Science.gov

Sample records for quasi-spherical ice crystals

  1. Quasi-spherical direct drive fusion.

    SciTech Connect

    VanDevender, J. Pace; Abbott, Lucas M.; Langston, William L.; McDaniel, Dillon Heirman; Nash, Thomas J.; Roderick, Norman Frederick; Silva, M.

    2007-01-01

    The authors present designs of quasi-spherical direction drive z-pinch loads for machines such as ZR at 28 MA load current with a 150 ns implosion time (QSDDI). A double shell system for ZR has produced a 2D simulated yield of 12 MJ, but the drive for this system on ZR has essentially no margin. A double shell system for a 56 MA driver at 150 ns implosion has produced a simulated yield of 130 MJ with considerable margin in attaining the necessary temperature and density-radius product for ignition. They also represent designs for a magnetically insulated current amplifier, (MICA), that modify the attainable ZR load current to 36 MA with a 28 ns rise time. The faster pulse provided by a MICA makes it possible to drive quasi-spherical single shell implosions (QSDD2). They present results from 1D LASNEX and 2D MACH2 simulations of promising low-adiabat cryogenic QSDD2 capsules and 1D LASNEX results of high-adiabat cryogenic QSDD2 capsules.

  2. Antarctic stratospheric ice crystals

    SciTech Connect

    Goodman, J. ); Toon, O.B.; Pueschel, R.F.; Snetsinger, K.G. ) Verma, S. )

    1989-11-30

    Ice crystals were replicated over the Palmer Peninsula at approximately 72{degree}S on six occasions during the 1987 Airborne Antarctic Ozone Experiment. The sampling altitude was between 12.5 and 18.5 km (45-65 thousand ft pressure altitude) with the temperature between 190 and 201 K. The atmosphere was subsaturated with respect to ice in all cases. The collected crystals were predominantly solid and hollow columns. The largest crystals were sampled at lower altitudes where the potential temperature was below 400 K. While the crystals were larger than anticipated, their low concentration results in a total surface area that is less than one tenth of the total aerosol surface area. The large ice crystals may play an important role in the observed stratospheric dehydration processes through sedimentation. Evidence of scavenging of submicron particles further suggests that the ice crystals may be effective in the removal of stratospheric chemicals.

  3. Ice crystal terminal velocities.

    NASA Technical Reports Server (NTRS)

    Heymsfield, A.

    1972-01-01

    Terminal velocities of different ice crystal forms were calculated, using the most recent ice crystal drag coefficients, aspect ratios, and densities. The equations derived were primarily for use in calculating precipitation rates by sampling particles with an aircraft in cirrus clouds, and determining particle size in cirrus clouds by Doppler radar. However, the equations are sufficiently general for determining particle terminal velocity at any altitude, and almost any crystal type. Two sets of equations were derived. The 'general' equations provide a good estimate of terminal velocities at any altitude. The 'specific' equations are a set of equations for ice crystal terminal velocities at 1000 mb. The calculations are in good agreement with terminal velocity measurements. The results from the present study were also compared to prior calculations by others and seem to give more reasonable results, particularly at higher altitudes.

  4. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  5. Ice crystal ingestion by turbofans

    NASA Astrophysics Data System (ADS)

    Rios Pabon, Manuel A.

    This Thesis will present the problem of inflight icing in general and inflight icing caused by the ingestion of high altitude ice crystals produced by high energy mesoscale convective complexes in particular, and propose a new device to prevent it based on dielectric barrier discharge plasma. Inflight icing is known to be the cause of 583 air accidents and more than 800 deaths in more than a decade. The new ice crystal ingestion problem has caused more than 100 flights to lose engine power since the 1990's, and the NTSB identified it as one of the causes of the Air France flight 447 accident in 1-Jun2008. The mechanics of inflight icing not caused by ice crystals are well established. Aircraft surfaces exposed to supercooled liquid water droplets will accrete ice in direct proportion of the droplet catch and the freezing heat transfer process. The multiphase flow droplet catch is predicted by the simple sum of forces on each spherical droplet and a droplet trajectory calculation based on Lagrangian or Eulerian analysis. The most widely used freezing heat transfer model for inflight icing caused by supercooled droplets was established by Messinger. Several computer programs implement these analytical models to predict inflight icing, with LEWICE being based on Lagrangian analysis and FENSAP being based on Eulerian analysis as the best representatives among them. This Thesis presents the multiphase fluid mechanics particular to ice crystals, and explains how it differs from the established droplet multiphase flow, and the obstacles in implementing the former in computational analysis. A new modification of the Messinger thermal model is proposed to account for ice accretion produced by ice crystal impingement. Because there exist no computational and experimental ways to fully replicate ice crystal inflight icing, and because existing ice protections systems consume vast amounts of energy, a new ice protection device based on dielectric barrier discharge plasma is

  6. Cluster self-organization of intermetallic systems: Quasi-spherical nanocluster precursors with internal Friauf polyhedra (A-172) and icosahedra (B-137) in the Li{sub 19}Na{sub 8}Ba{sub 15} (hP842) crystal structure

    SciTech Connect

    Ilyushin, G. D.; Blatov, V. A.

    2010-12-15

    A combinatorial and topological analysis of Li{sub 19}Na{sub 8}Ba{sub 15} (hP842, a = 20 A, c = 93 A, V = 33552 A{sup 3}, P3-bar) has been performed using computer methods (the TOPOS program package). Two types of crystal-forming quasi-spherical nanoclusters about 20 A in diameter with internal Friauf polyhedra (A-172) and icosahedra (B-137) have been established by the complete decomposition of the 3D factor graph of the structure into cluster substructures. Each type of nanoclusters forms close-packed 2D layers 3{sup 6}, which alternate along the c axis. The B-137 and A-172 nanoclusters are composed of three layers and have shell compositions (1 + 12 + 32 + 92) and (1 + 16 + 59 + 103) with local symmetries 3 and 3-bar, respectively; they were revealed for the first time in crystal structures as cluster precursors. The icosahedral B-137 nanocluster contains a 104-atom quasicrystal approximant (Samson cluster).

  7. Quasi-spherical Approach (III): Treatment of the Earth's Center

    NASA Astrophysics Data System (ADS)

    Toyokuni, G.; Takenaka, H.; Wang, Y.; Kennett, B. L.

    2006-12-01

    We have worked to construct an accurate and efficient method for seismic waveform modeling for a laterally heterogeneous global earth. In the field of global seismology, the axisymmetric modeling which assumes structures to be axisymmetric about the axis through the source and solves the elastodynamic equation in spherical coordinates, has been an efficient modeling method. Although it can correctly model the geometrical spreading effects in 3D with computational resources comparable to 2D modeling, the conventional axisymmetric modeling cannot treat asymmetric (realistic) structures with respect to the source axis. In order to overcome this problem, the quasi-spherical finite-difference method (FDM) has been developed (Toyokuni et al., AGU Fall Meeting, 2004; Toyokuni et al., GRL, 2005). This method can model seismic wave propagation in a 2D slice of a global earth model with an arbitrary lateral heterogeneity, with a similar computation time and storage as for 2D modeling. We then implemented an arbitrary moment tensor sources into the quasi-spherical FDM scheme (Toyokuni et al., WPGM, 2006). However, these schemes could not treat the center of the earth due to the singularity at this point. This time, we extend the quasi-spherical FDM to be able to model seismic wave propagation through the earth's center. To achieve this, we introduce a discontinuous grid (Aoi &Fujiwara, BSSA, 1999) in the lateral direction, while we use non-uniform grid in the radial direction. For discontinuous change of the lateral grid spacing, the grid in the deeper region is set to have three times coarser interval than in the upper region. Wavefields from the deeper layer are passed to the upper layer through the fourth-order Lagrange interpolation. Then wavefields at the earth's center are evaluated also using Lagrange interpolation from the values around the center. In this presentation, we show some numerical examples to demonstrate the validity and feasibility of our method. In

  8. Viewing Ice Crystals Using Polarized Light.

    ERIC Educational Resources Information Center

    Kinsman, E. M.

    1992-01-01

    Describes a method for identifying and examining single ice crystals by photographing a thin sheet of ice placed between two inexpensive polarizing filters. Suggests various natural and prepared sources for ice that promote students' insight into crystal structures, and yield colorful optical displays. Includes directions, precautions, and sample…

  9. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  10. Supernumerary ice-crystal halos?

    PubMed

    Berry, M V

    1994-07-20

    Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

  11. Cosmological observables in the quasi-spherical Szekeres model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert G.

    2014-10-01

    The standard model of cosmology presents a homogeneous universe, and we interpret cosmological data through this framework. However, structure growth creates nonlinear inhomogeneities that may affect observations, and even larger structures may be hidden by our limited vantage point and small number of independent observations. As we determine the universe's parameters with increasing precision, the accuracy is contingent on our understanding of the effects of such structures. For instance, giant void models can explain some observations without dark energy. Because perturbation theory cannot adequately describe nonlinear inhomogeneities, exact solutions to the equations of general relativity are important for these questions. The most general known solution capable of describing inhomogeneous matter distributions is the Szekeres class of models. In this work, we study the quasi-spherical subclass of these models, using numerical simulations to calculate the inhomogeneities' effects on observations. We calculate the large-angle CMB in giant void models and compare with simpler, symmetric void models that have previously been found inadequate to matchobservations. We extend this by considering models with early-time inhomogeneities as well. Then, we study distance observations, including selection effects, in models which are homogeneous on scales around 100 Mpc---consistent with standard cosmology---but inhomogeneous on smaller scales. Finally, we consider photon polarizations, and show that they are not directly affected by inhomogeneities. Overall, we find that while Szekeres models have some advantages over simpler models, they are still seriously limited in their ability to alter our parameter estimation while remaining within the bounds of current observations.

  12. An Overview of NASA Engine Ice-Crystal Icing Research

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Veres, Joseph P.

    2011-01-01

    Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

  13. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  14. Evolution of crystal fabric: Ice-Age ice versus Holocene ice

    NASA Astrophysics Data System (ADS)

    Kennedy, J. H.; Pettit, E. C.

    2009-12-01

    Ice-Age ice has smaller crystals and higher concentrations of impurities than Holocene ice; these properties cause it to develop a more strongly-aligned crystal-orientation fabric. In many regions of the Antarctic and Greenland ice sheets, the Ice-Age ice is now at depth and its flow properties may dominate the ice flow patterns, particularly where sliding is minimal. We use a fabric evolution model, based on that developed by Thorsteinsson (2002), to explore the evolution of Ice-Age ice fabric along particle paths for ice within Taylor Glacier, a cold-based outlet glacier of the East Antarctic Ice Sheet. The bulk of the ice within Taylor Glacier consists of Ice-Age and older ice because the Holocene ice has ablated away (there is no Holocene ice remaining within 25km of the terminus, Aciego, 2007). We initialize the evolving fabric based on fabric measurements from Taylor Dome where available (DiPrinzio, 2003) and other ice core records. We compare model results with thin-section data from shallow cores taken near the terminus. As expected, crystal alignment strengthens along the ice particle path. Due to lateral shearing along valley walls and the ice cliffs (terminal ice cliffs are cold in winter and present a resistance to flow), a tilted single maximum is common near the terminus. The highly-aligned fabric of Ice-Age ice is significantly softer than Holocene ice in simple shear parallel to the bed, this softness not only results in faster flow rates for glaciers and ice sheets such as Taylor, but creates a climate-flow-fabric feedback loop through concentrating ice-sheet flow within the Ice-Age ice. Thorsteinsson, T. (2002), Fabric development with nearest-neighbor interaction and dynamic recrystallization, J. Geophys. Res., 107(B1), 2014, doi:10.1029/2001JB000244. S.M. Aciego, K.M. Cuffey, J.L. Kavanaugh, D.L. Morse, J.P. Severinghaus, Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica, Quaternary Research, Volume 68, Issue 3, November 2007

  15. Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion

    SciTech Connect

    NASH,THOMAS J.

    2000-11-01

    The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/{micro}s, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-{micro}m in diameter.

  16. Aggregation of ice crystals in cirrus

    NASA Technical Reports Server (NTRS)

    Kajikawa, Masahiro; Heymsfield, Andrew J.

    1989-01-01

    Results are given from analysis of the aggregation of thick plate, columnar, and bullet rosette ice crystals in cirrus. Data were obtained from PMS 2D-C images, oil coated slides, and aircraft meteorological measurements. Crystal size ranged from 100 to 900 microns in temperatures from -30 to -45 C. The results indicate that the ratio of the sizes of aggregating crystals and the difference of their terminal velocities are important in aggregation. The collection efficiency was calculated for the thick plate crystals from the same data.

  17. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  18. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William

    2011-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic

  19. Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification

    SciTech Connect

    Zhang Yang; Ding Ning; Sun Shunkai; Xue Chuang; Ning Cheng; Xiao Delong; Huang Jun; Li Zhenghong

    2012-12-15

    Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.

  20. Dynamics of quasi-spherical Z-pinch implosions with mass redistribution and displacement modification

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Ding, Ning; Li, Zheng-Hong; Sun, Shun-Kai; Xue, Chuang; Ning, Cheng; Xiao, De-Long; Huang, Jun

    2012-12-01

    Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.

  1. Disturbed basal ice seen in radio echo images coincide with zones of big interlocking ice crystals.

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, Dorthe; Gogineni, Sivaprasad; Panton, Christian

    2014-05-01

    Improvement of the depth sounding radio echo sounding (RES) over Antarctica and Greenland Ice Sheet has made it possible to map the near basal layers that have not been 'seen' earlier due to the very high demand of attenuation needed to reach through more than 3000m of ice. The RES internal reflectors show that the near basal ice at many locations has disturbed layering. At the locations where ice cores reach the bedrock both in Greenland and Antarctica studies of the ice crystal size and orientation show that the near basal ice has big and interlocking ice crystals which suggests the ice is not actively deforming. These observations challenge the often used constitutive equations like Glens flow law in ice sheet modelling. A discussion of the impact of the RES findings on ice sheet modeling and the quest to find the oldest ice in Antarctic based on the anisotropy of the basal ice will follow.

  2. Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution

    NASA Technical Reports Server (NTRS)

    Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

    2000-01-01

    reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.

  3. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  4. The crystal structure of ice under mesospheric conditions

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin J.; Malkin, Tamsin L.; Salzmann, Christoph G.

    2015-05-01

    Ice clouds form in the summer high latitude mesopause region, which is the coldest part of the Earth's atmosphere. At these very low temperatures (<150 K) ice can exist in metastable forms, but the nature of these ices remains poorly understood. In this paper we show that ice which is grown at mesospherically relevant temperatures does not have a structure corresponding to the well-known hexagonal form or the metastable cubic form. Instead, the ice which forms under mesospheric conditions is a material in which cubic and hexagonal sequences of ice are randomly arranged to produce stacking disordered ice (ice Isd). The structure of this ice is in the trigonal crystal system, rather than the cubic or hexagonal systems, and is expected to produce crystals with aspect ratios consistent with lidar observations.

  5. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  6. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  7. Quasi-spherical direct drive fusion simulations for the Z machine and future accelerators.

    SciTech Connect

    VanDevender, J. Pace; McDaniel, Dillon Heirman; Roderick, Norman Frederick; Nash, Thomas J.

    2007-11-01

    We explored the potential of Quasi-Spherical Direct Drive (QSDD) to reduce the cost and risk of a future fusion driver for Inertial Confinement Fusion (ICF) and to produce megajoule thermonuclear yield on the renovated Z Machine with a pulse shortening Magnetically Insulated Current Amplifier (MICA). Analytic relationships for constant implosion velocity and constant pusher stability have been derived and show that the required current scales as the implosion time. Therefore, a MICA is necessary to drive QSDD capsules with hot-spot ignition on Z. We have optimized the LASNEX parameters for QSDD with realistic walls and mitigated many of the risks. Although the mix-degraded 1D yield is computed to be {approx}30 MJ on Z, unmitigated wall expansion under the > 100 gigabar pressure just before burn prevents ignition in the 2D simulations. A squeezer system of adjacent implosions may mitigate the wall expansion and permit the plasma to burn.

  8. Quasi-spherical LuBO{sub 3} nanoparticles: Synthesis, formation, and luminescence properties

    SciTech Connect

    Gao, Yu; Yang, Feng; Han, Wenchi; Fang, Qinghong; Xu, Zhenhe

    2014-03-01

    Graphical abstract: Quasi-spherical LuBO3 nanoparticles have been prepared via a facile hydrothermal route. The possible growth mechanism and the luminescent properties of the as-prepared microcrystals have been discussed. - Highlights: • LuBO{sub 3} nanoparticles were prepared by a facile hydrothermal route. • The Eu{sup 3+} and Tb{sup 3+}-doped LuBO{sub 3} products show strong red and green emissions. • This method may be more widely applicable in the design of other rare-earth compounds. - Abstract: Quasi-spherical LuBO{sub 3} nanoparticles have been successfully synthesized by a designed hydrothermal conversion method. The Lu(OH)CO{sub 3} nanoparticles were first prepared by a simple homogeneous precipitation method. Subsequently, LuBO{sub 3} nanoparticles were synthesized at the expense of the Lu(OH)CO{sub 3} nanoparticles during a hydrothermal conversion process. The conversion process from the Lu(OH)CO{sub 3} precursor to LuBO{sub 3} nanoparticles was investigated by time-dependent experiments. Moreover, the as-obtained Eu{sup 3+} and Tb{sup 3+}-doped LuBO{sub 3} products show strong characteristic red and green emissions under ultraviolet excitation and low-voltage electron beam excitation, respectively. This work sheds some light on the knowledge of conversion of different kind of lutetium compounds, and the luminescent properties have potential applications in fluorescent lamps and field emission displays. More importantly, this simple method is expected to allow the large-scale production of other complex rare-earth compounds with controllable morphologies and sizes, and exploration of the morphology and photoluminescence properties.

  9. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  10. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  11. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  12. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  13. Ice crystallization in water's ``no-man's land''

    NASA Astrophysics Data System (ADS)

    Moore, Emily B.; Molinero, Valeria

    2010-06-01

    The crystallization of water at 180 K is studied through large-scale molecular dynamics simulations with the monatomic water model mW. This temperature is in the middle of water's "no-man's land," where rapid ice crystallization prevents the elucidation of the structure of liquid water and its transformation into ice with state of the art experimental methods. We find that critical ice nuclei (that contain less than ten water molecules) form in a time scale shorter than the time required for the relaxation of the liquid, suggesting that supercooled liquid water cannot be properly equilibrated in this region. We distinguish three stages in the crystallization of water at 180 K: concurrent nucleation and growth of ice, followed by consolidation that decreases the number density of ice nuclei, and finally, slow growth of the crystallites without change in their number density. The kinetics of the transformation along the three stages is well described by a single compacted exponential Avrami equation with n ≈1.7. This work confirms the coexistence of ice and liquid after water is crystallized in "no-man's land": the formation of ice plateaus when there is still 15%-20% of liquid water in the systems, thinly dispersed between ice I crystals with linear dimensions ranging from 3 to 10 nm. We speculate that the nanoscopic size of the crystallites decreases their melting point and slows their evolution toward the thermodynamically most stable fully crystalline state.

  14. Diagnosing the Ice Crystal Enhancement Factor in the Tropics

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Matsui, Toshihisa; Xie, Shaocheng; Lang, Stephen; Zhang, Minghua; Starr, David O'C; Li, Xiaowen; Simpson, Joanne

    2009-01-01

    Recent modeling studies have revealed that ice crystal number concentration is one of the dominant factors in the effect of clouds on radiation. Since the ice crystal enhancement factor and ice nuclei concentration determine the concentration, they are both important in quantifying the contribution of increased ice nuclei to global warming. In this study, long-term cloud-resolving model (CRM) simulations are compared with field observations to estimate the ice crystal enhancement factor in tropical and midlatitudinal clouds, respectively. It is found that the factor in tropical clouds is 10 3-104 times larger than that of mid-latitudinal ones, which makes physical sense because entrainment and detrainment in the Tropics are much stronger than in middle latitudes. The effect of entrainment/detrainment on the enhancement factor, especially in tropical clouds, suggests that cloud microphysical parameterizations should be coupled with subgrid turbulence parameterizations within CRMs to obtain a more accurate depiction of cloud-radiative forcing.

  15. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

    SciTech Connect

    Aleksandrov, V. V.; Gasilov, V. A.; Grabovski, E. V.; Gritsuk, A. N. Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M.; Ol’khovskaya, O. G.; Sasorov, P. V.; Smirnov, V. P.; Frolov, I. N.; Shevel’ko, A. P.

    2014-12-15

    Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup −3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the

  16. How big should hexagonal ice crystals be to produce halos?

    PubMed

    Mishchenko, M I; Macke, A

    1999-03-20

    It has been hypothesized that the frequent lack of halos in observations of cirrus and contrails and laboratory measurements is caused by small ice crystal sizes that put the particles outside the geometrical optics domain of size parameters. We test this hypothesis by exploiting a strong similarity of ray tracing phase functions for finite hexagonal and circular ice cylinders and using T-matrix computations of electromagnetic scattering by circular cylinders with size parameters up to 180 in the visible. We conclude that well-defined halos should be observable for ice crystal size parameters of the order of 100 and larger and discuss remote-sensing implications of this result. PMID:18305781

  17. Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry

    PubMed Central

    Wilson, P. W.; Beaglehole, D.; DeVries, A. L.

    1993-01-01

    Antarctic fishes synthesise antifreeze proteins which can effectively inhibit the growth of ice crystals. The mechanism relies on adsorption of these proteins to the ice surface. Ellipsometry has been used to quantify glycopeptide antifreeze adsorption to the basal and prism faces of single ice crystals. The rate of accumulation was determined as a function of time and at concentrations between 0.0005 and 1.2 mg/ml. Estimates of packing density at saturation coverage have been made for the basal and prism faces. PMID:19431902

  18. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  19. The Backscattering Linear Depolarization Ratio of Ice Clouds Composed of Small Ice Crystals

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Abdelmonem, A.; Benz, S.; Leisner, T.; Möhler, O.; Wagner, R.

    2009-04-01

    The importance of small ice crystals (< 50 µm) for cirrus cloud radiative properties is a matter of controversial debate, mainly because some measurements seemed to clearly overestimate the number concentrations of small ice particles due to particle shattering on the instrument inlets. On the other hand, there is no doubt that small micrometer-sized ice crystals dominate the particle size distributions of contrails and cirrus clouds emerging from contrails. Polarisation LIDAR is frequently used to investigate the microphysics of contrails and contrail cirrus remotely. These investigations reveal unusually high maximum linear depolarization ratios of 0.5 - 0.7. The knowledge of the link between ice crystal depolarization and their size and shape is a prerequisite for the interpretation of these LIDAR data. Since young contrails consist of relatively small ice crystals with sizes typically less than 10 µm, the scattering matrix of these non-spherical particles can be calculated by the T-matrix method. In order to investigate the relation between the linear backscattering depolarization ratio and the microphysical properties of small ice particles that closely resemble those found in contrails and young cirrus, we started to run dedicated ice crystal nucleation and growth experiments at the large cloud simulation chamber AIDA of Forschungszentrum Karlsruhe. Such studies became feasible after the installation of the new in situ laser scattering and depolarization set up SIMONE at the chamber in 2006. The light scattering measurements are analyzed in the context of the microphysical properties of the ice clouds measured by optical cloud particle spectrometers, single particle imaging, and in situ infrared extinction spectroscopy. We compare our experimental results with theoretical results generated by the T-matrix method for finite cylinders. The results give new insight into the scattering depolarisation properties of small ice crystals grown under simulated

  20. Ice crystal precipitation at Dome C site (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including "diamond dust" (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  1. A Multiscale simulation method for ice crystallization and frost growth

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad

    2015-11-01

    Formation of ice crystals and frost is associated with physical mechanisms at immensely separated scales. The primary focus of this work is on crystallization and frost growth on a cold plate exposed to the humid air. The nucleation is addressed through Gibbs energy barrier method based on the interfacial energy of crystal and condensate as well as the ambient and surface conditions. The supercooled crystallization of ice crystals is simulated through a phase-field based method where the variation of degree of surface tension anisotropy and its mode in the fluid medium is represented statistically. In addition, the mesoscale width of the interface is quantified asymptotically which serves as a length-scale criterion into a so-called ``Adaptive'' AMR (AAMR) algorithm to tie the grid resolution at the interface to local physical properties. Moreover, due to the exposure of crystal to humid air, a secondary non-equilibrium growth process contributes to the formation of frost at the tip of the crystal. A Monte-Carlo implementation of Diffusion Limited Aggregation method addresses the formation of frost during the crystallization. Finally, a virtual boundary based Immersed Boundary Method (IBM) is adapted to address the interaction of ice crystal with convective air during its growth.

