Science.gov

Sample records for quasi-periodic pulsatory non-thermal

  1. Quasi-periodicity in relative quasi-periodic tori

    NASA Astrophysics Data System (ADS)

    Fassò, Francesco; García-Naranjo, Luis C.; Giacobbe, Andrea

    2015-10-01

    At variance from the cases of relative equilibria and relative periodic orbits of dynamical systems with symmetry, the dynamics in relative quasi-periodic tori (namely, subsets of the phase space that project to an invariant torus of the reduced system on which the flow is quasi-periodic) is not yet completely understood. Even in the simplest situation of a free action of a compact and abelian connected group, the dynamics in a relative quasi-periodic torus is not necessarily quasi-periodic. It is known that quasi-periodicity of the unreduced dynamics is related to the reducibility of the reconstruction equation, and sufficient conditions for it are virtually known only in a perturbation context. We provide a different, though equivalent, approach to this subject, based on the hypothesis of the existence of commuting, group-invariant lifts of a set of generators of the reduced torus. Under this hypothesis, which is shown to be equivalent to the reducibility of the reconstruction equation, we give a complete description of the structure of the relative quasi-periodic torus, which is a principal torus bundle whose fibers are tori of a dimension which exceeds that of the reduced torus by at most the rank of the group. The construction can always be done in such a way that these tori have minimal dimension and carry ergodic flow.

  2. Rieger quasi-periodicity in solar indices

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.

    2012-05-01

    Using wavelet analysis and Fourier analysis, the temporal behavior of ≈156-day quasi-periodicity (Rieger quasi-periodicity, RQ) is investigated for series of daily solar indices: Wolf numbers W for 161 years (from 1849), the flux F10.7 of the Sun's radio emission at a frequency of 2800 MHz for 63 years (from 1947), the number of X-ray flares N X for 29 years (from 1981), and the number of optical flares N α for 11 years in cycle 21. The N α series are studied for four quadrants of the solar disk. It is found for the W series that there is no stable dependence of the amplitude RQ on the cycle phase and the W value. It is associated with the fact that, corresponding to a period of around eight years, in the power spectrum changes in the amplitude of the Rieger quasiperiodicity of the index W are dominated by the peak. Moreover, the peaks corresponding to the 11-year cyclicity are also significant. The comparative study of the temporal behavior of the Rieger quasi-periodicity amplitude of the indices W, F10.7, and N X has shown that the quasi-periodicity covers the processes, occurring in active regions on the Sun at different altitudes, almost simultaneously. It is found that for N α, the lag of variations of the Rieger quasi-periodicity amplitude for series of the Sun's western hemisphere, relative to those for series of the eastern hemisphere, is on average less than for the flare series. Thus, if the flare occurrence is modulated by the Rieger quasi-periodicity process as a wave propagating over the Sun's disc, then the wave is not a retrograde one. Different interpretations of the nature of the Rieger quasi-periodicity are discussed including the hypothesis of Rossby waves.

  3. Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation

    NASA Astrophysics Data System (ADS)

    Wang, Yi

    2012-06-01

    In this paper, one quasi-periodically forced nonlinear beam equation utt+uxxxx+μu+ɛg(ωt,x)u3=0,μ>0,x∈[0,π] with hinged boundary conditions is considered. Here ɛ is a small positive parameter, g( ωt, x) is real analytic in all variables and quasi-periodic in t with a frequency vector ω = ( ω1, ω2, … , ωm). It is proved that the above equation admits small-amplitude quasi-periodic solutions.

  4. Quasi periodic oscillations in black hole binaries

    NASA Astrophysics Data System (ADS)

    Motta, S. E.

    2016-05-01

    Fast time variability is the most prominent characteristic of accreting systems and the presence of quasi periodic oscillations (QPOs) is a constant in all accreting systems, from cataclysmic variables to AGNs, passing through black hole and neutron star X-ray binaries and through the enigmatic ultra-luminous X-ray sources. In this paper, I will briefly review the current knowledge of QPOs in black hole X-ray binaries, mainly focussing on their observed properties, but also mentioning the most important models that have been proposed to explain the origin of QPOs over the last decades.

  5. Quasi-periodic climate change on Mars

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H.; Zent, Aaron P.

    1992-01-01

    The paper examines evidence that the Martian climate undergoes quasi-periodic variations, including the polar layered terrain, differences between the residual polar caps, and the current net southward flow of H2O. The driving functions for these variations are oscillations in the elements of the Martian orbit coupled with precession of the Martian spin axis. These 'astronomic variations' control the distribution of the insolation, which in turn influences the partition of volatiles between atmospheric and surface reservoirs. The major effects anticipated at low obliquity are growth of the polar caps, substantial decrease in surface pressure, cessation of duststorms, release of CO2 from the regolith, and poleward migration of H2O ground ice. At high obliquity, the mass of the perennial polar caps decreases and permanent CO2 frost disappears, CO2 desorbs from the regolith at high latitudes, the surface pressure may increase to several times its current value, and the atmospheric dust load increases.

  6. Quasi-periodic oscillations of perturbed tori

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Varadarajan; Manousakis, Antonios; Kluźniak, Włodzimierz

    2016-05-01

    We performed axisymmetric hydrodynamical simulations of oscillating tori orbiting a non-rotating black hole. The tori in equilibrium were constructed with a constant distribution of angular momentum in a pseudo-Newtonian potential (Kluźniak-Lee). Motions of the torus were triggered by adding subsonic velocity fields: radial, vertical and diagonal to the tori in equilibrium. As the perturbed tori evolved in time, we measured L2 norm of density and obtained the power spectrum of L2 norm which manifested eigenfrequencies of tori modes. The most prominent modes of oscillation excited in the torus by a quasi-random perturbation are the breathing mode and the radial and vertical epicyclic modes. The radial and the plus modes, as well as the vertical and the breathing modes will have frequencies in an approximate 3:2 ratio if the torus is several Schwarzschild radii away from the innermost stable circular orbit. Results of our simulations may be of interest in the context of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries, as well as in supermassive black holes.

  7. Multispacecraft observations of quasi-periodic emissions

    NASA Astrophysics Data System (ADS)

    Nemec, Frantisek; Picket, Jolene S.; Santolik, Ondrej

    2014-05-01

    Quasi-periodic (QP) emissions are VLF electromagnetic waves in the frequency range of about 0.5-5 kHz which exhibit a periodic time modulation of the wave intensity. The modulation period is usually on the order of a few tens of seconds. The generation mechanism of these emissions is still not understood, but at least in some cases it appears to be related to ULF magnetic field pulsations which result in periodic modifications of the resonant conditions in the source region. We use multipoint measurements of QP emissions by the 4 Cluster spacecraft. The observations are obtained close to the equatorial region at radial distances of about 4 Earth radii, i.e. close to a possible generation region. A combined analysis of the high resolution data obtained by the WBD instruments and the ULF magnetic field data obtained by the FGM instruments allows for a detailed case-study analysis of these unique emissions. The presented analysis benefits from the recent close-separation configuration of three of the Cluster spacecraft (≡20-100 km) and a related timing analysis, which would be impossible otherwise.

  8. Quasi periodic oscillations in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Alston, W.; Fabian, A.; Markevičiutė, J.; Parker, M.; Middleton, M.; Kara, E.

    2016-05-01

    Quasi-periodic oscillations (QPOs) are coherent peaks of variability power observed in the X-ray power spectra (PSDs) of stellar mass X-ray binaries (XRBs). A scale invariance of the accretion process implies they should be present in the active galactic nuclei. The first robust detection was a ∼ 1 h periodicity in the Seyfert galaxy RE J1034+396 from a ∼ 90 ks XMM-Newton observation; however, subsequent observations failed to detect the QPO in the 0.3-10.0 keV band. In this talk we present the recent detection of the ∼ 1 h periodicity in the 1.0-4.0 keV band of 4 further low-flux/spectrally-harder observations of RE J1034+396 (see Alston et al. 2014). We also present recent work on the discovery of a QPO in the Seyfert galaxy, MS 2254.9-3712, which again is only detected in energy bands associated with the primary power-law continuum emission (Alston et al. 2015). We conclude these features are most likely analogous to the high-frequency QPOs observed in XRBs. In both sources, we also see evidence for X-ray reverberation at the QPO frequency, where soft X-ray bands and Iron Kα emission lag the primary X-ray continuum. These time delays may provide another diagnostic for understanding the underlying QPO mechanism observed in accreting black holes.

  9. Relationship of Type III Radio Bursts with Quasi-periodic Pulsations in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Kupriyanova, E. G.; Kashapova, L. K.; Reid, H. A. S.; Myagkova, I. N.

    2016-08-01

    We studied a solar flare with pronounced quasi-periodic pulsations detected in the microwave, X-ray, and radio bands. We used correlation, Fourier, and wavelet analyses methods to examine the temporal fine structures and relationships between the time profiles in each wave band. We found that the time profiles of the microwaves, hard X-rays, and type III radio bursts vary quasi-periodically with a common period of 40 - 50 s. The average amplitude of the variations is high, above 30 % of the background flux level, and reaches 80 % after the flare maximum. We did not find this periodicity in either the thermal X-ray flux component or in the source size dynamics. Our findings indicate that the detected periodicity is probably associated with periodic dynamics in the injection of non-thermal electrons, which can be produced by periodic modulation of magnetic reconnection.

  10. Quasi-periodic oscillations in superfluid magnetars

    NASA Astrophysics Data System (ADS)

    Passamonti, A.; Lander, S. K.

    2014-02-01

    We study the time evolution of axisymmetric oscillations of superfluid magnetars with a poloidal magnetic field and an elastic crust, working in Newtonian gravity. Extending earlier models, we study the effects of composition gradients and entrainment on the magneto-elastic wave spectrum and on the potential identification of the observed quasi-periodic oscillations (QPOs). We use two-fluid polytropic equations of state to construct our stellar models, which mimic realistic composition gradient configurations. The basic features of the axial axisymmetric spectrum of normal fluid stars are reproduced by our results and in addition we find several magneto-elastic waves with a mixed character. In the core, these oscillations mimic the shear mode pattern of the crust as a result of the strong dynamical coupling between these two regions. Incorporating the most recent entrainment configurations in our models, we find that they have a double effect on the spectrum: the magnetic oscillations of the core have a frequency enhancement, while the mixed magneto-elastic waves originating in the crust are moved towards the frequencies of the single-fluid case. The distribution of lower frequency magneto-elastic oscillations for our models is qualitatively similar to the observed magnetar QPOs with ν < 155 Hz. In particular, some of these QPOs could represent mixed magneto-elastic oscillations with frequencies not greatly different from the crustal modes of an unmagnetized star. We find that many QPOs could even be accounted for using a model with a relatively weak polar field of Bp ≃ 3 × 1014 G, because of the superfluid enhancement of magnetic oscillations. Finally, we discuss the possible identification of 625 and 1837 Hz QPOs either with non-axisymmetric modes or with high-frequency axisymmetric QPOs excited by crustal mode overtones.

  11. Quasi-periodic solutions for the quasi-periodically forced cubic complex Ginzburg-Landau equation on {T}d

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyu; Si, Jianguo

    2013-08-01

    In this paper, we discuss the existence of time quasi-periodic solutions for quasi-periodically forced cubic complex Ginzburg-Landau equation of higher spatial dimension with basic frequency vector ω = (ω1, ω2, …, ωm). By constructing a KAM (Kolmogorov-Arnold-Moser) theorem for a dissipative system which depends on time in a quasi-periodic way, we obtain a Cantorian branch of m + 2-dimensional invariant tori for the equation.

  12. Embedding of Analytic Quasi-Periodic Cocycles into Analytic Quasi-Periodic Linear Systems and its Applications

    NASA Astrophysics Data System (ADS)

    You, Jiangong; Zhou, Qi

    2013-11-01

    In this paper, we prove that any analytic quasi-periodic cocycle close to constant is the Poincaré map of an analytic quasi-periodic linear system close to constant, which bridges both methods and results in quasi-periodic linear systems and cocycles. We also show that the almost reducibility of an analytic quasi-periodic linear system is equivalent to the almost reducibility of its corresponding Poincaré cocycle. By the local embedding theorem and the equivalence, we transfer the recent local almost reducibility results of quasi-periodic linear systems (Hou and You, in Invent Math 190:209-260, 2012) to quasi-periodic cocycles, and the global reducibility results of quasi-periodic cocycles (Avila, in Almost reducibility and absolute continuity, 2010; Avila et al., in Geom Funct Anal 21:1001-1019, 2011) to quasi-periodic linear systems. Finally, we give a positive answer to a question of Avila et al. (Geom Funct Anal 21:1001-1019, 2011) and use it to study point spectrum of long-range quasi-periodic operator with Liouvillean frequency. The embedding also holds for some nonlinear systems.

  13. Quantifying unsteadiness and dynamics of pulsatory volcanic activity

    NASA Astrophysics Data System (ADS)

    Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C. B.; Andronico, D.; Harris, A. J. L.; Ripepe, M.

    2016-06-01

    Pulsatory eruptions are marked by a sequence of explosions which can be separated by time intervals ranging from a few seconds to several hours. The quantification of the periodicities associated with these eruptions is essential not only for the comprehension of the mechanisms controlling explosivity, but also for classification purposes. We focus on the dynamics of pulsatory activity and quantify unsteadiness based on the distribution of the repose time intervals between single explosive events in relation to magma properties and eruptive styles. A broad range of pulsatory eruption styles are considered, including Strombolian, violent Strombolian and Vulcanian explosions. We find a general relationship between the median of the observed repose times in eruptive sequences and the viscosity of magma given by η ≈ 100 ṡtmedian. This relationship applies to the complete range of magma viscosities considered in our study (102 to 109 Pa s) regardless of the eruption length, eruptive style and associated plume heights, suggesting that viscosity is the main magma property controlling eruption periodicity. Furthermore, the analysis of the explosive sequences in terms of failure time through statistical survival analysis provides further information: dynamics of pulsatory activity can be successfully described in terms of frequency and regularity of the explosions, quantified based on the log-logistic distribution. A linear relationship is identified between the log-logistic parameters, μ and s. This relationship is useful for quantifying differences among eruptive styles from very frequent and regular mafic events (Strombolian activity) to more sporadic and irregular Vulcanian explosions in silicic systems. The time scale controlled by the parameter μ, as a function of the median of the distribution, can be therefore correlated with the viscosity of magmas; while the complexity of the erupting system, including magma rise rate, degassing and fragmentation efficiency

  14. Concept of quasi-periodic undulator - control of radiation spectrum

    SciTech Connect

    Sasaki, Shigemi

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  15. The Ten-Rotation Quasi-periodicity in Sunspot Areas

    NASA Astrophysics Data System (ADS)

    Getko, R.

    2014-06-01

    Sunspot-area fluctuations over an epoch of 12 solar cycles (12 - 23) are investigated in detail using wavelets. Getko ( Universal Heliophysical Processes, IAU Symp. 257, 169, 2009) found three significant quasi-periodicities at 10, 17, and 23 solar rotations, but two longer periods could be treated as subharmonics of the ten-rotation quasi-periodicity. Therefore we focused the analysis on the occurrence of this quasi-periodicity during the low- and high-activity periods of each solar cycle. Because of the N - S asymmetry, each solar hemisphere was considered separately. The skewness of each fluctuation-probability distribution suggests that the positive and negative fluctuations could be examined separately. To avoid the problem that occurs when a few strong fluctuations create a wavelet peak, we applied fluctuation transformations for which the amplitudes at the high- and the low-activity periods are almost the same. The wavelet analyses show that the ten-rotation quasi-periodicity is mainly detected during the high-activity periods, but it also exists during a few low-activity periods. The division of each solar hemisphere into 30∘-wide longitude bins and the wavelet calculations for the areas of sunspot clusters belonging to these 30∘ bins enable one to detect longitude zones in which the ten-rotation quasi-periodicity exists. These zones are present during the whole high-activity periods and dominate the integrated spectra.

  16. Quasi-periodic Pulsations during the Impulsive and Decay phases of an X-class Flare

    NASA Astrophysics Data System (ADS)

    Hayes, L. A.; Gallagher, P. T.; Dennis, B. R.; Ireland, J.; Inglis, A. R.; Ryan, D. F.

    2016-08-01

    Quasi-periodic pulsations (QPPs) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 2013 October 28. We focus on the character of the fine structure pulsations evident in the soft X-ray (SXR) time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of ∼20 s is observed in all channels and a second timescale of ∼55 s is observed in the non-thermal emissions. SXR pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from ∼40 s up to ∼70 s. We interpret the bursty nature of the co-existing multi-wavelength QPPs during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPPs are most likely connected with compressive magnetohydrodynamic processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.

  17. Quasi-periodic Pulsations during the Impulsive and Decay phases of an X-class Flare

    NASA Astrophysics Data System (ADS)

    Hayes, L. A.; Gallagher, P. T.; Dennis, B. R.; Ireland, J.; Inglis, A. R.; Ryan, D. F.

    2016-08-01

    Quasi-periodic pulsations (QPPs) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 2013 October 28. We focus on the character of the fine structure pulsations evident in the soft X-ray (SXR) time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of ˜20 s is observed in all channels and a second timescale of ˜55 s is observed in the non-thermal emissions. SXR pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from ˜40 s up to ˜70 s. We interpret the bursty nature of the co-existing multi-wavelength QPPs during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPPs are most likely connected with compressive magnetohydrodynamic processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.

  18. Pressure-driven reconnection and quasi periodical oscillations in plasmas

    SciTech Connect

    Paccagnella, R.

    2014-03-15

    This paper presents a model for an ohmically heated plasma in which a feedback exists between thermal conduction and transport, on one side, and the magneto-hydro-dynamical stability of the system, on the other side. In presence of a reconnection threshold for the magnetic field, a variety of periodical or quasi periodical oscillations for the physical quantities describing the system are evidenced. The model is employed to interpret the observed quasi periodical oscillations of electron temperature and perturbed magnetic field around the so called “Single Helical” state in the reversed field pinch, but its relevance for other periodical phenomena observed in magnetic confinement systems, especially in tokamaks, is suggested.

  19. A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Si, Jianguo

    2012-02-01

    In this paper, a quasi-periodically forced nonlinear beam equation {u_{tt}+u_{xxxx}+μ u+\\varepsilonφ(t)h(u)=0} with hinged boundary conditions is considered, where μ > 0, {\\varepsilon} is a small positive parameter, {φ} is a real analytic quasi-periodic function in t with a frequency vector ω = ( ω 1, ω 2 . . . , ω m ), and the nonlinearity h is a real analytic odd function of the form {h(u)=η_1u+η_{2bar{r}+1}u^{2bar{r}+1}+sum_{k≥ bar{r}+1}η_{2k+1}u^{2k+1},η_1,η_{2bar{r}+1} neq0, bar{r} in {mathbb {N}}.} The above equation admits a quasi-periodic solution.

  20. Quasi-periodic oscillations of Jupiter's inner radiation belt

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Godfrey, Leith; Lou, Yu-Qing

    2014-04-01

    Radio and X-ray studies of Jupiter have detected quasi-periodic flux variability with timescales of ~20 min and ~45 min at some epochs but not others. Yu-Qing Lou and collaborators have suggested that this is caused by oscillations of the magnetosphere when it is buffeted by fast solar wind. We want to monitor Jupiter in the L-band with the ATCA: (1) to accurately characterise the variability over a wide bandwidth, during fast solar wind phases (v >~ 600 km/s); (2) to search for low-amplitude quasi-periodic variability during slow/intermediate wind phases or put an upper limit to the variability at those epochs; (3) to study the response of the characteristic oscillation timescales to different solar wind conditions. The induced magnetospheric oscillation model can be applied to broader astrophysical contexts, such as the Earth's magnetosphere, and quasi-periodic oscillations in accreting neutron-star and black holes. Jupiter provides a natural lab for our modelling of induced magnetospheric quasi-periodic oscillations.

  1. Ambarzumyan's theorem for the quasi-periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Kıraç, Alp Arslan

    2015-10-01

    We obtain the classical Ambarzumyan's theorem for the Sturm-Liouville operators Lt(q) with qin L1[0,1] and quasi-periodic boundary conditions, tin [0,2π ) , when there is not any additional condition on the potential q.

  2. Normal linear stability of quasi-periodic tori

    NASA Astrophysics Data System (ADS)

    Broer, H. W.; Hoo, J.; Naudot, V.

    We consider families of dynamical systems having invariant tori that carry quasi-periodic motions. Our interest is the persistence of such tori under small, nearly-integrable perturbations. This persistence problem is studied in the dissipative, the Hamiltonian and the reversible setting, as part of a more general KAM theory for classes of structure preserving dynamical systems. This concerns the parametrized KAM theory as initiated by Moser [J.K. Moser, On the theory of quasiperiodic motions, SIAM Rev. 8 (2) (1966)145-172; J.K. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967) 136-176] and further developed in [G.B. Huitema, Unfoldings of quasi-periodic tori, PhD thesis, University of Groningen, 1988; H.W. Broer, G.B. Huitema, F. Takens, Unfoldings of quasi-periodic tori, Mem. Amer. Math. Soc. 83 (421) (1990) 1-82; H.W. Broer, G.B. Huitema, Unfoldings of quasi-periodic tori in reversible systems, J. Dynam. Differential Equations 7 (1) (1995) 191-212]. The corresponding nondegeneracy condition involves certain (trans-)versality conditions on the normal linear, leading, part at the invariant tori. We show that as a consequence, a Cantor family of Diophantine tori with positive Hausdorff measure is persistent under nearly-integrable perturbations. This result extends the above references since presently the case of multiple Floquet exponents is included. Our leading example is the normal 1 :-1 resonance, which occurs a lot in applications, both Hamiltonian and reversible. As an illustration of this we briefly describe the Lagrange top coupled to an oscillator.

  3. Quasi-periodicities at Year-like Timescales in Blazars

    NASA Astrophysics Data System (ADS)

    Sandrinelli, A.; Covino, S.; Dotti, M.; Treves, A.

    2016-03-01

    We searched for quasi-periodicities on year-like timescales in the light curves of six blazars in the optical—near-infrared bands and we made a comparison with the high energy emission. We obtained optical/NIR light curves from Rapid Eye Mounting photometry plus archival Small & Moderate Aperture Research Telescope System data and we accessed the Fermi light curves for the γ-ray data. The periodograms often show strong peaks in the optical and γ-ray bands, which in some cases may be inter-related. The significance of the revealed peaks is then discussed, taking into account that the noise is frequency dependent. Quasi-periodicities on a year-like timescale appear to occur often in blazars. No straightforward model describing these possible periodicities is yet available, but some plausible interpretations for the physical mechanisms causing periodic variabilities of these sources are examined.

  4. Quasi-periodic continuation along a continuous symmetry

    NASA Astrophysics Data System (ADS)

    Salomone, Matthew David

    Given a system of differential equations which admits a continuous group of symmetries and possesses a periodic solution, we show that under certain nondegeneracy assumptions there always exists a continuous family containing infinitely many periodic and quasi-periodic trajectories. This generalizes the continuation method of Poincaré to orbits which are not necessarily periodic. We apply these results in the setting of the Lagrangian N -body problem of homogeneous potential to characterize an infinite family of rotating nonplanar "hip-hop" orbits in the four-body problem of equal masses, and show how some other trajectories in the N -body theory may be extended to infinite families of periodic and quasi-periodic trajectories.

  5. Quasi-periodic quantum dot arrays produced by electrochemical synthesis

    SciTech Connect

    Bandyopadhyay, S.; Miller, A.E.; Yue, D.F.; Banerjee, G.; Ricker, R.E.; Jones, S.; Eastman, J.A.; Baugher, E.; Chandrasekhar, M.

    1994-06-01

    We discuss a ``gentle`` electrochemical technique for fabricating quasi-periodic quantum dot arrays. The technique exploits a self-organizing phenomenon to produce quasi-periodic arrangement of dots and provides excellent control over dot size and interdot spacing. Unlike conventional nanolithography, it does not cause radiation damage to the structures during exposure to pattern delineating beams (e-beam, ion-beam or x-ray). Moreover, it does not require harsh processing steps like reactive ion etching, offers a minimum feature size of {approximately}40 {angstrom}, allows the fabrication of structures on nonplanar surfaces (e.g. spherical or cylindrical substrates), is amenable to mass production (millions of wafers can be processed simultaneously) and is potentially orders of magnitude cheaper than conventional nanofabrication. In this paper, we describe our initial results and show the promise of this technique for low-cost and high-yield nanosynthesis.

  6. Quasi-periodic states in coupled rings of cells

    NASA Astrophysics Data System (ADS)

    Antoneli, Fernando; Dias, Ana Paula S.; Pinto, Carla M. A.

    2010-04-01

    We study some dynamical features of certain coupled cell networks that consist of two (unidirectional or bidirectional) rings of cells coupled through a 'buffer' cell. Depending on how the rings and the buffer cell are coupled, the full network may have a non-trivial group of symmetries or a non-trivial group of 'interior' symmetries. This group is Zp ×Zq in the unidirectional case and Dp ×Dq in the bidirectional case. We are interested in finding quasi-periodic motion in these networks, motivated by an example presented by Golubitsky, Nicol and Stewart (Some curious phenomena in coupled cell systems, J Nonlinear Sci 2004;14(2):207-36). In the examples considered here, we obtain quasi-periodic states through a sequence of Hopf bifurcations. Interestingly, we observe relaxation oscillation phenomena appearing further away from the last Hopf bifurcation point. We use XPPAUT and MATLAB to compute numerically the relevant states.

  7. Explicit quasi-periodic solutions of the Vakhnenko equation

    NASA Astrophysics Data System (ADS)

    Zhai, Yunyun; Geng, Xianguo; He, Guoliang

    2014-05-01

    The trigonal curve associated with the Vakhnenko equation is introduced by using the Lax matrix for the nth stationary positive flow. Based on the theory of the trigonal curve and the properties of the three kinds of Abel differentials, the Riemann theta function representation for the Baker-Akhiezer function is derived, from which the straightening out of flows in the Jacobian variety is exactly given through the Abel maps. We finally arrive at quasi-periodic solutions of the Vakhnenko equation.

  8. QUASI-PERIODIC OSCILLATIONS IN LASCO CORONAL MASS EJECTION SPEEDS

    SciTech Connect

    Shanmugaraju, A.; Moon, Y.-J.; Cho, K.-S.; Bong, S. C.; Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Umapathy, S.; Vrsnak, B. E-mail: moonyj@khu.ac.k

    2010-01-01

    Quasi-periodic oscillations in the speed profile of coronal mass ejections (CMEs) in the radial distance range 2-30 solar radii are studied. We considered the height-time data of the 307 CMEs recorded by the Large Angle and Spectrometric Coronagraph (LASCO) during 2005 January-March. In order to study the speed-distance profile of the CMEs, we have used only 116 events for which there are at least 10 height-time measurements made in the LASCO field of view. The instantaneous CME speed is estimated using a pair of height-time data points, providing the speed-distance profile. We found quasi-periodic patterns in at least 15 speed-distance profiles, where the speed amplitudes are larger than the speed errors. For these events we have determined the speed amplitude and period of oscillations. The periods of quasi-periodic oscillations are found in the range 48-240 minutes, tending to increase with height. The oscillations have similar properties as those reported by Krall et al., who interpreted them in terms of the flux-rope model. The nature of forces responsible for the motion of CMEs and their oscillations are discussed.

  9. Quasi-periodic Solutions to the K(-2, -2) Hierarchy

    NASA Astrophysics Data System (ADS)

    Wu, Lihua; Geng, Xianguo

    2016-07-01

    With the help of the characteristic polynomial of Lax matrix for the K(-2, -2) hierarchy, we define a hyperelliptic curve 𝒦n+1 of arithmetic genus n+1. By introducing the Baker-Akhiezer function and meromorphic function, the K(-2, -2) hierarchy is decomposed into Dubrovin-type differential equations. Based on the theory of hyperelliptic curve, the explicit Riemann theta function representation of meromorphic function is given, and from which the quasi-periodic solutions to the K(-2, -2) hierarchy are obtained.

  10. Analysis of stochastically forced quasi-periodic attractors

    SciTech Connect

    Ryashko, Lev

    2015-11-30

    A problem of the analysis of stochastically forced quasi-periodic auto-oscillations of nonlinear dynamic systems is considered. A stationary distribution of random trajectories in the neighborhood of the corresponding deterministic attractor (torus) is studied. A parametric description of quadratic approximation of the quasipotential based on the stochastic sensitivity functions (SSF) technique is given. Using this technique, we analyse a dispersion of stochastic flows near the torus. For the case of two-torus in three-dimensional space, the stochastic sensitivity function is constructed.

  11. Quasi-periodic transformations of nonlocal spatial solitons.

    PubMed

    Buccoliero, Daniel; Desyatnikov, Anton S

    2009-06-01

    We study quasi-periodic transformations between nonlocal spatial solitons of different symmetries triggered by modulational instability and resembling a self-induced mode converter. Transformation dynamics of solitons with zero angular momentum, e.g. the quadrupole-type soliton, reveal the equidistant spectrum of spatial field oscillations typical for the breather-type solutions. In contrast, the transformations of nonlocal solitons carrying orbital angular momentum, such as 2x3 soliton matrix, are accompanied by their spiralling and corresponding spectra of field oscillations show mixing of three characteristic spatial frequencies. PMID:19506609

  12. Quasi-Periodic Bifurcations of Higher-Dimensional Tori

    NASA Astrophysics Data System (ADS)

    Komuro, Motomasa; Kamiyama, Kyohei; Endo, Tetsuro; Aihara, Kazuyuki

    2016-06-01

    We classify the local bifurcations of quasi-periodic d-dimensional tori in maps (abbr. MTd) and in flows (abbr. FTd) for d ≥ 1. It is convenient to classify these bifurcations into normal bifurcations and resonance bifurcations. Normal bifurcations of MTd can be classified into four classes: namely, saddle-node, period doubling, double covering, and Neimark-Sacker bifurcations. Furthermore, normal bifurcations of FTd can be classified into three classes: saddle-node, double covering, and Neimark-Sacker bifurcations. These bifurcations are determined by the type of the dominant Lyapunov bundle. Resonance bifurcations are well known as phase locking of quasi-periodic solutions. These bifurcations are classified into two classes for both MTd and FTd: namely, saddle-node cycle and heteroclinic cycle bifurcations of the (d ‑ 1)-dimensional tori. The former is reversible, while the latter is irreversible. In addition, we propose a method for analyzing higher-dimensional tori, which uses one-dimensional tori in sections (abbr. ST1) and zero-dimensional tori in sections (abbr. ST0). The bifurcations of ST1 can be classified into five classes: saddle-node, period doubling, component doubling, double covering, and Neimark-Sacker bifurcations. The bifurcations of ST0 can be classified into four classes: saddle-node, period doubling, component doubling, and Neimark-Sacker bifurcations. Furthermore, we clarify the relationship between the bifurcations of ST1/ST0 and the bifurcations of MTd/FTd. We present examples of all of these bifurcations.

  13. The quasi-periodicity of the minority game revisited

    NASA Astrophysics Data System (ADS)

    Acosta, Gabriel; Caridi, Inés; Guala, Sebastián; Marenco, Javier

    2013-10-01

    We analyze two well-known related aspects regarding the sequence of minority sides from the Minority Game (MG) in its symmetric phase: period-two dynamics and quasi-periodic behavior. We also study the sequence of minority sides in a general way within a graph-theoretical framework. In order to analyze the outcome dynamics of the MG, it is useful to define the MG, namely an MG with a new choosing rule of the strategy to play, which takes into account both prior preferences and game information. In this way, each time an agent is undecided because two of her best strategies predict different choices while being equally successful so far, she selects her a priori favorite strategy to play, instead of performing a random tie-break as in the MG. This new choosing rule leaves the generic behavior of the model unaffected and simplifies the game analysis. Furthermore, interesting properties arise which are only partially present in the MG, like the quasi-periodic behavior of the sequence of minority sides, which turns out to be periodic for the MG.

  14. Quasi-periodic Solutions of the Kaup-Kupershmidt Hierarchy

    NASA Astrophysics Data System (ADS)

    Geng, Xianguo; Wu, Lihua; He, Guoliang

    2013-08-01

    Based on solving the Lenard recursion equations and the zero-curvature equation, we derive the Kaup-Kupershmidt hierarchy associated with a 3×3 matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the Kaup-Kupershmidt hierarchy, we introduce a trigonal curve {K}_{m-1} and present the corresponding Baker-Akhiezer function and meromorphic function on it. The Abel map is introduced to straighten out the Kaup-Kupershmidt flows. With the aid of the properties of the Baker-Akhiezer function and the meromorphic function and their asymptotic expansions, we arrive at their explicit Riemann theta function representations. The Riemann-Jacobi inversion problem is achieved by comparing the asymptotic expansion of the Baker-Akhiezer function and its Riemann theta function representation, from which quasi-periodic solutions of the entire Kaup-Kupershmidt hierarchy are obtained in terms of the Riemann theta functions.

  15. Quasi-periodic oscillations in GX 17 + 2

    NASA Technical Reports Server (NTRS)

    Penninx, W.; Lewin, W. H. G.; Mitsuda, K.; Van Der Klis, M.; Van Paradijs, J.

    1990-01-01

    X-ray observations of GX 17 + 2 were made in March and April, 1988 with the Large Area Counter of the Ginga satellite. The source was observed in the flaring, normal, and horizontal branches. Quasi-periodic oscillations (QPOs) were oberved in all three of these branches. The relationship between QPO behavior and the X-ray spectral properties of GX 17 + 2 is examined. Continuous variation of QPO behavior is observed as GX 17 + 2 moves from the normal to flaring branch, indicating that the normal-branch QPO and the flaring-branch QPO are probably one physical phenomenon. This QPO behavior is similar to that observed in Sco X-1. Also, it is found that GX 17 + 2 is an example of the Z-type sources defined by Hasinger et al. (1989).

  16. Aperiodic and Quasi-Periodic Variability in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Parker, Neil Ivan

    Low mass X-ray binary star systems (LMXBs) are among the brightest and most well-studied objects in the X-ray sky-indeed, the first extrasolar X-ray source discovered, Sco X-1, is an LMXB. But despite the wealth of available data, LMXBs remain enigmatic, in large part due to the fact that they show little or no coherent periodicity. LMXBs show aperiodic and quasi-periodic variability, for which the underlying mechanisms are poorly understood. Much information remains locked in archival data. Here we address this issue by re-analyzing archival EXOSAT data of Sco X-1 using modern time-series techniques, including multi-tapering, wavelet transforms and scalegrams, and nonlinear dynamical modelling, which are not yet commonly used in the analysis of astronomical data, with the goal of characterizing Sco X-1's variability and developing a formalism to take us from timing data to mathematical models to astrophysical models. The power spectra of Sco X-1 show several components: (i) very low frequency noise (VLFN), a colored noise component seen below ~0.25 Hz, (ii) high frequency noise (HFN), a colored noise component seen above ~30-40 Hz, and (iii) quasi-periodic oscillations (QPOs), localized excesses of Fourier power. The VLFN contains ~1.3% [1/over2]-peak-to-peak pulsed power on the average, can be described by a power law with an index of ~1.4, and is correlated with the 'flickeriness' of the source. QPOs contain ~4.6% [1/over2]-peak-to-peak pulsed power, have centroid frequencies of 6.7 Hz or 15 Hz, and are associated with extended 'quiescent' states and with brief gaps in 'flaring' states. HFN is difficult to characterize (though others have had success describing it as a damped power law), and is not strongly associated with any other source feature. It contains ~2.1% [1/over2]-peak-to-peak pulsed power. Several models have been proposed to explain the VLFN, QPOs, and HFN in Sco X-1, but none are completely satisfactory. Most models seek to explain only QPOs. Here

  17. Quasi-periodic modulation of equatorial noise intensity

    NASA Astrophysics Data System (ADS)

    Nemec, Frantisek; Santolik, Ondrej; Hrbackova, Zuzana; Pickett, Jolene S.; Cornilleau-Wehrlin, Nicole

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed routinely in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field. Although their harmonic structure, which is characteristic of the proton cyclotron frequency in the source region has been known for a couple of decades, they were generally believed to be continuous in time. The analysis of more than 2000 EN events observed by the STAFF-SA and WBD instruments on board the Cluster spacecraft reveals that this is not always the case, with about 5% of events exhibiting a clear quasi-periodic (QP) modulation of the wave intensity. We perform a systematic analysis of these events, and we discuss possible mechanisms of the QP intensity modulation. It is shown that the events occur usually in the noon-to-dawn magnetic local time sector, and their occurrence seems to be related to the periods of increased geomagnetic activity. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN were identified in about half of the events. These ULF pulsations might modulate the EN wave intensity, similarly as they modulate the intensity of formerly reported VLF whistler-mode QP events.

  18. Equatorial Noise Emissions and Their Quasi-Periodic Modulation

    NASA Astrophysics Data System (ADS)

    Nemec, F.; Santolik, O.; Hrbackova, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.; Parrot, M.; Hayosh, M.

    2015-12-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic structure related to the ion cyclotron frequency in the source region. We analyze more than 2000 EN events observed by the wave instruments on board the Cluster spacecraft, and we find that about 5% of EN events are not continuous in time, but exhibit a quasi-periodic (QP) modulation of the wave intensity. Typical modulation periods are on the order of minutes. The events predominantly occur in the noon-to-dawn local time sector, and their occurrence is related to the periods of increased geomagnetic activity and higher solar wind speeds. We suggest that the QP modulation of EN events may be due to compressional ULF pulsations, which periodically modulate the wave growth in the source region. These compressional ULF pulsations were identified in about half of the events. Finally, we demonstrate that EN emissions with QP modulation of the wave intensity can propagate down to altitudes as low as 700 km.

  19. Investigation of Quasi-periodic Variations in Hard X-Rays of Solar Flares. II. Further Investigation of Oscillating Magnetic Traps

    NASA Astrophysics Data System (ADS)

    Jakimiec, J.; Tomczak, M.

    2012-06-01

    In our recent paper (Jakimiec and Tomczak, Solar Physics 261, 233, 2010) we investigated quasi-periodic oscillations of hard X-rays during the impulsive phase of solar flares. We have come to the conclusion that they are caused by magnetosonic oscillations of magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the present paper we investigate four flares that show clear quasi-periodic sequences of the HXR pulses. We also describe our phenomenological model of oscillating magnetic traps to show that it can explain the observed properties of the HXR oscillations. The main results are the following: i) Low-amplitude quasi-periodic oscillations occur before the impulsive phase of some flares. ii) The quasi-periodicity of the oscillations can change in some flares. We interpret this as being due to changes of the length of oscillating magnetic traps. iii) During the impulsive phase a significant part of the energy of accelerated (non-thermal) electrons is deposited within a HXR loop-top source. iv) The quick development of the impulsive phase is due to feedback between the pressure pulses by accelerated electrons and the amplitude of the magnetic-trap oscillation. v) The electron number density and magnetic field strength values obtained for the HXR loop-top sources in several flares fall within the limits of N≈(2 - 15)×1010 cm-3, B≈(45 - 130) gauss. These results show that the HXR quasi-periodic oscillations contain important information about the energy release in solar flares.

  20. Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency

    NASA Astrophysics Data System (ADS)

    Wang, Jing; You, Jiangong

    2016-07-01

    We study the boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequencies. We proved that if the forcing is quasi-periodic in time with two frequencies which is not super-Liouvillean, then all solutions of the equation are bounded. The proof is based on action-angle variables and modified KAM theory.

  1. Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials.

    PubMed

    Zhou, Xin; Fu, Quan H; Zhao, Jing; Yang, Yang; Zhao, Xiao P

    2006-08-01

    We present the design for a hexagonal cell made of quasi-periodic dendritic arranged collections of plasmonic metallic wires that may exhibit a resonant magnetic collective response. When such quasi-periodic dendritic cells are etched on a host medium, they may provide metamaterials with negative effective permeability. We also show that a clear point image is observed, as expected, with our left-handed metamaterials (LHMs) lens composed of metallic dendritic cells and wire strips. These prominent characteristics of quasi-periodic dendritic cells potentially enable us to prepare infrared or visible domain LHMs by using a general chemical method. PMID:19529087

  2. Quasi-periodic pulsations with varying period in multi-wavelength observations of an X-class flare

    SciTech Connect

    Huang, Jing; Tan, Baolin; Zhang, Yin; Karlický, Marian; Mészárosová, Hana

    2014-08-10

    This work presents an interesting phenomenon of the period variation in quasi-periodic pulsations (QPPs) observed during the impulsive phase of a coronal mass ejection-related X1.1 class flare on 2012 July 6. The period of QPPs was changed from 21 s at soft X-rays (SXR) to 22-23 s at microwaves, to ∼24 s at extreme ultraviolet emissions (EUV), and to 27-32 s at metric-decimetric waves. The microwave, EUV, and SXR QPPs, emitted from flare loops of different heights, were oscillating in phase. Fast kink mode oscillations were proposed to be the modulation mechanism, which may exist in a wide region in the solar atmosphere from the chromosphere to the upper corona or even to the interplanetary space. Changed parameters of flare loops through the solar atmosphere could result in the varying period of QPPs at different wavelengths. The first appearing microwave QPPs and quasi-periodic metric-decimetric type III bursts were generated by energetic electrons. This may imply that particle acceleration or magnetic reconnection were located between these two non-thermal emission sources. Thermal QPPs (in SXR and EUV emissions) occurred later than the nonthermal ones, which would suggest a some time for plasma heating or energy dissipation in flare loops during burst processes. At the beginning of flare, a sudden collapse and expansion of two separated flare loop structures occurred simultaneously with the multi-wavelength QPPs. An implosion in the corona, including both collapse and expansion of flare loops, could be a trigger of loop oscillations in a very large region in the solar atmosphere.

  3. On the persistence of quasi-periodic invariant tori for double Hopf bifurcation of vector fields

    NASA Astrophysics Data System (ADS)

    Li, Xuemei

    2016-05-01

    We analyze the persistence of quasi-periodic invariant 2- and 3-tori for the double Hopf (Hopf-Hopf) bifurcation by using the KAM method. We prove that in a sufficiently small neighborhood of the bifurcation point, the full system has quasi-periodic 2-tori for most of the parameter sets where its truncated normal form possesses 2-tori. Under appropriate conditions we obtain that the full system also has quasi-periodic 3-tori for most parameters near the Hopf bifurcation curve of its truncated normal form and along the direction of the bifurcation, and these 3-tori bifurcate from invariant 2-tori. We also give concrete formulas on the existence of quasi-periodic invariant 2- and 3-tori, which are based on coefficients of the truncated normal form.

  4. New insights into the quasi-periodic X-ray burster GS 0836-429

    NASA Astrophysics Data System (ADS)

    Aranzana, E.; Sánchez-Fernández, C.; Kuulkers, E.

    2016-02-01

    GS 0836-429 is a neutron star X-ray transient that displays Type-I X-ray bursts. In 2003 and 2004 it experienced two outbursts in X-rays. We present here an analysis of the system's bursting properties during these outbursts. We studied the evolution of the 2003-2004 outbursts in soft X-rays using RXTE (2.5-12 keV; ASM) and in hard X-rays with INTEGRAL (17-80 keV, IBIS/ISGRI). Using data from the JEM-X monitor onboard INTEGRAL, we studied the bursting properties of the source. We detected 61 Type-I X-ray bursts during the 2004 outburst and confirm that the source displayed a quasi-periodic burst recurrence time of about 2.3 h. We improve the characterisation of the fuel composition, as well as the description of the typical burst durations and fluences. We estimate the average value of α to be 49 ± 3, which describes the ratio of the gravitational energy released between bursts to the nuclear energy released in an X-ray burst. Both this value and the observed burst profiles indicate a regime of a mixed He/H runaway triggered by unstable helium ignition. In addition, we report the detection of four series of double bursts, with burst recurrence times of ≤20 min. The secondary bursts are always shorter and less energetic than the primary and typical bursts from the source. The measured recurrence time in double bursts is too short to allow the accretion of enough fresh material, which is needed to trigger a Type-I X-ray burst. This suggests the presence of leftover, unburned material from the preceding burst, which gets ignited on a time scale of minutes. The energies and time scales of the secondary bursts suggest a lower fraction of hydrogen compared to that estimated for the primary bursts. The persistent emission was roughly constant during the period when the Type I X-ray bursts were detected. We derive an average accretion rate during our observations of ṁ ~ 8% ṁEdd. The spectrum of the persistent emission during these observations can be fit with a non-thermal

  5. The "Approximate 150 Day Quasi-Periodicity" in Interplanetary and Solar Phenomena During Cycle 23

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    A"quasi-periodicity" of approx. 150 days in various solar and interplanetary phenomena has been reported in earlier solar cycles. We suggest that variations in the occurrence of solar energetic particle events, inter-planetary coronal mass ejections, and geomagnetic storm sudden commenceents during solar cycle 23 show evidence of this quasi-periodicity, which is also present in the sunspot number, in particular in the northern solar hemisphere. It is not, however, prominent in the interplanetary magnetic field strength.

  6. Radiation characteristics of quasi-periodic radio bursts in the Jovian high-latitude region

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Tsuchiya, Fuminori; Misawa, Hiroaki; Morioka, Akira; Nozawa, Hiromasa

    2008-12-01

    Ulysses had a "distant encounter" with Jupiter in February 2004. The spacecraft passed from north to south, and it observed Jovian radio waves from high to low latitudes (from +80° to +10°) for few months during its encounter. In this study, we present a statistical investigation of the occurrence characteristics of Jovian quasi-periodic bursts, using spectral data from the unified radio and plasma wave experiment (URAP) onboard Ulysses. The latitudinal distribution of quasi-periodic bursts is derived for the first time. The analysis suggested that the bursts can be roughly categorized into two types: one having periods shorter than 30 min and one with periods longer than 30 min, which is consistent with the results of the previous analysis of data from Ulysses' first Jovian flyby [MacDowall, R.J., Kaiser, M.L., Desch, M.D., Farrell, W.M., Hess, R.A., Stone, R.G., 1993. Quasi-periodic Jovian radio bursts: observations from the Ulysses radio and plasma wave. Experiment. Planet. Space Sci. 41, 1059-1072]. It is also suggested that the groups of quasi-periodic bursts showed a dependence on the Jovian longitude of the sub-solar point, which means that these burst groups are triggered during a particular rotational phase of the planet. Maps of the occurrence probability of these quasi-periodic bursts also showed a unique CML/MLAT dependence. We performed a 3D ray tracing analysis of the quasi-periodic burst emission to learn more about the source distribution. The results suggest that the longitudinal distribution of the occurrence probability depends on the rotational phase. The source region of quasi-periodic bursts seems to be located at an altitude between 0.4 and 1.4 Rj above the polar cap region ( L>30).

  7. Invariant tori for a derivative nonlinear Schrödinger equation with quasi-periodic forcing

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Si, Jianguo

    2015-03-01

    This paper is concerned with a one dimensional derivative nonlinear Schrödinger equation with quasi-periodic forcing under periodic boundary conditions i u t + u x x + i g ( β t ) ( f ( |u|2 ) u ) x = 0 , x ∈ T ≔ R / 2 π Z , where g(βt) is real analytic and quasi-periodic on t with frequency vector β = (β1, β2, …, βm). f is real analytic in some neighborhood of the origin in ℂ, f(0) = 0 and f'(0) ≠ 0. We show that the above equation admits Cantor families of smooth quasi-periodic solutions of small amplitude. The proof is based on an abstract infinite dimensional Kolmogorov-Arnold-Moser theorem for unbounded perturbation vector fields and partial Birkhoff normal form.

  8. Sensitivity of quasi-periodic outer rainband activity of tropical cyclones to the surface entropy flux

    NASA Astrophysics Data System (ADS)

    Li, Qingqing; Duan, Yihong

    2013-10-01

    The influence of outer-core surface entropy fluxes (SEFs) on tropical cyclone (TC) outer rainband activity is investigated in this study with a fully compressible, nonhydrostatic model. A control simulation and two sensitivity experiments with the outer-core SEF artificially increased and decreased by 20% respectively were conducted to examine the quasi-periodic outer rainband behavior. Larger negative horizontal advection due to the greater radial wind and the positive contribution by asymmetric eddies leads to a longer period of outerrainband activity in the SEF-enhanced experiment. The well-developed outer rainbands in the control and SEF-reduced simulations significantly limit the TC intensity, whereas such an intensity suppression influence is not pronounced in the SEF-enhanced experiment. As diabatic heating in outer rainbands strengthens the outer-core tangential wind, the quasi-periodic activity of outer rainbands contributes to the quasi-periodic variations of the inner-core size of the TCs.

  9. Globally and locally attractive solutions for quasi-periodically forced systems

    NASA Astrophysics Data System (ADS)

    Bartuccelli, Michele V.; Deane, Jonathan H. B.; Gentile, Guido

    2007-04-01

    We consider a class of differential equations, , with , describing one-dimensional dissipative systems subject to a periodic or quasi-periodic (Diophantine) forcing. We study existence and properties of trajectories with the same quasi-periodicity as the forcing. For g(x)=x2p+1, , we show that, when the dissipation coefficient is large enough, there is only one such trajectory and that it describes a global attractor. In the case of more general nonlinearities, including g(x)=x2 (describing the varactor equation), we find that there is at least one trajectory which describes a local attractor.

  10. Exciton photoluminescence in resonant quasi-periodic Thue-Morse quantum wells.

    PubMed

    Hsueh, W J; Chang, C H; Lin, C T

    2014-02-01

    This Letter investigates exciton photoluminescence (PL) in resonant quasi-periodic Thue-Morse quantum wells (QWs). The results show that the PL properties of quasi-periodic Thue-Morse QWs are quite different from those of resonant Fibonacci QWs. The maximum and minimum PL intensities occur under the anti-Bragg and Bragg conditions, respectively. The maxima of the PL intensity gradually decline when the filling factor increases from 0.25 to 0.5. Accordingly, the squared electric field at the QWs decreases as the Thue-Morse QW deviates from the anti-Bragg condition. PMID:24487847

  11. Real analytic quasi-periodic solutions for the derivative nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Geng, Jiansheng; Wu, Jian

    2012-10-01

    In this paper, we show that one dimension derivative nonlinear Schrödinger equation admits a whitney smooth family of small amplitude, real analytic quasi-periodic solutions with two Diophantine frequencies. The proof is based on a partial Birkhoff normal form reduction and an abstract infinite dimensional Kolmogorov-Arnold-Moser (KAM) theorem.

  12. Dripping handrails and the quasi-periodic oscillations of the AM Herculis objects

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, Thomas Y.; Young, Karl; Scargle, Jeffrey D.; Crutchfield, James P.; Imamura, James N.; Wolff, Michael T.; Wood, Kent S.

    1994-01-01

    AM Her objects exhibit periodic, quasi-periodic, and aperiodic variability on timescales ranging from seconds to years. Here, we investigate a process for the production of aperiodic and quasi-periodic accretion rate fluctuations. We consider the nonlinear dynamical model known as the dripping handrail (DHR). The DHR, basically a model for certain types of spatially extended systems and loosely based on water condensing on and dripping off a handrail, has recently been used as a model for the quasi-periodic oscillations (QPO) and very low frequency noise of the low-mass X-ray binary Sco X-1. Here, we show that (1) the DHR is a robust QPO generation process in that it leads to QPO production under a wide range of conditions and assumptions; (2) the phenomenology of the DHR is consistent with the observed aperiodic and quasi-periodic varibility of the AM Her QPO source VV Pup over timescales ranging from 16 ms to 20 s; and (3) a single DHR model can produce both broadband QPOs and features with quality Q greater than 20 as observed in several AM Her QPO sources.

  13. Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures

    NASA Astrophysics Data System (ADS)

    Lei, Yuxiong; Chen, Zheng; Li, Liangliang

    2015-05-01

    Microwave properties of ferromagnetic nanowire arrays patterned with periodic and quasi-periodic structures were investigated in this study. The periodic and quasi-periodic structures were designed based on Fibonacci sequence and golden ratio. Ni nanowires arrays were electrodeposited in anodic aluminum oxide (AAO) templates with patterned Cu electrodes, and then the AAO templates were attached to the coplanar waveguide lines fabricated on quartz substrate for measurement. The S21 of both periodic and quasi-periodic structure-patterned Ni nanowire arrays showed an extra absorption peak besides the absorption peak due to the ferromagnetic resonance of Ni nanowires. The frequency of the absorption peak caused by the patterned structure could be higher than 40 GHz when the length and arrangement of the structural units were modified. In addition, the frequency of the absorption peak due to the quasi-periodic structure was calculated based on a simple analytical model, and the calculated value was consistent with the measured one. The experimental data showed that it could be a feasible approach to tune the performance of microwave devices by patterning ferromagnetic nanowires.

  14. Quasi-periodic pulsations in solar hard X-ray and microwave flares

    NASA Technical Reports Server (NTRS)

    Kosugi, Takeo; Kiplinger, Alan L.

    1986-01-01

    For more than a decade, various studies have pointed out that hard X-ray and microwave time profiles of some solar flares show quasi-periodic fluctuations or pulsations. Nevertheless, it was not until recently that a flare displaying large amplitude quasi-periodic pulsations in X-rays and microwaves was observed with good spectral coverage and with a sufficient time resolution. The event occurred on June 7, 1980, at approximately 0312 UT, and exhibits seven intense pulses with a quasi-periodicity of approximately 8 seconds in microwaves, hard X-rays, and gamma-ray lines. On May 12, 1983, at approximately 0253 UT, another good example of this type of flare was observed both in hard X-rays and in microwaves. Temporal and spectral characteristics of this flare are compared with the event of June 7, 1980. In order to further explore these observational results and theoretical scenarios, a study of nine additional quasi-periodic events were incorporated with the results from the two flares described. Analysis of these events are briefly summarized.

  15. Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.

    2008-01-01

    We prove that the 1- d quantum harmonic oscillator is stable under spatially localized, time quasi-periodic perturbations on a set of Diophantine frequencies of positive measure. This proves a conjecture raised by Enss-Veselic in their 1983 paper [EV] in the general quasi-periodic setting. The motivation of the present paper also comes from construction of quasi-periodic solutions for the corresponding nonlinear equation.

  16. Mid-term quasi-periodicities in the CaII-K plage index of the Sun and their implications

    NASA Astrophysics Data System (ADS)

    Chowdhury, Partha; Gokhale, M. H.; Singh, Jagdev; Moon, Y.-J.

    2016-02-01

    We present results of the fast Fourier transform (FFT), the MEM analysis, and the wavelet analysis (WA), of the temporal variation of the monthly disk integrated "CaII-K plage-area and enhanced network (EN) area" hereafter called `plage index' derived by Tlatov et al. (2009), from spectro-heliograms taken in Ca II K line at Kodaikanal Observatory, from February 1907 to April, 1998, In the range {>}3 months and < decade, the Fourier transform power spectra reveal solar cycle periodicity {˜}122 months, its sub-harmonic ˜61 months, two short quasi-periodicities ({>}2 and <4 months), and nine `intermediate-range' quasi-periodicities (≳ 4 mo and <11 yr), in the variation of the plage index. The quasi-periodicities include Rieger, Rieger type and quasi-biennial. The presence of quasi-periodicities and the mean values of the periods are confirmed by the maximum entropy method (MEM). The temporal spans of the quasi-periodicities during different solar cycles are determined from the complex Morlet-wavelet analyses. The Rieger quasi-periodicity (150-160 days) appeared during cycle 21 and cycle 22. Each of the quasi-periodicities in the studied range lies close to one or more planetary periodicities (orbital, or spring tidal, or heliocentric conjunction frequency). We discuss possible interpretations of our results, and those of similar results obtained earlier by other authors, towards understanding the mechanisms of excitation of various quasi-periodicities detected in solar variability parameters.

  17. The re-analysis of quasi-periodic oscillation of the blazar J1359+4011

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Su, Yanping

    2016-05-01

    J1359+4011 is a flat spectral radio quasar monitored by the Owens Valley Radio Observatory 40 m radio telescope since 2008. The light curve of J1359+4011 in 15 GHz shows a possible quasi-periodic behavior by visual inspection. In order to confirm this quasi-periodic behavior, we utilize two classical methods: structure function method and discrete correlation function method, to investigate the possible time-scale of oscillation in the time series of J1359+4011. The analytical result shows a possible time-scale of oscillation of 120-130 days. The instabilities in the accretion flow could be a possible explanation for the modulation of the light curve; and global p-mode oscillations in a thick disc could be another possible reason for this behavior.

  18. On The Low Frequency Quasi Periodic Oscillations Of X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Zhang, C. M.

