Science.gov

Sample records for quaternary ache inhibitors

  1. Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors?

    PubMed Central

    Zimmermann, M

    2013-01-01

    AChE enzymatic inhibition is a core focus of pharmacological intervention in Alzheimer's disease (AD). Yet, AChE has also been ascribed non-hydrolytic functions, which seem related to its appearance in various isoforms. Neuronal AChE presents as a tailed form (AChE-T) predominantly found on the neuronal synapse, and a facultatively expressed readthough form (AChE-R), which exerts short to medium-term protective effects. Notably, this latter form is also found in the periphery. While these non-hydrolytic functions of AChE are most controversially discussed, there is evidence for them being additional targets of AChE inhibitors. This review aims to provide clarification as to the role of these AChE splice variants and their interplay with other cholinergic parameters and their being targets of AChE inhibition: AChE-R is particularly involved in the mediation of (anti-)apoptotic events in cholinergic cells, involving adaptation of various cholinergic parameters and a time-dependent link to the expression of neuroprotective factors. The AChE-T C-terminus is central to AChE activity regulation, while isolated AChE-T C-terminal fragments mediate toxic effects via the α7 nicotinic acetylcholine receptor. There is direct evidence for roles of AChE-T and AChE-R in neurodegeneration and neuroprotection, with these roles involving AChE as a key modulator of the cholinergic system: in vivo data further encourages the use of AChE inhibitors in the treatment of neurodegenerative conditions such as AD since effects on both enzymatic activity and the enzyme's non-hydrolytic functions can be postulated. It also suggests that novel AChE inhibitors should enhance protective AChE-R, while avoiding the concomitant up-regulation of AChE-T. PMID:23991627

  2. Novel AChE Inhibitors for Sustainable Insecticide Resistance Management

    PubMed Central

    Alout, Haoues; Labb, Pierrick; Berthomieu, Arnaud; Djogbnou, Luc; Leonetti, Jean-Paul; Fort, Philippe; Weill, Mylne

    2012-01-01

    Resistance to insecticides has become a critical issue in pest management and it is particularly chronic in the control of human disease vectors. The gravity of this situation is being exacerbated since there has not been a new insecticide class produced for over twenty years. Reasoned strategies have been developed to limit resistance spread but have proven difficult to implement in the field. Here we propose a new conceptual strategy based on inhibitors that preferentially target mosquitoes already resistant to a currently used insecticide. Application of such inhibitors in rotation with the insecticide against which resistance has been selected initially is expected to restore vector control efficacy and reduce the odds of neo-resistance. We validated this strategy by screening for inhibitors of the G119S mutated acetylcholinesterase-1 (AChE1), which mediates insensitivity to the widely used organophosphates (OP) and carbamates (CX) insecticides. PyrimidineTrione Furan-substituted (PTF) compounds came out as best hits, acting biochemically as reversible and competitive inhibitors of mosquito AChE1 and preferentially inhibiting the mutated form, insensitive to OP and CX. PTF application in bioassays preferentially killed OP-resistant Culex pipiens and Anopheles gambiae larvae as a consequence of AChE1 inhibition. Modeling the evolution of frequencies of wild type and OP-insensitive AChE1 alleles in PTF-treated populations using the selectivity parameters estimated from bioassays predicts a rapid rise in the wild type allele frequency. This study identifies the first compound class that preferentially targets OP-resistant mosquitoes, thus restoring OP-susceptibility, which validates a new prospect of sustainable insecticide resistance management. PMID:23056599

  3. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  4. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  5. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract. PMID:26760241

  6. Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin.

    PubMed

    Martin, Benjamin P; Vasilieva, Elena; Dupureur, Cynthia M; Spilling, Christopher D

    2015-12-15

    New monocyclic phosphate, phosphonate and difluorophosphonate analogs of the natural AChE inhibitor cyclophostin were synthesized and their activity toward human AChE examined. Surprisingly, the phosphate, phosphonate, and difluorophosphonate analogs all showed diminished activity when compared with the natural product. PMID:26585276

  7. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease.