  2. Anomalous growth of single ice crystals in solution

    NASA Technical Reports Server (NTRS)

    Gill, W. N.

    1979-01-01

    It is shown that major discrepancies exist between experiments and theory for ice crystal growth from solution. Accurate data, taken in a microgravity environment, approximate analytical models, and exact (probably numerical) models all are needed to advance our understanding of ice crystal growth phenomena. A new approximate semi-empirical theory is presented which predicts that a relatively sharp transition from natural convection control to diffusion control for ice growth in pure water occurs at a subcooling of about 10 C (a reduced temperature difference of about 0.125). No reliable data exist to test this prediction. The theory also predicts qualitatively the growth of ice in NaCl solution in which maxima in the growth rates are observed at various levels of subcooling.

  3. Radiative sensitivities of tropical anvils to small ice crystals

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.; Kiehl, J. T.

    1994-12-01

    Stratiform anvils in the upper tropical troposphere were simulated to determine the sensitivities of their radiative properties to the presence of small ice crystals. Cloud evolution was modeled in a one-dimensional (vertical) framework incorporating an updraft, deposition, sublimation, sedimentation, nucleation, and radiation. The sensitivities of cloud radiative forcing, albedo, emissivity, and heating rate were derived from a test that included and then excluded the presence of numerous small crystals. These crystals sizes (3 < L < 20 μm) have been measured in recent observations but are smaller than the detection limit of most past observations. The shortwave forcing and albedo were very sensitive to the presence of the small crystals, even though these crystals accounted for less than 2% of total cloud mass. For optically thick anvils the longwave forcing and emissivity were, in general, much less sensitive to the small ice crystals than their shortwave counterparts. Radiative treatments assuming a hexagonal crystal habit yielded the same sensitivities as the spherical habit. The results agreed with previous studies in that the increased backscatter from hexagonal crystals enhanced the planetary albedo by ˜10-15%. The heating rate sensitivity to the small crystals depended on vertical location within the cloud and showed cancelation between the longwave and the shortwave heating perturbations. The small crystals changed heating rates by up to 50% at cloud top and base.

  4. Crystallization of amorphous water ice in the solar system

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.

    1996-01-01

    Electron diffraction studies of vapor-deposited water ice have characterized the dynamical structural changes during crystallization that affect volatile retention in cometary materials. Crystallization is found to occur by nucleation of small domains, while leaving a significant part of the amorphous material in a slightly more relaxed amorphous state that coexists metastably with cubic crystalline ice. The onset of the amorphous relaxation is prior to crystallization and coincides with the glass transition. Above the glass transition temperature, the crystallization kinetics are consistent with the amorphous solid becoming a "strong" viscous liquid. The amorphous component can effectively retain volatiles during crystallization if the volatile concentration is approximately 10% or less. For higher initial impurity concentrations, a significant amount of impurities is released during crystallization, probably because the impurities are trapped on the surfaces of micropores. A model for crystallization over long timescales is described that can be applied to a wide range of impure water ices under typical astrophysical conditions if the fragility factor D, which describes the viscosity behavior, can be estimated.

  5. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  6. Ice Growth Measurements from Image Data to Support Ice Crystal and Mixed-Phase Accretion Testing

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Lynch, Christopher J.

    2012-01-01

    This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.

  7. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.

    PubMed

    Drori, Ran; Celik, Yeliz; Davies, Peter L; Braslavsky, Ido

    2014-09-01

    Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produced by a typical fish AFP. The basis for this difference in activity remains unclear. Here, we have compared the time dependence of TH activity for both hyperactive and moderately active AFPs using a custom-made nanolitre osmometer and a novel microfluidics system. We found that the TH activities of hyperactive AFPs were time-dependent, and that the TH activity of a moderate AFP was almost insensitive to time. Fluorescence microscopy measurement revealed that despite their higher TH activity, hyperactive AFPs from two insects (moth and beetle) took far longer to accumulate on the ice surface than did a moderately active fish AFP. An ice-binding protein from a bacterium that functions as an ice adhesin rather than as an antifreeze had intermediate TH properties. Nevertheless, the accumulation of this ice adhesion protein and the two hyperactive AFPs on the basal plane of ice is distinct and extensive, but not detectable for moderately active AFPs. Basal ice plane binding is the distinguishing feature of antifreeze hyperactivity, which is not strictly needed in fish that require only approximately 1°C of TH. Here, we found a correlation between the accumulation kinetics of the hyperactive AFP at the basal plane and the time sensitivity of the measured TH. PMID:25008081

  8. Crystallization of CO2 ice and the absence of amorphous CO2 ice in space

    PubMed Central

    Escribano, Rafael M.; Muñoz Caro, Guillermo M.; Cruz-Diaz, Gustavo A.; Rodríguez-Lazcano, Yamilet; Maté, Belén

    2013-01-01

    Carbon dioxide (CO2) is one of the most relevant and abundant species in astrophysical and atmospheric media. In particular, CO2 ice is present in several solar system bodies, as well as in interstellar and circumstellar ice mantles. The amount of CO2 in ice mantles and the presence of pure CO2 ice are significant indicators of the temperature history of dust in protostars. It is therefore important to know if CO2 is mixed with other molecules in the ice matrix or segregated and whether it is present in an amorphous or crystalline form. We apply a multidisciplinary approach involving IR spectroscopy in the laboratory, theoretical modeling of solid structures, and comparison with astronomical observations. We generate an unprecedented highly amorphous CO2 ice and study its crystallization both by thermal annealing and by slow accumulation of monolayers from the gas phase under an ultrahigh vacuum. Structural changes are followed by IR spectroscopy. We also devise theoretical models to reproduce different CO2 ice structures. We detect a preferential in-plane orientation of some vibrational modes of crystalline CO2. We identify the IR features of amorphous CO2 ice, and, in particular, we provide a theoretical explanation for a band at 2,328 cm−1 that dominates the spectrum of the amorphous phase and disappears when the crystallization is complete. Our results allow us to rule out the presence of pure and amorphous CO2 ice in space based on the observations available so far, supporting our current view of the evolution of CO2 ice. PMID:23858474

  9. Structural Changes and Energy Cumulation in an Iron-Nickel Alloy upon Quasi-Spherical Explosive Loading

    SciTech Connect

    Zel'dovich, V. I.; Khomskaya, I. V.; Frolova, N. Yu.; Kheifets, A. E.; Gundyrev, V. M.; Litvinov, B. V.; Purygin, N. P.

    2006-08-03

    Ball samples of the Fe-31.8 wt % Ni-0.05 wt % C iron-nickel alloy one of which was in an austenitic state and the other was in a martensitic-austenitic state were subjected to quasi-spherical shock-wave loading under identical conditions. A comparison of the results obtained under the same loading conditions on the samples of the same alloy in two different initial states made it possible to establish the influence of the initial phase composition on the structural changes and on the effect of energy cumulation.

  10. Investigating the Relative Contributions of Secondary Ice Formation Processes to Ice Crystal Number Concentrations Within Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, S.; Nenes, A.

    2015-12-01

    Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.

  11. Investigations of electromagnetic scattering by columnar ice crystals

    NASA Technical Reports Server (NTRS)

    Weil, H.; Senior, T. B. A.

    1976-01-01

    An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

  12. Ice nucleation: elemental identification of particles in snow crystals.

    PubMed

    Parungo, F P; Pueschel, R F

    1973-06-01

    A scanning field-emission electron microscope combined with an x-ray analyzer is used to locate the ice nucleus within a three-dimensional image of a snow crystal and determine the chemical composition of the nucleus. This makes it possible to better understand the effect of nuclei in cloud seeding. PMID:17806581

  13. The scavenging of high altitude aerosol by small ice crystals

    NASA Astrophysics Data System (ADS)

    Andrew Bell, D.; Saunders, Clive P. R.

    There have been several global models developed for the theoretical investigation of the removal of high altitude aerosol from the atmosphere, following concern about the injection of particulate material by nuclear explosions and volcanic events. These models lack a knowledge of the scavenging efficiencies of the small ice crystals associated with cirus clouds and storm ice anvils. These are the only hydrometers that could remove the injected particles. In the past there have been a number of practical studies into the scavenging efficiencies of large ice crystaks and snowflakes. A comparison of the extrapolated results of these findings and the theoretical models of Martin et al. (1980, Pure appl. Phys.188, 1109-1129, J. atmos. Sci.37, 1628-1638) for the small crystal situation has been made. It was found that in general the extrapolated results gave efficiencies that were significantly higher than the predicted value. This difference was found to be enhanced as the crystal diameter decreased. Experiments used small ice plates grown at ˜-18.5°C in a cloud chamber, which were then permitted to fall through a dense aerosol cloud, to provide the first direct measurements of the scavenging efficiencies of this small crystals under cloud conditions. Initial results are presented for mono-disperse NaCl aerosol particles of size 4-6 μm.

  14. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  15. Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

    2008-01-01

    Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

  16. Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals

    NASA Astrophysics Data System (ADS)

    Myagkov, A.; Seifert, P.; Bauer-Pfundstein, M.; Wandinger, U.

    2016-02-01

    This paper is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data are obtained using a newly developed 35 GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing back-scattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes. The developed algorithm is applied to a measurement of the hybrid-mode cloud radar taken on 20 October 2014 in Cabauw, the Netherlands, in the framework of the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign. The case study shows the retrieved polarizability ratio and degree of orientation of ice particles for a cloud system of three cloud layers at different heights. Retrieved polarizability ratios are 0.43, 0.85, and 1.5 which correspond to oblate, quasi-spherical, and columnar ice particles, respectively. It is shown

  17. High yield, single crystal ice via the Bridgman method

    NASA Astrophysics Data System (ADS)

    Bisson, Patrick; Groenzin, Henning; Barnett, Irene Li; Shultz, Mary Jane

    2016-03-01

    The surface chemistry of ice and of water is an important topic of study, especially given the role of ice and water in shaping the environment. Although snow, granular, and polycrystalline ice are often used in research, there are applications where large surface areas of a known crystallographic plane are required. For example, fundamental spectroscopy or scattering studies rely on large area samples of known crystalline orientation. In addition, due to its slower dynamics and decreased number of molecular configurations, ice can be viewed as a reduced complexity model for the complex hydrogen bonding environment found at the surface and within the bulk of liquid water. In our studies using Sum Frequency Generation (SFG) vibrational spectroscopy, we have shown that each crystalline face has a unique spectral signature and therefore a unique chemistry and chemical activity. A reliable, reproducible, high performance method of producing large single crystal samples is needed to support this surface chemistry research. The design, construction, and use of a computer-controlled, ice-growth machine based on the Stockbarger modified Bridgeman technique is described. The instrument reliably produces relatively large single crystals that are optically flawless (that is, no visible flaws when viewed in a crossed polarizer), and in very high yield. Success rates of 95% are typical. Such performance has not been observed in the literature.

  18. High yield, single crystal ice via the Bridgman method.

    PubMed

    Bisson, Patrick; Groenzin, Henning; Barnett, Irene Li; Shultz, Mary Jane

    2016-03-01

    The surface chemistry of ice and of water is an important topic of study, especially given the role of ice and water in shaping the environment. Although snow, granular, and polycrystalline ice are often used in research, there are applications where large surface areas of a known crystallographic plane are required. For example, fundamental spectroscopy or scattering studies rely on large area samples of known crystalline orientation. In addition, due to its slower dynamics and decreased number of molecular configurations, ice can be viewed as a reduced complexity model for the complex hydrogen bonding environment found at the surface and within the bulk of liquid water. In our studies using Sum Frequency Generation (SFG) vibrational spectroscopy, we have shown that each crystalline face has a unique spectral signature and therefore a unique chemistry and chemical activity. A reliable, reproducible, high performance method of producing large single crystal samples is needed to support this surface chemistry research. The design, construction, and use of a computer-controlled, ice-growth machine based on the Stockbarger modified Bridgeman technique is described. The instrument reliably produces relatively large single crystals that are optically flawless (that is, no visible flaws when viewed in a crossed polarizer), and in very high yield. Success rates of 95% are typical. Such performance has not been observed in the literature. PMID:27036790

  19. Two Dimensional Ice crystals intercalated between graphene and mica

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene; Mesa+ Institute for Nanotechnology Team

    The physics and chemistry of the interfacial contact between water and solid surfaces are of the highest fundamental and practical interest in environmental sciences, many biological systems and corrosion effects. Water intercalated between graphene and mica has recently received much interest, even amplified by intriguing intercalation effects and by the evolution of fractals. These confined water layers are argued to be ice-like at room temperature. Due to its good thermal isolation from the environment, as a result of poor perpendicular heat transport through both mica and graphene, this system is uniquely suited for studying the consequences of heat transport, due to latent heat effects, during growth and melting of 2D ice crystals. The enigmatic growth of ice crystals poses a longstanding fundamental problem and its solution is possibly hidden in influences of heat and particle transport. Indeed, we find that heat and particle transport play a crucial role in the growth of ice crystals under high-temperature and high supersaturation conditions.

  20. Ice crystal growth in a dynamic thermal diffusion chamber

    NASA Technical Reports Server (NTRS)

    Keller, V. W.

    1980-01-01

    Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

  1. Dimensions and aspect ratios of natural ice crystals

    DOE PAGESBeta

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-10

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < −35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns

  2. Dimensions and aspect ratios of natural ice crystals

    NASA Astrophysics Data System (ADS)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S.-S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-01

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at -67 < T < -35 °C and at -40 < T < -15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L-W relationships of columns

  3. Dimensions and aspect ratios of natural ice crystals

    DOE PAGESBeta

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L

  4. Laboratory Investigation of Direct Measurement of Ice Water Content, Ice Surface Area, and Effective Radius of Ice Crystals Using a Laser-Diffraction Instrument

    NASA Technical Reports Server (NTRS)

    Gerber, H.; DeMott, P. J.; Rogers, D. C.

    1995-01-01

    The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.

  5. Backscatter by azimuthally oriented ice crystals of cirrus clouds.

    PubMed

    Konoshonkin, Alexander; Wang, Zhenzhu; Borovoi, Anatoli; Kustova, Natalia; Liu, Dong; Xie, Chenbo

    2016-09-01

    The backscattering Mueller matrix has been calculated for the first time for the hexagonal ice columns and plates with both zenith and azimuth preferential orientations. The possibility of a vertically pointing polarization lidar measuring the full Mueller matrix for retrieving the orientation distributions of the crystals is considered. It is shown that the element m44 or, equivalently, the circular depolarization ratio distinguishes between the low and high zenith tilts of the crystals. Then, at their low or high zenith tilts, either the element m22 or m34, respectively, should be measured to retrieve the azimuth tilts. PMID:27607728

  6. Determining the Orientations of Ice Crystals Using Electron Backscatter Patterns

    NASA Astrophysics Data System (ADS)

    Iliescu, D.; Baker, I.; Chang, H.

    2004-05-01

    The presentation will show how electron backscatter diffraction can be employed to determine crystal orientations in ice. The technique involves obtaining and indexing electron back-scatter patterns (EBSPs) from uncoated ice using a scanning electron microscope equipped with a custom-built cold-stage and an Orientation Imaging System. Unlike any of the currently-used methods, the EBSP-based technique has considerably higher angular and spatial resolution and is significantly faster. We also present an orientation image map of a muti-grain region in laboratory-grown ice constructed by automatically indexing the EBSPs using an HKL, Inc Channel 5 Orientation Imaging System and discuss possible applications of the technique to the study of natural ice. Primarily, the focus will be on the characterization of the microstructure of dynamically recrystallized glacier ice whose texture is intrinsically related the flow process. Other applications include obtaining orientation images from frozen water-containing materials, such as clathrate hydrates. This research was supported by Army Research Office grant DAAD 19-03-1-0110 and National Science Foundation grants OPP-9981379 and OPP-0221120.

  7. Nanoscale Ice: Spectroscopic Ellipsometry of Epitaxially-Grown Crystals

    NASA Astrophysics Data System (ADS)

    Cumiskey, A.; Grippaldi, J.; Magee, N. B.

    2011-12-01

    A new laboratory technique has been developed to examine the surface characteristics and kinetics of ice crystals at the nanoscale. Uncertainties remain regarding the fundamental physics of nucleation and depositional growth in atmospheric ice crystals. These molecular-scale uncertainties propagate upward into modeling outcomes at all scales of atmospheric interest: particle models, cloud models, mesoscale models, and climate models. Molecular-scale growth mechanisms and kinetics have been mainly inferred from bulk and particle-scale experiments as well as crystal-growth theory. The precarious nature of the ice surface resisted the first generation of direct nanoscale probing technologies, but new in-situ techniques including ESEM, AFM, and ellipsometry promise to divulge a wealth of new knowledge. Spectroscopic ellipsometry measures changes in the polarization state of light as it reflects off the surface of a thin film. This non-destructive technique is capable of measuring layer thicknesses as small as a single monolayer (~1 Å) and up to thicknesses of ~10 μm. Other physical parameters including index of refraction and surface roughness are also accessible. At the TCNJ Cloud Physics Laboratory, a Horiba Scientific Auto-SE ellipsometer (440 - 1000 nm spectral range) has been adapted for in-situ measurements of ice crystals. The ice crystals are grown epitaxially on various horizontal substrates in a custom-built static diffusion chamber. The diffusion chamber is housed within a vacuum chamber and an optical path is provided from the ellipsometer light source to sample stage and back to the ellipsometer analyzer at 75° from normal. The diffusion chamber is cooled in two stages, with initial cooling accomplished with a fluid-chilled block and final chilling controlled by two independent thermoelectric cells. A wide range of temperatures, pressures, and saturation ratios are accessible: from 0°C to -30°C, 50mb to atmospheric pressure, and from subsaturated to

  8. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    NASA Astrophysics Data System (ADS)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  9. Optical detection and characterization of ice crystals in LACIS

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank

    2010-05-01

    Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the

  10. An uncoupled multiphase approach towards modeling ice crystals in jet engines

    NASA Astrophysics Data System (ADS)

    Nilamdeen, Mohamed Shezad

    A recent series of high altitude turbofan engine malfunctions, characterized by flameout and sudden power losses have been reported in recent years. The source of these incidents has been hypothesized to be due to the presence of ice crystals at high altitudes. Ice crystals have been shown to have ballistic trajectories and consequently enter the core engine flow, without getting centrifuged out towards the engine bypass as droplets do. The crystals may melt as they move downstream to higher temperatures in successive stages, or hit a heated surface. The wetted surface may then act as an interface for further crystal impingement, which locally reduces the temperature and could lead to an ice accretion on the components. Ice can accrete to dangerously high levels, causing compressor surge due to blockage of the primary flowpath, vibrational instabilities due to load imbalances of ice on rotating components, mechanical damage of components downstream due to large shed ice fragments, or performance losses if ice enters the combustor, causing a decreased burner efficiency and an eventual flame-out. In order to provide a numerical tool to analyze such situations, FENSAP-ICE has been extended to model mixed-phase flows that combine air, water and ice crystals, and the related ice accretion. DROP3D has been generalized to calculate particle impingement, concentration, and field velocities in an uncoupled approach that neglects any phase change by assuming both ice crystals and supercooled droplets are in thermodynamic equilibrium. ICE3D then accounts for the contribution of ice crystals that stick and melt on an existing water-film and promote ice accretion. The extended ice crystal impingement and ice accretion model has been validated against test data from Cox and Co. and National Research Council icing tests conducted on a NACA0012 airfoil and unheated non-rotating cylinder respectively. The tests show a consistent agreement with respect to experimental profiles in

  11. A Flexible Parameterization for Shortwave Optical Properties of Ice Crystals

    NASA Technical Reports Server (NTRS)

    VanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Cairns, Brian; Fridlind, Ann M.

    2014-01-01

    A parameterization is presented that provides extinction cross section sigma (sub e), single-scattering albedo omega, and asymmetry parameter (g) of ice crystals for any combination of volume, projected area, aspect ratio, and crystal distortion at any wavelength in the shortwave. Similar to previous parameterizations, the scheme makes use of geometric optics approximations and the observation that optical properties of complex, aggregated ice crystals can be well approximated by those of single hexagonal crystals with varying size, aspect ratio, and distortion levels. In the standard geometric optics implementation used here, sigma (sub e) is always twice the particle projected area. It is shown that omega is largely determined by the newly defined absorption size parameter and the particle aspect ratio. These dependences are parameterized using a combination of exponential, lognormal, and polynomial functions. The variation of (g) with aspect ratio and crystal distortion is parameterized for one reference wavelength using a combination of several polynomials. The dependences of g on refractive index and omega are investigated and factors are determined to scale the parameterized (g) to provide values appropriate for other wavelengths. The parameterization scheme consists of only 88 coefficients. The scheme is tested for a large variety of hexagonal crystals in several wavelength bands from 0.2 to 4 micron, revealing absolute differences with reference calculations of omega and (g) that are both generally below 0.015. Over a large variety of cloud conditions, the resulting root-mean-squared differences with reference calculations of cloud reflectance, transmittance, and absorptance are 1.4%, 1.1%, and 3.4%, respectively. Some practical applications of the parameterization in atmospheric models are highlighted.

  12. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  13. Ice-Crystallization Kinetics during Fuel-Cell Cold-Start

    NASA Astrophysics Data System (ADS)

    Dursch, Thomas James, Jr.

    Proton-exchange-membrane fuel cells (PEMFCs) show promise in automotive applications because of their high efficiency, high power density, and potentially low emissions. To be successful in automobiles, PEMFCs must permit rapid startup with minimal energy from subfreezing temperatures, known as cold-start. In a PEMFC, reduction of oxygen to water occurs in the cathode catalyst layer (CL). Under subfreezing conditions, water generated during startup solidifies and hinders access of gaseous oxygen to the catalytic sites in the cathode CL, severely inhibiting cell performance and potentially causing cell failure. Achieving cold-start is difficult in practice, due to potential flooding, sluggish reaction kinetics, durability loss, and rapid ice crystallization. Currently, however, few studies focus on the fundamentals of ice crystallization during cold-start. Elucidation of the mechanisms and kinetics of ice formation within PEMFC porous media is, therefore, critical to successful cell startup and high performance at low temperatures. First, an experimental method is presented for obtaining isothermal ice-crystallization kinetics in water-saturated gas-diffusion layers (GDLs). Ice formation is initially studied in the GDL because this layer retains a significant amount of product water during cold-start. Isothermal ice-crystallization and ice-nucleation rates are obtained in commercial Toray GDLs as functions of subcooling using differential scanning calorimetry (DSC). A nonlinear ice-crystallization rate expression is developed using Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Predicted ice-crystallization rates are in excellent agreement with experiment. A validated rate expression is thus available for predicting ice-crystallization kinetics in GDLs. Ice-crystallization kinetics is also considered under experimental settings similar to real PEMFC operating

  14. The Influence of Radiation on Ice Crystal Spectrum in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping

    2008-01-01

    This theoretical study is carried out to investigate the effect of radiation on ice crystal spectrum in the upper troposphere. First, an explicit expression is obtained for the ice crystal growth rate that takes account of radiative and kinetic effects. Second, the expression is used to quantitatively analyze how radiation broadens the ice crystal spectrum and then reveal a new precipitation mechanism in the upper troposphere and the stratosphere. Third, the radiative effect is used to explain the subvisual clouds near the tropopause.