    2005-09-01

    Based on the interpretation of the twin kilohertz Quasi Periodic Oscillations (kHz QPOs) of X-ray spectra of Low Mass X-Ray Binaries (LMXBs) ascribed to the Keplerian and the periastron precession frequencies at the inner disk respectively, we ascribe the low frequency (0.1 10 Hz) Quasi Periodic Oscillations (LFQPO) and HBO (15 60 Hz QPO for Z sources or Atoll sources) to the periastron precession at some outer disk radius. It is assumed that both radii are correlated by a scaling factor of 0.4. The conclusions obtained include: All QPO frequencies increase with increasing accretion rate. The theoretical relations between HBO (LFQPO) frequency and the kHz QPO frequencies are similar to the measured empirical formula.

  19. Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges

    SciTech Connect

    Li, Chunhui; Ke, Manzhu Ye, Yangtao; Xu, Shengjun; Qiu, Chunyin; Liu, Zhengyou

    2014-07-14

    In this paper, an acoustic system with broadband asymmetric transmission is designed and fabricated, which consists of a water-immersed aluminum plate engraved with quasi-periodically-patterned ridges on single surface. It demonstrates that when the acoustic waves are launched into the system from the structured side, they can couple into the Lamb modes in the plate efficiently and attain a high transmission; on the contrary, when the waves are incident from the opposite flat side, the coupling is weak, and the transmission is low. Superior to systems with periodic patterning, this quasi-periodically-patterned system has a broad working frequency range due to the collective contributions from the multiple diffractions specific to the structure.

  20. Quasi-periodic variations in the Doppler shift of HF signals scattered by artificial ionospheric turbulence

    SciTech Connect

    Belenov, A.F.; Ponomarenko, P.V.; Sinitsyn, V.G.; Yampol`skii, Yu.M.

    1994-06-01

    The results of an experimental study of quasi-periodic variations of the Doppler shift (DS) of decimeter-wave signals scattered by artificial ionospheric turbulence are presented. It is suggested that ionospheric MHD waves of natural origin are a possible cause of such variations. The amplitude of the magnetic component of such waves that leads to observable values of DS variations is estimated to be 1{gamma}.

  1. Quasi-periodic solutions in a nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Geng, Jiansheng; Yi, Yingfei

    In this paper, one-dimensional (1D) nonlinear Schrödinger equation iu-u+mu+|u=0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N>1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhoff normal form reduction and an improved KAM method.

  2. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Gao, Yixian; Li, Yong

    2015-05-01

    Consider the one dimensional nonlinear beam equation utt + uxxxx + mu + u3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form.

  3. On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Shi, Yanling; Xu, Junxiang; Xu, Xindong

    2015-02-01

    In this paper, one-dimensional generalized Boussinesq equation: utt - uxx + (u2 + uxx)xx = 0 with boundary conditions ux(0, t) = ux(π, t) = uxxx(0, t) = uxxx(π, t) = 0 is considered. It is proved that the equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions with 2-dimensional Diophantine frequencies. The proof is based on an infinite dimensional Kolmogorov-Arnold-Moser theorem and Birkhoff normal form.

  4. Carleman linearization and normal forms for differential systems with quasi-periodic coefficients.

    PubMed

    Chermnykh, Sergey V

    2016-01-01

    We study the matrix representation of Poincaré normalization using the Carleman linearization technique for non-autonomous differential systems with quasi-periodic coefficients. We provide a rigorous proof of the validity of the matrix representation of the normalization and obtain a recursive algorithm for computing the normalizing transformation and the normal form of the differential systems. The algorithm provides explicit formulas for the coefficients of the normal form and the corresponding transformation. PMID:27588240

  5. Quasi-periodic variations in the Doppler shift of HF signals scattered by artificial ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Belenov, A. F.; Ponomarenko, P. V.; Sinitsyn, V. G.; Yampol'Skii, Yu. M.

    1993-12-01

    The results of an experimental study of quasi-periodic variations of the Doppler shift (DS) of decimeter-wave signals scattered by artificial ionospheric turbulence are presented. It is suggested that ionospheric MHD waves of natural origin are a possible cause of such variations. The amplitude of the magnetic component of such waves that leads to observable values of DS variations is estimated to be 1γ.

  6. Resonance tongues in the quasi-periodic Hill-Schrödinger equation with three frequencies

    NASA Astrophysics Data System (ADS)

    Puig, Joaquim; Simó, Carles

    2011-02-01

    In this paper we investigate numerically the following Hill's equation x″ + ( a + bq( t)) x = 0 where q(t) = \\cos t + \\cos sqrt {2t} + \\cos sqrt {3t} is a quasi-periodic forcing with three rationally independent frequencies. It appears, also, as the eigenvalue equation of a Schrödinger operator with quasi-periodic potential. Massive numerical computations were performed for the rotation number and the Lyapunov exponent in order to detect open and collapsed gaps, resonance tongues. Our results show that the quasi-periodic case with three independent frequencies is very different not only from the periodic analogs, but also from the case of two frequencies. Indeed, for large values of b the spectrum contains open intervals at the bottom. From a dynamical point of view we numerically give evidence of the existence of open intervals of a, for large b, where the system is nonuniformly hyperbolic: the system does not have an exponential dichotomy but the Lyapunov exponent is positive. In contrast with the region with zero Lyapunov exponents, both the rotation number and the Lyapunov exponent do not seem to have square root behavior at endpoints of gaps. The rate of convergence to the rotation number and the Lyapunov exponent in the nonuniformly hyperbolic case is also seen to be different from the reducible case.

  7. Quasi-periodicities and Empirical Modes of the Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Smith, E. J.; Zhou, X.; Ruzmaikin, A.

    2006-12-01

    Quasi-periodicities in solar phenomena including variations in the heliospheric magnetic field have attracted attention in the past. Recently, such a periodicity near 140- 150 days has been of interest. In a recent analysis of solar cycle variations in the Sun's open magnetic flux, we found a quasi-periodicity of approximately one and one-half years in the radial component and the field magnitude that persists during the last four sunspot cycles. Inspection of the data revealed that this signal was variable in both amplitude and period. Power spectra having proved marginally useful in revealing the signal properties, we apply a new technique called Empirical Mode Decomposition (Huang et al., 1998) that treats both the frequency and amplitude as time-dependent. Application of this technique revealed several quasi-periodic modes including the mode near 1 and 1/2 years and the mode near 140 days that was not evident by inspection alone. The results of this analysis will be presented and the origin of the several periodicities will be discussed. Reference: Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  8. Explicit error bounds for the α-quasi-periodic Helmholtz problem.

    PubMed

    Lord, Natacha H; Mulholland, Anthony J

    2013-10-01

    This paper considers a finite element approach to modeling electromagnetic waves in a periodic diffraction grating. In particular, an a priori error estimate associated with the α-quasi-periodic transformation is derived. This involves the solution of the associated Helmholtz problem being written as a product of e(iαx) and an unknown function called the α-quasi-periodic solution. To begin with, the well-posedness of the continuous problem is examined using a variational formulation. The problem is then discretized, and a rigorous a priori error estimate, which guarantees the uniqueness of this approximate solution, is derived. In previous studies, the continuity of the Dirichlet-to-Neumann map has simply been assumed and the dependency of the regularity constant on the system parameters, such as the wavenumber, has not been shown. To address this deficiency, in this paper an explicit dependence on the wavenumber and the degree of the polynomial basis in the a priori error estimate is obtained. Since the finite element method is well known for dealing with any geometries, comparison of numerical results obtained using the α-quasi-periodic transformation with a lattice sum technique is then presented. PMID:24322866

  9. Paleocene sea level movements with a 430,000 year quasi-periodic cyclicity

    SciTech Connect

    Briskin, M. ); Fluegeman, R. )

    1990-04-01

    Sea level movements with quasi-periodicity of 430,000 years are identified in the marine sedimentary units of the Eastern Gulf Coastal Plain of Mississippi, Alabama and Georgia which represent a 5.8 million year record of strandline displacement during Paleocene time. Principal component analysis of the benthic foraminiferal fauna yielded six assemblages which when combined with two other qualitatively derived assemblages provided paleoecologic information which clearly reflects the influence of paleocirculation and paleoclimatic regime of the Eastern Gulf Coastal Plain. The presence of the planktonic foraminiferal taxa Subbotina trinidadensis and Planorotalites pseudomenardii as well as paleolatitudes ranging from 15{degree} N (for the Campeche Shelf) to 25{degree} N (for the Coastal Plain) emphasizes a paleoclimatic regime which is dominantly tropical. A paleoceanographic model was derived which suggests that normal marine waters were brought into the Gulf of Mexico by two major currents. Strandline displacements are related to transgressive and regressive sea level movements in an ice free Paleocene world. The well delineated 430,000 year quasi-periodic cycle observed in the sea level curve is identified as being astronomical in character. These results support the view that changes in the Earth's orbit may trigger changes in the geometry of the Earth's surface in a way which causes sea level to oscillate with a quasi-periodicity of 430,000 years.

  10. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Shibata, Kazunari

    2016-06-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.

  11. A search for quasi-periodic oscillations in 4U/MXB 1735-44

    NASA Technical Reports Server (NTRS)

    Penninx, Wim; Hasinger, Guenther; Lewin, Walter H. G.; Van Paradijs, Jan; Van Der Klis, Michiel

    1989-01-01

    A search for quasi-periodic oscillations (QPOs) in 4U/MXB 1735-44 was performed using Exosat observations during which the source was in a horizontal branch of the spectral hardness-intensity diagram for about 8 hr and in a normal branch type of behavior for about 46 hr. No QPOs or low-frequency noise was found in the horizontal branch state. It is suggested that this absence is due to either low luminosity or the fact that the companion in 1735-44 is a main-sequence star.

  12. Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS

    NASA Astrophysics Data System (ADS)

    Li, T.; Zhang, J.

    2016-04-01

    Context. The new Interface Region Imaging Spectrograph (IRIS) mission provides high-resolution observations of UV spectra and slit-jaw images (SJIs). These data have become available for investigating the dynamic features in the transition region (TR) below the on-disk filaments. Aims: The driver of "counter-streaming" flows along the filament spine is still unknown yet. The magnetic structures and the upflows at the footpoints of the filaments and their relations with the filament mainbody have not been well understood. We study the dynamic evolution at the footpoints of filaments in order to find some clues for solving these questions. Methods: Using UV spectra and SJIs from the IRIS, along with coronal images and magnetograms from the Solar Dynamics Observatory (SDO), we present the new features in a quiescent filament channel: subarcsecond bright points (BPs) and quasi-periodic upflows. Results: The BPs in the TR have a spatial scale of about 350-580 km and lifetimes of more than several tens of minutes. They are located at stronger magnetic structures in the filament channel with a magnetic flux of about 1017-1018 Mx. Quasi-periodic brightenings and upflows are observed in the BPs, and the period is about 4-5 min. The BP and the associated jet-like upflow comprise a "tadpole-shaped" structure. The upflows move along bright filament threads, and their directions are almost parallel to the spine of the filament. The upflows initiated from the BPs with opposite polarity magnetic fields have opposite directions. The velocity of the upflows in the plane of sky is about 5-50 km s-1. The emission line of Si IV 1402.77 Å at the locations of upflows exhibits obvious blueshifts of about 5-30 km s-1, and the line profile is broadened with the width of more than 20 km s-1. Conclusions: The BPs seem to be the bases of filament threads, and the upflows are able to convey mass for the dynamic balance of the filament. The "counter-streaming" flows in previous observations

  13. Quasi-periodic solutions to the hierarchy of four-component Toda lattices

    NASA Astrophysics Data System (ADS)

    Wei, Jiao; Geng, Xianguo; Zeng, Xin

    2016-08-01

    Starting from a discrete 3×3 matrix spectral problem, the hierarchy of four-component Toda lattices is derived by using the stationary discrete zero-curvature equation. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve Km-2 of genus m - 2 and present the related Baker-Akhiezer function and meromorphic function on it. Asymptotic expansions for the Baker-Akhiezer function and meromorphic function are given near three infinite points on the trigonal curve, from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function.

  14. Analysis of quasi-periodic pore-network structure of centric marine diatom frustules

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory A.; Alvarez, Christine E.; Meyers, Keith; Deheyn, Dimitri D.; Hildebrand, Mark; Kieu, Khanh; Norwood, Robert A.

    2015-03-01

    Diatoms are a common type of phytoplankton characterized by their silica exoskeleton known as a frustule. The diatom frustule is composed of two valves and a series of connecting girdle bands. Each diatom species has a unique frustule shape and valves in particular species display an intricate pattern of pores resembling a photonic crystal structure. We used several numerical techniques to analyze the periodic and quasi-periodic valve pore-network structure in diatoms of the Coscinodiscophyceae order. We quantitatively identify defect locations and pore spacing in the valve and use this information to better understand the optical and biological properties of the diatom.

  15. Quasi-periodic Climate Teleconnections via the North Atlantic Oscillation: A New Perspective From Tree Rings

    NASA Astrophysics Data System (ADS)

    Meyers, S. R.; Pagani, M.

    2004-12-01

    Internal modes of climate variability such as the North Atlantic Oscillation (NAO) and the El Nino-Southern Oscillation (ENSO) significantly contribute to regional weather patterns on an inter-annual basis. Changes in the behavior of these modes over decadal and/or centennial timescales may represent an important driver of past climate events and future climate change. Importantly, if the internal modes express band-limited (periodic to quasi-periodic) variability, they provide a useful template for climate forecasting. Unfortunately, our ability to directly quantify the periodic/quasi-periodic nature of climate response to the internal modes is constrained by the limited temporal extent of instrumental records. In this study we present a novel approach toward recognition of band-limited climatic effects of the NAO in proxy records that span the past 400 years. The spatial climatic response of the NAO between northern and southern Europe provides a framework for detecting the influence of the NAO in proxy climate records. Specifically, if the NAO-forced climate signal is present it should be strongly correlated and anti-phased between the northern and southern regions of western Europe. To prospect for the NAO signal in paleoclimate data we employ independent networks of tree ring width series from Scandinavia and the Mediterranean. These locations were selected because modern instrumental records of the NAO and precipitation are significantly correlated in these regions, and tree ring width sensitivity to climate variability is maximized. The tree-ring width data from western Europe reveals a distinct 25-year quasi-periodic synchronization of climate change between Scandinavia and the Mediterranean during the 17th-20th centuries. Based on the dipole character of this signal, we propose that it is representative of climate forcing via the NAO. On this timescale of climate variability, dry/cold climate events in northern Europe are closely tied to wet events in

  16. Subarcsecond bright points and quasi-periodic upflows below a quiescent filament observed by IRIS

    NASA Astrophysics Data System (ADS)

    Li, T.; Zhang, J.

    2016-05-01

    Context. The new Interface Region Imaging Spectrograph (IRIS) mission provides high-resolution observations of UV spectra and slit-jaw images (SJIs). These data have become available for investigating the dynamic features in the transition region (TR) below the on-disk filaments. Aims: The driver of "counter-streaming" flows along the filament spine is still unknown yet. The magnetic structures and the upflows at the footpoints of the filaments and their relations with the filament mainbody have not been well understood. We study the dynamic evolution at the footpoints of filaments in order to find some clues for solving these questions. Methods: Using UV spectra and SJIs from the IRIS, along with coronal images and magnetograms from the Solar Dynamics Observatory (SDO), we present the new features in a quiescent filament channel: subarcsecond bright points (BPs) and quasi-periodic upflows. Results: The BPs in the TR have a spatial scale of about 350-580 km and lifetimes of more than several tens of minutes. They are located at stronger magnetic structures in the filament channel with a magnetic flux of about 1017-1018 Mx. Quasi-periodic brightenings and upflows are observed in the BPs, and the period is about 4-5 min. The BP and the associated jet-like upflow comprise a "tadpole-shaped" structure. The upflows move along bright filament threads, and their directions are almost parallel to the spine of the filament. The upflows initiated from the BPs with opposite polarity magnetic fields have opposite directions. The velocity of the upflows in the plane of sky is about 5-50 km s-1. The emission line of Si IV 1402.77 Å at the locations of upflows exhibits obvious blueshifts of about 5-30 km s-1, and the line profile is broadened with the width of more than 20 km s-1. Conclusions: The BPs seem to be the bases of filament threads, and the upflows are able to convey mass for the dynamic balance of the filament. The "counter-streaming" flows in previous observations

  17. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    SciTech Connect

    Chang, Jing; Gao, Yixian Li, Yong

    2015-05-15

    Consider the one dimensional nonlinear beam equation u{sub tt} + u{sub xxxx} + mu + u{sup 3} = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form. .

  18. Quasi-periodic solutions for d-dimensional beam equation with derivative nonlinear perturbation

    SciTech Connect

    Mi, Lufang; Cong, Hongzi

    2015-07-15

    In this paper, we consider the d-dimensional beam equation with convolution potential under periodic boundary conditions. We will apply the Kolmogorov-Arnold-Moser theorem in Eliasson and Kuksin [Ann. Math. 172, 371-435 (2010)] into this system and obtain that for sufficiently small ε, there is a large subset S′ of S such that for all s ∈ S′, the solution u of the unperturbed system persists as a time-quasi-periodic solution which has all Lyapunov exponents equal to zero and whose linearized equation is reducible to constant coefficients.

  19. Source of Quasi-Periodic Brightenings of Solar Coronal Bright Points: Waves or Repeated Reconnections

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Tian, Hui; Banerjee, Dipankar

    2016-07-01

    Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.

  20. Phase-resolved spectroscopy of Type B quasi-periodic oscillations in GX 339-4

    NASA Astrophysics Data System (ADS)

    Stevens, Abigail L.; Uttley, Phil

    2016-08-01

    We present a new spectral-timing technique for phase-resolved spectroscopy and apply it to the low-frequency Type B quasi-periodic oscillation (QPO) from the black hole X-ray binary GX 339-4. We show that on the QPO time-scale the spectrum changes not only in normalization, but also in spectral shape. Using several different spectral models which parametrize the blackbody and power-law components seen in the time-averaged spectrum, we find that both components are required to vary, although the fractional rms amplitude of blackbody emission is small, ˜1.4 per cent compared to ˜25 per cent for the power-law emission. However, the blackbody variation leads the power-law variation by ˜0.3 in relative phase (˜110°), giving a significant break in the Fourier lag-energy spectrum that our phase-resolved spectral models are able to reproduce. Our results support a geometric interpretation for the QPO variations where the blackbody variation and its phase relation to the power-law are explained by quasi-periodic heating of the approaching and receding sides of the disc by a precessing Comptonizing region. The small amplitude of blackbody variations suggests that the Comptonizing region producing the QPO has a relatively large scaleheight, and may be linked to the base of the jet, as has previously been suggested to explain the binary orbit inclination-dependence of Type B QPO amplitudes.

  1. Phase-Resolved Spectroscopy of Type B Quasi-Periodic Oscillations in GX 339-4

    NASA Astrophysics Data System (ADS)

    Stevens, Abigail L.; Uttley, Phil

    2016-05-01

    We present a new spectral-timing technique for phase-resolved spectroscopy and apply it to the low-frequency Type B quasi-periodic oscillation (QPO) from the black hole X-ray binary GX 339-4. We show that on the QPO time-scale the spectrum changes not only in normalisation, but also in spectral shape. Using several different spectral models which parameterise the blackbody and power-law components seen in the time-averaged spectrum, we find that both components are required to vary, although the fractional rms amplitude of blackbody emission is small, ˜ 1.4 per cent compared to ˜ 25 per cent for the power-law emission. However the blackbody variation leads the power-law variation by ˜ 0.3 in relative phase (˜ 110 degrees), giving a significant break in the Fourier lag-energy spectrum that our phase-resolved spectral models are able to reproduce. Our results support a geometric interpretation for the QPO variations where the blackbody variation and its phase relation to the power-law are explained by quasi-periodic heating of the approaching and receding sides of the disk by a precessing Comptonising region. The small amplitude of blackbody variations suggests that the Comptonising region producing the QPO has a relatively large scale-height, and may be linked to the base of the jet, as has previously been suggested to explain the binary orbit inclination-dependence of Type B QPO amplitudes.

  2. QUASI-PERIODIC OSCILLATIONS AND BROADBAND VARIABILITY IN SHORT MAGNETAR BURSTS

    SciTech Connect

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; Van der Horst, Alexander J.; Van der Klis, Michiel; Kouveliotou, Chryssa; Goegues, Ersin; Granot, Jonathan; Vaughan, Simon; Finger, Mark H.

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  3. Quasi-periodic Oscillations and Broadband Variability in Short Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; van der Horst, Alexander J.; van der Klis, Michiel; Kouveliotou, Chryssa; Göǧüş, Ersin; Granot, Jonathan; Vaughan, Simon; Finger, Mark H.

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  4. On the self-averaging of dispersion for transport in quasi-periodic random media

    NASA Astrophysics Data System (ADS)

    Eberhard, J. P.; Suciu, N.; Vamos, C.

    2007-01-01

    In this study we present a numerical analysis for the self-averaging of the longitudinal dispersion coefficient for transport in heterogeneous media. This is done by investigating the mean-square sample-to-sample fluctuations of the dispersion for finite times and finite numbers of modes for a random field using analytical arguments as well as numerical simulations. We consider transport of point-like injections in a quasi-periodic random field with a Gaussian correlation function. In particular, we focus on the asymptotic and pre-asymptotic behaviour of the fluctuations with the aid of a probability density function for the dispersion, and we verify the logarithmic growth of the sample-to-sample fluctuations as earlier reported in Eberhard (2004 J. Phys. A: Math. Gen. 37 2549-71). We also comment on the choice of the relevant parameters to generate quasi-periodic realizations with respect to the self-averaging of transport in statistically homogeneous Gaussian velocity fields.

  5. Stochastic Transients as a Source of Quasi-periodic Processes in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Su, Jiangtao; Jiao, Fangran; Walsh, Robert W.

    2016-06-01

    Solar dynamics and turbulence occur at all heights of the solar atmosphere and could be described as stochastic processes. We propose that finite-lifetime transients recurring at a certain place could trigger quasi-periodic processes in the associated structures. In this study, we developed a mathematical model for finite-lifetime and randomly occurring transients, and found that quasi-periodic processes with periods longer than the timescale of the transients, are detectable intrinsically in the form of trains. We simulate their propagation in an empirical solar atmospheric model with chromosphere, transition region, and corona. We found that, due to the filtering effect of the chromospheric cavity, only the resonance period of the acoustic resonator is able to propagate to the upper atmosphere; such a scenario is applicable to slow magnetoacoustic waves in sunspots and active regions. If the thermal structure of the atmosphere is less wild and acoustic resonance does not take place, the long-period oscillations could propagate to the upper atmosphere. Such a case would be more likely to occur in polar plumes.

  6. Phase-resolved spectroscopy of Type B quasi-periodic oscillations in GX 339-4

    NASA Astrophysics Data System (ADS)

    Stevens, Abigail L.; Uttley, Phil

    2016-08-01

    We present a new spectral-timing technique for phase-resolved spectroscopy and apply it to the low-frequency Type B quasi-periodic oscillation (QPO) from the black hole X-ray binary GX 339-4. We show that on the QPO time-scale the spectrum changes not only in normalisation, but also in spectral shape. Using several different spectral models which parameterise the blackbody and power-law components seen in the time-averaged spectrum, we find that both components are required to vary, although the fractional rms amplitude of blackbody emission is small, ~1.4 per cent compared to ~25 per cent for the power-law emission. However the blackbody variation leads the power-law variation by ~0.3 in relative phase (~110 degrees), giving a significant break in the Fourier lag-energy spectrum that our phase-resolved spectral models are able to reproduce. Our results support a geometric interpretation for the QPO variations where the blackbody variation and its phase relation to the power-law are explained by quasi-periodic heating of the approaching and receding sides of the disc by a precessing Comptonising region. The small amplitude of blackbody variations suggests that the Comptonising region producing the QPO has a relatively large scale-height, and may be linked to the base of the jet, as has previously been suggested to explain the binary orbit inclination-dependence of Type B QPO amplitudes.

  7. Non-thermal AGN models

    SciTech Connect

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  8. A possible imprint of quasi-periodic oscillations in the X-ray spectra of black hole binaries

    NASA Astrophysics Data System (ADS)

    Varniere, P.; Mignon-Risse, R.; Rodriguez, J.

    2016-02-01

    Context. While nobody would deny the presence of quasi-periodic oscillations in the power density spectrum of black hole binaries nor their importance in the understanding of the mechanisms powering the X-ray emissions, the possible impact on the time-averaged disk energy spectrum from the phenomenon responsible for quasi-periodic oscillations is largely ignored in models of sources emission. Aims: Here we investigate the potential impact of such a structure on the resultant energy spectrum. Methods: Using data from the well-documented outbursts of XTE J1550-564, we looked at possible hints that the presence of quasi-periodic oscillations actually impacts the energy spectrum emitted by the source. In particular, we look at the evolution of the relation between the inner disk radius and the inner disk temperature obtained from fits to the spectral data. We then test this further by developing a simple model to simulate the spectrum of a disk with a structure mimicking quasi-periodic oscillations that are increasing in strength simulated results to those obtained from real data. Results: We detect a similar departure in the inner radius - inner temperature curve coming from the standard fit of our simulated observations as is seen in XTE J1550-564 data. We interpret our results as evidence that the structure at the origin of the quasi-periodic oscillations impacts the energy spectrum. Conclusions: Furthermore, in states with significant disk emission the inaccuracy of the determination of the disk parameters increases with the strength of quasi-periodic oscillations, an increase that then renders the value given by the fit unreliable for strong quasi-periodic oscillations.

  9. Multiscale analysis in momentum space for quasi-periodic potential in dimension two

    NASA Astrophysics Data System (ADS)

    Karpeshina, Yulia; Shterenberg, Roman

    2013-07-01

    We consider a polyharmonic operator H=(-Δ)^l+V({x}) in dimension two with l ⩾ 2, l being an integer, and a quasi-periodic potential V({x}). We prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves e^{i< {\\varkappa },{x}rangle } at the high energy region. Second, the isoenergetic curves in the space of momenta {\\varkappa } corresponding to these eigenfunctions have a form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results.

  10. Low-Frequency Quasi-Periodic Oscillations and Iron Line Variability of Discoseismic Corrugation Modes

    NASA Astrophysics Data System (ADS)

    Butsky, Iryna; Tsang, D.

    2013-01-01

    Using a fast semi-analytic raytracing code, we study the variability of iron lines due to discoseismic oscillations concentrated in the inner-most regions of accretion discs around black holes. The dependence of the relativistically broadened line profile on the oscillation-phase is studied for discoseismic corrugation modes. The corrugation mode, or c-mode, is of particular interest as their natural frequency corresponds well to the 0.1-10 Hz range observed for low-frequency quasi-periodic oscillations (LFQPOs) in X-ray binaries. Comparison of the oscillation phase dependent variability and QPO-phase stacked Fe-Kalpha line observations will allow such discoseismic models to be confirmed or ruled out as a source of LFQPOs.

  11. QUASI-PERIODIC FORMALDEHYDE MASER FLARES IN THE MASSIVE PROTOSTELLAR OBJECT IRAS 18566+0408

    SciTech Connect

    Araya, E. D.; Hofner, P.; Goss, W. M.; Kurtz, S.; Richards, A. M. S.; Linz, H.; Olmi, L.; Sewilo, M.

    2010-07-10

    We report results of an extensive observational campaign of the 6 cm formaldehyde maser in the young massive stellar object IRAS 18566+0408 (G37.55+0.20) conducted from 2002 to 2009. Using the Arecibo Telescope, the Very Large Array, and the Green Bank Telescope, we discovered quasi-periodic formaldehyde flares (P {approx} 237 days). Based on Arecibo observations, we also discovered correlated variability between formaldehyde (H{sub 2}CO) and methanol (CH{sub 3}OH) masers. The H{sub 2}CO and CH{sub 3}OH masers are not spatially coincident, as demonstrated by different line velocities and high angular resolution MERLIN observations. The flares could be caused by variations in the infrared radiation field, possibly modulated by periodic accretion onto a young binary system.

  12. Delayed feedback control and phase reduction of unstable quasi-periodic orbits.

    PubMed

    Ichinose, Natsuhiro; Komuro, Motomasa

    2014-09-01

    The delayed feedback control (DFC) is applied to stabilize unstable quasi-periodic orbits (QPOs) in discrete-time systems. The feedback input is given by the difference between the current state and a time-delayed state in the DFC. However, there is an inevitable time-delay mismatch in QPOs. To evaluate the influence of the time-delay mismatch on the DFC, we propose a phase reduction method for QPOs and construct a phase response curve (PRC) from unstable QPOs directly. Using the PRC, we estimate the rotation number of QPO stabilized by the DFC. We show that the orbit of the DFC is consistent with the unstable QPO perturbed by a small state difference resulting from the time-delay mismatch, implying that the DFC can certainly stabilize the unstable QPO. PMID:25273217

  13. Viscosity profile and Quasi Periodic Oscillation frequency of few transient black hole candidates

    NASA Astrophysics Data System (ADS)

    Mondal, Santanu; Debnath, Dipak; Chakrabarti, Sandip Kumar; Jana, Arghajit; Chatterjee, Debjit; Molla, Aslam Ali

    2016-07-01

    Matters enter into the potential well formed by the compact objects due to the transport of angular momentum by viscosity. We compute the amount of viscosity during the outburst time of the transient sources. In the progressive days as the viscosity increases inner edge of the Keplerian disc moves closer to the black holes. Thus the size of the Compton cloud reduces and the frequency of the Quasi Periodic Oscillations increases. We also compute the Compton cooling day by day, which is responsible for the movement of the shock both in rising and declining phases of the outburst. Our viscosity value rises/decays monotonically during the rising/declining phases of the outburst, well within the range proposed by magneto-rotational instability. For that we solve the Rankine-Hugoniot conditions and derive the condition of shock formation in presence of Compton cooling.

  14. Tunability of acoustic phonon transmission and thermal conductance in three dimensional quasi-periodically stubbed waveguides

    NASA Astrophysics Data System (ADS)

    Xie, Zhong-Xiang; Liu, Jing-Zhong; Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang; Li, Ke-Min; Zhang, Yong

    2015-03-01

    We investigate acoustic phonon transmission and thermal conductance in three dimensional (3D) quasi-periodically stubbed waveguides according to the Fibonacci sequence. Results show that the transmission coefficient exhibits the periodic oscillation upon varying the length of stub/waveguide at low frequency, and the period of such oscillation is tunably decreased with increasing the Fibonacci number N. Interestingly, there also exist some anti-resonant dips that gradually develop into wide stop-frequency gaps with increasing N. As the temperature goes up, a transition of the thermal conductance from the decrease to the increase occurs in these systems. When N is increased, the thermal conductance is approximately decreased with a linear trend. Moreover, the decreasing degree sensitively depends on the variation of temperature. A brief analysis of these results is given.

  15. Moment constraints on physical models for quasi-periodic oscillations from Galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Shibazaki, N.; Weisskopf, M. C.

    1988-01-01

    Shot-noise models provide a useful mathematical representation for some physical models for the quasi-periodic oscillations (QPOs) recently observed from several bright Galactic bulge and burst X-ray sources. Expressions are calculated for the first three moments for several versions of QPO shot-noise models that have appeared in the literature. It is shown that measurement of the third moment, together with measurement of the mean intensity and the power spectrum, can provide model-dependent constraints on important parameters of QPO shot-noise models, including the fraction of the X-ray intensity in shots and the shot rate. Under certain condtitions, a complete solution for all the shot-model parameters is possible.

  16. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets

    SciTech Connect

    Levnajić, Zoran; Mezić, Igor

    2015-05-15

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

  17. Quasi-periodic wave solutions with asymptotic analysis to the Saweda-Kotera-Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Ma, Pan-Li; Zhang, Tian-Tian

    2015-08-01

    In this paper, the (2+1)-dimensional Saweda-Kotera-Kadomtsev-Petviashvili (SK-KP) equation is investigated, which can be used to describe certain situations from the fluid mechanics, ocean dynamics and plasma physics. With the aid of generalized Bell's polynomials, the Hirota's bilinear equation and N-soliton solution are explicitly constructed to the SK-KP equation, respectively. Based on the Riemann theta function, a direct and lucid way is presented to explicitly construct quasi-periodic wave solutions for the SK-KP equation. The two-periodic waves admit two independent spatial periods in two independent horizontal directions, which are a direct generalization of one-periodic waves. Finally, the relationships between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure.

  18. On quasi-periodic variations of low-energy cosmic rays observed near earth.

    PubMed

    Kudela, Karel; Langer, Ronald

    2015-06-01

    Cosmic ray (CR) may partially, especially at high altitudes, contribute to the dosimetric characteristics. Along with irregular CR variations as Forbush decreases and solar particle events are, the quasi-periodic variations may be of some relevance too. A very short review (with references to original papers) of the present knowledge of various types of such variations is presented, namely (i) diurnal wave, (ii) ~27 d variability due to the solar rotation, (iii) Rieger-type periodicity, and (iv) quasi-biennial oscillations as well as waves on longer time scales related to solar activity and to polarity of magnetic field of the Sun. Variability is illustrated in measurements of secondary CR on the ground including the high-altitude observations at Lomnický štít. PMID:25979741

  19. Uncovering the mechanism behind quasi-periodic oscillations in black holes

    NASA Astrophysics Data System (ADS)

    Ingram, Adam

    2012-10-01

    We propose a triggered 200ks XMM-Newton observation of a high inclination black hole binary in the hard intermediate state. This will allow us to constrain a characteristic shift in the iron line profile between the rising and falling phases of the quasi-periodic oscillations (QPOs) observed in these objects. Such a property is a necessary and sufficient condition of a QPO driven by precession in the inner regions of the accretion flow and is predicted by our model which invokes the relativistic effect of frame dragging. The model predicts the QPO phase dependence of the iron line to be stronger for high inclination sources displaying intermediate hardness ratios, leaving the hard intermediate state as the ideal configuration. We will trigger the observation from Swift monitoring throughout the outburst.

  20. Casimir Effect Under Quasi-Periodic Boundary Condition Inspired by Nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Chao-Jun; Li, Xin-Zhou; Zhai, Xiang-Hua

    2014-01-01

    When one studies the Casimir effect, the periodic (anti-periodic) boundary condition is usually taken to mimic a periodic (anti-periodic) structure for a scalar field living in a flat space with a non-Euclidean topology. However, there could be an arbitrary phase difference between the value of the scalar field on one endpoint of the unit structure and that on the other endpoint, such as the structure of nanotubes. Then, in this paper, a periodic condition on the ends of the system with an additional phase factor, which is called the "quasi-periodic" condition, is imposed to investigate the corresponding Casimir effect. And an attractive or repulsive Casimir force is found, whose properties depend on the phase angle value. Especially, the Casimir effect disappears when the phase angle takes a particular value. High dimensional spacetime case is also investigated.

  1. QUASI-PERIODICITIES OF THE BL LACERTAE OBJECT PKS 2155–304

    SciTech Connect

    Sandrinelli, A.; Treves, A.; Covino, S.

    2014-09-20

    We have searched for periodicities in our VRIJHK photometry of PKS 2155–304, which covers the years 2005-2012. A peak of the Fourier spectrum with high significance is found at T ∼ 315 days, confirming the recent findings by Zhang et al. The examination of the gamma-ray light curves from the Fermi archives yields a significant signal at ∼2T, which, while nominally significant, involves data spanning only ∼6T. Assuming a black hole mass of 10{sup 9} M {sub ☉}, the Keplerian distance corresponding to the quasi-period T is ∼10{sup 16} cm, about 50 Schwarzschild radii.

  2. Hard apex transition in quasi-periodic oscillators - Closing of the accretion gap

    NASA Technical Reports Server (NTRS)

    Biehle, Garrett T.; Blandford, Roger D.

    1993-01-01

    We propose that the 'hard apex' transition in the X-ray two-color diagrams for low-mass X-ray binaries exhibiting quasi-periodic oscillation is associated with closure of a gap between the accretion disk and the star. At low accretion rates, gas crosses this gap intermittently. However, when the mass accretion rate increases, the disk thickens and its inner edge touches the star, thus forming a boundary layer through which the gas flows steadily. This explanation is viable provided that the equation of state of nuclear matter is not significantly harder than the Bethe-Johnson I prescription. Accretion gap scenarios are possibly distinguishable from models which invoke a small magnetosphere around the neutron star, in that they preclude large stellar magnetic fields and associate the high-frequency (horizontal-branch) oscillations with different sites.

  3. Low-frequency quasi-periodic oscillations in black hole and neutron star LMXBs

    NASA Astrophysics Data System (ADS)

    Ingram, Adam

    2016-07-01

    Low-frequency quasi-periodic oscillations (QPOs) are routinely seen in the X-ray flux of accreting black holes and neutron stars. Since the QPO frequency correlates with the low frequency power spectral break in the same manner for both object classes, it is reasonable to believe that these oscillations have the same physical origin in neutron stars as they do in black holes. However, recent successes in modelling black hole low frequency QPOs as Lense-Thirring precession contrast sharply with failures of the same model in neutron stars. This could be attributable to the significant extra complexity, both in the physics and in the observed power spectra, of accreting neutron stars when compared with black holes. Alternatively, the QPO mechanism really is the same for the two object classes, but in that case, why does the Lense-Thirring model work so well for black holes? I will review the current state of this field.

  4. Ginga observations of quasi-periodic oscillations in type II bursts from the Rapid Burster

    NASA Technical Reports Server (NTRS)

    Dotani, T.; Mitsuda, K.; Inoue, H.; Tanaka, Y.; Kawai, N.

    1990-01-01

    During Ginga observations of the 'Rapid Burster' in August 1988, strong quasi-periodic oscillations (QPOs) were detected in its X-ray intensity. The QPOs had centroid frequencies of 5 and 2 Hz during type II X-ray bursts which lasted for 10 and 30 s, respectively. The presence of the QPOs is correlated with the time scale-invariant burst profile. They are very strong during the initial peak in the burst, absent in the second peak, and strong again at the onset of the third peak. From an analysis of the X-ray spectrum as observed during the maxima and minima of the oscillations, it is found that the oscillations can be described by changes of the temperature of a blackbody emitter of constant apparent area.

  5. Quasi-periodic oscillations in the Z source GX 5-1

    NASA Technical Reports Server (NTRS)

    Lewin, Walter H. G.; Lubin, Lori M.; Tan, Jianmin; Van Der Klis, Michiel; Van Paradijs, Jan; Penninx, Wim; Dotani, Tadayasu; Mitsuda, Kazuhisa

    1992-01-01

    A detailed study has been conducted of the time variability in the Z source GX 5-1 using Ginga, which observed the source in the horizontal and normal branches (HB, NB). Intensity-dependent HF, quasi-periodic oscillations (QPO) were observed in the HB, in which the source flux varied by a factor of 1.9. The QPO frequency in this portion of the HB ranges from about 13 to 17 Hz; this is lower than previously observed in any Z source. The HF and LF QPO were simultaneously observed in the NB. The strength of both forms of QPO and the strength of the LF noise increase rapidly with increasing photon energy.

  6. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets.

    PubMed

    Levnajić, Zoran; Mezić, Igor

    2015-05-01

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map. PMID:26026317

  7. Tracking rhythmicity in nonstationary quasi-periodic biomedical signals using adaptive time-varying covariance.

    PubMed

    Li, Dan; Jung, Ranu

    2002-07-01

    A time-varying covariance method for detecting and quantifying the evolution of rhythmicity (frequency) in persistently varying quasi-periodic nonstationary signals is presented. The basic method, evaluated using chirp signals, utilizes a shifting window of fixed length. A substantial reduction in estimation bias and variability are obtained by utilizing an adaptive window whose length is dependent on past frequency estimates. The adaptive window yields estimates that are comparable in accuracy to those obtained using high-resolution time-frequency representation but with lower computation requirements and the potential for on-line application. Finally, an example of the application of the method for analyzing a neural recording is also illustrated. PMID:11931864

  8. Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential

    NASA Astrophysics Data System (ADS)

    Bourgain, J.

    In this paper, we consider the following problem. Let iut+Δu+V(x,t)u= 0 be a linear Schrödinger equation ( periodic boundary conditions) where V is a real, bounded, real analytic potential which is periodic in x and quasi periodic in t with diophantine frequency vector λ. Denote S(t) the corresponding flow map. Thus S(t) preserves the L2-norm and our aim is to study its behaviour on Hs(TD), s> 0. Our main result is the growth in time is at most logarithmic; thus if φ∈Hs, then More precisely, (*) is proven in 1D and 2D when V is small. We also exhibit examples showing that a growth of higher Sobolev norms may occur in this context and (*) is thus essentially best possible.

  9. Kinetic Simulation of Slow Magnetosonic Waves and Quasi-Periodic Upflows in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Ruan, Wenzhi; He, Jiansen; Zhang, Lei; Vocks, Christian; Marsch, Eckart; Tu, Chuanyi; Peter, Hardi; Wang, Linghua

    2016-07-01

    Quasi-periodic disturbances of emission-line parameters are frequently observed in the corona. These disturbances propagate upward along the magnetic field with speeds of ∼100 km s‑1. This phenomenon has been interpreted as evidence of the propagation of slow magnetosonic waves or has been argued to be a signature of intermittent outflows superposed on the background plasmas. Here we aim to present a new “wave + flow” model to interpret these observations. In our scenario, the oscillatory motion is a slow-mode wave, and the flow is associated with a beam created by the wave–particle interaction owing to Landau resonance. With the help of a kinetic model, we simulate the propagation of slow-mode waves and the generation of beam flows. We find that weak periodic beam flows can be generated by to Landau resonance in the solar corona, and the phase with the strongest blueward asymmetry is ahead of that with the strongest blueshift by about 1/4 period. We also find that the slow wave damps to the level of 1/e after the transit time of two wave periods, owing to Landau damping and Coulomb collisions in our simulation. This damping timescale is similar to that resulting from thermal conduction in the MHD regime. The beam flow is weakened/attenuated with increasing wave period and decreasing wave amplitude since Coulomb collisions become more and more dominant over the wave action. We suggest that this “wave + flow” kinetic model provides an alternative explanation for the observed quasi-periodic propagating perturbations in various parameters in the solar corona.

  10. The eight-vertex model with quasi-periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Niccoli, G.; Terras, V.

    2016-01-01

    We study the inhomogeneous eight-vertex model (or equivalently the XYZ Heisenberg spin-1/2 chain) with all kinds of integrable quasi-periodic boundary conditions: periodic, {σ }x-twisted, {σ }y-twisted or {σ }z-twisted. We show that in all these cases but the periodic one with an even number of sites {N}, the transfer matrix of the model is related, by the vertex-IRF transformation, to the transfer matrix of the dynamical six-vertex model with antiperiodic boundary conditions, which we have recently solved by means of Sklyanin's separation of variables approach. We show moreover that, in all the twisted cases, the vertex-IRF transformation is bijective. This allows us to completely characterize, from our previous results on the antiperiodic dynamical six-vertex model, the twisted eight-vertex transfer matrix spectrum (proving that it is simple) and eigenstates. We also consider the periodic case for {N} odd. In this case we can define two independent vertex-IRF transformations, both not bijective, and by using them we show that the eight-vertex transfer matrix spectrum is doubly degenerate, and that it can, as well as the corresponding eigenstates, also be completely characterized in terms of the spectrum and eigenstates of the dynamical six-vertex antiperiodic transfer matrix. In all these cases we can adapt to the eight-vertex case the reformulations of the dynamical six-vertex transfer matrix spectrum and eigenstates that had been obtained by T-Q functional equations, where the Q-functions are elliptic polynomials with twist-dependent quasi-periods. Such reformulations enable one to characterize the eight-vertex transfer matrix spectrum by the solutions of some Bethe-type equations, and to rewrite the corresponding eigenstates as the multiple action of some operators on a pseudo-vacuum state, in a similar way as in the algebraic Bethe ansatz framework.

  11. Long-term quasi-periodicity of 4U 1636-536 resulting from accretion disc instability

    NASA Astrophysics Data System (ADS)

    Wisniewicz, Mateusz; Zdziarski, Andrzej; Janiuk, Agnieszka; Rosinska, Dorota; Slowikowska, Agnieszka

    2016-07-01

    We present the results of a study of the low-mass X-ray binary 4U 1636-536. We have performed temporal analysis of all available RXTE/ASM, RXTE/PCA, Swift/BAT and MAXI data. We have confirmed the previously discovered quasi-periodicity of ˜45 d present during ˜2004, however we found it continued to 2006. At other epochs, the quasi-periodicity is only transient, and the quasi-period, if present, drifts. We have then applied a time-dependent accretion disc model to the interval with the significant X-ray quasi-periodicity. For our best model, the period and the amplitude of the theoretical light curve agree well with that observed. The modelled quasi-periodicity is due to the hydrogen thermal-ionization instability occurring in outer regions of the accretion disc. The model parameters are the average mass accretion rate (estimated from the light curves), and the accretion disc viscosity parameters, α_{cold} and α_{hot}, for the hot and cold phases, respectively. Our best model gives relatively low values of α_{cold} and α_{hot}.

  12. Optimizing light absorption in a thin-film p-i-n solar cell using a quasi-periodic grating

    NASA Astrophysics Data System (ADS)

    Atalla, Mahmoud R. M.

    2014-03-01

    A p-i-n solar cell is best suited for strong absorbers with poor collection capabilities. However, the absorption naturally decreases at photon energies close to the electronic bandgap of the semiconductor. We hypothesized that a quasi-periodic surface textures in the role of diffraction gratings at the back contact can efficiently scatter light increasing the optical path length inside the absorber layer. The effect of quasi-periodic corrugated backing metallic contact of various types was studied theoretically. To help optimizing the design of the quasi periodic grating the corresponding canonical problem was considered. The absorption of light was calculated using the rigorous coupled-wave approach. The n- and i-layers consist of isotropic nonhomogeneous multilayered semiconductor.

  13. A Model for Backscattering from Quasi Periodic Corn Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Lang, R.; Utku, C.; Zhao, Q.; O'Neill, P.

    2010-01-01

    In this study, a model for backscattering at L-band from a corn canopy is proposed. The canopy consists of a quasi-periodic distribution of stalks and a random distribution of leaves. The Distorted Born Approximation (DBA) is employed to calculate the single scattered return from the corn field. The new feature of the method is that the coherence of the stalks in the row direction is incorporated in the model in a systematic fashion. Since the wavelength is on the order of the distance between corn stalks in a row, grating lobe behavior is observed at certain azimuth angles of incidence. The results are compared with experimental values measured in Huntsville, Alabama in 1998. The mean field and the effective dielectric constant of the canopy are obtained by using the Foldy approximation. The stalks are placed in the effective medium in a two dimensional lattice to simulate the row structure of a corn field. In order to mimic a real corn field, a quasi-periodic stalk distribution is assumed where the stalks are given small random perturbations about their lattice locations. Corn leaves are also embedded in the effective medium and the backscattered field from the stalks and the leaves is computed. The backscattering coefficient is calculated and averaged over successive stalk position perturbations. It is assumed that soil erosion has smoothed the soil sufficiently so that it can be assumed flat. Corn field backscatter data was collected from cornfields during the Huntsville 98 experimental campaign held at Alabama A&M University Research Station, Huntsville, Alabama in 1998 using the NASA/GW truck mounted radar. Extensive ground truth data was collected. This included soil moisture measurements and corn plant architectural data to be used in the model. In particular, the distances between the stalks in a single row have been measured. The L-band radar backscatter data was collected for both H and V polarizations and for look angles of 15o and 45o over a two week

  14. DISCOVERY OF QUASI-PERIODIC OSCILLATIONS IN THE RECURRENT BURST EMISSION FROM SGR 1806-20

    SciTech Connect

    El-Mezeini, Ahmed M.; Ibrahim, Alaa I. E-mail: ai@aucegypt.ed E-mail: ai@space.mit.ed

    2010-10-01

    We present evidence for quasi-periodic oscillations (QPOs) in the recurrent outburst emission from the soft gamma repeater SGR 1806-20 using NASA's Rossi X-ray Timing Explorer (RXTE) observations. By searching a sample of 30 bursts for timing signals at the frequencies of the QPOs discovered in the 2004 December 27 giant flare from the source, we find three QPOs at 84, 103, and 648 Hz in three different bursts. The first two QPOs lie within {approx}1{sigma} from the 92 Hz QPO detected in the giant flare. The third QPO lies within {approx}9{sigma} from the 625 Hz QPO also detected in the same flare. The detected QPOs are found in bursts with different durations, morphologies, and brightness, and are vindicated by Monte Carlo simulations, which set a lower limit confidence interval {>=}4.3{sigma}. We also find evidence for candidate QPOs at higher frequencies in other bursts with lower statistical significance. The fact that we can find evidence for QPOs in the recurrent bursts at frequencies relatively close to those found in the giant flare is intriguing and can offer insight about the origin of the oscillations. We confront our finding against the available theoretical models and discuss the connection between the QPOs we report and those detected in the giant flares. The implications to the neutron star properties are also discussed.

  15. Kilohertz Quasi-Periodic Oscillation Peak Separation Is Not Constant in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel; Wijnands, Rudy A. D.; Horne, Keith; Chen, Wan

    1997-06-01

    We report on a series of 20, ~105 counts s-1, 0.125 ms time-resolution Rossi X-Ray Timing Explorer observations of the Z-source and low-mass X-ray binary Scorpius X-1. Twin kilohertz quasi-periodic oscillation (QPO) peaks are obvious in nearly all observations. We find that the peak separation is not constant, as expected in some beat-frequency models, but instead varies from ~310 to ~230 Hz when the centroid frequency of the higher frequency peak varies from ~875 to ~1085 Hz. We detect none of the additional QPO peaks at higher frequencies predicted in the photon bubble model (PBM), with best-case upper limits on the peaks' power ratio of 0.025. We do detect, simultaneously with the kilohertz QPO, additional QPO peaks near 45 and 90 Hz whose frequency increases with mass accretion rate. We interpret these as first and second harmonics of the so-called horizontal-branch oscillations that are well known from other Z-sources and usually interpreted in terms of the magnetospheric beat-frequency model (BFM). We conclude that the magnetospheric BFM and the PBM are now unlikely to explain the kilohertz QPO in Sco X-1. In order to succeed in doing so, any BFM involving the neutron star spin (unseen in Sco X-1) will have to postulate at least one additional unseen frequency, beating with the spin to produce one of the kilohertz peaks.

  16. Correlations between X-Ray Spectral Characteristics and Quasi-Periodic Oscillations in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2007-07-01

    Correlations between 1-10 Hz quasi-periodic oscillations (QPOs) and spectral power-law index have been reported for black hole (BH) candidate sources and one neutron star source, 4U 1728-34. An examination of QPO frequency and index relationships in Sco X-1 is reported here. We discover that Sco X-1, representing Z-source groups, can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K line. The results show a strong correlation between spectral power-law index and kHz QPOs. Because Sco X-1 radiates near the Eddington limit, one can infer that the geometrical configuration of the Compton cloud (CC) is quasi-spherical from high radiation pressure in the CC. Thus, we conclude that the high Thomson optical depth of the Compton cloud, in the range of ~5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material. Moreover, a spin frequency of Sco X-1 is likely suppressed due to photon scattering off CC electrons. In addition, we demonstrate how the power spectrum evolves when Sco X-1 transitions from the horizontal branch to the normal branch.

  17. Existence of quasi-periodic solutions of fast excited van der Pol-Mathieu-Duffing equation

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Li, Xuemei

    2015-12-01

    The van der Pol-Mathieu-Duffing equation x ̈ + ( Ω0 2 + h 1 cos Ω 1 t + h 2 cos Ω 2 t ) x - ( α - β x 2 ) x ˙ - h 3 x 3 = h 4 Ω3 2 cos x cos Ω 3 t is considered in this paper, where α, β, h1, h2, h3, h4, Ω1, Ω2 are small parameters, α, β > 0, the frequency Ω3 is large compared to Ω1 and Ω2, the above parameters are real. For ∀α, β > 0, we use KAM (Kolmogorov-Arnold-Moser) theory to prove that the van der Pol-Mathieu-Duffing equation possesses quasi-periodic solutions for most of the parameters Ω0, Ω1, Ω2, Ω3, it verifies some phenomenon of Fahsi and Belhaq [Commun. Nonlinear Sci. 14, 244-253 (2009)] and can be regarded as a extension of Abouhazim et al. [Nonlinear Dyn. 39, 395-409 (2005)].

  18. Probing Neutron Star Physics with Quasi-Periodic Oscillations in Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela

    2015-04-01

    Neutron stars, the remnants of massive stellar explosions, are prime candidates for studying dense matter physics in conditions not accessible in the laboratory. Among the zoo of neutron star phenomena, magnetars, neutron stars with an extremely high magnetic field, are of particular interest for their spectacular bursting behaviour in X-rays and gamma-rays. They show thousands of recurrent short, bright bursts as well as some of the brightest gamma-ray events, called giant flares, ever observed on earth. The detection of quasi-periodic oscillations (QPOs) in giant flares and, more recently, in small recurrent bursts, is generally interpreted as the observable signature of global oscillations of the neutron star following a star quake. This detection has opened up the potential of neutron star seismology: probing the physical conditions in the interior of the star via the information conveyed in star quakes. In this talk, I will give an overview of observational studies of these sources, focusing on recent detections of QPOs in smaller bursts as well as results from the giant flares. I will then tie these observational results to theoretical models of the star quakes that tie observations to the neutron star interior and crust, and I will finish with an outlook of the future of magnetar seismology. DH is supported by the Moore-Sloan Data Science Environment at NYU.

  19. ON THE NATURE OF QUASI-PERIODIC OSCILLATION PHASE LAGS IN BLACK HOLE CANDIDATES

    SciTech Connect

    Shaposhnikov, Nikolai E-mail: lev@milkyway.gsfc.nasa.gov

    2012-06-20

    Observations of quasi-periodic oscillations (QPOs) in X-ray binaries hold a key to understanding many aspects of these enigmatic systems. Complex appearance of the Fourier phase lags related to QPOs is one of the most puzzling observational effects in accreting black holes (BHs). In this Letter we show that QPO properties, including phase lags, can be explained in a framework of a simple scenario, where the oscillating media provide feedback on the emerging spectrum. We demonstrate that the QPO waveform is presented by the product of a perturbation and time-delayed response factors, where the response is energy dependent. The essential property of this effect is its nonlinear and multiplicative nature. Our multiplicative reverberation model successfully describes the QPO components in energy-dependent power spectra as well as the appearance of the phase lags between signals in different energy bands. We apply our model to QPOs observed by the Rossi X-Ray Timing Explorer in BH candidate XTE J1550-564. We briefly discuss the implications of the observed energy dependence of the QPO reverberation times and amplitudes on the nature of the power-law spectral component and its variability.

  20. Timing Studies of X Persei and the Discovery of Its Transient Quasi-periodic Oscillation Feature

    NASA Technical Reports Server (NTRS)

    Acuner, Z.; Inam,S. C.; Sahiner, S.; Serim, M. M.; Baykal, A.; Swank, J.

    2014-01-01

    We present a timing analysis of X Persei (X Per) using observations made between 1998 and 2010 with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) and with the INTEGRAL Soft Gamma-Ray Imager (ISGRI). All pulse arrival times obtained from the RXTE-PCA observations are phase-connected and a timing solution is obtained using these arrival times. We update the long-term pulse frequency history of the source by measuring its pulse frequencies using RXTE-PCA and ISGRI data. From the RXTEPCA data, the relation between the frequency derivative and X-ray flux suggests accretion via the companion's stellar wind. However, the detection of a transient quasi-periodic oscillation feature, peaking at approximately 0.2 Hz, suggests the existence of an accretion disc. We find that doublebreak models fit the average power spectra well, which suggests that the source has at least two different accretion flow components dominating the overall flow. From the power spectrum of frequency derivatives, we measure a power-law index of approximately - 1, which implies that, on short time-scales, disc accretion dominates over noise, while on time-scales longer than the viscous time-scales, the noise dominates. From pulse profiles, we find a correlation between the pulse fraction and the count rate of the source.

  1. Correlation between spectral state and quasi-periodic oscillation parameters in GX 5-1

    NASA Technical Reports Server (NTRS)

    Van Der Klis, M.; Jansen, F.; Van Paradijs, J.; Lewin, W. H. G.; Sztajno, M.

    1987-01-01

    In a series of seven Exosat observations, the bimodal spectral behavior and the quasi-periodic oscillation (QPO)/red noise properties of GX 5-1 show a strict correlation. In one of the two spectral states (characterized by a 'horizontal branch' in the hardness-intensity diagram), strong 20-40 Hz QPO and red noise below about 60 Hz were always present. In the other ('normal branch'), no QPO between 6 and 60 Hz or red noise above 1 Hz were detected, but there was an indication for weak QPO near 5 Hz. In both states 'very low frequency noise' (VLFN) is detected below 0.1 Hz which has a power-law shape and and which extends down to the lowest observed frequencies (0.0001 Hz). The VLFN is probably not directly related to the QPO. The results are compared to those on Sco X-1 and Cyg X-2 and it is concluded that, although all three sources show bimodal spectral and QPO/red noise behavior, there is a qualitative difference between GX 5-1 and Cyg X-2 on one hand and Sco X-1 on the other.

