

    2005-01-01

    This work presents a version of the Metropolis–Hastings algorithm using quasi-Monte Carlo inputs. We prove that the method yields consistent estimates in some problems with finite state spaces and completely uniformly distributed inputs. In some numerical examples, the proposed method is much more accurate than ordinary Metropolis–Hastings sampling. PMID:15956207

  1. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  2. Representable states on quasilocal quasi *-algebras

    SciTech Connect

    Bagarello, F.; Trapani, C.; Triolo, S.

    2011-01-15

    Continuing a previous analysis originally motivated by physics, we consider representable states on quasilocal quasi *-algebras, starting with examining the possibility for a compatible family of local states to give rise to a global state. Some properties of local modifications of representable states and some aspects of their asymptotic behavior are also considered.

  3. Implementing a Critically Quasi-Ethnographic Approach

    ERIC Educational Resources Information Center

    Murtagh, Lisa

    2007-01-01

    This paper provides an account of the methodological approach of a study designed to address some fundamental questions relating to formative assessment. The paper reports on the use of a critically quasi-ethnographic approach and describes the practicalities of adopting such an approach. The validity of the study is also considered, reflecting on…

  4. Variations on strongly lacunary quasi Cauchy sequences

    NASA Astrophysics Data System (ADS)

    Kaplan, Huseyin; Cakalli, Huseyin

    2016-08-01

    We introduce a new function space, namely the space of Nθ (p)-ward continuous functions, which turns out to be a closed subspace of the space of continuous functions for each positive integer p. Nθα(p ) -ward continuity is also introduced and investigated for any fixed 0 < α ≤ 1, and for any fixed positive integer p. A real valued function f defined on a subset A of R, the set of real numbers is Nθα(p ) -ward continuous if it preserves Nθα(p ) -quasi-Cauchy sequences, i.e. (f (xn)) is an Nθα(p ) -quasi-Cauchy sequence whenever (xn) is Nθα(p ) -quasi-Cauchy sequence of points in A, where a sequence (xk) of points in R is called Nθα(p ) -quasi-Cauchy if lim r →∞ 1/hrα ∑k ∈Ir |Δ xk | p =0 , where Δxk = xk+1-xk for each positive integer k, p is a fixed positive integer, α is fixed in ]0, 1], Ir = (kr-1, kr], and θ = (kr) is a lacunary sequence, i.e. an increasing sequence of positive integers such that k0 ≠ 0, and hr: kr-kr-1 →∞.

  5. A variation on lacunary quasi Cauchy sequences

    NASA Astrophysics Data System (ADS)

    Cakalli, Huseyin; Et, Mikail; Sengul, Hacer

    2016-08-01

    In the present paper, we introduce a concept of ideal lacunary statistical quasi-Cauchy sequence of order α of real numbers in the sense that a sequence (xk) of points in R is called I-lacunary statistically quasi-Cauchy of order α, if { r ∈N :1/hrα | { k ∈Ir:| Δ xk | ≥ɛ } | ≥δ } ∈I for each ɛ > 0 and for each δ > 0, where an ideal I is a family of subsets of positive integers N which is closed under taking finite unions and subsets of its elements. The main purpose of this paper is to investigate ideal lacunary statistical ward continuity of order α, where a function f is called I- lacunary statistically ward continuous of order α if it preserves I-lacunary statistically quasi-Cauchy sequences of order α, i.e. (f (xn)) is a Sθα(I ) -quasi-Cauchy sequence whenever (xn) is.

  6. Quasi-likelihood for Spatial Point Processes

    PubMed Central

    Guan, Yongtao; Jalilian, Abdollah; Waagepetersen, Rasmus

    2014-01-01

    Summary Fitting regression models for intensity functions of spatial point processes is of great interest in ecological and epidemiological studies of association between spatially referenced events and geographical or environmental covariates. When Cox or cluster process models are used to accommodate clustering not accounted for by the available covariates, likelihood based inference becomes computationally cumbersome due to the complicated nature of the likelihood function and the associated score function. It is therefore of interest to consider alternative more easily computable estimating functions. We derive the optimal estimating function in a class of first-order estimating functions. The optimal estimating function depends on the solution of a certain Fredholm integral equation which in practise is solved numerically. The derivation of the optimal estimating function has close similarities to the derivation of quasi-likelihood for standard data sets. The approximate solution is further equivalent to a quasi-likelihood score for binary spatial data. We therefore use the term quasi-likelihood for our optimal estimating function approach. We demonstrate in a simulation study and a data example that our quasi-likelihood method for spatial point processes is both statistically and computationally efficient. PMID:26041970

  7. Quasi-phase-matched laser wakefield acceleration.

    PubMed

    Yoon, S J; Palastro, J P; Milchberg, H M

    2014-04-01

    The energy gain in laser wakefield acceleration is ultimately limited by dephasing, occurring when accelerated electrons outrun the accelerating phase of the wakefield. We apply quasi-phase-matching, enabled by axially modulated plasma channels, to overcome this limitation. Theory and simulations are presented showing that weakly relativistic laser intensities can drive significant electron energy gains. PMID:24745430

  8. Generalized convective quasi-equilibrium principle

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Plant, Robert S.

    2016-03-01

    A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.

  9. Comet candidates among quasi-Hilda objects

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.; García-Migani, E.

    2016-05-01

    Aims: We present the results of a search for quasi-Hilda comets. We wanted to find objects that have recently arrived from the Centaur zone that could became active near the perihelion of their orbits. Methods: Two hundred and seventy-seven objects from the ASTORB database were selected following a dynamical criteria to constrain the unstable quasi-Hilda region. These objects were integrated backward 50 000 yr in order to identify those that have recently arrived from the outer regions of the solar system. Results: The backward integration showed that 11 objects could be Centaurs or transneptunian objects that ended their dynamical evolution as quasi-Hilda comets. The dynamical evolution of these objects from a statistical point of view was studied by computing the time-averaged distribution of a number of clones as a function of the aphelion and perihelion distances. All the candidates show a dynamical behavior that is expected for comets injected in the inner solar system from the Centaur or transneptunian regions and reaching the quasi-Hilda region.

  10. Quasi-Optical SIS Mixer Development

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1997-01-01

    This grant supported our ongoing development of sensitive quasi-optical SIS mixers for the submillimeter band. The technology developed under this grant is now being applied to NASA missions, including the NASA/USRA SOFIA airborne observatory and and the ESA/NASA FIRST/Herschel space astronomy mission.

  11. Rotational Alignment Altered by Source Position Correlations

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris S.; Heflin, M. B.; Lanyi, G. E.; Sovers, O. J.; Steppe, J. A.

    2010-01-01

    In the construction of modern Celestial Reference Frames (CRFs) the overall rotational alignment is only weakly constrained by the data. Therefore, common practice has been to apply a 3-dimensional No-Net-Rotation (NNR) constraint in order to align an under-construction frame to the ICRF. We present evidence that correlations amongst source position parameters must be accounted for in order to properly align a CRF at the 5-10 (mu)as level of uncertainty found in current work. Failure to do so creates errors at the 10-40 (mu)as level.

  12. Quasi-optical MEMS switching array technology

    NASA Astrophysics Data System (ADS)

    Zhang, Weikang

    During this Ph.D. dissertation research, both experimental and theoretical investigations have been conducted to develop new micro-elecro-mechancical systems (MEMS) based technologies and new device concepts for the microwave and millimeter wave frequency range. A proof-of-principle E-band (60GHz˜90GHz) MEMS switching array has been successful designed and constructed, where 400 MEMS switches form a two dimensional array on a 2inch x 2inch quartz substrate. The E-band MEMS grid array switch has demonstrated >6 dB maximum isolation at 76 GHz and >10 dB on/off contrast ratio at 70˜85 GHz. Extensive work has been carried out with the aim of developing a compact impedance matching method for quasi-optic grid arrays. A new device concept is presented, where bulk micro-machining techniques are utilized to create a new class of artificial materials with continuously variable dielectric constant for use in millimeter wave quasi-optical systems. Based on this bulk micro-machined material, two novel quasi-optical impedance transformers have been modeled, designed, and characterized, which provide ideal impedance matching for quasi-optical systems. Photonic bandgap (PBG) RF circuit models also have been studied for microwave and millimeter wave applications. During the course of this development activity, materials characteristics have been analyzed for their suitability in quasi-optical grid array circuit and RF MEMS device applications. Air bridge MEMS switches have been designed, fabricated and characterized for microwave and millimeter wave applications.

  13. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  14. Rotating ice blocks

    NASA Astrophysics Data System (ADS)

    Dorbolo, Stephane; Adami, Nicolas; Grasp Team

    2014-11-01

    The motion of ice discs released at the surface of a thermalized bath was investigated. As observed in some rare events in the Nature, the discs start spinning spontaneously. The motor of this motion is the cooling of the water close to the ice disc. As the density of water is maximum at 4°C, a downwards flow is generated from the surface of the ice block to the bottom. This flow generates the rotation of the disc. The speed of rotation depends on the mass of the ice disc and on the temperature of the bath. A model has been constructed to study the influence of the temperature of the bath. Finally, ice discs were put on a metallic plate. Again, a spontaneous rotation was observed. FNRS is thanked for financial support.

  15. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  16. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD. PMID:24010426

  17. Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography

    SciTech Connect

    Jost, Gregor; Mensing, Tristan; Golfier, Sven; Lawaczeck, Ruediger; Pietsch, Hubertus; Huetter, Joachim; Cibik, Levent; Gerlach, Martin; Krumrey, Michael; Fratzscher, Daniel; Arkadiev, Vladimir; Wedell, Reiner; Haschke, Michael; Langhoff, Norbert; Wust, Peter; Luedemann, Lutz

    2009-06-15

    Photoelectric-enhanced radiation therapy is a bimodal therapy, consisting of the administration of highly radiation-absorbing substances into the tumor area and localized regional irradiation with orthovoltage x-rays. Irradiation can be performed by a modified computed tomography (CT) unit equipped with an additional x-ray optical module which converts the polychromatic, fan-shaped CT beam into a monochromatized and focused beam for energy-tuned photoelectric-enhanced radiotherapy. A dedicated x-ray optical module designed for spatial collimation, focusing, and monochromatization was mounted at the exit of the x-ray tube of a clinical CT unit. Spectrally resolved measurements of the resulting beam were performed using an energy-dispersive detection system calibrated by synchrotron radiation. The spatial photon fluence was determined by film dosimetry. Depth-dose measurements were performed and compared to the polychromatic CT and a therapeutic 6 MV beam. The spatial dose distribution in phantoms using a rotating radiation source (quasi-monochromatic CT and 6 MV, respectively) was investigated by gel dosimetry. The photoelectric dose enhancement for an iodine fraction of 1% in tissue was calculated and verified experimentally. The x-ray optical module selectively filters the energy of the tungsten K{alpha} emission line with an FWHM of 5 keV. The relative photon fluence distribution demonstrates the focusing characteristic of the x-ray optical module. A beam width of about 3 mm was determined at the isocenter of the CT gantry. The depth-dose measurements resulted in a half-depth value of approximately 36 mm for the CT beams (quasi-monochromatic, polychromatic) compared to 154 mm for the 6 MV beam. The rotation of the radiation source leads to a steep dose gradient at the center of rotation; the gel dosimetry yields an entrance-to-peak dose ratio of 1:10.8 for the quasi-monochromatic CT and 1:37.3 for a 6 MV beam of the same size. The photoelectric dose enhancement

  18. Rotation of Giant Stars

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-07-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  19. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  20. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  1. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  2. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  3. Biased impurity tunneling current emission spectrum in the presence of quasi-particle interaction

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2016-09-01

    We performed theoretical investigations of the tunneling current noise spectra through single-level impurity in the presence of quasi-particle (electron-phonon) interaction by means of the non-equilibrium Green function formalism. We demonstrated a fundamental link between quantum noise in tunneling contact and light emission processes. We calculated tunneling current noise spectra through a single level impurity atom both in the presence and in the absence of quasi-particle interaction for a finite bias voltage and identified it as a source of experimentally observed light emission from bias STM contacts. The results turn out to be sensitive to the tunneling contact parameters. Our findings provide important insight into the nature of non-equilibrium electronic transport in tunneling junctions with quasi-particle interaction.

  4. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    SciTech Connect

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  5. Rotational properties of the Maria asteroid family

    SciTech Connect

    Kim, M.-J.; Byun, Y.-I.; Choi, Y.-J.; Moon, H.-K.; Hinse, T. C.; Park, J.-H.; Brosch, N.; Kaplan, M.; Kaynar, S.; Uysal, Ö.; Eker, Z.; Güzel, E.; Behrend, R.; Yoon, J.-N.; Mottola, S.; Hellmich, S.

    2014-03-01

    The Maria family is regarded as an old-type (∼3 ± 1 Gyr) asteroid family that has experienced substantial collisional and dynamical evolution in the main belt. It is located near the 3:1 Jupiter mean-motion resonance area that supplies near-Earth asteroids to the inner solar system. We carried out observations of Maria family asteroids during 134 nights from 2008 July to 2013 May and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. We found that there is a significant excess of fast and slow rotators in the observed rotation rate distribution. The one-sample Kolmogorov-Smirnov test confirms that the spin rate distribution is not consistent with a Maxwellian at a 92% confidence level. From correlations among rotational periods, amplitudes of light curves, and sizes, we conclude that the rotational properties of Maria family asteroids have been changed considerably by non-gravitational forces such as the YORP effect. Using a light-curve inversion method, we successfully determined the pole orientations for 13 Maria members and found an excess of prograde versus retrograde spins with a ratio (N{sub p} /N{sub r} ) of 3. This implies that the retrograde rotators could have been ejected by the 3:1 resonance into the inner solar system since the formation of the Maria family. We estimate that approximately 37-75 Maria family asteroids larger than 1 km have entered near-Earth space every 100 Myr.

  6. (Very) Slow Rotation of Magnetic Ap Stars

    NASA Astrophysics Data System (ADS)

    Mathys, G.