  15. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  16. Microphysical Ice Crystal Properties in Mid-Latitude Frontal Cirrus

    NASA Astrophysics Data System (ADS)

    Schlage, Romy; Jurkat, Tina; Voigt, Christiane; Minikin, Andreas; Weigel, Ralf; Molleker, Sergej; Klingebiel, Marcus; Borrmann, Stephan; Luebke, Anna; Krämer, Martina; Kaufmann, Stefan; Schäfler, Andreas

    2015-04-01

    Cirrus clouds modulate the climate by reflection of shortwave solar radiation and trapping of longwave terrestrial radiation. Their net radiative effect can be positive or negative depending on atmospheric and cloud parameters including ice crystal number density, size and shape. Latter microphysical ice crystal properties have been measured during the mid-latitude cirrus mission ML-CIRRUS with a set of cloud instruments on the new research aircraft HALO. The mission took place in March/April 2014 with 16 flights in cirrus formed above Europe and the Atlantic. The ice clouds were encountered at altitudes from 7 to 14 km in the typical mid-latitude temperature range. A focus of the mission was the detection of frontal cirrus linked to warm conveyor belts (WCBs). Within WCBs, water vapor is transported in the warm sector of an extra-tropical cyclone from the humid boundary layer to the upper troposphere. Cirrus cloud formation can be triggered in the WCB outflow region at moderate updraft velocities and additionally at low updrafts within the high pressure system linked to the WCB. Due to their frequent occurrence, WCBs represent a major source for regions of ice supersaturation and cirrus formation in the mid-latitudes. Here, we use data from the Cloud and Aerosol Spectrometer with detection for POLarization (CAS-POL) and the Cloud Combination Probe (CCP), combining a Cloud Droplet Probe (CDP) and a greyscale Cloud Imaging Probe (CIPgs) to investigate the ice crystal distribution in the size range from 0.5 µm to 1 mm. We derive microphysical cirrus properties in mid-latitude warm front cirrus. Further, we investigate their variability and their dependence on temperature and relative humidity. Finally, we compare the microphysical properties of these frontal cirrus to cirrus clouds that formed at low updrafts within high pressure systems or at high updraft velocities in lee waves. We quantify statistically significant differences in cirrus properties formed in these

  17. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals. PMID:26406659

  18. Backscattering by hexagonal ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2013-08-01

    Light backscattering by randomly oriented hexagonal ice crystals of cirrus clouds is considered within the framework of the physical-optics approximation. The fine angular structure of all elements of the Mueller matrix in the vicinity of the exact backward direction is first calculated and discussed. In particular, an approximate equation for the differential scattering cross section is obtained. Its simple spectral dependence is discussed. Also, a hollow of the linear depolarization ratio around the exact backward direction inherent to the long hexagonal columns is revealed. PMID:23903169

  19. Crystal Ice Formation of Solution and Its Removal Phenomena From Cooled Solid Surface

    NASA Astrophysics Data System (ADS)

    Hirata, Tetsuo; Ishikawa, Masaaki; Nagasaka, Kouji

    Experimental studies for freezing phenomena of ethylene glycol solution on cooled plate have been performed. A polyvinyl chloride as well as an acrylic resin plates are used for the cooled plates. It is found that the crystal ice formed at the cooled plate is removed from the plate due to buoyancy force acting the crystal ice. It means that ice formation on a cooled plate without deposit ice layer is possible by the present method. It is shown that the cooled plate surface is under cooled about 1.0~1.5 degree below the freezing temperature of the solution during the crystal ice formation and its removal phenomena. The degree of under cooled temperature is unaffected by the cooling temperature of the plate. For higher concentration of solution, it is found that the number of the removed crystal ice per unit time is increased and the volume of each removed ice is decreased.

  20. Atmospheric ice crystals over complex terrain: Pure ice cloud conditions observed in CLACE2013 at Jungfraujoch, Switzerland

    NASA Astrophysics Data System (ADS)

    Schlenczek, Oliver; Fugal, Jacob P.; Bower, Keith N.; Crosier, Jonathan; Flynn, Michael J.; Henneberger, Jan; Krieger, Ulrich K.; Lloyd, Gary; Borrmann, Stephan

    2015-04-01

    The CLACE2013 field campaign took place in January and February 2013 at the High Alpine Research Station, Jungfraujoch, in Switzerland. During this field campaign some events of atmospheric ice crystals in the absence of supercooled water droplets were observed. These included precipitation events from a cloud above and also ice crystals which likely formed in-situ under ice supersaturated conditions similar to "diamond-dust" events. From each event, approx. 1 hour of holographic measurements has been analysed (~1800 images with a 36x24x350 mm3 or ~0.3 L sample volume each). Ice crystals are detected and classified according to their shape to distinguish between different particle habit classes (e.g. columns and needles, plates, irregular crystals) and with this method, drifting snow and ice particles formed in-situ can be distinguished to a certain degree. The major axis length of detected ice particles varied between some tens of microns up to a few millimetres. Size distributions will be shown partitioned by crystal habit. Preliminary results show these ice particles appear similar to diamond dust events observed in Antarctica. For clarification of the meteorological conditions, we use the meteorological parameters from several instruments measured at the site as well as data from additional cloud hydrometeor probes and a ceilometer.

  1. Laboratory studies on the uptake of aromatic hydrocarbons by ice crystals during vapor depositional crystal growth

    NASA Astrophysics Data System (ADS)

    Fries, Elke; Starokozhev, Elena; Haunold, Werner; Jaeschke, Wolfgang; Mitra, Subir K.; Borrmann, Stephan; Schmidt, Martin U.

    Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C 6H 6), toluene (methylbenzene, C 7H 8), the C 8H 10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C 9H 12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C 10H 14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3-20.8 μg m -3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS). Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m -3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10 -3 g s -1 m -2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher. Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg g ice-1 (toluene, ethylbenzene, xylenes) and 125 pg g ice-1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg g ice-1 at gas concentrations of 10.3-10.7 μg m -3 calculated at 295 K. Uptake coefficients ( K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of

  2. Realization of quasi-spherical implosion using pre-shaped prolate wire arrays with a compression foam target inside

    SciTech Connect

    Zhang, Yang; Ding, Ning; Xiao, Delong; Sun, Shunkai; Xue, Chuang; Shu, Xiaojian; Wang, Jianguo; Li, Zhenghong Xu, Rongkun; Chen, Dingyang; Ye, Fan; Chen, Faxin; Chen, Jinchuan; Li, Linbo; Zhou, Xiuwen

    2015-02-15

    Quasi-spherical (QS) implosion of wire arrays and its impact on the foam target have been studied on the 100 ns 1.5 MA Qiangguang-I facility, which suggests that a high quality impact between the QS implosion and foam target can be achieved by adjusting load's initial shape carefully to match the external magnetic pressure. Implosions of loads with H/d ∼ 1.2 were studied with a self-emission x-ray pinhole image system and a dark field schlieren system. The radially developed spike-like instabilities indicate the spherical convergence of plasma. The observed radiation on the foam target surface suggests satisfying implosion symmetry and wire-foam impact simultaneity. An average implosion speed of 10.5 × 10{sup 6 }cm/s was obtained with an optical streak image system. The derived peak kinetic energy density ∼2.1 kJ/cm is remarkably higher than cylindrical cases, which agree with the expectations.

  3. Polar nephelometer for light-scattering measurements of ice crystals.

    PubMed

    Barkey, B; Liou, K N

    2001-02-15

    We report on a small, lightweight polar nephelometer for the measurement of the light-scattering properties of cloud particles, specifically designed for use on a balloonborne platform in cirrus cloud conditions. The instrument consists of 33 fiber-optic light guides positioned in a two-dimensional plane from 5 degrees to 175 degrees that direct the scattered light to photodiode detectors-amplifier units. The system uses an onboard computer and data acquisition card to collect and store the measured signals. The instrument's calibration is tested by measurement of light scattered into a two-dimensional plane from small water droplets generated by an ultrasonic humidifier. Excellent comparisons between the measured water-droplet scattering properties and expectations generated by Mie calculation are shown. The measured scattering properties of ice crystals generated in a cold chamber also compare reasonably well with the theoretical results based on calculations from a unified theory of light scattering by ice crystals that use the particle size distribution measured in the chamber. PMID:18033557

  4. Stable growth mechanisms of ice disk crystals in heavy water.

    PubMed

    Adachi, Satoshi; Yoshizaki, Izumi; Ishikawa, Takehiko; Yokoyama, Etsuro; Furukawa, Yoshinori; Shimaoka, Taro

    2011-11-01

    Ice crystal growth experiments in heavy water were carried out under microgravity to investigate the morphological transition from a disk crystal to a dendrite. Surprisingly, however, no transition was observed, namely, the disk crystal or dendrite maintained its shape throughout the experiments, unlike the results obtained on the ground. Therefore, we introduce a growth model to understand disk growth. The Gibbs-Thomson effect is taken into account as a stabilization mechanism. The model is numerically solved by varying both an interfacial tension of the prism plane and supercooling so that the final sizes of the crystals can become almost the same to determine the interfacial tension. The results are compared with the typical experimental ones and thus the interfacial tension is estimated to be 20 mJ/m(2). Next, the model is solved under two supercooling conditions by using the estimated interfacial tension to understand stable growth. Comparisons between the numerical and experimental results show that our model explains well the microgravity experiments. It is also found that the experimental setup has the capability of controlling temperature on the order of 1/100 K. PMID:22181428

  5. Light Scattering by Ice Crystals Containing Air Bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  6. Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers

    NASA Astrophysics Data System (ADS)

    Spichtinger, P.; Krämer, M.

    2013-10-01

    The occurrence of high, persistent ice supersaturation inside and outside cold cirrus in the tropical tropopause layer (TTL) remains an enigma that is intensely debated as the "ice supersaturation puzzle". However, it was recently confirmed that observed supersaturations are consistent with very low ice crystal concentrations, which is incompatible with the idea that homogeneous freezing is the major method of ice formation in the TTL. Thus, the tropical tropopause "ice supersaturation puzzle" has become an "ice nucleation puzzle". To explain the low ice crystal concentrations, a number of mainly heterogeneous freezing methods have been proposed. Here, we reproduce in situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamic conditions in the TTL, namely the superposition of slow large-scale updraughts with high-frequency short waves. From the simulations, it follows that the full range of observed ice crystal concentrations can be explained when the model results are composed from scenarios with consecutive heterogeneous and homogeneous ice formation and scenarios with pure homogeneous ice formation occurring in very slow (< 1 cm s-1) and faster (> 1 cm s-1) large-scale updraughts, respectively. This statistical analysis shows that about 80% of TTL cirrus can be explained by "classical" homogeneous ice nucleation, while the remaining 20% stem from heterogeneous and homogeneous freezing occurring within the same environment. The mechanism limiting ice crystal production via homogeneous freezing in an environment full of gravity waves is the shortness of the gravity waves, which stalls freezing events before a higher ice crystal concentration can be formed.

  7. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  8. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  9. Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  10. Anchor ice and benthic disturbance in shallow Antarctic waters: interspecific variation in initiation and propagation of ice crystals.

    PubMed

    Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan

    2011-10-01

    Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates. PMID:22042434

  11. Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    NASA Astrophysics Data System (ADS)

    Farrington, Robert J.; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.

    2016-04-01

    This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing in situ measurements from the Ice NUcleation Process Investigation And Quantification field campaign (INUPIAQ) at Jungfraujoch, Switzerland (3570 m a.s.l.) with the Weather Research and Forecasting model (WRF) simulations over real terrain surrounding Jungfraujoch. During the 2014 winter field campaign, between 20 January and 28 February, the model simulations regularly underpredicted the observed ice number concentration by 103 L-1. Previous literature has proposed several processes for the high ice number concentrations in orographic clouds, including an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice crystals into orographic clouds. We find that increasing INP concentrations in the model prevents the simulation of the mixed-phase clouds that were witnessed during the INUPIAQ campaign at Jungfraujoch. Additionally, the inclusion of secondary ice production upwind of Jungfraujoch into the WRF simulations cannot consistently produce enough ice splinters to match the observed concentrations. A flux of surface hoar crystals was included in the WRF model, which simulated ice concentrations comparable to the measured ice number concentrations, without depleting the liquid water content (LWC) simulated in the model. Our simulations therefore suggest that high ice concentrations observed in mixed-phase clouds at Jungfraujoch are caused by a flux of surface hoar crystals into the orographic clouds.

  12. Ice Crystal Step Growth in a Laboratory Simulated Upper Tropical Troposphere

    NASA Astrophysics Data System (ADS)

    Peterson, H.; Bailey, M.; Hallett, J.

    2008-12-01

    The presence of sub-visual cirrus clouds below the tropical tropopause, defined as those clouds having optical depths on the order of 0.01 with pressures down to 100 mb and temperatures down to -85 °C, is well established (Immler et al 2007, Jensen et al 1996). Less known are the details of ice crystal growth under these temperature and humidity conditions as found in and just below the tropical tropopause. Total uptake of water vapor on ice crystals has been characterized using the deposition coefficient, defined as the fraction of water vapor molecules, relative to the total number of water vapor molecules, incorporated into an ice particle (Magee 2006). The preferential deposition of water vapor on ice crystals at -60 °C and 250 mb, and at -70 °C and 150 mb is examined. Water vapor is deposited preferentially on some facets of ice crystals but not others, leading to layered growth on one facet and a zero deposition coefficient and zero mass growth on the others. A critical range of supersaturation conditions favor stepped growth, above which ice crystals grow in either the a-axis or c-axis direction and below which no ice crystal growth occurs in either direction. While previous studies have only observed steps growing in the basal plane, this study observed steps growing in the prism plane. Lower ice supersaturations favor diffuse steps, while higher ice supersaturations favor sharp steps, both of which lead to growth in the c-axis direction. Total growth in the a-axis direction is determined by the thickness of each new step and the rate at which new steps form. Images of ice crystals may therefore be used as a measure of saturation, to be compared with in-situ aircraft measurements of ice supersaturation at known temperatures. Additionally, the presence of elevated concentrations of nitric oxide (NO) leads to crystal growth, with preferential growth in the prism plane.

  13. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.

    PubMed

    Ramya, L; Ramakrishnan, Vigneshwar

    2016-07-01

    Antifreeze proteins (AFP) observed in cold-adapting organisms bind to ice crystals and prevent further ice growth. However, the molecular mechanism of AFP-ice binding and AFP-inhibited ice growth remains unclear. Here we report the interaction of the insect antifreeze protein (Tenebrio molitor, TmAFP) with ice crystal by molecular dynamics simulation studies. Two sets of simulations were carried out at 263 K by placing the protein near the primary prism plane (PP) and basal plane (BL) of the ice crystal. To delineate the effect of temperatures, both the PP and BL simulations were carried out at 253 K as well. The analyses revealed that the protein interacts strongly with the ice crystal in BL simulation than in PP simulation both at 263 K and 253 K. Further, it was observed that the interactions are primarily mediated through the interface waters. We also observed that as the temperature decreases, the interaction between the protein and the ice increases which can be attributed to the decreased flexibility and the increased structuring of the protein at low temperature. In essence, our study has shed light on the interaction mechanism between the TmAFP antifreeze protein and the ice crystal. PMID:27492241

  14. Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2014-07-01

    In cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have studied a preactivation mechanism that markedly enhances the particles' heterogeneous ice nucleation ability. First cloud expansion experiments were performed at a high temperature (267-244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the preactivated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and from 4 to 20%, respectively. Preactivation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  15. Numerical simulation of the scavenging rates of ice crystals of various microphysical characteristics

    NASA Astrophysics Data System (ADS)

    Pitter, Richard L.; Zhang, Renyi

    1991-06-01

    Numerical models of trajectories of small aerosol spheres relative to oblate spheroids were used to determine ice crystal scavenging efficiencies. The models included the effects of aerodynamic flow about the ice particle, gravity, aerosol particle inertia and drag and electrostatic effects. Two electric configurations of the ice particle were investigated in detail. The first applied a net charge to the ice particle, of magnitude equal to the mean thunderstorm charge distribution, while the second applied a charge distribution, with no net charge, to the ice particle to model the electric multipole charge distribution. The results show that growing ice crystals with electric multipoles are better scavengers than single ice crystals with net thunderstorm charges, especially in the Greenfield gap (0.1 to 1.0 μm), and that larger single crystals are better scavengers than smaller single crystals. The results also show that the low density ice crystals are more effective scavengers with net charges than they are with charge distribution.

  16. Modeling the relative contributions of secondary ice formation processes to ice crystal number concentrations within mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios

    2016-04-01

    Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.

  17. Insights Into Ice Nucleation From Real-Time, Single-Particle Aircraft-Based Measurements of Ice Crystal Residues

    NASA Astrophysics Data System (ADS)

    Pratt, K. A.; Demott, P. J.; Twohy, C. H.; Prather, K. A.

    2008-12-01

    The overall impacts of aerosol particles on cloud formation and properties represent the largest single source of uncertainty in predicting future climate change. In particular, the ability of aerosols to act as ice nuclei (IN) has large consequences on the hydrological cycle since much precipitation derives from the ice phase. During the flight-based 2007 Ice in Clouds Experiment - Layer Clouds (ICE-L) on the NSF/NCAR C- 130, individual cloud droplets and ice crystals were directly sampled and characterized in real-time using a counterflow virtual impactor (CVI) in series with the aircraft aerosol time-of-flight mass spectrometer (A- ATOFMS) and continuous-flow diffusion chamber (CFDC). Parallel measurements by the A-ATOFMS and CFDC allowed the size-resolved chemistry of cloud residues, including both refractory and non-refractory species, to be examined and correlated with the ice nucleation properties of the clouds. Through comparison with cloud probes, the mixing state of liquid, mixed, and ice phase residues were examined separately. During the study, orographic wave clouds were sampled over Wyoming; mineral dust, biological material, biomass burning particles, soot, and organic carbon were all found within the studied clouds. A comparison of the aerosol chemistry associated with periods of differing quantities of ice nuclei present are being examined to further increase our understanding of ice nucleation relation to aerosol composition.

  18. Sensitivity Studies For Cirrus Effective Ice Crystal Size Retrieval In The Infrared

    NASA Astrophysics Data System (ADS)

    Radel, G.; Stubenrauch, C.; Holz, R.; Mitchell, D.

    During the last years, much effort has been made to find a realistic description of the single-scattering properties of non-spherical ice crystals of cirrus clouds explicitely in dependence of ice crystal shape and size distribution. By using single scattering properties of non-spherical ice crystals instead of ice spheres, one observes that the spectral region between 8 and 12 micron offers a possibility of effective ice crystal size retrieval. The difference between cirrus emissivities at these wavelengths is sen- sitive to the mean ice crystal size of the cirrus cloud. At present, we use two different sets of ice crystal single scattering properties in the infrared: one for randomly oriented planar polycrystals and the other for hexagonal columns. For planar polycrystals, mod- ified Anomalous Diffraction Approximation (mADA) is used to describe absorption coefficients as analytical expressions of size distribution parameters, ice crystal shape, wavelength and refractive index, taking into account a parameterized correction for internal reflection and refraction. As scattering cannot be calculated through mADA, scattering contributions are obtained from different combinations of Improved Geo- metric Optics and Finite Difference Time Domain. For hexagonal columns the single scattering properties have been computed using the Finite Difference Time Domain method. Retrievals of mean effective ice crystal sizes in the infrared have the advan- tage that they are less dependent on the assumed shape of the ice crystals, in contrary to retrievals from differences between the visible and near-infrared radiation. Several satellite instruments measure now emitted and scattered radiation from different lev- els of the atmosphere. The longest time period is covered by the TOVS instruments aboard the NOAA Polar Orbiting Environmental Satellites (since 1979). These obser- vations have been converted into atmospheric temperature and water vapor profiles as well as cloud and

  19. Ice Growth Measurements from Image Data to Support Ice-Crystal and Mixed-Phase Accretion Testing

    NASA Technical Reports Server (NTRS)

    Struk, Peter, M; Lynch, Christopher, J.

    2012-01-01

    This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.

  20. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGESBeta

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  1. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGESBeta

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are donemore » with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  2. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; Nenes, Athanasios

    2016-03-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  3. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  4. The origins of ice crystals measured in mixed phase clouds at High-Alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Lloyd, G.; Choularton, T. W.; Bower, K. N.; Gallagher, M. W.; Connolly, P. J.; Flynn, M.; Farrington, R.; Crosier, J.; Schlenczek, O.; Fugal, J.; Henneberger, J.

    2015-07-01

    During the winter of 2013 and 2014 measurements of cloud microphysical properties over a five week period at the high Alpine site Jungfraujoch, Switzerland were carried out as part of the Cloud Aerosol Characterisation Experiments (CLACE) and the Ice Nucleation Process Investigation and Quantification project (INUPIAQ) Measurements of aerosol properties at a second, lower site, Schilthorn, Switzerland, were used as input for a primary ice nucleation scheme to predict ice nuclei concentrations at Jungfraujoch Frequent, rapid transitions in the ice and liquid properties of the clouds at Jungfraujoch were identified that led to large fluctuations in ice mass fractions over temporal scales of seconds to hours. During the measurement period we observed high concentrations of ice particles that exceeded 1000 L-1 at temperatures around -15 °C, verified by multiple instruments These concentrations could not be explained using the usual primary ice nucleation schemes, which predicted ice nucleus concentrations several orders of magnitude smaller than the peak ice crystal number concentrations. Secondary ice production through the Hallet-Mossop process as a possible explanation was ruled out, as the cloud was rarely within the active temperature range for this process It is shown that other mechanisms of secondary ice particle production cannot explain the highest ice particle concentrations. We describe 4 possible mechanisms that could lead to high cloud ice concentrations generated from the snow covered surfaces surrounding the measurement site. Of these we show that hoar frost crystals generated at the cloud enveloped snow surface could be the most important source of cloud ice concentrations Blowing snow was also observed to make significant contributions at higher wind speeds when ice crystal concentrations were < 100 L-1.

  5. Ice-Crystallization Kinetics during Fuel-Cell Cold-Start

    NASA Astrophysics Data System (ADS)

    Dursch, Thomas James, Jr.