  2. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Ben Abdelaziz, K.; Bouazzi, Y.; Kanzari, M.

    2015-09-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization. The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x1+k. Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra.

  3. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Yuping; Wu, Zhixin; Cao, Yanyan; Zhang, Huiyun

    2015-03-01

    We propose a novel type of one-dimensional photonic crystal called Fibonacci quasi-periodic graphene photonic crystal (FGPC), in which the structure in each dielectric cell follows the Fibonacci sequence and the graphene monolayers are embedded between adjacent dielectric layers. The transmission properties of FGPC are investigated using transfer matrix method in detail. It is shown that both photonic band gap induced by graphene (GIBPG) and the Bragg gap exist in the structure. We study the band gaps of TE and TM waves at different incident angles or chemical potentials. It is found that the band gaps can be tuned via a gate voltage and GIBPG is almost omnidirectional and insensitive to the polarization. In order to investigate difference between the GIPBG and Bragg gap, we plot the electromagnetic field profiles inside FGPC for some critical frequencies. The propagation loss of the structure caused by absorption of graphene is researched in detail. Also, the passing bands of Fibonacci sequences of different orders and their splitting behavior at higher order are investigated.

  4. Electrostatic and aerodynamic forced vibrations of a thin flexible electrode: Quasi-periodic vs. chaotic oscillations

    NASA Astrophysics Data System (ADS)

    Madanu, Sushma B.; Barbel, Stanley I.; Ward, Thomas

    2016-06-01

    In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.

  5. Downscaling climate variability associated with quasi-periodic climate signals: A new statistical approach using MSSA

    NASA Astrophysics Data System (ADS)

    Cañón, Julio; Domínguez, Francina; Valdés, Juan B.

    2011-02-01

    SummaryA statistical method is introduced to downscale hydroclimatic variables while incorporating the variability associated with quasi-periodic global climate signals. The method extracts statistical information of distributed variables from historic time series available at high resolution and uses Multichannel Singular Spectrum Analysis (MSSA) to reconstruct, on a cell-by-cell basis, specific frequency signatures associated with both the variable at a coarse scale and the global climate signals. Historical information is divided in two sets: a reconstruction set to identify the dominant modes of variability of the series for each cell and a validation set to compare the downscaling relative to the observed patterns. After validation, the coarse projections from Global Climate Models (GCMs) are disaggregated to higher spatial resolutions by using an iterative gap-filling MSSA algorithm to downscale the projected values of the variable, using the distributed series statistics and the MSSA analysis. The method is data adaptive and useful for downscaling short-term forecasts as well as long-term climate projections. The method is applied to the downscaling of temperature and precipitation from observed records and GCM projections over a region located in the US Southwest, taking into account the seasonal variability associated with ENSO.

  6. Statistical properties of quasi-periodic pulsations in white-light flares observed with Kepler

    NASA Astrophysics Data System (ADS)

    Pugh, C. E.; Armstrong, D. J.; Nakariakov, V. M.; Broomhall, A.-M.

    2016-07-01

    We embark on a study of quasi-periodic pulsations (QPPs) in the decay phase of white-light stellar flares observed by Kepler. Out of the 1439 flares on 216 different stars detected in the short-cadence data using an automated search, 56 flares are found to have pronounced QPP-like signatures in the light curve, of which 11 have stable decaying oscillations. No correlation is found between the QPP period and the stellar temperature, radius, rotation period and surface gravity, suggesting that the QPPs are independent of global stellar parameters. Hence they are likely to be the result of processes occurring in the local environment. There is also no significant correlation between the QPP period and flare energy, however there is evidence that the period scales with the QPP decay time for the Gaussian damping scenario, but not to a significant degree for the exponentially damped case. This same scaling has been observed for MHD oscillations on the Sun, suggesting that they could be the cause of the QPPs in those flares. Scaling laws of the flare energy are also investigated, supporting previous reports of a strong correlation between the flare energy and stellar temperature/radius. A negative correlation between the flare energy and stellar surface gravity is also found.

  7. Quasi-periodic emissions and related electron precipitation observed by the low-altitude DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Hayosh, M.; Nemec, F.; Pasmanik, D.; Santolik, O.; Demekhov, A. G.; Parrot, M.; Titova, L.

    2012-12-01

    We present a survey of quasi-periodic (QP) ELF/VLF emissions detected on board the DEMETER satellite (altitude of about 700 km, nearly Sun-synchronous orbit at 10:30/22:30 LT). Three years of data have been visually inspected for the presence of QP emissions. It is found that QP events occur in about 3 percents of daytime half-orbits, while they are basically absent during the night (note that we were likely to miss QP events with the modulation periods lower than about 10 s or the frequency bandwidth lower than about 400 Hz). The events occur predominantly during quiet geomagnetic conditions following the periods of enhanced geomagnetic activity. Their occurrence and properties are systematically analyzed. Three events with a simultaneous periodic modulation of wave intensity and energetic electron precipitation were analyzed in detail. All events are observed at quiet geomagnetic conditions. Most probably, they are not associated with geomagnetic pulsations. Energetic electron flux data measured by the NOAA-17 satellite are used to supplement DEMETER data in order to determine the spatial and temporal extent of the observed energetic electron precipitation events. Based on the observed correlation between bursts of wave intensity and energetic electron flux we estimate the location and the spatial extent of the source region of QP emissions.

  8. A Model for (Quasi-)Periodic Multiwavelength Photometric Variability in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth; Whitney, Barbara A.; Hillenbrand, L. A.; Gregory, Scott G.; Stauffer, J. R.; Morales-Calderon, M.; Rebull, L.; Alencar, S. H. P.

    2016-09-01

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.

  9. Electrostatic and aerodynamic forced vibrations of a thin flexible electrode: Quasi-periodic vs. chaotic oscillations.

    PubMed

    Madanu, Sushma B; Barbel, Stanley I; Ward, Thomas

    2016-06-01

    In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip. PMID:27368778

  10. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    PubMed Central

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-01-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008

  11. Quasi-Periodic Stick-Slip of Glaciers and Ice Streams (Invited)

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, S.; Christianson, K. A.; Zoet, L.; Winberry, J.

    2010-12-01

    Passive source seismology is an excellent tool for studying dynamic glaciological processes. The past decade has seen an explosion in interest in the field, with singing icebergs, galloping glaciers, pulsing ponds, and many other glaciological phenomena radiating seismic energy. Here I present results showing extraordinary regularity in basal seismicity associated with the sliding of glaciers that differ in almost every respect: size, temperature, location, etc. Engabreen Glacier in Norway and David Glacier in Antarctica both exhibit a near-metronomic seismicity associated with the sliding of the glaciers over their bases. These small events occur in one of two modes: either present and very regular (quasi-periodic) or absent (or very rare). The transition from the one state to the other is rapid. The stick-slip behavior of the glacier is analogous to slip on faults, and to the behavior observed on Whillans Ice Stream (though much more frequently occuring). We suggest that either basal sediment concentrations or water pressure fluctuations lead to the transition in behavior.

  12. Statistical Properties of Quasi-Periodic Pulsations in White-Light Flares Observed With Kepler

    NASA Astrophysics Data System (ADS)

    Pugh, C. E.; Armstrong, D. J.; Nakariakov, V. M.; Broomhall, A.-M.

    2016-04-01

    We embark on a study of quasi-periodic pulsations (QPPs) in the decay phase of white-light stellar flares observed by Kepler. Out of the 1439 flares on 216 different stars detected in the short-cadence data using an automated search, 56 flares are found to have pronounced QPP-like signatures in the light curve, of which 11 have stable decaying oscillations. No correlation is found between the QPP period and the stellar temperature, radius, rotation period and surface gravity, suggesting that the QPPs are independent of global stellar parameters. Hence they are likely to be the result of processes occurring in the local environment. There is also no significant correlation between the QPP period and flare energy, however there is evidence that the period scales with the QPP decay time for the Gaussian damping scenario, but not to a significant degree for the exponentially damped case. This same scaling has been observed for MHD oscillations on the Sun, suggesting that they could be the cause of the QPPs in those flares. Scaling laws of the flare energy are also investigated, supporting previous reports of a strong correlation between the flare energy and stellar temperature/radius. A negative correlation between the flare energy and stellar surface gravity is also found.

  13. Discovery of quasi-periodic oscillations in the AM Herculis object BL Hydri

    SciTech Connect

    Middleditch, J.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1997-11-01

    We obtained high-speed optical photometry of the AM Her object BL Hyi at the Las Campanas Observatory and the Cerro Tololo Inter-American Observatory during 1989{endash}1996. BL Hyi was in its faint-luminosity state in 1989; it subsequently brightened and was in its high-luminosity state for our 1994{endash}1996 observations. We discovered broad, 0.2{endash}0.8 Hz quasi-periodic oscillations (QPOs) and narrower QPOs superposed on the broad QPOs when BL Hyi was in its high-luminosity state. The broad QPOs had widths of {Delta}f/f{sub p}{approximately}0.5{endash}1 and runs pulsed amplitudes of {approximately}1{percent}{minus}4{percent}, where f{sub p} is the frequency of the QPO peak. The narrow QPOs had widths of {Delta}f/f{sub p}{lt}0.1{endash}1 and rms pulsed amplitudes of less than 1{percent}. BL Hyi showed stronger QPOs and was slightly brighter in 1994 than in 1995{endash}1996. The amplitudes of the broad and narrow QPOs were modulated on the orbital period of the system; they were strongest during the bright orbital phase. BL Hyi is the fifth AM Her system to show the short-period QPOs discovered by Middleditch. {copyright} {ital 1997} {ital The American Astronomical Society}

  14. Possible identifications of newly observed magnetar quasi-periodic oscillations as crustal shear modes

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2016-02-01

    Quasi-periodic oscillations (QPOs) discovered in soft-gamma repeaters (SGRs) are expected to help us to study the properties of matter in neutron stars. In earlier investigations, we identified the QPOs of frequencies below ˜100 Hz observed in giant flares of SGR 1806 -20 and SGR 1900+14 as the crustal torsional oscillations. For this purpose, we calculated the frequencies of the fundamental torsional oscillations with various angular indices ℓ, by changing the stellar mass and radius. In this work, we try to explain the additional QPO frequencies recently reported by Huppenkothen et al. (2014a, 2014b) within the same framework as before except that we newly take into account the effect of electron screening, which acts to decrease the frequencies by a small amount. Those QPOs were discovered in two different SGRs, i.e., SGR 1806 -20 and SGR J1550 -5418. Then, we find that the newly observed QPO frequency in SGR 1806 -20 can be still identified as one of the frequencies of the fundamental torsional oscillations, while those in SGR J1550 -5418 can also be explained in terms of the torsional oscillations although the relevant angular indices are difficult to identify.

  15. Quasi-periodicity of spin motion in storage rings-a new look at spin tune

    NASA Astrophysics Data System (ADS)

    Barber, D. P.; Ellison, J.; Heinemann, K.

    2001-06-01

    We show how spin motion on the periodic closed orbit of a storage ring can be analyzed in terms of the Floquet theorem for equations of motion with periodic parameters. The spin tune on the closed orbit emerges as an extra frequency of the system which is contained in the Floquet exponent in analogy with the wave vector in Bloch wave functions for electrons in periodic atomic structures. We then show how to analyze spin motion on quasi-periodic synchro-betatron orbits in terms of a generalisation of the Floquet theorem and find that if small devisors are controlled by applying a Diophantine condition, a spin tune can again be defined and that it again emerges as an extra frequency in a Floquet-like exponent. We thereby obtain a deeper insight into the concept of ``spin tune'' and the conditions for its existence. The formalism suggests the use of Fourier analysis to ``measure'' spin tune during simulations of spin motion on synchro-betatron orbits. .

  16. On the modulation of low-frequency quasi-periodic oscillations in black hole transients

    NASA Astrophysics Data System (ADS)

    Pawar, Devraj D.; Motta, Sara; Shanthi, K.; Bhattacharya, Dipankar; Belloni, Tomaso

    2015-04-01

    We studied the properties of the low-frequency quasi-periodic oscillations detected in a sample of six black hole candidates (XTE J1550-564, H 1743-322, XTE J1859+226, 4U 1630-47, GX 339-4, XTE J1650-500) observed by the Rossi XTE satellite. We analysed the relation between the full width at half-maximum and the frequency of all the narrow peaks detected in power density spectra where a type-C QPO is observed. Our goal was to understand the nature of the modulation of the signal by comparing the properties of different harmonic peaks in the power density spectrum. We find that for the sources in our sample the width of the fundamental and of the first harmonic are compatible with a frequency modulation, while that of the sub-harmonic is independent of frequency, possibly indicating the presence of an additional modulation in amplitude. We compare our results with those obtained earlier from GRS 1915+105 and XTE J1550-564.

  17. On the development of quasi-periodic oscillations in Bondi-Hoyle accretion flows

    NASA Astrophysics Data System (ADS)

    Dönmez, O.; Zanotti, O.; Rezzolla, L.

    2011-04-01

    The numerical investigation of the Bondi-Hoyle accretion on to a moving black hole has a long history, both in Newtonian and in general-relativistic physics. By performing new two-dimensional and general-relativistic simulations on to a rotating black hole, we point out a novel feature, namely that quasi-periodic oscillations (QPOs) are naturally produced in the shock cone that develops in the downstream part of the flow. Because the shock cone in the downstream part of the flow acts as a cavity trapping pressure perturbations, modes with frequencies in the integer ratios of 2:1 and 3:1 are easily produced. The frequencies of these modes depend on the black hole spin and on the properties of the flow, and scale linearly with the inverse of the black hole mass. Our results may be relevant for explaining the detection of QPOs in Sagittarius A*, once such detection is confirmed by further observations. Finally, we report on the development of the flip-flop instability, which can affect the shock cone under suitable conditions; such an instability has been discussed before in Newtonian simulations but was never found in a relativistic regime.

  18. Case studies of quasi-periodic VLF emissions and related ULF fluctuations of the magnetic field

    NASA Astrophysics Data System (ADS)

    Hayosh, M.; Santolik, O.; Nemec, F.; Parrot, M.

    2014-12-01

    Quasi-periodic (QP) VLF emissions are observed in the inner magnetosphere mostly on the day-side. These waves exhibit a periodic time modulation of the wave intensity that is possibly a result of the whistler-mode wave growth being periodically modulated by compressional ULF magnetic field pulsations. We have analyzed 50 QP events measured by the DEMETER satellite at altitudes of about 700 km to verify their generation mechanism. The analyzed events have a modulation period between 15 s and 80 s, and they were observed during quiet geomagnetic conditions (Kp<3). Magnetometers of the CARISMA system were used for monitoring the ULF magnetic field pulsations in a wide spatial range. We have found that ULF magnetic field pulsations in the Pc3 - Pc5 range are well correlated with the occurrence of the QP emissions with modulation periods between about 40 and 80 s. At the same time, increased fluxes of high-energy electrons (E > 30 keV) were observed by DEMETER and by the NOAA-17 satellite. We analyze possible links between these electrons, QP emissions, and ULF magnetic field pulsations.

  19. Evidence for quasi-periodic modulation in the gamma-ray blazar PG 1553+113

    NASA Astrophysics Data System (ADS)

    Cutini, Sara; Ciprini, Stefano; Larsson, Stefan; Thompson, David John; Stamerra, Antonio; Fermi LAT Collaboration

    2016-01-01

    For the first time a gamma-ray and multiwavelength nearly-periodic oscillation in an active galactic nucleus is reported using the Fermi Large Area Telescope (LAT). A quasi-periodicity in the gamma-ray flux (E>100 MeV and E>1 GeV) is observed from the well-known GeV/TeV BL Lac object PG 1553+113 (Ackermann et al. submitted). The significance of the 2.18 +/- 0.08 year-period gamma-ray modulation, seen in 3.5 oscillation maxima observed, is supported by significant cross-correlated variations observed in radio and optical flux light curves, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle, appearing in about 10 years of data, has a similar period, while the radio-band oscillation observed at 15 GHz is less regular and coherent. The available X-ray flux data obtained by Swift XRT appears also to be linearly correlated with the gamma-ray flux. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this first evidence of periodicity.

  20. Discovery of 800 HZ Quasi-Periodic Oscillations in 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Berger, M.; van der Klis, M.; van Paradijs, J.; Lewin, W. H. G.; Lamb, F.; Vaughan, B.; Kuulkers, E.; Augusteijn, T.; Zhang, W.; Marshall, F. E.; Swank, J. H.; Lapidus, I.; Lochner, J. C.; Strohmayer, T. E.

    1996-09-01

    We present results of Rossi X-Ray Timing Explorer observations of the low-mass X-ray binary and atoll source 4U 1608-52 made over 9 days during the decline of an X-ray intensity outburst in 1996 March. A fast-timing analysis shows a strong and narrow quasi-periodic oscillation (QPO) peak at frequencies between 850 and 890 Hz on March 3 and 6, as well as a broad peak around 690 Hz on March 9. Observations on March 12 show no significant signal. On March 3, the X-ray spectrum of the QPO is quite hard; its strength increases steadily from 5% at ~2 keV to ~20% at ~12 keV. The QPO frequency varies between 850 and 890 Hz on that day, and the peak widens and its rms decreases with centroid frequency in a way very similar to the well-known horizontal branch oscillations (HBO) in Z sources. We apply the HBO beat frequency model to atoll sources and suggest that, whereas the model could produce QPOs at the observed frequencies, the lack of correlation we observe between QPO properties and X-ray count rate is hard to reconcile with this model.

  1. Quasi-periodic Whistler Mode Waves Detected by the Van Allen Probes Spacecraft

    NASA Astrophysics Data System (ADS)

    Hospodarsky, G. B.; Santolik, O.; Nemec, F.; Kurth, W. S.; Kletzing, C.; Bounds, S. R.; Wygant, J. R.; Bonnell, J. W.

    2014-12-01

    Quasi-periodic (QP) whistler mode electromagnetic emissions have been detected in Earth's magnetosphere by the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves instrument. These emissions typically consist of intervals of enhanced wave power between a few hundred Hz to a few kHz with modulation periods on the order of minutes. These emissions are primarily observed on the dayside and detected between L shells of 3 to 6, though some events are observed down to L shells of ~2. EMFISIS simultaneously measures the vector wave magnetic field and, with the support of the Electric Fields and Waves (EFW) instrument sensors, the vector wave electric field at two locations in Earth's magnetosphere in a continuous survey mode (typically with a 6 second cadence) along with a number of different burst modes to provide high time resolution waveforms (35000 samples per second). These two modes allow a systematic survey of the occurrence of these waves. By measuring all six wave components simultaneously, the wave propagation parameters, such as the wave normal angle and Poynting vector, of these plasma wave emissions are obtained. We will present a statistical survey of the properties of these waves as detected by the Van Allen Probes, examine their occurrence location and use burst data to examine the fine structure of individual events.

  2. Lag variability associated with quasi periodic oscillations in GX 339-4 during outbursts

    NASA Astrophysics Data System (ADS)

    Dutta, Broja Gopal; Belloni, Tomaso; Motta, Sara

    The black hole transient GX 339-4 has exhibited four outbursts at a 2-3 years intervals. We have analyzed RXTE/PCA data of this source for the 2002/2003, 2004, 2007 and 2010 outbursts. The power density spectrum exhibits quasi-periodic oscillations (QPO) whose frequency varies from 0.2 Hz to 8 Hz in addition to band-limited noise. We measured the time/phase lags between soft (2-5 keV) and hard (5-13 keV) photons at the QPO centroid frequency and at the continuum noise. We find hard phase/time lags for both centroid frequency and continuum monotonically increasing from .01 at 0.2 Hz to 0.68 at 8 Hz. This correlation appears to be same for all outbursts. The single correlation picture of phase/time lag for all four outbursts suggests a general evolution scenario of the QPOs during the outbursts. We discuss the implications of these results on the basis of possible accretion models

  3. QUASI-PERIODIC WIGGLES OF MICROWAVE ZEBRA STRUCTURES IN A SOLAR FLARE

    SciTech Connect

    Yu, Sijie; Tan, Baolin; Yan, Yihua; Nakariakov, V. M.; Selzer, L. A.

    2013-11-10

    Quasi-periodic wiggles of microwave zebra pattern (ZP) structures with periods ranging from about 0.5 s to 1.5 s are found in an X-class solar flare on 2006 December 13 at the 2.6-3.8 GHz with the Chinese Solar Broadband Radio Spectrometer (SBRS/Huairou). Periodogram and correlation analysis show that the wiggles have two to three significant periodicities and are almost in phase between stripes at different frequencies. The Alfvén speed estimated from the ZP structures is about 700 km s{sup –1}. We find the spatial size of the wave-guiding plasma structure to be about 1 Mm with a detected period of about 1 s. This suggests that the ZP wiggles can be associated with the fast magnetoacoustic oscillations in the flaring active region. The lack of a significant phase shift between wiggles of different stripes suggests that the ZP wiggles are caused by a standing sausage oscillation.

  4. Strong Correlation between Quasi-periodic Echoes and Plasma Drift in E-region

    NASA Astrophysics Data System (ADS)

    Jin, H.; Chen, G.

    2015-12-01

    It is for the first time that the simultaneous observations of the quasi-periodic (QP) echoes and the plasma drift in the ionospheric E-region. This experiment was carried out in Fuke (19.5ºN, 109.1ºE), Hainan province, China. The Hainan VHF radar was used to observe the E-region field-aligned irregularities (FAIs) and the Hainan Digisonde was operated in the drift mode to record the drift velocities of the plasma blobs in the Es-layer. The QP echoes and the drift data of the whole year of 2013 were analyzed and compared. A surprising consistency between the striation tilt of the QP echoes and the drift direction of the plasma blobs was discovered. When the measured drift direction of the plasma blobs was southward, the negative echo striation of the QP FAIs was recorded, and vice versa. Furthermore, the phase of the echo trace was continuous, while the QP striation changed from negative to positive, or in contrary. Thus, a conclusion can be reached that the morphology of the QP echoes may be controlled by the background wind fields in the E-region. The northward/ southward drifting striated FAIs in the observing region of a coherent scatter radar possibly induce the positive/ negative QP echo striation in the range-time-intensity plots.

  5. Detection of Quasi-Periodic Oscillations in the June 2015 Outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela

    2016-04-01

    In June 2015, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time in 26 years. The source is not only the closest known BHXRB, it is also known to undergo extreme variations in brightness, allowing us to study the source’s behaviour during flaring with the unprecedented detail afforded by modern space and ground-based instrumentation.Here we present a timing study and a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its most recent outburst, utilizing data from six instruments on board five different X-ray missions: Swift/XRT, Fermi/GBM, Chandra/ACIS, INTEGRAL’s IBIS/ISGRI and JEM-X, and NuSTAR.We find four previously unobserved, significant QPOs throughout the outburst. One QPO, at 18 mHz, is detected in simultaneous observations with both Fermi/GBM and Swift/XRT, and is a likely example of a rare, recently discovered class of mHz-QPOs in BHXRBs linked to high-inclination sources. We also find a broad structure in averaged periodograms of several Chandra/ACIS and INTEGRAL/JEM-X observations that contains significant variability, but is too broad to be called a QPO, reminiscent of a feature more commonly observed in Cygnus X-1. We discuss our results in the context of current models for QPO formation.

  6. Spherical accretion: the influence of inner boundary and quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Sharma, Prateek; Mukhopadhyay, Banibrata

    2016-09-01

    Bondi accretion assumes that there is a sink of mass at the centre - which in the case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to slow down at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at t = 0. We consider different inner boundary conditions for BHs and NSs: outflow boundary condition (mimicking mass sink at the centre) valid for BHs; and reflective and steady-shock (allowing gas to cross the inner boundary at subsonic speeds) boundary conditions for NSs. We also obtain a similarity solution for cold accretion on to BHs and NSs. 1D simulations show the formation of an outward-propagating and a standing shock in NSs for reflective and steady-shock boundary conditions, respectively. Entropy is the highest at the bottom of the subsonic region for reflective boundary conditions. In 2D this profile is convectively unstable. Using steady-shock inner boundary conditions, the flow is unstable to the standing accretion shock instability in 2D, which leads to global shock oscillations and may be responsible for quasi-periodic oscillations seen in the light curves of accreting systems. For steady accretion in the quiescent state, spherical accretion rate on to an NS can be suppressed by orders of magnitude compared to that on to a BH.

  7. Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method II: Analytic case

    NASA Astrophysics Data System (ADS)

    He, Xiaolong; de la Llave, Rafael

    2016-08-01

    We construct analytic quasi-periodic solutions of a state-dependent delay differential equation with quasi-periodically forcing. We show that if we consider a family of problems that depends on one dimensional parameters (with some non-degeneracy conditions), there is a positive measure set Π of parameters for which the system admits analytic quasi-periodic solutions. The main difficulty to be overcome is the appearance of small divisors and this is the reason why we need to exclude parameters. Our main result is proved by a Nash-Moser fast convergent method and is formulated in the a-posteriori format of numerical analysis. That is, given an approximate solution of a functional equation which satisfies some non-degeneracy conditions, we can find a true solution close to it. This is in sharp contrast with the finite regularity theory developed in [18]. We conjecture that the exclusion of parameters is a real phenomenon and not a technical difficulty. More precisely, for generic families of perturbations, the quasi-periodic solutions are only finitely differentiable in open sets in the complement of parameters set Π.

  8. Quasi-periodic injections of relativistic electrons in Saturn's outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Mitchell, D. G.; Paranicas, C.; Krimigis, S. M.; Andriopoulou, M.; Palmaerts, B.; Kurth, W. S.; Badman, S. V.; Masters, A.; Dougherty, M. K.

    2016-01-01

    Quasi-periodic, short-period injections of relativistic electrons have been observed in both Jupiter's and Saturn's magnetospheres, but understanding their origin or significance has been challenging, primarily due to the limited number of in-situ observations of such events by past flyby missions. Here we present the first survey of such injections in an outer planetary magnetosphere using almost nine years of energetic charged particle and magnetic field measurements at Saturn. We focus on events with a characteristic period of about 60-70 min (QP60, where QP stands for quasi-periodic). We find that the majority of QP60, which are very common in the outer magnetosphere, map outside Titan's orbit. QP60 are also observed over a very wide range of local times and latitudes. A local time asymmetry in their distribution is the most striking feature, with QP60 at dusk being between 5 and 25 times more frequent than at dawn. Field-line tracing and pitch angle distributions suggest that most events at dusk reside on closed field lines. They are distributed either near the magnetopause, or, in the case of the post-dusk (or pre-midnight) sector, up to about 30 RS inside it, along an area extending parallel to the dawn-dusk direction. QP60 at dawn map either on open field lines and/or near the magnetopause. Both the asymmetries and varying mapping characteristics as a function of local time indicate that generation of QP60 cannot be assigned to a single process. The locations of QP60 seem to trace sites that reconnection is expected to take place. In that respect, the subset of events observed post-dusk and deep inside the magnetopause may be directly or indirectly linked to the Vasyliunas reconnection cycle, while magnetopause reconnection/Kelvin-Helmholtz (KH) instability could be invoked to explain all other events at the duskside. Using similar arguments, injections at the dawnside magnetosphere may result from solar-wind induced storms and/or magnetopause reconnection

  9. Effects of Resonance in Quasi-periodic Oscillators of Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev

    2002-10-01

    Using a large quantity of Rossi X-Ray Timing Explorer data presented in the literature, I offer a detailed investigation into the accuracy of the quasi-periodic oscillation (QPO) frequency determination. The QPO phenomenon seen in X-ray binaries is possibly a result of the resonance of the intrinsic (eigen) oscillations and harmonic driving forces of the system. I show that the resonances, in the presence of the damping of oscillations, occur at frequencies that are systematically and randomly shifted with respect to the eigenfrequencies of the system. The shift value strongly depends on the damping rate that is measured by the half-width of the QPO feature. Taking into account this effect, I analyze the QPO data for four Z sources, Scorpius X-1, GX 340+0, GX 5-1, and GX 17+2, and two atoll sources, 4U 1728-34 and 4U 0614+09. The transition-layer model (TLM) predicts the existence of the invariant quantity δ, an inclination angle of the magnetospheric axis with respect to the normal to the disk. I calculate δ and the error bars of δ using the resonance shift, and I find that the inferred δ-values are consistent with constants for these four Z sources, in which horizontal-branch oscillation and kilohertz frequencies have been detected and correctly identified. It is shown that the inferred δ are in the range between 5.5d and 6.5d. I conclude that the TLM seems to be compatible with the data.

  10. MASS-ANGULAR-MOMENTUM RELATIONS IMPLIED BY MODELS OF TWIN PEAK QUASI-PERIODIC OSCILLATIONS

    SciTech Connect

    Toeroek, Gabriel; Bakala, Pavel; Sramkova, Eva; Stuchlik, Zdenek; Urbanec, Martin; Goluchova, Katerina E-mail: martin.urbanec@fpf.slu.cz E-mail: terek@volny.cz

    2012-12-01

    Twin peak quasi-periodic oscillations (QPOs) appear in the X-ray power-density spectra of several accreting low-mass neutron star (NS) binaries. Observations of the peculiar Z-source Circinus X-1 display unusually low QPO frequencies. Using these observations, we have previously considered the relativistic precession (RP) twin peak QPO model to estimate the mass of the central NS in Circinus X-1. We have shown that such an estimate results in a specific mass-angular-momentum (M - j) relation rather than a single preferred combination of M and j. Here we confront our previous results with another binary, the atoll source 4U 1636-53 that displays the twin peak QPOs at very high frequencies, and extend the consideration to various twin peak QPO models. In analogy to the RP model, we find that these imply their own specific M - j relations. We explore these relations for both sources and note differences in the {chi}{sup 2} behavior that represent a dichotomy between high- and low-frequency sources. Based on the RP model, we demonstrate that this dichotomy is related to a strong variability of the model predictive power across the frequency plane. This variability naturally comes from the radial dependence of characteristic frequencies of orbital motion. As a consequence, the restrictions on the models resulting from observations of low-frequency sources are weaker than those in the case of high-frequency sources. Finally we also discuss the need for a correction to the RP model and consider the removing of M - j degeneracies, based on the twin peak QPO-independent angular momentum estimates.

  11. ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES

    SciTech Connect

    Erkut, M. Hakan

    2011-12-10

    We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency {kappa} to the orbital frequency {Omega} the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches {Omega} + {kappa} and {Omega} to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio ({Omega} + {kappa})/({Omega}) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.

  12. MILLIHERTZ QUASI-PERIODIC OSCILLATIONS AND THERMONUCLEAR BURSTS FROM TERZAN 5: A SHOWCASE OF BURNING REGIMES

    SciTech Connect

    Linares, M.; Chakrabarty, D.; Altamirano, D.; Cumming, A.; Keek, L.

    2012-04-01

    We present a comprehensive study of the thermonuclear bursts and millihertz quasi-periodic oscillations (mHz QPOs) from the neutron star (NS) transient and 11 Hz X-ray pulsar IGR J17480-2446, located in the globular cluster Terzan 5. The increase in burst rate that we found during its 2010 outburst, when persistent luminosity rose from 0.1 to 0.5 times the Eddington limit, is in qualitative agreement with thermonuclear burning theory yet contrary to all previous observations of thermonuclear bursts. Thermonuclear bursts gradually evolved into a mHz QPO when the accretion rate increased, and vice versa. The mHz QPOs from IGR J17480-2446 resemble those previously observed in other accreting NSs, yet they feature lower frequencies (by a factor {approx}3) and occur when the persistent luminosity is higher (by a factor 4-25). We find four distinct bursting regimes and a steep (close to inverse cubic) decrease of the burst recurrence time with increasing persistent luminosity. We compare these findings to nuclear burning models and find evidence for a transition between the pure helium and mixed hydrogen/helium ignition regimes when the persistent luminosity was about 0.3 times the Eddington limit. We also point out important discrepancies between the observed bursts and theory, which predicts brighter and less frequent bursts, and suggest that an additional source of heat in the NS envelope is required to reconcile the observed and expected burst properties. We discuss the impact of NS magnetic field and spin on the expected nuclear burning regimes, in the context of this particular pulsar.

  13. Radio Induced Fluorescence (RIF) Imaging Of E-region Quasi-periodic Structures

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.

    The horizontal structure of sporadic-E layers has been imaged using artificial airglow excited by high power radio waves. In January 1998, the HF facility at Arecibo, Puerto Rico beamed a 80 MW signal upward at 3.175 MHz. The beam reflected in the E- region near 120 km altitude to excite green-line emissions at 557.7 nm. Ground based images showed quasi-periodic structures with periods near 2 and 10 km. These struc- tures been interpreted as being produced by Kelvin-Helmholtz (K-H) instabilities in the neutral atmosphere. The excitation of radio induced fluorescence (RIF) emissions has been studied with both one-dimensional and two-dimensional computer simulations of the conversion of electromagnetic waves into electron plasma waves. The steep gradients on the bottomside of the E-layer provide conditions for efficient mode conversion. The re- sulting Langmuir waves accelerate electrons to energies between 2 and 10 eV. These suprathermal electrons collide with oxygen atoms to produce green-line emissions. The optical glow only occurs in the parts of the E-region where the plamsa is dense enough to reflect the 3.175 MHz radio waves. Results of the E-layer observations using the RIF technique have shown horizontal stuctures that are most likely produced by the K-H instability. A numerical model has been generated to demonstrate the effects of neutral wind shears on the E-region structures. The model includes the effects of both speed-shear and turning shear dy- namics. The results of the numerical model are used to suggest future research using high-power radio wave to study the ion dynamics of the lower thermosphere.

  14. Multi-mode quasi-periodic pulsations in a solar flare

    NASA Astrophysics Data System (ADS)

    Kolotkov, D. Y.; Nakariakov, V. M.; Kupriyanova, E. G.; Ratcliffe, H.; Shibasaki, K.

    2015-02-01

    Context. Quasi-periodic pulsations (QPP) of the electromagnetic radiation emitted in solar and stellar flares are often detected in microwave, white light, X-ray, and gamma-ray bands. Mechanisms for QPP are intensively debated in the literature. Previous studies revealed that QPP may manifest non-linear, non-stationary and, perhaps, multi-modal processes operating in flares. Aims: We study QPP of the microwave emission generated in an X3.2-class solar flare on 14 May, 2013, observed with the Nobeyama Radioheliograph (NoRH), aiming to reveal signatures of the non-linear, non-stationary, and multi-modal processes in the signal. Methods: The NoRH correlation signal obtained at the 17 GHz intensity has a clear QPP pattern. The signal was analysed with the Hilbert-Huang transform (HHT) that allows one to determine its instant amplitude and frequency, and their time variation. Results: It was established that the QPP consists of at least three well-defined intrinsic modes, with the mean periods of 15, 45, and 100 s. All the modes have quasi-harmonic behaviour with different modulation patterns. The 100 s intrinsic mode is a decaying oscillation, with the decay time of 250 s. The 15 s intrinsic mode shows a similar behaviour, with the decay time of 90 s. The 45 s mode has a wave-train behaviour. Conclusions: Dynamical properties of detected intrinsic modes indicate that the 100 s and 15 s modes are likely to be associated with fundamental kink and sausage modes of the flaring loop, respectively. The 100 s oscillation could also be caused by the fundamental longitudinal mode, while this interpretation requires the plasma temperature of about 30 million K and hence is not likely. The 45 s mode could be the second standing harmonics of the kink mode.

  15. A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Li, Jianping; Jin, Fei-Fei

    2015-10-01

    Wavelet analysis of the annual North Atlantic Oscillation (NAO) index back to 1659 reveals a significant frequency band at about 60 years. Recent NAO decadal variations, including the increasing trend during 1960-1990 and decreasing trend since the mid-1990s, can be well explained by the approximate 60-year cycle. This quasi 60-year oscillation of the NAO is realistically reproduced in a long-term control simulation with version 4 of the Community Climate System Model, and the possible mechanisms are further investigated. The positive NAO forces the strengthening of the Atlantic meridional overturning circulation (AMOC) and induces a basin-wide uniform sea surface temperature (SST) warming that corresponds to the Atlantic multidecadal oscillation (AMO). The SST field exhibits a delayed response to the preceding enhanced AMOC, and shows a pattern similar to the North Atlantic tripole (NAT), with SST warming in the northern North Atlantic and cooling in the southern part. This SST pattern (negative NAT phase) may lead to an atmospheric response that resembles the negative NAO phase, and subsequently the oscillation proceeds, but in the opposite sense. Based on these mechanisms, a simple delayed oscillator model is established to explain the quasi-periodic multidecadal variability of the NAO. The magnitude of the NAO forcing of the AMOC/AMO and the time delay of the AMOC/AMO feedback are two key parameters of the delayed oscillator. For a given set of parameters, the quasi 60-year cycle of the NAO can be well predicted. This delayed oscillator model is useful for understanding of the oscillatory mechanism of the NAO, which has significant potential for decadal predictions as well as the interpretation of proxy data records.

  16. Is Compton Cooling Sufficient to Explain Evolution of Observed Quasi-periodic Oscillations in Outburst Sources?

    NASA Astrophysics Data System (ADS)

    Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak

    2015-01-01

    In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up until a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, the Compton cloud must collapse steadily in the rising phase. In decline phases, the exact opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter that increases the Keplerian disk rate also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling timescale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the two-component advective flow configuration of Chakrabarti-Titarchuk, centrifugal force-induced shock represents the boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H 1743-322 and find an estimation of variation of the α parameter of the sub-Keplerian flow to be monotonically rising from 0.0001 to 0.02, well within the range suggested by magnetorotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters per second, which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.

  17. A Search for Periodic and Quasi-periodic Photometric Behavior in the Cataclysmic Variable TT ARIETIS

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Arai, K.; Chinarova, L. L.; Dorokhov, N. I.; Dorokhova, T. N.; Dumitrescu, A.; Nogami, D.; Kolesnikov, S. V.; Lepardo, A.; Mason, P. A.; Matsumoto, K.; Oprescu, G.; Pajdosz, G.; Passuelo, R.; Patkos, L.; Senio, D. S.; Sostero, G.; Suleimanov, V. F.; Tremko, J.; Zhukov, G. V.; Zola, S.

    1999-01-01

    Observations of TT Ari obtained at 11 observatories (campaign TT Ari-94) during 258 hr were carried out to study optical variability on timescales from minutes to weeks. The best-fit primary photometric period determined from 16 nights of data obtained at the Dushak-Eregdag station of the Odessa State University is P=0.133160°+/-0.000004° with a mean amplitude of 0.0513+/-0.0008 mag. This new primary photometric period is larger than that obtained during the TT Ari-88 campaign and is well outside the range of estimates published since 1961. Contrary to previous findings, the ``5-7 hr'' secondary photometric period is not seen. Our observations do show evidence for periods of 2.916° and 0.3040° with amplitudes of 43 and 25 mmag, respectively. The beat period between the spectroscopic and photometric periods is not seen. No coherent oscillations in the range f=10-2500 cycles day^-1 are found. The highest peaks in the power spectrum cover the wide range of 24-139 cycles day^-1. In the mean periodogram, the highest peak corresponds to 21 and 30 minutes for the largest sets of observations, i.e., those obtained at Odessa and Krakow Universities, respectively. In the instrumental B system, variations with an amplitude exceeding 0.011 mag occur 8 times (from 33 runs) at 24 minutes. We conclude that quasi-periodic variations occur at a few preferred timescales rather than at a relatively stable period with a secular decrease. In the frequency range 90-900 cycles day^-1, the power spectrum obeys a power law with a slope ranging from gamma=1.3 to 2.6 for different runs.

  18. STEREO observations of quasi-periodically driven high velocity outflows in polar plumes

    NASA Astrophysics Data System (ADS)

    McIntosh, S. W.; Innes, D. E.; de Pontieu, B.; Leamon, R. J.

    2010-02-01

    Context. Plumes are one of the most ubiquitous features seen at the limb in polar coronal holes and are considered to be a source of high density plasma streams to the fast solar wind. Aims: We analyze STEREO observations of plumes and aim to reinterpret and place observations with previous generations of EUV imagers within a new context that was recently developed from Hinode observations. Methods: We exploit the higher signal-to-noise, spatial and temporal resolution of the EUVI telescopes over that of SOHO/EIT to study the temporal variation of polar plumes in high detail. We employ recently developed insight from imaging (and spectral) diagnostics of active region, plage, and quiet Sun plasmas to identify the presence of apparent motions as high-speed upflows in magnetic regions as opposed to previous interpretations of propagating waves. Results: In almost all polar plumes observed at the limb in these STEREO sequences, in all coronal passbands, we observe high speed jets of plasma traveling along the structures with a mean velocity of 135 km s-1 at a range of temperatures from 0.5-1.5 MK. The jets have an apparent brightness enhancement of ~5% above that of the plumes they travel on and repeat quasi-periodically, with repeat-times ranging from five to twenty-five minutes. We also notice a very weak, fine scale, rapidly evolving, but ubiquitous companion of the plumes that covers the entire coronal hole limb. Conclusions: The observed jets are remarkably similar in intensity enhancement, periodicity and velocity to those observed in other magnetic regions of the solar atmosphere. They are multi-thermal in nature. We infer that the jets observed on the plumes are a source of heated mass to the fast solar wind. Further, based on the previous results that motivated this study, we suggest that these jets originated in the upper chromosphere. Five movies are only available in electronic form at http://www.aanda.org

  19. Sources of Quasi-periodic Pulses in the Flare of 18 August 2012

    NASA Astrophysics Data System (ADS)

    Altyntsev, A.; Meshalkina, N.; Mészárosová, H.; Karlický, M.; Palshin, V.; Lesovoi, S.

    2016-02-01

    We analyzed spatial and spectral characteristics of quasi-periodic pulses (QPP) for the limb flare on 18 August 2012, using new data from a complex of spectral and imaging instruments developed by the Siberian Solar Radio Telescope team and the Wind/Konus γ-ray spectrometer. A sequence of broadband pulses with periods of approximately ten seconds were observed in X-rays at energies between 25 keV and 300 keV, and in microwaves at frequencies from a few GHz up to 34 GHz during an interval of one minute. The QPP X-ray source was located slightly above the limb where the southern legs of large and small EUV loop systems were close to each other. Before the QPPs occurred, the soft X-ray emission and the Ramaty High Energy Solar Spectroscopic Imager signal from the energy channels below 25 keV were gradually arising for several minutes at the same location. It was found that each X-ray pulse showed a soft-hard-soft behavior. The 17 and 34 GHz microwave sources were at the footpoints of the small loop system, the source emitting in the 4.2 - 7.4 GHz band in the large system. The QPPs were probably generated by modulated acceleration processes in the energy-release site. We determined the plasma parameters in the radio sources by analyzing the spectra. The microwave pulses might be explained by relatively weak variations of the spectral hardness of the emitting electrons.

  20. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    SciTech Connect

    Barret, Didier

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

  1. IS COMPTON COOLING SUFFICIENT TO EXPLAIN EVOLUTION OF OBSERVED QUASI-PERIODIC OSCILLATIONS IN OUTBURST SOURCES?

    SciTech Connect

    Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak E-mail: chakraba@bose.res.in

    2015-01-01

    In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up until a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, the Compton cloud must collapse steadily in the rising phase. In decline phases, the exact opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter that increases the Keplerian disk rate also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling timescale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the two-component advective flow configuration of Chakrabarti-Titarchuk, centrifugal force-induced shock represents the boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H 1743-322 and find an estimation of variation of the α parameter of the sub-Keplerian flow to be monotonically rising from 0.0001 to 0.02, well within the range suggested by magnetorotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters per second, which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.

  2. Mass-Angular-momentum Relations Implied by Models of Twin Peak Quasi-periodic Oscillations

    NASA Astrophysics Data System (ADS)

    Török, Gabriel; Bakala, Pavel; Šrámková, Eva; Stuchlík, Zdeněk; Urbanec, Martin; Goluchová, Kateřina

    2012-12-01

    Twin peak quasi-periodic oscillations (QPOs) appear in the X-ray power-density spectra of several accreting low-mass neutron star (NS) binaries. Observations of the peculiar Z-source Circinus X-1 display unusually low QPO frequencies. Using these observations, we have previously considered the relativistic precession (RP) twin peak QPO model to estimate the mass of the central NS in Circinus X-1. We have shown that such an estimate results in a specific mass-angular-momentum (M - j) relation rather than a single preferred combination of M and j. Here we confront our previous results with another binary, the atoll source 4U 1636-53 that displays the twin peak QPOs at very high frequencies, and extend the consideration to various twin peak QPO models. In analogy to the RP model, we find that these imply their own specific M - j relations. We explore these relations for both sources and note differences in the χ2 behavior that represent a dichotomy between high- and low-frequency sources. Based on the RP model, we demonstrate that this dichotomy is related to a strong variability of the model predictive power across the frequency plane. This variability naturally comes from the radial dependence of characteristic frequencies of orbital motion. As a consequence, the restrictions on the models resulting from observations of low-frequency sources are weaker than those in the case of high-frequency sources. Finally we also discuss the need for a correction to the RP model and consider the removing of M - j degeneracies, based on the twin peak QPO-independent angular momentum estimates.

  3. IMAGING OBSERVATIONS OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARE LOOPS WITH SDO/AIA

    SciTech Connect

    Su, J. T.; Mao, X. J.; Shen, Y. D.; Liu, Y.

    2012-08-20

    Quasi-periodic pulsations (QPPs) of flaring emission with periods from a few seconds to tens of minutes have been widely detected from radio bands to {gamma}-ray emissions. However, in the past the spatial information of pulsations could not be utilized well due to the instrument limits. We report here imaging observations of the QPPs in three loop sections during a C1.7 flare with periods of P = 24 s-3 minutes by means of the extreme-ultraviolet 171 A channel of the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory. We confirm that the QPPs with the shortest period of 24 s were not of an artifact produced by the Nyquist frequency of the AIA 12 s cadence. The QPPs in the three loop sections were interconnected and closely associated with the flare. The detected perturbations propagated along the loops at speeds of 65-200 km s{sup -1}, close to those of acoustic waves in them. The loops were made up of many bright blobs arranged in alternating bright and dark changes in intensity (spatial periodical distribution) with the wavelengths 2.4-5 Mm (as if they were magnetohydrodynamic waves). Furthermore, in the time-distance diagrams, the detected perturbation wavelengths of the QPPs are estimated to be {approx}10 Mm, which evidently do not fit the above ones of the spatial periodic distributions and produce a difference of a factor of 2-4 with them. It is suggested that the short QPPs with periods P < 60 s were possibly sausage-mode oscillations and the long QPPs with periods P > 60 s were the higher (e.g., >2nd) harmonics of slow magnetoacoustic waves.

  4. Impact of inclination on quasi-periodic oscillations from spiral structures

    NASA Astrophysics Data System (ADS)

    Varniere, P.; Vincent, F. H.

    2016-06-01

    Context. Quasi-periodic oscillations (QPOs) are a common feature of the power spectrum of X-ray binaries. Currently it is not possible to unambiguously differentiate the large number of proposed models to explain these phenomena through existing observations. Aims: We investigate the observable predictions of a simple model that generates flux modulation: a spiral instability rotating in a thin accretion disk. This model is motivated by the accretion ejection instability (AEI) model for low-frequency QPOs (LFQPOs). We are particularly interested in the inclination dependence of the observables that are associated with this model. Methods: We develop a simple analytical model of an accretion disk, which features a spiral instability. The disk is assumed to emit blackbody radiation, which is ray-traced to a distant observer. We compute pulse profiles and power spectra as observed from infinity. Results: We show that the amplitude of the modulation associated with the spiral rotation is a strong function of inclination and frequency. The pulse profile is quasi-sinusoidal only at low inclination (face-on source). As a consequence, a higher-inclination geometry leads to a stronger and more diverse harmonic signature in the power spectrum. Conclusions: We present how the amplitude depends on the inclination when the flux modulation comes from a spiral in the disk. We also include new observables that could potentially differentiate between models, such as the pulse profile and the harmonic content of the power spectra of high-inclination sources that exhibit LFQPOs. These might be important observables to explore with existing and new instruments.

  5. The energy dependence of quasi periodic oscillations in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Van Den Eijnden, Jakob; Ingram, Adam; Uttley, Phil

    2016-01-01

    Accreting stellar-mass black holes display quasi-periodic oscillations (QPOs) in their X-ray flux with a period that drifts from approximately 0.05 to 10 seconds. Since the oscillatory signal originates from the close proximity of the black hole, QPOs provide a diagnostic of the motion of matter in this region of extreme gravitational curvature. Here I present an analysis of the energy dependence of QPOs in the black hole binary GRS 1915+105. The QPO period in this black hole binary is known to be correlated with the observed energy band. To investigate this further, we extract light curves in two broad energy bands using archival data from the Rossi X-ray Timing Explorer, and apply a filter that separates the QPO from the coincident noise. The filtered light curves reveal that, in both energy bands, the modulation repeatedly rises and falls in amplitude in an envelope that typically lasts about five to ten QPO cycles. We find that, during each of these so-called coherence timescales, the phase difference between the two QPO light curves increases before resetting at the start of the next coherence time scale. This indicates that the oscillation in one energy band is genuinely faster than that in the other band, and puts interesting constraints on current QPO models. If the QPO originates from vertical general relativistic precession of the inner accretion flow, our result indicates that the inner regions of this flow precess slightly quicker than the outer regions, with the precession phase resetting after five to ten QPO cycles.

  6. Quasi-periodic oscillations in black-hole and neutron-star binaries

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano; Motta, Sara Elisa

    2016-07-01

    Fast time variability is an important characteristic of black hole and neutron-star X-ray binaries and a key ingredient in understanding the physical processes in these systems. Black hole and neutron star X-ray binaries show a variety of X-ray spectral/variability states, representing different accretion regimes. It has been recently shown that the overall strength of the rapid variability is a good tracer of these states. Fast aperiodic variability is generally studied through the inspection of power density spectra. Most of the power spectral components are broad and can take the form of a wide power distribution over several decades of frequency or of a more localised peak (quasi-periodic oscillations, QPOs). It is now clear that QPOs are a common characteristic of accreting systems: they have been observed in accreting stellar mass black holes and neutron stars hosted in X-ray binaries, in cataclysmic variable, in the so-called ultra luminous X-ray sources and even in active galactic nuclei. Even though their origin and nature is still debated, the study of QPOs provides a way to explore the inner accretion flow around black holes and neutron stars. Various theoretical models have been proposed to explain the origin of QPOs in black hole and neutron star binaries, only a few have been proved to be promising so far, having shown good agreement with observations. I will describe how timing is done in X-rays and how QPOs are usually studied. I will briefly review some of the proposed models and I will finally show the most recent results obtained on QPOs.

  7. Non-thermal radio emission from Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1978-01-01

    Direct, strong evidence for non-thermal radio emission from Saturn exists in the hectometric data observed by Imp 6. The planet has been tentatively identified as a decametric source, but the most sensitive and most recent data fail to confirm this. At metric or decimetric wavelengths Saturn has no non-thermal emission like Jupiter's synchrotron sources. Finally, a comparative study of Earth and Jupiter radio emissions suggests lightning discharges.

  8. QUASI-PERIODIC PROPAGATING SIGNALS IN THE SOLAR CORONA: THE SIGNATURE OF MAGNETOACOUSTIC WAVES OR HIGH-VELOCITY UPFLOWS?

    SciTech Connect

    De Pontieu, Bart; McIntosh, Scott W. E-mail: mscott@ucar.ed

    2010-10-20

    Since the discovery of quasi-periodic propagating oscillations with periods of order 3-10 minutes in coronal loops with TRACE and SOHO/EIT (and later with STEREO/EUVI and Hinode/EIS), they have been almost universally interpreted as evidence for propagating slow-mode magnetoacoustic waves in the low plasma {beta} coronal environment. Here we show that this interpretation is not unique, and that for coronal loops associated with plage regions (as opposed to sunspots), the presence of magnetoacoustic waves may not be the only cause for the observed quasi-periodicities. We focus instead on the ubiquitous, faint upflows at 50-150 km s{sup -1} that were recently discovered as blueward asymmetries of spectral line profiles in footpoint regions of coronal loops, and as faint disturbances propagating along coronal loops in EUV/X-ray imaging time series. These faint upflows are most likely driven from below and have been associated with chromospheric jets that are (partially) rapidly heated to coronal temperatures at low heights. These two scenarios (waves versus flows) are difficult to differentiate using only imaging data, but careful analysis of spectral line profiles indicates that faint upflows are likely responsible for some of the observed quasi-periodic oscillatory signals in the corona. We show that recent EIS measurements of intensity and velocity oscillations of coronal lines (which had previously been interpreted as direct evidence for propagating waves) are actually accompanied by significant oscillations in the line width that are driven by a quasi-periodically varying component of emission in the blue wing of the line. This faint additional component of blue-shifted emission quasi-periodically modulates the peak intensity and line centroid of a single Gaussian fit to the spectral profile with the same small amplitudes (respectively a few percent of background intensity and a few km s{sup -1}) that were previously used to infer the presence of slow

  9. Classification of Bifurcations of Quasi-Periodic Solutions Using Lyapunov Bundles

    NASA Astrophysics Data System (ADS)

    Kamiyama, Kyohei; Komuro, Motomasa; Endo, Tetsuro; Aihara, Kazuyuki

    In continuous-time dynamical systems, a periodic orbit becomes a fixed point on a certain Poincaré section. The eigenvalues of the Jacobian matrix at this fixed point determine the local stability of the periodic orbit. Analogously, a quasi-periodic orbit (2-torus) becomes an invariant closed curve (ICC) on a Poincaré section. From the Lyapunov exponents of an ICC, we can determine the time average of the exponential divergence rate of the orbit, which corresponds to the eigenvalues of a fixed point. We denote the Lyapunov exponent with the smallest nonzero absolute value as the Dominant Lyapunov Exponent (DLE). A local bifurcation manifests as a crossing or touch of the DLE locus with zero. However, the type of bifurcation cannot be determined from the DLE. To overcome this problem, we define the Dominant Lyapunov Bundle (DLB), which corresponds to the dominant eigenvectors of a fixed point. We prove that the DLB of a 1-torus in a map can be classified into four types: A+ (annulus and orientation preserving), A- (annulus and orientation reversing), M (Möbius band), and F (focus). The DLB of a 2-torus in a flow can be classified into three types: A+ × A+, A- × M (equivalently M × A- and M × M), and F × F. From the results, we conjecture the possible local bifurcations in both cases. For the 1-torus in a map, we conjecture that type A+ and A- DLBs correspond to a saddle-node and period-doubling bifurcations, respectively, whereas a type M DLB denotes a double-covering bifurcation, and type F relates to a Neimark-Sacker bifurcation. Similarly, for the 2-torus in a flow, we conjecture that type A+ × A+ DLBs correspond to saddle-node bifurcations, type A- × M DLBs to double-covering bifurcations, and type F × F DLBs to the Neimark-Sacker bifurcations. After introducing the mathematical concepts, we provide a DLB-calculating algorithm and illustrate all of the above bifurcations by examples.

  10. Quasi-periodic processes in the flare loop generated by sudden temperature enhancements at loop footpoints

    NASA Astrophysics Data System (ADS)

    Karlický, M.; Jelínek, P.

    2016-05-01

    ~500 s the process with the periodically interacting shocks slowly changes to slow mode magnetosonic free oscillation. Furthermore, we detected quasi-periodic processes, even in the chromosphere under the location of the pressure perturbation. These processes can be observed in intensities and Doppler shifts of optical chromospheric lines. In the case with the asymmetric perturbations, we found that the processes are even more complex.

  11. Quasi-Periodic Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan

    2015-08-01

    Four years of Kepler observations have revealed a class of Algol-type binaries in which the relative brightness of the quadrature light varies from > 1 to <1 on a time scale of about 100-400 days. The behavior pattern is quasi-periodic. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Although L/T inequality in eclipsing binaries has been noted from ground-based photometry by several observers since the early 1950s, the regular or quasi-regular switching between maxima is new. Twenty L/T systems have so far been found in the Kepler database and at least three classes of L/T behavior have been identified. In this presentation I will give an update on the L/T phenomenon gleaned from the Kepler and K2 databases. The Kepler and K2 light curves are being analyzed with the 2015 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). The prototype L/T variable is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 Tphot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  12. Discovery of Kilohertz Quasi-periodic Oscillations in the Z Source GX 340+0

    NASA Astrophysics Data System (ADS)

    Jonker, Peter G.; Wijnands, Rudy; van der Klis, Michiel; Psaltis, Dimitrios; Kuulkers, Erik; Lamb, Frederick K.