    2015-04-01

    To this date, 33 magnetic Ap stars that have periods of variation longer than 30 days are known. They represent a considerable fraction of the total number of Ap stars whose period has been reliably determined. All the available evidence unambiguously indicates that the observed variations of those long-period Ap stars result from the changing aspect of their visible hemisphere as they rotate, thus that the oblique rotator model is applicable throughout the whole range of periods of variation of the Ap stars. We show that the periods of the most slowly rotating Ap stars must be of the order of 300 years, and that some may even be longer, possibly up to 1000 years. The 5 to 6 orders of magnitude spanned by the rotation periods of the Ap stars present a major challenge for the understanding of their origin and their evolution. To guide the theoretical developments, observational hints may be found in possible differences between the magnetic properties of stars that have rotation periods in different ranges. Such differences are starting to emerge from the existing data. To increase their significance level, study of the longest-period stars must be continued over their full rotation cycle. Failure to secure observations now may leave critical data missing for several decades, or even centuries.

  7. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates

    NASA Astrophysics Data System (ADS)

    Chaudhuri, M.; Semenov, I.; Nosenko, V.; Thomas, H. M.

    2016-05-01

    A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

  8. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  9. Magnetosheath filamentary structures formed by ion acceleration at the quasi-parallel bow shock

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-04-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  10. Quasi 3D modeling of water flow in vadose zone and groundwater

    NASA Astrophysics Data System (ADS)

    Kuznetsov, M.; Yakirevich, A.; Pachepsky, Y. A.; Sorek, S.; Weisbrod, N.

    2012-07-01

    SummaryThe complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas the flow and transport through groundwater are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow using quasi 3D Richards' equation and finite difference scheme is presented. The corresponding numerical algorithm and the QUASI-3D computer code were developed. Results of the groundwater level simulations were compared with transient laboratory experimental data for 2D data constant-flux infiltration, quasi-3D HYDRUS-MODFLOW numerical model and a FULL-3D numerical model using Richards' equation. Hypothetical 3D examples of infiltration, pumping and groundwater mound dissipation for different spatial-time scales are presented. Water flow simulation for the Alto Piura aquifer (Peru) demonstrates the QUASI-3D model application at the regional scale. Computationally the QUASI-3D code was found to be more efficient by an order of 10-300%, while being accurate with respect to the benchmark fully 3D variable saturation code, when the capillary fringe was considered.

  11. Multi-ion equilibrium with strong rotation

    NASA Astrophysics Data System (ADS)

    Galeotti, L.; Barnes, D. C.; Ceccherini, F.; Pegoraro, F.

    2010-11-01

    We describe a new formulation of the multiple ion species, quasi-neutral, axisymmetric equilibrium problem which includes the possibility of strong (sonic or supersonic) rotation about the geometric axis. This new work is more applicable to well confined, hot plasmas. In contrast to previous related work [1.2] which considered steady states with arbitrary isentropic mass flow, we impose the physically more realistic constraints of uniform temperature and negligible poloidal mass flow. It is shown that there exist three surface functions which are related by a single ordinary differential equation (per species), leaving two surface functions per species. These may be taken to be T and Ω for each species. Equilibria have been obtained by the LR/eq MI code which simultaneously solves a set of 2+3 Ni (where Ni is the number of ion species) nonlinear equations at each point, along with Ampere's law and very flexible boundary conditions. Along with the derivation of the model and profiles, some examples of D-T low aspect, elongated tokamak equilibria with and without strong toroidal rotation are given. [4pt] [1] L. C. Steinhauer, {Phys. Plasmas} {6}, 2734 (1999). [0pt] [2] J. P. Goedbloed, {Phys. Plasmas} {11}, 81 (2004).

  12. Rotation of Saturn and Jupiter and their Magnetized Envelopes

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Yu, Z. J.; Wei, H.; Jia, Y.; Leisner, J. S.; Burton, M. E.; Dougherty, M. K.

    2009-12-01

    Pioneer 10, 11, Voyager 1 and 2, Ulysses, and Galileo measurements of the Jovian magnetic field have found that the magnetic dipole axis is tilted from the rotation axis by close to 10°. The longitude of the dipole has remained almost fixed using the IAU 1965 period, confirming the assumption, tacit in the use of the radio waves, that their periodicity is controlled by the rotation of the magnetic field originating deep inside the planet. Using the full suite of magnetic measurements from the 6 spacecraft, we can refine the rotation period to 9h 55m, 29.704 ± 0.003s, which period is within the uncertainty of the IAU definition. This system III period does not order all magnetospheric phenomena, and a system IV period has been introduced to order other periodic phenomenon. System IV measures the rotation of the magnetospheric plasma which slips with respect to the ionosphere and the planetary interior. No significant dipole tilt is present at Saturn, so we do not presently have an IAU-defined Saturnian system III period, but we do have a period analogous to the jovian system IV period called the SKR period, a variable period not locked to the planet. This period is clearly controlled by the interaction of Enceladus with the ionosphere and the magnetospheric plasma. This interaction upsets the centrifugal-centripetal force balance in the corotating plasma by removing angular momentum. A quasi-three-to-one resonance with Enceladus may allow periodic density enhancements to build up, affecting the dynamics of the entire magnetosphere. Returning to Jupiter, we can learn lessons from the Saturn-Enceladus system pertinent to the Io-Jupiter system, where there is a four-to-one quasi-resonance. The behavior of these two rotating giant magnetospheres is thus qualitatively similar despite the large difference in the tilt of the dipole axes.

  13. THE ROTATION PROFILE OF SOLAR MAGNETIC FIELDS BETWEEN {+-}60 Degree-Sign LATITUDES

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2013-08-10

    Through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotation Nos. 1625 to 2129 (from 1975 February to 2012 October), the sidereal rotation rates of solar magnetic fields between {+-}60 Degree-Sign latitudes are investigated. It seems that the temporal variation of rotation rates should be related to the solar cycle phase. The rotation profile of magnetic fields is obtained: the sidereal rotation rates decrease from the equator to mid-latitude and reach their minimum values of about 13.16 deg day{sup -1} (13.17 deg day{sup -1}) at 53 Degree-Sign (54 Degree-Sign ) latitude in the northern (southern) hemisphere, then increase toward higher latitudes. This rotation profile is different from the differential rotation law obtained by Snodgrass from a cross-correlation analysis of daily magnetograms, in which the rotation rates show a steep decrease from the equator to the poles. However, it is much closer to the quasi-rigid rotation law derived by Stenflo from an auto-correlation analysis of daily magnetograms. Some possible interpretations are discussed for the resulting rotation profile.

  14. Tiltmeter leveling mechanism

    DOEpatents

    Hunter, Steven L.; Boro, Carl O.; Farris, Alvis

    2002-01-01

    A tiltmeter device having a pair of orthogonally disposed tilt sensors that are levelable within an inner housing containing the sensors. An outer housing can be rotated to level at least one of the sensor pair while the inner housing can be rotated to level the other sensor of the pair. The sensors are typically rotated up to about plus or minus 100 degrees. The device is effective for measuring tilts in a wide range of angles of inclination of wells and can be employed to level a platform containing a third sensor.

  15. Tests of Rotating Cylinders

    NASA Technical Reports Server (NTRS)

    Reid, Elliott G

    1924-01-01

    Tests were made in the no. 1 wind tunnel at Langley Memorial Aeronautical Laboratory to determine the air forces acting on rotating cylinders with axes perpendicular to the direction of motion. One cylinder had a circular cross-section, the other that of a greek cross.

  16. Rotational waves in geodynamics

    NASA Astrophysics Data System (ADS)

    Gerus, Artyom; Vikulin, Alexander

    2015-04-01

    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  17. Troubleshooting rotating equipment

    SciTech Connect

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  18. Rotatable stem and lock

    DOEpatents

    Deveney, Joseph E.; Sanderson, Stephen N.

    1984-01-01

    A valve stem and lock include a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  19. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  20. Anisotropy in rotating drums

    NASA Astrophysics Data System (ADS)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  1. Rotator Cuff Injuries.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  2. Rotatable stem and lock

    DOEpatents

    Deveney, J.E.; Sanderson, S.N.

    1981-10-27

    A valve stem and lock is disclosed which includes a housing surrounding a valve stem, a solenoid affixed to an interior wall of the housing, an armature affixed to the valve stem and a locking device for coupling the armature to the housing body. When the solenoid is energized, the solenoid moves away from the housing body, permitting rotation of the valve stem.

  3. Rotating Saddle Paul Trap.

    ERIC Educational Resources Information Center

    Rueckner, Wolfgang; And Others

    1995-01-01

    Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)

  4. Rotating Responsibility Reaps Rewards.

    ERIC Educational Resources Information Center

    Wilson, Barbara; Schullery, Nancy

    2000-01-01

    Describes a process used for group assignments in a business communication course which holds all group members accountable by using a structure of rotating responsibility. Discusses selecting assignments and implementing the process, noting how this structure requires equivalent advance preparation from all members and provides opportunities for…

  5. Rotationally Actuated Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  6. Rotational Dynamics with Tracker

    ERIC Educational Resources Information Center

    Eadkhong, T.; Rajsadorn, R.; Jannual, P.; Danworaphong, S.

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia ("I") of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction ("b") for our system. By omitting the effect of such friction, we derive…

  7. Wigner rotations in laser cavities.

    PubMed

    Başkal, S; Kim, Y S

    2002-08-01

    The Wigner rotation is important in many branches of physics, chemistry, and engineering sciences. It is a group theoretical effect resulting from two Lorentz boosts. The net effect is one boost followed or preceded by a rotation. While the term "Wigner rotation" is derived from Wigner's little group whose transformations leave the four-momentum of a given particle invariant, it is shown that the Wigner rotation is different from the rotations in the little group. This difference is clearly spelled out, and it is shown to be possible to construct the corresponding Wigner rotation from the little-group rotation. It is shown also that the ABCD matrix for light beams in a laser cavity shares the same mathematics as the little-group rotation, from which the Wigner rotation can be constructed. PMID:12241308

  8. ROTATIONAL SPLITTING OF PULSATION MODES

    SciTech Connect

    Deupree, Robert G.; Beslin, Wilfried

    2010-10-01

    Mode splittings produced by uniform rotation and a particular form of differential rotation are computed for two-dimensional rotating 10 M{sub sun} zero-age main sequence stellar models. The change in the character of the mode splitting is traced as a function of uniform rotation rate, and it is found that only relatively slow rotation rates are required before the mode splitting becomes asymmetric about the azimuthally symmetric (m = 0) mode. Increased rotation produces a progressively altered pattern of the individual modes with respect to each other. Large mode splittings begin to overlap with the mode splittings produced by different radial and latitudinal modes at relatively low rotation rates. The mode-splitting pattern for the differentially rotating stars we model is different than that for uniformly rotating stars, making the mode splitting a possible discriminant of the internal angular momentum distribution if one assumes that the formidable challenge of mode identification can be overcome.

  9. The domiciliary care market in Scotland: quasi-markets revisited.

    PubMed

    Curtice, Lisa; Fraser, Fiona

    2000-07-01

    By offering people the choice of care at home, the policy of encouraging local authorities to purchase domiciliary care services from voluntary and private providers was intended to achieve a key part of the community care agenda. A study to establish the extent to which there was a mixed economy in the purchase and provision of domiciliary care in Scotland in 1996 revealed reluctance by local authority managers to divest the provision of domiciliary care to voluntary and private agencies. In a telephone survey of purchasers, some social work respondents noted a preference for voluntary over private providers and expressed concern as to whether either could take over the bulk of domiciliary care provision. These attitudes were reflected in the pattern of market development observed. Five hundred and ninety providers were identified, but a postal survey of a random sample of one in two providers (response rate 66%) found that the independent sector's share of the market, measured as the proportion of weekly care hours provided, was small compared with the position in England and Wales at that time (15 : 36%). It is concluded that understanding of the development of the quasi-market in domiciliary care in the UK must now take account of slower development in Scotland. Explanation for the difference may lie in the level of state regulation, for in Scotland there was no compulsion on local authorities to purchase from the independent sector. Paradoxically, the quasi-market in England developed through strong state regulation, whereas in Scotland the strength of policy networks may account for the persistence of a more traditional welfare state model. The paper questions whether the incentives for change were sufficient in Scotland under the quasi-market. If local partnerships do not deliver these results the government may have to take a more active role to modernise domiciliary care services. PMID:11560696

  10. Recently Discovered Features of the Quasi Coherent Mode

    NASA Astrophysics Data System (ADS)

    Montag, P.; Coppi, B.; Sugiyama, L.; Zhou, T.

    2014-10-01

    The Quasi Coherent Mode (QCM) is observed when the EDA H-Confinement regime is produced by the Alcator C-Mod machine and has been found to 1) have a phase velocity in the direction of the electron diamagnetic velocity in the plasma reference frame 2) involve relatively high electron temperature fluctuations 3) be highly localized radially at the outer edge of the plasma column beyond the Last Closed Magnetic Surface (LCMS). A novel theoretical model is given for which; a) the relevant resistive mode driving factor is the sharp plasma pressure gradient that develops at the edge when the plasma enters the EDA H-Regime; b) the known ``disconnected mode approximation'' cannot be applied to characterize the mode topology as the rotational transform ι Ψ = 1 / q Ψ = 0 on the LCMS; c) the mode localization in the poloidal direction (ballooning) is related to the limited region around the equatorial plane where the pitch of the magnetic field is about constant. The observed temperature fluctuations are consistent with the low values of the local longitudinal thermal conductivity. Sponsored in part by the US DOE.

  11. Microstructural Characterisation of Jute/Epoxy Quasi-Unidirectional Composites

    NASA Astrophysics Data System (ADS)

    Virk, Amandeep Singh; Hall, Wayne; Summerscales, John

    2014-12-01

    The elastic properties of a composite can be predicted by micromechanical models based on the properties of the individual constituent materials of the composite and their geometrical characteristics. This paper presents a novel methodology using image analysis to determine (a) the fibre volume fraction and (b) the fibre orientation distribution factor of quasi-unidirectional jute fibre reinforced epoxy resin composites. For fibre volume fraction, digital micrographs were smoothed to reduce noise in the image, an intensity histogram informed selection of the threshold intensity for conversion to a binary image, the image was morphologically closed and opened to remove internal voids and small features respectively and the fibre volume fraction was calculated as the ratio of the detected fibre area to the total image area. For fibre orientation, the image was sharpened with Contrast-Limited Adaptive Histogram Equalisation, a threshold was set for conversion to binary and then a masking image was rotated at a number of seed points over the image to find the angles with the minimum sum of intensity at each point. The data generated was then used to validate new rules-of-mixture equations for natural fibre composites.