    Proton-exchange-membrane fuel cells (PEMFCs) show promise in automotive applications because of their high efficiency, high power density, and potentially low emissions. To be successful in automobiles, PEMFCs must permit rapid startup with minimal energy from subfreezing temperatures, known as cold-start. In a PEMFC, reduction of oxygen to water occurs in the cathode catalyst layer (CL). Under subfreezing conditions, water generated during startup solidifies and hinders access of gaseous oxygen to the catalytic sites in the cathode CL, severely inhibiting cell performance and potentially causing cell failure. Achieving cold-start is difficult in practice, due to potential flooding, sluggish reaction kinetics, durability loss, and rapid ice crystallization. Currently, however, few studies focus on the fundamentals of ice crystallization during cold-start. Elucidation of the mechanisms and kinetics of ice formation within PEMFC porous media is, therefore, critical to successful cell startup and high performance at low temperatures. First, an experimental method is presented for obtaining isothermal ice-crystallization kinetics in water-saturated gas-diffusion layers (GDLs). Ice formation is initially studied in the GDL because this layer retains a significant amount of product water during cold-start. Isothermal ice-crystallization and ice-nucleation rates are obtained in commercial Toray GDLs as functions of subcooling using differential scanning calorimetry (DSC). A nonlinear ice-crystallization rate expression is developed using Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Predicted ice-crystallization rates are in excellent agreement with experiment. A validated rate expression is thus available for predicting ice-crystallization kinetics in GDLs. Ice-crystallization kinetics is also considered under experimental settings similar to real PEMFC operating

  6. Stability relationship for water droplet crystallization with the NASA Lewis icing spray nozzle

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1988-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  7. Stability relationship for water droplet crystallization with the NASA Lewis icing spray

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1987-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  8. Preferred Ice Crystal Orientation Fabric Measurements within the Greenland Ice Sheet Using Multi-Polarization Radar Data

    NASA Astrophysics Data System (ADS)

    Velez-Gonzalez, J. A.; JiLu, L.; Leuschen, C.; Gogineni, P.; Van der Veen, C. J.; Tsoflias, G. P.; Drews, R.; Harish, A. R.

    2013-12-01

    Discharge of ice from the Greenland Ice Sheet to the ocean has increased significantly over the last 25 years due to the acceleration of important outlet glaciers. It was reported that the Greenland Ice Sheet contributed about 2.5 m out of about 6 m of sea-level rise during the Eemian interglacial period. The temperatures during Eemian were reported to be about 8o×4o C higher than the mean of the past millennium. Laboratory measurements have shown that glacial ice, characterized by preferred crystal orientation fabric (COF), is three times more deformable than ice with randomly oriented crystalline structures. Layers characterized by preferred ice COF can influence the flow behavior of a glacier or ice sheet. However, COF measurements are typically obtained from ice cores, and thus are very spatially limited and mostly constrained to areas with little ice flow. A more efficient technique to map the extent of ice fabric over larger regions of ice sheets is needed to better understand the effects on large scale ice flow processes. Radar measurements are capable of discriminating between reflections caused by changes in density, electrical permittivity and COF by exploiting the anisotropic and birefringent properties of ice crystals. For this investigation two radar datasets were collected during the survey of the Greenland Eemian Ice Drilling Site (77.45°N 51.06°W) in August 2008, using a ground-based and chirped-pulse Multi-Channel Radar Depth Sounder (MCRDS) developed by the Center for Remote Sensing of Ice Sheets (CReSIS). The radar used two transmit and eight receive antennas at the center frequency of 150 MHz with a bandwidth of 30 MHz. The first data set consisted of polarimatric measurements acquired in a circular pattern (radius: 35 m) with two co-polarized antenna orientations (one transmitter and four receivers oriented with 90° offsets in the directions of the incident H-Field and E-Field, respectively). Analysis of the circular data shows a periodic

  9. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Järvinen, E.; Vochezer, P.; Abdelmonem, A.; Wagner, R.; Jourdan, O.; Mioche, G.; Shcherbakov, V. N.; Schmitt, C. G.; Tricoli, U.; Ulanowski, Z.; Heymsfield, A. J.

    2015-11-01

    This study reports on the origin of ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high ice crystal complexity is dominating the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapour during the crystal growth. Indications were found that the crystal complexity is influenced by unfrozen H2SO4/H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers; the Polar Nephelometer (PN) probe of LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side- and backward scattering directions resulting in low asymmetry parameters g around 0.78. It was found that these functions have a rather low sensitivity to the crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  10. Analysis of ice crystals occuring in the upper high levels of tropical mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Delplanque, Alexandre

    2015-04-01

    In 2010 several test flights were performed in tropical marine meso-scale convective systems at flight levels between 10.5 and 10.8 km. Ice crystals were observed with a high speed CDD camera (image pixel resolution: 15 μ m, time resolution 0.007 s) hereafter called the Airbus nephelometer. In-cloud observations were not restricted to the stratiform regions of the MCS but also convective cores were intensely sampled. High number concentrations of ice crystals (N > 1000 L-1) and IWC of more than 4 g.m-3 could be observed. The main objective of our study is the retrieval of the ice water mass from ice particle number distribution and crystal habits, both observed by the Airbus nephelometer. The shape of ice particles was supposed to correspond to the form of oblate spheroids. A statistical study of the aspect ratio of crystal images was performed comparing two different geometrical approaches for the aspect ratio of their semi axis. One uses the ratio of minimum to maximum length, the other is based on the aspect ratio which best fits the crystal image. Different regions of the MCS present different mean aspect ratios measured at small scale (200 m). Variations of the aspect ratio seem to be associated with different nucleation and growth histories for the crystals. For regions with 'young' ice crystals, an anti-correlation between the aspect ratio and ice number concentration was observed. This observation is compared with the results obtained from simple diffusional growth modeling. To better quantify the characteristics of high concentrations of small ice crystal MCS regions, we propose to use the size distribution of the mean aspect ratio (from 100 μ m to 1 mm), to distinguish quite different behaviors for 'young' and 'mature' convective regions.

  11. A study of the growth rates and growth habits of ice crystals in a solution of antifreeze (glyco) proteins

    NASA Astrophysics Data System (ADS)

    Li, Qianzhong; Luo, Liaofu

    1996-12-01

    The mechanism of the antifreeze glycoprotein/antifreeze protein interaction on the surface of ice is analyzed. The theory of ice crystal growth in an AF(G)P solution is presented. A quantitative calculation of the growth rates for gain growth has been obtained. The anisotropic growth habits and growth rates of ice crystals in an AF(G)P solution are explained.

  12. Tropical tropopause ice clouds: A new approach to answer the mystery of low crystal numbers

    NASA Astrophysics Data System (ADS)

    Spichtinger, Peter; Krämer, Martina

    2013-04-01

    Water vapour is the most important natural green house gas. However, in the stratosphere an increase in water vapour would possibly result in a net cooling of the earth-atmosphere system. The major entrance pathway of trace substances into the stratosphere is the tropical tropopause layer (TTL). The TTL water vapor budget, and thus the exchange between troposphere and stratosphere, depends crucially on the occurrence and properties of ice clouds in this cold region (T < 200 K). New observations indicate that very low ice crystal numbers frequently occur in the TTL. This phenomenon is not yet understood and is not compatible with the idea that homogeneous freezing of solution droplets is the major pathway of ice formation. These low ice number concentrations are consistent with observed persistent high ice supersaturations inside cold TTL cirrus clouds, which in turn control the exchange of water vapor with the stratosphere. Here, we reproduce in-situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamical conditions in the TTL, namely the superposition of slow large-scale updrafts with high-frequency short waves. The simulations show that about 80% of the observed incidences of low ice crystal concentrations can be explained by 'classical' homogeneous ice nucleation in the very slow updrafts (< 1cm/s), about 19% stem from heterogeneous freezing, while the remaining of about 1% originates from homogeneous freezing in slightly faster updrafts (> 1cm/s). The mechanism limiting the ice crystal production from homogeneous freezing in an environment full of gravity waves is that freezing events are stalled -due to the shortness of the gravity waves- before a higher number concentration of ice crystals can be formed.

  13. Influences of Ice Crystal Number Concentrations and Habits on Arctic Mixed-Phase Cloud Dynamics

    NASA Astrophysics Data System (ADS)

    Komurcu, Muge

    2015-07-01

    Mixed-phase clouds are frequently present in the Arctic atmosphere, and strongly affect the surface energy budget. In this study, the influences of ice crystal number concentrations and crystal growth habits on the Arctic mixed-phase cloud microphysics and dynamics are investigated for internally and externally driven cloud systems using an eddy-resolving model. Separate simulations are performed with increasing ice concentrations and different ice crystal habits. It is found that the habit influence on cloud microphysics and dynamics is as pronounced as increasing the ice crystal concentrations for internally driven clouds and more dominant for externally driven clouds. Habit influence can lead to a 10 % reduction in surface incident longwave radiation flux. Sensitivity tests are performed to identify the interactions between processes affecting cloud dynamics that allow for persistent clouds (i.e., the radiative cooling at cloud top, ice precipitation stabilization at cloud-base). When cloud-base stabilization influences of ice precipitation are weak, cloud dynamics is more sensitive to radiative cooling. Additional sensitivity simulations are done with increasing surface latent and sensible heat fluxes to identify the influences of external forcing on cloud dynamics. It is found that the magnitude of cloud circulations for an externally driven cloud system with strong precipitation and weak surface fluxes is similar to a weakly precipitating, optically thick, internally driven cloud. For cloud systems with intense ice precipitation obtained through either increasing ice crystal concentrations or assuming ice crystal shapes that grow rapidly and fall fast, the cloud layer may collapse despite the moistening effect of surface fluxes.

  14. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  15. The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schnaiter, M.; Bigi, A.; Gysel, M.; Rosati, B.; Toprak, E.; Mertes, S.; Baltensperger, U.

    2015-08-01

    Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol-cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE) 2013 and 2014 - two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important opportunity for a

  16. A new experimental setup to investigate nucleation, dynamic growth and surface properties of single ice crystals

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Jens; Bieligk, Henner; Niedermeier, Dennis; Clauss, Tina; Chou, Cédric; Ulanowski, Zbigniew; Stratmann, Frank

    2013-04-01

    The nucleation and growth of atmospheric ice particles is of importance for both, weather and climate. However, knowledge is still sparse, e.g. when considering the influences of ice particle surface properties on the radiative properties of clouds. Therefore, based on the experiences with our laminar flow tube chamber LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004), we developed a new device to characterize nucleation, dynamic growth and light scattering properties of a fixed single ice crystal in dependence on the prevailing thermodynamic conditions. Main part of the new setup is a thermodynamically controlled laminar flow tube with a diameter of 15 mm and a length of 1.0 m. Connected to the flow tube is a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (Leipzig Ice Scattering Apparatus), equipped with an additional optical microscope. For the investigations, a single ice nucleus (IN) with a dry size of 2-5 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Two mass flow controllers adjusting a dry and a humidified gas flow are applied to control both, the temperature and the saturation ratio over a wide range. The thermodynamic conditions in the experiments were characterized using a) temperature and dew-point measurements, and b) computational fluid dynamics (CFD) calculations. Dependent on temperature and saturation ratio in the measuring volume, ice nucleation and ice crystal growth/shrinkage can occur. The optical microscope allows a time dependent visualization of the particle/ice crystal, and the LISA instrument is used to obtain 2-D light scattering patterns. Both devices together can be applied to investigate the influence of thermodynamic conditions on ice crystal growth, in particular its shape and surface properties. We successfully performed

  17. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  18. Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber.

    PubMed

    Barkey, Brian; Bailey, Matt; Liou, Kuo-Nan; Hallett, John

    2002-09-20

    Angular scattering properties of ice crystal particles generated in a laboratory cloud chamber are measured with a lightweight polar nephelometer with a diode laser beam. This cloud chamber produces distinct plate and hollow column ice crystal types for light-scattering experiments and provides a controlled test bed for comparison with results computed from theory. Ice clouds composed predominantly of plates and hollow columns generated noticeable 22 degrees and 46 degrees halo patterns, which are predicted from geometric ray-tracing calculations. With the measured ice crystal shape and size distribution, the angular scattering patterns computed from geometrical optics with a significant contribution by rough surfaces closely match those observed from the nephelometer. PMID:12269578

  19. Photonic crystal fiber monitors for intracellular ice formation

    NASA Astrophysics Data System (ADS)

    Battinelli, Emily; Reimlinger, Mark; Wynne, Rosalind

    2012-04-01

    An all-silica steering wheel photonic crystal fiber (SW-PCF) device with real-time analysis for cellular temperature sensing is presented. Results are provided for water-filled SW-PCF fibers experiencing cooling down near -40°C. Cellular temperature sensors with fast response times are of interest particularly to the study of cryopreservation, which has been influential in applications such as tissue preservation, food quality control, genetic engineering, as well as drug discovery and in- vitro toxin testing. Results of this investigation are relevant to detection of intracellular ice formation (IIF) and better understanding cell freezing at very low temperatures. IIF detection is determined as a function of absorption occurring within the core of the SW-PCF. The SW-PCF has a 3.3μm core diameter, 125μm outer diameter and steering wheel-like air hole pattern with triangular symmetry, with a 20μm radius. One end of a 0.6m length of the SW-PCF is placed between two thermoelectric coolers, filled with ~0.1μL water. This end is butt coupled to a 0.5m length of single mode fiber (SMF), the distal end of the fiber is then inserted into an optical spectrum analyzer. A near-IR light source is guided through the fiber, such that the absorption of the material in the core can be measured. Spectral characteristics demonstrated by the optical absorption of the water sample were present near the 1300-1700nm window region with strongest peaks at 1350, 1410 and 1460nm, further shifting of the absorption peaks is possible at cryogenic temperatures making this device suitable for IIF monitoring applications.

  20. Experimental investigation of the interactions of hyperactive antifreeze proteins with ice crystals

    NASA Astrophysics Data System (ADS)

    Celik, Yeliz

    Antifreeze proteins (AFPs) evolved in cold-adapted organisms and serve to protect them against freezing cold conditions by arresting ice crystal growth and inhibiting ice recrystallization. The freezing point depression by AFPs is defined as thermal hysteresis (TH) and AFPs are classified as hyperactive (hypAFPs) and moderate according to their TH activities. The mechanism of action of AFPs is not well understood. In particular, it is not clear what determines the concentration dependence of TH and whether the binding of AFP to ice is irreversible. Additionally, it is not known why some types of AFP are hyperactive compared to others and it was suggested that hyperactivity might be related to basal plane affinity of hypAFP to ice. The present study utilizes the techniques of microfluidic devices and fluorescence microscopy to study the interaction of AFPs with ice crystals. With novel temperature controlled microfluidic devices, we showed the accumulation and affinity of hypAFPs on the basal plane of ice. This supports the view that hypAFPs adhere to the basal plane. Additionally, for the first time in literature, small ice crystals of 30-50 mum sizes covered with adsorbed GFP tagged hypAFPs were stabilized in supercooled non-AFP solutions for hours with no observed ice growth in temperature controlled microfluidic devices. Repeated TH experiments of ice crystals incubated in AFP solutions before and after the exchange of liquids in microfluidic devices gave the same TH activity. This finding clarifies our understanding of concentration dependence of TH. Furthermore, we found that hypAFPs protect ice against melting as well as freezing, resulting in superheated ice. Ice crystals were superheated up to 0.5°C above their equilibrium melting temperatures and remained stable in this superheated state for hours. Measurements of fast melting velocities added additional evidence to the observed superheating of ice in AFP solutions. The experimental results of the current

  1. The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Bigi, A.; Rosati, B.; Gysel, M.; Schnaiter, M.; Baltensperger, U.

    2014-12-01

    Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol-cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of supercooled liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterisation. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artifacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the WELAS optical particle size spectrometers and a characterisation of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterisation Experiment (CLACE) 2013 - an extensive international field campaign encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaign provided an important opportunity for a proof of

  2. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.

    PubMed

    Vorontsov, Dmitry A; Sazaki, Gen; Hyon, Suong-Hyu; Matsumura, Kazuaki; Furukawa, Yoshinori

    2014-08-28

    Some biological substances control the nucleation and growth of inorganic crystals. Antifreeze proteins, which prohibit ice crystal growth in living organisms, promise are also important as biological antifreezes for medical applications and in the frozen food industries. In this work, we investigated the crystallization of ice in the presence of a new cryoprotector, carboxylated ε-poly-L-lysine (COOH-PLL). In order to reveal the characteristics and the mechanism of its antifreeze effect, free-growth experiments of ice crystals were carried out in solutions with various COOH-PLL concentrations and degrees of supercooling, and the depression of the freezing point and growth rates of the tips of ice dendrites were obtained using optical microscopy. Hysteresis of growth rates and depression of the freezing point was revealed in the presence of COOH-PLL. The growth-inhibition effect of COOH-PLL molecules could be explained on the basis of the Gibbs-Thomson law and the use of Langmuir's adsorption isotherm. Theoretical kinetic curves for hysteresis calculated on the basis of Punin-Artamonova's model were in good agreement with experimental data. We conclude that adsorption of large biological molecules in the case of ice crystallization has a non-steady-state character and occurs more slowly than the process of embedding of crystal growth units. PMID:25113284

  3. An experimental study of the ice column habit transitions. [crystal growth in atmosphere

    NASA Technical Reports Server (NTRS)

    Cho, N.; Hallett, J.

    1982-01-01

    The influence of supersaturation on column growth of ice crystals forming from atmospheric water vapor was investigated. A high density of crystals was generated on a glass fiber cooled by liquid N2 in a thermal diffusion chamber. Attention was focused on a neighbor-free hollow prism during a stepwise decrease in supersaturation while the crystal temperature was maintained constant. Another experiment involved epitaxial growth of ice crystals on CuS, where nonthickening crystals could only be grown below -7 C. A critical supersaturation was found to be necessary for growth of the basal plane. Beyound the critical value, surface kinetics do not control the growth rate, which is then dominated by the penetration of water molecules through the diffusion field surrounding the crystal.

  4. Lattice Boltzmann simulation of water isotope fractionation during ice crystal growth in clouds

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; DePaolo, Donald J.

    2016-05-01

    We describe a lattice Boltzmann (LB) method for simulating water isotope fractionation during diffusion-limited ice crystal growth by vapor deposition from water-oversaturated air. These conditions apply to the growth of snow crystals in clouds where the vapor composition is controlled by the presence of both ice crystals and water droplets. Modeling of water condensation with the LB method has the advantage of allowing concentration fields to evolve based on local conditions so that the controls on grain shapes of the condensed phase can be studied simultaneously with the controls on isotopic composition and growth rate. Water isotope fractionation during snow crystal growth involves kinetic effects due to diffusion of water vapor in air, which requires careful consideration of the boundary conditions at the ice-vapor interface. The boundary condition is relatively simple for water isotopes because the molecular exchange rate for water at the interface is large compared to the crystal growth rate. Our results for the bulk crystal isotopic composition are consistent with simpler models using analytical solutions for radial geometry. However, the model results are sufficiently different for oxygen isotopes that they could affect the interpretation of D-excess values of snow and ice. The extent of vapor oversaturation plays a major role in determining the water isotope fractionation as well as the degree of dendritic growth. Departures from isotopic equilibrium increase at colder temperatures as diffusivity decreases. Dendritic crystals are isotopically heterogeneous. Isotopic variations within individual snow crystals could yield information on the microphysics of ice condensation as well as on the accommodation or sticking coefficient of water associated with vapor deposition. Our results are ultimately a first step in implementing LB models for kinetically controlled condensation or precipitation reactions, but needs to be extended also to cases where the

  5. Investigation of nucleation, dynamic growth and surface properties of single ice crystals

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Jens; Herenz, Paul; Chou, Cédric; Bieligk, Henner; Clauss, Tina; Niedermeier, Dennis; Ritter, Georg; Ulanowski, Joseph Z.; Stratmann, Frank

    2014-05-01

    Nucleation, dynamic growth and optical light scattering properties of a fixed single ice crystal have been experimentally characterized in dependence of both, the type of the ice nucleus (IN) and the prevailing thermodynamic conditions. The set up was developed based on the laminar flow tube LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004; Hartmann et al., 2011). The flow tube is equipped with a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (LACIS Ice Scattering Apparatus) and an additional optical microscope. For the investigations, a single (IN with a dry size of 2-10 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Temperature and saturation ratio in the measuring volume can be varied on a time scale of 1-2 s by adjusting the humidified gas flow. Dependent on the thermodynamic conditions, ice nucleation and ice particle growth/shrinkage occur and can be studied. Thereby, the LISA instrument is applied to obtain 2-D light scattering patterns, and the additional optical microscope allows a time dependent visualization of the ice crystal. Both devices together allow to investigate the influence of the thermodynamic conditions on ice particle growth, the particle shape and its surface properties (i.e., its surface roughness, Ulanowski et al., 2011; Ulanowski et al., 2012; Ulanowski et al., 2013)). The thermodynamic conditions in the optical measuring volume have been extensively characterized using a) computational fluid dynamics (CFD) calculations, b) temperature and dew-point measurements, and c) evaluation of droplet and ice particle growth data. Furthermore, we successfully performed condensation freezing and deposition nucleation experiments with ATD (Arizona Test Dust), kaolinite, illite and SnomaxTM (Johnson Controls Snow, Colorado, USA) particles. In

  6. Effects of Pre-Existing Ice Crystals on Cirrus Clouds and Comparison between Different Ice Nucleation Parameterizations with the Community Atmosphere Model (CAM5)

    SciTech Connect

    Shi, Xiangjun; Liu, Xiaohong; Zhang, Kai

    2015-01-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably.Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24×106 m-2) is obviously less than that from the LP (8.46×106 m-2) and BN (5.62×106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2

  7. Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2014-07-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is obviously less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W

  8. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization.

    PubMed

    Huebinger, Jan; Han, Hong-Mei; Hofnagel, Oliver; Vetter, Ingrid R; Bastiaens, Philippe I H; Grabenbauer, Markus

    2016-02-23

    Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth. PMID:26541066

  9. [Radiative Properties of Cirrus Clouds Based on Hexagonal and Spherical Ice Crystals Models].