    1998-06-01

    We have discovered two simultaneous kHz quasi-periodic oscillations (QPOs) in the Z source GX 340+0 with the Rossi X-Ray Timing Explorer. The X-ray hardness-intensity and color-color diagrams each show a full Z track, with an extra limb branching off the flaring branch of the Z. Both peaks moved to higher frequencies when the mass accretion rate increased. The two peaks moved from 247+/-6 and 567+/-39 Hz at the left end of the horizontal branch to 625+/-18 and 820+/-19 Hz at its right end. The higher frequency peak's rms amplitude (5-60 keV) and FWHM decreased from ~5% and 383+/-135 Hz to ~2% and 145+/-62 Hz, respectively. The rms amplitude and FWHM of the lower peak were consistent with being constant near 2.5% and 100 Hz. The kHz QPO separation was consistent with being constant at 325+/-10 Hz. Simultaneous with the kHz QPOs, we detected the horizontal-branch oscillation (HBO) and its second harmonic, at frequencies between 20 and 50 Hz, and 38 and 69 Hz, respectively. The normal-branch oscillations were only detected on the upper and middle normal branch and became undetectable on the lower normal branch. The HBO frequencies do not fall within the range predicted for Lense-Thirring precession, unless either the ratio of the neutron star moment of inertia to neutron star mass is at least 4, 1045g cm2 M-1solar, the frequencies of the HBOs are in fact the second harmonic oscillations, or the observed kHz peak difference is half the spin frequency and not the spin frequency. During a 1.2 day gap between two observations, the Z track in the hardness-intensity diagram moved to higher count rates by about 3.5%. Comparing data before and after this shift, we find that the HBO properties are determined by position on the Z track and not directly by count rate or X-ray colors.

  13. Phase-rectified signal averaging for the detection of quasi-periodicities and the prediction of cardiovascular risk

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan W.; Bauer, Axel; Schumann, Aicko Y.; Barthel, Petra; Schneider, Raphael; Malik, Marek; Schmidt, Georg

    2007-03-01

    We present the phase-rectified signal averaging (PRSA) method as an efficient technique for the study of quasi-periodic oscillations in noisy, nonstationary signals. It allows the assessment of system dynamics despite phase resetting and noise and in relation with either increases or decreases of the considered signal. We employ the method to study the quasi-periodicities of the human heart rate based on long-term ECG recordings. The center deflection of the PRSA curve characterizes the average capacity of the heart to decelerate (or accelerate) the cardiac rhythm. It can be measured by a central wavelet coefficient which we denote as deceleration capacity (DC). We find that decreased DC is a more precise predictor of mortality in survivors of heart attack than left ventricular ejection fraction, the current "gold standard" risk predictor. In addition, we discuss the dependence of the DC parameter on age and on diabetes.

  14. Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-Ray Blazar PG 1553+113

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Di Venere, L.; D´nguez, A.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fuhrmann, L.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Godfrey, G.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Max-Moerbeck, W.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohno, M.; Ohsugi, T.; Ojha, R.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pearson, T. J.; Perkins, J. S.; Perri, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Wood, K. S.; Wood, M.; Zimmer, S.; Berdyugin, A.; Corbet, R. H. D.; Hovatta, T.; Lindfors, E.; Nilsson, K.; Reinthal, R.; Sillanpää, A.; Stamerra, A.; Takalo, L. O.; Valtonen, M. J.

    2015-11-01

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ˜10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  15. Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Boshkayev, Kuantay; Rueda, Jorge; Muccino, Marco

    2015-06-01

    We consider the kilohertz quasi-periodic oscillations of low-mass X-ray binaries within the Hartle-Thorne spacetime. We show that the interpretation of the epicyclic frequencies of this spacetime with the observed kilohertz quasi-periodic oscillations, within the Relativistic Precession Model, allows us to extract the total mass M, angular momentum J, and quadrupole moment Q of the compact object in a low-mass X-ray binary. We exemplify this fact by analyzing the data of the Z-source GX 5-1. We show that the extracted multipole structure of the compact component of this source deviates from the one expected from a Kerr black hole and instead it points to a neutron star explanation.

  16. On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation

    NASA Astrophysics Data System (ADS)

    Cao, Cewen; Wu, Yongtang; Geng, Xianguo

    1999-05-01

    The 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation is decomposed into systems of integrable ordinary differential equations resorting to the nonlinearization of Lax pairs. The Abel-Jacobi coordinates are introduced to straighten the flows, from which quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation are obtained in terms of Riemann theta functions.

  17. Observations of quasi-periodic scintillations and their possible relation to the dynamics of Es plasma blobs

    SciTech Connect

    Maruyama, Takashi )

    1991-06-01

    Quasi-periodic scintillations at a mid-latitude station, Wakkanai, Japan, are examined using 136-MHz geostationary satellite transmissions. Observations are compared with the ionospheric parameter obtained at the same station and random scintillation records. The results indicate that the quasi-periodic scintillations are most likely produced by plasma blobs within the sporadic E layers. Discussion focuses on characteristics of the ringing pattern which precedes and follows the primary deep fade-out, in field strength. In the majority of events the ringing pattern tends to develop after the distinct deep fade-out, i.e., the pattern is asymmetric. Quasi-periodic scintillation patterns are produced by the movement of plasma blobs in the case of geostationary satellite experiments. Thus the shape of the blob must be deformed so that a steep density gradient is attained on the backside. When the blob is highly deformed by the plasma instability which grows at the steep density gradient, burstlike random scintillations may be produced by the blob. 16 refs.

  18. Discovery of kHz Quasi-periodic Oscillations in the Z Source Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Homan, Jeroen; van der Klis, Michiel; Kuulkers, Erik; van Paradijs, Jan; Lewin, Walter H. G.; Lamb, Frederick K.; Psaltis, Dimitrios; Vaughan, Brian

    1998-02-01

    During observations with the Rossi X-Ray Timing Explorer from 1997 June 31 to July 3 we discovered two simultaneous kHz quasi-periodic oscillations (QPOs) near 500 and 860 Hz in the low-mass X-ray binary and Z source Cygnus X-2. In the X-ray color-color diagram and hardness-intensity diagram (HID), a clear Z track was traced out, which shifted in the HID within 1 day to higher count rates at the end of the observation. Z track shifts are well known to occur in Cyg X-2 our observation for the first time catches the source in the act. A single kHz QPO peak was detected at the left end of the horizontal branch (HB) of the Z track, with a frequency of 731+/-20 Hz and an amplitude of 4.7+0.8-0.6% rms in the energy band 5.0-60 keV. Further to the right on the HB, at somewhat higher count rates, an additional peak at 532+/-43 Hz was detected with an rms amplitude of 3.0+1.0-0.7%. When the source moved down the HB, thus when the inferred mass accretion rate increased, the frequency of the higher frequency QPO increased to 839+/-13 Hz, and its amplitude decreased to 3.5+0.4-0.3% rms. The higher frequency QPO was also detected on the upper normal branch (NB) with an rms amplitude of 1.8+0.6-0.4% and a frequency of 1007+/-15 Hz; its peak width did not show a clear correlation with inferred mass accretion rate. The lower frequency QPO was most of the time undetectable, with typical upper limits of 2% rms; no conclusion on how this QPO behaved with mass accretion rate can be drawn. If the peak separation between the QPOs is the neutron star spin frequency (as required in some beat-frequency models), then the neutron star spin period is 2.9+/-0.2 ms (346+/-29 Hz). This discovery makes Cyg X-2 the fourth Z source that displays kHz QPOs. The properties of the kHz QPOs in Cyg X-2 are similar to those of other Z sources. Simultaneous with the kHz QPOs, the well-known horizontal-branch QPOs (HBOs) were visible in the power spectra. At the left end of the HB, the second harmonic of

  19. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    PubMed

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices. PMID:27463924

  20. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. III. QUASI-PERIODIC VARIABILITY

    SciTech Connect

    Johannsen, Tim; Psaltis, Dimitrios E-mail: dpsaltis@email.arizona.edu

    2011-01-01

    According to the no-hair theorem, astrophysical black holes are uniquely described by their masses and spins. An observational test of the no-hair theorem can be performed by measuring at least three different multipole moments of the spacetime of a black hole and verifying whether their values are consistent with the unique combinations of the Kerr solution. In this paper, we study quasi-periodic variability observed in the emission from black holes across the electromagnetic spectrum as a test of the no-hair theorem. We derive expressions for the Keplerian and epicyclic frequencies in a quasi-Kerr spacetime, in which the quadrupole moment is a free parameter in addition to mass and spin. We show that, for moderate spins, the Keplerian frequency is practically independent of small deviations of the quadrupole moment from the Kerr value, while the epicyclic frequencies exhibit significant variations. We apply this framework to quasi-periodic oscillations (QPOs) in black hole X-ray binaries in two different scenarios. In the case that a pair of QPOs can be identified as the fundamental g- and c-modes in the accretion disk, we show that the no-hair theorem can be tested in conjunction with an independent mass measurement. If pairs of oscillations are identified with non-parametric resonance of dynamical frequencies in the accretion disk, then testing the no-hair theorem also requires an independent measurement of the black hole spin. In addition, we argue that VLBI observations of Sgr A* may test the no-hair theorem through a combination of imaging observations and the detection of quasi-periodic variability.

  1. A model of the spectra and high-frequency quasi-periodic oscillations in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Dexter, Jason

    2016-07-01

    High-frequency quasi-periodic oscillations (HFQPOs) in black hole X-ray binaries have frequencies comparable to the orbital frequency at the innermost stable circular orbit, and therefore may encode information about strong field general relativity. However, the origin of the oscillations and the associated X-ray spectra remain uncertain. I will discuss a new model for these spectra, which also acts to filter coherent QPOs from local accretion disk oscillations. This model explains many puzzling aspects of HFQPOs, makes predictions which are testable with archival and future X-ray data, and can in principle be used as a new method to measure black hole spin.

  2. Quasi-periodical variations of pulsars spin as mimicry of differential rotation

    NASA Astrophysics Data System (ADS)

    Kitiashvili, I.; Gusev, A.

    2008-09-01

    ABSTRACT Observation of pulsars is a powerful source of information for studying the dynamics and internal structure of neutron stars. Known about quasi-periodical fluctuations of the time-of-arrival of radiation(TOA) for some pulsars, which we explain as Chandler wobble, Free core nutation, Free inner core nutation and Inner core wobble in case three layer model. Using hamilton approximation to theory rotation of multilayer celestial bodies we estimate dynamical flattening for different layers for PSR B1828-11. It is known that an innate feature of pulsar radiation is high stability of the time-of-arrival (TOA) of pulses, and therefore the analysis of TOA fluctuations can reflect subtle effects of neutron stars dynamics. TOA variations of pulsars can be interpreted by three reasons: gravitational perturbation of pulsar by planetary bodies, peculiarities of a pulsar interior like Tkachenko oscillations and free precession motion, when axis of rotation do not coincide with vectors of the angular moment of solid crust, liquid outer core and crystal core. The radial velocity of a star is obtained by measuring the magnitude of the Doppler effect in its spectrum. Stars showing a small amplitude variation of the radial velocity can be interpreted as systems having planetary companions. Assuming that the pulsar PSR B1257+12 has a mass of 1:35M¯, the Keplerian orbital radii are 0.9, 1.4 and 2.1 AU and with masses are 3:1M©=sin(i), 10:2M©=sin(i), 4:6M©=sin(i), where i is the orbital inclination [7]. In 2000, Stairs, Lyne and Shemar reported about their discovery of long-term, highly-periodic and correlated variations of pulse shape and the rate of slow-down of the pulsar PSR B182811 with period variations approximately 1000, 500, 250 and 167 days, which may be a result of the spin axis caused by an asymmetry in the shape of the pulsar. The long-periodic precession phenomenon was also detected for a few pulsars: PSR 2217+47, PSR 0531+21, PSR B083345, PSR B182811, PSR B

  3. Non-thermal Plasma and Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  4. Resonance condition and low-frequency quasi-periodic oscillations of the outbursting source H1743-322

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Mondal, Santanu; Debnath, Dipak

    2015-10-01

    It has long been proposed that low-frequency quasi-periodic oscillations (QPOs) in stellar-mass black holes or their equivalents in supermassive black holes are the result of resonances between infall and cooling timescales. We explicitly compute these two timescales in a generic situation to show that resonances are easily achieved. During an outburst of a transient black hole candidate, the accretion rate of the Keplerian disc as well as the geometry of the Comptonizing cloud change very rapidly. During some period, a resonance condition between the cooling timescale (predominantly by Comptonization) and the infall timescale of the Comptonizing cloud is roughly satisfied. This leads to low-frequency quasi-periodic oscillations (LFQPOs) of the Compton cloud and the consequent oscillation of hard X-rays. In this paper, we explicitly follow black hole candidate H1743-322 during its 2010 outburst. We compute the Compton cooling time and infall time over several days and show that QPOs take place when these two roughly agree within ˜50 per cent, i.e., the resonance condition is generally satisfied. We also confirm that for the sharper LFQPOs (i.e. higher Q-factors) the ratio of the two timescales is very close to 1.

  5. High performance hybrid rGO/Ag quasi-periodic mesh transparent electrodes for flexible electrochromic devices

    NASA Astrophysics Data System (ADS)

    Voronin, A. S.; Ivanchenko, F. S.; Simunin, M. M.; Shiverskiy, A. V.; Aleksandrovsky, A. S.; Nemtsev, I. V.; Fadeev, Y. V.; Karpova, D. V.; Khartov, S. V.

    2016-02-01

    A possibility of creating a stable hybrid coating based on the hybrid of a reduced graphene oxide (rGO)/Ag quasi-periodic mesh (q-mesh) coating has been demonstrated. The main advantages of the suggested method are the low cost of the processes and the technology scalability. The Ag q-mesh coating is formed by means of the magnetron sputtering of silver on the original template obtained as a result of quasi-periodic cracking of a silica film. The protective rGO film is formed by low temperature reduction of a graphene oxide (GO) film, applied by the spray-deposition in the solution of NaBH4. The coatings have low sheet resistance (12.3 Ω/sq) and high optical transparency (82.2%). The hybrid coatings are characterized by high chemical stability, as well as they show high stability to deformation impacts. High performance of the hybrid coatings as electrodes in the sandwich-system «electrode-electrochromic composition-electrode» has been demonstrated. The hybrid electrodes allow the electrochromic sandwich to function without any visible degradation for a long time, while an unprotected mesh electrode does not allow performing even a single switching cycle.

  6. Quasi-periodic pulsations in solar flares: new clues from the Fermi Gamma-Ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Gruber, D.; Lachowicz, P.; Bissaldi, E.; Briggs, M. S.; Connaughton, V.; Greiner, J.; van der Horst, A. J.; Kanbach, G.; Rau, A.; Bhat, P. N.; Diehl, R.; von Kienlin, A.; Kippen, R. M.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C.

    2011-09-01

    Aims: In the past four decades, it has been observed that solar flares display quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, frequencies in the electromagnetic spectrum. It remains unclear which mechanism creates these QPPs. In this paper, we analyze four bright solar flares that display compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (GBM ) onboard the Fermi satellite. Because GBM covers over three decades in energy (8 keV to 40 MeV), it is regarded as a key instrument in our attempt to understand the physical processes that drive solar flares. Methods: We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, in contrast to previous authors, we did not detrend the raw light curve before creating the power spectral density (PSD) spectrum. To assess the significance of the frequencies, we used a method that is commonly applied to X-ray binaries and Seyfert galaxies. This technique takes into account the underlying continuum of the PSD, which for all of these sources has a P(f) ~ f-α dependence and is typically labeled red-noise. Results: We checked the reliability of this technique by applying it to observations of a solar flare that had been observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI ). These data contain, besides any potential periodicity from the Sun, a 4 s rotational period caused by the rotation of the spacecraft about its axis. We were unable to identify any intrinsic solar quasi-periodic pulsation but we did manage to reproduce the instrumental periodicity. Moreover, with the method adopted here, we do not detect significant QPPs in the four bright solar flares observed by GBM. We stress that for this kind of analyses it is of utmost importance to account appropriately for the red-noise component in the PSD of these astrophysical sources.

  7. Non-thermal WIMPs as dark radiation

    SciTech Connect

    Queiroz, Farinaldo S.

    2014-06-24

    It has been thought that only light species could behave as radiation and account for the dark radiation observed recently by Planck, WMAP9, South Pole and ATACAMA telescopes. In this work we will show GeV scale WIMPs can plausibly account for the dark radiation as well. Heavy WIMPs might mimic the effect of a half neutrino species if some fraction of them are produced non-thermally after their thermal freeze-out. In addition, we will show how BBN, CMB and Structure Formation bounds might be circumvented.

  8. Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Wang, Hongping; Wang, Jinjun

    2013-05-01

    This work mainly deals with the proper orthogonal decomposition (POD) time coefficient method used for extracting phase information from quasi-periodic flow. The mathematical equivalence between this method and the traditional cross-correlation method is firstly proved. A two-dimensional circular cylinder wake flow measured by time-resolved particle image velocimetry within a range of Reynolds numbers is then used to evaluate the reliability of this method. The effect of both the sampling rate and Reynolds number on the identification accuracy is finally discussed. It is found that the POD time coefficient method provides a convenient alternative for phase identification, whose feasibility in low-sampling-rate measurement has additional advantages for experimentalists.

  9. Noise-driven radiative shocks - A new model for the optical quasi-periodic oscillations of the AM Herculis objects

    NASA Technical Reports Server (NTRS)

    Wolff, Michael T.; Wood, Kent S.; Imamura, James N.

    1991-01-01

    A model for the 0.3-1.2 Hz optical quasi-periodic oscillations (QPOs) observed in a number of AM Her-type binary systems has been developed. It is suggested that the observed optical modulation is the result of shock oscillations induced by nonsteady accretion flows. It is shown that time-dependent models of radiative shock waves in nonsteady accretion flows onto magnetic white dwarfs with mass 0.6 solar mass and magnetic field strength of 30 MG can produce optical QPOs similar to those observed in the AM Her objects. Theoretical calculations have shown that oscillations cannot be sustained for these white dwarf parameters when the accretion rate is constant.

  10. The quasi-periodic oscillations and very low frequency noise of Scorpius X-1 as transient chaos - A dripping handrail?

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Steiman-Cameron, Thomas; Young, Karl; Donoho, David L.; Crutchfield, James P.; Imamura, James

    1993-01-01

    We present evidence that the quasi-periodic oscillations (QPO) and very low frequency noise (VLFN) characteristic of many accretion sources are different aspects of the same physical process. We analyzed a long, high time resolution EXOSAT observation of the low-mass X-ray binary (LMXB) Sco X-1. The X-ray luminosity varies stochastically on time scales from milliseconds to hours. The nature of this variability - as quantified with both power spectrum analysis and a new wavelet technique, the scalegram - agrees well with the dripping handrail accretion model, a simple dynamical system which exhibits transient chaos. In this model both the QPO and VLFN are produced by radiation from blobs with a wide size distribution, resulting from accretion and subsequent diffusion of hot gas, the density of which is limited by an unspecified instability to lie below a threshold.

  11. Anomalous magnetic response of a quasi-periodic mesoscopic ring in presence of Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2016-04-01

    We investigate the properties of persistent charge current driven by magnetic flux in a quasi-periodic mesoscopic Fibonacci ring with Rashba and Dresselhaus spin-orbit interactions. Within a tight-binding framework we work out individual state currents together with net current based on second-quantized approach. A significant enhancement of current is observed in presence of spin-orbit coupling and sometimes it becomes orders of magnitude higher compared to the spin-orbit interaction free Fibonacci ring. We also establish a scaling relation of persistent current with ring size, associated with the Fibonacci generation, from which one can directly estimate current for any arbitrary flux, even in presence of spin-orbit interaction, without doing numerical simulation. The present analysis indeed gives a unique opportunity of determining persistent current and has not been discussed so far.

  12. High-Frequency Quasi-Periodic Oscillations in the Black Hole X-Ray Transient XTE J1650-500

    NASA Technical Reports Server (NTRS)

    Holman, Jeroen; Klein-Wolt, Marc; Rossi, Sabrina; Miller, Jon M.; Wijnands, Rudy; Belloni, Tomaso; VanDerKlis, Michiel; Lewin, Walter H. G.

    2003-01-01

    We report the detection of high-frequency variability in the black hole X-ray transient XTE 51650-500. A quasi-periodic oscillation (QPO) was found at 250 Hz during a transition from the hard to the soft state. We also detected less coherent variability around 50 Hz that disappeared when the 250 Hz QPO showed up. There are indications that when the energy spectrum hardened the QPO frequency increased from approx. 110 to approx. 270 Hz, although the observed frequencies are also consistent with being 1 : 2 : 3 harmonics of each other. Interpreting the 250 Hz as the orbital frequency at the innermost stable orbit around a Schwarzschild black hole leads to a mass estimate of 8.2 solar mass. The spectral results by Miller et al., which suggest considerable black hole spin, would imply a higher mass.

  13. Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2

    NASA Astrophysics Data System (ADS)

    Sahel, S.; Amri, R.; Bouaziz, L.; Gamra, D.; Lejeune, M.; Benlahsen, M.; Zellama, K.; Bouchriha, H.

    2016-09-01

    Quasi-periodic one-dimensional Cantor photonic crystals are elaborated by depositing alternating silicon and silica Si/SiO2 layers by radiofrequency magnetron sputtering technique with cold plasma. Transmittance and reflectance spectra of these quasi crystals exhibit a large photonic band gap in the infrared range at normal incidence which is well reproduced by a theoretical model based on the transfer matrix method. The obtained wide photonic band gap reveals the existence of permitted modes depending on the nature and characteristics of the built in system which can constitute optical windows. This effect can be a good alternative for the design of flexible filters used in many areas of applications such as telecommunication and optoelectronic devices.

  14. Quasi-periodic fast-mode magnetosonic wave trains within coronal waveguides associated with flares and CMEs

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ofman, Leon; Broder, Brittany; Karlický, Marian; Downs, Cooper

    2016-03-01

    Quasi-periodic, fast-mode, propagating wave trains (QFPs) are a new observational phenomenon recently discovered in the solar corona by the Solar Dynamics Observatory with extreme ultraviolet (EUV) imaging observations. They originate from flares and propagate at speeds up to ˜2000 km s-1 within funnel-shaped waveguides in the wakes of coronal mass ejections (CMEs). QFPs can carry suffcient energy fluxes required for coronal heating during their occurr ences. They can provide new diagnostics for the solar corona and their associated flares. We present recent observations of QFPs focusing on their spatio-temporal properties, temperature dependence, and statistical correlation with flares and CMEs. Of particular interest is the 2010-Aug-01 C3.2 flare with correlated QFPs and drifting zebra and fiber radio bursts, which might be different manifestations of the same fast-mode wave trains. We also discuss the potential roles of QFPs in accelerating and/or modulating the solar wind.

  15. Compton cooling and the signature of Quasi Periodic Oscillations for the transient black hole candidate H 1743-322

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Chakrabarti, S. K.; Debnath, D.; Jana, A.; Molla, A. A.

    In black hole accretion cooling of the Compton cloud has an enormous effect on the dynamics of post-shock flow. We demonstrate that the Compton cooling is highly responsible for the origin of Quasi Periodic Oscillations (QPOs) during the outburst time of the galactic black hole candidates (BHCs). Our study shows that the disk oscillation will take place when infall time from the shock roughly agrees with cooling time in the post-shock region i.e., the resonance condition. We believe that this oscillation is responsible for the origin of QPOs and will occur only when a particular disk condition (disk rate, halo rate and shock strength) satisfies. We also confirm that shock moves with an average velocity of a few meters/sec for the transient BHC H1743-322 due to the presence of Compton cooling.

  16. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO_3 crystal

    NASA Astrophysics Data System (ADS)

    Fang, Xinyuan; Yang, Guang; Wei, Dunzhao; Wei, Dan; Ni, Rui; Ji, Wei; Zhang, Yong; Hu, Xiaopeng; Hu, Wei; Lu, Y. Q.; Zhu, S. N.; Xiao, Min

    2016-03-01

    We experimentally demonstrate the orbital angular momentum (OAM) conversion by the coupled nonlinear optical processes in a quasi-periodically poled LiTaO3 crystal. In such crystal, third-harmonic generation (THG) is realized by the coupled second-harmonic generation (SHG) and sum-frequency generation (SFG) processes, i.e., SHG is dependent on SFG and vice versa. The OAMs of the interacting waves are proved to be conserved in such coupled nonlinear optical processes. As increasing the input OAM in the experiment, the conversion efficiency decreases because of the reduced fundamental power intensity. Our results provide better understanding for the OAM conversions, which can be used to efficiently produce an optical OAM state at a short wavelength.

  17. Talbot interferometry with curved quasi-periodic gratings: towards large field of view X-ray phase-contrast imaging.

    PubMed

    Sun, Yangyang; Cong, Wenxiang; Xi, Yan; Wang, Ge; Pang, Shuo

    2015-10-01

    X-ray phase-contrast imaging based on grating interferometry has become a common method due to its superior contrast in biological soft tissue imaging. The high sensitivity relies on the high-aspect ratio structures of the planar gratings, which prohibit the large field of view applications with a diverging X-ray source. Curved gratings allow a high X-ray flux for a wider angular range, but the interference fringes are only visible within ~10° range due to the geometrical mismatch with the commonly used flat array detectors. In this paper, we propose a design using a curved quasi-periodic grating for large field of view imaging with a flat detector array. Our scheme is numerically verified in the X-ray regime and experimentally verified in the visible optical regime. The interference fringe pattern is observed over 25°, with less than 10% of decrease in visibility in our experiments. PMID:26480170

  18. A 200-Second Quasi-Periodicity After the Tidal Disruption of a Star by a Dormant Black Hole

    NASA Technical Reports Server (NTRS)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Gueltkinm K.; Maitra, D.; King, A. L.; Strohmayer, T.

    2012-01-01

    Supermassive black holes are known to exist at the center of most galaxies with sufficient stellar mass, In the local Universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, often coming in the form of long term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a approx.200-s X-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local Universe.

  19. Driver of quasi-periodic modulation of pulsating aurora: Role of cold electron flux and electric field

    NASA Astrophysics Data System (ADS)

    Sato, N.; Kadokura, A.; Tanaka, Y.; Nishiyama, T.

    2013-12-01

    Pulsating auroras are common phenomena, which are observed universally during the recovery phase of substorm in the auroral and subauroral zones. But, even today, generation mechanism of fundamental characteristics of pulsating aurora, such as, their periodicity and shapes are still open to discussion. Simultaneous observations onboard satellites and on the ground are important method to examine such fundamental characteristics of pulsating aurora. In this study we examined some selected pulsating auroral events, which obtained onboard THEMIS spacecraft and the THEMIS ground-based all-sky camera network. THEMIS satellites were located in the post midnight sector near the equatorial plane in the magnetosphere. We found following signatures of particle, field and wave in the magnetosphere at the onset and during pulsating aurora; 1) All pulsating aurora associate with high-energy(>5 keV) electron flux enhancement, 2) There is no evidence to identify a quasi-periodic(QP) modulation of high-energy electron flux, which may be directly corresponding to pulsating aurora observed on the ground, 3) QP modulation of cold electron flux(<10 eV) and electric field often show one-to-one correspondence to QP modulation of ELF wave intensity, both type of electromagnetic lower-band chorus wave and electrostatic ECH(electron cyclotron harmonic) wave, which may be closely relating to visible pulsating aurora observed on the ground, 4) Not all pulsating aurora associate with ELF wave enhancement, 5) Pitch angle distribution of QP modulated cold electrons show field-aligned to ambient magnetic field. In this study we focus on the characteristics of QP modulation of cold electron flux and electric field, which may play the driver of quasi-periodic modulation of pulsating aurora.

  20. Time scales of pulsatory magmatic construction and solidification in Miocene subvolcanic magma systems, Eldorado Mountains, Nevada (USA)

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Miller, C. F.; Cates, N. L.; Wooden, J. L.; Means, M. A.; Ericksen, S.

    2004-05-01

    .8 Ma maximum on a cumulative age-probability plot (corroborated by U/Pb TIMS). The high age dispersion for the granite sample likely results from entrainment of older zircons from the underlying cumulate, which has an age of 16.9±0.2 Ma (MSWD 1.3; also corroborated by U/Pb TIMS). A zircon age from a late gabbro unit that physically interacts with the youngest granite gives an age of 15.9±0.3 (MSWD 2), consistent with age of the granite. The physical and temporal records of both magma systems indicate that they were pulsatory but on different time scales. The new age data now place tight time limits on the processes of recharge, remelting or remobilization of earlier magma pulses, physical and chemical mixing, crystal settling, melt extraction from cumulates, and eruption during construction of the Searchlight and Aztec Wash magma systems.

  1. Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn's outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Palmaerts, B.; Roussos, E.; Krupp, N.; Kurth, W. S.; Mitchell, D. G.; Yates, J. N.

    2016-06-01

    The in-situ exploration of the magnetospheres of Jupiter and Saturn has revealed different periodic processes. In particular, in the Saturnian magnetosphere, several studies have reported pulsations in the outer magnetosphere with a periodicity of about 1 h in the measurements of charged particle fluxes, plasma wave, magnetic field strength and auroral emissions brightness. The Low-Energy Magnetospheric Measurement System detector of the Magnetospheric Imaging Instrument (MIMI/LEMMS) on board Cassini regularly detects 1-hour quasi-periodic enhancements in the intensities of electrons with an energy range from a hundred keV to several MeV. We extend an earlier survey of these relativistic electron injections using 10 years of LEMMS observations in addition to context measurements by several other Cassini magnetospheric experiments. The one-year extension of the data and a different method of detection of the injections do not lead to a discrepancy with the results of the previous survey, indicating an absence of a long-term temporal evolution of this phenomenon. We identified 720 pulsed events in the outer magnetosphere over a wide range of latitudes and local times, revealing that this phenomenon is common and frequent in Saturn's magnetosphere. However, the distribution of the injection events presents a strong local time asymmetry with ten times more events in the duskside than in the dawnside. In addition to the study of their topology, we present a first statistical analysis of the pulsed events properties. The morphology of the pulsations shows a weak local time dependence which could imply a high-latitude acceleration source. We provide some clues that the electron population associated with this pulsed phenomenon is distinct from the field-aligned electron beams previously observed in Saturn's magnetosphere, but both populations can be mixed. We have also investigated the signatures of each electron injection event in the observations acquired by the Radio

  2. Spike-Interval Triggered Averaging Reveals a Quasi-Periodic Spiking Alternative for Stochastic Resonance in Catfish Electroreceptors

    PubMed Central

    Lankheet, Martin J. M.; Klink, P. Christiaan; Borghuis, Bart G.; Noest, André J.

    2012-01-01

    Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals. PMID:22403709

  3. Quasi-periodic oscillations in short recurring bursts of the soft gamma repeater J1550–5418

    SciTech Connect

    Huppenkothen, D.; D'Angelo, C.; Watts, A. L.; Heil, L.; Van der Klis, M.; Van der Horst, A. J.; Kouveliotou, C.; Baring, M. G.; Göğüş, E.; Kaneko, Y.; Granot, J.; Lin, L.; Von Kienlin, A.; Younes, G.

    2014-06-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. The scarcity of giant flares makes a search for QPOs in the shorter, far more numerous bursts from soft gamma repeaters (SGRs) desirable. In Huppenkothen et al., we developed a Bayesian method for searching for QPOs in short magnetar bursts, taking into account the effects of the complicated burst structure, and have shown its feasibility on a small sample of bursts. Here we apply the same method to a much larger sample from a burst storm of 286 bursts from SGR J1550–5418. We report a candidate signal at 260 Hz in a search of the individual bursts, which is fairly broad. We also find two QPOs at ∼93 Hz, and one at 127 Hz, when averaging periodograms from a number of bursts in individual triggers, at frequencies close to QPOs previously observed in magnetar giant flares. Finally, for the first time, we explore the overall burst variability in the sample and report a weak anti-correlation between the power-law index of the broadband model characterizing aperiodic burst variability and the burst duration: shorter bursts have steeper power-law indices than longer bursts. This indicates that longer bursts vary over a broader range of timescales and are not simply longer versions of the short bursts.

  4. O VI 1032 Å intensity and Doppler shift oscillations above a coronal hole: Magnetosonic waves or quasi-periodic upflows?

    NASA Astrophysics Data System (ADS)

    Mancuso, S.; Raymond, J. C.; Rubinetti, S.; Taricco, C.

    2016-08-01

    On 1996 December 19, the Ultraviolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SOHO) conducted a special high-cadence sit-and-stare observation in the O vi 1032 Å spectral line above a polar coronal hole at a heliocentric distance of 1.38 R⊙. The ~ 9-h dataset was analyzed by applying advanced spectral techniques to investigate the possible presence of propagating waves. Highly significant oscillations in O vi intensity (P = 19.5 min) and Doppler shift (P = 7.2 min) were detected over two different portions of the UVCS entrance slit. A cross-correlation analysis between the O vi intensity and Doppler shift fluctuations shows that the most powerful oscillations were in phase or anti-phase over the same portions of the slit, thus providing a possible signature of propagating magnetosonic waves. The episodic nature of the observed oscillations and the large amplitudes of the Doppler shift fluctuations detected in our observations, if not attributable to line-of-sight effects or inefficient damping, may indicate that the observed fluctuations were produced by quasi-periodic upflows.

  5. B-Field Determination from Magnetoacoustic Oscillations in Kilohertz Quasi-periodic Oscillation Neutron Star Binaries: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Titarchuk, L. G.; Bradshaw, C. F.; Wood, K. S.

    2001-10-01

    We present a method for determining the B-field around neutron stars based on observed kilohertz and viscous quasi-periodic oscillation (QPO) frequencies used in combination with the best-fit optical depth and temperature of a Comptonization model. In the framework of the transition layer QPO model, we analyze the magnetoacoustic wave (MAW) formation in the layer between a neutron star surface and the inner edge of a Keplerian disk. We derive formulas for the MAW frequencies for different regimes of radial transition layer oscillations. We demonstrate that our model can use the QPO as a new kind of probe to determine the magnetic field strengths for 4U 1728-42, GX 340+0, and Scorpius X-1 in the zone where the QPOs occur. Observations indicate that the dependence of the viscous frequency on the Keplerian frequency is closely related to the inferred dependence of the MAW frequency on the Keplerian frequency for a dipole magnetic field. The MAW dependence is based on a single parameter, the magnetic moment of the star as estimated from the field strength in the transition layer. The best-fit magnetic moment parameter is about (0.5-1)×1025 G cm3 for all studied sources. From observational data, the magnetic fields within distances less than 20 km from the neutron star for all three sources are strongly constrained to be dipole fields with the strengths of 107-108 G on the neutron star surface.

  6. Discovery of Submillisecond Quasi-periodic Oscillations in the X-Ray Flux of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    van der Klis, M.; Swank, J. H.; Zhang, W.; Jahoda, K.; Morgan, E. H.; Lewin, W. H. G.; Vaughan, B.; van Paradijs, J.

    1996-09-01

    We report the discovery, with NASA's Rossi X-Ray Timing Explorer (RXTE), of the first submillisecond oscillations found in a celestial X-ray source. The quasi-periodic oscillations (QPOs) come from Sco X-1 and have a frequency of ~1100 Hz and amplitudes of 0.6%--1.2% (rms) and are relatively coherent, with Q up to ~102. The frequency of the QPOs increases with accretion rate, rising from 1050 to 1130 Hz when the source moves from top to bottom along the normal branch in the X-ray color-color diagram, and shows a strong, approximately linear correlation with the frequency of the well-known 6--20 Hz normal/flaring-branch QPOs. We also report the discovery of QPOs with a frequency near 800 Hz that occur, simultaneously with the 1100 Hz QPOs, in the upper normal branch. We discuss several possible interpretations, one involving a millisecond X-ray pulsar whose pulses we see reflected off accretion flow inhomogeneities. Finally, we report the discovery of ~45 Hz QPOs, most prominent in the middle of the normal branch, which might be magnetospheric beat-frequency QPOs.

  7. Dependence of Kilohertz Quasi-periodic Oscillation Properties on the Normal-Branch Oscillation Phase in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; van der Klis, Michiel; Jonker, Peter G.

    2001-09-01

    We analyzed Rossi X-Ray Timing Explorer data of Scorpius X-1, which show kilohertz quasi-periodic oscillations (QPOs) and the ~6-8 Hz normal-branch oscillation (NBO) simultaneously. Using power spectra of 0.03-0.5 s data segments, we find that both the upper kilohertz QPO frequency ν2 and the ratio of lower to upper kilohertz QPO amplitude are anticorrelated to variations in the X-ray count rate taking place on the NBO timescale. The frequency dependence is similar to (but probably weaker than) that found on longer timescales, but the power ratio dependence is opposite to it. A model where radiative stresses on the disk material, modulated at the NBO frequency, lead to changes in ν2 can explain the data; this implies that some of the NBO flux changes originate from inside the inner disk radius. We discuss how these findings affect our understanding of kilohertz QPOs and of the low-frequency variability of low-mass X-ray binaries.

  8. Photometry of the 1991 Superoutburst of EF Pegasi: Super-Quasi-Periodic Oscillations with Rapidly Decaying Periods

    NASA Astrophysics Data System (ADS)

    Kato, Taichi

    2002-02-01

    We observed the 1991 October outburst of EF Peg. Prominent superhumps with a period of 0.08705(1)d were observed, qualifying EF Peg as being a long-period SU UMa-type dwarf nova. The superhump period showed a monotonic decrease during the superoutburst, which makes a contrast to the virtually zero period change observed during the 1997 superoutburst of the same object. Large-amplitude and highly coherent quasi-periodic oscillations (super-QPOs) were observed on October 18, when superhumps were still growing in amplitude. Most strikingly, the QPOs showed a rapid decrease in the period from 18min to 6.8min within the 3.2-hr observing run. Such a rapid change in the period has not been observed in any class of QPOs in cataclysmic variables. We propose a hypothesis that the rapid decrease of the QPO period reflects a rapid removal of the angular momentum from an orbiting blob in the accretion disk, via viscosity in a turbulent disk. A brief comparison is given with the QPOs in X-ray binaries, some of which are known to show a similar rapid decrease in the periods.

  9. The effect of a hot, spherical scattering cloud on quasi-periodic oscillation behavior. [of X-ray binaries

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.; Weisskopf, M. C.; Elsner, R. F.; Shibazaki, N.

    1988-01-01

    A Monte Carlo technique is used to investigate the effects of a hot electron scattering cloud surrounding a time-dependent X-ray source. Results are presented for the time-averaged emergent energy spectra and the mean residence time in the cloud as a function of energy. Moreover, after Fourier transforming the scattering Green's function, it is shown how the cloud affects both the observed power spectrum of a time-dependent source and the cross spectrum (Fourier transform of a cross correlation between energy bands). It is found that the power spectra intrinsic to the source are related to those observed by a relatively simple frequency-dependent multiplicative factor (a transmission function). The cloud can severely attenuate high frequencies in the power spectra, depending on optical depth, and, at lower frequencies, the transmission function has roughly a Lorentzian shape. It is also found that if the intrinsic energy spectrum is constant in time, the phase of the cross spectrum is determined entirely by scattering. Finally, the implications of the results for studies of the X-ray quasi-periodic oscillators are discussed.

  10. Cluster observations of quasi-periodic impulsive signatures in the dayside northern lobe: High-latitude flux transfer events?

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; Balogh, A.; Reme, H.; Fazakerley, A. N.; Kistler, L. M.

    2004-01-01

    We report on a series of quasi-periodic reversals in GSM B(sub Z) observed by the four Cluster spacecraft in the northern dayside lobe poleward of the cusp on 23 February 2001. During an interval of about 35 min, multiple reversals (negative to positive) in B(sub Z) of approximately 1-min duration with an approximate 8-min recurrence time were observed. The individual structures do not resemble low-latitude flux transfer events (FTE) [Russell and Elphic, 1979] but the 8-min recurrence frequency suggests that intermittent reconnection may be occurring .Measurements (appropriately lagged) of the solar wind at ACE show that the IMF was southward-oriented with a strong B(sub X) and that a modest dynamic pressure increased as the events started. The multi-point observations afforded by the Cluster spacecraft were used to infer the motion (direction and speed) of the observed magnetic field reversals. The associated currents were also calculated and they are consistent with the spatial confinement of the observed magnetic field reversals. We propose that the observed reversals are due to flux tubes reconnecting with closed field lines on the dayside. Ancillary data from the Cluster Ion Spectrometry (CIS) and Plasma Electron And Current Experiment (PEACE) instruments were used to develop a physical picture of the reversals.

  11. Millihertz quasi-periodic oscillations in 4U 1636-53 associated with bursts with positive convexity only

    NASA Astrophysics Data System (ADS)

    Lyu, Ming; Méndez, Mariano; Altamirano, Diego; Zhang, Guobao

    2016-08-01

    We investigated the convexity of all type I X-ray bursts with millihertz quasi-periodic oscillations (mHz QPOs) in 4U 1636-53 using archival observations with the Rossi X-ray Timing Explorer. We found that, at a 3.5σ confidence level, in all 39 cases in which the mHz QPOs disappeared at the time of an X-ray burst, the convexity of the burst is positive. The convexity measures the shape of the rising part of the burst light curve and, according to recent models, it is related to the ignition site of bursts on the neutron-star surface. This finding suggests that in 4U 1636-53 these 39 bursts and the marginally-stable nuclear burning process responsible for the mHz QPOs take place at the neutron-star equator. This scenario could explain the inconsistency between the high accretion rate required for triggering mHz QPOs in theoretical models and the relatively low accretion rate derived from observations.

  12. Spectral variation during one quasi-periodic oscillation cycle in the black hole candidate H1743-322

    NASA Astrophysics Data System (ADS)

    Sarathi Pal, Partha; Debnath, Dipak; Chakrabarti, Sandip Kumar

    2016-07-01

    From the nature of energy dependence of the power density spectra, it is believed that the oscillation of the Compton cloud may be related to low frequency quasi-periodic oscillations (LFQPOs). In the context of two component advective flow (TCAF) solution, the centrifugal pressure supported boundary layer of a transonic flow acts as the Compton cloud. This region undergoes resonance oscillation when cooling time scale roughly agrees with infall time scale as matter crosses this region. By carefully separating photons emitted at different phases of a complete oscillation, we establish beyond reasonable doubt that such an oscillation is the cause of LFQPOs. We show that the degree of Comptonization and therefore the spectral properties of the flow oscillate systematically with the phase of LFQPOs. We analysis the properties of a 0.2Hz LFQPO exhibited by a black hole candidate H 1743-322 using the 3-80 keV data from NuSTAR satellite. This object was chosen because of availability of high quality data for a relatively low frequency oscillation, rendering easy phase-wise of separation of the light curve data.

  13. On the lack of correlation between X-ray flux and kHz quasi-periodic oscillation frequencies

    NASA Astrophysics Data System (ADS)

    Catmabacak, Onur; Hakan Erkut, M.

    2016-07-01

    We study the so-called "parallel tracks" phenomenon, which arises from the observation that kHz quasi-periodic oscillation (QPO) frequencies correlate with X-ray flux on short time scales (less than a day) while there seems to be no correlation at all on longer time scales (more than a day). The oscillatory modes with frequency bands determined by the radial epicyclic frequency in the magnetic boundary region between the disk and the neutron star magnetosphere are likely to be the origin of these high frequency QPOs. Within the boundary region model, we provide a possible explanation for the parallel track phenomenon taking into account the variation of the model parameters such as the rotation frequency of the innermost disk matter and the radial extension of the boundary region. In addition to the mass, radius, and magnetic field of the neutron star, the frequency bands of oscillatory modes depend on mass accretion rate through these model parameters as well. Using the aspect ratio of the disk, which actually depends on mass accretion rate, we estimate the radial width of the boundary region and its variation on long and short time scales to reproduce the parallel tracks in accordance with observations. We repeat the analysis for a wide range of neutron star masses, radii, and magnetic field strengths in order to understand the effects of these parameters on our results.

  14. The quasi-periodical VLF/ELF emissions detected onboard the DEMETER spacecraft: statistical and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pasmanik, Dmitry; Hayosh, Mykhaylo; Demekhov, Andrei; Santolík, Ondřej; Nemec, František; Parrot, Michel

    2015-04-01

    We present a statistical study of the quasi-periodic (QP) ELF/VLF emissions measured by the DEMETER spacecraft. Events with modulation period larger than 10 s and frequency bandwidth more than 200 Hz were visually selected among the six year of measurements. Selected QP-emissions events occur mostly at frequencies from about 750 Hz to 2 kHz, but they may be observed at frequencies as low as 500 Hz and as high as 8 kHz. The statistical analysis clearly shows that QP events with larger modulation periods have lower frequency drift and smaller wave amplitude. Intense QP events have higher frequency drifts and larger values of the frequency bandwiths. Numerical simulation of the QP emissions based on the theoretical model of the flow cyclotron maser is performed. Calculations were made for wide range of plasma parameters (i.e. cold plasma density, L-shell, energetic electron flux and etc.) The numerical results are in good agreement with the observed relationship between different parameters of the QP emissions. The comparison between theoretical results and observations allow us to estimate the typical properties of the source of the QP emissions observed by the DEMETER satellite.

  15. A composite study of the quasi-periodic subtropical wind maxima over the South Pacific during November 1984-April 1985

    NASA Technical Reports Server (NTRS)

    Ko, Ken-Chung; Vincent, Dayton G.

    1995-01-01

    A composite of 10 cases of zonal wind maxima at 200 hPa over the subtropical region stretching from Australia to the central Pacific is examined for the six-month period, November 1984-April 1985. This region is unique in that distinct westerly jets frequently form and propagate eastward at latitudes between 20 deg and 35 deg S in the summer season. Some statistical tests were applied and suggest that the flow patterns are quasi periodic, consisting of a tendency for new jet streaks to develop over the eastern Australian region approximately every one to two weeks. These jets then take about 10 days to propagate across the western Pacific before dissipating or, perhaps, moving toward higher latitudes. Their average propagation speed is approximately 4 m/s. An examination of the case-to-case variability of the jets provides additional evidence that they are significant features. A diagnosis of the trough/ridge systems at 200 and 850 hPa, together with calculations of the vertically integrated mean and shear kinetic energies suggests that baroclinic processes dominate in the entrance and center regions of the jet, whereas barotropic processes dominate in the exit and downstream regions.

  16. Energy dependence of normal branch quasi-periodic intensity oscillations in low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Miller, Guy S.; Lamb, Frederick K.

    1992-04-01

    The properties of the approximately 6 Hz quasi-periodic X-ray intensity oscillations observed in the low-mass X-ray binary Cyg X-2 when it is on the normal spectral branch are shown to be consistent with a model in which photons from a central source with a fixed spectrum are Comptonized by an oscillating radial inflow. As the electron scattering optical depth of the flow varies, the spectrum of the escaping X-rays appears to rotate about a pivot energy that depends mainly on the electron temperature in the flow. The temperature derived from the observed energy dependence of the Cyg X-2 normal branch oscillations is approximately 1 keV, in good agreement with the estimated Compton temperature of its X-ray spectrum. The mean optical depth tau of the Comptonizing flow is inferred to be about 10, while the change in tau over an oscillation is estimated to be about 1; both values are in good agreement with radiation hydrodcode simulations of the radial flow.

  17. Quasi-periodic Oscillations in Short Recurring Bursts of the Soft Gamma Repeater J1550-5418

    NASA Astrophysics Data System (ADS)

    Huppenkothen, D.; D'Angelo, C.; Watts, A. L.; Heil, L.; van der Klis, M.; van der Horst, A. J.; Kouveliotou, C.; Baring, M. G.; Göğüş, E.; Granot, J.; Kaneko, Y.; Lin, L.; von Kienlin, A.; Younes, G.

    2014-06-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. The scarcity of giant flares makes a search for QPOs in the shorter, far more numerous bursts from soft gamma repeaters (SGRs) desirable. In Huppenkothen et al., we developed a Bayesian method for searching for QPOs in short magnetar bursts, taking into account the effects of the complicated burst structure, and have shown its feasibility on a small sample of bursts. Here we apply the same method to a much larger sample from a burst storm of 286 bursts from SGR J1550-5418. We report a candidate signal at 260 Hz in a search of the individual bursts, which is fairly broad. We also find two QPOs at ~93 Hz, and one at 127 Hz, when averaging periodograms from a number of bursts in individual triggers, at frequencies close to QPOs previously observed in magnetar giant flares. Finally, for the first time, we explore the overall burst variability in the sample and report a weak anti-correlation between the power-law index of the broadband model characterizing aperiodic burst variability and the burst duration: shorter bursts have steeper power-law indices than longer bursts. This indicates that longer bursts vary over a broader range of timescales and are not simply longer versions of the short bursts.

  18. Energy dependence of normal branch quasi-periodic intensity oscillations in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Miller, Guy S.; Lamb, Frederick K.

    1992-01-01

    The properties of the approximately 6 Hz quasi-periodic X-ray intensity oscillations observed in the low-mass X-ray binary Cyg X-2 when it is on the normal spectral branch are shown to be consistent with a model in which photons from a central source with a fixed spectrum are Comptonized by an oscillating radial inflow. As the electron scattering optical depth of the flow varies, the spectrum of the escaping X-rays appears to rotate about a pivot energy that depends mainly on the electron temperature in the flow. The temperature derived from the observed energy dependence of the Cyg X-2 normal branch oscillations is approximately 1 keV, in good agreement with the estimated Compton temperature of its X-ray spectrum. The mean optical depth tau of the Comptonizing flow is inferred to be about 10, while the change in tau over an oscillation is estimated to be about 1; both values are in good agreement with radiation hydrodcode simulations of the radial flow.

  19. Quasi-periodic transverse plasma flow associated with an evolving MHD vortex street in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Siregar, Edouard; Roberts, D. A.; Goldstein, Melvyn L.

    1993-01-01

    We study a transverse plasma flow induced by the evolution of a Karman vortex street using a Chebyshev-Fourier spectral algorithm to solve both the compressible Navier-Stokes and MHD equations. The evolving vortex street is formed by the nonlinear interaction of two vortex sheets initially in equilibrium. We study spatial profiles of the total plasma velocity, the density, the meridional flow angle and the location of sector boundaries and find generally good agreement with Voyager 2 measurements of quasi-periodic transverse flow in the outer heliosphere. The pressure pulses associated with the meridional flows in the simulation are too small, although they are correctly located, and this may be due to the lack of any 'warp' in the current sheet in this model. A strong, flow-aligned magnetic field, such as would occur in the inner heliosphere, is shown to lead to weak effects that would be masked by the background interplanetary turbulence. We also study the plasma and magnetic transport resulting from the meridional flow and find that deficits of magnetic quantities do occur near the ecliptic. While the effect is relatively small, it is in general agreement with the most recent analysis of 'flux deficit' in the outer heliosphere.

  20. Periodic and quasi-periodic motions of a solar sail close to SL 1 in the Earth-Sun system

    NASA Astrophysics Data System (ADS)

    Farrés, Ariadna; Jorba, Àngel

    2010-06-01

    Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to propel a satellite taking advantage of the solar radiation pressure. To model the dynamics of a solar sail we have considered the Earth-Sun Restricted Three Body Problem including the Solar radiation pressure (RTBPS). This model has a 2D surface of equilibrium points parametrised by the two angles that define the sail orientation. In this paper we study the non-linear dynamics close to an equilibrium point, with special interest in the bounded motion. We focus on the region of equilibria close to SL 1, a collinear equilibrium point that lies between the Earth and the Sun when the sail is perpendicular to the Sun-sail direction. For different fixed sail orientations we find families of planar, vertical and Halo-type orbits. We have also computed the centre manifold around different equilibria and used it to describe the quasi-periodic motion around them. We also show how the geometry of the phase space varies with the sail orientation. These kind of studies can be very useful for future mission applications.

  1. Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask.

    PubMed

    Feng, Xiaohui; Yu, Tongjun; Wei, Yang; Ji, Cheng; Cheng, Yutian; Zong, Hua; Wang, Kun; Yang, Zhijian; Kang, Xiangning; Zhang, Guoyi; Fan, Shoushan

    2016-07-20

    A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices. PMID:27351723

  2. Imaging observation of quasi-periodic disturbances' amplitudes increasing with height in the polar region of the solar corona

    SciTech Connect

    Su, J. T.; Priya, T. G.; Liu, Y.; Shen, Y. D.

    2014-08-01

    At present, there have been few extreme ultraviolet (EUV) imaging observations of spatial variations of the density perturbations due to the slow magnetoacoustic waves (SMWs) propagating along the solar coronal magnetic fields. In this paper, we present such observations taken from the polar region of the corona with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and investigate the amplitude of quasi-periodic propagating disturbances that increase with height in the lower corona (0-9 Mm over the solar limb). We statistically determined the following parameters associated with the disturbances: pressure scale height, period, and wavelength in AIA 171 Å, 193 Å, and 211 Å channels. The scale height and wavelength are dependent of temperature, while the period is independent of temperature. The acoustic velocities inferred from the scale height highly correlate with the ratios of wavelength to period, i.e., phase speeds. They provide evidence that the propagating disturbances in the lower corona are likely SMWs and the spatial variations in EUV intensity in the polar region likely reflects the density compressional effect by the propagating SMWs.

  3. Spike-interval triggered averaging reveals a quasi-periodic spiking alternative for stochastic resonance in catfish electroreceptors.

    PubMed

    Lankheet, Martin J M; Klink, P Christiaan; Borghuis, Bart G; Noest, André J

    2012-01-01

    Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals. PMID:22403709

  4. Quasi Periodic Oscillations in X-ray Neutron Star and Probes of Perihelion Precession of General Relativity

    NASA Astrophysics Data System (ADS)

    Zhang, C. M.; Dolgov, A.

    We ascribe the twin kilohertz Quasi Periodic Oscillations (kHz QPOs) of X-ray spectra of Low Mass X-Ray Binaries (LMXBs) to the pseudo-Newtonian Keplerian frequency and the apogee and perigee precession frequency of the same matter in the inner disk, and ascribe 15-60 ,Hz QPO (HBO) to the apogee (or perigee) precession and its second harmonic frequency to both apogee and perigee precession in the outer disk boundary of the neutron star (NS) magnetosphere. The radii of the inner and outer disks are correlated each other by a factor of two is assumed. The obtained conclusions include: all QPO frequencies increase and frequency difference of twin kHz QPOs decreases with increasing the accretion rate. The obtained theoretical relations between HBO frequency and twin kHz QPOs are simlilar to the measured empirical formula. Further, the theo-retical formula to calculate the NS mass by the twin kHz QPOs is proposed, and the resultant values are in the range of 1.4 to 1.8 Msolar. QPOs from LMXBs likely provide an accurate laboratory for a strong gravitational field, by which a new method to determine the NS masses of LMXBs is suggested.

  5. Tracking the evolution of quasi-periodic oscillation in RE J1034+396 using the Hilbert-Huang transform

    SciTech Connect

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang; Su, Yi-Hao E-mail: yichou@astro.ncu.edu.tw

    2014-06-10

    RE J1034+396, a narrow-line Seyfert 1 active galactic nucleus (AGN), is the first example of AGNs that exhibited a nearly coherent quasi-periodic oscillation (QPO) for the data collected by XMM-Newton in 2007. The spectral behaviors and timing properties of the QPO have been studied since its discovery. We present an analysis of the QPO in RE J1034+396 based on the Hilbert-Huang transform. Comparing with other time-frequency analysis methods, the Hilbert spectrum reveals the variation of the QPO period in great detail. Furthermore, the empirical mode decomposition provides bandpass-filtered data that can be used in the O – C and correlation analysis. We suggest that it is better to divide the evolution of the QPO in this observation into three epochs according to their different periodicities. In addition to the periodicities, the correlations between the QPO periods and corresponding mean count rates are also different in these three epochs. Further examining the phase lags in these epochs, we found no significant phase lags between the soft and hard X-ray bands, which is also confirmed in the QPO phase-resolved spectral analysis. Finally, we discuss the indications of current models including a spotted accretion disk, diskoseismology, and oscillation of shock according to the observed time-frequency and spectral behaviors.

  6. The magnetohydrodynamical model of kilohertz quasi-periodic oscillations in neutron star low-mass X-ray binaries (II)

    SciTech Connect

    Shi, Chang-Sheng; Zhang, Shuang-Nan; Li, Xiang-Dong

    2014-08-10

    We study the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low-mass X-ray binaries (LMXBs) with a new magnetohydrodynamics (MHD) model, in which the compressed magnetosphere is considered. The previous MHD model is reexamined and the relation between the frequencies of the kHz QPOs and the accretion rate in LMXBs is obtained. Our result agrees with the observations of six sources (4U 0614+09, 4U 1636-53, 4U 1608-52, 4U 1915-15, 4U 1728-34, and XTE 1807-294) with measured spins. In this model, the kHz QPOs originate from the MHD waves in the compressed magnetosphere. The single kHz QPOs and twin kHz QPOs are produced in two different parts of the accretion disk and the boundary is close to the corotation radius. The lower QPO frequency in a frequency-accretion rate diagram is cut off at a low accretion rate and the twin kHz QPOs encounter a top ceiling at a high accretion rate due to the restriction of the innermost stable circular orbit.