  12. Three dimensional dynamics of rotating structures under mixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak

    2015-12-01

    This paper presents the spectral-Tchebychev (ST) technique for solution of three dimensional (3D) dynamics of rotating structures. In particular, structures that exhibit coupled dynamic response require a 3D modeling approach to capture their dynamic behavior. Rotational motions further complicate this behavior, inducing coriolis, centrifugal softening, and (nonlinear) stress-stiffening effects. Therefore, a 3D solution approach is needed to accurately capture the rotational dynamics. The presented 3D-ST technique provides a fast-converging and precise solution approach for rotational dynamics of structures with complex geometries and mixed boundary conditions. Specifically, unlike finite elements techniques, the presented technique uses a series expansion approach considering distributed-parameter system equations: The integral boundary value problem for rotating structures is discretized using the spectral-Tchebychev approach. To simplify the domain of the structures, cross-sectional and rotational transformations are applied to problems with curved cross-section and pretwisted geometry. The nonlinear terms included in the integral boundary value problem are linearized around an equilibrium solution using the quasi-static method. As a result, mass, damping, and stiffness matrices, as well as a forcing vector, are obtained for a given rotating structure. Several case studies are then performed to demonstrate the application and effectiveness of the 3D-ST solution. For each problem, the natural frequencies and modes shapes from the 3D-ST solution are compared to those from the literature (when available) and to those from a commercial finite elements software. The case studies include rotating/spinning parallelepipeds under free and mixed boundary conditions, and a cantilevered pretwisted beam (i.e., rotating blade) with an airfoil geometry rotating on a hub. It is seen that the natural frequencies and mode shapes from the 3D-ST technique differ from those from the

  13. Rotationally resolved infrared spectroscopy of adamantane

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm-1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of the SOLEIL synchrotron) as well as a classical globar. Adamantane is a spherical top molecule with tetrahedral symmetry (Td point group) and has no permanent dipole moment in its vibronic ground state. Of the 72 fundamental vibrational modes in adamantane, only 11 are IR active. Here we present rotationally resolved spectra for seven of them: ν30, ν28, ν27, ν26, ν25, ν24, and ν23. The typical rotational structure of spherical tops is observed and analyzed using the STDS software developed in the Dijon group, which provides the first accurate energy levels and rotational constants for seven fundamental modes. Rotational levels with quantum numbers as high as J = 107 have been identified and included in the fit leading to a typical standard deviation of about 10-3 cm-1.

  14. Radial velocity planet detection biases at the stellar rotational period

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Plavchan, Peter; Johnson, John Asher; Ciardi, David R.; Swift, Jonathan; Kane, Stephen R.

    2016-07-01

    Future generations of precise radial velocity (RV) surveys aim to achieve sensitivity sufficient to detect Earth mass planets orbiting in their stars' habitable zones. A major obstacle to this goal is astrophysical RV noise caused by active areas moving across the stellar limb as a star rotates. In this paper, we quantify how stellar activity impacts exoplanet detection with radial velocities as a function of orbital and stellar rotational periods. We perform data-driven simulations of how stellar rotation affects planet detectability and compile and present relations for the typical time-scale and amplitude of stellar RV noise as a function of stellar mass. We show that the characteristic time-scales of quasi-periodic RV jitter from stellar rotational modulations coincides with the orbital period of habitable-zone exoplanets around early M-dwarfs. These coincident periods underscore the importance of monitoring the targets of RV habitable-zone planet surveys through simultaneous photometric measurements for determining rotation periods and activity signals, and mitigating activity signals using spectroscopic indicators and/or RV measurements at different wavelengths.

  15. Radial Velocity Planet Detection Biases at the Stellar Rotational Period

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Plavchan, Peter; Asher Johnson, John; Ciardi, David R.; Swift, Jonathan; Kane, Stephen R.

    2016-04-01

    Future generations of precise radial velocity (RV) surveys aim to achieve sensitivity sufficient to detect Earth mass planets orbiting in their stars' habitable zones. A major obstacle to this goal is astrophysical radial velocity noise caused by active areas moving across the stellar limb as a star rotates. In this paper, we quantify how stellar activity impacts exoplanet detection with radial velocities as a function of orbital and stellar rotational periods. We perform data-driven simulations of how stellar rotation affects planet detectability and compile and present relations for the typical timescale and amplitude of stellar radial velocity noise as a function of stellar mass. We show that the characteristic timescales of quasi-periodic radial velocity jitter from stellar rotational modulations coincides with the orbital period of habitable zone exoplanets around early M-dwarfs. These coincident periods underscore the importance of monitoring the targets of RV habitable zone planet surveys through simultaneous photometric measurements for determining rotation periods and activity signals, and mitigating activity signals using spectroscopic indicators and/or RV measurements at different wavelengths.

  16. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    SciTech Connect

    Ko, S. H. Jhang, Hogun; Singh, R.

    2015-08-15

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.

  17. Quasi-Neutral Theory of Epidemic Outbreaks

    PubMed Central

    Pinto, Oscar A.; Muñoz, Miguel A.

    2011-01-01

    Some epidemics have been empirically observed to exhibit outbreaks of all possible sizes, i.e., to be scale-free or scale-invariant. Different explanations for this finding have been put forward; among them there is a model for “accidental pathogens” which leads to power-law distributed outbreaks without apparent need of parameter fine tuning. This model has been claimed to be related to self-organized criticality, and its critical properties have been conjectured to be related to directed percolation. Instead, we show that this is a (quasi) neutral model, analogous to those used in Population Genetics and Ecology, with the same critical behavior as the voter-model, i.e. the theory of accidental pathogens is a (quasi)-neutral theory. This analogy allows us to explain all the system phenomenology, including generic scale invariance and the associated scaling exponents, in a parsimonious and simple way. PMID:21760930

  18. A Compact Quasi-axisymmetric Stellarator Reactor

    SciTech Connect

    L.P. Ku; the ARIES-CS Team

    2003-10-20

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils.

  19. Quasi-neutral theory of epidemic outbreaks.

    PubMed

    Pinto, Oscar A; Muñoz, Miguel A

    2011-01-01

    Some epidemics have been empirically observed to exhibit outbreaks of all possible sizes, i.e., to be scale-free or scale-invariant. Different explanations for this finding have been put forward; among them there is a model for "accidental pathogens" which leads to power-law distributed outbreaks without apparent need of parameter fine tuning. This model has been claimed to be related to self-organized criticality, and its critical properties have been conjectured to be related to directed percolation. Instead, we show that this is a (quasi) neutral model, analogous to those used in Population Genetics and Ecology, with the same critical behavior as the voter-model, i.e. the theory of accidental pathogens is a (quasi)-neutral theory. This analogy allows us to explain all the system phenomenology, including generic scale invariance and the associated scaling exponents, in a parsimonious and simple way. PMID:21760930

  20. QUASI-RESONANT THEORY OF TIDAL INTERACTIONS

    SciTech Connect

    D'Onghia, Elena; Vogelsberger, Mark; Faucher-Giguere, Claude-Andre; Hernquist, Lars

    2010-12-10

    When a spinning system experiences a transient gravitational encounter with an external perturber, a quasi-resonance occurs if the spin frequency of the victim roughly matches the peak angular speed of the perturber. Such encounters are responsible for the formation of long tails and bridges during galaxy collisions. For high-speed encounters, the resulting velocity perturbations can be described by the impulse approximation. The traditional impulse approximation, however, does not distinguish between prograde and retrograde encounters, and therefore completely misses the resonant response. Here, we modify the impulse approximation to include the effects of quasi-resonant phenomena on stars orbiting within a disk. Explicit expressions are derived for the velocity and energy changes to the stars induced by tidal forces from an external gravitational perturber passing either on a straight line or a parabolic orbit. Comparisons with numerical-restricted three-body calculations illustrate the applicability of our analysis.

  1. Reformulation of quasi-linear theory.

    NASA Technical Reports Server (NTRS)

    Kaufman, A. N.

    1972-01-01

    Standard plasma quasi-linear theory is reformulated on the basis of a classical quantum derivation proceeding from the Vlasov equation and dealing only with frequency, wavenumber, and velocity. The wave amplitudes are assumed to be weakly time-dependent, and no distinction is made between growing and decaying waves. The proposed method leads to no negative diffusivity of 'fake' diffusion. By appropraite treatment of nonresonant interaction, expressions are obtained for wave energy and momentum.

  2. Rotation of solar magnetic fields for the current solar cycle 24

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2014-11-01

    The rotation of solar magnetic fields for the current solar cycle 24 is investigated through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields during Carrington rotation numbers 2076-2146 (2008 October to 2014 January). The sidereal rotation rates of positive and negative magnetic fields at some latitudes are shown, and it can be found that the positive (negative) fields generally rotate faster than the negative (positive) fields in the southern (northern) hemisphere at low latitudes. The mean rotation profiles of total, positive, and negative magnetic fields between ±60° latitudes in the time interval are also obtained. It should be noted that both of the mean rotation profiles of the positive and negative magnetic fields, as well as the mean rotation profile of the total magnetic field, exhibit a quasi-rigid rotation at latitudes above about 55°. The mean rotation rates of the positive (negative) polarity reach their maximum values at about 9°(6)° latitude in the southern (northern) hemisphere. The mean rotation profile of the total magnetic field displays an obvious north-south asymmetry, where the rotation seems to be more differential in the northern hemisphere. The latitude variation in the rotation rate differences between positive and negative magnetic fields is further studied, and it is found that magnetic fields with the same polarity as the leading sunspots at a given hemisphere rotate faster than those with the opposite polarity, except for the zones around 52° latitude of the southern hemisphere and around 35° latitude of the northern hemisphere. The implication of these results is discussed. It is clear that the obtained results can provide some observational constraints on the theoretical research of the mechanisms of differential rotation and solar cycle.

  3. Quasi-independence, fitness, and advantageousness.

    PubMed

    Brosnan, Kevin

    2009-09-01

    I argue that the idea of 'quasi-independence' [Lewontin, R. C. (1978). Adaptation. Scientific American, 239(3), 212-230] cannot be understood without attending to the distinction between fitness and advantageousness [Sober, E. (1993). Philosophy of biology. Boulder: Westview Press]. Natural selection increases the frequency of fitter traits, not necessarily of advantageous ones. A positive correlation between an advantageous trait and a disadvantageous one may prevent the advantageous trait from evolving. The quasi-independence criterion is aimed at specifying the conditions under which advantageous traits will evolve by natural selection in this type of situation. Contrary to what others have argued [Sterelny, K. (1992). Evolutionary explanations of human behavior. Australian Journal of Philosophy, 70(2), 156-172, and Sterelny, K., & Griffiths, P. (1999). Sex and death. Chicago: University of Chicago Press], these conditions must involve a precise quantitative measure of (a) the extent to which advantageous traits are beneficial, and (b) the degree to which they are correlated with other traits. Driscoll (2004) [Driscoll, C. (2004). Can behaviors be adaptations? Philosophy of Science, 71, 16-35] recognizes the need for such a measure, but I argue that she does not provide the correct formulation. The account of quasi-independence that I offer clarifies this point. PMID:19720331

  4. Wave-driven Rotation in Supersonically Rotating Mirrors

    SciTech Connect

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  5. Soil compaction across the old rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil compaction levels across the Old Rotation, the world’s oldest continuous cotton (Gossypium hirsutum L.) experiment, has not been conducted since the experiment transitioned to conservation tillage and high residue cover crops with and without irrigation. Our objective was to charact...

  6. The Rotating Morse-Pekeris Oscillator Revisited

    ERIC Educational Resources Information Center

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2008-01-01

    The Morse-Pekeris oscillator model for the calculation of the vibration-rotation energy levels of diatomic molecules is revisited. This model is based on the realization of a second-order exponential expansion of the centrifugal term about the minimum of the vibrational Morse oscillator and the subsequent analytical resolution of the resulting…

  7. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  8. Rotation-invariant texture image retrieval using rotated complex wavelet filters.

    PubMed

    Kokare, Manesh; Biswas, P K; Chatterji, B N

    2006-12-01

    This paper proposes a novel approach for rotation-invariant texture image retrieval by using set of dual-tree rotated complex wavelet filter (DT-RCWF) and DT complex wavelet transform (DT-CWT) jointly, which obtains texture features in 12 different directions. Two-dimensional RCWFs are nonseparable and oriented, which improves characterization of oriented textures. Robust and efficient isotropic rotationally invariant features are extracted from DT-RCWF and DT-CWT decomposed subbands. This paper demonstrates the effectiveness of this new set of features on four different sets of rotated and nonrotated databases. Experimental results indicate that the proposed method improves retrieval accuracy from 83.17% to 93.71% on a small size (208 images) nonrotated database D1, from 82.71% to 90.86% on a small size (208 images) rotated database D2, from 72.18% to 76.09% on a medium-size (640 images) rotated database D3, and from 64.17% to 78.93% on a large size (1856 images) rotated database D4, compared with the discrete wavelet transform-based approach. New method also retains comparable levels of computational complexity. PMID:17186804

  9. Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation

    NASA Astrophysics Data System (ADS)

    Horinaka, Hiromichi; Hashimoto, Koji; Wada, Kenji; Cho, Yoshio; Osawa, Masahiko

    1995-07-01

    The utilization of light polarization is proposed to extract quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium under continuously operating conditions. Removal of a floor level normally appearing on the dynamic range over which the extraction capability is maintained is demonstrated. By use of pulse-based observations this cw scheme of extraction of quasi-straightforward-propagating photons is directly shown to be equivalent to the use of a temporal gate in the pulse-based operation.

  10. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    SciTech Connect

    Epstein, Courtney R.; Pinsonneault, Marc H. E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.