    PubMed

    Husltu; Bao, Yu-hai; Xu, Jian; Qing, Song; Bao, Gang

    2015-05-01

    Single scattering properties for spherical and hexagonal ice crystal models with different size parameters and wavelengths were employed to calculate satellite observed radiation and downward flux in ground surface using RSTAR radiative transfer model. Results indicated that simulated satellite observed radiation and ground surface downward radiant flux from different shapes of ice crystal models were different. The difference in the spectral radiation fluxes between 0. 4 and 1. 0 µm was largest, and particle shapes affected the downward radiant flux significantly. It was verified that the proper selection of the effective ice crystal model is not only important for retrieval of the microphysical and optical parameters of the cirrus cloud, but also important for obtaining the radiant flux on the earth's surface correctly. These results are important for retrieving cloud microphysical parameters and simulation of the ground surface downward radiant flux. PMID:26415420

  10. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    USGS Publications Warehouse

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were

  11. Two types of quasi-liquid layers on ice crystals are formed kinetically.

    PubMed

    Asakawa, Harutoshi; Sazaki, Gen; Nagashima, Ken; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2016-02-16

    Surfaces of ice are covered with thin liquid water layers, called quasi-liquid layers (QLLs), even below their melting point (0 °C), which govern a wide variety of phenomena in nature. We recently found that two types of QLL phases appear that exhibit different morphologies (droplets and thin layers) [Sazaki G. et al. (2012) Proc Natl Acad Sci USA 109(4):1052-1055]. However, revealing the thermodynamic stabilities of QLLs remains a longstanding elusive problem. Here we show that both types of QLLs are metastable phases that appear only if the water vapor pressure is higher than a certain critical supersaturation. We directly visualized the QLLs on ice crystal surfaces by advanced optical microscopy, which can detect 0.37-nm-thick elementary steps on ice crystal surfaces. At a certain fixed temperature, as the water vapor pressure decreased, thin-layer QLLs first disappeared, and then droplet QLLs vanished next, although elementary steps of ice crystals were still growing. These results clearly demonstrate that both types of QLLs are kinetically formed, not by the melting of ice surfaces, but by the deposition of supersaturated water vapor on ice surfaces. To our knowledge, this is the first experimental evidence that supersaturation of water vapor plays a crucially important role in the formation of QLLs. PMID:26831089

  12. Two types of quasi-liquid layers on ice crystals are formed kinetically

    PubMed Central

    Asakawa, Harutoshi; Sazaki, Gen; Nagashima, Ken; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2016-01-01

    Surfaces of ice are covered with thin liquid water layers, called quasi-liquid layers (QLLs), even below their melting point (0 °C), which govern a wide variety of phenomena in nature. We recently found that two types of QLL phases appear that exhibit different morphologies (droplets and thin layers) [Sazaki G. et al. (2012) Proc Natl Acad Sci USA 109(4):1052−1055]. However, revealing the thermodynamic stabilities of QLLs remains a longstanding elusive problem. Here we show that both types of QLLs are metastable phases that appear only if the water vapor pressure is higher than a certain critical supersaturation. We directly visualized the QLLs on ice crystal surfaces by advanced optical microscopy, which can detect 0.37-nm-thick elementary steps on ice crystal surfaces. At a certain fixed temperature, as the water vapor pressure decreased, thin-layer QLLs first disappeared, and then droplet QLLs vanished next, although elementary steps of ice crystals were still growing. These results clearly demonstrate that both types of QLLs are kinetically formed, not by the melting of ice surfaces, but by the deposition of supersaturated water vapor on ice surfaces. To our knowledge, this is the first experimental evidence that supersaturation of water vapor plays a crucially important role in the formation of QLLs. PMID:26831089

  13. Crystallization of CO2 ice at astronomical conditions

    NASA Astrophysics Data System (ADS)

    Escribano, R. M.; Munoz-Caro, G.; Cruz-Diaz, G.; Mate, B.; Rodriguez-Lazcano, Y.

    2013-12-01

    Carbon dioxide is, after water and comparable to carbon monoxide, one of the most abundant frozen molecular species observed in the lines of sight towards many astrophysical media. We present here an experimental and theoretical investigation on carbon dioxide ices, generated in the lab in a range of temperature, density, amorphicity, and growing conditions (1), and simulated via high level theoretical calculations. Amorphous CO2 ice was generated at CAB by deposition onto a CsI substrate at 8 K under ultrahigh vacuum conditions in the 10-11 mbar range. The pressure increase used for the deposition of CO2 was very low, 10-9 mbar, to enable the formation of highly amorphous CO2 ice, at very low deposition rate. The transmittance infrared spectra, collected at several stages of sample growth, from 20 to 360 monolayers, are shown in the Figure. In a different set of experiments performed at IEM, the morphology of the amorphous CO2 ice has been studied using reflexion-absorption infrared (RAIR) spectroscopy. Calculated spectra of amorphous CO2 ice are obtained using the SIESTA code (2). In a first step, crystalline structures are processed by molecular dynamics to generate amorphous samples, which are subsequently relaxed until an equilibrium configuration is reached. The vibrational spectra of the amorphous solids are then calculated. The spectra of amorphous ice can change significantly depending on the density of the sample. An IR band, red-shifted with respect to ν3, has been identified as a witness of pure and amorphous CO2 ice. It vanishes when the sample becomes crystalline, either by temperature increase or by accumulation of increasing number of layers. The absence of this band in the observed spectra of solid CO2 is an indication that there is no pure and amorphous CO2 ice in inter- and circumstellar mantles References 1. Escribano, R., Muñoz Caro, G., Cruz-Díaz, G.A. Rodríguez-Lazcano, Y. and Maté, B., PNAS, accepted for publication, July 2013.. 2

  14. Closure between ice-nucleating particle and ice crystal number concentrations in ice clouds embedded in Saharan dust: Lidar observation during the BACCHUS Cyprus 2015 campaign

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Bühl, Johannes; Engelmann, Ronny; Baars, Holger; Nisantzi, Argyro; Hadjimitsis, Diofantos; Atkinson, James; Kanji, Zamin; Vrekoussis, Michalis; Sciare, Jean; Mihalopoulos, Nikos

    2016-04-01

    For the first time, we compare ice-nucleating particle number concentration (INPC) derived from polarization lidar (Mamouri and Ansmann, 2015) with ice crystal number concentrations (ICNC) in ice cloud layers embedded in the observed Saharan dust layers (at heights above 6 km and corresponding temperatures from -20 to -40°C). ICNC is estimated from the respective cirrus extinction profiles obtained with the same polarization lidar in combination with Doppler lidar measurements of the ice crystal sedimentation speed from which the mean size of the crystals can be estimated. Good agreement between INPC and ICNC was obtained for two case studies of the BACCHUS Cyprus 2015 field campaign with focus on INPC profiling. The campaign was organized by the Cyprus Institute, Nicosia, where a lidar was deployed. Additionaly, observations of AERONET and EALINET Lidar stations during the BACCHUS Cyprus 2015 field campaign, performed by Cyprus University of Technology in Limassol. Both, INPC and ICNC were found in the range from 10-50 1/L. Lidar-derived INPC values were also compared with in-situ INPC measurements (Horizontal Ice Nucleation Chamber, HINC, ETH Zurich, deployed at Agia Marina, at 500 m a.s.l., 30 km west of the lidar site). Reasonable and partly good agreement (during dust events) was found between the two retrievals. The findings of these closure studies corroborate the applicability of available INPC parameterization schemes (DeMott et al., 2010, 2015) implemented in the lidar retrieval scheme, and more generally INPC profiling by using active remote sensing (at ground and in space with CALIPSO and EarthCARE lidars).

  15. Crystal alignments in the fast ice of Arctic Alaska

    SciTech Connect

    Weeks, W.F.; Gow, A.J.

    1980-02-20

    Field observations at 60 sites located in the fast or near-fast ice along a 1200-km stretch of the north coast of Alaska between the Bering Strait and Barter Island have shown that the great majority of the ice samples (95%) exhibit striking c axis alignments within the horizontal plane. In all cases the degree of preferred orientation increased with depth in the ice. Representative standard deviations around a mean direction in the horizontal plane are commonly less than +- 10/sup 0/ for samples collected near the bottom of the ice. At a given site the mean c axis direction X-bar/sub 0/ may vary as much as 20/sup 0/ with vertical location in the ice sheet. The c axis allignments in the nearshore region generally parallel the coast, with strong alignments occurring in the lagoon systems between the barrier islands and the coast and seaward of the barrier islands. In passes between islands and in entrances such as the opening to Kotzebue Sound the alignment is parallel to the channel. Only limited observations are available farther seaward over the inner (10- to 50-m isobaths) and outer (50-m isobath to shelf break) shelf regions. These indicate Ne-SW and E-W alignments, respectively, in the Beaufort Sea north of Prudhoe Bay.

  16. Seismic wave propagation in anisotropic ice - Part 2: Effects of crystal anisotropy in geophysical data

    NASA Astrophysics Data System (ADS)

    Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.

    2015-02-01

    We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. We make use of abrupt changes in COF as a common reflection mechanism for seismic and radar data below the firn-ice transition to determine COF-induced reflections in either data set by joint comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic experiments to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous ice viscosity from preferred crystal orientations.

  17. DISCOVERY OF CRYSTALLIZED WATER ICE IN A SILHOUETTE DISK IN THE M43 REGION

    SciTech Connect

    Terada, Hiroshi; Tokunaga, Alan T.

    2012-07-01

    We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

  18. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-07-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert.

  19. Enhanced High-Temperature Ice Nucleation Ability of Crystallized Aerosol Particles after Pre-Activation at Low Temperature

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Moehler, O.; Saathoff, H.; Schnaiter, M.

    2014-12-01

    The term pre-activation in heterogeneous ice nucleation describes the observation that the ice nucleation ability of solid ice nuclei may improve after they have already been involved in ice crystal formation or have been exposed to a temperature lower than 235 K. This can be explained by the retention of small ice embryos in cavities or crevices at the particle surface or by the capillary condensation and freezing of supercooled water, respectively. In recent cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have unraveled a further pre-activation mechanism under ice subsaturated conditions which does not require the preceding growth of ice on the seed aerosol particles (Wagner, R. et al., J. Geophys. Res. Atmos., 119, doi: 10.1002/2014JD021741). First cloud expansion experiments were performed at a high temperature (267 - 244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the pre-activated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and 4 to 20%, respectively. Pre-activation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

  20. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.; Zhang, K.

    2015-02-01

    In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

  1. Formation of gas hydrate during crystallization of ethane-saturated amorphous ice

    NASA Astrophysics Data System (ADS)

    Faizullin, M. Z.; Vinogradov, A. V.; Skokov, V. N.; Koverda, V. P.

    2014-10-01

    Layers of ethane-saturated amorphous ice were prepared by depositing molecular beams of water and gas on a substrate cooled with liquid nitrogen. The heating of the layers was accompanied by vitrification (softening) followed by spontaneous crystallization. Crystallization of condensates under the conditions of deep metastability proceeded with gas hydrate formation. The vitrification and crystallization temperatures of the condensates were determined from the changes in their dielectric properties on heating. The thermal effects of transformations were recorded by differential thermal analysis. The crystallization of the amorphous water layers was studied by electron diffraction. Formation of a metastable packing with elements of a cubic diamond-like structure was noted.

  2. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic.

    PubMed

    Douglas, Thomas A; Sturm, Matthew; Simpson, William R; Blum, Joel D; Alvarez-Aviles, Laura; Keeler, Gerald J; Perovich, Donald K; Biswas, Abir; Johnson, Kelsey

    2008-03-01

    Mercury is deposited to the Polar Regions during springtime atmospheric mercury depletion events (AMDEs) but the relationship between snow and ice crystal formation and mercury deposition is not well understood. The objective of this investigation was to determine if mercury concentrations were related to the type and formation of snow and ice crystals. On the basis of almost three hundred analyses of samples collected in the Alaskan Arctic, we suggestthat kinetic crystals growing from the vapor phase, including surface hoar, frost flowers, and diamond dust, yield mercury concentrations that are typically 2-10 times higher than that reported for snow deposited during AMDEs (approximately 80 ng/L). Our results show that the crystal type and formation affect the mercury concentration in any given snow sample far more than the AMDE activity prior to snow collection. We present a conceptual model of how snow grain processes including deposition, condensation, reemission, sublimation, and turbulent diffusive uptake influence mercury concentrations in snow and ice. These processes are time dependent and operate collectively to affect the retention and fate of mercury in the cryosphere. The model highlights the importance of the formation and postdeposition crystallographic history of snow or ice crystals in determining the fate and concentration of mercury in the cryosphere. PMID:18441801

  3. On the Importance of Small Ice Crystals in Tropical Anvil Cirrus

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Lawson, P.; Baker, B.; Pilson, B.; Mo, Q.; Heymsfield, A. J.; Bansemer, A.; Bui, T. P.; McGill, M.; Hlavka, D.; Heymsfield, G.; Platnick, S.; Arnold, G. T.; Tanelli, S.

    2009-01-01

    In situ measurements of ice crystal concentrations and sizes made with aircraft instrumentation over the past two decades have often indicated the presence of numerous relatively small (< 50 m diameter) crystals in cirrus clouds. Further, these measurements frequently indicate that small crystals account for a large fraction of the extinction in cirrus clouds. The fact that the instruments used to make these measurements, such as the Forward Scattering Spectrometer Probe (FSSP) and the Cloud Aerosol Spectrometer (CAS), ingest ice crystals into the sample volume through inlets has led to suspicion that the indications of numerous small ]crystals could be artifacts of large ]crystal shattering on the instrument inlets. We present new aircraft measurements in anvil cirrus sampled during the Tropical Composition, Cloud, and Climate Coupling (TC4) campaign with the 2 ] Dimensional Stereo (2D ]S) probe, which detects particles as small as 10 m. The 2D ]S has detector "arms" instead of an inlet tube. Since the 2D ]S probe surfaces are much further from the sample volume than is the case for the instruments with inlets, it is expected that 2D ]S will be less susceptible to shattering artifacts. In addition, particle inter ]arrival times are used to identify and remove shattering artifacts that occur even with the 2D ]S probe. The number of shattering artifacts identified by the 2D ]S interarrival time analysis ranges from a negligible contribution to an order of magnitude or more enhancement in apparent ice concentration over the natural ice concentration, depending on the abundance of large crystals and the natural small ]crystal concentration. The 2D ]S measurements in tropical anvil cirrus suggest that natural small ]crystal concentrations are typically one to two orders of magnitude lower than those inferred from CAS. The strong correlation between the CAS/2D ]S ratio of small ]crystal concentrations and large ]crystal concentration suggests that the discrepancy is

  4. Comparing modelled and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    NASA Astrophysics Data System (ADS)

    Farrington, Robert; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.; Hoyle, Chris

    2016-04-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) is the only way in which ice can nucleate under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures warmer than -35°C (e.g. Sassen et al. 2003); however, the cause of ice nucleation at temperatures greater than -10°C is less certain. In-situ measurements of aerosol properties and cloud micro-physical processes are required to drive the improvement of aerosol-cloud processes in numerical models. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in the winters of 2013 and 2014 (Lloyd et al. 2014). Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl), using cloud probes, including the Two-Dimensional Stereo Hydrometeor Spectrometer (2D-S), the Cloud Particle Imager 3V (CPI-3V) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL). The first two of these probes measured significantly higher ice number concentrations than those observed in clouds at similar altitudes from aircraft. In this contribution, we assess the source of the high ice number concentrations observed by comparing in-situ measurements at Jungfraujoch with WRF simulations applied to the region around Jungfraujoch. During the 2014 field campaign the model simulations regularly simulated ice particle concentrations that were 3 orders of magnitude per litre less than the observed ice number concentration, even taking into account the aerosol properties measured upwind. WRF was used to investigate a number of potential sources of the high ice crystal concentrations, including: an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice or snow crystals into the clouds. It was found that the

  5. Simplification for Fraunhofer diffracting pattern of various randomly oriented ice crystals in cirrus.

    PubMed

    Pujol, Olivier; Brogniez, Gérard; Labonnote, Laurent

    2012-09-01

    This paper deals with Fraunhofer diffraction by an ensemble of independent randomly oriented ice crystals of assorted shapes, like those of cirrus clouds. There is no restriction on the shape of each crystal. It is shown that light flux density in the Fourier plane is azimuth-invariant and varies as 1/sin(4)θ, θ being the angle of diffraction. The analytical formula proposed is exact. The key point of this study is conservation of electromagnetic energy. PMID:23201960

  6. Retrieval of ice crystals' mass from ice water content and particle distribution measurements: a numerical optimization approach

    NASA Astrophysics Data System (ADS)

    Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m ‑ IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in

  7. Seismic wave propagation in anisotropic ice - Part 2: Effects of crystal anisotropy in geophysical data

    NASA Astrophysics Data System (ADS)

    Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.

    2014-08-01

    We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded traveltimes. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from a vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. With this validation of seismic velocities we make use of abrupt changes in COF as common reflection mechanism for seismic and radar data below the firn-ice transition to investigate their occurrence by comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic deployment to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous viscosity from preferred crystal orientations.

  8. cm-scale variations of crystal orientation fabric in cold Alpine ice core from Colle Gnifetti

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias

    2015-04-01

    Analysis of the microstructural parameters of ice has been an important part of ice core analyses so far mainly in polar cores in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an ice body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the ice matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of ice dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of ice crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an ice core. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the ice matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine ice core (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions

  9. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  10. NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith F.; Rosine, Bryan M.

    2014-01-01

    The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

  11. Crystallization of amorphous ice as the cause of Comet P/Halley's outburst at 14 AU

    NASA Technical Reports Server (NTRS)

    Prialnik, D.; Bar-Nun, A.

    1992-01-01

    An explanation is provided for the postperihelion eruption of Comet P/Halley, detected in February 1991 and believed to have started three months earlier, namely, the crystallization of amorphous ice taking place in the interior of the porous nucleus, at depths of a few tens of meters, accompanied by the release of trapped gases. Numerical calculations show that for a bulk density of 0.5 g/cu cm and a pore size of 1 micron crystallization occurs on the outbound leg of Comet P/Halley's orbit, at heliocentric distances between 5 AU and 17 AU. The trapped gas is released and flows to the surface through the porous medium. It may also open wider channels, as the internal pressures obtained surpass the tensile strength of cometary ice. The outflowing gas carries with it grains of ice and dust, and thus can explain the large amounts of dust observed in the coma at 14.3 AU and beyond.

  12. OBSERVATIONS OF SNOW AND ICE CRYSTALS WITH LOW TEMPERATURE SCANNING ELECTRON MICROSCOPY (REVIEW)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes the advantages of LTSEM for observations of samples of snow and ice by illustrating the type of surface information that is obtainable, the resolution that can be attained and how the depth of field allows one to observe crystals with significant topography. In addition, we i...

  13. Advantages of ice crystal growth experiments in a low gravity environment

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, V. W.; Hallett, J.

    1979-01-01

    The effects of convective fluid motions and mechanical supports on ice crystal growth in experiments conducted on earth can be inferred from studies conducted in their absence in a low-gravity environment. Current experimental results indicate the effects may be significant.

  14. A laboratory investigation of vapor-grown ice crystals at low atmospheric temperatures

    NASA Astrophysics Data System (ADS)

    Magee, Nathan B.

    An experimental system for controlled growth of small ice crystals has been developed and used to produce new measurements of ice crystal growth at low atmospheric temperature. The experimental arrangement allows for temperatures as low as -65°C and can produce ice supersaturations in excess of liquid water saturation at all sub-freezing temperatures. This well-insulated system is combined with a novel use of quadrupole electrodynamic levitation to monitor the evolution of single ice particles as they grow and evaporate. Measurements have been made on crystals growing on glass fibers as well as levitated crystals at various temperatures meant to simulate the possible environment of a cirrus cloud. It has been found that the growth and evaporation rates of the particles can be approximately modeled using a modified version of the classical capacitance model. The comparison of model calculations with data provides strong evidence for low kinetic deposition coefficients. These results offer some important insights into bulk cirrus behavior and offer a way to improve microphysical parameterizations in cold-cloud modeling.

  15. Kinetics of conversion of air bubbles to air hydrate crystals in antarctic ice.

    PubMed

    Price, P B

    1995-03-24

    The depth dependence of bubble concentration at pressures above the transition to the air hydrate phase and the optical scattering length due to bubbles in deep ice at the South Pole are modeled with diffusion-growth data from the laboratory, taking into account the dependence of age and temperature on depth in the ice. The model fits the available data on bubbles in cores from Vostok and Byrd and on scattering length in deep ice at the South Pole. It explains why bubbles and air hydrate crystals coexist in deep ice over a range of depths as great as 800 meters and predicts that at depths below approximately 1400 meters the AMANDA neutrino observatory at the South Pole will operate unimpaired by light scattering from bubbles. PMID:17775808

  16. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  17. PHYSICS UPDATE: Observation of snow crystals using a chamber cooled by dry ice

    NASA Astrophysics Data System (ADS)

    Kagawa, S.; Kakehi, M.; Ito, F.; Kagawa, K.

    1999-01-01

    It is shown that microscopic observation of natural snow crystals is possible even at relatively high atmospheric temperature, around 0 °C. For this purpose, a partial cooling method was employed. That is, a snow crystal was placed in a chamber cooled by dry ice, which prevented frost production. By using this simple method, snow crystals can be observed in winter (where snow is available). This type of observational experiment is very successful in exciting students' interest in the beauty of natural forms.

  18. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    SciTech Connect

    Arienti, Marco; Yang, Xiaoyuan; Kopacz, Adrian M; Geier, Manfred

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical properties of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .

  19. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. PMID:27343136

  20. Elementary steps at the surface of ice crystals visualized by advanced optical microscopy

    PubMed Central

    Sazaki, Gen; Zepeda, Salvador; Nakatsubo, Shunichi; Yokoyama, Etsuro; Furukawa, Yoshinori

    2010-01-01

    Due to the abundance of ice on earth, the phase transition of ice plays crucially important roles in various phenomena in nature. Hence, the molecular-level understanding of ice crystal surfaces holds the key to unlocking the secrets of a number of fields. In this study we demonstrate, by laser confocal microscopy combined with differential interference contrast microscopy, that elementary steps (the growing ends of ubiquitous molecular layers with the minimum height) of ice crystals and their dynamic behavior can be visualized directly at air-ice interfaces. We observed the appearance and lateral growth of two-dimensional islands on ice crystal surfaces. When the steps of neighboring two-dimensional islands coalesced, the contrast of the steps always disappeared completely. We were able to discount the occurrence of steps too small to detect directly because we never observed the associated phenomena that would indicate their presence. In addition, classical two-dimensional nucleation theory does not support the appearance of multilayered two-dimensional islands. Hence, we concluded that two-dimensional islands with elementary height (0.37 and 0.39 nm on basal and prism faces, respectively) were visualized by our optical microscopy. On basal and prism faces, we also observed the spiral growth steps generated by screw dislocations. The distance between adjacent spiral steps on a prism face was about 1/20 of that on a basal face. Hence, the step ledge energy of a prism face was 1/20 of that on a basal face, in accord with the known lower-temperature roughening transition of the prism face. PMID:20974928

  1. The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Lloyd, G.; Choularton, T. W.; Bower, K. N.; Gallagher, M. W.; Connolly, P. J.; Flynn, M.; Farrington, R.; Crosier, J.; Schlenczek, O.; Fugal, J.; Henneberger, J.

    2015-11-01

    During the winter of 2013 and 2014 measurements of cloud microphysical properties over a 5-week period at the high-alpine site Jungfraujoch, Switzerland, were carried out as part of the Cloud Aerosol Characterisation Experiments (CLACE) and the Ice Nucleation Process Investigation and Quantification project (INUPIAQ). Measurements of aerosol properties at a second, lower site, Schilthorn, Switzerland, were used as input for a primary ice nucleation scheme to predict ice nuclei concentrations at Jungfraujoch. Frequent, rapid transitions in the ice and liquid properties of the clouds at Jungfraujoch were identified that led to large fluctuations in ice mass fractions over temporal scales of seconds to hours. During the measurement period we observed high concentrations of ice particles that exceeded 1000 L-1 at temperatures around -15 °C, verified by multiple instruments. These concentrations could not be explained using the usual primary ice nucleation schemes, which predicted ice nucleus concentrations several orders of magnitude smaller than the peak ice crystal number concentrations. Secondary ice production through the Hallett-Mossop process as a possible explanation was ruled out, as the cloud was rarely within the active temperature range for this process. It is shown that other mechanisms of secondary ice particle production cannot explain the highest ice particle concentrations. We describe four possible mechanisms that could lead to high cloud ice concentrations generated from the snow-covered surfaces surrounding the measurement site. Of these we show that hoar frost crystals generated at the cloud enveloped snow surface could be the most important source of cloud ice concentrations. Blowing snow was also observed to make significant contributions at higher wind speeds when ice crystal concentrations were < 100 L-1.