  7. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    SciTech Connect

    Aliev, Gazi N. Goller, Bernhard

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic properties of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.

  8. Quasi-periodic Oscillations Associated with Spectral Branches in Rossi X-Ray Timing Explorer Observations of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert E.; Bradt, Hale V.; Levine, Alan M.; Morgan, Edward H.

    1998-10-01

    We present Rossi X-Ray Timing Explorer (RXTE) All-Sky Monitor observations of the X-ray binary Circinus X-1 that illustrate the variety of intensity profiles associated with the 16.55 day flaring cycle of the source. We also present eight observations of Cir X-1 made with the RXTE Proportional Counter Array over the course of a cycle wherein the average intensity of the flaring state decreased gradually over ~12 days. Fourier power density spectra for these observations show a narrow quasi-periodic oscillation (QPO) peak that shifts in frequency between 6.8 and 32 Hz, as well as a broad QPO peak that remains roughly stationary at ~4 Hz. We identify these as Z-source horizontal and normal branch oscillations (HBOs/NBOs), respectively. Color-color and hardness-intensity diagrams (CDs/HIDs) show curvilinear tracks for each of the observations. The properties of the QPOs and very low frequency noise allow us to identify segments of these tracks with Z-source horizontal, normal, and flaring branches that shift location in the CDs and HIDs over the course of the 16.55 day cycle. These results contradict a previous prediction, based on the hypothesis that Cir X-1 is a high-Ṁ atoll source, that HBOs should never occur in this source.

  9. The Magnetohydrodynamical Model of Kilohertz Quasi-periodic Oscillations in Neutron Star Low-mass X-Ray Binaries (II)

    NASA Astrophysics Data System (ADS)

    Shi, Chang-Sheng; Zhang, Shuang-Nan; Li, Xiang-Dong

    2014-08-01

    We study the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low-mass X-ray binaries (LMXBs) with a new magnetohydrodynamics (MHD) model, in which the compressed magnetosphere is considered. The previous MHD model is reexamined and the relation between the frequencies of the kHz QPOs and the accretion rate in LMXBs is obtained. Our result agrees with the observations of six sources (4U 0614+09, 4U 1636-53, 4U 1608-52, 4U 1915-15, 4U 1728-34, and XTE 1807-294) with measured spins. In this model, the kHz QPOs originate from the MHD waves in the compressed magnetosphere. The single kHz QPOs and twin kHz QPOs are produced in two different parts of the accretion disk and the boundary is close to the corotation radius. The lower QPO frequency in a frequency-accretion rate diagram is cut off at a low accretion rate and the twin kHz QPOs encounter a top ceiling at a high accretion rate due to the restriction of the innermost stable circular orbit.

  10. DISCOVERY OF HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS IN THE BLACK HOLE CANDIDATE IGR J17091-3624

    SciTech Connect

    Altamirano, D.; Belloni, T.

    2012-03-15

    We report the discovery of 8.5{sigma} high-frequency quasi-periodic oscillations (HFQPOs) at 66 Hz in the Rossi X-ray Timing Explorer data of the black hole candidate IGR J17091-3624, a system whose X-ray properties are very similar to those of microquasar GRS 1915+105. The centroid frequency of the strongest peak is {approx}66 Hz, its quality factor above five, and its rms is between 4% and 10%. We found a possible additional peak at 164 Hz when selecting a subset of the data; however, at the 4.5{sigma} level we consider this detection marginal. These QPOs have hard spectrum and are stronger in observations performed between 2011 September and October, during which IGR J17091-3624 displayed for the first time light curves that resemble those of the {gamma} variability class in GRS 1915+105. We find that the 66 Hz QPO is also present in previous observations (4.5{sigma}), but only when averaging {approx}235 ks of relatively high count rate data. The fact that the HFQPOs frequency in IGR J17091-3624 matches surprisingly well with that seen in GRS 1915+105 raises questions on the mass scaling of QPOs frequency in these two systems. We discuss some possible interpretations; however, they all strongly depend on the distance and mass of IGR J17091-3624, both completely unconstrained today.

  11. A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743-322

    NASA Astrophysics Data System (ADS)

    Ingram, Adam; van der Klis, Michiel; Middleton, Matthew; Done, Chris; Altamirano, Diego; Heil, Lucy; Uttley, Phil; Axelsson, Magnus

    2016-09-01

    Accreting stellar-mass black holes often show a `Type-C' quasi-periodic oscillation (QPO) in their X-ray flux and an iron emission line in their X-ray spectrum. The iron line is generated through continuum photons reflecting off the accretion disc, and its shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The physical origin of the QPO has long been debated, but is often attributed to Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red- and blueshift as the receding and approaching sides of the disc are respectively illuminated. Here we report on XMM-Newton and NuSTAR observations of the black hole binary H1743-322 in which the line energy varies systematically over the ˜4 s QPO cycle (3.70σ significance), as predicted. This provides strong evidence that the QPO is produced by Lense-Thirring precession, constituting the first detection of this effect in the strong gravitation regime. There are however elements of our results harder to explain, with one section of data behaving differently than all the others. Our result enables the future application of tomographic techniques to map the inner regions of black hole accretion discs.

  12. Quasi-periodic radar echoes from midlatitude sporadic E and role of the 5-day planetary wave

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.; Yamamoto, Mamoru; Igarashi, Kiyoshi; Hocke, Klemens; Fukao, Shoichiro

    Using measurements of magnetic-aspect-sensitive radar echoes from midlatitude sporadic E collected over a two-month period from Tanegashima, Japan, we show that while their occurrence duration from night to night did not exhibit any systematic variation, that of the so-called quasi-periodic (QP) echoes varied sinusoidally with a period of 5 days. We have interpreted this behavior in terms of effects produced by a planetary wave and identified its presence through neutral-wind measurements made with a partial-reflection drift radar located nearby at Yamagawa. We propose that the occurrence of QP echoes is affected both by a contribution of the wind to the dynamo electric field and by the direction of the neutral wind. We argue that because the wind vector of the planetary wave is elliptically polarized at midlatitudes, a preferred wind direction conducive to the generation of QP echoes occurs once every 5 days. On the other hand, this wave is linearly polarized and directed zonally over the geographic equator. The fact that QP echoes are most fully developed at midlatitudes and less so at lower latitudes suggests that zonal flow is not particularly favorable for QP echo production.

  13. Fuel injector utilizing non-thermal plasma activation

    SciTech Connect

    Coates, Don M.; Rosocha, Louis A.

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  14. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Zhou, Jun; Rippa, Massimo; Petti, Lucia

    2015-10-01

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example, a higher enhancement factor of ˜107 is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.

  15. Structure-dependent localized surface plasmon resonance characteristics and surface enhanced Raman scattering performances of quasi-periodic nanoarrays: Measurements and analysis

    SciTech Connect

    Chen, Dong; Zhou, Jun; Rippa, Massimo; Petti, Lucia

    2015-10-28

    A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example, a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.

  16. Investigating the Connection between Quasi Periodic Oscillations and Spectral Components with NuSTAR Data of GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Rao Jassal, Anjali; Vadawale, Santosh V.; Mithun, N. P. S.; Misra, Ranjeev

    2016-01-01

    Low-frequency quasi-periodic oscillations (QPOs) are commonly observed during the hard states of black hole binaries. Several studies have established various observational/empirical correlations between spectral parameters and QPO properties, indicating a close link between the two. However, the exact mechanism of generation of QPOs is not yet well understood. In this paper, we present our attempts to comprehend the connection between the spectral components and the low-frequency QPO (LFQPO) observed in GRS 1915+105 using the data from NuSTAR. Detailed spectral modeling as well as the presence of the LFQPO and its energy dependence during this observation have been reported by Miller et al. and Zhang et al., respectively. We investigate the compatibility of the spectral model and the energy dependence of the QPO by simulating light curves in various energy bands for small variation of the spectral parameters. The basic concept here is to establish the connection, if any, between the QPO and the variation of either a spectral component or a specific parameter, which in turn can shed some light on the origin of the QPO. We begin with the best-fit spectral model of Miller et al. and simulate the light curve by varying the spectral parameters at frequencies close to the observed QPO frequency in order to generate the simulated QPO. Furthermore we simulate similar light curves in various energy bands in order to reproduce the observed energy dependence of the rms amplitude of the QPO. We find that the observed trend of increasing rms amplitude with energy can be reproduced qualitatively if the spectral index is assumed to be varying with the phases of the QPO. Variation of any other spectral parameter does not reproduce the observed energy dependence.

  17. FRACTIONAL AMPLITUDE OF KILOHERTZ QUASI-PERIODIC OSCILLATION FROM 4U 1728-34: EVIDENCE OF DECLINE AT HIGHER ENERGIES

    SciTech Connect

    Mukherjee, Arunava; Bhattacharyya, Sudip E-mail: sudip@tifr.res.in

    2012-09-01

    A kilohertz quasi-periodic oscillation (kHz QPO) is an observationally robust high-frequency timing feature detected from neutron star low-mass X-ray binaries (LMXBs). This feature can be very useful to probe the superdense core matter of neutron stars and the strong gravity regime. Although many models exist in the literature, the physical origin of kHz QPO is not known, and hence this feature cannot be used as a tool yet. The energy dependence of kHz QPO fractional rms amplitude is an important piece of the jigsaw puzzle to understand the physical origin of this timing feature. It is known that the fractional rms amplitude increases with energy at lower energies. At higher energies, the amplitude is usually believed to saturate, although this is not established. We combine tens of lower kHz QPOs from a neutron star LMXB 4U 1728-34 in order to improve the signal-to-noise ratio. Consequently, we, for the first time to the best of our knowledge, find a significant and systematic decrease of the fractional rms amplitude with energy at higher photon energies. Assuming an energy spectrum model, blackbody+powerlaw, we explore if the sinusoidal variation of a single spectral parameter can reproduce the above-mentioned fractional rms amplitude behavior. Our analysis suggests that the oscillation of any single blackbody parameter is favored over the oscillation of any single power-law parameter, in order to explain the measured amplitude behavior. We also find that the quality factor of a lower kHz QPO does not plausibly depend on photon energy.

  18. TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15

    SciTech Connect

    Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N.; Van Doorsselaere, T.; Schmutz, W.; Zender, J.

    2012-04-10

    We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

  19. Detection of the first infra-red quasi periodic oscillation in a black hole X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalamkar, M.; Casella, P.; Uttley, P.; O'Brien, K.; Russell, D.; Maccarone, T.; van der Klis, M.; Vincentelli, F.

    2016-05-01

    We present analysis of fast variability of Very Large Telescope/ISAAC (infra-red), XMM-Newton/OM (optical) and EPIC-pn (X-ray), and RXTE/PCA (X-ray) observations of the black hole X-ray binary GX 339-4 in a rising hard state of its outburst in 2010. We report the first detection of a Quasi Periodic Oscillation (QPO) in the infra-red band (IR) of a black hole X-ray binary. The QPO is detected at 0.08 Hz in the IR as well as two optical bands (U and V). Interestingly, these QPOs are at half the X-ray QPO frequency at 0.16 Hz, which is classified as the type-C QPO; a weak sub-harmonic close to the IR and optical QPO frequency is also detected in X-rays. The band-limited sub-second time scale variability is strongly correlated in IR/X-ray bands, with X-rays leading the IR by over 120 ms. This short time delay, shape of the cross correlation function and spectral energy distribution strongly indicate that this band-limited variable IR emission is the synchrotron emission from the jet. A jet origin for the IR QPO is strongly favoured, but cannot be definitively established with the current data. The spectral energy distribution indicates a thermal disc origin for the bulk of the optical emission, but the origin of the optical QPO is unclear. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

  20. Detection of the first infra-red quasi-periodic oscillation in a black hole X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalamkar, M.; Casella, P.; Uttley, P.; O'Brien, K.; Russell, D.; Maccarone, T.; van der Klis, M.; Vincentelli, F.

    2016-08-01

    We present analysis of fast variability of Very Large Telescope/ISAAC (infra-red), \\textit{XMM-Newton}/OM (optical) and EPIC-pn (X-ray), and RXTE/PCA (X-ray) observations of the black hole X-ray binary GX 339-4 in a rising hard state of its outburst in 2010. We report the first detection of a Quasi Periodic Oscillation (QPO) in the infra-red band (IR) of a black hole X-ray binary. The QPO is detected at 0.08 Hz in the IR as well as two optical bands (U and V). Interestingly, these QPOs are at half the X-ray QPO frequency at 0.16 Hz, which is classified as the type-C QPO; a weak sub-harmonic close to the IR and optical QPO frequency is also detected in X-rays. The broad band sub-second time scale variability is strongly correlated in IR/X-ray bands, with X-rays leading the IR by over 100 ms. This short time delay, shape of the cross correlation function and spectral energy distribution strongly indicate that this broad band variable IR emission is the synchrotron emission from the jet. A jet origin for the IR QPO is strongly favoured, but cannot be definitively established with the current data. The spectral energy distribution indicates a thermal disc origin for the bulk of the optical emission, but the origin of the optical QPO is unclear. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

  1. Detection of the first infra-red quasi-periodic oscillation in a black hole X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalamkar, M.; Casella, P.; Uttley, P.; O'Brien, K.; Russell, D.; Maccarone, T.; van der Klis, M.; Vincentelli, F.

    2016-08-01

    We present the analysis of fast variability of Very Large Telescope/ISAAC (Infrared Spectrometer And Array Camera) (infra-red), XMM-Newton/OM (optical) and EPIC-pn (X-ray), and RXTE/PCA (X-ray) observations of the black hole X-ray binary GX 339-4 in a rising hard state of its outburst in 2010. We report the first detection of a quasi-periodic oscillation (QPO) in the infra-red band (IR) of a black hole X-ray binary. The QPO is detected at 0.08 Hz in the IR as well as two optical bands (U and V). Interestingly, these QPOs are at half the X-ray QPO frequency at 0.16 Hz, which is classified as the type-C QPO; a weak sub-harmonic close to the IR and optical QPO frequency is also detected in X-rays. The band-limited sub-second time-scale variability is strongly correlated in IR/X-ray bands, with X-rays leading the IR by over 120 ms. This short time delay, shape of the cross-correlation function and spectral energy distribution strongly indicate that this band-limited variable IR emission is the synchrotron emission from the jet. A jet origin for the IR QPO is strongly favoured, but cannot be definitively established with the current data. The spectral energy distribution indicates a thermal disc origin for the bulk of the optical emission, but the origin of the optical QPO is unclear. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

  2. Relativistic simulation of flip-flop instabilities of Bondi-Hoyle accretion and quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Dönmez, O.

    2012-10-01

    It is known from recent numerical calculations that Bondi-Hoyle accretion creates a shock cone behind compact objects. This type of accretion leads to instabilities, which can explain certain astrophysical phenomena. In this paper, our main goal is to find the flip-flop behaviour of the shock cone in the relativistic region. In order to do so we have modelled the dynamics of a shock cone around non-rotating and rotating black holes at the equatorial plane in 2D. The effects of the various parameters on the shock cones and instabilities, such as the asymptotic velocity, sound speed, Mach number and adiabatic index, are studied. We have determined the mass accretion rate, shock opening angle, shock cone oscillation, quasi-periodic oscillations (QPOs), and growth rate of instabilities to reveal the disc properties and its radiation. We have discovered, for the first time, flip-flop instabilities around a black hole in the relativistic region by solving the general relativistic hydrodynamical equations. The flip-flop instabilities are found for sound speeds Cs, ∞ < 0.2 with moderate Mach numbers (˜M=3 and M=4 for Cs, ∞ = 0.1 or M=7 and M=8 for Cs, ∞ = 0.05). Our calculation clearly confirms that the shock cone should be detached from the black hole in the Bondi-Hoyle accretion flow with Γ ≥ 2 for non-rotating and rotating black holes. Results reveal that the flip-flopping shock cone not only creates a torque effect on the black hole but also produces continuous X-ray flares with a certain frequency. Furthermore, QPOs originate inside the shock cone and are stronger in regions that have a radius of a few gravitational radii away from the centre owing to the flip-flop oscillation. Finally, our results are compared with the results of numerical and theoretical calculations in Newtonian hydrodynamics, and it is found that they are in good agreement.

  3. Testing the Transition Layer Model of Quasi-periodic Oscillations in Neutron Star X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Bing

    2001-05-01

    We compare the theoretical predictions of the transition layer model with some observational features of quasi-periodic oscillations (QPOs) in neutron star X-ray binaries. We found that the correlation between horizontal branch oscillation (HBO) frequencies and kilohertz (kHz) QPO frequencies, the difference between the low-frequency QPOs in atoll sources and HBOs in Z sources, and the correlation between the frequencies of low-frequency QPOs and break frequencies can be well explained by the transition layer model, provided the neutron star mass is around 1.4 Msolar and the angle between magnetosphere equator and accretion disk plane is around 6°. The observed decrease of peak separation between the two kHz QPO frequencies with the increase of the kHz QPO frequencies and the increase of QPO frequencies with the increase of inferred mass accretion rate are also consistent with the theoretical predictions of the transition layer model. In addition, we derive a simple equation that can be adopted to estimate the angle (δ) between magnetosphere equator and accretion disk plane by use of the simultaneously observed QPO frequency data. We estimate this angle, in the range of 4°-8°, for five Z sources and two atoll sources. The nearly constant δ value for each source, derived from the different sets of simultaneously observed QPO frequency data, provides a strong test of the theoretical model. Finally, we suggest that similar transition layer oscillations may be responsible for the observed QPOs in accretion-powered millisecond X-ray pulsars and Galactic black hole candidates.

  4. Non-thermal Aftertreatment of Particulates

    SciTech Connect

    Thomas, S.E.

    2000-08-20

    Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration

  5. δ-Invariant for Quasi-periodic Oscillations and Physical Parameters of the 4U 0614+09 Binary

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Osherovich, Vladimir

    2000-07-01

    The recently formulated two-oscillator (TO) model interprets the lowest of the kilohertz frequencies of the twin-peak quasi-periodic oscillations in X-ray binaries as the Keplerian frequency νK. The high twin frequency νh in this model holds the upper hybrid frequency relation to the rotational frequency of the neutron star's magnetosphere Ω: ν2h=ν2K+4(Ω/ 2π)2. The vector Ω is assumed to have an angle δ with the normal to the disk. The first oscillator in the TO model allows one to interpret the horizontal branch observed below 100 Hz as the lower mode of the Keplerian oscillator under the influence of the Coriolis force, with frequency νL being dependent on νh, νK, and δ. For some stars such as 4U 0614+09, Scorpius X-1, and 4U 1702-42, νh, νK, and νL have been observed simultaneously, thus providing the opportunity to check the central prediction of the TO model, i.e., the constancy of δ for a particular source. Given the considerable variation of each of these three frequencies, the existence of an observational invariant with a clear physical interpretation as a global parameter of the neutron star magnetosphere is an important test of the TO model. Using the results of recent observations of 4U 0614+09, we verify the existence of this invariant and determine the angle δ=15.6d+/-0.5d for this star. The second oscillator in the model deals with both a radial (presumably sound) oscillation and a diffuse process in the viscous layer surrounding the neutron star. Our analysis of the viscous oscillation frequency νV and the break frequency νb of the diffusion shows that the spin value of the inner boundary of the transition layer for 4U 0614+09 is at least 2 times more than the values for 4U 1728-34 and Sco X-1.

  6. Quasi-periodic oscillations in accreting magnetic white dwarfs. I. Observational constraints in X-ray and optical

    NASA Astrophysics Data System (ADS)

    Bonnet-Bidaud, J. M.; Mouchet, M.; Busschaert, C.; Falize, E.; Michaut, C.

    2015-07-01

    Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5-10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 s resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~40% in the bremsstrahlung (0.5-10 keV) X-ray emission and ~20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~(5-10) g cm-2 s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model. Figures 1-3 are available in electronic form at http://www.aanda.org

  7. Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn's outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Palmaerts, B.; Roussos, E.; Krupp, N.; Kurth, W. S.; Mitchell, D. G.; Dougherty, M. K.

    2015-10-01

    The in-situ exploration of the magnetospheres of Jupiter and Saturn has revealed different periodic processes. In particular, in the Saturnian magnetosphere, several studies have reported pulsations in the outer magnetosphere with a periodicity of about 1 hour in the measurements of charged particle fluxes, plasma wave, magnetic field strength and auroral emissions brightness. The Low- Energy Magnetospheric Measurement System detector of the Magnetospheric Imaging Instrument (MIMI/LEMMS) on board Cassini regularly detects 1-hour quasi-periodic enhancements in the intensities of electrons with an energy range from a hundred keV to several MeV. We extend an earlier survey of these relativistic electron injections, using 10 years of LEMMS observations in addition to context measurements by several other Cassini magnetospheric experiments. During this period, we identified 720 pulsed events in the outer magnetosphere over a wide range of latitudes and local times, revealing that this phenomenon is common and frequent in Saturn's magnetosphere. However, the distribution of the injection events presents a strong local time asymmetry with ten times more events in the duskside than in the dawnside. In addition to the study of their topology, we present a first statistical analysis of these pulsed events to investigate their properties. This analysis reveals that the mean interpulse period is 68 ± 10 minutes and that the events are made up of less than 9 pulses in general, but they can include up to 19 pulses. The most common shape of these pulses is a fast rise followed by a slow decay. Moreover, the ratio between the rise rate and the decay rate increases with the energy. We have also investigated the signatures of each electron injection event in the observations acquired by the Radio and Plasma Wave Science (RPWS) instrument and the magnetometer (MAG). Correlated pulsed signatures are observed in the plasma wave emissions, especially in the auroral hiss, for 12% of the

  8. An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds

    NASA Astrophysics Data System (ADS)

    Berti, Massimiliano; Corsi, Livia; Procesi, Michela

    2015-03-01

    We prove an abstract implicit function theorem with parameters for smooth operators defined on scales of sequence spaces, modeled for the search of quasi-periodic solutions of PDEs. The tame estimates required for the inverse linearised operators at each step of the iterative scheme are deduced via a multiscale inductive argument. The Cantor-like set of parameters where the solution exists is defined in a non inductive way. This formulation completely decouples the iterative scheme from the measure theoretical analysis of the parameters where the small divisors non-resonance conditions are verified. As an application, we deduce the existence of quasi-periodic solutions for forced NLW and NLS equations on any compact Lie group or manifold which is homogeneous with respect to a compact Lie group, extending previous results valid only for tori. A basic tool of harmonic analysis is the highest weight theory for the irreducible representations of compact Lie groups.

  9. Rapid trajectory design in the Earth-Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Bosanac, Natasha; Haapala, Amanda; Howell, Kathleen C.; Folta, David C.

    2016-09-01

    Upcoming missions and prospective design concepts in the Earth-Moon system extensively leverage multi-body dynamics that may facilitate access to strategic locations or reduce propellant usage. To incorporate these dynamical structures into the mission design process, Purdue University and the NASA Goddard Flight Space Center have initiated the construction of a trajectory design framework to rapidly access and compare solutions from the circular restricted three-body problem. This framework, based upon a 'dynamic' catalog of periodic and quasi-periodic orbits within the Earth-Moon system, can guide an end-to-end trajectory design in an ephemeris model. In particular, the inclusion of quasi-periodic orbits further expands the design space, potentially enabling the detection of additional orbit options. To demonstrate the concept of a 'dynamic' catalog, a prototype graphical interface is developed. Strategies to characterize and represent periodic and quasi-periodic information for interactive trajectory comparison and selection are discussed. Two sample applications for formation flying near the Earth-Moon L2 point and lunar space infrastructures are explored to demonstrate the efficacy of a 'dynamic' catalog for rapid trajectory design and validity in higher-fidelity models.

  10. Quasi-periodic Variations in X-Ray Emission and Long-term Radio Observations: Evidence for a Two-component Jet in Sw J1644+57

    NASA Astrophysics Data System (ADS)

    Wang, Jiu-Zhou; Lei, Wei-Hua; Wang, Ding-Xiong; Zou, Yuan-Chuan; Zhang, Bing; Gao, He; Huang, Chang-Yin

    2014-06-01

    The continued observations of Sw J1644+57 in X-ray and radio bands accumulated a rich data set to study the relativistic jet launched in this tidal disruption event. The X-ray light curve of Sw J1644+57 from 5-30 days presents two kinds of quasi-periodic variations: a 200 s quasi-periodic oscillation (QPO) and a 2.7 day quasi-periodic variation. The latter has been interpreted by a precessing jet launched near the Bardeen-Petterson radius of a warped disk. Here we suggest that the ~200 s QPO could be associated with a second, narrower jet sweeping the observer line-of-sight periodically, which is launched from a spinning black hole in the misaligned direction with respect to the black hole's angular momentum. In addition, we show that this two-component jet model can interpret the radio light curve of the event, especially the re-brightening feature starting ~100 days after the trigger. From the data we infer that inner jet may have a Lorentz factor of Γj ~ 5.5 and a kinetic energy of E k, iso ~ 3.0 × 1052 erg, while the outer jet may have a Lorentz factor of Γj ~ 2.5 and a kinetic energy of E k, iso ~ 3.0 × 1053 erg.

  11. Detection of quasi-periodic processes in repeated measurements: New approach for the fitting and clusterization of different data

    NASA Astrophysics Data System (ADS)

    Nigmatullin, R.; Rakhmatullin, R.

    2014-12-01

    Many experimentalists were accustomed to think that any independent measurement forms a non-correlated measurement that depends weakly from others. We are trying to reconsider this conventional point of view and prove that similar measurements form a strongly-correlated sequence of random functions with memory. In other words, successive measurements "remember" each other at least their nearest neighbors. This observation and justification on real data help to fit the wide set of data based on the Prony's function. The Prony's decomposition follows from the quasi-periodic (QP) properties of the measured functions and includes the Fourier transform as a partial case. New type of decomposition helps to obtain a specific amplitude-frequency response (AFR) of the measured (random) functions analyzed and each random function contains less number of the fitting parameters in comparison with its number of initial data points. Actually, the calculated AFR can be considered as the generalized Prony's spectrum (GPS), which will be extremely useful in cases where the simple model pretending on description of the measured data is absent but vital necessity of their quantitative description is remained. These possibilities open a new way for clusterization of the initial data and new information that is contained in these data gives a chance for their detailed analysis. The electron paramagnetic resonance (EPR) measurements realized for empty resonator (pure noise data) and resonator containing a sample (CeO2 in our case) confirmed the existence of the QP processes in reality. But we think that the detection of the QP processes is a common feature of many repeated measurements and this new property of successive measurements can attract an attention of many experimentalists. To formulate some general conditions that help to identify and then detect the presence of some QP process in the repeated experimental measurements. To find a functional equation and its solution that

  12. Effects of Non-Thermal Plasma on Mammalian Cells

    PubMed Central

    Kalghatgi, Sameer; Kelly, Crystal M.; Cerchar, Ekaterina; Torabi, Behzad; Alekseev, Oleg; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane

    2011-01-01

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS). We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers. PMID:21283714

  13. Tracking the energetics of the non-thermal disc-corona-jet in the very high state GX 339 - 4

    NASA Astrophysics Data System (ADS)

    Kubota, A.; Done, C.

    2016-06-01

    The dramatic hard-soft spectral transition in black hole binaries is important as it is associated with the collapse of the jet and with the strongest low-frequency quasi-periodic oscillations (QPOs). These transition spectra (intermediate and very high state: VHS) are complex, with soft but distinctly non-thermal Comptonization which merges smoothly into the disc emission. Here we develop a physical model for the accretion flow which can accommodate all these features, with an outer standard disc, which can make a transition to an energetically coupled disc-corona region, and make a further transition to a hot inner flow which can be radiatively inefficient if required. The code explicitly uses fully relativistic emissivity (Novikov-Thorne), and all Comptonization is calculated with a hybrid (thermal and non-thermal) electron distribution. We fit this to a VHS spectrum from GX 339 - 4. We show that the complex continuum curvature produced by a hybrid electron distribution is enough to remove the strong constraint on black hole spin derived from reflection using simpler Comptonization models. More fundamentally, we show that the VHS cannot be fit with the same Novikov-Thorne emissivity which can fit the disc-dominated spectrum but instead requires that the inner flow is somewhat radiatively inefficient. This is consistent with an accretion powered jet, but simultaneous radio data show that the jet has already collapsed at the time of our data. Instead, it could point to truncation of the inner flow at radii larger than the innermost stable circular orbit, as predicted by the Lense-Thirring QPO models.

  14. Quasi-periodic self-assembled sub-micrometer ferroelectric bulk domain gratings in Rb-doped KTiOPO4

    NASA Astrophysics Data System (ADS)

    Zukauskas, Andrius; Pasiskevicius, Valdas; Canalias, Carlota

    2013-12-01

    We present a simple technique for fabricating quasi-periodic bulk sub-μm ferroelectric domain gratings in Rb-doped KTiOPO4 (RKTP) based on self-organized ferroelectric domain formation. One-dimensional ferroelectric domain structures, with an average periodicity of 650 ± 200 nm and extending throughout 1 mm thick crystals, are obtained by etching and subsequent electric field poling using planar electrodes. The sub-μm structures in RKTP were used to demonstrate 5th order non-collinear quasi-phase matched backward second harmonic generation.

  15. UNIVERSAL SCALING OF THE 3:2 TWIN-PEAK QUASI-PERIODIC OSCILLATION FREQUENCIES WITH BLACK HOLE MASS AND SPIN REVISITED

    SciTech Connect

    Zhou, Xin-Lin; Yuan, Weimin; Pan, Hai-Wu; Liu, Zhu

    2015-01-01

    We discuss further observational support of an idea formulated a decade ago by Abramowicz, Kluźniak, McClintock and Remillard. They demonstrated that the 3:2 pairs of frequencies of the twin-peak black hole (BH) high-frequency quasi-periodic oscillations (QPOs) scale inversely with the BH masses and that the scaling covers the entire range from stellar to supermassive BHs. For this reason, they believed that the QPOs may be used for accurate measurements of masses and spins of BHs.

  16. Electronic Circuit Experiments and SPICE Simulation of Double Covering Bifurcation of 2-Torus Quasi-Periodic Flow in Phase-Locked Loop Circuit

    NASA Astrophysics Data System (ADS)

    Kamiyama, Kyohei; Endo, Tetsuro; Imai, Isao; Komuro, Motomasa

    2016-06-01

    Double covering (DC) bifurcation of a 2-torus quasi-periodic flow in a phase-locked loop circuit was experimentally investigated using an electronic circuit and via SPICE simulation; in the circuit, the input radio-frequency signal was frequency modulated by the sum of two asynchronous sinusoidal baseband signals. We observed both DC and period-doubling bifurcations of a discrete map on two Poincaré sections, which were realized by changing the sample timing from one baseband sinusoidal signal to the other. The results confirm the DC bifurcation of the original flow.

  17. Atmospheric pressure non-thermal plasma: Sources and applications

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.

    2008-07-01

    Non-thermal plasma at atmospheric pressure is an inherently unstable object. Nature of discharge plasma instabilities and conditions for observation of uniform non-thermal plasma at atmospheric pressure in different environments will be discussed. Various discharge techniques have been developed, which could support uniform non-thermal plasma with parameters varied in a wide range. Time limitation by plasma instabilities can be overcome by shortening pulse length or by restriction of plasma plug residence time with a fast gas flow. Discharge instabilities leading to formation of filaments or sparks are provoked by a positive feedback between the electric field and plasma density, while the counteracting process is plasma and thermal diffusion. With gas pressure growth the size of plasma fluctuation, which could be stabilized by diffusion, diminishes. As a result, to have long lived uniform plasma one should miniaturize discharge. There exist a number of active methods to organize negative feedback between the electric field and plasma density in order to suppress or, at least, delay the instability. Among them are ballast resistors in combination with electrode sectioning, reactive ballast, electronic feedback, and dielectric barrier across the electric current. The last methods are relevant for ac discharges. In the lecture an overview will be given of different discharge techniques scalable in pressure up to one atmosphere. The interest in this topic is dictated by a potential economic benefit from numerous non-thermal plasma technologies. The spectrum of non-thermal plasma applications is continuously broadening. An incomplete list of known applications includes: plasma-assisted chemical vapor deposition, etching, polymerization, gas-phase synthesis, protective coating deposition, toxic and harmful gas decomposition, destruction of warfare agents, electromagnetic wave shielding, polymer surface modifications, gas laser excitation, odor control, plasma assisted

  18. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure

    PubMed Central

    Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-01

    In this work, Au-Bi2Te3 nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi2Te3 nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi2Te3 nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination. PMID:26047340

  19. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure.

    PubMed

    Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-01

    In this work, Au-Bi(2)Te(3) nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi(2)Te(3) nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi(2)Te(3) nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination. PMID:26047340

  20. FEASIBILITY ANALYSIS REPORT FOR HYBRID NON-THERMAL PLASMA REACTORS

    EPA Science Inventory

    The purpose of SERDP project CP-1038 is to evaluate and develop non-thermal plasma (NTP) reactor technology for DoD air emissions control applications. The primary focus is on oxides of nitrogen (NOx) and a secondary focus on hazardous air pollutants (HAPs), especially volatile o...

  1. Effect of Non-Thermal Processing on Peanut Allergens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut allergy is on the rise, and the reason is still unclear. Previously, roasting by thermal method has been shown to increase the allergenic potency of peanuts. In this study, we determined if non-thermal methods, such as, pulsed electric fields (PEF) and pulsed UV lights (PUV) affect peanut all...

  2. Application of a non-thermal plasma to combustion enhancement.

    SciTech Connect

    Rosocha, L. A.; Kim, Y.; Stange, Sabine

    2004-01-01

    As a primary objective, researchers in Los Alamos National Laboratory's P-24 Plasma Physics group are aiming to minimize U.S. energy dependency on foreign resources through experiments incorporating a plasma assisted combustion unit. Under this broad category, researchers seek to increase efficiency and reduce NO{sub x}/SO{sub x} and unburned hydrocarbon emissions in IC-engines, gas-turbine engines, and burner units. To date, the existing lean burn operations, consisting of higher air to fuel ratio, have successfully operated in a regime where reduced NO{sub x}/SO{sub x} emissions are expected and have also shown increased combustion efficiency (less unburned hydrocarbon) for propane. By incorporating a lean burn operation assisted by a non-thermal plasma (NTP) reactor, the fracturing of hydrocarbons can occur with increased power (combustion, efficiency, and stability). Non-thermal plasma units produce energetic electrons, but avoid the high gas and ion temperatures involved in thermal plasmas. One non-thermal plasma method, known as silent discharge, allows free radicals to act in propagating combustion reactions, as well as intermediaries in hydrocarbon fracturing. Using non-thermal plasma units, researchers have developed a fuel activation/conversion system capable of decreasing pollutants while increasing fuel efficiency, providing a path toward future U.S. energy independence.

  3. Studying Frequency Relationships of Kilohertz Quasi-periodic Oscillations for 4U 1636-53 and Sco X-1: Observations Confront Theories

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Feng; Boutelier, Martin; Barret, Didier; Zhang, Shuang-Nan

    2011-01-01

    By fitting the frequencies of simultaneous lower and upper kilohertz quasi-periodic oscillations (kHz QPOs) in two prototype neutron star (NS) QPO sources (4U 1636-53 and Sco X-1), we test the predictive power of all currently proposed QPO models. Models predict a linear, power law, or other relationship between the two frequencies. We found that for plausible NS parameters (mass and angular momentum), no model can satisfactorily reproduce the data, leading to very large chi-square values in our fittings. For both 4U 1636-53 and Sco X-1, this is largely due to the fact that the data significantly differ from a linear relationship. Some models perform relatively better but still have their own problems. Such a detailed comparison of data from models enables identification of routes for improving those models further.

  4. KHz Quasi Periodic Oscillations in Low Mass X-ray Binaries as Probes of General Relativity in the Strong Field Regime

    NASA Astrophysics Data System (ADS)

    Stella, Luigi; Vietri, Mario

    1998-12-01

    The pair of kHz Quasi Periodic Oscillations (QPOs) in the Fourier spectra of two low mass X-ray binaries, Sco X-1 and 4U1608-52, hosting an old accreting neutron star, display a frequency difference that decreaseas for increasing QPO frequency. This is contrary to simple beat frequency models, which predict a constant frequency difference. We show that the behaviour of these QPOs is well matched in terms of the fundamental (radial and azimuthal) frequencies for test particle motion in the vicinity the neutron star, for reasonable star masses, and nearly independent of the star spin. The radial frequency must be much smaller than the azimuthal one, testifying that kHz QPOs originate from close to the innermost stable orbit. These results are not reproduced through the post-Newtonian approximation of General Relativity (GR). kHz QPOs from X-ray binaries likely provide an accurate laboratory for strong field GR.

  5. STUDYING FREQUENCY RELATIONSHIPS OF KILOHERTZ QUASI-PERIODIC OSCILLATIONS FOR 4U 1636-53 AND Sco X-1: OBSERVATIONS CONFRONT THEORIES

    SciTech Connect

    Lin Yongfeng; Boutelier, Martin; Barret, Didier; Zhang Shuangnan

    2011-01-10

    By fitting the frequencies of simultaneous lower and upper kilohertz quasi-periodic oscillations (kHz QPOs) in two prototype neutron star (NS) QPO sources (4U 1636-53 and Sco X-1), we test the predictive power of all currently proposed QPO models. Models predict a linear, power law, or other relationship between the two frequencies. We found that for plausible NS parameters (mass and angular momentum), no model can satisfactorily reproduce the data, leading to very large chi-square values in our fittings. For both 4U 1636-53 and Sco X-1, this is largely due to the fact that the data significantly differ from a linear relationship. Some models perform relatively better but still have their own problems. Such a detailed comparison of data from models enables identification of routes for improving those models further.

  6. The 2:3:6 quasi-periodic oscillation structure in GRS 1915+105 and cubic subharmonics in the context of relativistic discoseismology

    NASA Astrophysics Data System (ADS)

    Ortega-Rodríguez, M.; Solís-Sánchez, H.; López-Barquero, V.; Matamoros-Alvarado, B.; Venegas-Li, A.

    2014-06-01

    We propose a simple toy model to explain the 2:3:6 quasi-periodic oscillation (QPO) structure in GRS 1915+105 and, more generally, the 2:3 QPO structure in XTE J1550-564, GRO J1655-40 and H1743-322. The model exploits the onset of subharmonics in the context of discoseismology. We suggest that the observed frequencies may be the consequence of a resonance between a fundamental g mode and an unobservable p wave. The results include the prediction that, as better data become available, a QPO with a frequency of twice the higher twin frequency and a large quality factor will be observed in twin peak sources, as it might already have been observed in the especially active GRS 1915+105.

  7. On quasi-periodic wave solutions and asymptotic behaviors to a (2 + 1)-dimensional generalized variable-coefficient Sawada-Kotera equation

    NASA Astrophysics Data System (ADS)

    Tu, Jian-Min; Tian, Shou-Fu; Xu, Mei-Juan; Ma, Pan-Li

    2015-07-01

    In this paper, a (2 + 1)-dimensional generalized variable-coefficient Sawada-Kotera (gvcSK) equation is investigated, which describes many nonlinear phenomena in fluid dynamics and plasma physics. Based on the properties of binary Bell polynomials, we present a Hirota’s bilinear equation to the gvcSK equation. By virtue of the Hirota’s bilinear equation, we obtain the N-soliton solutions and the quasi-periodic wave solutions of the gvcSK equation, which can be reduced to the ones of several integrable equations such as Sawada-Kotera, modified Caudrey-Dodd-Gibbon-Sawada-Kotera, isospectral BKP equations and etc. Furthermore, we obtain the relationship between the soliton solutions and periodic solutions by considering the asymptotic properties of the periodic solutions.

  8. How are the VLF quasi-periodic emissions controlled by harmonics of field line oscillations? - The results of a comparison between ground and GEOS satellites measurements

    NASA Astrophysics Data System (ADS)

    Tixier, M.; Cornilleau-Wehrlin, N.

    1986-06-01

    Data on VLF and UHF waves observed in situ for the first time by the GEOS 1 and 2 satellites close to the equatorial plane are compared with ground-based measurements. The results permit a more complete explanation of quasi-periodic (QP) modulation. The data are described, and a general ground-satellite comparison of occurrence and spectra of simultaneous emission is given. A detailed study of some selected events shows that, when the GEOS data are taken into account, it is sometimes difficult to classify QP emissions as either type I or type II. It is suggested that QPs may be due to the same mechanism involving compressional harmonics of a standing fundamental ULF wave.

  9. A GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC MODEL OF HIGH FREQUENCY QUASI-PERIODIC OSCILLATIONS IN BLACK HOLE LOW-MASS X-RAY BINARIES

    SciTech Connect

    Shi Changsheng; Li Xiangdong E-mail: lixd@nju.edu.c

    2010-05-10

    We suggest a possible explanation for the high frequency quasi-periodic oscillations (QPOs) in black hole (BH) low-mass X-ray binaries. By solving the perturbation general relativistic magnetohydrodynamic equations, we find two stable modes of the Alfven wave in the accretion disks with toroidal magnetic fields. We suggest that these two modes may lead to the double high frequency QPOs if they are produced in the transition region between the inner advection-dominated accretion flow and the outer thin disk. This model naturally accounts for the 3:2 relation for the upper and lower frequencies of the QPOs, and the relation between the BH mass and QPO frequency.

  10. The energy dependence of the three types of low-frequency quasi-periodic oscillations in the black hole candidate H1743-322

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Zhang, S.; Qu, J. L.; Gao, H. Q.; Zhao, H. H.; Huang, C. P.; Song, L. M.

    2013-07-01

    We investigate the properties of the centroid frequency of low-frequency quasi-periodic oscillation (LF QPOs, 0.1-30 Hz) during the 2003 outburst of H1743-322, by using the observational data of the Rossi X-ray Timing Explorer. We find that the frequency shows different energy dependences for each of the sub-classes of LF QPOs: the QPO frequency is proportional to photon energy for the type C QPOs while it is ambiguous for the type A and B QPOs. For type C QPOs, the slope of the frequency-energy relation versus frequency plot can be well described by a power law with frequency till ˜7.5 Hz. Beyond ˜7.5 Hz the slope goes down. The LF QPO amplitude decreases monotonically with the frequency for the type C but increases for the other two types. These properties provide a joint diagnostic for discriminating the different types of LF QPO.

  11. Relation between the quasi-periodic oscillations and the low-frequency noise of GX 5-1 in the horizontal branch

    NASA Technical Reports Server (NTRS)

    Mitsuda, Kazuhisa; Dotani, Tadayasu; Yoshida, Atsumasa; Vaughan, Brian; Norris, Jay P.

    1991-01-01

    Ginga observations of quasi-periodic oscillations (QPOs) and the low-frequency noise (LFN) from GX 5-1 in its horizontal-branch spectral state are presented. Power spectral fits were attempted using model functions based on simple oscillating shot models. A clear second-harmonic peak of QPO was detected. Variations in the powers of QPO and LFN on timescales of 8-256 s were also studied. These variations were significant for all of the timescales studied, and were uncorrelated with each other on timescales shorter than a few tens of seconds, and correlated on longer timescales. From simulations based on a simple shot model, it was found that the variation amplitude and the lack of correlation on short timescales are not inconsistent with the oscillating shot models. A more complex model is necessary to fully explain the observed properties.

  12. Late Holocene shoreline behavior in embayments of Lake Michigan: Influence of quasi-periodic lake-level variations and sediment supply

    SciTech Connect

    Thompson, T.A.; Baedke, S.J. . Indiana Geological Survey)

    1994-04-01

    Lake Michigan contains numerous former embayments into glacial deposits or bedrock. Many of the embayments contain dunes, spits, and captured lakes, but others contain arcuate strandplains of beach ridges. The strandplains are a geologic record of shoreline behavior and lake-level variation throughout the late Holocene. The larger strandplains show similar long-term patterns of beach-ridge development. The similar patterns are expected because variations in lake level are a primary control on shoreline behavior, and all embayments would have experienced relatively the same lake-level changes. Some variations in the long-term pattern of shoreline development do occur between strandplains. These dissimilarities are primarily a function of different rates of sediment supply to the shoreline of each embayment. Beach-ridge development within embayments can be represented on a rate of water level change versus rate of sediment supply diagram (Curray diagram) as three superimposed ovals on the positive rate of sediment supply side of the diagram. The three stacked ovals represent the three quasi-periodic lake-level variations defined by Thompson (1992) and show the position of the shoreline for a given time within the Curray diagram fields. For shorelines with a high rate of sediment supply, only the 30-year quasi-periodic variation would reach the aggradation line. For shorelines having significantly less sediment supply, rising lake level on the 150- and 600-year variations would force the 30-year oval across the aggradation line and well into the depositional and possibly the erosional transgression fields. Under these conditions erosion would occur that may remove, stack, or at least prevent one or more beach ridges from being developed.

  13. Non-thermal irreversible electroporation for deep intracranial disorders.

    PubMed

    Garcia, Paulo A; Neal, Robert E; Rossmeisl, John H; Davalos, Rafael V

    2010-01-01

    Non-thermal irreversible electroporation (N-TIRE) is a new minimally invasive technique to kill undesirable tissue. We build on our previous intracranial studies in order to evaluate the possibility of using N-TIRE for deep intracranial disorders. In this manuscript we describe a minimally invasive computed tomography (CT) guided N-TIRE procedure in white matter. In addition, we report the electric field threshold needed for white matter ablation (630 - 875 V/cm) using four sets of twenty 50 µs pulses at a voltage-to-distance ratio of 1000 V/cm. We also confirm the non-thermal aspect of the technique with real time temperature data measured at the electrode-tissue interface. PMID:21095962

  14. Non-thermal plasma for exhaust gases treatment

    NASA Astrophysics Data System (ADS)

    Alva R., Elvia; Pacheco P., Marquidia; Gómez B., Fernando; Pacheco P., Joel; Colín C., Arturo; Sánchez-Mendieta, Víctor; Valdivia B., Ricardo; Santana D., Alfredo; Huertas C., José; Frías P., Hilda

    2015-09-01

    This article describes a study on a non-thermal plasma device to treat exhaust gases in an internal combustion engine. Several tests using a plasma device to treat exhaust gases are conducted on a Honda GX200-196 cm3 engine at different rotational speeds. A plasma reactor could be efficient in degrading nitrogen oxides and particulate matter. Monoxide and carbon dioxide treatment is minimal. However, achieving 1%-3% degradation may be interesting to reduce the emission of greenhouse gases.

  15. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Deyneka, I. G.; Meshkovskii, I. K.; Jäger, A.; Syková, E.; Kubinová, Š.; Dejneka, A.

    2015-02-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin-stained rat skin sections from plasma-treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  16. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    SciTech Connect

    Lunov, O. Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  17. Non-thermal plasma for inactivated-vaccine preparation.

    PubMed

    Wang, Guomin; Zhu, Ruihao; Yang, Licong; Wang, Kaile; Zhang, Qian; Su, Xia; Yang, Bing; Zhang, Jue; Fang, Jing

    2016-02-17

    Vaccines are of great importance in controlling the spread of infectious diseases in poultry farming. The safety and efficacy of vaccines are also essential. To explore the feasibility of a novel technology (non-thermal plasma) in inactivated vaccine preparation, an alternating current atmospheric pressure non-thermal plasma (NTP) jet with Ar/O2/N2 as the operating gas was used to inactivate a Newcastle disease virus (NDV, LaSota) strain and H9N2 avian influenza virus (AIV, A/Chicken/Hebei/WD/98) for vaccine preparation. The results showed that complete inactivation could be achieved with 2 min of NTP treatment for both NDV and AIV. Moreover, a proper NTP treatment time is needed for inactivation of a virus without destruction of the antigenic determinants. Compared to traditional formaldehyde-inactivated vaccine, the vaccine made from NDV treated by NTP for 2 min (NTP-2 min-NDV-vaccine) could induce a higher NDV-specific antibody titer in specific pathogen-free (SPF) chickens, and the results of a chicken challenge experiment showed that NTP-2 min-NDV-vaccine could protect SPF chickens from a lethal NDV challenge. Vaccines made from AIV treated by NTP for 2 min (NTP-2 min-AIV-vaccine) also showed a similar AIV-specific antibody titer compared with traditional AIV vaccines prepared using formaldehyde inactivation. Studies of the morphological changes of the virus, chemical analysis of NDV allantoic fluid and optical emission spectrum analysis of NTP suggested that reactive oxygen species and reactive nitrogen species produced by NTP played an important role in the virus inactivation process. All of these results demonstrated that it could be feasible to use non-thermal NTP as an alternative strategy to prepare inactivated vaccines for Newcastle disease and avian influenza. PMID:26529075

  18. Non-thermal Plasma for VOC Treatment in Flue Gases

    NASA Astrophysics Data System (ADS)

    Ikaunieks, Janis; Mezmale, Liga; Zandeckis, Aivars; Pubule, Jelena; Blumberga, Andra; Veidenbergs, Ivars

    2011-01-01

    The paper discusses non-thermal plasmas, their generation and characteristics, formation mechanisms of ozone and the treatment of volatile organic compounds (VOCs). In the experimental part, undecane (C11H24 as model VOCs) was treated with assistance of low temperature plasma at an atmospheric pressure which was generated in the so-called stack reactor. The gas composition was 13% of oxygen in nitrogen with impurities of carbon dioxide, carbon monoxide and undecane. The formation of by-products, as well as the removal efficiency, were investigated.

  19. Studying the thermal/non-thermal crossover in solar flares

    NASA Astrophysics Data System (ADS)

    Schwartz, R. A.

    1994-12-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  20. Studying the thermal/non-thermal crossover in solar flares

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1994-01-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  1. Quasi-periodic spatiotemporal filtering.

    PubMed

    Burghouts, Gertjan J; Geusebroek, Jan-Mark

    2006-06-01

    This paper presents the online estimation of temporal frequency to simultaneously detect and identify the quasiperiodic motion of an object. We introduce color to increase discriminative power of a reoccurring object and to provide robustness to appearance changes due to illumination changes. Spatial contextual information is incorporated by considering the object motion at different scales. We combined spatiospectral Gaussian filters and a temporal reparameterized Gabor filter to construct the online temporal frequency filter. We demonstrate the online filter to respond faster and decay faster than offline Gabor filters. Further, we show the online filter to be more selective to the tuned frequency than Gabor filters. We contribute to temporal frequency analysis in that we both identify ("what") and detect ("when") the frequency. In color video, we demonstrate the filter to detect and identify the periodicity of natural motion. The velocity of moving gratings is determined in a real world example. We consider periodic and quasiperiodic motion of both stationary and nonstationary objects. PMID:16764282

  2. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    SciTech Connect

    V.K. Mathur

    2003-02-01

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  3. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  4. Accretion flow behaviour during the evolution of the quasi-periodic oscillation frequency of XTE J1550-564 in 1998 outburst

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip K.; Dutta, Broja G.; Pal, P. S.

    2009-04-01

    Low and intermediate frequency quasi-periodic oscillations (QPOs) are thought to be due to oscillations of Comptonizing regions or hot regions embedded in Keplerian discs. Observational evidence of evolutions of QPOs would therefore be very important as they throw lights on the dynamics of the hotter region. Our aim is to find systems in which there is a well-defined correlation among the frequencies of the QPOs over a range of time so as to understand the physical picture. In this paper, we concentrate on the archival data of XTE J1550-564 obtained during 1998 outburst, and study the systematic drifts during the rising phase from the 1998 September 7 to the 1998 September 19, when the QPO frequency increased monotonically from 81mHz to 13.1Hz. Immediately after that, QPO frequency started to decrease and on the 1998 September 26, the QPO frequency became 2.62Hz. After that, its value remained almost constant. This frequency drift can be modelled satisfactorily with a propagatory oscillating shock solution where the post-shock region behaves as the Comptonized region. Comparing with the nature of a more recent 2005 outburst of another black hole candidate GRO 1655-40, where QPOs disappeared at the end of the rising phase, we conjecture that this so-called `outburst' may not be a full-fledged outburst.

  5. Quasi-periodic oscillations in short recurring bursts of magnetars SGR 1806–20 and SGR 1900+14 observed with RXTE

    SciTech Connect

    Huppenkothen, D.; Heil, L. M.; Watts, A. L.; Göğüş, E.

    2014-11-10

    Quasi-periodic oscillations (QPOs) observed in the giant flares of magnetars are of particular interest due to their potential to open up a window into the neutron star interior via neutron star asteroseismology. However, only three giant flares have been observed. We therefore make use of the much larger data set of shorter, less energetic recurrent bursts. Here, we report on a search for QPOs in a large data set of bursts from the two most burst-active magnetars, SGR 1806-20 and SGR 1900+14, observed with Rossi X-ray Timing Explorer. We find a single detection in an averaged periodogram comprising 30 bursts from SGR 1806–20, with a frequency of 57 Hz and a width of 5 Hz, remarkably similar to a giant flare QPO observed from SGR 1900+14. This QPO fits naturally within the framework of global magneto-elastic torsional oscillations employed to explain giant flare QPOs. Additionally, we uncover a limit on the applicability of Fourier analysis for light curves with low background count rates and strong variability on short timescales. In this regime, standard Fourier methodology and more sophisticated Fourier analyses fail in equal parts by yielding an unacceptably large number of false-positive detections. This problem is not straightforward to solve in the Fourier domain. Instead, we show how simulations of light curves can offer a viable solution for QPO searches in these light curves.

  6. Correlations between Kilohertz Quasi-periodic Oscillations and Low-Frequency Features Attributed to Radial Oscillations and Diffusive Propagation in the Viscous Boundary Layer around a Neutron Star

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Osherovich, Vladimir

    1999-06-01

    We present a dimensional analysis of two characteristic timescales in the boundary layer where the disk adjusts to the rotating neutron star (NS). The boundary layer is treated as a transition region between the NS surface and the first Keplerian orbit. The radial transport of the angular momentum in this layer is controlled by a viscous force defined by the Reynolds number, which in turn is related to the mass accretion rate. We show that the observed low-Lorentzian frequency is associated with radial oscillations in the boundary layer, where the observed break frequency is determined by the characteristic diffusion time of the inward motion of the matter in the accretion flow. Predictions of our model regarding relations between those two frequencies and the frequencies of kilohertz quasi-periodic oscillations (kHz QPOs) compare favorably with recent observations of the source 4U 1728-34. This Letter contains a theoretical classification of kHz QPOs in NS binaries and the related low-frequency features. Thus, results concerning the relationship between the low-Lorentzian frequency of viscous oscillations and the break frequency are presented in the framework of our model of kHz QPOs viewed as Keplerian oscillations in a rotating frame of reference.

  7. Normal-Branch Quasi-periodic Oscillations in Scorpius X-1: Viscous Oscillations of a Spherical Shell Near the Neutron Star

    NASA Astrophysics Data System (ADS)

    Titarchuk, L. G.; Bradshaw, C. F.; Geldzahler, B. J.; Fomalont, E. B.

    2001-07-01

    We present a comprehensive classification of all observed quasi-periodic oscillations (QPOs) within the framework of the transition layer model using a large set of Rossi X-Ray Timing Explorer data for Scorpius X-1. The model assumes an optically thin material along the observer's line of sight in the horizontal branch and an increasingly optically thick material while in the other two branches that is consistent with X-ray and radio observations and the disk transition layer model of QPOs. We identify the ~6 Hz frequencies in the normal branch as acoustic oscillations of a spherical shell around the neutron star (NS) that is formed after radiation pressure near the Eddington accretion rate destroys the disk. The size of the shell is on the order of one NS radius from the NS. We also estimate the upper limit of Sco X-1's magnetic field to be 0.7×106 G at about one NS radius above the NS surface while in the horizontal X-ray branch.

  8. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.

    PubMed

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2014-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524

  9. ON MASS CONSTRAINTS IMPLIED BY THE RELATIVISTIC PRECESSION MODEL OF TWIN-PEAK QUASI-PERIODIC OSCILLATIONS IN CIRCINUS X-1

    SciTech Connect

    Toeroek, Gabriel; Bakala, Pavel; Sramkova, Eva; StuchlIk, Zdenek; Urbanec, Martin E-mail: pavel.bakala@fpf.slu.c E-mail: zdenek.stuchlik@fpf.slu.c

    2010-05-01

    Boutloukos et al. discovered twin-peak quasi-periodic oscillations (QPOs) in 11 observations of the peculiar Z-source Circinus X-1. Among several other conjunctions the authors briefly discussed the related estimate of the compact object mass following from the geodesic relativistic precession model for kHz QPOs. Neglecting the neutron star rotation they reported the inferred mass M{sub 0} = 2.2 {+-} 0.3 M{sub sun}. We present a more detailed analysis of the estimate which involves the frame-dragging effects associated with rotating spacetimes. For a free mass we find acceptable fits of the model to data for (any) small dimensionless compact object angular momentum j = cJ/GM {sup 2}. Moreover, quality of the fit tends to increase very gently with rising j. Good fits are reached when M {approx} M{sub 0}[1 + 0.55(j + j {sup 2})]. It is therefore impossible to estimate the mass without independent knowledge of the angular momentum and vice versa. Considering j up to 0.3 the range of the feasible values of mass extends up to 3 M{sub sun}. We suggest that similar increase of estimated mass due to rotational effects can be relevant for several other sources.