  11. Simulated bioprosthetic heart valve deformation under quasi-static loading.

    PubMed

    Sun, Wei; Abad, Ajay; Sacks, Michael S

    2005-11-01

    For more than 40 years, the replacement of diseased natural heart valves with prosthetic devices has dramatically extended the quality and length of the lives of millions of patients worldwide. However, bioprosthetic heart valves (BHV) continue to fail due to structural failure resulting from poor tissue durability and faulty design. Clearly, an in-depth understanding of the biomechanical behavior of BHV at both the tissue and functional prosthesis levels is essential to improving BHV design and to reduce rates of failure. In this study, we simulated quasi-static BHV leaflet deformation under 40, 80, and 120 mm Hg quasi-static transvalvular pressures. A Fung-elastic material model was used that incorporated material parameters and axes derived from actual leaflet biaxial tests and measured leaflet collagen fiber structure. Rigorous experimental validation of predicted leaflet strain field was used to validate the model results. An overall maximum discrepancy of 2.36% strain between the finite element (FE) results and experiment measurements was obtained, indicating good agreement between computed and measured major principal strains. Parametric studies utilizing the material parameter set from one leaflet for all three leaflets resulted in substantial variations in leaflet stress and strain distributions. This result suggests that utilization of actual leaflet material properties is essential for accurate BHV FE simulations. The present study also underscores the need for rigorous experimentation and accurate constitutive models in simulating BHV function and design. PMID:16438226

  12. Design studies of quasi-optical gyro amplifiers

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Temkin, R.J.

    1995-12-31

    The Quasi-Optical Gyro Amplifier is a novel device for generating high-frequency, high-power coherent microwave radiation. The authors report a study on a quasi-optical gyro amplifier designed with a periodic mirror structure. A specific design is presented for an amplifier at 95 GHz with an output power level of 100 kW and an efficiency of 30%. The system consists of two sets of parallel mirrors facing each other. A free space Gaussian beam can propagate through the structure in a zigzagged path. An on axis gyrotron beam interacts with the radiation each time it crosses the Gaussian waist. With a beam of 70 kV, 5A and velocity ratio of 1.5, this nonlinear simulation shows that this device can be 16% efficient. With a tapered magnetic field, the efficiency can be increased to 40%. However, studies also show that electron velocity spread significantly reduces the gain. More seriously, bunched electrons considerably change the direction of radiation propagation. These issues need to be addressed in further studies.

  13. Quasi-planktonic behavior of foraging top marine predators.

    PubMed

    Della Penna, Alice; De Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; d'Ovidio, Francesco

    2015-01-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels. PMID:26666350

  14. Quasi-planktonic behavior of foraging top marine predators

    PubMed Central

    Della Penna, Alice; De Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; d’Ovidio, Francesco

    2015-01-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1–100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels. PMID:26666350

  15. Quasi-planktonic behavior of foraging top marine predators

    NASA Astrophysics Data System (ADS)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  16. Solar Internal Rotation

    NASA Astrophysics Data System (ADS)

    Schou, J.; SOE Internal Rotation Team

    With the flood of high quality helioseismic data from the instruments on the SOHO spacecraft (MDI/VIRGO/GOLF) and ground based instruments (eg. GONG and LOWL) we have been able to get increasingly detailed information on the rotation and other large scale flows in the solar interior. In this talk I will discuss some of the highlights of what we have learned so far and what we may expect to learn in the near future. Among the recent advances have been tighter constraints on the tachocline at the bottom of the convection zone, detection of details in the surface rotation rate similar to the torsional oscillations found in the surface Doppler shift and helioseismic evidence for meridional flows. The MDI project is supported by NASA contract NAG5-3077 at Stanford University.

  17. Rotatable seal assembly

    DOEpatents

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  18. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  19. A call for rotators

    NASA Astrophysics Data System (ADS)

    Mountain, Gregory

    “Needed: highly motivated geoscientists willing to slow the pace of their research for 1-2 years while managing federal government support of their discipline. Assured: change of perspective; no change in pay. Contact your National Science Foundation Program Director for details.—No, this isn't an NSF job announcement; this is an open letter to members of the Earth science community from a recently “retired” NSF rotator concerned by the small number of researchers interested in a Washington tour. I learned firsthand the extent to which an individual in this position is entrusted with decision-making powers, and as a result, I believe that each of us in the research community should feel responsible for ensuring that highly qualified people serve as rotators.

  20. Rotation of FK Comae

    SciTech Connect

    Rucinski, S.M. )

    1990-03-01

    V sin i for the rapidly rotating G-type giant FK Com is estimated using high-resolution coude spectra and the Fourier transform approach. The result, V sin i = 159 + or - 4 km/s, agrees well with recent determinations which used direct comparison of FK Com spectra with those of artificially broadened standards. If FK Com does not differ drastically in its internal structure from more normal stars, its angular momentum is a few (perhaps 10) times larger than for single rapidly rotating stars following standard relations for the upper main sequence. It angular momentum is about 3 times smaller than that of the orbital motion in a typical W UMa-type system. 30 refs.

  1. Rotational spectrum of tryptophan

    SciTech Connect

    Sanz, M. Eugenia Cabezas, Carlos Mata, Santiago Alonso, Josè L.

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  2. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  3. Rotational spacings in superdeformed bands of nuclei

    SciTech Connect

    Chasman, R.R.; Farhan, A.

    1995-08-01

    An unexpected result of the experimental investigation of superdeformed rotational bands is the observation of near-identical dynamic moments of inertia in different nuclei. This phenomenon was also noted in normally deformed rotational bands. A priori, the BCS method is suspect at I = 0 for the treatment of superdeformed nuclear shapes because the single-particle level density near the nuclear surface is small. If it were large, there would be no superdeformed minimum. At high spin, pairing correlations are further weakened, and the BCS method becomes even worse.

  4. Finite element forced vibration analysis of rotating cyclic structures

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1981-01-01

    A capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axes of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical development of this capability is presented.

  5. Soybean response to poultry litter in a rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean yield response to annual poultry litter rates (0, 1.0 and 3.4 tons/acre) on a Leeper silty clay loam soil in corn (M), cotton (C) and soybean (B) rotation system were evaluated. The rotation systems from 2010-2014 were: CMBBMR; CMCBM and CCMMB. This study site had high levels of soil test Ph...

  6. Effects of rotating flows on combustion and jet noise.

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1972-01-01

    Experimental investigations of combustion in rotating (swirling) flow have shown that the mixing and combustion processes were accelerated, flame length and noise levels significantly decreased, and flame stability increased relative to that obtained without rotation. Unsteady burning accompanied by a pulsating flame, violent fluctuating jet, and intense noise present in straight flow burning were not present in rotating flow burning. Correlations between theory and experiment show good agreement. Such effects due to rotating flows could lead to suppressing jet noise, improving combustion, reducing pollution, and decreasing aircraft engine size. Quantitative analysis of the aero-acoustic relationship and noise source characteristics are needed.-

  7. On rotational conical flow

    NASA Technical Reports Server (NTRS)

    Ferrari, Carlo

    1952-01-01

    Some general properties of isoenergetic rotational conical fields are determined. For such fields, provided the physical parameters of the fluid flow are known on a conical reference surface, it being understood that they satisfy certain imposed conditions, it is shown how to construct the hodographs in the various meridional semiplanes, as the envelope of either the tangents to the hodographs or of the osculatory circles.

  8. Quasi-particle spectrum in trilayer graphene: Role of onsite coulomb interaction and interlayer coupling

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Ajay

    2015-01-01

    Stacking dependent quasi-particle spectrum and density of states (DOS) in trilayer (ABC-, ABA- and AAA-stacked) graphene are analyzed using mean-field Green's function equations of motion method. Interlayer coupling (t1) is found to be responsible for the splitting of quasi-particle peaks in each stacking order. Coulomb interaction suppresses the trilayer splitting and generates a finite gap at Fermi level in ABC- while a tiny gap in ABA-stacked trilayer graphene. Influence of t⊥ is prominent for AAA-stacking as compared to ABC- and ABA-stacking orders. The theoretically obtained quasi-particle energies and DOS has been viewed in terms of recent angle resolved photoemission spectroscopic (ARPES) and scanning tunneling microscopic (STM) data available on these systems.

  9. Energy and rotation-dependent stereodynamics of reaction

    NASA Astrophysics Data System (ADS)

    Yong-Qing, Li; Yun-Fan, Yang; Yang, Yu; Yong-Jia, Zhang; Feng-Cai, Ma

    2016-02-01

    Quasi-classical trajectory calculations are performed to study the stereodynamics of the reaction based on the first excited state NH2(12A‧) potential energy surface reported by Li et al. [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k-k‧ distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k-k‧ distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j‧ of the product H2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141and 11274149), the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2015040), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. 2014-1685), and the Special Fund Based Research New Technology of Methanol Conversion and Coal Instead of Oil and the China Postdoctoral Science Foundation (Grant No. 2014M550158).

  10. Rotating Brush Seal

    NASA Technical Reports Server (NTRS)

    Lattime, S. B.; Braun, M. J.; Choy. F. K.; Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    The proven technology of brush seals has been extended to the mitigation of problems arising from friction and wear at the bristle-rotor interface at high surface speeds. In prototype testing, the brush is mounted on, and free to rotate with the shaft, thus providing a complaint primary seal. A face seal positioned between the backing plate of the brush seal and the housing provides a secondary seal. The purpose of this paper is to demonstrate the interaction between the brush bristles and the shaft at high surface speeds as well as introduce a numerical model to simulate the bristle behavior. A test facility was constructed to study the effects of centrifugal forces on bristle deflection in a single rotating brush seal. The bristle-rotor interface was observed through a video camera, which utilized a high magnification borescope and a high frequency strobe light source. Rotational speeds of the rotor and the brush seal were measured by a magnetic and optical speed sensor, respectively. Preliminary results with speeds up to 11,000 rpm show no speed differential between the brush seal and rotor, or any instability problems associated with the brush seal. Bristle liftoff from the rotor is successfully captured on video.

  11. Rotational magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Trakic, Adnan; Eskandarnia, Neda; Keong Li, Bing; Weber, Ewald; Wang, Hua; Crozier, Stuart

    2012-02-01

    In magnetic induction tomography (MIT), an array of excitation coils is typically used to apply time-varying magnetic fields to induce eddy currents in the material to be studied. The magnetic fields from the eddy currents are then detected by an array of sensing coils to form an image of passive electromagnetic properties (i.e. conductivity, permittivity and permeability). Increasing the number of transmitters and receivers can provide a better image quality at the expense of a larger and more expensive MIT system. Instead of increasing the number of coils, this study investigates the possibility of rotating a single transmit-receive coil to image the electrical properties of the sample, by emulating an array of 200 transmit-receive coils by time-division multiplexing. Engineering details on the electromechanical design and development of a rotating MIT system are presented. The experimental results indicate that representative images of conductive samples can be obtained at 5 MHz by rotating a single transmit-receive coil.

  12. Mixing of a passive scalar by the instability of a differentially rotating axial pinch

    NASA Astrophysics Data System (ADS)

    Paredes, A.; Gellert, M.; Rüdiger, G.

    2016-04-01

    The mean-field diffusion of passive scalars such as lithium, beryllium or temperature dispersals due to the magnetic Tayler instability of a rotating axial pinch is considered. Our study is carried out within a Taylor-Couette setup for two rotation laws: solid-body quasi-Kepler rotation. The minimum magnetic Prandtl number used is 0.05, and the molecular Schmidt number Sc of the fluid varies between 0.1 and 2. An effective diffusivity coefficient for the mixing is numerically measured by the decay of a prescribed concentration peak located between both cylinder walls. We find that only models with Sc exceeding 0.1 basically provide finite instability-induced diffusivity values. We also find that for quasi-Kepler rotation at a magnetic Mach number Mm ≃ 2, the flow transits from the slow-rotation regime to the fast-rotation regime that is dominated by the Taylor-Proudman theorem. For fixed Reynolds number, the relation between the normalized turbulent diffusivity and the Schmidt number of the fluid is always linear so that also a linear relation between the instability-induced diffusivity and the molecular viscosity results, just in the sense proposed by Schatzman (1977, A&A, 573, 80). The numerical value of the coefficient in this relation reaches a maximum at Mm ≃ 2 and decreases for larger Mm, implying that only toroidal magnetic fields on the order of 1 kG can exist in the solar tachocline.

  13. Coordinate-Free Rotation Operator.

    ERIC Educational Resources Information Center

    Leubner, C.

    1979-01-01

    Suggests the use of a coordinate-free rotation operator for the teaching of rotations in Euclidean three space because of its twofold didactic advantage. Illustrates the potentialities of the coordinate-free rotation operator approach by a number of examples. (Author/GA)

  14. Goniometer-rotation-angle recorder

    SciTech Connect

    Shchagin, A.V.

    1985-12-01

    This paper describes a goniometer-rotation-angle recorder with a discrete drive. The rotation angle in a given plane is recorded by bidirectional sign counter of positive and negative drive-actuation numbers for rotations in positive and negative directions. The maximum capacity of the counter is + or - 9 decimal digits.

  15. Drift waves in rotating plasmas

    SciTech Connect

    Horton, W.; Liu, J.

    1983-09-01

    The stability of the electron drift wave is investigated in the presence of E x B plasma rotation typical of the central cell plasma in tandem mirrors. It is shown that a rotationally-driven drift wave may occur at low azimuthal mode numbers. Conditions for rotational instabilities are derived. Quasilinear formulas are given for the anomalous transport associated with the unstable fluctuations.

  16. On the Product of Rotations

    ERIC Educational Resources Information Center

    Trenkler, G.; Trenkler, D.

    2008-01-01

    Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…

  17. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  18. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  19. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  20. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Tchiguirinskaia, I.; Lovejoy, S.; Tuck, A. F.

    2012-01-01

    Lindborg et al. (2010) claim that the apparent spectrum power law E(k) ≈ k-3 on scales ≥600 km obtained with the help of commercial jetliner trajectory deviations (GASP and Mozaic databases) could not be brought into question (Lovejoy et al., 2009a), because this spectrum corresponds to "a well known theory of quasi-geostrophic turbulence developed by Charney (1971)". Lindborg et al. (2010) also claim that "limitations [of this theory] have been relaxed in many of the modern models of atmospheric turbulence". We show that both claims are irrelevant and that generalized scale invariance (GSI) is indispensable to go beyond the quasi-geostrophic limitations, to go in fact from scale analysis to scaling analysis in order to derive better analytical models. In this direction, we derive vorticity equations in a space of (fractal) dimension D=2+Hz (0 ≤ Hz ≤ 1), which corresponds to a first step in the derivation of a dynamical alternative to the quasi-geostrophic approximation and turbulence. The corresponding precise definition of fractional dimensional turbulence already demonstrates that the classical 2-D and 3-D turbulence are not the main options to understand atmospheric dynamics. Although (2 + Hz)-D turbulence (with 0 < Hz < 1) has more common features with 3-D turbulence than with 2-D turbulence, it has nevertheless very distinctive features: its scaling anisotropy is in agreement with the layered pancake structure, which is typical of rotating and stratified turbulence but not of the classical 3-D turbulence.