  2. COP: a data library of optical properties of hexagonal ice crystals.

    PubMed

    Hess, M; Wiegner, M

    1994-11-20

    The data library of optical properties of hexagonal ice crystals for radiative modeling, Cirrus Optical Properties (COP), is introduced. It includes phase functions, asymmetry parameters, extinction cross sections, and single scattering albedos. Furthermore, lidar ratios and depolarization are given. The dependence of these parameters on wavelength, particle size, and shape is calculated, and different particle orientations are considered. In addition, a simple FORTRAN code is provided to calculate the corresponding properties of size distributions. Thus the data library is a very flexible tool for determining the optical parameters of ice clouds for climatological purposes and remote sensing. The data library and the FORTRAN code are distributed through electronic mail. PMID:20962984

  3. Supercooling, ice nucleation and crystal growth: a systematic study in plant samples.

    PubMed

    Zaragotas, Dimitris; Liolios, Nikolaos T; Anastassopoulos, Elias

    2016-06-01

    This paper presents an innovative technological platform which is based on infrared video recording and is used for monitoring multiple ice nucleation events and their interactions, as they happen in 96 well microplates. Thousands of freezing curves were obtained during this study and the following freezing parameters were measured: cooling rate, nucleation point, freezing point, solidus point, degree of supercooling, duration of dendritic phase and duration of crystal growth. We demonstrate the use of this platform in the detection of ice nuclei in plant samples. Future applications of this platform may include breeding for frost tolerance, cryopreservation, frozen food technology and atmospheric sciences. PMID:27056262

  4. Simultaneous Remote Sensing of Ice Nuclei, Ice Crystals, Liquid Water and Atmospheric Dynamics in and Around Mixed-Phase Layered Clouds

    NASA Astrophysics Data System (ADS)

    Buehl, J.; Radenz, M.; Leinweber, R.; Lehmann, V.; Seifert, P.; Görsdorf, U.; Ansmann, A.

    2015-12-01

    The process of ice nucleation plays a crucial role for the hydrological cycle on Earth. It influences the lifetime of clouds and can be a key element in the early stages of rain initiation. Therefore, direct observations of ice nucleation events in the atmosphere are crucial for quantitative insight into this complex process. Recently, DeMott (2010) provided a general description of the ice nucleating ability of aerosol particles, thus the estimation of available ice nuclei, e.g., from lidar measurements becomes possible for the first time. On the other hand, sophisticated combined remote sensing methods like Cloudnet allow detailed insight into the properties of ice crystals originating from cloud layers. In this context, combined observations with Raman/Depolarization lidar and radar show show a high synergistic potential, because combined they provide high sensitivity to the properties of both aerosol particles and ice crystals. In this work, results of a measurement campaign at the Meteorological Observatory Lindenberg, Germany are presented (Bühl, 2015). For the time period of four month a PollyXT Raman/Depolarization lidar, Doppler lidar, cloud radar and wind profiler were operated together to capture the full picture of aerosol properties, vertical motions, ice and liquid water properties in and around layered clouds. The number of ice nuclei in an aerosol layer surrounding a cloud is estimated via the parameterization of DeMott (2010). The number of ice nuclei falling from an ice cloud is estimated at the same time via radar measurements. It is shown that both quantities can be used to gain detailed, quantitative knowledge about the process of ice nucleation in layered clouds. References: DeMott, P. et. al., 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate, PNAS, 107 (25) Buehl, J. et. al., 2015: Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler, AMTD

  5. Inferred Differences in Ice Crystal Nucleation Rates between Continental and Maritime Deep Convective Clouds

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Avery, M. A.; Garnier, A.

    2014-12-01

    We present in situ and remotely sensed evidence for the following working hypothesis: Heterogeneous nucleation dominates during deep continental convection until ice nuclei in the updraft cannot prevent supersaturation from increasing. As it increases, homogeneous nucleation eventually occurs near cloud top (T < -60°C), with much faster ice crystal production rates. This is not the case in maritime anvil cirrus, where updrafts associated with deep convection are slower, promoting heterogeneous nucleation. We hypothesize that differences in updraft velocities and their effect on supersaturation might create a difference in the N/IWC ratios. Based on In situ measurements of the ice particle size distribution (PSD) from two aircraft field campaigns (SPARTICUS & TC4) and MODIS satellite retrievals of the temperature dependence of the 12/11 μm effective absorption optical depth ratio or βeff, ice crystal nucleation rates appear to be anomalously high near the tops of continental thunderstorms relative to maritime thunderstorms. The ice crystal nucleation rate, having units of g-1 s-1, is more related to the ratio of ice particle number concentration/ice water content (or N/IWC, with units of g-1) than to N. A surprisingly tight relationship was discovered between βeff and N/IWC, allowing N/IWC to be estimated from satellite retrievals of βeff. These retrievals verified that deep convection during TC4 over water did not produce the much higher N/IWC ratios observed during SPARTICUS in continental anvil cirrus. The imaging infrared radiometer (IIR) aboard CALIPSO has channels at 8, 10 and 12 μm and provides a data record of βeff dating back to 2006, as well as vertical profiles of IWC, extinction, depolarization and 1064/532 nm backscatter ratio from the CALIOP lidar. We will compare the MODIS-derived βeff and N/IWC relationship with that derived using the IIR data. We will also investigate the relationship between N/IWC, βeff and the vertically-resolved lidar

  6. Formation of Large (Approximately 100 micrometers) Ice Crystals Near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Bui, T. V.; Lawson, P.; Baker, B.; Mo, Q.; Baumgardner, D.; Weinstock, E. M.; Smith, J. B.; Moyer, E. J.; Hanisco, T. F.; Sayres, D. S.; SaintClair, J. M.; Alexander, M.; Toon, O. B.; Smith, J. A.

    2008-01-01

    Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (approx.100 microns length), thin (aspect ratios of approx.6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01/L). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to approx.3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%). If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008)) then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (approx.10:1), then H2O concentrations toward the low end of the measurement range (approx.2-2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm/s to loft the crystals in the tropopause region. These calculations would

  7. Effect of Antifreeze Peptide Pretreatment on Ice Crystal Size, Drip Loss, Texture, and Volatile Compounds of Frozen Carrots.

    PubMed

    Kong, Charles H Z; Hamid, Nazimah; Liu, Tingting; Sarojini, Vijayalekshmi

    2016-06-01

    Ice crystal formation is of primary concern to the frozen food industry. In this study, the effects of antifreeze peptides (AFPs) on ice crystal formation were assessed in carrot during freezing and thawing. Three synthetic analogues based on naturally occurring antifreeze peptides were used in this study. The AFPs exhibited modification of ice crystal morphology, confirming their antifreeze activity in vitro. The ability of the synthetic AFPs to minimize drip loss and preserve color, structure, texture, and volatiles of frozen carrot was evaluated using the techniques of SEM, GC-MS, and texture analysis. The results prove the potential of these AFPs to preserve the above characteristics in frozen carrot samples. PMID:27138051

  8. Measurements of high number densities of ice crystals in the tops of tropical cumulonimbus

    NASA Astrophysics Data System (ADS)

    Knollenberg, R. G.; Kelly, K.; Wilson, J. C.

    1993-05-01

    Imaging and light scattering instruments were used during the January/February 1987 STEP Tropical Experiment at Darwin, Australia, to measure ice crystal size distributions in the tops of tropical cumulonimbus anvils associated with tropical cyclones and related cloud systems. Two light scattering instruments covered particles from 0.1-μm to 78-μm diameter. Particles larger than 50-μm diameter were imaged with a two-dimensional Grey optical array imaging probe. The measurements were made at altitudes ranging from 13 to 18 km at temperatures ranging from -60° to -90°C. Additional measurements made in continental cumulonimbus anvils in the western United States offer a comparative data set. The tropical anvil penetrations revealed surprisingly high concentrations of ice crystals. Number densities were typically greater than 10 cm-3 with up to 100 cm-3 if one includes all particles larger than 0.1 μm and can approach condensation nuclei in total concentration. In order to explain the high number densities, ice crystal nucleation at altitude is proposed with the freezing of fairly concentrated solution droplets in equilibrium at low relative humidities. Any dilute liquid phase is hypothesized to be transitory with a vanishingly short lifetime and limited to cloud levels nearer -40°C. Homogeneous nucleation of ice involving H2SO4 nuclei is attractive in explaining the high number densities of small ice crystals observed near cloud top at temperatures below -60°C. The tropical size distributions were converted to mass using a spherical equivalent size, while the continental anvil data were treated as crystalline plates. Comparisons of the ice water contents integrated from the mass distributions with total water contents measured with NOAA Lyman-alpha instruments require bulk densities equivalent to solid ice for best agreement. Correlation between the two data sets for a number of flight passes was quite good and was further improved by subtraction of water

  9. Sensitivity of thin cirrus clouds in the tropical tropopause layer to ice crystal shape and radiative absorption

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Ackerman, T. P.; Durran, D. R.

    2016-03-01

    Subvisible cirrus clouds in the tropical tropopause layer (TTL) play potentially important roles in Earth's radiation budget and in the transport of water into the stratosphere. Previous work on these clouds with 2-D cloud-resolving models has assumed that all ice crystals were spherical, producing too few crystals greater than 60 μm in length compared with observations. In this study, the System for Atmospheric Modeling cloud-resolving model is modified in order to calculate the fall speeds, growth rates, and radiative absorption of nonspherical ice crystals. This extended model is used in simulations that aim to provide an upper bound on the effects of ice crystal shape on the time evolution of thin cirrus clouds and to identify the physical processes responsible for any such effects. Model runs assuming spheroidal crystals result in a higher center of cloud ice mass than in the control, spherical case, while the total mass of ice is little affected by the shape. Increasing the radiative heating results in less total cloud ice mass relative to the control case, an effect which is robust with more extreme perturbations to the absorption coefficients. This is due to higher temperatures reducing the relative humidity in the cloud and its environment, and greater entrainment of dry air due to dynamical changes. Comparisons of modeled ice crystal size distributions with recent airborne observations of TTL cirrus show that incorporating nonspherical shape has the potential to bring the model closer to observations.

  10. Revitalizing the Frens Method To Synthesize Uniform, Quasi-Spherical Gold Nanoparticles with Deliberately Regulated Sizes from 2 to 330 nm.

    PubMed

    Xia, Haibing; Xiahou, Yujiao; Zhang, Peina; Ding, Wenchao; Wang, Dayang

    2016-06-14

    In this work, we have successfully developed a new and consistent model to describe the growth of gold nanoparticles (Au NPs) via citrate reduction of auric acid (HAuCl4) by carefully assessing the temporal evolution of the NP sizes and surface charges by means of dynamic light scattering (DLS) and zeta-potential measurements. The new model demonstrates that the nucleation and growth of the Au NPs occur exclusively in the particles of the complexes of Au(+) ions and sodium acetone dicarboxylate (SAD) derived from the citrate/HAuCl4 redox reaction, which proceeds as described by the classic LaMer model. Concomitant with the Au NP growing therein, the Au(+)/SAD complex particles undergo reversible agglomeration with the reaction time, which may result in an abnormal color change of the reaction media but have little impact on the Au NP growth. Built on the new model, we have successfully produced monodisperse quasi-spherical Au NPs with sizes precisely regulated from 2 to 330 nm via simple citrate reduction in a one-pot manner. To date, highly uniform Au NPs with sizes spanning such a large size range could not be formed otherwise even via deliberately controlled seeded growth methods. PMID:27263542

  11. Charge Transfer Process During Collision of Riming Graupel Pellet with Small Ice Crystals within a Thundercloud

    NASA Technical Reports Server (NTRS)

    Datta, Saswati; De, Utpal K.; Goswami, K.; Jones, Linwood

    1999-01-01

    A charge transfer process during the collision of a riming graupel pellet and an ice-crystal at low temperature is proposed. During riming, the surface structure of graupel deviates from perfect crystalline structure. A concept of quasi-solid layer (QSL) formation on the surface is introduced. This QSL contains defects formed during riming. In absence of impurities, positively charged X-defect abundance is considered in the outer layer. These defects are assumed to be the charge carriers during the charge transfer process. Some part of the QSL is stripped off by the colliding ice crystals, which thereby gain some positive charge, leaving the graupel pellet negatively charged. With the proposed model, fC to pC of charge transfer is observed per collision. A transition temperature between -10 C to -15 C is also noted beyond which the QSL concept does not hold. This transition temperature is dependent on the bulk liquid water content of the cloud.

  12. Simultaneous interferometric in-focus and out-of-focus imaging of ice crystals

    NASA Astrophysics Data System (ADS)

    Kielar, Justin Jacquot; Lemaitre, Pascal; Gobin, Carole; Yingchun, Wu; Porcheron, Emmanuel; Coetmellec, Sébastien; Grehan, Gérard; Brunel, Marc

    2016-08-01

    Using a freezing column, dendrite-like ice crystals are generated and characterized simultaneously using in-focus imaging and interferometric out-of-focus imaging. This simultaneous analysis allows a validation of size measurements made from the analysis of the 2D-autocorrelation of speckle-like interferometric out-of-focus patterns of ice crystals. Measurements of the same particles by in-focus and out-of-focus techniques are in good agreement for 75% of the particles tested. Simulations of out-of-focus patterns are in very good agreement with experimental images. The analysis of the 2D-Fourier transform of the speckle-like patterns confirms that it is possible to evaluate the 2D-autocorrelation of the global shape of the particle (i.e. its 2D-projection on the plane of the CCD sensor).

  13. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  14. Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Bencic, Timothy J.; Tsao, Jen-Ching; Fuleki, Dan; Knezevici, Daniel C.

    2013-01-01

    This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.

  15. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  16. Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2014-10-01

    Three dimensionless ratios widely used for interpretation of lidar signals, i.e., the color ratio, lidar ratio, and depolarization ratio, have been calculated for hexagonal ice crystals of cirrus clouds as functions of their spatial orientation. The physical-optics algorithm developed earlier by the authors is applied. It is shown that these ratios are minimal at the horizontal crystal orientation. Then these quantities increase with the effective tilt angle approaching the asymptotic values of the random particle orientation. The values obtained are consistent with the available experimental data. PMID:25360985

  17. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.

    PubMed

    Olijve, Luuk L C; Meister, Konrad; DeVries, Arthur L; Duman, John G; Guo, Shuaiqi; Bakker, Huib J; Voets, Ilja K

    2016-04-01

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application. PMID:26936953

  18. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins

    PubMed Central

    Olijve, Luuk L. C.; Meister, Konrad; DeVries, Arthur L.; Duman, John G.; Guo, Shuaiqi; Bakker, Huib J.; Voets, Ilja K.

    2016-01-01

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application. PMID:26936953

  19. Sensitivity of cirrus cloud radiative properties to ice crystal size and shape in general circulation model simulations

    SciTech Connect

    Mitchell, D.L.; Kristjansson, J.E.; Newman, M.J.

    1995-04-01

    Recent research has shown that the radiative properties of cirrus clouds (i.e., optical depth, albedo, emissivity) depend on the shapes and sizes of ice crystals. For instance, the cloud albedo may vary by a factor of two, depending on whether hexagonal columns or bullet rosette ice crystals are assumed for a given ice water path (IWP). This variance occurs primarily because, at sizes characteristic of cirrus clouds, bullet rosettes have less mass than columns of the same size. However, their projected areas may be comparable. Thus, for a given IWP and mean cloud ice particle size, the optical depth will be considerably greater for rosettes, since many more rosettes are required to account for the IWP than are columns. The same could be said of hexagonal plates and columns, with plates exhibiting the greater optical depth. Satellite information suggests that the albedos of tropical cirrus clouds are greater than those of midlatitude cirrus, with albedos as high as 60%-80%. The reasons for this are not understood, but might be attributed in part to differences in ice particle size and shape. For instance, in the tropical western Pacific, ice crystal size distributions in cirrus near the tropopause exhibited median mass dimensions (D{sub m} around 30 {mu}m) and contained planar polycrystals. Very small ice crystals (typically 10 {mu}m, often ranging from about 2 {mu}m - 100 {mu}m) of indeterminate shape were sampled in anvil cirrus by an ice particle replicator in this region during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE). If fewer columnar ice crystals were present in tropical versus midlatitude cirrus and/or sizes were smaller, tropical cirrus should exhibit greater size distribution projected area, producing greater optical depth, albedo, and emissivity for the same IWP. Smaller crystal sizes would also promote higher albedos via enhanced backscattering.

  20. A LiDAR study of the effective size of cirrus ice crystals over Chung-Li, Taiwan

    NASA Astrophysics Data System (ADS)

    Kumar Das, Subrata; Nee, Jan-Bai; Chiang, Chih-Wei

    2010-06-01

    In this paper, we estimated the effective size of ice crystals in cirrus clouds using fall velocity derived from LiDAR (light detection and ranging) measurements at Chung-Li (24.58°N, 121.1°E), Taiwan. Nine shapes of the ice crystals, viz. hexagonal plates, hexagonal columns, rimed long columns, crystals with sector-like branches, broad-branched crystals, stellar crystal with broad arms, side planes, bullet rosettes and assemblages of planar poly-crystals of specific dimensions have been analyzed. The results show that the lidar derived most probable mean effective size of ice crystals is 340±180 [mu]m with a dominant size range of 200-300 [mu]m. The lidar derived mean effective size of cirrus crystals are parameterized in terms of cloud mid-height temperature as well as optical depth. The discussed method will be useful to study the most probable effective size distribution of ice crystals in cirrus cloud.

  1. Evaluation of Morphological Change and Aggregation Process of Ice Crystals in Frozen Food by Using Fractal Analysis

    NASA Astrophysics Data System (ADS)

    Koshiro, Yoko; Watanabe, Manabu; Takai, Rikuo; Hagiwara, Tomoaki; Suzuki, Toru

    Size and shape of ice crystals in frozen food materials are very important because they affect not only quality of foods but also the viability of industrial processing such as freeze-drying of concentration. In this study, 30%wt sucrose solution is used as test samples. For examining the effect of stabilizerspectine and xantan gum is added to the sucrose solution. They are frozen on the cold stage of microscope to be observed their growing ice crystals under the circumstance of -10°C. Their size and shape are measured and quantitatively evaluated by applying fractal analysis. lce crystal of complicated shape has large fractal dimension, and vice versa. It successflly categorized the ice crystals into two groups; one is a group of large size and complicated shape, and the other is a group of small size and plain shape. The critical crystal size between the two groups is found to become larger with increasing holding time. It suggests a phenomenological model for metamorphoses process of ice crystals. Further, it is indicated that xantan gum is able to suppress the smoothing of ice crystals.

  2. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.

    PubMed

    Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

    2007-12-20

    We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as

  3. Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain.

    PubMed

    Hayman, Matthew; Spuler, Scott; Morley, Bruce

    2014-07-14

    Oriented particles can exhibit different polarization properties than randomly oriented particles. These properties cannot be resolved by conventional polarization lidar systems and are capable of corrupting the interpretation of depolarization ratio measurements. Additionally, the typical characteristics of backscatter phase matrices from atmospheric oriented particles are not well established. The National Center for Atmospheric Research High Spectral Resolution Lidar was outfitted in spring of 2012 to measure the backscatter phase matrix, allowing it to fully characterize the polarization properties of oriented particles. The lidar data analyzed here considers operation at 4°, 22° and 32° off zenith in Boulder, CO, USA (40.0°N,105.2°W). The HSRL has primarily observed oriented ice crystal signatures at lidar tilt angles near 32° off zenith which corresponds to an expected peak in backscatter from horizontally oriented plates. The maximum occurrence frequency of oriented ice crystals is measured at 5 km, where 2% of clouds produced significant oriented ice signatures by exhibiting diattenuation in their scattering matrices. The HSRL also observed oriented particle characteristics of rain at all three tilt angles. Oriented signatures in rain are common at all three tilt angles. As many as 70% of all rain observations made at 22° off zenith exhibited oriented signatures. The oriented rain signatures exhibit significant linear diattenuation and retardance. PMID:25090513

  4. Self-oscillatory ice crystal growth in antifreeze protein (AFP) and glycoprotein (AFGP) solutions

    NASA Astrophysics Data System (ADS)

    Zepeda, Salvador; Nakaya, Hiroyuki; Uda, Yukihiro; Yokoyama, Etsuro; Furukawa, Yoshinori

    2006-03-01

    AFPs and AFGPs allow many organisms including fish, plants and insects to survive sub-freezing environments. They occur in a wide range of compositions and structure, but to some extent they all accomplish the same functions: they suppress the freezing temperature, inhibit recrystallization, and modify ice crystal growth. A complete description of the AFGP/AFP surface mechanism as well as other ice surface phenomenon has eluded scientists primarily due to a lack of direct surface studies. We study ice crystal growth in AFGP and AFP solutions with phase contrast microscopy during free solution growth under various conditions including microgravity. Free-solution growth experiments show an anisotropic self-oscillatory growth mode of the steps and interface near the freezing temperature and enhancement of the growth rates in the c-axis. These results contradict the previous ?tight-binding? mechanism thought to be responsible for antifreeze function. To study the effects of temperature driven convective flows on the interface kinetics, microgravity experiments were performed in a jet airplane during a parabolic flight path. Step propagation on the basal plane slows down considerably when entering the microgravity condition and reaches a critical condition just below 0.2g.

  5. Variation of Ice Crystal Size, Shape and Asymmetry Parameter in Tops of Convective Storm Systems Observed during SEAC4RS

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Cairns, B.; Fridlind, A. M.; Ackerman, A. S.

    2014-12-01

    The sizes and shapes of ice particles in tops of convective storms have a significant impact on their radiative properties. Ice crystal sizes and shapes likely vary with altitude, environmental conditions and convective strength, but these relationships are not well characterized. The rich dataset of the NASA SEAC4RS field campaign offers unique perspectives to further identify variations of ice crystal sizes and shapes and their relations to environmental and dynamical conditions. Here we focus on data acquired with the Research Scanning Polarimeter (RSP), which was mounted on the high-altitude ER-2 aircraft during SEAC4RS. RSP's unique multi-angular, multi-wavelength total and polarized reflectance measurements allow retrieval of ice effective radius, the aspect ratio of components of ice crystals, the crystal distortion level and ice asymmetry parameter, as well as cloud optical thickness and cloud top height. Using RSP data, as well as data from the eMAS and CPL sensors and in situ probes, we explore the statistical variation of ice properties retrieved during SEAC4RS in tops of convective systems. The data indicates that, in general, ice crystal populations consistent with plate-like components with aspect ratios near 0.4 are prevalent at cloud tops. The asymmetry parameter is around 0.76-0.8 and generally decreases with increasing cloud top height, mainly because the ice crystal distortion increases with height. Below about 12 km height, the effective radius decreases with increasing altitude, as previously shown for convective clouds using satellite data, but at higher levels the SEAC4RS data indicate a transition to effective radii increasing with cloud top height. Here we explore some possible explanations for this transition, related to its approximate coincidence with the level of minimum stability and the homogeneous freezing level, either of which could affect ice crystal formation and evolution. Additionally, we will demonstrate some of the

  6. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  7. The effects of ice crystal shape on the evolution of optically thin cirrus clouds in the tropics

    NASA Astrophysics Data System (ADS)

    Russotto, Rick

    Thin cirrus clouds in the tropical tropopause layer (TTL) play potentially important roles in Earth's radiation budget and in the transport of water into the stratosphere. Radiative heating of these clouds results in mesoscale circulations that maintain them against sedimentation and redistribute water vapor. In this study, the System for Atmospheric Modeling (SAM) cloud-resolving model is modified in order to calculate the fall speeds, growth rates, and radiative absorption coefficients of non-spherical ice crystals. This extended model is used in simulations that aim to constrain the effects of ice crystal shape on the time evolution of thin cirrus clouds and to identify the physical processes responsible. Model runs assuming spheroidal crystals result in a higher center of cloud ice mass than in the control, spherical case, which is roughly 60% due to a reduction in fall speeds and 40% due to stronger updrafts caused by stronger radiative heating. Other effects of ice crystal shape on the cloud evolution include faster growth and sublimation in supersaturated and subsaturated environments, respectively, and local temperature increases caused by diabatic heating. Effects of ice crystal shape on the total and mean ice crystal masses are within about 10% but do not appear to be entirely negligible. Comparisons of modeled ice crystal size distributions with recent airborne observations of TTL cirrus show that incorporating non-spherical shape has the potential to bring the model closer to observations. It is hoped that this work will eventually lead towards a more realistic physical representation of thin tropical cirrus in global climate models.