  10. Discovery of a low-frequency broad quasi-periodic oscillation peak in the power density spectrum of Cygnus X-1 with Granat/SIGMA

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A.; Churazov, E.; Gilfanov, M.; Sunyaev, R.; Dyachkov, A.; Khavenson, N.; Kremnev, R.; Sukhanov, K.; Ballet, J.; Laurent, P.; Salotti, L.; Claret, A.; Olive, J. F.; Denis, M.; Mandrou, P.; Roques, J. P.

    1994-03-01

    A transient broad (delta(f)/f = 0.8 approximately 1) very low frequency (approximately 0.04-0.07 Hz) and strong (fractional rms variations are at the level of approximately 10-15% of total source intensity) quasi-periodic oscillations (QPO) feature was discovered by the SIGMA telescope onboard the Granat observatory in the power density spectra of Cygnus X-1; the source was during all the observations carried out in 1990-1992 in its standard (low or hard) spectral state (Sunyaev & Truemper 1979) with average 40-150 keV flux, corresponding appproximately to the 'nominal' gamma2 level of the source (Ling et al. 1979). The power density spectra, obtained in the 4 x 10-4-10 Hz frequency range, typically exhibit strong very low frequency noise below a few millihertz increasing toward lower frequencies, a nearly flat region from a few millihertz up to a break frequency fbr = 0.04 approximately 0.1 Hz and a power-law spectrum as f-1 above the break frequency. The QPO feature, when observed, was centered below or near the break frequency fbr.

  11. Dwarf nova oscillations and quasi-periodic oscillations in cataclysmic variables - VIII. VW Hyi in outburst observed with the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Woudt, P. A.; Warner, B.; O'Donoghue, D.; Buckley, D. A. H.; Still, M.; Romero-Colemero, E.; Väisänen, P.

    2010-01-01

    We analyse four light curves obtained at high time resolution (~0.1s) with the 11-m Southern African Large Telescope, at the ends of two normal outbursts and one superoutburst of the dwarf nova VW Hyi. All of these contain at least some Dwarf Nova Oscillations (DNOs), which, when at their highest amplitudes, are seen in unprecedented detail. In addition to the expected DNOs with periods >20 s, we find a previously unknown modulation at 13.39s, but none at shorter periods. The various DNOs and their interaction with the longer period quasi-periodic oscillations are interpreted in terms of the model of magnetically controlled flow from an accretion disc proposed earlier in this series of papers. Our observations include rare DNOs very late in outburst; we find that the fundamental period does not increase beyond ~90 s, which is the same value that the independent `longer period DNOs' converge on. Based on observations made with the Southern African Large Telescope (SALT). E-mail: Patrick.Woudt@uct.ac.za

  12. Interaction between ELF-VLF emission and magnetic pulsations: quasi-periodic ELF-VLF emissions associated with Pc 3--4 magnetic pulsations and their geomagnetic conjugacy

    SciTech Connect

    Sato, N.; Kokubun, S.

    1980-01-01

    The characteristics of quasi-periodic (QP) ELF-VLF emissions with periods of 10--150 s and their relationships to magnetic pulsations are studied by using data obtained from Syowa and Mizuho Stations in Antarctica and at Husafell in Iceland, which is located near the geomagnetic conjugate point of Syowa. From the coherency analysis between QP emissions and Pc 3--4 magnetic pulsations it is found that the coherency between the D component of magnetic pulsations and the intensity fluctuations of QP's is much higher than that between the H component of magnetic pulsations and QP's. It is also found that the propagation time of magnetic pulsations (HM waves) from the interaction region between magnetic pulsations and QP's in the magnetosphere to the ground is 20--30 s. These properties are observed at conjugate-pair stations with good conjugacy. The results strongly suggest that QP emissions are modulated by compressional mode Pc 3--4 magnetic pulsations near the equatorial plane in the outer magnetosphere.

  13. A stable quasi-periodic 4.18-d oscillation and mysterious occultations in the 2011 MOST light-curve of TW Hya

    NASA Astrophysics Data System (ADS)

    Siwak, Michal; Rucinski, Slavek M.; Matthews, Jaymie M.; Guenther, David B.; Kuschnig, Rainer; Moffat, Anthony F. J.; Rowe, Jason F.; Sasselov, Dimitar; Weiss, Werner W.

    2014-10-01

    We present an analysis of the 2011 photometric observations of TW Hya by the MOST satellite; this is the fourth continuous series of this type. The large-scale light variations are dominated by a strong, quasi-periodic 4.18-d oscillation with superimposed, apparently chaotic flaring activity. The former is probably produced by stellar rotation with one large hotspot created by a stable accretion funnel, while the latter may be produced by small hotspots, created at moderate latitudes by unstable accretion tongues. A new, previously unnoticed feature is a series of semiperiodic, well-defined brightness dips of unknown nature, of which 19 were observed during 43 d of our nearly continuous observations. Re-analysis of the 2009 MOST light-curve revealed the presence of three similar dips. On the basis of recent theoretical results, we tentatively conclude that the dips may represent occultations of the small hotspots created by unstable accretion tongues by hypothetical optically thick clumps of dust.

  14. Time delay effect between long quasi-periodic oscillations of 37 GHz radio sources and the magnetic field of the nearest sunspots

    NASA Astrophysics Data System (ADS)

    Smirnova, V. V.; Riehokainen, A.; Solov'ev, A. A.; Kallunki, J.

    2015-06-01

    Measurements and the interpretation of the time delay effect between long quasi-periodic oscillations of sunspot magnetic fields and nearby millimeter radio sources observed at 37 GHz were the main goals of this work. Ground-based radio telescope operated by Metsähovi Radio Observatory, Aalto University, Finland was used to obtain time series variations of radio intensity at 37 GHz frequency, as well as, the Helioseismic and Magnetic Imager instrument on-board the Solar Dynamics Observatory spacecraft was used to obtain the magnetic field time series variations. Lags (time delays) in the interval of 15-35 minutes were obtained by cross-correlation analysis of time series and by direct geometrical measurements of distances between the radio sources and nearby sunspots. These distances were in the interval of 11-24 Mm. Corresponding time delays were defined as the relation of these distances to the sound speed. Time delays obtained by two different independent methods turned to be very close. This fact confirms the interpretation of the phenomenon under the study as a process of propagation of disturbances from the slowly oscillating sunspot to the radio source with the sound speed.

  15. On Mass Constraints Implied by the Relativistic Precession Model of Twin-peak Quasi-periodic Oscillations in Circinus X-1

    NASA Astrophysics Data System (ADS)

    Török, Gabriel; Bakala, Pavel; Šrámková, Eva; Stuchlík, Zdeněk; Urbanec, Martin

    2010-05-01

    Boutloukos et al. discovered twin-peak quasi-periodic oscillations (QPOs) in 11 observations of the peculiar Z-source Circinus X-1. Among several other conjunctions the authors briefly discussed the related estimate of the compact object mass following from the geodesic relativistic precession model for kHz QPOs. Neglecting the neutron star rotation they reported the inferred mass M 0 = 2.2 ± 0.3 M sun. We present a more detailed analysis of the estimate which involves the frame-dragging effects associated with rotating spacetimes. For a free mass we find acceptable fits of the model to data for (any) small dimensionless compact object angular momentum j = cJ/GM 2. Moreover, quality of the fit tends to increase very gently with rising j. Good fits are reached when M ~ M 0[1 + 0.55(j + j 2)]. It is therefore impossible to estimate the mass without independent knowledge of the angular momentum and vice versa. Considering j up to 0.3 the range of the feasible values of mass extends up to 3 M sun. We suggest that similar increase of estimated mass due to rotational effects can be relevant for several other sources.

  16. Phase lags of quasi-periodic oscillations across source states in the low-mass X-ray binary 4U 1636-53

    NASA Astrophysics Data System (ADS)

    de Avellar, Marcio G. B.; Méndez, Mariano; Altamirano, Diego; Sanna, Andrea; Zhang, Guobao

    2016-09-01

    While there are many dynamical mechanisms and models that try to explain the origin and phenomenology of the quasi-periodic oscillations (QPOs) seen in the X-ray light curves of low-mass X-ray binaries, few of them address how the radiative processes occurring in these extreme environments give rise to the rich set of variability features actually observed in these light curves. A step towards this end comes from the study of the energy and frequency dependence of the phase lags of these QPOs. Here we used a methodology that allowed us to study, for the first time, the dependence of the phase lags of all QPOs in the range of 1-1300 Hz detected in the low-mass X-ray binary 4U 1636-53 upon energy and frequency as the source changes its states as it moves through the colour-colour diagram. Our results suggest that within the context of models of up-scattering Comptonization, the phase lags dependences upon frequency and energy can be used to extract size scales and physical conditions of the medium that produces the lags.

  17. Effect of temperature on the shape of spatial quasi-periodic oscillations of the refractive index of alkali atoms in an optically dense medium with a closed excitation contour of Δ type

    SciTech Connect

    Barantsev, K A; Litvinov, A N

    2014-10-31

    A theory of a closed excitation contour (Δ system) of a three-level atom in an optically dense medium is constructed with allowance for temperature. The spatial quasi-periodic oscillations of the refractive index in the system under study are shown to damp with increasing temperature. The range of temperatures at which these oscillations are most pronounced is found. (quantum optics)

  18. Numerical Simulation of Non-Thermal Food Preservation

    NASA Astrophysics Data System (ADS)

    Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.

    2010-09-01

    Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.

  19. RELATIVISTIC RECONNECTION: AN EFFICIENT SOURCE OF NON-THERMAL PARTICLES

    SciTech Connect

    Sironi, Lorenzo; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.edu

    2014-03-01

    In magnetized astrophysical outflows, the dissipation of field energy into particle energy via magnetic reconnection is often invoked to explain the observed non-thermal signatures. By means of two- and three-dimensional particle-in-cell simulations, we investigate anti-parallel reconnection in magnetically dominated electron-positron plasmas. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic state of the system beyond the initial transients, and without any artificial limitation by the boundary conditions. At late times, the reconnection layer is organized into a chain of large magnetic islands connected by thin X-lines. The plasmoid instability further fragments each X-line into a series of smaller islands, separated by X-points. At the X-points, the particles become unmagnetized and they get accelerated along the reconnection electric field. We provide definitive evidence that the late-time particle spectrum integrated over the whole reconnection region is a power law whose slope is harder than –2 for magnetizations σ ≳ 10. Efficient particle acceleration to non-thermal energies is a generic by-product of the long-term evolution of relativistic reconnection in both two and three dimensions. In three dimensions, the drift-kink mode corrugates the reconnection layer at early times, but the long-term evolution is controlled by the plasmoid instability which facilitates efficient particle acceleration, analogous to the two-dimensional physics. Our findings have important implications for the generation of hard photon spectra in pulsar winds and relativistic astrophysical jets.

  20. Discovery of a Soft Spectral Component and Transient 22.7 Second Quasi-periodic Oscillations of SAX J2103.5+4545

    NASA Astrophysics Data System (ADS)

    İnam, S. Ç.; Baykal, A.; Swank, J.; Stark, M. J.

    2004-11-01

    XMM-Newton observed SAX J2103.5+4545 on 2003 January 6, while the Rossi X-Ray Timing Explorer (RXTE) was also monitoring the source. Using the RXTE Proportional Counter Array data set between 2002 December 3 and 2003 January 29, the spin period and average spin-up rate during the XMM-Newton observations were found to be 354.7940+/-0.0008 s and (7.4+/-0.9)×10-13 Hz s-1, respectively. In the power spectrum of the 0.9-11 keV EPIC PN light curve, we found quasi-periodic oscillations (QPOs) around 0.044 Hz (22.7 s) with an rms fractional amplitude of ~6.6%. We interpreted this QPO feature as the Keplerian motion of inhomogeneities through the inner disk. In the X-ray spectrum, in addition to the power-law component with high-energy cutoff and the ~6.4 keV fluorescent iron emission line, we discovered a soft component consistent with blackbody emission with kT~1.9 keV. The pulse phase spectroscopy of the source revealed that the blackbody flux peaked at the peak of the pulse with an emission radius of ~0.3 km, suggesting the polar cap on the neutron star surface as the source of the blackbody emission. The flux of the iron emission line at ~6.42 keV was shown to peak at the off-pulse phase, supporting the idea that this feature arises from fluorescent emission of the circumstellar material around the neutron star rather than the hot region in the vicinity of the neutron star polar cap.

  1. Quasi-periodic Pulsations in Solar and Stellar Flares: Re-evaluating their Nature in the Context of Power-law Flare Fourier Spectra

    NASA Astrophysics Data System (ADS)

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-01

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  2. A SPECTRAL STUDY OF THE RAPID TRANSITIONS OF TYPE-B QUASI-PERIODIC OSCILLATIONS IN THE BLACK HOLE TRANSIENT XTE J1859+226

    SciTech Connect

    Sriram, K.; Choi, C. S.; Rao, A. R.

    2013-09-20

    The fast transitions of type-B and type-A quasi-periodic oscillations (QPOs) are rarely found, and they are observed at the peak of the outburst in black hole transient (BHT) sources. The associated spectral variations during such events are crucial to understand the origin and location of such QPOs in the accretion disk. During the 1999 outburst of XTE J1859+226, on four occasions a rapid transition of type-B/A QPOs was noted. We performed broadband spectral analysis on these four observations to unveil the responsible spectral parameter causing the rapid transitions. After invoking simple spectral models, it was observed that disk parameters were consistently varying along with disk and power-law fluxes, and almost no change was noted in the power-law index parameter. Though using a complex physical model showed consistent results, the spectral parameter variations across the transitions were not significant. It was observed that the type-B QPO was always associated with an inner disk front which is closer to the BH. In one observation, a type-A QPO appeared as the source count rate suddenly dropped, and the power-law index as well as disk normalization parameter considerably changed during this transition. The spectral changes in this particular observation were similar to the changes observed in XTE J1817-330, indicating a common underlying mechanism. We have also examined a similar observation of BHT source GX 339-4, where a sudden transition of a type-A/B QPO was noted. Similar spectral study again revealed that the disk parameters were changing. We discuss the results in the framework of a truncated disk model and conclude that the movement of the coupled inner disk-corona region is responsible for such rapid transitions of type-B QPOs.

  3. DISCOVERY OF A 7 mHz X-RAY QUASI-PERIODIC OSCILLATION FROM THE MOST MASSIVE STELLAR-MASS BLACK HOLE IC 10 X-1

    SciTech Connect

    Pasham, Dheeraj R.; Mushotzky, Richard F.; Strohmayer, Tod E. E-mail: richard@astro.umd.edu

    2013-07-10

    We report the discovery with XMM-Newton of an Almost-Equal-To 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33{sigma} confidence level and has a fractional amplitude (% rms) and a quality factor, Q {identical_to} {nu}/{Delta}{nu}, of Almost-Equal-To 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of Almost-Equal-To - 2, and a QPO at 7 mHz. At frequencies {approx}>0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the 'heartbeat' mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz 'dipper QPOs' of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  4. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    SciTech Connect

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-10

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  5. EXTREME-ULTRAVIOLET MULTI-WAVELENGTH OBSERVATIONS OF QUASI-PERIODIC PULSATIONS IN A SOLAR POST-FLARE CUSP-SHAPE LOOP WITH SDO/AIA

    SciTech Connect

    Su, J. T.; Shen, Y. D.; Liu, Y.

    2012-07-20

    We present extreme-ultraviolet multi-wavelength observations with the SDO/AIA instruments of quasi-periodic pulsations (QPPs) propagating along a cusp-shaped loop formed after an M2.2 flare on the Sun. Our motivation is to detect whether there were slow-mode magnetoacoustic waves propagating along its protruding flux tube. To this end, with fast Fourier transform we extract the short (<3 minutes) and long (>3 minutes) period components of the QPPs from time-space diagrams of the tube slices. We find that velocity differences did exist among the short/long-period components of different wavelengths, but only one event in the long-period ones showed they were greater than the measurement errors (e.g., 65 km s{sup -1}), which were 330 km s{sup -1} detected in 171 A, 590 km s{sup -1} in 211 A, and 180 km s{sup -1} in 304 A. The intensity modulation in all wavelengths is found to be very large, e.g., {approx}60% of the emission trend for an event in the 171 A passband, which would be an order of magnitude higher than the perturbation of the plasma density in the slow-mode magnetoacoustic waves. Moreover, only the QPPs with upward velocities of 50-300 km s{sup -1} are found in the tube, and the downward ones of several tens of kilometers are never unambiguously detected. Therefore, most of the QPP events under study were likely the episodic outflows along the tube, and the one with a supersonic speed of 590 km s{sup -1} may be a kink wave.

  6. EVIDENCE OF A WARM ABSORBER THAT VARIES WITH QUASI-PERIODIC OSCILLATION PHASE IN THE ACTIVE GALACTIC NUCLEUS RE J1034+396

    SciTech Connect

    Maitra, Dipankar; Miller, Jon M. E-mail: jonmm@umich.ed

    2010-07-20

    A recent observation of the nearby (z = 0.042) narrow-line Seyfert 1 galaxy RE J1034+396 on 2007 May 31 showed strong quasi-periodic oscillations (QPOs) in the 0.3-10 keV X-ray flux. We present phase-resolved spectroscopy of this observation, using data obtained by the EPIC PN detector on board XMM-Newton. The 'low' phase spectrum, associated with the troughs in the light curve, shows (at >4{sigma} confidence level) an absorption edge at 0.86 {+-} 0.05 keV with an absorption depth of 0.3 {+-} 0.1. Ionized oxygen edges are hallmarks of X-ray warm absorbers in Seyfert active galactic nuclei; the observed edge is consistent with H-like O VIII and implies a column density of N{sub OVIII} {approx} 3 x 10{sup 18} cm{sup -2}. The edge is not seen in the 'high' phase spectrum associated with the crests in the light curve, suggesting the presence of a warm absorber in the immediate vicinity of the supermassive black hole that periodically obscures the continuum emission. If the QPO arises due to Keplerian orbital motion around the central black hole, the periodic appearance of the O VIII edge would imply a radius of {approx}9.4(M/[4x10{sup 6}M{sub sun}]){sup -2/3}(P/[1 hr]){sup 2/3} r{sub g} for the size of the warm absorber.

  7. Evidence from Quasi-Periodic Oscillations for a Millisecond Pulsar in the Low Mass X-Ray Binary 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.

  8. Probing the origin of quasi-periodic oscillations: the short-time-scale evolution of phase lags in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    van den Eijnden, Jakob; Ingram, Adam; Uttley, Phil

    2016-06-01

    We present a model-independent analysis of the short-time-scale energy dependence of low-frequency quasi-periodic oscillations (QPOs) in the X-ray flux of GRS 1915+105. The QPO frequency in this source has previously been observed to depend on photon energy, with the frequency increasing with energy for observations with a high (≳2 Hz) QPO frequency, and decreasing with energy for observations with a low (≲2 Hz) QPO frequency. As this observed energy dependence is currently unexplained, we investigate if it is intrinsic to the QPO mechanism by tracking phase lags on (sub)second time-scales. We find that the phase lag between two broad energy bands systematically increases for 5-10 QPO cycles, after which the QPO becomes decoherent, the phase lag resets and the pattern repeats. This shows that the band with the higher QPO frequency is running away from the other band on short time-scales, providing strong evidence that the energy dependence of the QPO frequency is intrinsic. We also find that the faster the QPO decoheres, the faster the phase lag increases, suggesting that the intrinsic frequency difference contributes to the decoherence of the QPO. We interpret our results within a simple geometric QPO model, where different radii in the inner accretion flow experience Lense-Thirring precession at different frequencies, causing the decoherence of the oscillation. By varying the spectral shape of the inner accretion flow as a function of radius, we are able to qualitatively explain the energy-dependent behaviour of both QPO frequency and phase lag.

  9. Frequency variations of quasi-periodic ELF-VLF emissions: A possible new ground-based diagnostic of the outer high-latitude magnetosphere

    SciTech Connect

    Alford, J.; Engebretson, M.; Arnoldy, R.; Inan, U.

    1996-01-01

    Magnetic pulsations and quasi-periodic (QP) amplitude modulations of ELF-VLF waves at Pc 3-4 frequencies (15-50 mHz) are commonly observed simultaneously in cusp-latitude data. The naturally occurring ELF-VLF emissions are believed to be modulated within the magnetosphere by the compressional component of geomagnetic pulsations formed external to the magnetosphere. The authors have examined data from South Pole Station (L {approximately} 14) to determine the occurrence and characteristics of QP emissions. On the basis of 14 months of data during 1987 and 1988 they found that QP emissions typically appeared in both the 0.5-1 kHz and 1-2 kHz receiver channels at South Pole Station and ocassionally in the 2-4 kHz channel. The QP emission frequency appeared to depend on solar wind parameters and interplanetary magnetic field (IMF) direction, and the months near fall equinox in both 1987 and 1988 showed a significant increase in the percentage of QP emissions only in the lowest-frequency channel. The authors present a model consistent with these variations in which high-latitude (nonequatorial) magnetic field minima near the magnetopause play a major role, because the field magnitude governs both the frequency of ELF-VLF emissions and the whistler mode propagation cutoffs. Because the field in these regions will be strongly influenced by solar wind and IMF parameters, variations in the frequency of such emissions may be useful in providing ground-based diagnostics of the outer high-latitude magnetosphere. 32 refs., 13 figs.

  10. Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO-AIA

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.

    2012-01-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  11. On the Disappearance of Kilohertz Quasi-periodic Oscillations at a High Mass Accretion Rate in Low-Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Cui, Wei

    2000-05-01

    For all sources in which the phenomenon of kilohertz quasi-periodic oscillation (kHz QPO) is observed, the QPOs disappear abruptly when the inferred mass accretion rate exceeds a certain threshold. Although the threshold cannot at present be accurately determined (or even quantified) observationally, it is clearly higher for bright Z sources than for faint atoll sources. Here we propose that the observational manifestation of kHz QPOs requires direct interaction between the neutron star magnetosphere and the Keplerian accretion disk and that the cessation of kHz QPOs at a high accretion rate is due to the lack of such an interaction when the Keplerian disk terminates at the last stable orbit and yet the magnetosphere is pushed farther inward. The threshold is therefore dependent on the magnetic field strength-the stronger the magnetic field, the higher the threshold. This is certainly in agreement with the atoll/Z paradigm, but we argue that it is also generally true, even for individual sources within each (atoll or Z) category. For atoll sources, the kHz QPOs also seem to vanish at a low accretion rate. Perhaps the ``disengagement'' between the magnetosphere and the Keplerian disk also takes place under such circumstances because of, for instance, the presence of quasi-spherical advection-dominated accretion flow (ADAF) close to the neutron star. Unfortunately, in this case, the estimation of the accretion rate threshold would require a knowledge of the physical mechanisms that cause the disengagement. If the ADAF is responsible, the threshold is likely dependent on the magnetic field of the neutron star.

  12. XMM-Newton discovery of mHz quasi-periodic oscillations in the high-mass X-ray binary IGR J19140+0951

    NASA Astrophysics Data System (ADS)

    Sidoli, L.; Esposito, P.; Motta, S. E.; Israel, G. L.; Rodríguez Castillo, G. A.

    2016-08-01

    We report on the discovery of mHz quasi-periodic oscillations (QPOs) from the high-mass X-ray binary (HMXB) IGR J19140+0951, during a 40 ks XMM-Newton observation performed in 2015, which caught the source in its faintest state ever observed. At the start of the observation, IGR J19140+0951 was at a low flux of 2 × 10-12 erg cm-2 s-1 (2-10 keV; LX = 3 × 1033 erg s-1 at 3.6 kpc), then its emission rose reaching a flux ˜10 times higher, in a flare-like activity. The investigation of the power spectrum reveals the presence of QPOs, detected only in the second part of the observation, with a strong peak at a frequency of 1.46 ± 0.07 mHz, together with higher harmonics. The X-ray spectrum is highly absorbed (NH = 1023 cm-2), well fitted by a power law with a photon index in the range 1.2-1.8. The re-analysis of a Chandra archival observation shows a modulation at ˜0.17 ± 0.05 mHz, very likely the neutron-star spin period (although a QPO cannot be excluded). We discuss the origin of the 1.46 mHz QPO in the framework of both disc-fed and wind-fed HMXBs, favouring the quasi-spherical accretion scenario. The low flux observed by XMM-Newton leads to about three orders of magnitude the source dynamic range, overlapping with the one observed from Supergiant Fast X-ray Transients (SFXTs). However, since its duty cycle is not as low as in SFXTs, IGR J19140+0951 is an intermediate system between persistent supergiant HMXBs and SFXTs, suggesting a smooth transition between these two sub-classes.

  13. Discovery of a Variable-Frequency, 50--60 HZ Quasi-Periodic Oscillation on the Normal Branch of GX 17+2

    NASA Astrophysics Data System (ADS)

    Wijnands, R. A. D.; van der Klis, M.; Psaltis, D.; Lamb, F. K.; Kuulkers, E.; Dieters, S.; van Paradijs, J.; Lewin, W. H. G.

    1996-09-01

    We report the discovery, with the Rossi X-Ray Timing Explorer, of a 50--60 Hz quasi-periodic oscillation (QPO) in GX 17+2. The QPO is seen when GX 17+2 is on the normal branch in the X-ray color-color diagram. Its frequency initially increases from 59 to 62 Hz as the source moves down the normal branch, but below the middle of the normal branch it decreases to ~50 Hz. Together with this frequency decrease, the QPO peak becomes much broader, from ~4 Hz in the upper part of the normal branch to ~15 Hz in the lower normal branch. The rms amplitude remains approximately constant between 1% and 2% along the entire normal branch. From a comparison of the properties of this QPO with those of QPOs previously observed along the normal branch in other Z sources, we conclude that it is most likely the horizontal-branch QPO (HBO). However, this QPO displays a number of unusual characteristics. The decrease in the QPO frequency along the lower normal branch is not in agreement with the predictions of the beat-frequency model for the HBO unless the mass flux through the inner disk decreases as the source moves down the lower normal branch. We tentatively suggest that the required decrease in the mass flux through the inner disk is caused by an unusually rapid increase in the mass flux in the radial inflow as GX 17+2 moves down the normal branch. Assuming that this explanation is correct, we can derive an upper bound on the dipole component of the star's magnetic field at the magnetic equator of 5 x 109 G for a 1.4 Msolar neutron star with a radius of 106 cm.

  14. Detection of a 1258-Hz high-amplitude kilohertz quasi-periodic oscillation in the ultracompact X-ray binary 1A 1246-588

    NASA Astrophysics Data System (ADS)

    Jonker, P. G.; in't Zand, J. J. M.; Méndez, M.; van der Klis, M.

    2007-07-01

    We have observed the ultracompact low-mass X-ray binary (LMXB) 1A 1246-588 with the Rossi X-ray Timing Explorer (RXTE). In this paper we report the discovery of a kilohertz quasi-periodic oscillation (QPO) in 1A 1246-588. The kilohertz QPO was only detected when the source was in a soft high-flux state reminiscent of the lower banana branch in atoll sources. Only one kilohertz QPO peak is detected at a relatively high frequency of 1258 +/- 2 Hz and at a single trial significance of more than 7σ. Kilohertz QPOs with a higher frequency have only been found on two occasions in 4U 0614+09. Furthermore, the frequency is higher than that found for the lower kilohertz QPO in any source, strongly suggesting that the QPO is the upper of the kilohertz QPO pair often found in LMXBs. The full width at half-maximum is 25 +/- 4 Hz, making the coherence the highest found for an upper kilohertz QPO. From a distance estimate of ~6 kpc from a radius expansion burst we derive that 1A 1246-588 is at a persistent flux of ~0.2-0.3 per cent of the Eddington flux, hence 1A 1246-588 is one of the weakest LMXBs for which a kilohertz QPO has been detected. The rms amplitude in the 5-60 keV band is 27 +/- 3 per cent; this is the highest for any kilohertz QPO source so far, in line with the general anticorrelation between source luminosity and rms amplitude of the kilohertz QPO peak identified before. Using the X-ray spectral information we produce a colour-colour diagram. The source behaviour in this diagram provides further evidence for the atoll nature of the source.

  15. LOW-FREQUENCY (11 mHz) OSCILLATIONS IN H1743-322: A NEW CLASS OF BLACK HOLE QUASI-PERIODIC OSCILLATIONS?

    SciTech Connect

    Altamirano, D.; Strohmayer, T.

    2012-08-01

    We report the discovery of quasi-periodic oscillations (QPOs) at {approx}11 mHz in two RXTE and one Chandra observations of the black hole candidate H1743-322. The QPO is observed only at the beginning of the 2010 and 2011 outbursts at similar hard color and intensity, suggestive of an accretion state dependence for the QPO. Although its frequency appears to be correlated with X-ray intensity on timescales of a day, in successive outbursts eight months apart, we measure a QPO frequency that differs by less than Almost-Equal-To 2.2 mHz while the intensity had changed significantly. We show that this {approx}11 mHz QPO is different from the so-called Type C QPOs seen in black holes and that the mechanisms that produce the two flavors of variability are most probably independent. After comparing this QPO with other variability phenomena seen in accreting black holes and neutron stars, we conclude that it best resembles the so-called 1 Hz QPOs seen in dipping neutron star systems, although having a significantly lower (1-2 orders of magnitude) frequency. If confirmed, H1743-322 is the first black hole showing this type of variability. Given the unusual characteristics and the hard-state dependence of the {approx}11 mHz QPO, we also speculate whether these oscillations could instead be related to the radio jets observed in H1743-322. A systematic search for this type of low-frequency QPOs in similar systems is needed to test this speculation. In any case, it remains unexplained why these QPOs have only been seen in the last two outbursts of H1743-322.

  16. Discovery of Soft Spectral Component and Transient 22.7s Quasi Periodic Oscillations of SAX J2103.5+4545

    NASA Technical Reports Server (NTRS)

    Inam, S. C.; Baykal, A.; Swank, J.; Stark, M. J.

    2003-01-01

    XMM-Newton observed SAX J2103.5+4545 on January 6, 2003, while RXTE was monitoring the source. Using RXTE-PCA dataset between December 3, 2002 and January 29, 2003, the spin period and average spin-up rate during the XMM-Newton observations were found to be 354.7940+/-0.0008 s and (7.4 +/- 0.9) x 10(exp -13) Hz/s respectively. In the power spectrum of the 0.9-11 keV EPIC-PN lightcurve, we found quasi periodic oscillations around 0.044 Hz (22.7 s) with an rms fractional amplitude approx. 6.6 %. We interpreted this QPO feature as the Keplerian motion of inhomogeneities through the inner disk. In the X-ray spectrum, in addition to the power law component with high energy cutoff and approx. 6.4 keV fluorescent iron emission line, we discovered a soft component consistent with a blackbody emission with kT approx. 1.9 keV. The pulse phase spectroscopy of the source revealed that the blackbody flux peaked at the peak of the pulse with an emission radius approx. 0.3 km, suggesting the polar cap on the neutron star approx. 6.42 keV was shown to peak at the off-pulse phase, supporting the idea that this feature arises from fluorescent emission of the circumstellar material around the neutron star rather than the hot region in the vicinity of the neutron star polar cap.

  17. Discovery of a 7 mHz X-Ray Quasi-Periodic Oscillation from the Most Massive Stellar-Mass Black Hole IC 10 X-1

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard F.

    2013-01-01

    We report the discovery with XMM-Newton of an approx.. = 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33 sigma confidence level and has a fractional amplitude (% rms) and a quality factor, Q is identical with nu/delta nu, of approx. = 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of approx. = -2, and a QPO at 7 mHz. At frequencies approx. > 0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the "heartbeat" mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz "dipper QPOs" of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  18. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  19. Evidence for Quasi-Periodic X-ray Dips from an ULX: Implications for the Binary Motion and the Orbital Inclination

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2012-01-01

    We report results from long-term X-ray (0.3-8.0 keY) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Our primary results are: (1) the discovery of quasi-periodic dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy-dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days the amplitude of which decreases during the second half of the light curve and (3) energy spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data, possibly due to a change in the ionization state of the circumbinary material. We interpret the X-ray modulations in the context of binary motion in analogy to that seen in high-inclination low-mass X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days in contrast to the 115.5 day quasi-sinusoidal period previously reported. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk (similar to the phenomenon of dipping LMXBs), this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination approx > 60 deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  20. QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA

    SciTech Connect

    Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.; Ofman, Leon

    2012-07-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  1. Construction of invariant whiskered tori by a parameterization method. Part II: Quasi-periodic and almost periodic breathers in coupled map lattices

    NASA Astrophysics Data System (ADS)

    Fontich, Ernest; de la Llave, Rafael; Sire, Yannick

    2015-09-01

    We construct quasi-periodic and almost periodic solutions for coupled Hamiltonian systems on an infinite lattice which is translation invariant. The couplings can be long range, provided that they decay moderately fast with respect to the distance. For the solutions we construct, most of the sites are moving in a neighborhood of a hyperbolic fixed point, but there are oscillating sites clustered around a sequence of nodes. The amplitude of these oscillations does not need to tend to zero. In particular, the almost periodic solutions do not decay at infinity. The main result is an a posteriori theorem. We formulate an invariance equation. Solutions of this equation are embeddings of an invariant torus on which the motion is conjugate to a rotation. We show that, if there is an approximate solution of the invariance equation that satisfies some non-degeneracy conditions, there is a true solution close by. This does not require that the system is close to integrable, hence it can be used to validate numerical calculations or formal expansions. The proof of this a posteriori theorem is based on a Nash-Moser iteration, which does not use transformation theory. Simpler versions of the scheme were developed in [28]. One technical tool, important for our purposes, is the use of weighted spaces that capture the idea that the maps under consideration are local interactions. Using these weighted spaces, the estimates of iterative steps are similar to those in finite dimensional spaces. In particular, the estimates are independent of the number of nodes that get excited. Using these techniques, given two breathers, we can place them apart and obtain an approximate solution, which leads to a true solution nearby. By repeating the process infinitely often, we can get solutions with infinitely many frequencies which do not tend to zero at infinity.

  2. Detection of a Possible X-Ray Quasi-periodic Oscillation in the Active Galactic Nucleus 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pan, Hai-Wu; Yuan, Weimin; Yao, Su; Zhou, Xin-Lin; Liu, Bifang; Zhou, Hongyan; Zhang, Shuang-Nan

    2016-03-01

    The quasi-periodic oscillation (QPO) detected in the X-ray radiation of black hole X-ray binaries (BHXBs) is thought to originate from dynamical processes in close vicinity of black holes (BHs), and thus carries important physical information therein. Such a feature is extremely rare in active galactic nuclei (AGNs) with supermassive BHs. Here we report on the detection of a possible X-ray QPO signal with a period of 3800 s at a confidence level >99.99% in the narrow-line Seyfert 1 galaxy (NLS1) 1H 0707-495 in one data set in 0.2-10 keV taken with XMM-Newton. The statistical significance is higher than that of most previously reported QPOs in AGNs. The QPO is highly coherent (quality factor Q=ν /{{Δ }}ν ≥slant 15) with a high rms fractional variability (˜15%). A comprehensive analysis of the optical spectra of this AGN is also performed, yielding a central BH mass of 5.2 × 106 M⊙ from the broad emission lines based on the scaling relation. The QPO follows the known frequency-BH mass relation closely, which spans from stellar-mass to supermassive BHs. The absence of QPOs in other observations of the object suggests that it is a transient phenomenon. We suggest that the (high-frequency) QPOs tend to occur in highly accreting BH systems, from BHXBs to supermassive BHs. Future precise estimation of the BH mass may be used to infer the BH spin from the QPO frequency.

  3. A model of the steep power-law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Blaes, Omer

    2014-03-01

    We propose a new model of the steep power-law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to (i) become effectively optically thin and (ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energies. These spectra sum together to form a steep power-law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high-quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of sqrt{7/3}˜eq 1.53. This model explains the appearance of steep power-law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power-law spectral component. We predict an increase in QPO quality factor when the power spectrum is restricted to a narrower photon energy band, and an increase in HFQPO frequency at higher X-ray energies or lower luminosities. Future X-ray telescopes could detect additional HFQPOs from higher order modes. We demonstrate how this model could be used to measure black hole spin from HFQPOs, and qualitatively estimate the spin of GRO J1655-40 as a/M ˜ 0.4-0.7.

  4. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in astrophysical turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-02-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.

  5. Coupling Between Fluid Flow and Heat Transfer - A Mechanism for Quasi-Periodic Variations in CO2 Discharges from Deep Underground Sources

    NASA Astrophysics Data System (ADS)

    Pruess, K.

    2004-12-01

    Leakage of CO2 from underground sources is of interest in connection with volcanic hazards assessment, and with the integrity and safety of geologic disposal reservoirs for CO2 that have been proposed as a means for mitigating global warming from atmospheric emissions. Underground accumulations of CO2, whether naturally occurring or man-made, store vast amounts of compressional energy. At subsurface temperature and pressure conditions, CO2 is always buoyant relative to aqueous fluids, and its upward migration may conceivably give rise to a self-enhancing runaway release due to decompression and the much lower viscosity as compared to water. Natural occurrences of CO2 have been implicated in hydrothermal eruptions, and may be capable of causing "pneumatic" eruptions that are not powered by thermal energy. We have performed numerical simulations of CO2 release through fracture zones and faults in order to determine under what conditions, if any, a self-enhancing, eruptive release may be possible. Our simulations include coupling between multiphase fluid flow and associated heat transfer effects, and accurately represent the thermophysical properties of CO2 in sub-critical (liquid or gaseous) and supercritical conditions, as well as transitions between different phase compositions, and phase partitioning between CO2-rich and aqueous phases. The behavior of rising CO2 plumes is found to be strongly affected by heat transfer effects. As supercritical CO2 migrates upward it cools due to expansion. Much stronger cooling may arise from boiling of liquid CO2 that may occur after temperatures and pressures drop below critical values (Tcrit = 31.04 deg-C, Pcrit = 73.82 bar). Our simulations of CO2 migration up a fault zone produce quasi-periodic cycling of thermodynamic conditions and substantial variations of CO2 fluxes discharged at the land surface on a time scale of order 1 year. This behavior is explained in terms of an interplay between multiphase flow in the fault zone

  6. Swift-XRT observations of Quasi-periodic oscillations seen in the Super Soft Source emission from Classical and Recurrent Novae

    NASA Astrophysics Data System (ADS)

    Beardmore, Andrew

    2016-07-01

    We report short timescale, soft X-ray flux quasi-periodic oscillations that have been seen by the Swift X-ray Telescope (XRT) during the super soft source (SSS) emission phase from novae. A periodogram analysis revealed oscillations were visible in the 0.3-10 keV XRT light curves obtained from RS Oph (period, P=35.0 s), KT Eri (P=34.9s), V339 Del (P=54.0s), and V5668 Sgr (P=69.7s), with fractional rms variabilities ranging from 1-8 per cent. During day 32-59 of the RS Oph outburst, the oscillation central frequency appeared quite variable, ranging from 26.2-31.1 mHz, caused by a lower coherence at this time. However, after day 50 the oscillation became more coherent, with a frequency that slowly increased from 28.3-28.9 mHz over 9 days, before the trend reversed. The oscillation frequency was less variable in KT Eri and V339 Del. No other correlations, such as between the oscillation frequency or amplitude with source intensity, were seen. A wavelet analysis of the variability seen in RS Oph, KT Eri and V339 Del revealed the oscillations were sometimes visible for entire XRT snapshots lasting 1.0-1.5 ks, yet on other occasions, they were detected for only ˜120 s (i.e. ˜2-4 cycles). The modulation fractional amplitude was variable, occasionally reaching values of 15-20 per cent for a few cycles. During times when the coherence was low, the oscillation phase was seen to jump by ˜0.4-0.6 cycles in RS Oph, then remain stable for ˜10 cycles. KT Eri showed smaller phase jumps of ˜0.2 cycles. We detect a significant spectral variation through the 35s oscillation seen in RS~Oph, with the spectrum becoming harder at the time of the modulation maximum. Fits to the oscillation maximum and minima spectra suggest the increased flux between 0.6-0.75 keV in the former is caused by a 25 per cent reduction in the neutral oxygen column density at this phase. We discuss the possible origins behind the oscillations.

  7. Non-thermal discharge processing of gaseous pollutants

    SciTech Connect

    Vogtlin, G.; Penetrante, B.; Wallman, H.

    1993-08-27

    The electrical discharge techniques, called non-thermal, utilize high voltage breakdown of gases using short pulses of one to a few hundred nanoseconds. These short pulses between metal electrodes generate energetic electrons without appreciable thermal heating of the gas. The energetic electrons collide with gas molecules to form radicals. The radicals then react with pollutants to form harmless compounds. Our experimental device uses a wire in a pipe geometry. The wire is driven by a 40 kilovolt pulse 100 nanoseconds long. Gas is circulated in a loop through the pipe geometry in a closed system. This system permits the introduction of various gas combinations prior to testing. The recirculated gas can be heated to determine the effect on the electrical discharge, and chemical reactions. The efficiency of pollutant removal is the key to applications. We have been able to significantly improve the efficiency of NO removal by the addition of hydrocarbons. Nitric oxide has been removed with an energy cost of 15 ev per NO molecule. We believe the hydrocarbon additive serves by recycling the hydroxyl radicals during the oxidation and reduction of NO. The implementation of this process will depend largely on how much additives, electrical power consumption, and final NO{sub x} concentration are acceptable for a particular application.

  8. RXTE Observations M87: Investigating the Non-Thermal Continuum

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.

    2001-01-01

    This is the final report for NASA grant NAG5-7329, awarded for the RXTE Cycle 3 Guest Observer Program, "RXTE Observations of M87: Investigating the nonthermal continuum". This grant totaled $8000 and was spent over 3 years (4/1998-4/2001). It supported analysis of RXTE observations of the nearby giant elliptical galaxy M87 with the RXTE satellite. The main aim of these observations was to search for non-thermal emission from the core of M87 and the famous jet. This grant also partially funded supporting theoretical work. The observational campaign was performed in December 1997 and January 1998, and we were given the final data tape in April 1998. Sebastian Heinz (then a graduated student in our group) and I started to work on the data immediately. The results of our detailed analysis were submitted to the Astrophysical Journal in November 1998, and accepted for publication in March 1999. Tile paper was published in August, 1999. The journal reference is: A RXTE study of N187 and the core of the Virgo cluster, Reynolds C.S.,Heinx S., Fabian A.C., Begelman M.C., 1999, ApJ, 102, 1999. During this first year of the project, this grant supported Mr. Heinz's travel to the Paris Texas Symposium in December 1998, as well as providing funds for necessary maintenance of our computer system.

  9. Inactivation of human pathogenic dermatophytes by non-thermal plasma.

    PubMed

    Scholtz, Vladimír; Soušková, Hana; Hubka, Vit; Švarcová, Michaela; Julák, Jaroslav

    2015-12-01

    Non-thermal plasma (NTP) was tested as an in vitro deactivation method on four human pathogenic dermatophytes belonging to all ecological groups including anthropophilic Trichophyton rubrum and Trichophyton interdigitale, zoophilic Arthroderma benhamiae, and geophilic Microsporum gypseum. The identification of all strains was confirmed by sequencing of ITS rDNA region (internal transcribed spacer region of ribosomal DNA). Dermatophyte spores were suspended in water or inoculated on agar plates and exposed to NTP generated by a positive or negative corona discharge, or cometary discharge. After 15 min of exposure to NTP a significant decrease in the number of surviving spores in water suspensions was observed in all species. Complete spore inactivation and thus decontamination was observed in anthropophilic species after 25 min of exposure. Similarly, a significant decrease in the number of surviving spores was observed after 10-15 min of exposure to NTP on the surface of agar plates with full inhibition after 25 min in all tested species except of M. gypseum. Although the sensitivity of dermatophytes to the action of NTP appears to be lower than that of bacteria and yeast, our results suggest that NTP has the potential to be used as an alternative treatment strategy for dermatophytosis and could be useful for surface decontamination in clinical practice. PMID:26427826

  10. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  11. RXTE Observations M87: Investigating the Non-Thermal Continuum

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.

    2001-01-01

    This is the final report for NASA grant NAG5-7329, awarded for the RXTE Cycle 3 Guest Observer Program, "RXTE Observations of M87: Investigating the nonthermal continuum". This grant totaled 8000 and was spent over 3 years (4/1998-4/2001). It supported analysis of RXTE observations of the nearby giant elliptical galaxy M87 with the RXTE satellite. The main aim of these observations was to search for non-thermal emission from the core of M87 and the famous jet. This grant also partially funded supporting theoretical work. The observational campaign was performed in December 1997 and January 1998, and we were given the final data tape in April 1998. Sebastian Heinz (then a graduated student in our group) and I started to work on the data immediately. The results of our detailed analysis were submitted to the Astrophysical Journal in November 1998, and accepted for publication in March 1999. Tile paper was published in August, 1999. The journal reference is: A RXTE study of N187 and the core of the Virgo cluster, Reynolds C.S.,Heinx S., Fabian A.C., Begelman M.C., 1999, ApJ, 102, 1999. During this first year of the project, this grant supported Mr. Heinz's travel to the Paris Texas Symposium in December 1998, as well as providing funds for necessary maintenance of our computer system.

  12. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole Sources: Observational Evidence of Two Phases and Phase Transition in Black Holes

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasi-periodic oscillations (QPOs) and the spectral power law index of several black hole (BH) candidate sources, in low (hard) states, steep power law (soft) states, and transitions between these states. The observations indicate that the X-ray spectra of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission, indicating the probable presence of a jet. Strong QPOs (>20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant (i.e., 60%90%). This evidence contradicts the dominant, long-standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model that identifies and explains the origin of the QPOs and how they are imprinted on the properties of the power-law flux component. We argue for the existence of a bounded compact coronal region that is a natural consequence of the adjustment of the Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) a hard state, in which the TL is optically thin and very hot (kT approximately greater than 50 keV), producing photon upscattering via thermal Comptonization (the photon spectrum index Gamma approximates 1.7 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius), and (2) a soft state that is optically thick and relatively cold (kT approximately less than 5 keV the index for this state, Gamma

  13. Non-thermal shielding effects on the Compton scattering power in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Soo; Jung, Young-Dae

    2015-10-01

    The non-thermal shielding effects on the inverse Compton scattering are investigated in astrophysical non-thermal Lorentzian plasmas. The inverse Compton power is obtained by the modified Compton scattering cross section in Lorentzian plasmas with the blackbody photon distribution. The total Compton power is also obtained by the Lorentzan distribution of plasmas. It is found that the influence of non-thermal character of the plasma suppresses the inverse Compton power in astrophysical Lorentzian plasmas. It is also found that the non-thermal effect on the inverse Compton power decreases with an increase of the temperature. In addition, the non-thermal effect on the total Compton power with Lorentzan plasmas increases in low-temperature photons and, however, decreases in intermediate-temperature photons with increasing Debye length. The variation of the total Compton power is also discussed.

  14. Modeling of non-thermal plasma in flammable gas mixtures

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.

    2008-07-01

    An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations

  15. Effects of Non-thermal Electrons from ECCD on ECE Temperature Measurements for ITER

    NASA Astrophysics Data System (ADS)

    Subhash, P. V.; Pandya, Hitesh Kumar B.; Kumar, Ravinder; Vasu, P.

    2012-09-01

    In tokamaks, the radial temperature profile measured using Electron Cyclotron Emission (ECE) diagnostics are affected by many phenomena like harmonics overlap, relativistic down shifting, presence of non-thermals etc. In this paper we have estimated effects of a small non-thermal electron population on measured temperature profile for ITER-Scenario 2. For ITER like plasma, radial temperature profiles can be obtained from the second harmonic ECE spectrum. It is possible that, higher harmonics produced from the non-thermals can be relativistically downshifted to second harmonics and introduce error in the measured temperature profile. Generally Non-thermals are produced from Electron Cyclotron Resonance heating (ECRH), Electron Cyclotron Current Drive (ECCD) etc. In the present study the non-thermals are assumed to be produced from proposed ECCD, which is being considered for suppressing Neoclassical Tearing Modes (NTM). We have ignored any other source of non-thermals in the present study. All the numerical calculations reported in this paper is performed using NOTEC computer code which is capable of handling non-thermal populations. The locations and spatial extents of non-thermals are taken from previous report on optimization study of the ITER ECRH top launcher. The non-thermals are assumed to be centered around safety points q=1, q=1.5 and q=2, where the ECCD is expected to be used for suppressing the NTMs. The main results of the present study are summarized below. In the first part of the paper we present the results for temperature measurement with out non-thermal populations for the purpose of validation. Secondly the rage of higher harmonic frequencies (due to nonthermals) which possibly reach antenna and induce error in the temperature measurement are identified and the corresponding energies of non-thermal populations are calculated analytically. This calculations are further checked by simulations using NOTEC code. Finally non-thermal populations are

  16. NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for Pollution Control

    NASA Astrophysics Data System (ADS)

    1992-09-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. On 21-25 Sept. 1992, leading experts from academia, government laboratories, and industry met at Cambridge University, England to discuss laboratory studies and industrial implementation of non-thermal plasmas for the abatement of hazardous gaseous wastes. Papers presented at the workshop are included.

  17. Non-thermal x-ray emission from wire array z-pinches

    SciTech Connect

    Ampleford, David; Hansen, Stephanie B.; Jennings, Christopher Ashley; Webb, Timothy Jay; Harper-Slaboszewicz, V.; Loisel, Guillaume Pascal; Flanagan, Timothy McGuire; Bell, Kate Suzanne; Jones, Brent M.; McPherson, Leroy A.; Rochau, Gregory A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  18. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    SciTech Connect

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  19. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  20. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    PubMed Central

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications. PMID:25410636

  1. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    NASA Astrophysics Data System (ADS)

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-11-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.

  2. Dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons

    NASA Astrophysics Data System (ADS)

    Haider, M. M.

    2016-02-01

    The propagation of dust-ion-acoustic solitary waves in magnetized plasmas containing opposite polarity ions, opposite polarity dusts and non-thermal electrons has been studied. The fluid equations in the system are reduced to a Korteweg-de Vries equation in the limit of small amplitude perturbation. The effect of non-thermal electrons and the opposite polarity of ions and dusts in the solitary waves are presented graphically and numerically.

  3. Analytical model for non-thermal pressure in galaxy clusters - II. Comparison with cosmological hydrodynamics simulation

    NASA Astrophysics Data System (ADS)

    Shi, Xun; Komatsu, Eiichiro; Nelson, Kaylea; Nagai, Daisuke

    2015-03-01

    Turbulent gas motion inside galaxy clusters provides a non-negligible non-thermal pressure support to the intracluster gas. If not corrected, it leads to a systematic bias in the estimation of cluster masses from X-ray and Sunyaev-Zel'dovich (SZ) observations assuming hydrostatic equilibrium, and affects interpretation of measurements of the SZ power spectrum and observations of cluster outskirts from ongoing and upcoming large cluster surveys. Recently, Shi & Komatsu developed an analytical model for predicting the radius, mass, and redshift dependence of the non-thermal pressure contributed by the kinetic random motions of intracluster gas sourced by the cluster mass growth. In this paper, we compare the predictions of this analytical model to a state-of-the-art cosmological hydrodynamics simulation. As different mass growth histories result in different non-thermal pressure, we perform the comparison on 65 simulated galaxy clusters on a cluster-by-cluster basis. We find an excellent agreement between the modelled and simulated non-thermal pressure profiles. Our results open up the possibility of using the analytical model to correct the systematic bias in the mass estimation of galaxy clusters. We also discuss tests of the physical picture underlying the evolution of intracluster non-thermal gas motions, as well as a way to further improve the analytical modelling, which may help achieve a unified understanding of non-thermal phenomena in galaxy clusters.

  4. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    SciTech Connect

    Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  5. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism

    PubMed Central

    Lee, Amanda; Lin, Abraham; Shah, Kajol; Singh, Harpreet; Miller, Vandana; Gururaja Rao, Shubha

    2016-01-01

    Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS) upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application. PMID:27505063

  6. Mitochondria-Mediated Anticancer Effects of Non-Thermal Atmospheric Plasma

    PubMed Central

    Zhunussova, Aigul; Vitol, Elina A.; Polyak, Boris; Tuleukhanov, Sultan; Brooks, Ari D.; Sensenig, Richard; Friedman, Gary; Orynbayeva, Zulfiya

    2016-01-01

    Non-thermal atmospheric pressure plasma has attracted great interest due to its multiple potential biomedical applications with cancer treatment being among the most urgent. To realize the clinical potential of non-thermal plasma, the exact cellular and molecular mechanisms of plasma effects must be understood. This work aimed at studying the prostate cancer specific mechanisms of non-thermal plasma effects on energy metabolism as a central regulator of cell homeostasis and proliferation. It was found that cancer cells with higher metabolic rate initially are more resistant to plasma treated phosphate-buffered saline (PBS) since the respiratory and calcium sensitive signaling systems were not responsive to plasma exposure. However, dramatic decline of cancer oxidative phosphorylation developed over time resulted in significant progression of cell lethality. The normal prostate cells with low metabolic activity immediately responded to plasma treated PBS by suppression of respiratory functions and sustained elevation of cytosolic calcium. However, over time the normal cells start recovering their mitochondria functions, proliferate and restore the cell population. We found that the non-thermal plasma induced increase in intracellular ROS is of primarily non-mitochondrial origin. The discriminate non-thermal plasma effects hold a promise for clinical cancer intervention. PMID:27270230

  7. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in Lorentzian turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).

  8. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  9. The Advantages of Non-Thermal Plasma for Detonation Initiation Compared with Spark Plug

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-02-01

    In this paper, the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a double-tube experiment system. The two tubes had the same structure, and their closed ends were installed with a plasma generator and a spark plug, respectively. The propagation characteristics of the flame were measured by pressure sensors and ion probes. The experiment results show that, compared with a spark plug, the non-thermal plasma obviously broadened the range of equivalence ratio when the detonation wave could develop successfully, it also heightened the pressure value of detonation wave. Meanwhile, the detonation wave development time and the entire flame propagation time were reduced by half. All of these advantages benefited from the larger ignition volume when a non-thermal plasma was applied. supported by National Natural Science Foundation of China (No. 51176001)

  10. Dust-acoustic shock waves in a magnetized non-thermal dusty plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Mamun, A. A.; Mamun

    2014-08-01

    A theoretical investigation is carried out to study the basic properties of dust-acoustic (DA) shock waves propagating in a magnetized non-thermal dusty plasma (containing cold viscous dust fluid, non-thermal ions, and non-thermal electrons). The reductive perturbation method is used to derive the Korteweg-de Vries-Burgers equation. It is found that the basic properties of DA shock waves are significantly modified by the combined effects of dust fluid viscosity, external magnetic field, and obliqueness (angle between external magnetic field and DA wave propagation direction). It is shown that the dust fluid viscosity acts as a source of dissipation, and is responsible for the formation of DA shock structures in the dusty plasma system under consideration. The implications of our results in some space and laboratory plasma situations are briefly discussed.

  11. THE SWIFT BURST ALERT TELESCOPE PERSPECTIVE ON NON-THERMAL EMISSION IN HIFLUGCS GALAXY CLUSTERS

    SciTech Connect

    Wik, Daniel R.; Baumgartner, Wayne H.; Tueller, Jack; Okajima, Takashi; Zhang Yuying; Mushotzky, Richard F.; Clarke, Tracy E.

    2012-03-20

    The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. In this work, we investigate 14-195 keV spectra from the Swift Burst Alert Telescope (BAT) all-sky survey for evidence of non-thermal excess emission above the exponentially decreasing tail of thermal emission in the flux-limited HIFLUGCS sample. To account for the thermal contribution at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both thermal and non-thermal spectral components can be determined simultaneously. We find marginally significant IC components in six clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single-temperature fits to the XMM-Newton data alone, we see no significant excess emission above that predicted by the thermal model determined at soft energies. This result also holds for the summed spectra of various subgroups, except for the subsample of clusters with diffuse radio emission. For clusters hosting a diffuse radio halo, a relic, or a mini-halo, non-thermal emission is initially detected at the {approx}5{sigma} confidence level-driven by clusters with mini-halos-but modeling and systematic uncertainties ultimately degrade this significance. In individual clusters, the non-thermal pressure of relativistic electrons is limited to {approx}< 10% of the thermal electron pressure, with stricter limits for the more massive clusters, indicating that these electrons are likely not dynamically important in the central regions of clusters.