  1. Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Foley, Benjamin; Ipek, Bahar; Tyagi, Madhusudan; Copley, John; Brown, Craig; Choi, Joshua; Lee, Seung-Hun

    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes are still poorly understood. Using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic and tetragonal phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3) , while in orthorhombic phase only C3 rotation is present. Around room temperature, the characteristic relaxation time for the C4 rotation is found to be 5ps while for the C3 rotation is 1ps. The T-dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance.

  2. Earth rotation: Solved and unsolved problems

    NASA Astrophysics Data System (ADS)

    Cazenave, A.; Paquet, P.

    A workshop dedicated to earth rotation problems was held in Bonas, France, June 11-13, 1985. It was organized by the North Atlantic Treaty Organization (NATO) Scientific Affairs Division and the Council of Europe and was attended by 39 participants from eight different countries.In the last 10 years, extremely precise measurements of the earth's rotation parameters and new global geophysical data have become available, allowing major advances to be made in the understanding of the various irregularities affecting the earth's rotation. The aim of this workshop was to bring together scientists who have made important contributions in this field during the last decade, both at the observational and geophysical interpretation levels. The first session was dedicated to the definition, implementation, and maintenance of the terrestrial and celestial reference systems.

  3. On intracluster Faraday rotation. II - Statistical analysis

    NASA Technical Reports Server (NTRS)

    Lawler, J. M.; Dennison, B.

    1982-01-01

    The comparison of a reliable sample of radio source Faraday rotation measurements seen through rich clusters of galaxies, with sources seen through the outer parts of clusters and therefore having little intracluster Faraday rotation, indicates that the distribution of rotation in the former population is broadened, but only at the 80% level of statistical confidence. Employing a physical model for the intracluster medium in which the square root of magnetic field strength/turbulent cell per gas core radius number ratio equals approximately 0.07 microgauss, a Monte Carlo simulation is able to reproduce the observed broadening. An upper-limit analysis figure of less than 0.20 microgauss for the field strength/turbulent cell ratio, combined with lower limits on field strength imposed by limitations on the Compton-scattered flux, shows that intracluster magnetic fields must be tangled on scales greater than about 20 kpc.

  4. Rotational Cooling of Trapped Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Glöckner, Rosa; Prehn, Alexander; Englert, Barbara G. U.; Rempe, Gerhard; Zeppenfeld, Martin

    2015-12-01

    Controlling the internal degrees of freedom is a key challenge for applications of cold and ultracold molecules. Here, we demonstrate rotational-state cooling of trapped methyl fluoride molecules (CH3F ) by optically pumping the population of 16 M sublevels in the rotational states J =3 , 4, 5 and 6 into a single level. By combining rotational-state cooling with motional cooling, we increase the relative number of molecules in the state J =4 , K =3 , M =4 from a few percent to over 70%, thereby generating a translationally cold (≈30 mK ) and nearly pure state ensemble of about 106 molecules. Our scheme is extendable to larger sets of initial states, other final states, and a variety of molecule species, thus paving the way for internal-state control of ever-larger molecules.

  5. Rotational Cooling of Trapped Polyatomic Molecules.

    PubMed

    Glöckner, Rosa; Prehn, Alexander; Englert, Barbara G U; Rempe, Gerhard; Zeppenfeld, Martin

    2015-12-01

    Controlling the internal degrees of freedom is a key challenge for applications of cold and ultracold molecules. Here, we demonstrate rotational-state cooling of trapped methyl fluoride molecules (CH_{3}F) by optically pumping the population of 16 M sublevels in the rotational states J=3, 4, 5 and 6 into a single level. By combining rotational-state cooling with motional cooling, we increase the relative number of molecules in the state J=4, K=3, M=4 from a few percent to over 70%, thereby generating a translationally cold (≈30  mK) and nearly pure state ensemble of about 10^{6} molecules. Our scheme is extendable to larger sets of initial states, other final states, and a variety of molecule species, thus paving the way for internal-state control of ever-larger molecules. PMID:26684114

  6. On the shape of rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Zahn, J.-P.; Ranc, C.; Morel, P.

    2010-07-01

    Aims: The critical surface of a rapidly rotating star is determined, assuming that the rotation is either uniform or shellular (angular velocity constant on level surfaces, but increasing with depth). Methods: A step beyond the classical Roche model, where the entire mass is assumed to be gathered at the center of the star, here the quadrupolar moment of the mass distribution is taken into account through a linear perturbation method. Results: The flattening (defined here as the ratio between the equatorial and the polar radius) can somewhat exceed the 3/2 value of the Roche model, depending on the strength of the interior rotation. The result is applied to a star of 7 solar masses, which is the mass of Achernar, the star with the largest flattening detected so far through optical interferometry.

  7. Rotation of Jupiter and Saturn and their Magnetic Envelopes

    NASA Astrophysics Data System (ADS)

    Russell, Christopher T.; Yu, Z. J.; Wei, H. Y.; Jia, Y. D.; Leisner, J. S.; Dougherty, M. K.

    2009-09-01

    The IAU-defined rotation rate of Jupiter is 9h 55m 29.71s, based on radio measurements of electromagnetic emissions with periodic behavior. Pioneer 10, 11, Voyager 1 and 2, Ulysses, and Galileo measurements of the Jovian magnetic field have found that the magnetic dipole axis is tilted from the rotation axis by close to 10°. The longitude of the dipole has remained almost fixed using the IAU period, confirming the assumption, tacit in the use of the radio waves, that their periodicity is controlled by the rotation of the magnetic field originating deep inside the planet. Using the full suite of magnetic measurements from the 6 spacecraft, we can refine the rotation period to 9h 55m, 29.704 ± 0.003s, which period is within the uncertainty of the IAU definition. This system III period does not order all magnetospheric phenomena, and a system IV period has been introduced to order other periodic phenomenon. No significant dipole tilt is present at Saturn, so we do not presently have a Saturnian system III period, but we do have a period analogous to the Jovian system IV period called the SKR period, a changeable period not locked to the planet. This period is clearly controlled by the interaction of Enceladus with the ionosphere and the magnetospheric plasma. This interaction upsets the centrifugal-centripetal force balance in the corotating plasma by removing angular momentum. A quasi-three-to-one resonance with Enceladus may allow periodic density enhancements to build up, affecting the dynamics of the entire magnetosphere. Returning to Jupiter, we can learn lessons from the Saturn-Enceladus system pertinent to the Io-Jupiter system, where there is a four-to-one quasi-resonance. The System IV period appears to be the jovian equivalent of the saturnian SKR period.

  8. Quasi-isochronous Muon Collection Channels

    SciTech Connect

    Yoshikawa, C.; Ankenbrandt, C.; Neuffer, D.; /Fermilab

    2010-05-01

    Intense muon beams have many potential applications, including neutrino factories and muon colliders. However, muons are produced as tertiary beams, resulting in diffuse phase space distributions. To make useful beams, the muons must be rapidly cooled before they decay. An idea conceived recently for the collection and cooling of muon beams, namely, the use of a Quasi-Isochronous Helical Channel (QIHC) to facilitate capture of muons into RF buckets, has been developed further. The resulting distribution could be cooled quickly and coalesced into a single bunch to optimize the luminosity of a muon collider. After a brief elaboration of the QIHC concept, recent developments are described.

  9. The concept of quasi-integrability

    NASA Astrophysics Data System (ADS)

    Ferreira, Luiz. A.; Luchini, G.; Zakrzewski, Wojtek J.

    2013-10-01

    We show that certain field theory models, although non-integrable according to the usual definition of integrability, share some of the features of integrable theories for certain configurations. Here we discuss our attempt to define a "quasi-integrable theory", through a concrete example: a deformation of the (integrable) sine-Gordon potential. The techniques used to describe and define this concept are both analytical and numerical. The zero-curvature representation and the abelianisation procedure commonly used in integrable field theories are adapted to this new case and we show that they produce asymptotically conserved charges that can then be observed in the simulations of scattering of solitons.

  10. Mirror Symmetry for Quasi-Homogeneous Singularities

    NASA Astrophysics Data System (ADS)

    Rathnakumara, Himal; Jarvis, Tyler

    2008-10-01

    I will present an introduction to mirror symmetry in the context of string theory. Then I will describe an instance of mirror symmetry for singularties defined by quasi-homogeneous polynomials in weighted projective spaces. Milnor rings and the FJRW (Fan-Jarvis-Ruan-Witten) rings associated with these singularities and their relation to the Landua-Ginzburg A model and the Landua-Ginzburg B model will be explained. Results of the calculations for certain singularities for which the mirror symmetry conjecture has been verified will be presented.

  11. Quasi periodic oscillations in black hole binaries

    NASA Astrophysics Data System (ADS)

    Motta, S. E.

    2016-05-01

    Fast time variability is the most prominent characteristic of accreting systems and the presence of quasi periodic oscillations (QPOs) is a constant in all accreting systems, from cataclysmic variables to AGNs, passing through black hole and neutron star X-ray binaries and through the enigmatic ultra-luminous X-ray sources. In this paper, I will briefly review the current knowledge of QPOs in black hole X-ray binaries, mainly focussing on their observed properties, but also mentioning the most important models that have been proposed to explain the origin of QPOs over the last decades.

  12. Bacterial Motion in Quasi Two Dimensions

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Libchaber, Albert

    2000-03-01

    We study the effect of bacterial motion on micron-scale beads in a freely suspended soap film. Given the size of bacteria and beads, the geometry of the experiment is quasi-two-dimensional. Large positional fluctuations are observed for beads as large as 10 um in diameter, and the mean-square displacements, measured using video imaging, indicate superdiffusion on short times and normal diffusion on long times. Though the phenomenon is similar to Brownian motion of small particles, its physical origin is different and can be attributed to collective dynamics of bacteria.

  13. Quasi-optical diplexer for millimeter wavelengths.

    PubMed

    Payne, J M; Wordeman, M R

    1978-12-01

    A quasi-optical diplexer for injection of signal and local oscillator frequencies into a mixer at millimeter wave-lengths is described. The diplexer accepts both image and signal bands, presents low loss at both the signal and local oscillator frequencies and rejects local oscillator noise at the signal frequency. The configuration of the device makes it particularly useful for Cassegrain receivers using a cooled mixer and a lens corrected feed system. The diplexer has been tested at 150 GHz on the 11-m radio telescope operated by The National Radio Astronomy Observatory in Tucson, Arizona. PMID:18699048

  14. Evaluating the Impact of Depth Cue Salience in Working Three-Dimensional Mental Rotation Tasks by Means of Psychometric Experiments

    ERIC Educational Resources Information Center

    Arendasy, Martin; Sommer, Markus; Hergovich, Andreas; Feldhammer, Martina

    2011-01-01

    The gender difference in three-dimensional mental rotation is well documented in the literature. In this article we combined automatic item generation, (quasi-)experimental research designs and item response theory models of change measurement to evaluate the effect of the ability to extract the depth information conveyed in the two-dimensional…

  15. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  16. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  17. Estimating extragalactic Faraday rotation

    NASA Astrophysics Data System (ADS)

    Oppermann, N.; Junklewitz, H.; Greiner, M.; Enßlin, T. A.; Akahori, T.; Carretti, E.; Gaensler, B. M.; Goobar, A.; Harvey-Smith, L.; Johnston-Hollitt, M.; Pratley, L.; Schnitzeler, D. H. F. M.; Stil, J. M.; Vacca, V.

    2015-03-01

    Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m2, in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly

  18. Rotation and Mass Loss

    NASA Astrophysics Data System (ADS)

    Owocki, S.

    2008-06-01

    Stellar rotation can play an important role in structuring and enhancing the mass loss from massive stars. Initial 1D models focussed on the expected centrifugal enhancement of the line-driven mass flux from the equator of a rotating star, but the review here emphasizes that the loss of centrifugal support away from the stellar surface actually limits the steady mass flux to just the point-star CAK value, with models near critical rotation characterized by a slow, subcritical acceleration. Recent suggestions that such slow outflows might have high enough density to explain disks in Be or B[e] stars are examined in the context of 2D simulations of the ``Wind Compressed Disk'' (WCD) paradigm, together with a review of the tendency for poleward components of the line-driving force to inhibit WCD formation. When one accounts for equatorial gravity darkening, the net tendency is in fact for the relatively bright regions at higher latitude to drive a faster, denser ``bipolar'' outflow. I discuss the potential relevance for the bipolar form of nebulae from LBV stars like η Carinae, but emphasize that, since the large mass loss associated with the eruption of eta Carinae's Homunculus would heavily saturate line-driving, explaining its bipolar form requires development of analogous models for continuum-driven mass loss. I conclude with a discussion of how radiation seems inherently ill-suited to supporting or driving a geometrically thin, but optically thick disk or disk outflow. The disks inferred in Be and B[e] stars may instead be centrifugally ejected, with radiation inducing an ablation flow from the disk surface, and thus perhaps playing a greater role in destroying (rather than creating) an orbiting, circumstellar disk.

  19. Wave and particle evolution downstream of quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  20. Quasi-adiabatic compression heating of selected foods

    NASA Astrophysics Data System (ADS)

    Landfeld, Ales; Strohalm, Jan; Halama, Radek; Houska, Milan

    2011-03-01

    The quasi-adiabatic temperature increase due to compression heating, during high-pressure (HP) processing (HPP), was studied using specially designed equipment. The temperature increase was evaluated as the difference in temperature, during compression, between atmospheric pressure and nominal pressure. The temperature was measured using a thermocouple in the center of a polyoxymethylene cup, which contained the sample. Fresh meat balls, pork meat pate, and tomato purée temperature increases were measured at three initial temperature levels between 40 and 80 °C. Nominal pressure was either 400 or 500 MPa. Results showed that the fat content had a positive effect on temperature increases. Empirical equations were developed to calculate the temperature increase during HPP at different initial temperatures for pressures of 400 and 500 MPa. This thermal effect data can be used for numerical modeling of temperature histories of foods during HP-assisted pasteurization or sterilization processes.