    PubMed

    Lemes, Laís Flávia Nunes; de Andrade Ramos, Giselle; de Oliveira, Andressa Souza; da Silva, Fernanda Motta R; de Castro Couto, Gina; da Silva Boni, Marina; Guimarães, Marcos Jorge R; Souza, Isis Nem O; Bartolini, Manuela; Andrisano, Vincenza; do Nascimento Nogueira, Patrícia Coelho; Silveira, Edilberto Rocha; Brand, Guilherme D; Soukup, Ondřej; Korábečný, Jan; Romeiro, Nelilma C; Castro, Newton G; Bolognesi, Maria Laura; Romeiro, Luiz Antonio Soares

    2016-01-27

    Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 μM, and a similar inhibition profile of the human isoform (IC50 = 5.7 μM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 μM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development. PMID:26735910

  8. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs.

    PubMed

    Olsen, Elisabeth K; Hansen, Espen; W K Moodie, Lindon; Isaksson, Johan; Sep?i?, Kristina; Cergolj, Marija; Svenson, Johan; Andersen, Jeanette H

    2016-01-27

    Barettin, 8,9-dihydrobarettin, bromoconicamin and a novel brominated marine indole were isolated from the boreal sponge Geodia barretti collected off the Norwegian coast. The compounds were evaluated as inhibitors of electric eel acetylcholinesterase. Barettin and 8,9-dihydrobarettin displayed significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 ?M respectively towards acetylcholinesterase via a reversible noncompetitive mechanism. These activities are comparable to those of several other natural acetylcholinesterase inhibitors of marine origin. Bromoconicamin was less potent against acetylcholinesterase, and the novel compound was inactive. Based on the inhibitory activity, a library of 22 simplified synthetic analogs was designed and prepared to probe the role of the brominated indole, common to all the isolated compounds. From the structure-activity investigation it was shown that the brominated indole motif is not sufficient to generate a high acetylcholinesterase inhibitory activity, even when combined with natural cationic ligands for the acetylcholinesterase active site. The four natural compounds were also analysed for their butyrylcholinesterase inhibitory activity in addition and shown to display comparable activities. The study illustrates how both barettin and 8,9-dihydrobarettin display additional bioactivities which may help to explain their biological role in the producing organism. The findings also provide new insights into the structure-activity relationship of both natural and synthetic acetylcholinesterase inhibitors. PMID:26695619

  9. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032 ; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  10. Design of multi-target compounds as AChE, BACE1, and amyloid-?(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernndez-Rodrguez, Maricarmen; Correa-Basurto, Jos; Martnez-Ramos, Federico; Padilla-Martnez, Itzia Irene; Bentez-Cardoza, Claudia G; Mera-Jimnez, Elvia; Rosales-Hernndez, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-? (A?) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of A?, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, ?-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the A? monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 ?M) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit A? oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  11. Synthesis, Biological Evaluation, and Computational Studies of Tri- and Tetracyclic Nitrogen-Bridgehead Compounds as Potent Dual-Acting AChE Inhibitors and hH3 Receptor Antagonists

    PubMed Central

    2014-01-01

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer’s disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure–activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R. PMID:24422467

  12. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor.

    PubMed

    Sepsova, V; Krusek, J; Zdarova Karasova, J; Zemek, F; Musilek, K; Kuca, K; Soukup, O

    2014-01-01

    Acetylcholinesterase inhibitors (AChEIs) are used in the treatment of myasthenia gravis (MG). We investigated the effects of AChEIs on peripheral nicotinic receptors (nAChR), which play a crucial role in the treatment of MG symptoms. The positive modulation of those receptors by AChE inhibitors could have an added value to the anti-AChE activity and might be useful in the therapy of MG. Furthermore, to estimate the potential drawbacks of the compounds, cytotoxicity has been assessed on various cell lines. The whole-cell mode of the patch-clamp method was employed. The experiments were performed on medulloblastoma/rhabdomyosarcoma cell line TE671 expressing human embryonic muscle-like receptor with subunits alpha2betagammadelta. The effect of the compounds on cell viability was measured by standard MTT assay (Sigma Aldrich) on ACHN (renal cell adenocarcinoma), HeLa (immortal cell line derived from a cervical carcinoma), HEPG2 (hepatocellular carcinoma) and BJ (skin fibroblasts) cell lines. No positive modulation by the tested AChE inhibitors was observed. Moreover, the compounds exhibited antagonistic activity on the peripheral nAChR. Standard drugs used in MG treatment were shown to be less potent inhibitors of muscle-type nAChR than the newly synthesized compounds. The new compounds showed very little effect on cell viability, and toxicities were comparable to standards. Newly synthesized AChEIs inhibited peripheral nAChR. Furthermore, the inhibition was higher than that of standards used for the treatment of MG. They could be used for the study of nAChR function, thanks to their high antagonizing potency and fast recovery of receptor activity after their removal. However, since no positive modulation was observed, the new compounds do not seem to be promising candidates for MG treatment, even though their cytotoxic effect was relatively low. PMID:25157661

  13. Quaternary ammonium sulfanilamide: a membrane-impermeant carbonic anhydrase inhibitor

    SciTech Connect

    Henry, R.P.