  12. Anisotropic Transport of Electrons in a Novel FET Channel with Chains of InGaAs Nano-Islands Embedded along Quasi-Periodic Multi-Atomic Steps on Vicinal (111)B GaAs

    SciTech Connect

    Akiyama, Y.; Kawazu, T.; Noda, T.; Sakaki, H.

    2010-01-04

    We have studied electron transport in n-AlGaAs/GaAs heterojunction FET channels, in which chains of InGaAs nano-islands are embedded along quasi-periodic steps. By using two samples, conductance G{sub para}(V{sub g}) parallel to the steps and G{sub perp}(V{sub g}) perpendicular to them were measured at 80 K as functions of gate voltage V{sub g}. At sufficiently high V{sub g}, G{sub para} at 80 K is several times as high as G{sub perp}, which manifests the anisotropic two-dimensional transport of electrons. When V{sub g} is reduced to -0.7 V, G{sub perp} almost vanishes, while {sub Gpara} stays sizable unless V{sub g} is set below -0.8 V. These results indicate that 'inter-chain' barriers play stronger roles than 'intra-chain' barriers.

  13. Studies of the Origin of High-frequency Quasi-periodic Oscillations of Mass-accreting Black Holes in X-Ray Binaries with Next-generation X-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric

    2016-08-01

    Observations with RXTE (Rossi X-ray Timing Explorer) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT (Large Observatory for X-ray Timing) and polarization signatures with space-borne X-ray polarimeters such as IXPE (Imaging X-ray Polarimetry Explorer), PolSTAR (Polarization Spectroscopic Telescope Array), PRAXyS(Polarimetry of Relativistic X-ray Sources), or XIPE (X-ray Imaging Polarimetry Explorer). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT-type mission.

  14. DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF {approx}2000 km s{sup -1} IN THE LOW SOLAR CORONA BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Liu Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D.; Zhao Junwei; Ofman, Leon

    2011-07-20

    Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime {approx}200 s) that emanate near the flare kernel and propagate outward up to {approx}400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 {+-} 130 km s{sup -1}. Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-{omega} diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-{omega} ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10{sup 7} erg cm{sup -2} s{sup -1} estimated at the coronal base is comparable to the steady-state heating requirement of active region loops.

  15. On the operation of machines powered by quantum non-thermal baths

    NASA Astrophysics Data System (ADS)

    Niedenzu, Wolfgang; Gelbwaser-Klimovsky, David; Kofman, Abraham G.; Kurizki, Gershon

    2016-08-01

    Diverse models of engines energised by quantum-coherent, hence non-thermal, baths allow the engine efficiency to transgress the standard thermodynamic Carnot bound. These transgressions call for an elucidation of the underlying mechanisms. Here we show that non-thermal baths may impart not only heat, but also mechanical work to a machine. The Carnot bound is inapplicable to such a hybrid machine. Intriguingly, it may exhibit dual action, concurrently as engine and refrigerator, with up to 100% efficiency. We conclude that even though a machine powered by a quantum bath may exhibit an unconventional performance, it still abides by the traditional principles of thermodynamics.

  16. Reactive oxygen species controllable non-thermal helium plasmas for evaluation of plasmid DNA strand breaks

    NASA Astrophysics Data System (ADS)

    Young Kim, Jae; Lee, Dong-Hoon; Ballato, John; Cao, Weiguo; Kim, Sung-O.

    2012-11-01

    Non-thermal, oxygen-rich helium plasmas were investigated to achieve an enhanced reactive oxygen species concentration at low voltage driving conditions. A non-thermal plasma device was fabricated based on a theta-shaped tube, and its potential was investigated for use in topological alteration of plasmid DNA. The optical emission spectra of the plasma showed that the oxygen flow affected the plasma properties, even though an oxygen plasma was not produced. The plasmid DNA strand breaks became more significant with the addition of oxygen flow to the helium in a single hollow, theta-shaped tube with other experimental conditions being unchanged.

  17. Mechanisms of interaction of non-thermal plasma with living cells

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Sameer Ulhas

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces various highly active molecules and atoms without heat. As a result, its effects on living cells and tissues could be selective and tunable. This makes non-thermal plasma very attractive for medical applications. However, despite several interesting demonstrations of non-thermal plasma in blood coagulation and tissue sterilization, the biological and physical mechanisms of its interaction with living cells are still poorly understood impeding further development of non-thermal plasma as a clinical tool. Although several possible mechanisms of interaction have been suggested, no systematic experimental work has been performed to verify these hypotheses. Using cells in culture, it is shown in this work that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects ranging from increasing cell proliferation to inducing apoptosis which are consistent with the effects of oxidative stress. DNA damage is chosen as a marker to assess the effects of oxidative stress in a quantitative manner. It is demonstrated here that plasma induced DNA damage as well as other effects ranging from cell proliferation to apoptosis are indeed due to production of intracellular reactive oxygen species (ROS). We found that DNA damage is initiated primarily by plasma generated active neutral species which cannot be attributed to ozone alone. Moreover, it is found that extracellular media and its components play a critical role in the transfer of the non-thermal plasma initiated oxidative stress into cells. Specifically, it is found that the peroxidation efficiency of amino acids is the sole predictor of the ability of the medium to transfer the oxidative stress induced by non-thermal plasma. Phosphorylation of H2AX, a DNA damage marker, following plasma treatment is found to be ATR dependent and ATM

  18. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma

  19. Non-thermal Plasma Activates Human Keratinocytes by Stimulation of Antioxidant and Phase II Pathways

    PubMed Central

    Schmidt, Anke; Dietrich, Stephan; Steuer, Anna; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Masur, Kai; Wende, Kristian

    2015-01-01

    Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application. PMID:25589789

  20. Mediation of the solar wind termination shock by non-thermal ions.

    PubMed

    Decker, R B; Krimigis, S M; Roelof, E C; Hill, M E; Armstrong, T P; Gloeckler, G; Hamilton, D C; Lanzerotti, L J

    2008-07-01

    Broad regions on both sides of the solar wind termination shock are populated by high intensities of non-thermal ions and electrons. The pre-shock particles in the solar wind have been measured by the spacecraft Voyager 1 (refs 1-5) and Voyager 2 (refs 3, 6). The post-shock particles in the heliosheath have also been measured by Voyager 1 (refs 3-5). It was not clear, however, what effect these particles might have on the physics of the shock transition until Voyager 2 crossed the shock on 31 August-1 September 2007 (refs 7-9). Unlike Voyager 1, Voyager 2 is making plasma measurements. Data from the plasma and magnetic field instruments on Voyager 2 indicate that non-thermal ion distributions probably have key roles in mediating dynamical processes at the termination shock and in the heliosheath. Here we report that intensities of low-energy ions measured by Voyager 2 produce non-thermal partial ion pressures in the heliosheath that are comparable to (or exceed) both the thermal plasma pressures and the scalar magnetic field pressures. We conclude that these ions are the >0.028 MeV portion of the non-thermal ion distribution that determines the termination shock structure and the acceleration of which extracts a large fraction of bulk-flow kinetic energy from the incident solar wind. PMID:18596801

  1. Non-thermal emission from the interaction of extragalactic jets with stars

    NASA Astrophysics Data System (ADS)

    Vieyro, Florencia; Bosch-Ramon, Valenti; Torres-Albà, Núria

    2016-07-01

    The central regions of galaxies are rich environments, often full with stars and medium inhomogeneities. For galaxies hosting active galactic nuclei, the interaction of a relativistic jet with these objects can lead to the formation of shocks, where particles can be accelerated up to relativistic energies. Recent numerical simulations show that the effective surface of the shock induced by the obstacle is higher than the obstacle section, increasing the available non-thermal energy. In this work, we analyze the non-thermal processes in these shocks. First, we make a detailed characterization of the stellar population in the central region of the galaxy, taking into account the evolution of stars with different masses. This allows us to obtain good estimates of the non-thermal energy. Then, we study the transport of relativistic electron accelerated in the shocks, and compute the gamma-ray emission. The interaction of relativistic jets with ambient objects, such as stars and clouds, can contribute significantly to the non-thermal emission from these sources.

  2. Energetic electron propagation in the decay phase of non-thermal flare emission

    SciTech Connect

    Huang, Jing; Yan, Yihua; Tsap, Yuri T.

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  3. The role of non-thermal factors in the control of skin blood flow during exercise.

    PubMed

    Nielsen, B

    1986-01-01

    Arguments in favor of the importance of non-thermal factors in the control of skin circulation are presented. Such factors include exercise, posture, water and electrolyte balance, state of training, and acclimatization. The first three factors probably elicit their effects via high- and low-pressure baroreceptors, while the mechanisms involved for the remainder are unknown. PMID:3529655

  4. Non-thermal plasmas as gas-phase advanced oxidation processes

    SciTech Connect

    Rosocha, L.A.

    1997-08-01

    Non-thermal plasmas are useful for generating reactive species (free radicals) in a gas stream. Because radical attack reaction rate constants are very large for many chemical species, entrained pollutants are readily decomposed by radicals. Such plasmas can generate both oxidative and reductive radicals; therefore, they show promise for treating a wide variety of pollutants.

  5. Cold plasma - a non-thermal processing technology to inactivate human pathogens on foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel non-thermal food processing technology, suitable for application to fresh and fresh-cut fruits and vegetables. Reductions of 3-5 logs have been achieved against human pathogens such as Salmonella and E. coli O157:H7 on fresh produce and against phytopathogens and spoilage orga...

  6. FIRST REPORT ON NON-THERMAL PLASMA REACTOR SCALING CRITERIA AND OPTIMIZATION MODELS

    EPA Science Inventory

    The purpose of SERDP project CP-1038 is to evaluate and develop non-thermal plasma (NTP) reactor technology for DoD air emissions control applications. The primary focus is on oxides of nitrogen (NOx) and a secondary focus on hazardous air pollutants (HAPs), especially volatile o...

  7. The effects of non-thermal plasmas on selected mammalian cells

    NASA Astrophysics Data System (ADS)

    Leduc, Mathieu

    Non-thermal plasma surface modifications have become indispensable processing steps in various industry and research sectors. Applications range from semiconductor processing to biotechnology and recently, plasma medicine. Non-thermal plasma sources have the advantage that a number of electron-driven chemical reactions can be produced while maintaining the gas (heavy species) temperature low, thus enabling the treatment of temperature-sensitive surfaces such as polymers, tissues and live cells. In the fields of biology and medicine, non-thermal plasmas have been primarily used for the deposition or modification of biocompatible polymers and for sterilization. Recently, non-thermal plasmas have been used to treat tissues and cells. A new field of research has emerged, Plasma Medicine, which studies the effects of non-thermal plasmas on cells and tissues for clinical applications. The Atmospheric Pressure Glow Discharge torch (APGD-t), a non-thermal plasma source, built in our laboratory was used to study the effects of non-thermal plasmas on mammalian cells. In its first application, we indirectly used the APGD-t to deposit a plasma-polymer on a glass surface and studied its effects on cultured cells. It was shown that the cells grew preferentially on the plasma-polymer, and their proliferation rate increased. The second application of the APGD-t was to further investigate previous observations of cell permeabilization obtained by plasma treatments and to apply non-thermal plasmas to cell transfection. It was demonstrated that the APGD-t is able to locally transfect adherent cells. We estimated the diameter of the pores created to be below 10 nm and that the pores remain open for less than 5 seconds. However, while investigating the mechanisms involved in cell transfection we observed that the use of higher gas flows in the negative controls (using the APGD-t but with the plasma turned off) also resulted in cell transfection. To further study this phenomena, we

  8. Slightly thermal springs and non-thermal springs at Mount Shasta, California: Chemistry and recharge elevations

    USGS Publications Warehouse

    Nathenson, M.; Thompson, J.M.; White, L.D.

    2003-01-01

    Temperature measurements, isotopic contents, and dissolved constituents are presented for springs at Mount Shasta to understand slightly thermal springs in the Shasta Valley based on the characteristics of non-thermal springs. Non-thermal springs on Mount Shasta are generally cooler than mean annual air temperatures for their elevation. The specific conductance of non-thermal springs increases linearly with discharge temperature. Springs at higher and intermediate elevations on Mount Shasta have fairly limited circulation paths, whereas low-elevation springs have longer paths because of their higher-elevation recharge. Springs in the Shasta Valley are warmer than air temperatures for their elevation and contain significant amounts of chloride and sulfate, constituents often associated with volcanic hydrothermal systems. Data for the Shasta Valley springs generally define mixing trends for dissolved constituents and temperature. The isotopic composition of the Shasta Valley springs indicates that water fell as precipitation at a higher elevation than any of the non-thermal springs. It is possible that the Shasta Valley springs include a component of the outflow from a proposed 210??C hydrothermal system that boils to supply steam for the summit acid-sulfate spring. In order to categorize springs such as those in the Shasta Valley, we introduce the term slightly thermal springs for springs that do not meet the numerical criterion of 10??C above air temperature for thermal springs but have temperatures greater than non-thermal springs in the area and usually also have dissolved constituents normally found in thermal waters. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Slightly thermal springs and non-thermal springs at Mount Shasta, California: Chemistry and recharge elevations

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Thompson, J. M.; White, L. D.

    2003-02-01

    Temperature measurements, isotopic contents, and dissolved constituents are presented for springs at Mount Shasta to understand slightly thermal springs in the Shasta Valley based on the characteristics of non-thermal springs. Non-thermal springs on Mount Shasta are generally cooler than mean annual air temperatures for their elevation. The specific conductance of non-thermal springs increases linearly with discharge temperature. Springs at higher and intermediate elevations on Mount Shasta have fairly limited circulation paths, whereas low-elevation springs have longer paths because of their higher-elevation recharge. Springs in the Shasta Valley are warmer than air temperatures for their elevation and contain significant amounts of chloride and sulfate, constituents often associated with volcanic hydrothermal systems. Data for the Shasta Valley springs generally define mixing trends for dissolved constituents and temperature. The isotopic composition of the Shasta Valley springs indicates that water fell as precipitation at a higher elevation than any of the non-thermal springs. It is possible that the Shasta Valley springs include a component of the outflow from a proposed 210°C hydrothermal system that boils to supply steam for the summit acid-sulfate spring. In order to categorize springs such as those in the Shasta Valley, we introduce the term slightly thermal springs for springs that do not meet the numerical criterion of 10°C above air temperature for thermal springs but have temperatures greater than non-thermal springs in the area and usually also have dissolved constituents normally found in thermal waters.

  10. Gravity as main driver of non-thermal motions in massive star forming regions

    NASA Astrophysics Data System (ADS)

    Traficante, A.; Fuller, G. A.; Smith, R.; Billot, N.; Duarte-Cabral, A.; Peretto, N.; Molinari, S.; Pineda, J. E.

    2016-05-01

    The origin of the observed non-thermal motions in massive star forming regions is still unclear. These motions can originate from local turbulence or from self-gravity and the two scenarios lead to two different star formation mechanisms. The recent findings of Heyer et al. ([5]) have supported self-gravity as main driver of the non-thermal motions, although without a clear interpretation of the results. In this contribution we introduce a new formalism to describe the relation between gravity and kinetic motion in massive star formation. We show that the Heyer findings are a particular result of this description and have a direct physical interpretation. We applied this formalism to different surveys of massive star forming regions covering all spatial scales from giant molecular clouds down to massive cores, including new data from massive candidate starless clumps. The results presented in this contribution strongly support a chaotic, gravitationally driven global collapse scenario as massive star formation mechanism.

  11. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    SciTech Connect

    Correa, C

    2004-02-05

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060.

  12. Study of non-thermal plasma jet with dielectric barrier configuration in nitrogen and argon

    NASA Astrophysics Data System (ADS)

    Choo, C. Y.; Chin, O. H.

    2014-03-01

    Dielectric barrier discharge (DBD) is advantageous in generating non-thermal plasma at atmospheric pressure, as it avoids transition to thermal arc and dispenses with costly vacuum system. It has found useful applications in treating heat-sensitive materials such as plastics and living tissue. In this work, the discharge formed between the Pyrex glass layer and the ground electrode is extruded through a nozzle to form the non-thermal plasma jet. The DBD characteristics were investigated in terms of charge transferred and mean power dissipated per cycle when operated in nitrogen and argon at various flow rates and applied voltages. These characteristics were then correlated to the dimension of the plasma jet. The mean power dissipated in the DBD was below 7 W giving an efficiency of 17 %. The length of the plasma jet was greatly limited to below 1 cm due to the configuration of the DBD system and nozzle.

  13. Effect of non-thermal atmospheric pressure plasma jet on human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Nikkhah, Maryam; Pirouzmand, Somaye; Ghomi, Hamid Reza

    2012-10-01

    Nowadays, Non-thermal plasma enjoy a wide range of applications in biomedical fields such as Sterilization, Wound healing, Cancer treatment and etc. The aim of this paper is to study the effect of non-thermal atmospheric pressure plasma jet on breast cancer (MCF-7) cells. In this regard the effect of plasma on death of the cancer cells are explored experimentally. The plasma in this discharge is created by pulsed dc high voltage power supply with repetition rate of several tens of kilohertz which led to the inductively coupled plasma. The pure helium gas were used for formation of the plasma jet. MTT assay were used for quantification of death cells. The results showed that the cells death rate increase with plasma exposure time. This study confirm that plasma jet have significant effect on treatment of human breast cancer cells.

  14. Non-thermal leptogenesis in a simple 5D SO(10) GUT

    SciTech Connect

    Fukuyama, Takeshi; Okada, Nobuchika E-mail: okadan@ua.edu

    2010-09-01

    We discuss non-thermal leptogenesis in the scheme of 5D orbifold SO(10) GUT with the smooth hybrid inflation. With unambiguously determined Dirac Yukawa couplings and an assumption for the neutrino mixing matrix of the tri-bimaximal from, we analyze baryon asymmetry of the universe via non-thermal leptogenesis in two typical cases for the light neutrino mass spectrum, the normal and inverted hierarchical cases. The resultant baryon asymmetry is obtained as a function of the lightest mass eigenvalue of the light neutrinos, and we find that a suitable amount of baryon asymmetry of the universe can be produced in the normal hierarchical case, while in the inverted hierarchical case the baryon asymmetry is too small to be consistent with the observation.

  15. Intermittency and lifetime of the 625 Hz quasi-periodic oscillation in the 2004 hyperflare from the magnetar SGR 1806-20 as evidence for magnetic coupling between the crust and the core

    SciTech Connect

    Huppenkothen, Daniela; Watts, Anna L.; Levin, Yuri

    2014-10-01

    Quasi-periodic oscillations (QPOs) detected in the 2004 giant flare from SGR 1806-20 are often interpreted as global magneto-elastic oscillations of the neutron star. There is, however, a large discrepancy between theoretical models, which predict that the highest frequency oscillations should die out rapidly, and the observations, which suggested that the highest-frequency signals persisted for ∼100 s in X-ray data from two different spacecraft. This discrepancy is particularly important for the high-frequency QPO at ∼625 Hz. However, previous analyses did not systematically test whether the signal could also be present in much shorter data segments, more consistent with the theoretical predictions. Here, we test for the presence of the high-frequency QPO at 625 Hz in data from both the Rossi X-ray Timing Explorer (RXTE) and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) systematically both in individual rotational cycles of the neutron star, as well as averaged over multiple successive rotational cycles at the same phase. We find that the QPO in the RXTE data is consistent with being only present in a single cycle, for a short duration of ∼0.5 s, whereas the RHESSI data are as consistent with a short-lived signal that appears and disappears as with a long-lived QPO. Taken together, this data provides evidence for strong magnetic interaction between the crust and the core.

  16. Intermittency and Lifetime of the 625 Hz Quasi-periodic Oscillation in the 2004 Hyperflare from the Magnetar SGR 1806-20 as Evidence for Magnetic Coupling between the Crust and the Core

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Watts, Anna L.; Levin, Yuri

    2014-10-01

    Quasi-periodic oscillations (QPOs) detected in the 2004 giant flare from SGR 1806-20 are often interpreted as global magneto-elastic oscillations of the neutron star. There is, however, a large discrepancy between theoretical models, which predict that the highest frequency oscillations should die out rapidly, and the observations, which suggested that the highest-frequency signals persisted for ~100 s in X-ray data from two different spacecraft. This discrepancy is particularly important for the high-frequency QPO at ~625 Hz. However, previous analyses did not systematically test whether the signal could also be present in much shorter data segments, more consistent with the theoretical predictions. Here, we test for the presence of the high-frequency QPO at 625 Hz in data from both the Rossi X-ray Timing Explorer (RXTE) and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) systematically both in individual rotational cycles of the neutron star, as well as averaged over multiple successive rotational cycles at the same phase. We find that the QPO in the RXTE data is consistent with being only present in a single cycle, for a short duration of ~0.5 s, whereas the RHESSI data are as consistent with a short-lived signal that appears and disappears as with a long-lived QPO. Taken together, this data provides evidence for strong magnetic interaction between the crust and the core.

  17. DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS

    SciTech Connect

    Coyner, Aaron J.; Davila, Joseph M.

    2011-12-01

    Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

  18. Dust-acoustic Solitary Waves in Dusty Plasma with Non-thermal Ions

    SciTech Connect

    Saini, Nareshpal Singh; Gill, Tarsem Singh; Kaur, Harvinder

    2005-10-31

    In the present research paper, characteristics of dust-acoustic solitary waves in dusty plasma are studied. The dust charge is treated as variable. KdV equation has been derived using reductive perturbation method. The effect of relative number density, relative ion temperature, non-thermal parameter and variable charge has been numerically studied for possibility of both type of dust-acoustic solitary waves.

  19. Dust-acoustic solitary waves in dusty plasmas with non-thermal ions

    SciTech Connect

    Asgari, H.; Muniandy, S. V.; Wong, C. S.

    2013-02-15

    Most studies on dusty plasmas have assumed that electrons and ions follow Maxwellian distributions. However, in the presence of energetic ions, the distribution of ions tends to be non-Maxwellian. It is shown here that the existence of non-thermal ions would increase the phase velocity of a dust-acoustic wave. It is also found that the change in the phase velocity profoundly affects the characteristics of a dust-acoustic solitary wave.

  20. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    SciTech Connect

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  1. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect

    Not Available

    1980-05-01

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  2. The Swift BAT Perspective on Non-Thermal Emission in HIFLUGCS Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Wik, Daniel R.

    2011-01-01

    The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. Until recently, comprehensive surveys of hard X-ray emission from clusters were not possible; instead, individually proposed-for. long observations would be collated from the archive. With the advent of the Swift BAT all sky survey, any c1u,;ter's emission above 14 keV can be probed with nearly uniform sensitivity. which is comparable to that of RXTE, Beppo-SAX, and Suzaku with the 58-month version of the survey. In this work. we search for non-thermal excess emission above the exponentially decreasing, high energy thermal emission in the flux-limited HIFLUGCS sample. The BAT emission from many of the detected clusters is marginally extended; we are able to extract the total flux for these clusters using fiducial models for their spatial extent. To account for thermal emission at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both the thermal and non-thermal spectral components can be determined simultaneou,;ly in joint fits. We find marginally significant IC components in 6 clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single temperature

  3. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    PubMed Central

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  4. Measurements of Non-thermal Line Widths in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  5. Search for non-thermal radio emission from Eta Carina's outer blast wave with ATCA

    NASA Astrophysics Data System (ADS)

    Ohm, Stefan; Urquhart, James; Skilton, Joanna Lucy; Hinton, Jim; Domainko, Wilfried

    2010-10-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV < E < 100 GeV) gamma-ray emission in the direction of Eta Carina has been recently detected using the INTEGRAL, AGILE and Fermi satellites. This emission can be either interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars or in the very fast moving blast wave which originates in the historical 1843 "Great Eruption". The detection of a radio shell at the location of the shock would support the latter scenario and confirm Eta Carina as prime example of a new source type, namely, an LBV star whose massive ejecta accelerates electrons to non-thermal energies. While Fermi and INTEGRAL do not provide sufficient angular resolution to resolve the blast wave, high resolution radio observations using ATCA will be able to test non-thermal radio emission from this acceleration site. The current sensitivity of ATCA is such that a relatively modest observation time of 12 hours will be sufficient to image the synchrotron emission from the blast region down to magnetic field strengths well below typical ISM values and hence prove or reject our blast-wave hypothesis for the high energy emission.

  6. Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing

    PubMed Central

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-01-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out. PMID:25489414

  7. An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays.

    PubMed

    Lee, Ok Joo; Ju, Hyung Woo; Khang, Gilson; Sun, Peter P; Rivera, Jose; Cho, Jin Hoon; Park, Sung-Jin; Eden, J Gary; Park, Chan Hum

    2016-04-01

    In contrast with a thermal plasma surgical instrument based on coagulative and ablative properties, low-temperature (non-thermal) non-equilibrium plasmas are known for novel medicinal effects on exposed tissue while minimizing undesirable tissue damage. In this study we demonstrated that arrays of non-thermal microplasma jet devices fabricated from a transparent polymer can efficiently inactivate fungi (Candida albicans) as well as bacteria (Escherichia coli), both in vitro and in vivo, and that this leads to a significant wound-healing effect. Microplasma jet arrays offer several advantages over conventional single-jet devices, including superior packing density, inherent scalability for larger treatment areas, unprecedented material flexibility in a plasma jet device, and the selective generation of medically relevant reactive species at higher plasma densities. The therapeutic effects of our multi-jet device were verified on second-degree burns in animal rat models. Reduction of the wound area and the histology of the wound after treatment have been investigated, and expression of interleukin (IL)-1α, -6 and -10 was verified to evaluate the healing effects. The consistent effectiveness of non-thermal plasma treatment has been observed especially in decreasing wound size and promoting re-epithelialization through collagen arrangement and the regulation of expression of inflammatory genes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26227832

  8. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    PubMed

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  9. Electrostatic envelope modes in multi-component non-thermal plasmas

    NASA Astrophysics Data System (ADS)

    Saiful Islam, Md; Sultana, Sharmin; Mamun, A. A.

    2016-07-01

    A theoretical study of envelope type solitary structures and their modulational instability has been made in a multi-component unmagnetized non-thermal plasma (consisting of negatively charged immobile heavy ions, inertial light ions and non-thermal electrons of two distinct temperatures). The cubic nonlinear Schrödinger equation (which describes the evolution of a slowly varying wave envelope with space and time) is derived by adopting the multiple scale (in space and time) perturbation technique. It is found that the plasma system under consideration supports two types (bright and dark) envelope solitons. It is also seen that the dark (bright) envelope solitons are modulationally stable (unstable). The variation of the growth rate of the unstable bright envelope solitons with various plasma parameters (e.g. wave number, temperature of plasma non-thermality, etc.) are found to be significant. The modulational instability criterions of the envelope modes are also seen to be influenced due to the variation of the intrinsic plasma parameters. This theoretical study may be useful in understanding the basic features of localized electrostatic structures in some space plasma systems (viz. Saturn's magnetosphere) where high energetic particles are available.

  10. The advent of non-thermal, non-tumescent techniques for treatment of varicose veins.

    PubMed

    Bootun, Roshan; Lane, Tristan R A; Davies, Alun H

    2016-02-01

    Varicose veins are common and their management has undergone a number of changes over the years. Surgery has been the traditional treatment option, but towards the 21st century, new endovenous thermal ablation techniques, namely, radiofrequency ablation and endovenous laser ablation, were introduced which have revolutionised the way varicose veins are treated. These minimally invasive techniques are associated with earlier return to normal activity and less pain, as well as enabling procedures to be carried out as day cases. They are, however, also known to cause a number of side-effects and involve infiltration of tumescent fluid which can cause discomfort. Non-thermal, non-tumescent methods are believed to be the answer to these unwelcome effects. Ultrasound-guided foam sclerotherapy is one such non-thermal, non-tumescent method and, despite a possible lower occlusion, has been shown to improve the quality of life of patients. The early results of two recently launched non-thermal, non-tumescent methods, mechanochemical ablation and cyanoacrylate glue, are promising and are discussed. PMID:26130051

  11. The Effects of Including Non-Thermal Particles in Flare Loop Models

    NASA Astrophysics Data System (ADS)

    Reeves, K. K.; Winter, H. D.; Larson, N. L.

    2012-05-01

    In this work, we use HyLoop (Winter et al. 2011), a loop model that can incorporate the effects of both MHD and non-thermal particle populations, to simulate soft X-ray emissions in various situations. First of all, we test the effect of acceleration location on the emission in several XRT filters by simulating a series of post flare loops with different injection points for the non-thermal particle beams. We use an injection distribution peaked at the loop apex to represent a direct acceleration model, and an injection distribution peaked at the footpoints to represent the Alfvén wave interaction model. We find that footpoint injection leads to several early peaks in the apex-to-footpoint emission ratio. Second, we model a loop with cusp-shaped geometry based on the eruption model developed byLin & Forbes (2000) and Reeves & Forbes (2005a), and find that early in the flare, emission in the loop footpoints is much brighter in the XRT filters if non-thermal particles are included in the calculation. Finally, we employ a multi-loop flare model to simulate thermal emission and compare with a previous model where a semi-circular geometry was used (Reeves et al. 2007). We compare the Geostationary Operational Environmental Satellite (GOES) emission from the two models and find that the cusp-shaped geometry leads to a smaller GOES class flare.

  12. Targeting NEU Protein in Melanoma Cells with Non-Thermal Atmospheric Pressure Plasma and Gold Nanoparticles.

    PubMed

    Choi, Byul Bora; Kim, Myung Soo; Kim, Uk Kyu; Hong, Jin Woo; Lee, Hae June; Kim, Gyoo Cheon

    2015-05-01

    Non-thermal atmospheric pressure plasma effectively kills cancer cells, but it cannot selectively kill cancer cells. The authors targeted NEU (human epidermal growth factor receptor 2) protein, which is frequently over-expressed in the cell membrane of melanoma cells, using anti-NEU antibody-labeled gold nanoparticles. The labeled nanoparticles preferentially targeted melanoma cells rather than normal keratinocytes. After the addition of labeled gold nanoparticles to melanoma and normal keratinocyte cells, both cells were exposed to non-thermal atmospheric pressure plasma. The death rate of melanoma cells was significantly higher than that of normal keratinocyte cells; many vacuoles, indicative of cell death, were observed in melanoma cells treated with anti-NEU antibody labeled gold nanoparticles and plasma. This selective cancer cell death was attributed to the selective destruction of NEU protein and a downstream effector of NEU. Our study findings show that treatment with a combination of non-thermal atmospheric pressure plasma and anti-NEU antibody-labeled gold nanoparticles effectively and selectively kills melanoma cells. PMID:26349401

  13. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction

    PubMed Central

    2011-01-01

    Background Therapeutic irreversible electroporation (IRE) is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE). A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for non-thermal tissue

  14. Search for a correlation between kHz quasi-periodic oscillation frequencies and accretion-related parameters in the ensemble of neutron star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Çatmabacak, Önder; Hakan Erkut, M.; Catmabacak, Onur; Duran, Sivan

    2016-07-01

    The distribution of neutron star sources in the ensemble of low-mass X-ray binaries shows no evidence for a correlation between kHz quasi-periodic oscillation (QPO) frequencies and X-ray luminosity. Sources differing by orders of magnitude in luminosity can exhibit similar range of QPO frequencies. We study the possibility for the existence of a correlation between kHz QPO frequencies and accretion related parameters. The parameters such as the mass accretion rate and the size of the boundary region in the innermost disk are expected to be related to X-ray luminosity. Using the up-to-date data of neutron star low-mass X-ray binaries, we search for a possible correlation between lower kHz QPO frequencies and mass accretion rate through the mass and radius values predicted by different equations of state for the neutron star. The range of mass accretion rate for each source can be estimated if the accretion luminosity is assumed to be represented well by the X-ray luminosity of the source. Although we find no correlation between mass accretion rate and QPO frequencies, the source distribution seems to be in accordance with a correlation between kHz QPO frequencies and the parameter combining the neutron star magnetic field and the mas accretion rate. The model function we employ to descibe the correlation is able to account for the scattering of individual sources around a simple power law. The correlation argues disk-magnetosphere interaction as the origin of these millisecond oscillations.

  15. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  16. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  17. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  18. Non-thermal atmospheric plasma brush induces HEMA grafting onto dentin collagen

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Dusevich, Vladimir; Liu, Yi; Yu, Qingsong; Wang, Yong

    2014-01-01

    Objective Non-thermal atmospheric plasma (NTAP) brush has been regarded as a promising technique to enhance dental interfacial bonding. However, the principal enhancement mechanisms have not been well identified. In this study, the effect of non-thermal plasmas on grafting of HEMA, a typical dental monomer, onto dentin collagen thin films was investigated. Methods Human dentin was sectioned into 10-um-thick films. After total demineralization in 0.5 M EDTA solution for 30 min, the dentin collagen films were water-rinsed, air-dried, treated with 35 wt% HEMA aqueous solution. The films were then subject to plasma-exposure under a NTAP brush with different time (1–8 min) / input power (5–15 w). For comparison, the dentin collagen films were also treated with the above HEMA solution containing photo-initiators, then subject to light-curing. After plasma-exposure or light-curing, the HEMA-collagen films were rinsed in deionized water, and then examined by FTIR spectroscopy and TEM. Results The FITR results indicated that plasma-exposure could induce significant HEMA grafting onto dentin collagen thin films. In contrast, light-curing led to no detectable interaction of HEMA with dentin collagen. Quantitative IR spectral analysis (i.e., 1720/3075 or 749/3075, HEMA/collagen ratios) further suggested that the grafting efficacy of HEMA onto the plasma-exposed collagen thin films strongly depended on the treatment time and input power of plasmas. TEM results indicated that plasma treatment did not alter collagen’s banding structure. Significance The current study provides deeper insight into the mechanism of dental adhesion enhancement induced by non-thermal plasmas treatment. The NTAP brush could be a promising method to create chemical bond between resin monomers and dentin collagen. PMID:25458523

  19. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    PubMed Central

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  20. Probing the gaseous halo of galaxies through non-thermal emission from AGN-driven outflows

    NASA Astrophysics Data System (ADS)

    Wang, Xiawei; Loeb, Abraham

    2015-10-01

    Feedback from outflows driven by active galactic nuclei (AGN) can affect the distribution and properties of the gaseous haloes of galaxies. We study the hydrodynamics and non-thermal emission from the forward outflow shock produced by an AGN-driven outflow. We consider a few possible profiles for the halo gas density, self-consistently constrained by the halo mass, redshift and the disc baryonic concentration of the galaxy. We show that the outflow velocity levels off at ˜ 103 km s- 1 within the scale of the galaxy disc. Typically, the outflow can reach the virial radius around the time when the AGN shuts off. We show that the outflows are energy-driven, consistent with observations and recent theoretical findings. The outflow shock lights up the haloes of massive galaxies across a broad wavelength range. For Milky Way mass haloes, radio observations by the Jansky Very Large Array and the Square Kilometre Array and infrared/optical observations by the James Webb Space Telescope and Hubble Space Telescope can detect the emission signal of angular size ˜8 arcsec from galaxies out to redshift z ˜ 5. Millimetre observations by the Atacama Large Millimeter/submillimeter Array are sensitive to non-thermal emission of angular size ˜18 arcsec from galaxies at redshift z ≲ 1, while X-ray observations by Chandra, XMM-Newton and the Advanced Telescope for High Energy Astrophysics are limited to local galaxies (z ≲ 0.1) with an emission angular size of ˜2 arcmin. Overall, the extended non-thermal emission provides a new way of probing the gaseous haloes of galaxies at high redshifts.

  1. The Role and Implications of Non-Thermal Distributions in the Solar Corona/Wind

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.

    2014-12-01

    Astrophysical plasmas contain ubiquitous non-thermal velocity distribution functions (VDF's) down to the mean energies of the plasma. These non-thermal particles represent a non-negligible part of the solar wind density, gas pressure, and heat flow. The usual fluid treatments ignore the information in non-Gaussian VDF's, while kinetic treatments suggest they play an essential role for the observed wind expansion. The existence of the such kurtotic VDF's contradict the very Spitzer-Braginskii (SB) approximations made to motivate low order closures approximations of the quasi-neutral fluid equations for the plasma (1). Their routine observation implies the usual continuum description of the plasma must change from the SB framework. The origin of such kurtotic distributions has been traced (1) to the consequences of gravity's violating the assumptions of the SB framework, giving any astrophysical plasma fluid description a non-local character. The quasi-steady character of the observed solar wind implies that this non-local character is resolved by spatial variation of the kurtotic distribution functions moving along the tubes of magnetic force as they enforce the higher goals of quasi-neutrality and zero current. This insight suggests an unusual equation of state for the plasma. A minimal fluid model will be introduced for the coronal expansion that (i) suggests the origin and strength of kurtotic VDF's, (ii) explains their ubiquity; (iii) provides a continuum description, (iv) allows variations of kurtosis and velocity filtration-like variations of T; and (v) retains coulomb collisions. The non-thermal electrons of the solar wind VDF's will be shown to closely resemble the conduction band in a metal, being the global regulators of quasi-neutrality, electric and heat currents and behaving as a second electron fluid which, together with the protons forms the minimal 3 fluid description. (1) Scudder, J.D. and H. Karimabadi, Ap J., 770:26, 2013

  2. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  3. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  4. Lean NOx Reduction in Two Stages: Non-thermal Plasma Followed by Heterogeneous Catalysis

    SciTech Connect

    Tonkyn, Russell G.; Yoon, Ilsop S.; Barlow, Stephan E.; Panov, Alexander G.; Kolwaite, A; Balmer, Mari LOU.

    2000-10-16

    We present data in this paper showing that non-thermal plasma in combination with heterogeneous catalysis is a promising technique for the treatment of NOx in diesel exhaust. Using a commonly available zeolite catalyst, sodium Y, to treat synthetic diesel exhaust we report approximately 50% chemical reduction of NOx over a broad, representative temperature range. We have measured the overall efficiency as a function of the temperature and hydrocarbon concentration. The direct detection of N2 and N2O when the background gas is replaced by helium confirms that true chemical reduction is occurring.

  5. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    DOEpatents

    Rosocha, Louis A.; Ferreri, Vincent; Kim, Yongho

    2009-04-21

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  6. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    PubMed

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, <2% for benzene, 11+/-2.4% for toluene, 3+/-1% for ethylbenzene, 1+/-1% for sigma-xylene, and 3+/-0.4% for m-/rho-xylene were found. A fairly wide range of degradation products could be identified. On both trapping media, various oxidized species such as alcohols, aldehydes, ketones and one epoxide were observed. The formation of adipaldehyde from nebulized cyclohexene clearly indicates an ozonolysis reaction. Other degradation products observed suggests reactions with OH radicals. We propose that mostly ozone and OH radicals are responsible for the degradation of organic molecules in the plasma air purifier. PMID:20167347

  7. Dynamics of ultrashort pulsed laser radiation induced non-thermal ablation of graphite

    NASA Astrophysics Data System (ADS)

    Reininghaus, M.; Kalupka, C.; Faley, O.; Holtum, T.; Finger, J.; Stampfer, C.

    2014-12-01

    We report on the dependence of a laser radiation induced ablation process of graphite on the applied pulse duration of ultrashort pulsed laser radiation smaller than 4 ps. The emerging so-called non-thermal ablation process of graphite has been confirmed to be capable to physically separate ultrathin graphitic layers from the surface of pristine graphite bulk crystal. This allows the deposition of ablated graphitic flakes on a substrate in the vicinity of the target. The observed ablation threshold determined at different pulse durations shows a modulation, which we ascribe to lattice motions along the c axis that are theoretically predicted to induce the non-thermal ablation process. In a simple approach, the ablation threshold can be described as a function of the energy penetration depth and the absorption of the applied ultrashort pulsed laser radiation. Based on the analysis of the pulse duration dependence of those two determining factors and the assumption of an invariant ablation process, we are able to reproduce the pulse duration dependence of the ablation threshold. Furthermore, the observed pulse duration dependences confirm the assumption of a fast material specific response of graphite target subsequent to optical excitation within the first 2 ps.

  8. IRIS diagnostics of non-thermal particles in coronal loops heated by nanoflares

    NASA Astrophysics Data System (ADS)

    Testa, P.; De Pontieu, B.; Allred, J. C.; Carlsson, M.; Reale, F.; Daw, A. N.

    2014-12-01

    The variability of emission of the "moss", i.e., the upper transition region (TR) layer of high pressure loops in active regions, provides stringent constraints on the characteristics of heating events. We will discuss the new coronal heating diagnostics provided by the Interface Region Imaging Spectrograph (IRIS) together with SDO/AIA. IRIS provides imaging and spectral observations of the solar chromosphere and transition region, at high spatial (0.166 arcsec/pix) and temporal (down to ~1s) resolution at FUV and NUV wavelengths. We discuss how simultaneous IRIS and AIA observations, together with loop modeling (with the RADYN code) including chromosphere, transition region and corona, allow us to study impulsive heating events (nanoflares) and the energy transport mechanism between the corona and the lower atmospheric layers (thermal conduction vs. beams of non-thermal particles). We will show how the modeling of rapid moss brightenings provides diagnostics for the presence and properties of non-thermal particles in nanoflares, which are below the detectability threshold of hard X-ray observations.

  9. Non-thermal production of minimal dark matter via right-handed neutrino decay

    SciTech Connect

    Aoki, Mayumi; Toma, Takashi; Vicente, Avelino

    2015-09-29

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  10. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS

    SciTech Connect

    Michael Burgess, J.; Preece, Robert D.; Ryde, Felix; Axelsson, Magnus; Veres, Peter; Mészáros, Peter; Connaughton, Valerie; Briggs, Michael; Bhat, P. N.; Pelassa, Veronique; Pe'er, Asaf; Iyyani, Shabnam; Goldstein, Adam; Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne; Kocevski, Daniel; Omodei, Nicola; Paciesas, William S. E-mail: rob.preece@nasa.gov E-mail: veres@gwu.edu; and others

    2014-04-01

    Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal γ-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, E {sub p} and kT, of these two components are correlated via the relation E {sub p}∝T {sup α} which varies from GRB to GRB. We present an interpretation in which the value of the index α indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  11. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Miletić, M.; Mojsilović, S.; Okić Đorđević, I.; Maletić, D.; Puač, N.; Lazović, S.; Malović, G.; Milenković, P.; Petrović, Z. Lj; Bugarski, D.

    2013-08-01

    Here we investigate the influences of non-thermal atmospheric plasma on human mesenchymal stem cells isolated from periodontal ligament (hPDL-MSCs). A specially redesigned plasma needle was used as the source of low-temperature plasma and its effects on different hPDL-MSC functions were investigated. Cell cultures were obtained from extracted normal impacted third molars and characterized for their phenotype and multi-potential differentiation. The hPDL-MSCs possessed all the typical MSC properties, including clonogenic ability, high proliferation rate, specific phenotype and multilineage differentiation. The data regarding the interaction of plasma with hPDL-MSCs demonstrated that plasma treatment inhibited the migration of hPDL-MSCs and induced some detachment, while not affecting their viability. Additionally, plasma significantly attenuated hPDL-MSCs' proliferation, but promoted their osteogenic differentiation. The results of this study indicated that a non-thermal plasma offers specific activity with non-destructive properties that can be advantageous for future dental applications.

  12. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B.; Mock, R.C.

    1994-06-01

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  13. Clumping Effects on Non-Thermal Particle Spectra in Massive Star Systems

    SciTech Connect

    Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2007-11-09

    Observational evidence exists that winds of massive stars are clumped. Many massive star systems are known as non-thermal particle production sites, as indicated by their synchrotron emission in the radio band. As a consequence they are also considered as candidate sites for non-thermal high-energy photon production up to gamma-ray energies. The present work considers the effects of wind clumpiness expected on the emitting relativistic particle spectrum in colliding wind systems, built up from the pool of thermal wind particles through diffusive particle acceleration, and taking into account inverse Compton and synchrotron losses. In comparison to a homogeneous wind, a clumpy wind causes flux variations of the emitting particle spectrum when the clump enters the wind collision region. It is found that the spectral features associated with this variability moves temporally from low to high energy bands with the time shift between any two spectral bands being dependent on clump size, filling factor, and the energy-dependence of particle energy gains and losses.

  14. Selective cytotoxic effect of non-thermal micro-DBD plasma.

    PubMed

    Kwon, Byung-Su; Choi, Eun Ha; Chang, Boksoon; Choi, Jeong-Hyun; Kim, Kyung Sook; Park, Hun-Kuk

    2016-01-01

    Non-thermal plasma has been extensively researched as a new cancer treatment technology. We investigated the selective cytotoxic effects of non-thermal micro-dielectric barrier discharge (micro-DBD) plasma in cervical cancer cells. Two human cervical cancer cell lines (HeLa and SiHa) and one human fibroblast (HFB) cell line were treated with micro-DBD plasma. All cells underwent apoptotic death induced by plasma in a dose-dependent manner. The plasma showed selective inhibition of cell proliferation in cervical cancer cells compared to HFBs. The selective effects of the plasma were also observed between the different cervical cancer cell lines. Plasma treatment significantly inhibited the proliferation of SiHa cells in comparison to HeLa cells. The changes in gene expression were significant in the cervical cancer cells in comparison to HFBs. Among the cancer cells, apoptosis-related genes were significantly enriched in SiHa cells. These changes were consistent with the differential cytotoxic effects observed in different cell lines. PMID:27603748

  15. Effects of atmospheric pressure non-thermal plasma treatments on aflatoxigenic fungi and its host

    NASA Astrophysics Data System (ADS)

    Chen, Bo-Chen

    2015-09-01

    This experiment tests the ability of atmospheric pressure non-thermal plasma treatments in the prevention of fungi infection. There are charged particles, electric field, radicals and UV light inside plasmas and these elements might trigger different physical or chemical effects during non-thermal plasma treatments. In this experiment, the experimental samples received indirect plasma treatments with different time duration and gas compositions which mean only the remote effects caused by plasma treatments could be seen. In this work, plasmas were produced by dielectric barrier discharge method. The operation gases were air and a mixed gas of 97% He and 3%O2. After plasma treatments, fungi growth rate was observed by taking pictures and the existence of aflatoxin was qualitatively detected by black light method. The final results show that the radicals in both He/O2 and air plasma might facilitate fungi growth rate which means peanuts received indirect plasma treatments grew fungi faster than control group. The outcomes of aflatoxin detection also shows that the fungi grown on all the sample are aflatoxigenic fungi.

  16. Application of non-thermal plasmas to pollution control. Revision 1

    SciTech Connect

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-06-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H{sub 2}S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NO{sub x}). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NO{sub x} in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute.

  17. Evaluation of thermal and non-thermal effects of UHF RFID exposure on biological drugs.

    PubMed

    Calcagnini, Giovanni; Censi, Federica; Maffia, Michele; Mainetti, Luca; Mattei, Eugenio; Patrono, Luigi; Urso, Emanuela

    2012-11-01

    The Radio Frequency Identification (RFID) technology promises to improve several processes in the healthcare scenario, especially those related to traceability of people and things. Unfortunately, there are still some barriers limiting the large-scale deployment of these innovative technologies in the healthcare field. Among these, the evaluation of potential thermal and non-thermal effects due to the exposure of biopharmaceutical products to electromagnetic fields is very challenging, but still slightly investigated. This paper aims to setup a controlled RF exposure environment, in order to reproduce a worst-case exposure of pharmaceutical products to the electromagnetic fields generated by the UHF RFID devices placed along the supply chain. Radiated powers several times higher than recommended by current normative limits were applied (10 W and 20 W). The electric field strength at the exposed sample location, used in tests, was as high as 100 V/m. Non-thermal effects were evaluated by chromatography techniques and in vitro assays. The results obtained for a particular case study, the ActrapidTM human insulin preparation, showed temperature increases lower than 0.5 °C and no significant changes in the structure and performance of the considered drug. PMID:22717524

  18. Non-thermal plasma as preparative technique to evaluate olive oil adulteration.

    PubMed

    Van Durme, Jim; Vandamme, Jeroen

    2016-10-01

    In recent years adulteration of pure extra virgin olive oil (EVOO) with other types of vegetable oils has become an important issue. In this study, non-thermal plasma (NTP) is investigated as an innovative preparative analytical technique enabling classification of adulterated olive oil from an ascertained authentic batch of olive oil in a more sensitive manner. Non-thermal plasma discharges are a source of highly oxidative species such as singlet oxygen, and atomic oxygen. It was assumed that NTP-induced oxidation triggers unique lipid oxidation mechanisms depending on the specific composition of the oil matrix and minor constituents. In this work EVOO samples were adulterated with sunflower oil (1-3%) and submitted to NTP treatment. Results showed that while untreated samples could not be classified from the authentic olive oil reference, NTP treatments of 60min (Ar/O2 0.1%) on the oil batches resulted in the formation of a unique set of secondary volatile lipid oxidation products enabling classification of adulterated oil samples. PMID:27132839

  19. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    SciTech Connect

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.

  20. A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Yamada, Riku; Gresback, Ryan; Zhou, Shu; Pi, Xiaodong; Nozaki, Tomohiro

    2014-12-01

    Silicon nanoparticles (Si NPs) synthesized in non-thermal plasma with silicon tetrachloride (SiCl4) are anticipated as a non-toxic and inexpensive Si source for important applications. This study examines the crystallinity, yield, and size distribution of Si NPs in terms of specific energy input (SEI) for 2.5-65 J cm‒3 and the H2/SiCl4 ratio (1-10). The particle growth mechanism is discussed comprehensively. Atomic hydrogen (H) production using non-thermal plasma is the primary important step for SiCl4 dechlorination at low temperatures. The Si NP yield increases with SEI (plasma power divided by total gas flow) because SiCl4 conversion increases with energy fed into the unit volume of the feed gas. At low SEI, Si NPs were mostly in amorphous material because of insufficient plasma heating. A maximum yield of 50 wt% was obtained when SEI = 10 J cm‒3 (H2/SiCl4 = 10) with a crystal fraction of about 1%. Increased SEI is necessary to improve crystal fraction, but excessive SEI decreases the NP yield remarkably. The NP yield losses correspond to increasing NP-free thin film growth on the reactor wall. Mass spectrometry shows that SiCl4 is highly decomposed with greater SEI. Hydrogen chloride (HCl) increases as a by-product. At higher SEI, particle nucleation and subsequent growth are suppressed.

  1. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment.

    PubMed

    Magureanu, Monica; Mandache, Nicolae Bogdan; Parvulescu, Vasile I

    2015-09-15

    Pharmaceutical compounds became an important class of water pollutants due to their increasing consumption over the last years, as well as due to their persistence in the environment. Since conventional waste water treatment plants are unable to remove certain non-biodegradable pharmaceuticals, advanced oxidation processes was extensively studied for this purpose. Among them, non-thermal plasma was also recently investigated and promising results were obtained. This work reviews the recent research on the oxidative degradation of pharmaceuticals using non-thermal plasma in contact with liquid. As target compounds, several drugs belonging to different therapeutic groups were selected: antibiotics, anticonvulsants, anxiolytics, lipid regulators, vasodilatators, contrast media, antihypertensives and analgesics. It was found that these compounds were removed from water relatively fast, partly degraded, and partly even mineralized. In order to ensure the effluent is environmentally safe it is important to identify the degradation intermediates and to follow their evolution during treatment, which requires complex chemical analysis of the solutions. Based on this analysis, degradation pathways of the investigated pharmaceuticals under plasma conditions were suggested. After sufficient plasma treatment the final organic by-products present in the solutions were mainly small molecules in an advanced oxidation state. PMID:26057260

  2. Effective group index of refraction in non-thermal plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Mousavi, A.; Sadegzadeh, S.

    2015-11-01

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum).

  3. Non-thermal fluctuations in living cells reveal nonlinear mechanical properties of the cytoskeleton

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. Daniel; Wei, Ming-Tzo; Vavylonis, Dimitris; Jedlicka, Sabrina

    2015-03-01

    Living cells are a non-equilibrium mechanical system, largely because intracellular molecular motors consume chemical energy to generate forces that reorganize and maintain cytoskeletal functions. Persistently under tension, the network of cytoskeletal proteins exhibits a nonlinear mechanical behavior where the network stiffness increases with intracellular tension. We examined the nonlinear mechanical properties of living cells by characterizing the differential stiffness of the cytoskeletal network for HeLa cells under different intracellular tensions. Combining active and passive microrheology methods, we measured non-thermal fluctuating forces and found them to be much larger than the thermal fluctuating force. From the variations of differential stiffness caused by the fluctuating non-thermal force for cells under different tension, we obtained a master curve describing the differential stiffness as a function of the intracellular tension. Varying the intracellular tension by treating cells with drugs that alter motor protein activities we found the differential stiffness follows the same master curve that describes intracellular stiffness as a function of intracellular tension. This observation suggests that cells can regulate their mechanical properties by adjusting intracellular tension. NSF DMR 0923299.

  4. Constraints on the non-thermal emission from η Carinae's blast wave of 1843

    NASA Astrophysics Data System (ADS)

    Skilton, J. L.; Domainko, W.; Hinton, J. A.; Jones, D. I.; Ohm, S.; Urquhart, J. S.

    2012-03-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV < E < 100 GeV) γ-ray emission in the direction of η Carinae has been recently detected using the INTEGRAL, AGILE and Fermi satellites. This emission has been interpreted either in the framework of particle acceleration in the colliding wind region between the two massive stars or in the very fast moving blast wave which originates in the historical 1843 "great eruption". Archival Chandra data has been reanalysed to search for signatures of particle acceleration in η Carinae's blast wave. No shell-like structure could be detected in hard X-rays and a limit has been placed on the non-thermal X-ray emission from the shell. The time dependence of the target radiation field of the Homunculus is used to develop a single zone model for the blast wave. Attempting to reconcile the X-ray limit with the HE γ-ray emission using this model leads to a very hard electron injection spectrum dN/dE ∝ E - Γ with Γ < 1.8, harder than the canonical value expected from diffusive shock acceleration.

  5. [Optimizing remediation conditions of non-thermal plasma for DDTs heavily contaminated soil].

    PubMed

    Chen, Hai-Hong; Luo, Yong-Ming; Teng, Ying; Liu, Wu-Xing; Pan, Cheng; Li, Zhen-Gao; Huang, Yu-Juan

    2013-01-01

    A series of experiments were carried out in a non-thermal reactor to remove DDTs in heavily contaminated soil by dielectric barrier discharge (DBD). The study aims to investigate the effects of soil properties (including soil particle size and soil water content) and equipment working parameters (e. g. the plasma power, the processing time and discharge atmosphere) on the removal of DDTs from soil. The results showed that DDTs in soil were significantly degraded by the non-thermal plasma produced by dielectric barrier discharge. Removal rate of DDTs increased with increasing processing time. The removal efficiency of DDTs ranged from 95.3% to 99.9% in 20 minutes. The optimum conditions were as follows: 1 kW of the plasma power, 20 minutes of processing time in air discharge atmosphere, 0-0.9 mm soil particle size and 4.5% -10.5% of soil moisture content. The results also showed that o,p'-DDE might be the intermediate dechlorination and dehydrogenation product of the o,p'-DDT after the oxidization. PMID:23487955

  6. Non-thermal production of minimal dark matter via right-handed neutrino decay

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Toma, Takashi; Vicente, Avelino

    2015-09-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above Script O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)L quintuplet and a scalar SU(2)L septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  7. ON THE NATURE OF THE mHz X-RAY QUASI-PERIODIC OSCILLATIONS FROM ULTRALUMINOUS X-RAY SOURCE M82 X-1: SEARCH FOR TIMING-SPECTRAL CORRELATIONS

    SciTech Connect

    Pasham, Dheeraj R.; Strohmayer, Tod E. E-mail: tod.strohmayer@nasa.gov

    2013-07-10

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs ({approx}0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass. We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling. We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  8. On the Nature of the mHz X-ray Quasi-Periodic Oscillations from Ultraluminous X-ray source M82 X-1: Search for Timing-Spectral Correlations

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  9. On the Nature of the mHz X-Ray Quasi-periodic Oscillations from Ultraluminous X-Ray Source M82 X-1: Search for Timing-Spectral Correlations

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-07-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (~0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass. We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling. We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs—in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  10. Time lags of the kilohertz quasi-periodic oscillations in the low-mass X-ray binaries 4U 1608-52 and 4U 1636-53

    NASA Astrophysics Data System (ADS)

    de Avellar, Marcio G. B.; Méndez, Mariano; Sanna, Andrea; Horvath, Jorge E.

    2013-08-01

    We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star low-mass X-ray binaries 4U 1608-52 and 4U 1636-53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636-53, the soft lags of the lower kHz QPO remain constant at ˜ 30 μs in the QPO frequency range 500-850 Hz, and decrease to ˜ 10 μs when the QPO frequency increases further. In 4U 1608-52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ˜0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636-53, the intrinsic coherence of the lower kHz QPO increases from ˜0 at ˜600 Hz to ˜1, and it decreases to ˜0.5 at 920 Hz; in 4U 1608-52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636-53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs' amplitude and quality factor in

  11. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    SciTech Connect

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H[sub 2]O or O[sub 2]. The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges.