  1. Superattraction mediated by quantum fluctuations of plasmon quasi-continuum.

    PubMed

    Andrianov, E S; Chtchelkatchev, N M; Pukhov, A A

    2015-05-01

    We investigate the force between a plasmonic nanoparticle and a highly excited two-level system (molecule). Usually van der Waals' force between nanoscale electrically neutral systems is monotonic and attractive at moderate and larger distances and repulsive at small distances. In our system, the van der Waals' force acting on a molecule has a quantum-optical nature. At moderate distances it is attractive as usual but its strength highly increases in narrow distance ranges (lacunas). We show that quantum fluctuations of quasi-continuum of multipole plasmons of high, nearly infinite degree, altogether form an effective environment and determine the interaction force while their spectral peculiarities stand behind the large and narrow lacunas in force. We exactly solve the Hamiltonian problem and discuss the role of the dissipation. PMID:25927783

  2. Interferometric rotation sensor

    NASA Technical Reports Server (NTRS)

    Walsh, T. M. (Inventor)

    1973-01-01

    An interferometric rotation sensor and control system is provided which includes a compound prism interferometer and an associated direction control system. Light entering the interferometer is split into two paths with the light in the respective paths being reflected an unequal number of times, and then being recombined at an exit aperture in phase differing relationships. Incoming light is deviated from the optical axis of the device by an angle, alpha. The angle causes a similar displacement of the two component images at the exit aperture which results in a fringe pattern. Fringe numbers are directly related to angle alpha. Various control systems of the interferometer are given.

  3. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  4. Magnetopause rotational forms

    NASA Technical Reports Server (NTRS)

    Sonnerup, B. U. O.; Ledley, B. G.

    1974-01-01

    Magnetic field data from the Goddard Space Flight Center magnetometer experiment on board Ogo 5 are analyzed by the minimum-variance technique for two magnetopause crossings, believed to provide the best evidence presently available of magnetopause rotational discontinuities. Approximate agreement with predictions from MHD and first-order orbit theory is found, but available low-energy electron data suggest the presence of significant non-MHD effects. The paper also illustrates an improved method for data interval selection, a new magnetopause hodogram representation, and the utility of data simulation.

  5. Waves and vortices in rotating stratified turbulence

    NASA Astrophysics Data System (ADS)

    Pouquet, Annick; Herbert, Corentin; Marino, Raffaele; Rosenberg, Duane

    2015-04-01

    The interactions between vortices and waves is a long-standing problem in fluid turbulence. It can lead to a self-sustaining process that is dominant, for example in pipe flows, and to the prediction of large-scale coherent structures such as baroclinic jets in planetary atmospheres, and it can also be used as a control tool for the onset of turbulence. Similarly, the dynamics of the atmosphere and the ocean is dominated by complex interactions between nonlinear eddies and waves due to a combination of rotation and stratification (characterized respectively by frequencies f and N), as well as shear layers. The waves are faster at large scales, and this leads to a quasi-geostrophic quasi-linear regime in which there is a balance between pressure gradient and the Coriolis and gravity forces. The range of scales in these geophysical flows before dissipation prevails is such that other regimes can arise in which turbulence comes into play, with the eddy turn-over time becoming comparable to the wave period, and for which isotropy recovers for sufficiently high Reynolds numbers. One may decompose the flow-- observational, experimental or numerical, in terms of the normal modes that it supports, i.e. the inertia-gravity waves and the (slow, zero frequency) vortical modes carrying the potential vorticity, thanks to the existence of a small parameter, as for example the fluctuation around a mean flow or the ratio of the wave period to the eddy turn-over time. In this context an ensemble of data sets of rotating stratified turbulence will be analyzed, stemming from accurate direct numerical simulations of the Boussinesq equations at high resolution, up to 40963 grid points, using high-performance computing. These flows all support a constant-flux bi-directional cascade of energy towards both the large scales and the small scales. The parameter space includes the Reynolds number, the Prandtl number(s), and the Rossby and Froude numbers, and a universal response to a variety

  6. Rotational level-dependent collisional broadening and line shift of the A2Sigma(+)-X2Pi (1,0) band of OH in hydrogen-air combustion gases

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Allen, M. G.; Davis, S. J.

    1993-01-01

    Measurements of the collisional broadening and line shift of the (1,0) band of the A2Sigma(+)-X2Pi system of OH are reported in atmospheric pressure hydrogen-air combustion gases. The measurements were made using a single-mode, narrow linewidth, frequency-doubled ring dye laser operating near 283 nm. The OH was generated in the combustion gases of a flat flame H2-air burner. Collisional broadening parameters for equilibrium mixtures of H2, O2, H2O, and N2 were obtained spanning a range of fuel/air equivalence ratios from 0.6 to 1.6 and temperatures from 1500 to 2050 K. Measurements were obtained spanning rotational quantum numbers from 4.5 to 16.5. The collision induced frequency shift was determined to be 0.1 that of the collisional broadening.

  7. Complex Mixture Analysis Using Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael

    Owing to its very high intrinsic resolution, exceeding ppm levels in supersonic jet sources, rotational spectroscopy is a powerful analytical tool to analyze complex mixtures that consist of both familiar and exotic molecules. We present here an experimental method to rapidly sort rotational lines in broadband spectra and assign them to individual chemical compounds in the cm-band. This method combines a chirped-pulse FT microwave (CP-FTMW) spectrometer with follow-up analysis using an automated cavity FTMW spectrometer with double resonance (DR) capabilities. The CP-FTMW spectrum acts as a filter, identifying only those regions of frequency space that contain molecular signal, and discarding the vast majority of frequency space that is devoid of molecular information. With superior sensitivity and resolution per unit time, a cavity spectrometer is then used for follow-up assays on these bright spectral lines, to group transitions which share common characteristics, such as elemental composition, etc. These groups can be further partitioned into smaller sub-groups by exhaustive DR experiments whereby only those rotational lines that share a common energy level from the same molecule are linked together. From these series of measurements and assays, rotational transitions of multiple, individual chemical compounds can be empirically sorted and identified, without the need for any theoretical guidance or input. Significant automation greatly enhances the overall efficiency, enabling rapid, exhaustive testing with little oversight. Examples illustrating the power of this methodology for rapid analysis of broadband spectra will be presented.

  8. Rotatable superconducting cyclotron adapted for medical use

    DOEpatents

    Blosser, Henry G.; Johnson, David A.; Riedel, Jack; Burleigh, Richard J.

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  9. A Laboratory Study of Vortical Structures in Rotating Convection Plumes

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team

    2015-11-01

    A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).

  10. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  11. Cylindrical Cardboard Model for a Rotating System in Special Relativity.

    ERIC Educational Resources Information Center

    Noerdlinger, Peter D.

    1979-01-01

    Presents a cylindrical cardboard model that helps students at the graduate or undergraduate level to visualize the nature of simultaneity and the propagation of light in a rotating coordinate system. (HM)

  12. BINARY NEUTRON STARS IN QUASI-EQUILIBRIUM

    SciTech Connect

    Taniguchi, Keisuke; Shibata, Masaru

    2010-05-15

    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences, which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.

  13. Quasi-spherical direct drive fusion.

    SciTech Connect

    VanDevender, J. Pace; Abbott, Lucas M.; Langston, William L.; McDaniel, Dillon Heirman; Nash, Thomas J.; Roderick, Norman Frederick; Silva, M.

    2007-01-01

    The authors present designs of quasi-spherical direction drive z-pinch loads for machines such as ZR at 28 MA load current with a 150 ns implosion time (QSDDI). A double shell system for ZR has produced a 2D simulated yield of 12 MJ, but the drive for this system on ZR has essentially no margin. A double shell system for a 56 MA driver at 150 ns implosion has produced a simulated yield of 130 MJ with considerable margin in attaining the necessary temperature and density-radius product for ignition. They also represent designs for a magnetically insulated current amplifier, (MICA), that modify the attainable ZR load current to 36 MA with a 28 ns rise time. The faster pulse provided by a MICA makes it possible to drive quasi-spherical single shell implosions (QSDD2). They present results from 1D LASNEX and 2D MACH2 simulations of promising low-adiabat cryogenic QSDD2 capsules and 1D LASNEX results of high-adiabat cryogenic QSDD2 capsules.

  14. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  15. Digital rotation measurement unit

    DOEpatents

    Sanderson, S.N.

    1983-09-30

    A digital rotation indicator is disclosed for monitoring the position of a valve member having a movable actuator. The indicator utilizes mercury switches adapted to move in cooperation with the actuator. Each of the switches produces an output as it changes state when the actuator moves. A direction detection circuit is connected to the switches to produce a first digital signal indicative of the direction of rotation of the actuator. A count pulse generating circuit is also connected to the switches to produce a second digital pulse signal having count pulses corresponding to a change of state of any of the mercury switches. A reset pulse generating circuit is provided to generate a reset pulse each time a count pulse is generated. An up/down counter is connected to receive the first digital pulse signal and the second digital pulse signal and to count the pulses of the second digital pulse signal either up or down depending upon the instantaneous digital value of the first digital signal whereby a running count indicative of the movement of the actuator is maintained.

  16. Rotating drum filter

    DOEpatents

    Anson, Donald

    1990-01-01

    A perforated drum (10) rotates in a coaxial cylindrical housing (18) having three circumferential ports (19,22,23), and an axial outlet (24) at one end. The axis (11) is horizontal. A fibrous filter medium (20) is fed through a port (19) on or near the top of the housing (81) by a distributing mechanism (36) which lays a uniform mat (26) of the desired thickness onto the rotating drum (10). This mat (26) is carried by the drum (10) to a second port (23) through which dirty fluid (13) enters. The fluid (13) passes through the filter (26) and the cleaned stream (16) exits through the open end (15) of the drum (10) and the axial port (24) in the housing (18). The dirty filter material (20) is carried on to a third port (22) near the bottom of the housing (18) and drops into a receiver (31) from which it is continuously removed, cleaned (30), and returned (32) to the charging port (36) at the top. To support the filter mat, the perforated cylinder may carry a series of tines (40), shaped blades (41), or pockets, so that the mat (26) will not fall from the drum (10) prematurely. To minimize risk of mat failure, the fluid inlet port (23) may be located above the horizontal centerline (11).

  17. Calculations of K- nuclear quasi-bound states based on chiral meson-baryon amplitudes

    NASA Astrophysics Data System (ADS)

    Gazda, Daniel; Mareš, Jiří

    2012-05-01

    In-medium K¯N scattering amplitudes developed within a new chirally motivated coupled-channel model due to Cieplý and Smejkal that fits the recent SIDDHARTA kaonic hydrogen 1s level shift and width are used to construct K- nuclear potentials for calculations of K- nuclear quasi-bound states. The strong energy and density dependence of scattering amplitudes at and near threshold leads to K- potential depths -Re VK≈80-120 MeV. Self-consistent calculations of all K- nuclear quasi-bound states, including excited states, are reported. Model dependence, polarization effects, the role of p-wave interactions, and two-nucleon K-NN→YN absorption modes are discussed. The K- absorption widths ΓK are comparable or even larger than the corresponding binding energies BK for allK- nuclear quasi-bound states, exceeding considerably the level spacing. This discourages search for K- nuclear quasi-bound states in any but the lightest nuclear systems.

  18. Faraday Rotation Probing of the Solar Corona in 1997

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Spangler, S. R.

    1999-05-01

    Faraday rotation observations of polarized radiation from natural radio sources yield a unique diagnostic of the coronal magnetic field and electron density at heliocentric distances not reached by spacecraft. Dual frequency polarization measurements yield the rotation measure, which is proportional to int n_e vec {B} * ds, where n_e is the electron density, vec {B} is the magnetic field, and the integral is along the line of sight. We made linear polarization observations with the NRAO Very Large Array of several polarized radio sources occulted by the solar corona. The observations were made at frequencies of 1465 and 1665 MHz on four days in May, 1997. The observations cover a full solar rotation and sample solar elongations ranging from about 5 to 14 solar radii. The magnitudes of the rotation measures observed range from 11 to less than 1 radians/m(2) . We attribute the relatively low values for the rotation measures to the magnetohydrodynamic state of the corona at the time of the observations. The coronal magnetic field was quasi-dipolar with the lines of sight to the sources generally not crossing sector boundaries. The highest plasma density was at the streamer belt at low latitudes, which was missed by many of the lines of sight. The largest rotation measure was observed for the source 3C79 on May 11, 1997, and corresponds to a case in which the line of sight passed through the streamer belt at small solar elongation. This research was supported by grant ATM96-16721 from the National Science Foundation.

  19. A quasi-linear control theory analysis of timesharing skills

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Gottlieb, G. L.

    1977-01-01

    The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.

  20. Rotational relaxation in ultracold CO+He collisions

    SciTech Connect

    Florian, P.M.; Hoster, M.; Forrey, R.C.

    2004-09-01

    Cold and ultracold collisions involving rotationally hot CO molecules are investigated using quantum mechanical coupled channel, coupled states, and effective potential scattering formulations. Quenching rate coefficients are given for initial rotational levels near the dissociation threshold. The stability of the CO 'super rotors' against collisional decay is compared to previous investigations involving homonuclear molecules. It is found that quasiresonant transitions provide a significantly stronger contribution to the total relaxation rate than in the comparable case of O{sub 2}. As in the case of H{sub 2}, sharp structures in the distribution of total quenching rate coefficients are found at rotational levels where quasiresonant scattering is not allowed.

  1. Rotational quenching of CS in ultracold 3He collisions

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-08-01

    Quantum mechanical scattering calculations of rotational quenching of CS (v = 0) collision with 3He are performed at ultracold temperatures and results are compared with isotopic 4He collision. Rotational quenching cross sections and rate coefficients have been calculated in the ultracold region for rotational levels up to j = 10 using the He-CS potential energy surface computed at the CCSD(T)/aug-cc-pVQZ level of theory. The quenching cross sections are found to be two orders of magnitude larger for the 3He than the 4He isotope under ultracold conditions. Wigner threshold law is found to be valid below 10-3 K temperature.