  8. Electromagnetic scattering and absorption by thin walled dielectric cylinders with application to ice crystals

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Weil, H.

    1977-01-01

    Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.

  9. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Bi, Lei; Baum, Bryan A.; Liou, Kuo-Nan; Kattawar, George W.; Mishchenko, Michael I.; Cole, Benjamin

    2013-01-01

    A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 microns. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10,000 microns in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

  10. Calorimetric study of crystal growth of ice in hydrated methemoglobin and of redistribution of the water clusters formed on melting the ice.

    PubMed Central

    Sartor, G; Mayer, E

    1994-01-01

    Calorimetric studies of the melting patterns of ice in hydrated methemoglobin powders containing between 0.43 and 0.58 (g water)/(g protein), and of their dependence on annealing at subzero temperatures and on isothermal treatment at ambient temperature are reported. Cooling rates were varied between approximately 1500 and 5 K min-1 and heating rate was 30 K min-1. Recrystallization of ice during annealing is observed at T > 228 K. The melting patterns of annealed samples are characteristically different from those of unannealed samples by the shifting of the melting temperature of the recrystallized ice fraction to higher temperatures toward the value of "bulk" ice. The "large" ice crystals formed during recrystallization melt on heating into "large" clusters of water whose redistribution and apparent equilibration is followed as a function of time and/or temperature by comparison with melting endotherms. We have also studied the effect of cooling rate on the melting pattern of ice with a methemoglobin sample containing 0.50 (g water)/(g protein), and we surmise that for this hydration cooling at rates of > or = approximately 150 K min-1 preserves on the whole the distribution of water molecules present at ambient temperature. PMID:7819504

  11. Radiative properties of visible and subvisible Cirrus: Scattering on hexagonal ice crystals

    NASA Technical Reports Server (NTRS)

    Flatau, Piotr J.; Stephens, Graeme L.; Draine, Bruce T.

    1990-01-01

    One of the main objectives of the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) is to provide a better understanding of the physics of upper level clouds. The focus is on just one specific aspect of cirrus physics, namely on characterizing the radiative properties of single, nonspherical ice particles. The basis for further more extensive studies of the radiative transfer through upper level clouds is provided. Radiation provides a potential mechanism for strong feedback between the divergence of in-cloud radiative flux and the cloud microphysics and ultimately on the dynamics of the cloud. Some aspects of ice cloud microphysics that are relevant to the radiation calculations are described. Next, the Discrete Dipole Approximation (DDA) is introduced and some new results of scattering by irregular crystals are presented. The Anomalous Diffraction Theory (ADT) was adopted to investigate the scattering properties of even larger crystals. In this way the scattering properties of nonspherical particles were determined over a range of particle sizes.

  12. Morphology Of Diesel Soot Residuals From Supercooled Water Droplets And Ice Crystals: Implications For Optical Properties

    SciTech Connect

    China, Swarup; Kulkarni, Gourihar; Scarnatio, Barbara; Sharma, Noopur; Pekour, Mikhail S.; Shilling, John E.; Wilson, Jacqueline M.; Zelenyuk, Alla; Chand, Duli; Liu, Shang; Aiken, Allison; Dubey, Manvendra K.; Laskin, Alexander; Zaveri, Rahul A.; Mazzoleni, Claudio

    2015-11-04

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those from supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. These results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.

  13. FAST TRACK COMMUNICATION: Growth melt asymmetry in ice crystals under the influence of spruce budworm antifreeze protein

    NASA Astrophysics Data System (ADS)

    Pertaya, Natalya; Celik, Yeliz; Di Prinzio, Carlos L.; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2007-10-01

    Here we describe studies of the crystallization behavior of ice in an aqueous solution of spruce budworm antifreeze protein (sbwAFP) at atmospheric pressure. SbwAFP is an ice binding protein with high thermal hysteresis activity, which helps protect Choristoneura fumiferana (spruce budworm) larvae from freezing as they overwinter in the spruce and fir forests of the north eastern United States and Canada. Different types of ice binding proteins have been found in many other species. They have a wide range of applications in cryomedicine and cryopreservation, as well as the potential to protect plants and vegetables from frost damage through genetic engineering. However, there is much to learn regarding the mechanism of action of ice binding proteins. In our experiments, a solution containing sbwAFP was rapidly frozen and then melted back, thereby allowing us to produce small single crystals. These maintained their hexagonal shapes during cooling within the thermal hysteresis gap. Melt-growth-melt sequences in low concentrations of sbwAFP reveal the same shape transitions as are found in pure ice crystals at low temperature (-22 °C) and high pressure (2000 bar) (Cahoon et al 2006 Phys. Rev. Lett. 96 255502) while both growth and melt shapes display faceted hexagonal morphology, they are rotated 30° relative to one another. Moreover, the initial melt shape and orientation is recovered in the sequence. To visualize the binding of sbwAFP to ice, we labeled the antifreeze protein with enhanced green fluorescent protein (eGFP) and observed the sbwAFP-GFP molecules directly on ice crystals using confocal microscopy. When cooling the ice crystals, facets form on the six primary prism planes (slowest growing planes) that are evenly decorated with sbwAFP-GFP. During melting, apparent facets form on secondary prism planes (fastest melting planes), leaving residual sbwAFP at the six corners of the hexagon. Thus, the same general growth-melt behavior of an apparently rotated

  14. A first test of the hypothesis of biogenic magnetite-based heterogeneous ice-crystal nucleation in cryopreservation.

    PubMed

    Kobayashi, Atsuko; Golash, Harry N; Kirschvink, Joseph L

    2016-06-01

    An outstanding biophysical puzzle is focused on the apparent ability of weak, extremely low-frequency oscillating magnetic fields to enhance cryopreservation of many biological tissues. A recent theory holds that these weak magnetic fields could be inhibiting ice-crystal nucleation on the nanocrystals of biological magnetite (Fe3O4, an inverse cubic spinel) that are present in many plant and animal tissues by causing them to oscillate. In this theory, magnetically-induced mechanical oscillations disrupt the ability of water molecules to nucleate on the surface of the magnetite nanocrystals. However, the ability of the magnetite crystal lattice to serve as a template for heterogeneous ice crystal nucleation is as yet unknown, particularly for particles in the 10-100 nm size range. Here we report that the addition of trace-amounts of finely-dispersed magnetite into ultrapure water samples reduces strongly the incidence of supercooling, as measured in experiments conducted using a controlled freezing apparatus with multiple thermocouples. SQUID magnetometry was used to quantify nanogram levels of magnetite in the water samples. We also report a relationship between the volume change of ice, and the degree of supercooling, that may indicate lower degassing during the crystallization of supercooled water. In addition to supporting the role of ice-crystal nucleation by biogenic magnetite in many tissues, magnetite nanocrystals could provide inexpensive, non-toxic, and non-pathogenic ice nucleating agents needed in a variety of industrial processes, as well as influencing the dynamics of ice crystal nucleation in many natural environments. PMID:27087604

  15. Collecting, shipping, storing, and imaging snow crystals and ice grains with low-temperature scanning electron microscopy

    USGS Publications Warehouse

    Erbe, E.F.; Rango, A.; Foster, J.; Josberger, E.G.; Pooley, C.; Wergin, W.P.

    2003-01-01

    Methods to collect, transport, and store samples of snow and ice have been developed that enable detailed observations of these samples with a technique known as low-temperature scanning electron microscopy (LTSEM). This technique increases the resolution and ease with which samples of snow and ice can be observed, studied, and photographed. Samples are easily collected in the field and have been shipped to the electron microscopy laboratory by common air carrier from distances as far as 5,000 miles. Delicate specimens of snow crystals and ice grains survive the shipment procedures and have been stored for as long as 3 years without undergoing any structural changes. The samples are not subjected to the melting or sublimation artifacts. LTSEM allows individual crystals to be observed for several hours with no detectable changes. Furthermore, the instrument permits recording of photographs containing the parallax information necessary for three-dimensional imaging of the true shapes of snowflakes, snow crystals, snow clusters, ice grains, and interspersed air spaces. This study presents detailed descriptions of the procedures that have been used successfully in the field and the laboratory to collect, ship, store, and image snow crystals and ice grains. Published 2003 Wiley-Liss, Inc.

  16. Collecting, shipping, storing, and imaging snow crystals and ice grains with low-temperature scanning electron microscopy.

    PubMed

    Erbe, Eric F; Rango, Albert; Foster, James; Josberger, Edward G; Pooley, Christopher; Wergin, William P

    2003-09-01

    Methods to collect, transport, and store samples of snow and ice have been developed that enable detailed observations of these samples with a technique known as low-temperature scanning electron microscopy (LTSEM). This technique increases the resolution and ease with which samples of snow and ice can be observed, studied, and photographed. Samples are easily collected in the field and have been shipped to the electron microscopy laboratory by common air carrier from distances as far as 5,000 miles. Delicate specimens of snow crystals and ice grains survive the shipment procedures and have been stored for as long as 3 years without undergoing any structural changes. The samples are not subjected to the melting or sublimation artifacts. LTSEM allows individual crystals to be observed for several hours with no detectable changes. Furthermore, the instrument permits recording of photographs containing the parallax information necessary for three-dimensional imaging of the true shapes of snowflakes, snow crystals, snow clusters, ice grains, and interspersed air spaces. This study presents detailed descriptions of the procedures that have been used successfully in the field and the laboratory to collect, ship, store, and image snow crystals and ice grains. PMID:12938115

  17. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  18. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  19. Ice Crystal Size Retrivals using High Spectral Resolution Lidar and Millimeter Wave Radar Data.

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2006-12-01

    The University of Wisconsin Arctic High Spectral Resolution Lidar(AHSRL) and the NOAA 8.6 mm radar(MMCR) are collecting data in the high Arctic at Eureka, Canada (79.94N, 85.56W). They have been deployed as part of the NOAA SEARCH program since August of 2005. AHSRL and MMCR data are distributed at http://lidar.ssec.wisc.edu. This web site allows visual scans of available data, composition of custom images and downloading of data in netCDF format. NetCDF files are prepared on demand with user specified time and altitude limits along with user specified altitude and time averaging. The ratio of the lidar and radar cross sections data can be used to measure the size of cloud and precipitation particles. Unfortunately, attenuation and multiple scattering make it difficult to measure the lidar scattering cross section. Standard lidar data does not contain sufficient information to correct for attenuation without the use of poorly supported assumptions. The multiply scattered signal is dependent on particle size and is often comparable in magnitude to the singly scattered signal. As a result, past lidar-radar particle size measurements have required use of complicated iterative solutions (Donovan and Lammeren, JGR, 106, Nov 16, 2001, pp 27425). These problems are avoided when using AHSRL data. It provides robustly calibrated measurements of the backscatter cross section. Furthermore, the lidar receiver accepts light from a very small angular field-of- view greatly limiting multiply scattered signals. Lidar-radar size retrievals provide the effective diameter prime. This quantity is proportional to the mass of the average particle squared divided by the projected area of the average particle. Conversion of effective diameter prime to commonly derived size measures such as effective diameter, mean diameter, median mass diameter, or mean mass of the ice particles requires knowledge of the ice crystal shape. Mitchell(J. Atmos. Sci V29 p153-163) and others have presented

  20. Tectonics of icy satellites driven by melting and crystallization of water bodies inside their ice shells

    NASA Astrophysics Data System (ADS)

    Johnston, Stephanie Ann

    Enceladus and Europa are icy satellites that currently support bodies of liquid water in the outer solar system Additionally, they show signs of being geologically active. Developing numerical models informed by observations of these icy satellites allows for the development of additional constraints and an improved understanding of the tectonics and evolution of icy satellites. The formation mechanisms for both chaos and ridges on Europa are thought to involve water as albedo changes observed in association with them imply the deposition of salt-rich water near these features. Ridges are the most ubiquitous feature on Europa and are described as central troughs flanked by two raised edifices, range in height from tens to hundreds of meters. Europan ridges can extend hundreds of km continuously along strike but are only about 2 km across. A model of a crystallizing dike--like water intrusion is able to match the overall morphology of ridges, and is consistent the long continuous strike. However, the intrusion of a large volume of water is required to match the most common heights of the ridges. Chaos on Europa is defined as a large area of disrupted ice that contain blocks of pre-existing material separated by a hummocky matrix. A proposed mechanism for the formation of Chaos is that a region of heterogeneous ice within the shell is melted and then recrystallizes. Comparing the model results with the geology of Thera Macula, a region where it has been proposed that Chaos is currently forming, suggests that additional processes may be needed to fully understand the development of Chaos. Water-rich plumes erupt from the south pole of Enceladus, suggesting the presence of a pressurized water reservoir. If a pressurized sea is located beneath the south polar terrain, its geometry and size in the ice shell would contribute to the stress state in the ice shell. The geometry and location of such an ocean, as well as the boundary conditions and thickness of an ice shell

  1. The effect of roughness model on scattering properties of ice crystals

    NASA Astrophysics Data System (ADS)

    Geogdzhayev, Igor; van Diedenhoven, Bastiaan

    2016-07-01

    We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5° to 20°, where the uniform roughness model produces a plateau while the Weibull model does not.

  2. Final Report for "Improved Representations of Cloud Microphysics for Model and Remote Sensing Evaluation using Data Collected during ISDAC, TWP-ICE and RACORO

    SciTech Connect

    McFarquhar, Greg M.

    2003-06-11

    We were funded by ASR to use data collected during ISDAC and TWP-ICE to evaluate models with a variety of temporal and spatial scales, to evaluate ground-based remote sensing retrievals and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. In particular, we proposed to: 1) Calculate distributions of microphysical properties observed in arctic stratus during ISDAC for initializing and evaluating LES and GCMs, and for developing parameterizations of effective particle sizes, mean fall velocities, and mean single-scattering properties for such models; 2) Improve representations of particle sizes, fall velocities and scattering properties for tropical and arctic cirrus using TWP-ICE, ISDAC and M-PACE data, and to determine the contributions that small ice crystals, with maximum dimensions D less than 50 μm, make to mass and radiative properties; 3) Study fundamental interactions between clouds and radiation by improving representations of small quasi-spherical particles and their scattering properties. We were additionally funded 1-year by ASR to use RACORO data to develop an integrated product of cloud microphysical properties. We accomplished all of our goals.

  3. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  4. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation

    NASA Astrophysics Data System (ADS)

    Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2015-10-01

    The open-source beam-splitting code is described which implements the geometric-optics approximation to light scattering by convex faceted particles. This code is written in C++ as a library which can be easy applied to a particular light scattering problem. The code uses only standard components, that makes it to be a cross-platform solution and provides its compatibility to popular Integrated Development Environments (IDE's). The included example of solving the light scattering by a randomly oriented ice crystal is written using Qt 5.1, consequently it is a cross-platform solution, too. Both physical and computational aspects of the beam-splitting algorithm are discussed. Computational speed of the beam-splitting code is obviously higher compared to the conventional ray-tracing codes. A comparison of the phase matrix as computed by our code with the ray-tracing code by A. Macke shows excellent agreement.

  5. Convective Troposphere-Stratosphere Transport in the Tropics and Hydration by ice Crystals Geysers

    NASA Astrophysics Data System (ADS)

    Pommereau, J.

    2008-12-01

    Twenty-five years ago the suggestion was made by Danielsen of direct fast convective penetration of tropospheric air in the stratosphere over land convective systems. Although the existence of the mechanism is accepted, it was thought to be rare and thus its contribution to Troposphere-Stratosphere Transport (TST) of chemical species and water vapour at global scale unimportant at global scale. In contrast to this assumption, observations of temperature, water vapour, ice particles, long-lived tropospheric species during HIBISCUS, TROCCINOX and SCOUT-O3 over Brazil, Australia and Africa and more recently CALIPSO aerosols observations suggest that it is a general feature of tropical land convective regions in the summer. Particularly relevant to stratospheric water vapour is the observation of geyser like ice crystals in the TTL over overshooting events which may result in the moistening of the stratosphere. Although such events successfully captured by small scale Cloud-Resolving Models may have a significant impact on stratospheric ozone chemistry and climate, they are currently totally ignored by NWPs, CTMs and CCMs. Several recent balloon and aircraft observations of overshoots and CRM simulations will be shown illustrating the mechanism, as well as observations from a variety of satellites suggesting a significant impact at global scale.

  6. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements.

    PubMed

    Amsler, Peter; Stetzer, Olaf; Schnaiter, Martin; Hesse, Evelyn; Benz, Stefan; Moehler, Ottmar; Lohmann, Ulrike

    2009-10-20

    We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RH(ice)), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 microm (average size of 19 microm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RH(ice) and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 microm. The second mode grows to sizes of 5 to 63 microm, just after the particles of the first one fall out. It is found that an increasing aspect ratio chi of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements. PMID:19844319

  7. Isothermal Ice Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell

    SciTech Connect

    Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.; Weber, Adam Z.

    2011-12-01

    Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction times follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.

  8. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  9. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds.

    PubMed

    Klotz, S; Komatsu, K; Pietrucci, F; Kagi, H; Ludl, A-A; Machida, S; Hattori, T; Sano-Furukawa, A; Bove, L E

    2016-01-01

    It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty » high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiCl∙RH2O and LiBr∙RH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random. PMID:27562476

  10. Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds

    PubMed Central

    Klotz, S.; Komatsu, K.; Pietrucci, F.; Kagi, H.; Ludl, A.-A.; Machida, S.; Hattori, T.; Sano-Furukawa, A.; Bove, L. E.

    2016-01-01

    It has been known for decades that certain aqueous salt solutions of LiCl and LiBr readily form glasses when cooled to below ≈160 K. This fact has recently been exploited to produce a « salty » high-pressure ice form: When the glass is compressed at low temperatures to pressures higher than 4 GPa and subsequently warmed, it crystallizes into ice VII with the ionic species trapped inside the ice lattice. Here we report the extreme limit of salt incorporation into ice VII, using high pressure neutron diffraction and molecular dynamics simulations. We show that high-pressure crystallisation of aqueous solutions of LiCl∙RH2O and LiBr∙RH2O with R = 5.6 leads to solids with strongly expanded volume, a destruction of the hydrogen-bond network with an isotropic distribution of water-dipole moments, as well as a crystal-to-amorphous transition on decompression. This highly unusual behaviour constitutes an interesting pathway from a glass to a crystal where translational periodicity is restored but the rotational degrees of freedom remaining completely random. PMID:27562476

  11. A study of the influence of riming of ice crystals on snow chemistry during different seasons in precipitating continental clouds

    NASA Astrophysics Data System (ADS)

    Kalina, M. F.; Puxbaum, H.

    During three field campaigns at Mt Sonnblick—SBO—(3106 m a.s.l.), Salzburg, Austria, in winter 1991, spring and summer 1992, a comprehensive study of cloud water and precipitation chemistry was performed including a microscopic study of form, size and degree of riming of precipitating ice crystals. The surface weighted average of the degree of riming of precipitating snow showed large fluctuations during all seasons studied with a range of 0.5-4.5 The average degree of riming was around 2 during the November and June campaigns and 2.6 in March. The attachment of cloud droplets to precipitating ice crystals was found to be the predominant process determining the final composition of a snowflake. This process was found to be active during all seasons studied. The strong seasonality of the sulfate concentration in precipitation at SBO with very low values during winter and high values during summer could be attributed primarily to the corresponding fluctuation of the sulfate concentration in the cloud water while the extent of riming was rather similar at least during the periods of our winter and summer campaigns. There are indications that the extent of riming is higher during the spring season as compared to winter or summer conditions which might help to explain the spring maximum of sulfate observed in continental precipitation. the amount of cloud water being attached to the ice crystals in relation to the amount of unrimed ice phase in the riming process was estimated to be around 30% during November and June and around 70% in March. The ice crystal shapes and size distributions observed during different cloud temperatures were according to the scheme of Magono and Lee ( Journal of the Faculty of Science of Hokkaido University, Series VII, 1966, 2, 321-335).

  12. The boundary element method for light scattering by ice crystals and its implementation in BEM++

    NASA Astrophysics Data System (ADS)

    Groth, S. P.; Baran, A. J.; Betcke, T.; Havemann, S.; Śmigaj, W.

    2015-12-01

    A number of methods exist for solving the problem of electromagnetic scattering by atmospheric ice crystals. Amongst these methods, only a few are used to generate "benchmark" results in the atmospheric science community. Most notably, the T-matrix method, Discrete Dipole Approximation, and the Finite-Difference Time-Domain method. The Boundary Element Method (BEM), however, has received considerably less attention in this community despite its extensive use and development in other areas of applied mathematics and engineering. Recently the group of Betcke et al. (2015 [1]) at University College London has released a high performance open source boundary element library called BEM++. In this paper, we employ BEM++ to calculate the scattering properties of hexagonal ice columns of fixed orientation, as well as more complicated particles such as hollow columns and bullet-rosettes. The results for hexagonal columns are compared to those obtained using a highly accurate and well-established T-matrix method (Baran et al., 2001 [2]) for a range of different wavelengths and size parameters. It is shown that the results are in excellent agreement and that BEM++ is a fast alternative to the T-matrix method and others for generating benchmark results. However, the large memory requirements of BEM++ cause it to be limited to size parameters ~15 on a standard desktop PC if an accuracy of roughly 1% is required. The main advantages of BEM++ over many other methods are its flexibility to be applied to homogeneous dielectric particles of arbitrarily complex shape, and its open availability. This flexibility is illustrated by the application of BEM++ to scattering by hollow columns with different cavity types, as well as bullet-rosettes with 2-6 branches.

  13. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  14. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.

    PubMed

    Braham, R R

    1959-01-16

    On the basis of presently available data, combined with present-day knowledge of the physics and chemistry of cloud particle development, it is possible to make the following generalizations about the mode of precipitation in natural clouds. 1) The all-water mechanism begins to operate as soon as a parcel of cloud air is formed and continues to operate throughout the life of the cloud. The ice-crystal mechanism, on the other hand, can begin to operate only after the top of the cloud has reached levels where ice nuclei can be effective (about -15 degrees C). Some clouds never reach this height; any precipitation from them must be through the all-water mechanism. In cold climates and at high levels in the atmosphere, the cloud bases may be very close to this critical temperature. In the tropics, approximately 25,000 feet separate the bases of low clouds from the natural ice level. 2) The number of large hygroscopic nuclei in maritime air over tropical oceans is entirely adequate to rain-out any cloud with a base below about 10,000 feet, provided the cloud duration and cloud depth is sufficient for the precipitation process to operate. Extensive trajectories over land will decrease the number of sea-salt particles, both because of sedimentation and removal in rain. Measurements show an order-of-magnitude decrease in the number of large particles as maritime air moves from the Gulf of Mexico to the vicinity of St. Louis, during the summer months. Measurements in Arizona and New Mexico show even smaller chloride concentrations, presumably because of the long overland trajectories required in reaching these areas. The maritime particles lost in overland trajectories apparently are more than replaced by particles of land origin. The latter are usually of mixed composition and are less favorable for the formation of outsized solution droplets. 3) Ice nuclei, required for the formation of ice crystals and for droplet freezing, are rather rare at temperatures higher than

  15. Retrieval of cirrus optical thickness and assessment of ice crystal shape from ground-based imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Heyner, F.; Wendisch, M.