  12. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    SciTech Connect

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H{sub 2}O or O{sub 2}. The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges.

  13. The Multi-Instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Non-thermal Emission

    NASA Astrophysics Data System (ADS)

    McTiernan, J. M.; Caspi, A.; Warren, H. P.

    2013-12-01

    Observations of hard X-ray bremmstrahlung from solar flares directly probe the non-thermal electron population. For low energies, however, the spectra are typically dominated by thermal emission and the low energy extent of the non-thermal spectrum can be only loosely quantified. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) and X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI). For a sample of solar flares, we model the emission using a Differential Emission Measure (DEM) for the thermal emission seen with both instruments and a power law fit for the non-thermal emission observed by RHESSI. Spectra for both instruments are fit simultaneously in a self-consistent manner. This improvement over the traditional isothermal approximation for thermal flare emission is intended to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV for medium to large solar flares. It is expected that a low energy cutoff of the non-thermal electron spectrum is in this energy range, but is obscured by thermal emission. For each flare in the sample we establish limits for the low energy cutoff of the non-thermal spectrum. These limits, in turn, can be used to establish limits on the energy of non-thermal electrons accelerated during the flare. This research is supported by NASA contract NAS5-98033 and NASA Heliophysics Guest Investigator Grant NNX12AH48G.

  14. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  15. Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water

    SciTech Connect

    Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

    2012-01-17

    Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed

  16. Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment.

    PubMed

    Bastianpillai, Christopher; Petrides, Neophytos; Shah, Taimur; Guillaumier, Stephanie; Ahmed, Hashim U; Arya, Manit

    2015-12-01

    Minimally invasive interventional therapies are evolving rapidly and their use for the treatment of solid tumours is becoming more extensive. The in situ destruction of solid tumours by such therapies is thought to release antigens that can prime an antitumour immune response. In this review, we offer an overview of the current evidence for immune response activation associated with the utilisation of the main thermal and non-thermal ablation therapies currently in use today. This is followed by an assessment of the hypothesised mechanisms behind this immune response priming and by a discussion of potential methods of harnessing this specific response, which may subsequently be applicable in the treatment of cancer patients. References were identified through searches of PubMed/MEDLINE and Cochrane databases to identify peer-reviewed original articles, meta-analyses and reviews. Papers were searched from 1850 until October 2014. Articles were also identified through searches of the authors' files. Only papers published in English were reviewed. Thermal and non-thermal therapies have the potential to stimulate antitumour immunity although the current body of evidence is based mostly on murine trials or small-scale phase 1 human trials. The evidence for this immune-modulatory response is currently the strongest in relation to cryotherapy and radiotherapy, although data is accumulating for related ablative treatments such as high-intensity focused ultrasound, radiofrequency ablation and irreversible electroporation. This effect may be greatly enhanced by combining these therapies with other immunostimulatory interventions. Evidence is emerging into the immunomodulatory effect associated with thermal and non-thermal ablative therapies used in cancer treatment in addition to the mechanism behind this effect and how it may be harnessed for therapeutic use. A potential exists for treatment approaches that combine ablation of the primary tumour with control and possible

  17. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor.

    PubMed

    Gandhi, M Sanjeeva; Mok, Y S

    2012-01-01

    The decomposition of trifluoromethane (CHF3) was carried out using non-thermal plasma generated in a dielectric barrier discharge (DBD) reactor. The effects of reactor temperature, electric power, initial concentration and oxygen content were examined. The DBD reactor was able to completely destroy CHF3 with alumina beads as a packing material. The decomposition efficiency increased with increasing electric power and reactor temperature. The destruction of CHF3 gradually increased with the addition of O2 up to 2%, but further increase in the oxygen content led to a decrease in the decomposition efficiency. The degradation pathways were explained with the identified by-products. The main by-products from CHF3 were found to be COF2, CF4, CO2 and CO although the COF2 and CF4 disappeared when the plasma were combined with alumina catalyst. PMID:23513444

  18. Surface modification of Raw and Frit glazes by non-thermal helium plasma jet

    NASA Astrophysics Data System (ADS)

    Ghasemi, M.; Sohbatzadeh, F.; Mirzanejhad, S.

    2015-06-01

    In this study, non-thermal atmospheric pressure plasma jet (APPJ) was utilized to improve the adhesion of Raw and Frit glazes. These glazes are widely used in industry to make chinaware, decorative dishes and tiles applied at wall and floor. As they should be painted before use, increasing their adhesive properties leads to a better paint durability. Electrical and optical characteristics of the plasma jet are investigated to optimize for efficient treatment. Contact angle measurement and surface energy calculation demonstrate a drastic increase after the plasma treatment indicating wettability and paintability enhancement. Moreover, atomic force microscopy and X-ray photoelectron spectroscopy analyses were performed on the specimens to explore the influence of helium plasma jet on the physical and chemical properties of the glazes, microscopically. AFM analysis reveals surface etching resulted from the bombardment of the solid surfaces by the APPJ using helium fed gas. The process aims to enhance adhesive properties of glaze surfaces.

  19. Non-thermal fixed points and solitons in a one-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Schmidt, Maximilian; Erne, Sebastian; Nowak, Boris; Sexty, Dénes; Gasenzer, Thomas

    2012-07-01

    Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ.

  20. Ab initio investigation of photoinduced non-thermal phase transition in β-cristobalite

    NASA Astrophysics Data System (ADS)

    Shi-Quan, Feng; Hua-Ping, Zang; Yong-Qiang, Wang; Xin-Lu, Cheng; Jin-Sheng, Yue

    2016-01-01

    Using the linear-response method, we investigate the phonon properties of β-cristobalite crystal under electronic excitation effect. We find that the transverse-acoustic phonon frequency becomes imaginary as the electron temperature is increased, which means that the lattice of β-cristobalite becomes unstable under intense laser irradiation. In addition, for the optic phonon mode, the LO(H)-TO(H) splitting disappears when the electronic temperature reaches a certain value, corresponding to the whole transverse-acoustic phonon branches becoming negative. It means that the electronic excitation destroys the macroscopic electric field of β-cristobalite. Based on the calculated phonon band structures, some thermodynamic properties are calculated as a function of temperature at different electronic temperatures. These investigations provide evidence that non-thermal melting takes place during a femtosecond pulse laser interaction with β-cristobalite. Project support by the National Natural Science Foundation of China (Grant Nos. 11374217 and 11547158).

  1. Degradation of phenol in mists by a non-thermal plasma reactor.

    PubMed

    An, Guijie; Sun, Yifei; Zhu, Tianle; Yan, Xiao

    2011-08-01

    A link tooth wheel-cylinder non-thermal plasma reactor was set up to investigate the degradation of phenol in the mists. In addition, the decomposition efficiency of phenol, TOC removal, and byproduct formation were investigated. The stable discharge was achieved in both air and the mist condition. The decomposition efficiency and TOC removal increased with increasing the input power. For the input power of 3.6 W, the phenol decomposition and TOC removal reached 90% and 47%, respectively. Phenol degradation byproducts were identified as small molecular organic acids, including formic acid, acetic acid, and oxalic acid. Their masses in the trapped solutions first increased and then decreased slightly with increasing the input power. Therefore, the biodegradation capacity of the phenol degradation byproducts can be improved. PMID:21628067

  2. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  3. Non-thermal emission in astrophysical environments: From pulsars to supernova remnants

    NASA Astrophysics Data System (ADS)

    Lomiashvili, David

    The study of electromagnetic radiation from distant astrophysical objects provides essential data in understanding physics of these sources. In particular, non-thermal radiation provides great insight into the properties of local environments, particle populations, and emission mechanisms, knowledge which otherwise would remain untapped. Throughout the projects conducted for this dissertation, we modeled certain aspects of observed non-thermal emission from three classes of sources: radio pulsars, pulsar wind nebulae, and supernova remnants. Orbital variation in the double pulsar system PSR J0737-3039A/B can be used to probe the details of the magnetospheric structure of pulsar B. Strongly magnetized wind from pulsar A distorts the magnetosphere of pulsar B in a way similar to the solar wind's distortion of the Earth's magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Dungey and Tsyganenko, we determine the precise location of the coherent radio emission generation region in pulsar B's magnetosphere. This analysis is complemented by modeling the observed evolution of the pulse profiles of B due to geodetic precession. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape centered on the polar magnetic field lines. The best fit angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. When considered together, not only do the results of the two models converge, they can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. We discuss the implications of these results for pulsar magnetospheric models and mechanisms of coherent radio emission generation. We also developed a spatially-resolved, analytic model for the high-energy non-thermal

  4. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats.

    PubMed

    Mohammed, Haitham S; Fahmy, Heba M; Radwan, Nasr M; Elsayed, Anwar A

    2013-03-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  5. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    NASA Astrophysics Data System (ADS)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  6. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium

    PubMed Central

    UTSUMI, FUMI; KAJIYAMA, HIROAKI; NAKAMURA, KAE; TANAKA, HIROMASA; MIZUNO, MASAAKI; TOYOKUNI, SHINNYA; HORI, MASARU; KIKKAWA, FUMITAKA

    2016-01-01

    Non-thermal atmospheric pressure plasma has been widely studied in recent years in many fields, including cancer treatment. However, its efficiency for inducing apoptosis sometimes varies depending on the cell species and experimental conditions. The aim of this study was to elucidate what causes these differences in responses to plasma treatment. Using four ovarian cancer cell lines, the cell density had a markedly negative impact on the proliferation inhibition rate (PIR) and it was more obvious in OVCAR-3 and NOS2 cells. Furthermore, TOV21G and ES-2 cells were drastically sensitive to plasma-activated medium (PAM) compared with the other two cell lines. We demonstrated that the proportion of reactive oxygen species and cell number had a marked impact on the effect of PAM against ovarian cancer cells. Additionally it was suggested that the morphological features of cells were also closely related PMID:27035127

  7. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium.

    PubMed

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinnya; Hori, Masaru; Kikkawa, Fumitaka

    2016-06-01

    Non-thermal atmospheric pressure plasma has been widely studied in recent years in many fields, including cancer treatment. However, its efficiency for inducing apoptosis sometimes varies depending on the cell species and experimental conditions. The aim of this study was to elucidate what causes these differences in responses to plasma treatment. Using four ovarian cancer cell lines, the cell density had a markedly negative impact on the proliferation inhibition rate (PIR) and it was more obvious in OVCAR-3 and NOS2 cells. Furthermore, TOV21G and ES-2 cells were drastically sensitive to plasma‑activated medium (PAM) compared with the other two cell lines. We demonstrated that the proportion of reactive oxygen species and cell number had a marked impact on the effect of PAM against ovarian cancer cells. Additionally it was suggested that the morphological features of cells were also closely related to the sensitivity of cancer cells to the plasma treatment. PMID:27035127

  8. The effect of blood flow on magnetic resonance imaging of non thermal irreversible electroporation.

    PubMed

    Hjouj, Mohammad; Lavee, Jacob; Last, David; Guez, David; Daniels, Dianne; Sharabi, Shirley; Rubinsky, Boris; Mardor, Yael

    2013-01-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed electric fields cause molecularly selective cell death while, the extracellular matrix and large blood vessels remain patent. This attribute of NTIRE is of major clinical importance as it allows treatment of undesirable tissues near critical blood vessels. The presented study results suggest that MR images acquired following NTIRE treatment are all directly related to the unique pattern of blood flow after NTIRE treatment and are not produced in the absence of blood flow. PMID:24169528

  9. Dust-acoustic shock formation in dusty plasmas with non-thermal ions

    SciTech Connect

    Asgari, H.; Muniandy, S. V.; Wong, C. S.

    2013-01-15

    In this study, the nonlinear Burgers equation in the presence of the dust charge fluctuation is derived and the shock-like solution is determined. It is well known that in order to have a monotonic or oscillatory shock wave, a source of dissipation is needed. By using the experimental data reported in the laboratory observation of self-excited dust-acoustic shock waves [Heinrich et al., Phys. Rev. Lett. 103, 115002 (2009)], it is shown that dust charge fluctuation can be considered as a candidate for the source of dissipation needed for the dust-acoustic shock formation. By examining the effects of non-thermal ions on dust-acoustic shock's characteristics, a possible theoretical explanation for the discrepancies observed between theory and experiment is proposed.

  10. Pulse-based non-thermal plasma (NTP) disrupts the structural characteristics of bacterial biofilms.

    PubMed

    Ferrell, James R; Shen, Fan; Grey, Scott F; Woolverton, Christopher J

    2013-01-01

    Bacterial biofilms were constructed in vitro with two pathogenic strains of Pseudomonas aeruginosa and Staphylococcus aureus using a modified, novel sequential bioreactor system. The structure and stability of bacterial biofilms were evaluated following exposure to non-thermal plasma (NTP) discharge. Mathematical software was used to determine structural changes as biofilms grew over the course of 7 days. Statistical modeling was also performed to assess the ability of NTP to affect the development of the biofilms over different periods of time. Several structural characteristics were significantly affected by NTP discharge whereas others were unaffected. Changes in the three-dimensional structure of the biofilm following introduction of NTP was not limited to one period of development. The mechanism for this phenomenon is not understood but is likely to be a dual, synergistic effect due to the composition of the reactive species and other plasma-associated molecules isolated previously in the NTP discharge used in this study. PMID:23682750

  11. Non-thermal transitions in a model inspired by moral decisions

    NASA Astrophysics Data System (ADS)

    Alamino, Roberto C.

    2016-08-01

    This work introduces a model in which agents of a network act upon one another according to three different kinds of moral decisions. These decisions are based on an increasing level of sophistication in the empathy capacity of the agent, a hierarchy which we name Piaget’s ladder. The decision strategy of the agents is non-rational, in the sense they are arbitrarily fixed, and the model presents quenched disorder given by the distribution of its defining parameters. An analytical solution for this model is obtained in the large system limit as well as a leading order correction for finite-size systems which shows that typical realisations of the model develop a phase structure with both continuous and discontinuous non-thermal transitions.

  12. Disinfection of Staphylococcus Aureus by pulsed non-thermal atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Mirpour, Shahriar; Ghoranneviss, Mahmood; Shahgoli, Farhad

    2011-10-01

    The aim of this paper was to study the effect of low-temperature atmospheric plasma jet on non-pathogenic bacteria's colonies. In this regard, Germicidal effect of time and distance of ICP He and He/N2 plasma jet on Staphylococcus Aureus were reported. The gas discharges were generated by a 40 KHz high voltage power supply which led to the inductively coupled plasma. The results showed that He/N2 enhance the sterilization time in comparison of He plasma. To the best of our knowledge this is the first study which has compared the effect of sterilization of ICP Helium and Helium-Nitrogen plasma in listed conditions. Also, the distance dependence showed that the germicidal effect was not linear the distance of electrode and sample. The protein leakage test and SEM of bacteria morphology confirmed the sterilization effect of non-thermal atmospheric pressure plasma jet.

  13. The Effect of Blood Flow on Magnetic Resonance Imaging of Non Thermal Irreversible Electroporation

    NASA Astrophysics Data System (ADS)

    Hjouj, Mohammad; Lavee, Jacob; Last, David; Guez, David; Daniels, Dianne; Sharabi, Shirley; Rubinsky, Boris; Mardor, Yael

    2013-10-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed electric fields cause molecularly selective cell death while, the extracellular matrix and large blood vessels remain patent. This attribute of NTIRE is of major clinical importance as it allows treatment of undesirable tissues near critical blood vessels. The presented study results suggest that MR images acquired following NTIRE treatment are all directly related to the unique pattern of blood flow after NTIRE treatment and are not produced in the absence of blood flow.

  14. Non-thermal enhancement of electron-positron pair creation in burning thermonuclear laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Hill, E. G.; Rose, S. J.

    2014-12-01

    We estimate the number of electron-positron pairs which will be produced during the burning of a Deuterium-Tritium (DT) plasma in conditions that are anticipated will be achieved at the National Ignition Facility. In particular we consider, for the first time, the effect of including the gamma photons produced in a low probability channel of the DT reaction. It is found that non-thermal effects driven by the fusion products are the dominant method of pair production, and lead to a number density of positrons within the capsule in excess of 3 × 1017 cm-3. The positrons are predominately produced by the Bethe-Heitler process and destroyed by two photon annihilation.

  15. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.

    PubMed

    Karuppiah, J; Reddy, E Linga; Reddy, P Manoj Kumar; Ramaraju, B; Karvembu, R; Subrahmanyam, Ch

    2012-10-30

    Total oxidation of mixture of dilute volatile organic compounds was carried out in a dielectric barrier discharge reactor with various transition metal oxide catalysts integrated in-plasma. The experimental results indicated the best removal efficiencies in the presence of metal oxide catalysts, especially MnO(x), whose activity was further improved with AgO(x) deposition. It was confirmed water vapor improves the efficiency of the plasma reactor, probably due to the formation of hydroxyl species, whereas, in situ decomposition of ozone on the catalyst surface may lead to nascent oxygen. It may be concluded that non-thermal plasma approach is beneficial for the removal of mixture of volatile organic compounds than individual VOCs, probably due to the formation of reactive intermediates like aldehydes, peroxides, etc. PMID:22975253

  16. Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow

    NASA Technical Reports Server (NTRS)

    Rodriquez, Alvaro Che

    2002-01-01

    An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.

  17. Non-thermal effects of 94 GHz radiation on bacterial metabolism

    NASA Astrophysics Data System (ADS)

    Raitt, Brittany J.

    Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were used to investigate the non-thermal effects of terahertz (THz) radiation exposure on bacterial cells. The THz source used was a 94 GHz (0.94 THz) Millitech Gunn Diode Oscillator with a power density of 1.3 mW/cm2. The cultures were placed in the middle sixty wells of two 96-well microplates, one serving as the experimental plate and one serving as a control. The experimental plate was placed on the radiation source for either two, eighteen, or twenty-four hours and the metabolism of the cells was measured in a spectrophotometer using the tetrazolium dye XTT. The results showed no consistent significant differences in either the growth rates or the metabolism of any of the bacterial species at this frequency and power density.

  18. ION TEMPERATURE AND NON-THERMAL VELOCITY IN A SOLAR ACTIVE REGION: USING EMISSION LINES OF DIFFERENT ATOMIC SPECIES

    SciTech Connect

    Imada, S.; Hara, H.; Watanabe, T.

    2009-11-10

    We have studied the characteristics of the ion thermal temperature and non-thermal velocity in an active region observed by the EUV Imaging Spectrometer onboard Hinode. We used two emission lines of different atomic species (Fe XVI 262.98 A and S XIII 256.69 A) to distinguish the ion thermal velocity from the observed full width at half-maximum. We assumed that the sources of the two emission lines are the same thermal temperature. We also assumed that they have the same non-thermal velocity. With these assumptions, we could obtain the ion thermal temperature, after noting that M{sub sulfur} approx 0.6M{sub iron}. We have carried out the ion thermal temperature analysis in the active region where the photon counts are sufficient (>4500). What we found is as follows: (1) the common ion thermal temperatures obtained by Fe XVI and S XIII are approx2.5 MK, (2) the typical non-thermal velocities are approx13 km s{sup -1}, (3) the highest non-thermal velocities (>20 km s{sup -1}) are preferentially observed between the bright points in Fe XVI, while (4) the hottest material (>3 MK) is observed relatively inside the bright points compared with the highest non-thermal velocity region.

  19. In quest of non-thermal signatures in early-type stars

    NASA Astrophysics Data System (ADS)

    Martí, Josep; Luque-Escamilla, Pedro L.; Casares, Jorge; Marcote, Benito; Paredes-Fortuny, Xavier; Ribó, Marc; Paredes, Josep M.; Núñez, Jorge

    2015-04-01

    A reduced fraction of luminous, early-type stars in binaries has provided some of the most interesting sources in modern high-energy astrophysics. A fingerprint of the capability of these systems to accelerate particles up to TeV energies is the associated detection of non-thermal, synchrotron emission often in the radio domain. Here we aim to identify new early-type, luminous stars where energetic, non-thermal processes are at work to enable future comparative studies based on an extended sample. Moreover, these objects also appear as very interesting targets for future gamma-ray observatories such as the Cherenkov Telescope Array. We have designed a methodology to search for new examples of these interesting sources in order to enlarge the extremely reduced population currently known. Our search procedure is described in this paper, together with a practical application using public databases and catalogues currently available (Luminous Stars in the Northern Milky Way, NRAO VLA Sky Survey, and Westerbork Northern Sky Survey). Optical and radio interferometric follow-up observations of selected candidate stars were conducted to better assess their properties. Although no new discoveries of this kind have been achieved yet, the observational data analyzed in this work does provide some interesting side results, such as characterizing the spectroscopic and photometric properties of two early-type stars originally selected as candidates to be explored, namely TYC4051-1277-1 and TYC3594-2269-1. Unexpectedly, this last one was also found to be a new DAO-type white dwarf star instead of a non-degenerate star. In addition, both stars seem to display different optical periods based on our photometric monitoring.

  20. Plasma motions and non-thermal line broadening in flaring twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Gordovskyy, M.; Kontar, E. P.; Browning, P. K.

    2016-05-01

    Context. Observation of coronal extreme ultra-violet (EUV) spectral lines sensitive to different temperatures offers an opportunity to evaluate the thermal structure and flows in flaring atmospheres. This, in turn, can be used to estimate the partitioning between the thermal and kinetic energies released in flares. Aims: Our aim is to forward-model large-scale (50-10 000 km) velocity distributions to interpret non-thermal broadening of different spectral EUV lines observed in flares. The developed models allow us to understand the origin of the observed spectral line shifts and broadening, and link these features to particular physical phenomena in flaring atmospheres. Methods: We use ideal magnetohydrodynamics (MHD) to derive unstable twisted magnetic fluxtube configurations in a gravitationally stratified atmosphere. The evolution of these twisted fluxtubes is followed using resistive MHD with anomalous resistivity depending on the local density and temperature. The model also takes thermal conduction and radiative losses in the continuum into account. The model allows us to evaluate average velocities and velocity dispersions, which would be interpreted as non-thermal velocities in observations, at different temperatures for different parts of the models. Results: Our models show qualitative and quantitative agreement with observations. Thus, the line-of-sight (LOS) velocity dispersions demonstrate substantial correlation with the temperature, increasing from about 20-30 km s-1 around 1 MK to about 200-400 km s-1 near 10-20 MK. The average LOS velocities also correlate with velocity dispersions, although they demonstrate a very strong scattering compared to the observations. We also note that near footpoints the velocity dispersions across the magnetic field are systematically lower than those along the field. We conclude that the correlation between the flow velocities, velocity dispersions, and temperatures are likely to indicate that the same heating

  1. Gamma-Ray Spectral Characteristics of Thermal and Non-Thermal Emission from Three Black Holes

    NASA Astrophysics Data System (ADS)

    Ling, James C.; Wheaton, William A.

    2005-06-01

    Cygnus X-1 and the gamma-ray transients GRO J0422+32 and GRO J1719-24 displayed similar spectral properties when they underwent transitions between the high and low gamma-ray (30 keV to few MeV) intensity states. When these sources were in the high γ-ray intensity state (γ2(, for Cygnus X-1), their spectra featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index >3) that extended to ˜1 MeV or beyond. When the sources were in the low-intensity state (γ0, for Cygnus X-1), the Comptonized spectral shape below 200 keV typically vanished and the entire spectrum from 30 keV to ˜1 MeV can be characterized by a single power law with a relatively harder photon index ˜2-2.7. Consequently the high- and low-intensity gamma-ray spectra intersect, generally in the ˜400 keV - ˜1 MeV range, in contrast to the spectral pivoting seen previously at lower (˜10 keV) energies. The presence of the power-law component in both the high- and low-intensity gamma-ray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003), by combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above, from the database produced by EBOP, JPL's BATSE earth occultation analysis system.

  2. Non-thermal atmospheric plasmas in dental restoration: improved resin adhesive penetration

    PubMed Central

    Zhang, Ying; Yu, Qingsong; Wang, Yong

    2014-01-01

    Objective To investigate the influence of non-thermal plasma treatment on the penetration of a model dental adhesive into the demineralized dentin. Methods Prepared dentin surfaces were conditioned with Scotchbond Universal etchant for 15 s and sectioned equally perpendicular to the etched surfaces. The separated halves were randomly selected for treatment with an argon plasma brush (input current 6 mA, treatment time 30 s) or gentle argon air blowing (treatment time 30 s, as control). The plasma-treated specimens and control specimens were applied with a model adhesive containing 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA) and 2-hydroxyethyl methacrylate (HEMA) (mass ratio of 30/70), gently air-dried for 5 s, and light-cured for 20 s. Cross-sectional specimens were characterized using micro-Raman spectral mapping across the dentin, adhesive/dentin interface, and adhesive layer at 1∼micron spatial resolution. SEM was also employed to examine the adhesive/dentin interfacial morphology. Results The micro-Raman result disclosed that plasma treatment significantly improved the penetration of the adhesive, evidenced by the apparently higher content of the adhesive at the adhesive/dentin interface as compared to the control. Specifically, the improvement of the adhesive penetration using plasma technique was achieved by dramatically enhancing the penetration of hydrophilic monomer (HEMA), while maintaining the penetration of hydrophobic monomer (BisGMA). Morphological observation at the adhesive/dentin interface using SEM also confirmed the improved adhesive penetration. The results further suggested that plasma treatment could benefit polymerization of the adhesive, especially in the interface region. Conclusion The significant role of the non-thermal plasma brush in improving the adhesive penetration into demineralized dentin has been demonstrated. The results obtained may offer a better prospect of using plasma in dental restoration to

  3. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet.

    PubMed

    Rupf, Stefan; Lehmann, Antje; Hannig, Matthias; Schäfer, Barbara; Schubert, Andreas; Feldmann, Uwe; Schindler, Axel

    2010-02-01

    Atmospheric plasma jets are being intensively studied with respect to potential applications in medicine. The aim of this in vitro study was to test a microwave-powered non-thermal atmospheric plasma jet for its antimicrobial efficacy against adherent oral micro-organisms. Agar plates and dentin slices were inoculated with 6 log(10) c.f.u. cm(-2) of Lactobacillus casei, Streptococcus mutans and Candida albicans, with Escherichia coli as a control. Areas of 1 cm(2) on the agar plates or the complete dentin slices were irradiated with a helium plasma jet for 0.3, 0.6 or 0.9 s mm(-2), respectively. The agar plates were incubated at 37 degrees C, and dentin slices were vortexed in liquid media and suspensions were placed on agar plates. The killing efficacy of the plasma jet was assessed by counting the number of c.f.u. on the irradiated areas of the agar plates, as well as by determination of the number of c.f.u. recovered from dentin slices. A microbe-killing effect was found on the irradiated parts of the agar plates for L. casei, S. mutans, C. albicans and E. coli. The plasma-jet treatment reduced the c.f.u. by 3-4 log(10) intervals on the dentin slices in comparison to recovery rates from untreated controls. The microbe-killing effect was correlated with increasing irradiation times. Thus, non-thermal atmospheric plasma jets could be used for the disinfection of dental surfaces. PMID:19910483

  4. Eradication of Pseudomonas aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma

    PubMed Central

    Alkawareek, Mahmoud Y.; Algwari, Qais Th.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; O'Connell, Deborah; Gilmore, Brendan F.

    2012-01-01

    Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (∼10′s s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity. PMID

  5. Non-Thermal Emission from the massive stellar association Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Fenech, Danielle Marie; Prinja, Raman; Morford, Jack

    2015-08-01

    The Cygnus OB2 association is located in the Galactic Cygnus X region at a distance of 1.4 kpc, making it one of the closest young massive stellar clusters. Cyg OB2 is not only very rich in stellar density but also in its diversity. It is known to contain a rich population of massive stars including almost 2600 OB stars, a large number of binaries (including a collection of some of the most interesting radio emitting colliding-wind binaries), and a considerable number of pre-main sequence stars.We report here on the first results from The Cyg OB2 Radio Survey (COBRaS), which is a UCL-led e-MERLIN legacy project to provide a deep-field radio mapping of the Cygnus OB2 association. The project has been awarded a total allocation of 252 hours at C-band (5GHz) and 42 hours at L-band (1.6GHz) to image the core of the cluster.We discuss in particular the presence of non-thermal radio emission at 20 cm (L-band), and its potential as a highly efficient way to identify binaries via single-epoch observations, particularly for colliding-wind binaries. COBRaS data will provide a powerful tool for establishing binary incidence in Cyg~OB2, specifically in the difficult intermediate-period range (1--100~yr). Knowing the binary frequency over the whole period range is important for population synthesis.Additionally, Weak-lined T Tauri (WTT) stars in Cyg OB2 also emit non-thermal radiation from magnetically active regions. Hence these observations will be used to detect the considerable population of younger stars.Ultimately, we aim to assemble a substantial and uniquely sensitive radio dataset, which will be exploited to address several fundamentally important areas of stellar astrophysics, including mass-loss, binary frequency, stellar cluster dynamics, and triggered star-formation.

  6. Effective group index of refraction in non-thermal plasma photonic crystals

    SciTech Connect

    Mousavi, A.; Sadegzadeh, S.

    2015-11-15

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity v{sub g}, and effective group index of refraction n{sub eff}(g) of such NPPC structure with TeO{sub 2} as the material of dielectric layers have been studied. The concept of negative group velocity and negative n{sub eff}(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, n{sub eff}(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 10{sup 3}c (c is the speed of light in vacuum)

  7. Electrohydrodynamic flow in a wire-plate non-thermal plasma reactor measured by 3D PIV method

    NASA Astrophysics Data System (ADS)

    Podlinski, J.; Niewulis, A.; Mizeraczyk, J.

    2009-08-01

    This work was aimed at measurements of the electrohydrodynamic (EHD) secondary flow in a non-thermal plasma reactor using three-dimensional particle image velocimetry (3D PIV) method. The wide-type non-thermal plasma reactor used in this work was an acrylic box with a wire discharge electrode and two plate collecting electrodes. The positive DC voltage was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The voltage applied to the wire electrode was 28 kV. Air flow seeded with a cigarette smoke was blown along the reactor duct with an average velocity of 0.6 m/s. The 3D PIV velocity fields measurements were carried out in four parallel planes stretched along the reactor duct, perpendicularly to the wire electrode and plate electrodes. The measured flow velocity fields illustrate complex nature of the EHD induced secondary flow in the non-thermal plasma reactor.

  8. The effect of non-thermal electrons on obliquely propagating electron acoustic waves in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Singh, Satyavir; Bharuthram, Ramashwar

    2016-07-01

    Small amplitude electron acoustic solitary waves are studied in a magnetized plasma consisting of hot electrons following Cairn's type non-thermal distribution function and fluid cool electrons, cool ions and an electron beam. Using reductive perturbation technique, the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation is derived to describe the nonlinear evolution of electron acoustic waves. It is observed that the presence of non-thermal electrons plays an important role in determining the existence region of solitary wave structures. Theoretical results of this work is used to model the electrostatic solitary structures observed by Viking satellite. Detailed investigation of physical parameters such as non-thermality of hot electrons, beam electron velocity and temperature, obliquity on the existence regime of solitons will be discussed.

  9. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kalupka, C.; Finger, J.; Reininghaus, M.

    2016-04-01

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  10. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    NASA Astrophysics Data System (ADS)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  11. Hot Flow Model for Low Luminosity AGNs and Black Hole Binaries: the Role and Origin of Non-thermal Electrons

    NASA Astrophysics Data System (ADS)

    Niedzwiecki, Andrzej; Xie, Fu-Guo; Stepnik, Agnieszka

    2014-08-01

    Optically thin, two-temperature accretion flows are widely considered as a relevant accretion mode below ~0.01 LEdd in AGNs as well as in X-ray binaries. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, and with an exact treatment of global Comptonization. We point out that basic properties of two-temperature flows determine the relative strengths of the synchrotron radiation of thermal electrons and non-thermal electrons from charged-pion decay, in a manner consistent with observations. In AGNs, the non-thermal synchrotron dominates the seed photon input down to ~10-5 LEdd and it allows to explain the X-ray spectral index-Eddington ratio relation as well as the cut-off energies measured in the best-studied AGNs; the (standard) model with the thermal synchrotron being the main source of seed photons does not agree with these observations. For stellar-mass black holes, non-thermal electrons from hadronic processes become important only above ~0.01 LEdd (and may be relevant for the non-thermal tails observed in luminous hard states of Cyg X-1 and GX 339-4) and we find that the thermal synchrotron provides a sufficient seed photon flux to explain observations of black hole transients below ~0.01 LEdd. We also note that non-thermal acceleration processes in hot flows are constrained by comparisons of the predicted gamma-ray fluxes (from neutral pion decay) with Fermi-LAT upper limits. For NGC 4151, it limits the energy content in the non-thermal component of proton distribution to at most 1 per cent.

  12. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOEpatents

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  13. Rarefactive and compressive soliton waves in unmagnetized dusty plasma with non-thermal electron and ion distribution

    SciTech Connect

    Eslami, Esmaeil Baraz, Rasoul

    2014-02-15

    Sagdeev's pseudo potential method is employed to study dust acoustic solitary waves in an unmagnetized plasma containing negatively charged dusts with non-thermal electron and ion. The range of parameters for the existence of solitary waves using the analytical expression of the Sagdeev potential has been found. It is observed that, depending on the values of the plasma parameters like ion to electron temperature ratio σ, non-thermal parameters β and γ, electron to ion density ratio μ, and the value of the Mach number M, both rarefactive and compressive solitary waves may exist.

  14. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  15. Solvated Electron Technology{sup TM}. Non-Thermal Alternative to Waste Incineration

    SciTech Connect

    Foutz, W.L.; Rogers, J.E.; Mather, J.D.

    2008-07-01

    Solvated Electron Technology (SET{sup TM}) is a patented non-thermal alternative to incineration for treating Toxic Substances Control Act (TSCA) and other mixed waste by destroying organic hazardous components. SET{sup TM} is a treatment process that destroys the hazardous components in mixed waste by chemical reduction. The residual material meets land disposal restriction (LDR) and TSCA requirements for disposal. In application, contaminated materials are placed into a treatment cell and mixed with the solvated electron solution. In the case of PCBs or other halogenated contaminants, chemical reactions strip the halogen ions from the chain or aromatic ring producing sodium chloride and high molecular weight hydrocarbons. At the end of the reaction, ammonia within the treatment cell is removed and recycled. The reaction products (such as sodium salts) produced in the process remain with the matrix. The SET{sup TM} process is 99.999% effective in destroying: polychlorinated biphenyls (PCBs); trichloroethane (TCA) and trichloroethene (TCE); dioxins; polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, xylene (BTX); pesticides; fungicides; herbicides; chlorofluorocarbons (CFCs); hydro-chlorofluorocarbons (HCFCs), explosives and chemical-warfare agents; and has successfully destroyed many of the wastes listed in 40 Code of Federal Regulations (CFR) 261. In September 2007, U.S. Environmental Protection Agency (EPA) issued a Research and Development permit for SET for chemical destruction of 'pure' Pyranol, which is 60% PCBs. These tests were completed in November 2007. SET{sup TM} is recognized by EPA as a non-thermal process equivalent to incineration and three SET{sup TM} systems have been permitted by EPA as commercial mobile PCB destruction units. This paper describes in detail the results of select bench-, pilot-, and commercial-scale treatment of hazardous and mixed wastes for EPA, Department of Energy (DOE), and the Department of Defense(DoD), and the

  16. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  17. Identification of non-thermal and thermal processes in femtosecond laser-ablated aluminum

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Shahid Rafique, M.; Husinsky, Wolfgang

    2013-12-01

    Non-thermal and thermal processes due to femtosecond laser ablation of aluminum (Al) at low, moderate, and high-fluence regimes are identified by Atomic Force Microscope (AFM) surface topography investigations. For this purpose, surface modifications of Al by employing 25 fs Ti: sapphire laser pulses at the central wavelength of 800 nm have been performed to explore different nano- and microscale features such as hillocks, bumps, pores, and craters. The mechanism for the formation of these diverse kinds of structures is discussed in the scenario of three ablation regimes. Ultrafast electronic and non-thermal processes are dominant in the lower fluence regime, whereas slow thermal processes are dominant at the higher fluence regime. Therefore, by starting from the ablation threshold three different fluence regimes have been chosen: a lower fluence regime (0.06-0.5 J cm-2 single-shot irradiation under ultrahigh vacuum condition and 0.25-2.5 J cm-2 single-shot irradiation in ambient condition), a moderate-fluence regime (0.25-1.5 J cm-2 multiple-shot irradiation), and a high-fluence regime 2.5-3.5 J cm-2 multiple-shot irradiation. For the lower fluence (gentle ablation) regime, around the ablation threshold, the unique appearance of individual, localized Nano hillocks typically a few nanometers in height and less than 100 nm in diameter are identified. These Nano hillock-like features can be regarded as a nonthermal, electronically induced phase transition process due to localized energy deposition as a result of Coulomb explosion or field ion emission by surface optical rectification. At a moderate-fluence regime, slightly higher than ablation threshold multiple-pulse irradiation produces bump-formation and is attributed to ultrafast melting (plasma formation). The high-fluence regime results in greater rates of material removal with highly disturbed and chaotic surface of Al with an appearance of larger protrusions at laser fluence well above the ablation threshold

  18. The Impact of Non-Thermal Processes in the Intracluster Medium on Cosmological Cluster Observables

    NASA Astrophysics Data System (ADS)

    Battaglia, Nicholas Ambrose

    In this thesis we describe the generation and analysis of hydrodynamical simulations of galaxy clusters and their intracluster medium (ICM), using large cosmological boxes to generate large samples, in conjunction with individual cluster computations. The main focus is the exploration of the non-thermal processes in the ICM and the effect they have on the interpretation of observations used for cosmological constraints. We provide an introduction to the cosmological structure formation framework for our computations and an overview of the numerical simulations and observations of galaxy clusters. We explore the cluster magnetic field observables through radio relics, extended entities in the ICM characterized by their of diffuse radio emission. We show that statistical quantities such as radio relic luminosity functions and rotation measure power spectra are sensitive to magnetic field models. The spectral index of the radio relic emission provides information on structure formation shocks, e.g., on their Mach number. We develop a coarse grained stochastic model of active galaxy nucleus (AGN) feed-back in clusters and show the impact of such inhomogeneous feedback on the thermal pressure profile. We explore variations in the pressure profile as a function of cluster mass, redshift, and radius and provide a constrained fitting function for this profile. We measure the degree of the non-thermal pressure in the gas from internal cluster bulk motions and show it has an impact on the slope and scatter of the Sunyaev-Zel'dovich (SZ) scaling relation. We also find that the gross shape of the ICM, as characterized by scaled moment of inertia tensors, affects the SZ scaling relation. We demonstrate that the shape and the amplitude of the SZ angular power spectrum is sensitive to AGN feedback, and this affects the cosmological parameters determined from high resolution ACT and SPT cosmic microwave background data. We compare analytic, semi-analytic, and simulation

  19. Non-thermal processes during the 'build-up' phase of solar flares and in absence of flares

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Pick, M.

    1976-01-01

    Hard X-ray and radio observations indicate production of non-thermal electrons as a common phenomenon of the active sun. A preliminary analysis of three hard X-ray bursts observed with the OGO-5 satellite and radio observations indicate that non-thermal particles are present in the flare region prior to the impulsive (flash) phase and also during the gradual rise and fall (GRF) bursts which are usually explained in terms of purely 'thermal' radiation. The principal difference between the non-thermal electrons observed before the flash phase and during the flash phase appears to be in their total number rather than in the hardness of their energy spectrum. Basic characteristics of the two acceleration processes are probably similar although the total energy converted into non-thermal electrons is considerably larger in the flash phase. Transient absorbing H-alpha features and filament activations are discussed in terms of their ability to produce energetic particle events and magnetic energy release.

  20. THE RELATIONSHIP BETWEEN EXTREME ULTRAVIOLET NON-THERMAL LINE BROADENING AND HIGH-ENERGY PARTICLES DURING SOLAR FLARES

    SciTech Connect

    Kawate, T.; Imada, S.

    2013-10-01

    We have studied the relationship between the location of EUV non-thermal broadening and high-energy particles during large flares using the EUV Imaging Spectrometer on board Hinode, the Nobeyama Radio Polarimeter, the Nobeyama Radioheliograph, and the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. We have analyzed five large flare events that contain thermal-rich, intermediate, and thermal-poor flares classified by the definition discussed in the paper. We found that, in the case of thermal-rich flares, the non-thermal broadening of Fe XXIV occurred at the top of the flaring loop at the beginning of the flares. The source of 17 GHz microwaves is located at the footpoint of the flare loop. On the other hand, in the case of intermediate/thermal-poor flares, the non-thermal broadening of Fe XXIV occurred at the footpoint of the flare loop at the beginning of the flares. The source of 17 GHz microwaves is located at the top of the flaring loop. We discussed the difference between thermal-rich and intermediate/thermal-poor flares based on the spatial information of non-thermal broadening, which may provide clues that the presence of turbulence plays an important role in the pitch angle scattering of high-energy electrons.

  1. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    SciTech Connect

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  2. Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain.

    PubMed

    Rossmeisl, John H; Garcia, Paulo A; Roberston, John L; Ellis, Thomas L; Davalos, Rafael V

    2013-01-01

    This study describes the neuropathologic features of normal canine brain ablated with non-thermal irreversible electroporation (N-TIRE). The parietal cerebral cortices of four dogs were treated with N-TIRE using a dose-escalation protocol with an additional dog receiving sham treatment. Animals were allowed to recover following N-TIRE ablation and the effects of treatment were monitored with clinical and magnetic resonance imaging examinations. Brains were subjected to histopathologic and ultrastructural assessment along with Bcl-2, caspase-3, and caspase-9 immunohistochemical staining following sacrifice 72 h post-treatment. Adverse clinical effects of N-TIRE were only observed in the dog treated at the upper energy tier. MRI and neuropathologic examinations indicated that N-TIRE ablation resulted in focal regions of severe cytoarchitectural and blood-brain-barrier disruption. Lesion size correlated to the intensity of the applied electrical field. N-TIRE-induced lesions were characterized by parenchymal necrosis and hemorrhage; however, large blood vessels were preserved. A transition zone containing parenchymal edema, perivascular inflammatory cuffs, and reactive gliosis was interspersed between the necrotic focus and normal neuropil. Apoptotic labeling indices were not different between the N-TIRE-treated and control brains. This study identified N-TIRE pulse parameters that can be used to safely create circumscribed foci of brain necrosis while selectively preserving major vascular structures. PMID:23820168

  3. Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain

    PubMed Central

    Garcia, Paulo A.; Roberston, John L.; Ellis, Thomas L.; Davalos, Rafael V.

    2013-01-01

    This study describes the neuropathologic features of normal canine brain ablated with non-thermal irreversible electroporation (N-TIRE). The parietal cerebral cortices of four dogs were treated with N-TIRE using a dose-escalation protocol with an additional dog receiving sham treatment. Animals were allowed to recover following N-TIRE ablation and the effects of treatment were monitored with clinical and magnetic resonance imaging examinations. Brains were subjected to histopathologic and ultrastructural assessment along with Bcl-2, caspase-3, and caspase-9 immunohistochemical staining following sacrifice 72 h post-treatment. Adverse clinical effects of N-TIRE were only observed in the dog treated at the upper energy tier. MRI and neuropathologic examinations indicated that N-TIRE ablation resulted in focal regions of severe cytoarchitectural and blood-brain-barrier disruption. Lesion size correlated to the intensity of the applied electrical field. N-TIRE-induced lesions were characterized by parenchymal necrosis and hemorrhage; however, large blood vessels were preserved. A transition zone containing parenchymal edema, perivascular inflammatory cuffs, and reactive gliosis was interspersed between the necrotic focus and normal neuropil. Apoptotic labeling indices were not different between the N-TIRE-treated and control brains. This study identified N-TIRE pulse parameters that can be used to safely create circumscribed foci of brain necrosis while selectively preserving major vascular structures. PMID:23820168

  4. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    PubMed Central

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  5. Antitumor action of non thermal plasma sources, DBD and Plasma Gun, alone or in combined protocols

    NASA Astrophysics Data System (ADS)

    Robert, Eric; Brullé, Laura; Vandamme, Marc; Riès, Delphine; Le Pape, Alain; Pouvesle, Jean-Michel

    2012-10-01

    The presentation deals with the assessment on two non thermal plasma sources developed and optimized for oncology applications. The first plasma source is a floating-electrode dielectric barrier discharge powered at a few hundreds of Hz which deliver air-plasma directly on the surface of cell culture medium in dishes or on the skin or organs of mice bearing cancer tumors. The second plasma source, so called Plasma Gun, is a plasma jet source triggered in noble gas, transferred in high aspect ratio and flexible capillaries, on targeting cells or tumors after plasma transfer in air through the ``plasma plume'' generated at the capillary outlet. In vitro evidence for massive cancer cell destruction and in vivo tumor activity and growth rate reductions have been measured with both plasma sources. DNA damages, cell cycle arrests and apoptosis induction were also demonstrated following the application of any of the two plasma source both in vitro and in vivo. The comparison of plasma treatment with state of the art chemotherapeutic alternatives has been performed and last but not least the benefit of combined protocols involving plasma and chemotherapeutic treatments has been evidenced for mice bearing orthotopic pancreas cancer and is under evaluation for the colon tumors.

  6. Non-thermal Nanoelectroablation of UV-induced Murine Melanomas Stimulates an Immune Response

    PubMed Central

    Nuccitelli, Richard; Tran, Kevin; Lui, Kaying; Huynh, Joanne; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela; De Fabo, Edward C.

    2013-01-01

    Summary Non-thermal nanoelectroablation therapy completely ablates UV-induced murine melanomas. C57/BL6-HGF/SF transgenic mice were exposed to UV radiation as pups and began to develop visible melanomas 5–6 months later. We have treated 27 of these melanomas in 14 mice with nanosecond pulsed electric field (nsPEF) therapy delivering 2000 electric pulses each 100 ns long and 30 kV/cm at a rate of 5–7 pulses per second. All nanoelectroablated melanoma tumors began to shrink within a day after treatment and gradually disappeared over a period of 12–29 days. Pyknosis of nuclei was evident within 1 h of nsPEF treatment, and DNA fragmentation as detected by TUNEL staining was evident by 6 h after nsPEF treatment. In a melanoma allograft system, nsPEF treatment was superior to tumor excision at accelerating secondary tumor rejection in immune-competent mice, suggesting enhanced stimulation of a protective immune response by nsPEF-treated melanomas. This is supported by the presence of CD4+-T cells within treated tumors as well as within untreated tumors located in mice with other melanomas that had been treated with nanoelectroablation at least 19 days earlier. PMID:22686288

  7. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation.

    PubMed

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  8. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    NASA Astrophysics Data System (ADS)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  9. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen.

    PubMed

    Marković, Marijana; Jović, Milica; Stanković, Dalibor; Kovačević, Vesna; Roglić, Goran; Gojgić-Cvijović, Gordana; Manojlović, Dragan

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe(2+)). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC-MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. PMID:25466684

  10. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor

    NASA Astrophysics Data System (ADS)

    Hoang, Trung Q.; Zhu, Xinli; Lobban, Lance L.; Mallinson, Richard G.

    2011-07-01

    Production of hydrogen for fuel cell vehicles, mobile power generators and for hydrogen-enhanced combustion from ethanol is demonstrated using energy-efficient non-thermal plasma reforming. A tubular reactor with a multipoint electrode system operated in pulsed mode was used. Complete conversion can be achieved with high selectivity (based on ethanol) of H2 and CO of 111% and 78%, respectively, at atmospheric pressure. An elevated pressure of 15 psig shows improvement of selectivity of H2 and CO to 120% and 87%, with a significant reduction of C2Hx side products. H2 selectivity increased to 127% when a high ratio (29.2) of water-to-ethanol feed was used. Increasing CO2 selectivity is observed at higher water-to-ethanol ratios indicating that the water gas shift reaction occurs. A higher productivity and lower C2Hx products were observed at larger gas gaps. The highest overall energy efficiency achieved, including electrical power consumption, was 82% for all products or 66% for H2 only.

  11. Eradication and phenotypic tolerance of Burkholderia cenocepacia biofilms exposed to atmospheric pressure non-thermal plasma.

    PubMed

    Alshraiedeh, Nida H; Higginbotham, Sarah; Flynn, Padrig B; Alkawareek, Mahmoud Y; Tunney, Michael M; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-06-01

    Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms. PMID:27179816

  12. Cell bathing medium as a target for non thermal effect of millimeter waves.

    PubMed

    Deghoyan, Anush; Heqimyan, Armenuhi; Nikoghosyan, Anna; Dadasyan, Erna; Ayrapetyan, Sinerik

    2012-06-01

    Non thermal (NT) effect of direct radiation 4 Hz-modulated 90-160 GHz of Millimeter Waves (MMW) and preliminary MMW-treated physiological solution (PS) influence were studied on snail isolated neuron, rat's brain tissue hydration and skin penetration. It was shown that the 4 Hz-modulated low intensity 90-160 GHz MMW direct radiation and MMW-treated PS leads to on single neuron shrinkage, skin and brain tissue dehydration. On the basis of obtained data it was suggested that the cell bathing aqua medium serve as a target through which the NT effect of MMW on cell hydration is realized. The MMW-induced brain tissue dehydration can considering as consequence of MMW-induced skin water structural changes leading to unknown messenger formation able to modulate the brain cell hydration. The extrasensitivity of cell hydration to low intensity of MMW radiation allow to recommend cell hydration as a cellular marker for estimation of the NT biological effect of MMW on cells and organisms. PMID:22352386

  13. SUZAKU OBSERVATIONS OF THE NON-THERMAL SUPERNOVA REMNANT HESS J1731-347

    SciTech Connect

    Bamba, Aya; Yamazaki, Ryo; Puehlhofer, Gerd; Klochkov, Dmitry; Acero, Fabio; Li Zhiyuan; Horns, Dieter; Kosack, Karl

    2012-09-10

    A detailed analysis of the non-thermal X-ray emission from the northwestern and southern parts of the supernova remnant (SNR) HESS J1731-347 with Suzaku is presented. The shell portions covered by the observations emit hard and lineless X-rays. The spectrum can be reproduced by a simple absorbed power-law model with a photon index {Gamma} of 1.8-2.7 and an absorption column density N{sub H} of (1.0-2.1) Multiplication-Sign 10{sup 22} cm{sup -2}. These quantities change significantly from region to region; the northwestern part of the SNR has the hardest and most absorbed spectrum. The western part of the X-ray shell has a smaller curvature than the northwestern and southern shell segments. A comparison of the X-ray morphology to the very high energy gamma-ray and radio images was performed. The efficiency of the electron acceleration and the emission mechanism in each portion of the shell are discussed. Thermal X-ray emission from the SNR was searched for but could not be detected at a significant level.

  14. Simulation for the transition from non-thermal to thermal discharges

    NASA Astrophysics Data System (ADS)

    Papadakis, A. P.; Georghiou, G. E.; Metaxas, A. C.

    2005-05-01

    A numerical algorithm is presented that characterizes the transition from non-thermal to thermal high-pressure gas discharges. To achieve this, the Poisson, charged particle continuity and Navier-Stokes equations are coupled together to analyse the interaction between the charged and neutral particles and the electric field. In this work, a new Navier-Stokes solver is developed based on the finite-element flux-corrected-transport method. This solver studies the movement of the neutral gas particles by solving the conservation of mass, momentum and energy for viscous fluids. The solver is thoroughly tested in both two-dimensional Cartesian and cylindrical axisymmetric coordinates. After validation, it is coupled to an existing Poisson and charged particle continuity solver through production and loss processes, momentum energy transfer and Joule heating effects. The avalanche and streamer discharges are analysed starting from a single electron and positive ion as initial conditions. Finally, the effect of including heating of the neutral gas on the electron density is discussed.

  15. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses.

    PubMed

    Kimel, A V; Kirilyuk, A; Usachev, P A; Pisarev, R V; Balbashov, A M; Rasing, Th

    2005-06-01

    The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (approximately 200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices. PMID:15917826

  16. Suzaku Observations of the Non-thermal Supernova Remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Pühlhofer, Gerd; Acero, Fabio; Klochkov, Dmitry; Tian, Wenwu; Yamazaki, Ryo; Li, Zhiyuan; Horns, Dieter; Kosack, Karl; Komin, Nukri

    2012-09-01

    A detailed analysis of the non-thermal X-ray emission from the northwestern and southern parts of the supernova remnant (SNR) HESS J1731-347 with Suzaku is presented. The shell portions covered by the observations emit hard and lineless X-rays. The spectrum can be reproduced by a simple absorbed power-law model with a photon index Γ of 1.8-2.7 and an absorption column density N H of (1.0-2.1) × 1022 cm-2. These quantities change significantly from region to region; the northwestern part of the SNR has the hardest and most absorbed spectrum. The western part of the X-ray shell has a smaller curvature than the northwestern and southern shell segments. A comparison of the X-ray morphology to the very high energy gamma-ray and radio images was performed. The efficiency of the electron acceleration and the emission mechanism in each portion of the shell are discussed. Thermal X-ray emission from the SNR was searched for but could not be detected at a significant level.

  17. DC non-thermal atmospheric-pressure plasma jet generated using a syringe needle electrode

    NASA Astrophysics Data System (ADS)

    Matra, Khanit

    2016-07-01

    Non-thermal plasma jet was generated by applying a dc source voltage between the syringe needle anode with flowing Argon gas and a planar or a hollow copper cathode in an atmospheric-pressure environment. The two operating discharge modes, which were self-pulsing and a continuous discharge mode, these were mainly controlled by the limitations of the current flowing in the discharge circuit. A ballast resistor was an important factor in affecting the limitations of the operating discharge mode. The gas breakdown was initially generated in the self-pulsing discharge mode at the source voltage of 1.2 kV. This was slightly higher than the breakdown voltage at the experimental condition of 1 lpm of Argon and a 1 mm electrode gap distance. The peak self-pulsing discharge currents were up to 15–20 A with a self-pulsing frequency in the range of 10–20 kHz. The continuous discharge mode could be observed at the higher source voltage with the continuous discharge current within the range of a few milliamperes.

  18. Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing.

    PubMed

    Wen, Yiyong; Yi, Jianping; Zhao, Shen; Jiang, Song; Chi, Yuming; Liu, Kefu

    2016-06-01

    The wastewater effluent from Radix aconiti processing, an important step in the production processes of traditional Chinese medicine (TCM), is a type of toxic wastewater and difficult to treat. Plasma oxidation methods have emerged as feasible techniques for effective decomposition of toxic organic pollutants. This study examined the performance of a plasma reactor operated in a dielectric barrier discharge (DBD) to degrade the effluent from R. aconiti processing. The effects of treatment time, discharge voltage, initial pH value and the feeding gas for the reactor on the degradation of this TCM wastewater were investigated. A bacterium bioluminescence assay was adopted in this study to test the toxicity of the TCM wastewater after non-thermal plasma treatment. The degradation ratio of the main toxic component was 87.77% after 60min treatment with oxygen used as feed gas and it was 99.59% when the initial pH value was 8.0. High discharge voltage and alkaline solution environment were beneficial for improving the degradation ratio. The treatment process was found to be capable of reducing the toxicity of the wastewater to a low level or even render it non-toxic. These experimental results suggested that the DBD plasma method may be a competitive technology for primary decomposition of biologically undegradable toxic organic pollutants in TCM wastewater. PMID:27266306

  19. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    PubMed

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630

  20. Interband and intraband electron kinetics in non-thermal warm dense gold

    NASA Astrophysics Data System (ADS)

    Brennan Brown, Shaughnessy; Chen, Zhijiang; Curry, Chandra; Hering, Philippe; Hoffmann, Matthias C.; Ng, Andrew; Reid, Matthew; Tsui, Ying Y.; Glenzer, Siegfried H.

    2015-11-01

    Single-state warm dense matter may be produced via isochoric heating of thin metal foils using ultrafast high-power lasers. Previous experiments have confirmed that electron temperatures exceed ion temperatures during the initial picoseconds following excitation; however, electron kinetics in non-thermal states preceding establishment of a well-defined electron thermal distribution remain little understood. X-ray and optical probing techniques provide necessary resolution to investigate these electronic properties. Here, we will present a study of electron kinetics in warm dense gold produced by irradiating free-standing 30 nm Au foils with a 400 nm FWHM, 45 fs Ti:Sapphire laser system at SLAC National Accelerator Laboratory. The temporal evolutions of AC conductivity for 400 nm and 800 nm laser pulses are simultaneously determined with sub-100 fs resolution, providing insight into the 5 d-6 s/ p interband and 6 s / p intraband transitions respectively. Our results suggest that Auger decay and three-body recombination play important roles in electron thermalization of warm dense gold.