  2. Ground state of rotating ultracold quantum gases with anisotropic spin—orbit coupling and concentrically coupled annular potential

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tan, Ren-Bing; Du, Zhi-Jing; Zhao, Wen-Yu; Zhang, Xiao-Fei; Zhang, Shou-Gang

    2014-07-01

    Motivated by recent experimental realization of synthetic spin—orbit coupling in neutral quantum gases, we consider the quasi-two-dimensional rotating two-component Bose—Einstein condensates with anisotropic Rashba spin—orbit coupling subject to concentrically coupled annular potential. For experimentally feasible parameters, the rotating condensate exhibits a variety of rich ground state structures by varying the strengths of the spin—orbit coupling and rotational frequency. Moreover, the phase transitions between different ground state phases induced by the anisotropic spin—orbit coupling are obviously different from the isotropic one.

  3. Convective Properties of Rotating Two-dimensional Core-collapse Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Chatzopoulos, E.; Couch, Sean M.; Arnett, W. David; Timmes, F. X.

    2016-05-01

    We explore the effects of rotation on convective carbon, oxygen, and silicon shell burning during the late stages of evolution in a 20 M ⊙ star. Using the Modules for Experiments in Stellar Astrophysics we construct one-dimensional (1D) stellar models both with no rotation and with an initial rigid rotation of 50% of critical. At different points during the evolution, we map the 1D models into 2D and follow the multidimensional evolution using the FLASH compressible hydrodynamics code for many convective turnover times until a quasi-steady state is reached. We characterize the strength and scale of convective motions via decomposition of the momentum density into vector spherical harmonics. We find that rotation influences the total power in solenoidal modes, with a slightly larger impact for carbon and oxygen shell burning than for silicon shell burning. Including rotation in 1D stellar evolution models alters the structure of the star in a manner that has a significant impact on the character of multidimensional convection. Adding modest amounts of rotation to a stellar model that ignores rotation during the evolutionary stage, however, has little impact on the character of the resulting convection. Since the spatial scale and strength of convection present at the point of core collapse directly influence the supernova mechanism, our results suggest that rotation could play an important role in setting the stage for massive stellar explosions.

  4. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  5. Design of Quasi-Terminator Orbits near Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Lantoine, Gregory; Broschart, Stephen B.; Grebow, Daniel J.

    2013-01-01

    Quasi-terminator orbits are a class of quasi-periodic orbits around a primitive body that exist in the vicinity of the well-known terminator orbits. The inherent stability of quasi-terminator trajectories and their wide variety of viewing geometries make them a very compelling option for primitive body mapping missions. In this paper, we discuss orbit design methodologies for selection of an appropriate quasi-terminator orbit that would meet the needs of a specific mission. Convergence of these orbits in an eccentric, higher-fidelity model is also discussed with an example case at Bennu, the target of the upcoming NASA's OSIRIS-REx mission.

  6. Frequency Independent Design of Quasi-optical Systems

    NASA Astrophysics Data System (ADS)

    Gonzalez, Alvaro

    2016-02-01

    Beam propagation at millimeter and submillimeter wavelengths is well described by Gaussian beams and quasi-optical theory. Due to the general progress in THz technology, receiver and other quasi-optical systems in the THz range demand increasingly larger bandwidths. In this context, this paper presents a general design methodology for frequency independent quasi-optical systems, based on system matrix analysis. After the presentation of the general ideas, useful design equations are derived for the most common quasi-optical systems. Finally, the derived equations are validated by application to already deployed radio astronomy receivers.

  7. Quantum Quasi-Paradoxes and Quantum Sorites Paradoxes

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2009-03-01

    There can be generated many paradoxes or quasi-paradoxes that may occur from the combination of quantum and non-quantum worlds in physics. Even the passage from the micro-cosmos to the macro-cosmos, and reciprocally, can generate unsolved questions or counter-intuitive ideas. We define a quasi-paradox as a statement which has a prima facie self-contradictory support or an explicit contradiction, but which is not completely proven as a paradox. We present herein four elementary quantum quasi-paradoxes and their corresponding quantum Sorites paradoxes, which form a class of quantum quasi-paradoxes.

  8. A Comparison of Rehabilitation Methods After Arthroscopic Rotator Cuff Repair

    PubMed Central

    Yi, Anthony; Villacis, Diego; Yalamanchili, Raj; Hatch, George F. Rick

    2015-01-01

    Context: Despite the significant attention directed toward optimizing arthroscopic rotator cuff repair, there has been less focus on rehabilitation after rotator cuff repair surgery. Objective: To determine the effect of different rehabilitation protocols on clinical outcomes by comparing early versus late mobilization approaches and continuous passive mobilization (CPM) versus manual therapy after arthroscopic rotator cuff repair. Data Sources: PubMed was searched for relevant articles using the keywords rotator cuff, rotator, cuff, tears, lacerations, and rehabilitation to identify articles published from January 1980 to March 2014. Study Selection: Inclusion criteria consisted of articles of level 1 or 2 evidence, written in the English language, and with reported outcomes for early versus late mobilization or rehabilitation with CPM versus manual therapy after primary arthroscopic rotator cuff repair. Exclusion criteria consisted of articles of level 3, 4, or 5 evidence, non-English language, and those with significantly different demographic variables between study groups. Included studies were evaluated with the Consolidated Standards of Reporting Trials criteria. Study Design: Systematic review. Level of Evidence: Level 2. Data Extraction: Level of evidence, study type, number of patients enrolled, number of patients at final follow-up, length of follow-up, age, sex, rotator cuff tear size, surgical technique, and concomitant operative procedures were extracted from included articles. Postoperative data included clinical outcome scores, visual analog score for pain, shoulder range of motion, strength, and rotator cuff retear rates. Results: A total of 7 studies met all criteria and were included in the final analysis. Five studies compared early and late mobilization. Two studies compared CPM and manual therapy. Conclusion: In general, current data do not definitively demonstrate a significant difference between postoperative rotator cuff rehabilitation

  9. A Method for Achieving Constant Rotation Rates in a Micro-Orthogonal Linkage System

    SciTech Connect

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-05-12

    Silicon micromachine designs include engines that consist of orthog- onally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {micro}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Generally, these en- gines will run with non-uniform rotation rates if the drive signals are not properly designed and maintained over a range of system parameters. We present a method for producing constant rotation rates in a micro-engine driven by an orthogonal linkage system. We show that provided the val- ues of certain masses, springs, damping factors, and lever arms are in the right proportions, the system behaves as though it were symmetrical. We will refer to systems built in this way as being quasi-symmetrical. We show that if a system is built quasi-symmetrically , then it is possible to achieve constant rotation rates even if one does not know the form of the friction function, or the value of the friction. We analyze this case in some detail.

  10. Internal rotation of the sun

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Dziembowski, W. A.; Goode, P. R.; Gough, D. O.; Harvey, J. W.; Leibacher, J. W.

    1984-01-01

    The frequency difference between prograde and retrograde sectoral solar oscillations is analyzed to determine the rotation rate of the solar interior, assuming no latitudinal dependence. Much of the solar interior rotates slightly less rapidly than the surface, while the innermost part apparently rotates more rapidly. The resulting solar gravitational quadrupole moment is J2 = (1.7 + or - 0.4) x 10 to the -7th and provides a negligible contribution to current planetary tests of Einstein's theory of general relativity.

  11. Quasi-periodic solutions for the quasi-periodically forced cubic complex Ginzburg-Landau equation on {T}d

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyu; Si, Jianguo

    2013-08-01

    In this paper, we discuss the existence of time quasi-periodic solutions for quasi-periodically forced cubic complex Ginzburg-Landau equation of higher spatial dimension with basic frequency vector ω = (ω1, ω2, …, ωm). By constructing a KAM (Kolmogorov-Arnold-Moser) theorem for a dissipative system which depends on time in a quasi-periodic way, we obtain a Cantorian branch of m + 2-dimensional invariant tori for the equation.

  12. Rotating raster generator

    NASA Technical Reports Server (NTRS)

    Wagner, C. A. (Inventor)

    1974-01-01

    A rotating raster generator is provided which enables display of a television raster at any arbitrary roll angle. The generator includes four integrator circuits each of which receives a first voltage input corresponding to the sine or cosine of the desired roll angle and a second input comprising conventional horizontal or vertical sync pulses. The integrator circuits each comprise an operational amplifier and a capacitor connected for producing a ramp output having a rate of change proportional to the roll angle input, an electronic switch responsive to the sync input for resetting the integrator, and a summer that adds the ramp output of the integrator to the roll angle input so as to provide a zero-centered deflection control voltage.

  13. Rotating gravity gradiometer study

    NASA Astrophysics Data System (ADS)

    Forward, R. L.

    1982-04-01

    Two rotating gravity gradiometer (RGG) sensors, along with all the external electronics needed to operate them, and the fixtures and special test equipment needed to fill and align the bearings, were assembled in a laboratory, and inspected. The thermal noise threshold of the RGG can be lowered by replacing a damping resistor in the first stage electronics by an active artificial resistor that generates less random voltage noise per unit bandwidth than the Johnson noise from the resistor it replaces. The artificial resistor circuit consists of an operational amplifier, three resistors, and a small DC to DC floating power supply. These are small enough to be retrofitted to the present circuit boards inside the RGG rotor in place of the 3 Megohm resistor. Using the artificial resistor, the thermal noise of the RGG-2 sensor can be lowered from 0.3 Eotvos to 0.15 Eotvos for a 10 sec integration time.

  14. Stimulated rotational Raman scattering

    NASA Astrophysics Data System (ADS)

    Parazzoli, C. G.; Rafanelli, G. L.; Capps, D. M.; Drutman, C.

    1989-03-01

    The effect of Stimulated Rotational Raman Scattering (SRRS) processes on high energy laser directed energy weapon systems was studied. The program had 3 main objectives; achieving an accurate description of the physical processes involved in SRRS; developing a numerical algorithm to confidently evaluate SRRS-induced losses in the propagation of high energy laser beams in the uplink and downlink segments of the optical trains of various strategic defense system scenarios; and discovering possible methods to eliminate, or at least reduce, the deleterious effects of SRRS on the energy deposition on target. The following topics are discussed: the motivation for the accomplishments of the DOE program; the Semiclassical Theory of Non-Resonant SRRS for Diatomic Homonuclear Molecules; and then the following appendices; Calculation of the Dipole Transition Reduced Matrix Element, Guided Tour of Hughes SRRS Code, Running the Hughes SRRS Code, and Hughes SRRS Code Listing.

  15. The Rapidly Rotating Sun

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l < 60. The observationally constrained kinetic energy is approximately a thousandth of the theoretical prediction, suggesting the prevalence of an intrinsically different paradigm of turbulence. A fundamental question arises: what mechanism of turbulence transports the heat ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.

  16. Asteroid Ida Rotation Sequence

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  17. Rotated Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2015-03-01

    We show that Rotated Heisenberg (RH) model is a new class of quantum spin models to describe magnetic materials with strong spin-orbit couplings (SOC). We introduce Wilson loops to characterize frustrations and gauge equivalent class. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground state. It supports a novel gapped elementary excitation named as in-commensurate magnons which have two gap minima continuously tuned by the SOC strength. At low temperatures, the in-commensurate magnons lead to dramatic effects in all physical quantities such as density of states, specific heat, magnetization and various spin correlation functions. At high temperatures, the specific heat and transverse spin structure factors depend on the SOC strength explicitly. We argue that one gauge may be realized in current experiments and other gauges may also be realized in near future experiments. Various experimental detections are discussed. This work is supported by NSF-DMR-1161497, NSFC-11174210.

  18. Rotating gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1982-01-01

    Two rotating gravity gradiometer (RGG) sensors, along with all the external electronics needed to operate them, and the fixtures and special test equipment needed to fill and align the bearings, were assembled in a laboratory, and inspected. The thermal noise threshold of the RGG can be lowered by replacing a damping resistor in the first stage electronics by an active artificial resistor that generates less random voltage noise per unit bandwidth than the Johnson noise from the resistor it replaces. The artificial resistor circuit consists of an operational amplifier, three resistors, and a small DC to DC floating power supply. These are small enough to be retrofitted to the present circuit boards inside the RGG rotor in place of the 3 Megohm resistor. Using the artificial resistor, the thermal noise of the RGG-2 sensor can be lowered from 0.3 Eotvos to 0.15 Eotvos for a 10 sec integration time.

  19. PLT rotating pumped limiter

    SciTech Connect

    Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.

    1984-07-01

    A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.

  20. Rotating Gravity Gradiometer Study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1976-01-01

    The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.

  1. Earth's variable rotation

    NASA Technical Reports Server (NTRS)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  2. Plasma rotation induced by RF

    SciTech Connect

    Chan, V. S.; Chiu, S. C.; Lin-Liu, Y. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698; Omelchenko, Y. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698

    1999-09-20

    Plasma rotation has many beneficial effects on tokamak operation including stabilization of MHD and microturbulence to improve the beta limit and confinement. Contrary to present-day tokamaks, neutral beams may not be effective in driving rotation in fusion reactors; hence the investigation of radiofrequency (RF) induced plasma rotation is of great interest and potential importance. This paper reviews the experimental results of RF induced rotation and possible physical mechanisms, suggested by theories, to explain the observations. This subject is only in the infancy of its research and many challenging issues remained to be understood and resolved. (c) 1999 American Institute of Physics.

  3. Biologics in rotator cuff surgery

    PubMed Central

    Schär, Michael O; Rodeo, Scott A

    2014-01-01

    Pathologies of the rotator cuff are by far the most common cause of shoulder dysfunction and pain. Even though reconstruction of the rotator cuff results in improved clinical outcome scores, including decreased pain, several studies report high failure rates. Orthopaedic research has therefore focused on biologically augmenting the rotator cuff reconstruction and improving tendon–bone healing of the rotator cuff. This biological augmentation has included the application of different platelet concentrates containing growth factors, mesenchymal stem cells, scaffolds and a combination of the above. The present review provides an overview over the biological augmentation options based upon current evidence.