    2013-08-01

    A ground-based hyperspectral imaging spectrometer (AisaEAGLE, manufactured by Specim Ltd., Finland) is applied to measure downward spectral radiance fields with high spatial (1024 spatial pixels within 36.7° field of view), spectral (488 spectral pixels, 400-970 nm, 1.25 nm full width at half maximum), and temporal (4-30 Hz) resolution. The calibration, measurement and data evaluation procedures are introduced. A new method is presented to retrieve the cirrus optical thickness (τci) using the spectral radiance data collected by AisaEAGLE. The data were collected during the Cloud Aerosol Radiation and tuRbulence of trade wInd cumuli over BArbados (CARRIBA) project in 2011. The spatial inhomogeneity of the investigated cirrus is characterised by the standard deviation of the retrieved τci as well as the width of its frequency distribution. By comparing measured and simulated downward solar spectral radiance as a function of scattering angle, some evidence of the prevailing cirrus ice crystal shape can be obtained and subsequently used to substantiate the retrieval of τci. The sensitivity of the retrieval method with respect to surface albedo, effective radius (reff), cloud height and ice crystal shape is quantified. An enhanced sensitivity of the retrieved τci is found with respect to the surface albedo (up to 30%) and ice crystal shape (up to 90%). The sensitivity with regard to the effective ice crystal radius (≤ 5%) and the cloud height (≤ 0.5%) is rather small and can be neglected.

  16. Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar.

    PubMed

    Borovoi, Anatoli; Balin, Yurii; Kokhanenko, Grigorii; Penner, Iogannes; Konoshonkin, Alexander; Kustova, Natalia

    2014-10-01

    Layers of quasi-horizontally oriented ice crystals in cirrus clouds are observed by a two-wavelength polarization lidar. These layers of thickness of several hundred meters are identified by three attributes: the backscatter reveals a sharp ridge while the depolarization ratio and color ratio become deep minima. These attributes have been justified by theoretical calculations of these quantities within the framework of the physical-optics approximation. PMID:25322032

  17. Crystal Field Disorder in the Quantum Spin Ice Ground State of Tb2Sn2 xTixO7

    SciTech Connect

    Gaulin, Bruce D.; Zhang, J.; Dahlberg, M. L.; Matthews, Maria J.; Bert, F.; Kermarrec, E.; Fritsch, Katharina; Granroth, Garrett E; Jiramongkolchai, P.; Amato, A.; Baines, C.; Cava, R. J.; Mendels, P.; Schiffer, P

    2015-01-01

    Spin ice physics marries that of hydrogen disorder in water ice, first discussed almost 60 years ago by Pauling, and that of low temperature magnetism on certain networks of connected tetrahedra. Recently the classical spin ice mag- nets Ho2Ti2O7 and Dy2Ti2O7 have shown an emergent artificial magneto- statics , which manifests itself as Coulombic spin correlations and excitations behaving as diffusive magnetic monopoles. The related pyrochlore magnet, Tb2Ti2O7, has been proposed as a quantum variant of spin ice, stabilized by 1 virtual excitations between the crystal field (CF) ground state doublet appro- priate to Tb3+, and its low lying excited state doublet. Isostructural Tb2Sn2O7 displays soft spin ice order, and its Tb3+ ground and excited CF eigenstates are known to differ relative to those of Tb2Ti2O7. We present a comprehensive study of Tb2Sn2 xTixO7 showing a novel, dynamic spin liquid state for all x other than the end members (0, 2). This state is the result of disorder in the low lying Tb3+ CF environments which de-stabilizes the mechanism by which quantum fluctuations contribute to ground state selection in Tb2Sn2 xTixO7.

  18. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    PubMed Central

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.

    2014-01-01

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844

  19. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system.

    PubMed

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M; Hilgart, Mark C; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K; Smith, Janet L; Fischetti, Robert F

    2014-12-01

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844

  20. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    SciTech Connect

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.

  1. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    DOE PAGESBeta

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; et al

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less

  2. Evidence of ice crystal growth within mixed phase clouds along fall streaks - a radar observation case study

    NASA Astrophysics Data System (ADS)

    Pfitzenmaier, Lukas; Dufournet, Yann; Unal, Christine; Russchenberg, Herman

    2016-04-01

    Mixed phase clouds contain both ice particles and super-cooled cloud water droplets in the same volume of air. Currently, one of the main challenges is to observe and understand how ice particles grow by interacting with liquid water within the mixed-phase clouds. In the mid latitudes this process is one of the most efficient processes for precipitation formation. The case study presented here is based on observations obtained with the Transportable Atmospheric RAdar (TARA), S-band precipitation radar profiler, from Delft University of Technology during the Analysis of the Composition of mixed-phase Clouds with Extended Polarization Techniques campaign (ACCEPT) at Cabauw The Netherlands, autumn 2014. The high temporal (3 seconds) and spatial resolutions (21 m) as well as the Doppler and polarimetric capabilities of TARA are used to estimate size and shape information of the measured hydrometeors. In addition, the unique 3 beam configuration of TARA provides 3-D dynamical information within the cloud system. Based on the dynamical information it is possible to retrieve the fall steak signatures of falling ice particles within radar measurements. Those signatures allow to follow particle population from their generation (at cloud top) to their disintegration. So this technique offers a new perspective for cloud microphysical evolution studies. Using retrieved profiles of radar moments and spectral information along the fall streaks, microphysical information are estimated leading to a better understanding of the influence of super-cooled liquid layer on ice crystals growth under ambient conditions. A synergetic setup of instruments during the ACCEPT campaign was used to liquid layers within the cloud system. So several type of ice crystal growth processes could be detected and will be presented and discussed.

  3. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2002-01-01

    Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative

  4. Effects of Ice-Crystal Structure on Halo Formation: Cirrus Cloud Experimental and Ray-Tracing Modeling Studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Knight, Nancy C.; Takano, Yoshihide; Heymsfield, Andrew J.

    1994-01-01

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22 deg halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  5. Catalytic crystallization of ices by small silicate smokes at temperatures less than 20K

    NASA Technical Reports Server (NTRS)

    Moore, M.; Ferrante, R.; Hudson, R.; Tanabe, T.; Nuth, J.

    1993-01-01

    Samples of methanol and water ices condensed from the vapor onto aluminum substrates at low temperatures (below approximately 80 K) form amorphous ices; annealing at temperatures in excess of 140-155 K is usually required to convert such amorphous samples to crystalline ices. However, we have found that when either methanol or water vapor is deposited on to aluminum substrates that have been coated with a thin (0.1-0.5 mm) layer of amorphous silicate smoke, the ices condense in crystalline form. We believe that crystalline ice forms as the result of energy liberated at the ice/silicate interface perhaps due to weak bonding of the ice at defect sites on the grains and the very high surface to volume ratio and defect density of these smokes. Annealing of amorphous water ice mixed with more volatile components such as methane, carbon monoxide, etc., has been suggested as an efficient way to produce clatherates in the outer solar nebula and thus explain the volatile content of comets and icy satellites of the outer planets. This hypothesis may need to be re-examined if amorphous ice does not form on cold silicate grains.

  6. Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign

    NASA Astrophysics Data System (ADS)

    Myagkov, Alexander; Seifert, Patric; Wandinger, Ulla; Bühl, Johannes; Engelmann, Ronny

    2016-08-01

    This paper presents first quantitative estimations of apparent ice particle shape at the top of liquid-topped clouds. Analyzed ice particles were formed under mixed-phase conditions in the presence of supercooled water and in the temperature range from -20 to -3 °C. The estimation is based on polarizability ratios of ice particles measured by a Ka-band cloud radar MIRA-35 with hybrid polarimetric configuration. Polarizability ratio is a function of the geometrical axis ratio and the dielectric properties of the observed hydrometeors. For this study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with the cloud-top temperatures of ˜ -5, ˜ -8, ˜ -15, and ˜ -20 °C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected apparent shapes with well-known shape-temperature dependencies observed in laboratories was found. Polarizability ratios used for the analysis were estimated for areas located close to the cloud top, where aggregation and riming processes do not strongly affect ice particles. We concluded that, in microwave scattering models, ice particles detected in these areas can be assumed to have pristine shapes. It was also found that even slight variations of ambient conditions at the cloud top with temperatures warmer than ˜ -5 °C can lead to rapid changes of ice crystal shape.

  7. Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque

    NASA Astrophysics Data System (ADS)

    Hashino, Tempei; Chiruta, Mihai; Polzin, Dierk; Kubicek, Alexander; Wang, Pao K.

    2014-12-01

    The flow field and orientation of ice particles are fundamental information to understand cloud microphysical processes, optical phenomena, and electric-field induced orientation and to improve remote sensing of ice clouds. The purpose of this study is to investigate the flow fields and hydrodynamic torques of falling ice columns and hexagonal plates with their largest dimension inclined with respect to the airflow. The Reynolds numbers range from 2 to 70 for columns and 2 to 120 for plates. The flow fields are obtained by numerically solving the relevant Navier-Stokes equations under the assumption of air incompressibility. It was found that for the intermediate Reynolds number the streamlines around the inclined crystals exhibit less spiral rotation behind them than those around the stable posture. The vorticity magnitude was larger in the upstream side and broader in the downstream than the one without inclination. For plates, a high-pressure dome on the center of the lower basal face disappears with inclination, possibly leading to an increase of riming there. The torques acting on the crystals have a local maximum over the inclined angle and exhibit almost symmetric around 45° over the range of Reynolds numbers. The torque parameterization was performed under pressures of 300, 500, and 800 hPa as a function of Reynolds number and aspect ratio. It was found that the time scale of rotation for plates is smaller than the one for columns. Furthermore, the torque formula was applied to assess alignment of crystals along electric fields. It was found that these crystals of millimeter size require 120 kV/m for the electrical alignment, which agrees with previous studies.

  8. Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liou, K. N.

    1995-01-01

    We have developed a finite-difference time domain (FDTD) method and a novel geometric ray-tracing model for the calculation of light scattering by hexagonal ice crystals. In the FDTD method we use a staggered Cartesian grid with the implementation of an efficient absorbing boundary condition for the truncation of the computation domain. We introduce the Maxwell-Garnett rule to compute the mean values of the dielectric constant at grid points to reduce the inaccuracy produced by the staircasing approximation. The phase matrix elements and the scattering efficiencies for the scattering of visible light by two-dimensional long circular ice cylinders match closely those computed from the exact solution for size parameters as large as 60, with maximum differences less than 5%. In the new ray-tracing model we invoke the principle of geometric optics to evaluate the reflection and the refraction of localized waves, from which the electric and magnetic fields at the particle surface (near field) can be computed. Based on the equivalence theorem, the near field can subsequently be transformed to the far field, in which the phase interferences are fully accounted for. The phase functions and the scattering efficiencies for hexagonal ice crystals computed from the new geometric ray-tracing method compare reasonably well with the FDTD results for size parameters larger than approximately 20. When absorption is involved in geometric ray tracing,

  9. Part A: Cirrus ice crystal nucleation and growth. Part B: Automated analysis of aircraft ice particle data

    NASA Technical Reports Server (NTRS)

    Arnott, William P.; Hallett, John; Hudson, James G.

    1995-01-01

    Specific measurement of cirrus crystals by aircraft and temperature modified CN are used to specify measurements necessary to provide a basis for a conceptual model of cirrus particle formation. Key to this is the ability to measure the complete spectrum of particles at cirrus levels. The most difficult regions for such measurement is from a few to 100 microns, and uses a replicator. The details of the system to automate replicator data analysis are given, together with an example case study of the system provided from a cirrus cloud in FIRE 2, with particles detectable by replicator and FSSP, but not 2DC.

  10. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment

    NASA Astrophysics Data System (ADS)

    Targino, A. C.; Krejci, R.; Noone, K. J.; Glantz, P.

    2006-06-01

    Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 μm diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around -27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles

  11. Validation and Determination of Ice Water Content - Radar Reflectivity Relationships during CRYSTAL-FACE: Flight Requirements for Future Comparisons

    NASA Technical Reports Server (NTRS)

    Sayres, D. S.; Smith, J. B.; Pittman, J. V.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Fridland, A. M.; Ackerman, A. S.

    2007-01-01

    In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches.

  12. Sensitivity study of ice crystal optical properties in the 874 GHz submillimeter band

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Yang, Ping; Wu, Dong L.

    2016-07-01

    Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50-200 μm.

  13. Ice water content retrievals using an estimation theory approach: examples from the NASA CRYSTAL-FACE experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, A.; Stephens, G.; Haynes, J.

    2003-04-01

    This study introduces a new, robust and reliable method to estimate ice cloud microphysical properties from cloud radar reflectivities and visible optical depth. The retrieval is formulated in an estimation theory framework which permits the introduction of optimal combinations of different measurements and a complete characterization of retrieval errors. The sensitivity of the retrieval to the assumed error statistics is assessed performing experiments with variablea priori, optical depth and forward model uncertainties. Quantitative estimates of the uncertainties show that the average ice water content is retrieved with errors varying between 20--30%. The relative error on ice water path is of the same order of magnitude. The retrieval is applied to synthetic and real observations. Retrieved products are checked against other retrieval methods andin situ observations when available. The results compare well with results from other methods. The retrieval appears to be robust and can be applied successfully to a variety of cirrus clouds without suffering from the problems often encountered when using empirically--based methods. As part of ongoing research the method is being evaluated using data from the NASA CRYSTAL--FACE experiment and the Atmospheric Radiation Measurement - Unmanned Aerospace Vehicle (ARM-UAV) Fall 2002 experiment.

  14. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Effects of CO2 laser radiation on large orthophosphoric acid and water drops and on spherical ice crystals

    NASA Astrophysics Data System (ADS)

    Rudash, V. K.

    1994-02-01

    An experimental investigation is reported of the conditions present during evaporation of suspended orthophosphoric acid and water drops, and of spherical ice crystals with a radius of the order of 1 mm when the laser radiation power density was 20-104 W cm-2 at the wavelength of 10.6 μm. The lower limit of explosive evaporation was determined for H3PO4 drops and ice crystals. Only one evaporation mechanism of H3PO4 drops was observed (this mechanism was explosive), but there were two mechanisms in the case of water drops (convective with vapour ejection and explosive) and spherical ice crystals (melting followed by evaporation of a water drop and explosive evaporation). Repeated explosions of H2O drops were observed for a power density w = 104 W cm-2 when the beam diameter was 10 mm.

  15. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment

    NASA Astrophysics Data System (ADS)

    Targino, A. C.; Krejci, R.; Noone, K. J.; Glantz, P.

    2005-09-01

    Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds) experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM) equipped with Energy-Dispersive X-ray Analysis (EDX). Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI). This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 µm diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material) and sea salt (6.7%). Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere) were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer) contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around -27°C revealed that supercooled clouds are more likely to persist in conditions where low-Z particles

  16. Ice Multiplication by Crystal Growth?Ice growing from the vapor along with tiny amounts of salt solution sheds free ice crystals, at -5C and saturation with respect to liquid water, in quiescent conditions. This is a more appealing explanation for the Hallett-Mossop effect than rime splintering, if it occurs primarily at temperatures near -5C.

    NASA Astrophysics Data System (ADS)

    Knight, C. A.

    2015-12-01

    Ice growing from the vapor, at -5C and liquid water supersaturation, often sheds crystals when it grows along with a small amount of salt solution. The experiments are done with single crystals growing in a temperature-controlled chamber with 5 ml of water in the bottom to maintain and control supersaturation, and the new crystals are detected when they fall into and nucleate the water in the bottom. Crystal growth is initiated by inserting into the growth chamber a pipet tip that contained a few microliters of very dilute salt solution that had been supercooled to -5C and nucleated at the tip. Growth from the vapor ensues, with condensation directly onto ice and onto whatever salt solution is exposed. The results are not completely reproducible, no doubt because the starting details of the exposure of ice and solution is not controllable. However, the shedding of crystals often occurs with starting NaCl concentrations of the order of 0.01 wt. percent, and almost never occurs with "pure" water. The shedding events themselves have not been identified, and an attractive hypothesis for how the shedding of ice occurs has not been found at the time of writing this abstract. By the time of the AGU meeting it is hoped that enough experiments will have been performed in order to say whether this effect is found only near -5C. If it requires a temperature near -5C then it seems to be an attractive explanation of the Hallett-Mossop process. It also, of course, is hoped that an attractive hypothesis for the mechanism of the shedding will have been found.

  17. Microbial production of ice crystals in clouds as a novel atmospheric biosignature

    NASA Astrophysics Data System (ADS)

    Santl-Temkiv, T.; Sahyoun, M.; Kjeldsen, H.; Ling, M.; Boesen, T.; Karlson, U. G.; Finster, K.

    2014-03-01

    A diverse assembly of exoplanets has been discovered during recent decades (Howard 2013), their atmospheres providing some of the most accessible evidence for the presence of biological activity on these planets. Metabolic gases have been commonly proposed as atmospheric biosignatures (Seager et al 2012). However, airborne microbes are also involved in cloud- and precipitation formation on Earth. Thus, meteorological phenomena may serve as alternative atmospheric biosignatures, for which appropriate observational techniques have yet to be developed. The atmospheric part of the Earth's water cycle heavily relies on the presence of nucleating particles, which promote the condensation and freezing of atmospheric water, both potentially leading to precipitation. While cloud condensation nuclei are diverse and relatively common, ice nuclei are poorly understood and comparably rare airborne particles. According to current knowledge, most ice nucleation below ñ15∞C is driven by the presence of inorganic dust particles, which are considered inactive at higher temperatures. Biogenic IN are the only reported particles that promote ice formation above ñ10∞C. Some bacteria, e.g. Pseudomonas syringae, produce Ice Nucleation Active (INA) proteins that are most efficient ice nuclei currently known. These INA bacteria are common in the atmosphere, and may thus be involved in precipitation processes of mixed phase clouds (Möhler et al 2007). We investigate the relevance of bacterial INA proteins for atmospheric processes using three approaches: (i) study of the presence of INA bacteria and their INA proteins in the atmosphere, (ii) a detailed molecular and physical study of isolated INA proteins, and finally (iii) a modeling study of the importance of INA proteins for ice-path in clouds as well as their importance for precipitation. During 14 precipitation events, we observed that 12% of isolated bacteria carried INA genes. INA bacteria had likely been emitted to the

  18. Crystal structure and encapsulation dynamics of ice II-structured neon hydrate.

    PubMed

    Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C; Han, Jiantao; Germann, Timothy C; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S; Zhao, Yusheng

    2014-07-22

    Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms. PMID:25002464

  19. Crystal structure and encapsulation dynamics of ice II-structured neon hydrate

    PubMed Central

    Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C.; Han, Jiantao; Germann, Timothy C.; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S.; Zhao, Yusheng

    2014-01-01

    Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms. PMID:25002464

  20. Why ice-binding type I antifreeze protein acts as a gas hydrate crystal inhibitor.

    PubMed

    Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John A; Englezos, Peter

    2015-04-21

    Antifreeze proteins (AFPs) prevent ice growth by binding to a specific ice plane. Some AFPs have been found to inhibit the formation of gas hydrates which are a serious safety and operational challenge for the oil and gas industry. Molecular dynamics simulations are used to determine the mechanism of action of the winter flounder AFP (wf-AFP) in inhibiting methane hydrate growth. The wf-AFP adsorbs onto the methane hydrate surface via cooperative binding of a set of hydrophobic methyl pendant groups to the empty half-cages at the hydrate/water interface. Each binding set is composed of the methyl side chain of threonine and two alanine residues, four and seven places further down in the sequence of the protein. Understanding the principle of action of AFPs can lead to the rational design of green hydrate inhibitor molecules with potential superior performance. PMID:25786071

  1. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Mól, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  2. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    NASA Astrophysics Data System (ADS)

    de Araujo, C. I. L.; Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Mól, L. A. S.; Moura-Melo, W. A.; Pereira, A. R.

    2014-03-01

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  3. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH.

    PubMed

    Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results. PMID:27343137

  4. Effects of nuclei concentrations, ice nucleation mechanisms and crystal habits on the dynamics and microphysics of Arctic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Komurcu, Muge

    There is a significant warming in the Arctic that is evident in both observations and in the future climate predictions. The Arctic warming is greater than any other region on Earth, however, the degree of warming is inconsistent among the climate models even for the same emission scenarios. Clouds, especially low-level clouds, are a prevailing feature of the Arctic atmosphere. They strongly affect the surface radiative and energy budgets, which make them a key component of the Arctic climate. Recent inter-comparison studies using regional climate models show that models are incapable of reproducing the supercooled liquid water observed in clouds during the cold season. Large discrepancies exist in the partitioning of phase between ice and liquid water among different models. It is currently thought that these discrepancies are due to the uncertainties in ice nuclei concentrations, ice nucleation, and ice crystal habits used in models. Predicting these physical processes controls the partitioning between liquid and ice, and hence the impact of mixed-phase clouds on the surface energy budget. There is a need to improve model cloud predictions in the Arctic, however, the microphysical uncertainties mentioned above are tied directly to the cloud dynamics that help maintain persistent mixed-phase clouds. Therefore, this dissertation analyzes and inter-compares the impacts of different ice nuclei concentrations, ice nucleation mechanisms and ice crystal habits on mixedphase cloud dynamics. Separate simulations using different ice nuclei concentrations, ice nucleation mechanisms, and crystal habits are performed. It is found that the choice of habits in models alters the water paths and cloud dynamics strongly. Next, the relative importance of and interactions among the processes that influence the dynamics of the cloud, such as the radiative cooling at cloud top, and the ice precipitation induced cloudbase stabilization are investigated. To examine these processes in

  5. Ice crystal c-axis orientation and mean grain size measurements from the Dome Summit South ice core, Law Dome, East Antarctica

    NASA Astrophysics Data System (ADS)

    Treverrow, Adam; Jun, Li; Jacka, Tim H.

    2016-06-01

    We present measurements of crystal c-axis orientations and mean grain area from the Dome Summit South (DSS) ice core drilled on Law Dome, East Antarctica. All measurements were made on location at the borehole site during drilling operations. The data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. The median number of c-axis orientations recorded in each thin section was 100, with values ranging from 5 through to 111 orientations. The data from all 185 thin sections are provided in a single comma-separated value (csv) formatted file which contains the c-axis orientations in polar coordinates, depth information for each core section from which the data were obtained, the mean grain area calculated for each thin section and other data related to the drilling site. The data set is also available as a MATLAB™ structure array. Additionally, the c-axis orientation data from each of the 185 thin sections are summarized graphically in figures containing a Schmidt diagram, histogram of c-axis colatitudes and rose plot of c-axis azimuths. All these data are referenced by doi:10.4225/15/5669050CC1B3B and are available free of charge at https://data.antarctica.gov.au.<

  6. Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study

    SciTech Connect

    Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

    2013-06-24

    Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of

  7. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGESBeta

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette massesmore » are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  8. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    NASA Astrophysics Data System (ADS)

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-06-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by ˜ 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ˜ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  9. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGESBeta

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette massesmore » are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by  ∼  0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from  ∼ 0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  10. Producing desired ice faces

    PubMed Central

    Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan

    2015-01-01

    The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102