  4. A rotating-disk study on Teflon-bonded porous zinc electrodes

    NASA Astrophysics Data System (ADS)

    Duffield, A.; Mitchell, P. J.; Hampson, N. A.; Kumar, N.; Shield, D. W.

    1985-07-01

    Microcomputer-controlled, rotating-disk experiments have been carried out on Teflon-bonded porous electrodes fabricated from a 5 percent PTFE suspension + ZnO. The effect of using 1 percent mercuric oxide as an additive on this type of electrode has been examined. Plots of i exp -1 vs omega exp -1/2 on electrodes containing mercuric oxide show intercepts through the origin for low overpotentials, implying that quasi-reversible kinetics prevail.

  5. Variational asymptotics for rotating shallow water near geostrophy: a transformational approach

    NASA Astrophysics Data System (ADS)

    Oliver, Marcel

    2006-03-01

    We introduce a unified variational framework in which the classical balance models for nearly geostrophic shallow water as well as several new models can be derived. Our approach is based on consistently truncating an asymptotic expansion of a near-identity transformation of the rotating shallow-water Lagrangian. Model reduction is achieved by imposing either degeneracy (for models in a semi-geostrophic scaling) or incompressibility (for models in a quasi-geostrophic scaling) with respect to the new coordinates.

  6. Embedding of Analytic Quasi-Periodic Cocycles into Analytic Quasi-Periodic Linear Systems and its Applications

    NASA Astrophysics Data System (ADS)

    You, Jiangong; Zhou, Qi

    2013-11-01

    In this paper, we prove that any analytic quasi-periodic cocycle close to constant is the Poincaré map of an analytic quasi-periodic linear system close to constant, which bridges both methods and results in quasi-periodic linear systems and cocycles. We also show that the almost reducibility of an analytic quasi-periodic linear system is equivalent to the almost reducibility of its corresponding Poincaré cocycle. By the local embedding theorem and the equivalence, we transfer the recent local almost reducibility results of quasi-periodic linear systems (Hou and You, in Invent Math 190:209-260, 2012) to quasi-periodic cocycles, and the global reducibility results of quasi-periodic cocycles (Avila, in Almost reducibility and absolute continuity, 2010; Avila et al., in Geom Funct Anal 21:1001-1019, 2011) to quasi-periodic linear systems. Finally, we give a positive answer to a question of Avila et al. (Geom Funct Anal 21:1001-1019, 2011) and use it to study point spectrum of long-range quasi-periodic operator with Liouvillean frequency. The embedding also holds for some nonlinear systems.

  7. Polarization Rotation by Multilayered Chiral Metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Nathan Burford Collaboration

    2013-03-01

    Traditionally, negative permittivity was realized by plasma resonance of the metallic structures, and negative permeability was achieved by a resonant LC circuit. Chiral metamaterial is another route to achieve negative permittivity and permeability, and such structures were investigated at different frequency domains. Recently, it was demonstrated that a two-dimensional lattice of three-dimensional gold spirals can effectively block circular polarized light with the same handedness for a frequency range exceeding one octave. From the point of view of applications, metamaterials must be fabricated easily and cheaply, and one way to achieve this goal is planarization. We designed a multiple-layer quasi-helix PCB structure and had it fabricated. The sample was tested with automated free space microwave material measurement system at X-band. These layers of PCB can be arranged in two different configurations: left-handed or right- handed helix. We found that the polarization plane is rotated in the opposite direction for the left- and right-handed samples, and the measured S-parameters agree with the simulation result relatively well. The authors would like to acknowledge the support from GRFC grant from Southeast Missouri State University.

  8. Modeling quasi-lattice with octagonal symmetry

    SciTech Connect

    Girzhon, V. V.; Smolyakov, O. V.; Zakharenko, M. I.

    2014-11-15

    We prove the possibility to use the method of modeling of a quasi-lattice with octagonal symmetry similar to that proposed earlier for the decagonal quasicrystal. The method is based on the multiplication of the groups of basis sites according to specified rules. This model is shown to be equivalent to the method of the periodic lattice projection, but is simpler because it considers merely two-dimensional site groups. The application of the proposed modeling procedure to the reciprocal lattice of octagonal quasicrystals shows a fairly good matching with the electron diffraction pattern. Similarly to the decagonal quasicrystals, the possibility of three-index labeling of the diffraction reflections is exhibited in this case. Moreover, the ascertained ratio of indices provides information on the intensity of diffraction reflections.

  9. Mirror Instability: Quasi-linear Effects

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Travnicek, P. M.; Passot, T.; Sulem, P.; Kuznetsov, E. A.

    2008-12-01

    Nonlinear properties of the mirror instability are investigated by direct integration of the quasi-linear diffusion equation [Shapiro and Shevchenko, 1964] near threshold. The simulation results are compared to the results of standard hybrid simulations [Califano et al., 2008] and discussed in the context of the nonlinear dynamical model by Kuznetsov et al. [2007]. References: Califano, F., P. Hellinger, E. Kuznetsov, T. Passot, P. L. Sulem, and P. M. Travnicek (2008), Nonlinear mirror mode dynamics: Simulations and modeling, J. Geophys. Res., 113, A08219, doi:10.1029/2007JA012898. Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003 . Shapiro, V. D., and V. I. Shevchenko (1964), Quasilinear theory of instability of a plasma with an anisotropic ion velocity distribution, Sov. JETP, 18, 1109.

  10. Quasi-periodic climate change on Mars

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H.; Zent, Aaron P.

    1992-01-01

    The paper examines evidence that the Martian climate undergoes quasi-periodic variations, including the polar layered terrain, differences between the residual polar caps, and the current net southward flow of H2O. The driving functions for these variations are oscillations in the elements of the Martian orbit coupled with precession of the Martian spin axis. These 'astronomic variations' control the distribution of the insolation, which in turn influences the partition of volatiles between atmospheric and surface reservoirs. The major effects anticipated at low obliquity are growth of the polar caps, substantial decrease in surface pressure, cessation of duststorms, release of CO2 from the regolith, and poleward migration of H2O ground ice. At high obliquity, the mass of the perennial polar caps decreases and permanent CO2 frost disappears, CO2 desorbs from the regolith at high latitudes, the surface pressure may increase to several times its current value, and the atmospheric dust load increases.

  11. Quasi-optical components at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Ediss, G. A.; Keen, N. J.; Mischerikow, K.-D.; Schulz, A.; Korn, A.

    1987-02-01

    Individual components of the Max-Planck-Institut fuer Radioastonomie 650 micron Schottky barrier diode waveguide mixer-receiver and their performance at 650 microns wavelength are reported on. Scalar, dual-mode, and pyramidal horns are considered, and attempts to measure insertion losses by comparing the gain of the horn with that of a fundamental moded waveguide lead to estimates of the upper limits for horn losses at 650 microns. Radiometric loss measurements of an 8-mm thick Teflon lens and a 5-mm thick Rexolite lens are both larger than would be expected from the material loss tangents, probably due to reflections. The performance of various diplexers is also considered. Performance of the present quasi-optical components at 650 and 172 microns is not found to be significantly worse than at 1300 microns wavelength, with the probable exception of horn insertion losses.

  12. A planar quasi-optical SIS receiver

    NASA Technical Reports Server (NTRS)

    Stimson, Philip A.; Dengler, Robert J.; Leduc, Henry G.; Cypher, Scott R.; Siegel, Peter H.

    1993-01-01

    A planar, quasi-optical SIS receiver operating at 230 GHz is described. The receiver consists of a 2 x 5 array of half wave dipole antennas with ten niobium-aluminum oxide-niobium SIS junctions on a quartz dielectric-filled parabola. The 1.4 GHz intermediate frequency is coupled from the mixer via coplanar strip transmission lines and 4:1 balun transformers. The receiver is operated at 4.2 K in a liquid helium immersion cryostat. We report accurate measurements of the performance of single receiver elements. A mixer noise temperature of 89 K DSB, receiver noise temperature of 156 K DSB, and conversion loss of 3 dB into a matched load have been obtained.

  13. Modeling rigid magnetically rotated microswimmers: Rotation axes, bistability, and controllability

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Fu, Henry Chien

    2014-12-01

    Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.

  14. Quasi-steady flow in sloping aquifers

    NASA Astrophysics Data System (ADS)

    Akylas, Evangelos; Gravanis, Elias; Koussis, Antonis D.

    2015-11-01

    Mass conservation links the storage S and the outflow Q of an aquifer. A relation between them (an S-Q relation) provides then a model governing the evolution of these quantities. In this work we construct an analytical quasi-steady state model which exploits the properties of the exact S-Q relation associated with steady state solutions of the Boussinesq equation for the sloping aquifer (that is, the Henderson and Wooding [1964] solutions). The model is derived by matching the asymptotic forms of the exact S-Q relation which arise for small and large values of the Henderson and Wooding parameter λ. These asymptotic forms provide a novel rederivation of well-known semiempirical S-Q relations of the form Q∝ S and Q∝ S2, and they lead to soluble quasi-steady state models. The quadratic asymptotic relation turns out to hold for surprisingly low values of λ. This characteristic and its formal properties allow smooth matching with the linear relation at λ=π2/4=2.47. The obtained model holds over the entire parameter space. An important characteristic of the model, stemming from its derivation, is that it involves only the geometric and hydraulic quantities present in the exact Boussinesq equation. The model is tested by best fitting four data sets from experiments simulating aquifer drainage. The derived curves for the drained volume are in excellent agreement with the data. The estimated values for k and n are also in overall very good agreement with their reference values.

  15. Weather Regimes: Recurrence and Quasi Stationarity.

    NASA Astrophysics Data System (ADS)

    Michelangeli, Paul-Antoine; Vautard, Robert; Legras, Bernard

    1995-04-01

    Two different definitions of midlatitude weather regimes are compared. The first seeks recurrent atmospheric patterns. The second seeks quasi-stationary patterns, whose average tendency vanishes. Recurrent patterns are identified by cluster analysis, and quasi-stationary patterns are identified by solving a nonlinear equilibration equation. Both methods are applied on the same dataset: the NMC final analyses of 700-hPa geopotential heights covering 44 winters. The analysis is performed separately over the Atlantic and Pacific sectors.The two methods give the same number of weather regimes-four over the Atlantic sector and three over the Pacific sector. However, the patterns differ significantly. The investigation of the tendency, or drift, of the clusters shows that recurrent flows have a systematic slow evolution, explaining this difference. The patterns are in agreement with the ones obtained from previous studies, but their number differs.The cluster analysis algorithm used here is a partitioning algorithm, which agglomerates data around randomly chosen seeds and iteratively finds the partition that minimizes the variance within clusters, given a prescribed number of clusters. The authors develop a classifiability index, based on the correlation between the cluster centroids obtained from different initial pullings. By comparing the classifiability index of observations with that obtained from a multivariate noise model, an objective definition of the number of clusters present in the data is given. Although the classifiability index is maximal by prescribing two clusters in both sectors, it only differs significantly from that obtained with the noise model using four Atlantic clusters and three Pacific clusters. The partitioning clustering method turns out to give more statistically stable clusters than hierarchical clustering schemes.

  16. Unidirectional rotating coordinate rotation digital computer algorithm based on rotational phase estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Chaozhu; Han, Jinan; Yan, Huizhi

    2015-06-01

    The improved coordinate rotation digital computer (CORDIC) algorithm gives high precision and resolution phase rotation, but it has some shortages such as high iterations and big system delay. This paper puts forward unidirectional rotating CORDIC algorithm to solve these problems. First, using under-damping theory, a part of unidirectional phase rotations is carried out. Then, the threshold value of angle is determined based on phase rotation estimation method. Finally, rotation phase estimation completes the rest angle iterations. Furthermore, the paper simulates and implements the numerical control oscillator by Quartus II software and Modelsim software. According to the experimental results, the algorithm reduces iterations and judgment of sign bit, so that it decreases system delay and resource utilization and improves the throughput. We always analyze the error brought by this algorithm. It turned out that the algorithm has a good application prospect in global navigation satellite system and channelized receiver.

  17. Unidirectional rotating coordinate rotation digital computer algorithm based on rotational phase estimation.

    PubMed

    Zhang, Chaozhu; Han, Jinan; Yan, Huizhi

    2015-06-01

    The improved coordinate rotation digital computer (CORDIC) algorithm gives high precision and resolution phase rotation, but it has some shortages such as high iterations and big system delay. This paper puts forward unidirectional rotating CORDIC algorithm to solve these problems. First, using under-damping theory, a part of unidirectional phase rotations is carried out. Then, the threshold value of angle is determined based on phase rotation estimation method. Finally, rotation phase estimation completes the rest angle iterations. Furthermore, the paper simulates and implements the numerical control oscillator by Quartus II software and Modelsim software. According to the experimental results, the algorithm reduces iterations and judgment of sign bit, so that it decreases system delay and resource utilization and improves the throughput. We always analyze the error brought by this algorithm. It turned out that the algorithm has a good application prospect in global navigation satellite system and channelized receiver. PMID:26133856

  18. Rotational Spectroscopy of Methyl Vinyl Ketone

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Methyl vinyl ketone, MVK, along with previously studied by our team methacrolein, is a major oxidation product of isoprene, which is one of the primary contributors to annual global VOC emissions. In this talk we present the analysis of the rotational spectrum of MVK recorded at room temperature in the 50 -- 650 GHz region using the Lille spectrometer. The spectroscopic characterization of MVK ground state will be useful in the detailed analysis of high resolution infrared spectra. Our study is supported by high level quantum chemical calculations to model the structure of the two stable s-trans and s-cis conformers and to obtain the harmonic force field parameters, internal rotation barrier heights, and vibrational frequencies. In the Doppler-limited spectra the splittings due to the internal rotation of methyl group are resolved, therefore for analysis of this molecule we used the Rho-Axis-Method Hamiltonian and RAM36 code to fit the rotational transitions. At the present time the ground state of two conformers is analyzed. Also we intend to study some low lying excited states. The analysis is in progress and the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged.

  19. Organic doping of rotated double layer graphene

    NASA Astrophysics Data System (ADS)

    George, Lijin; Jaiswal, Manu

    2016-05-01

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with different rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.

  20. Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element.

    PubMed

    Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S

    2015-10-01

    The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light. PMID:26479664