    1987-05-01

    A novel carbonic anhydrase (CA) inhibitor, quaternary ammonium sulfanilamide (QAS), was tested for potency as a CA inhibitor and for its ability to be excluded from permeating biological membranes. Inhibitor titration plots of QAS vs. pure bovine CA II and CA from the gills of the blue crab, Callinectes sapidus, yielded K/sub i/ values of approx. 15 ..mu..M; thus QAS is a relatively weak but effective CA inhibitor. Permeability of the QAS was directly tested by two independent methods. The inhibitor was excluded from human erythrocytes incubated in 5 mM QAS for 24 h as determined using an /sup 18/O-labeled mass spectrometer CA assay for intact cells. Also QAS injected into the hemolymph of C. sapidus (1 or 10 mM) did not cross the basal membrane of the gill. The compound was cleared from the hemolymph by 96 h after injection, and at no time during that period could the QAS be detected in homogenates of gill tissue. Total branchial CA activity was only slightly reduced following the QAS injection. These data indicate that QAS is a CA inhibitor to which biological membranes are impermeable and that can be used in vivo and in vitro in the study of membrane-associated CA.

  14. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual-acting H3R antagonist and AChEI is effective in improving retrieval processes in the one-trial inhibitory avoidance task and provide evidence to such compounds to treat cognitive disorders. PMID:26467607

  15. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane

    PubMed Central

    Olivera-Bravo, Silvia; Ivorra, Isabel; Morales, Andrés

    2004-01-01

    This work was aimed to determine if 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51), the most selective acetylcholinesterase inhibitor (AchEI), affects the nicotinic acetylcholine (Ach) receptor (AchR) function. Purified Torpedo nicotinic AchRs were injected into Xenopus laevis oocytes and BW284c51 effects on Ach- and carbamylcholine (Cch)-elicited currents were assessed using the voltage-clamp technique. BW284c51 (up to 1 mM) did not evoke any change in the oocyte membrane conductance. When BW284c51 (10 pM–100 μM) and Ach were coapplied, Ach-evoked currents (IAch) were reversibly inhibited in a concentration-dependent manner (Hill coefficient, 1; IC50, 0.2–0.5 μM for 0.1–1000 μM Ach). Cch-elicited currents showed a similar inhibition by BW284c51. IAch blockade by BW284c51 showed a strong voltage dependence, being only apparent at hyperpolarising potentials. BW284c51 also enhanced IAch desensitisation. BW284c51 changed the Ach concentration-dependence curve of Torpedo AchR response from two-site to single-site kinetics, without noticeably affecting the EC50 value. The BW284c51 blocking effect was highly selective for nicotinic over muscarinic receptors. BW284c51 inhibition potency was stronger than that of tacrine, and similar to that of d-tubocurarine (d-TC). Coapplication of BW284c51 with either tacrine or d-TC revealed synergistic inhibitory effects. Our results indicate that BW284c51 antagonises nicotinic AchRs in a noncompetitive way by blocking the receptor channel, and possibly by other, yet unknown, mechanisms. Therefore, besides acting as a selective AchEI, BW284c51 constitutes a powerful and reversible blocker of nicotinic AchRs that might be used as a valuable tool for understanding their function. PMID:15644872

  16. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli

    PubMed Central

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  17. Determination of a novel carbamate AChE inhibitor meserine in mouse plasma, brain and rat plasma by LC-MS/MS: application to pharmacokinetic study after intravenous and subcutaneous administration.

    PubMed

    Xie, Ying; Jiang, Pan; Ge, Xinxing; Wang, Hao; Shao, Biyun; Xie, Qiong; Qiu, Zhuibai; Chen, Hongzhuan

    2014-08-01

    In this paper a simple and sensitive method for determination of a novel phenylcarbamate AChE inhibitor, meserine, in mouse plasma, brain and rat plasma was evaluated using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Separation was achieved on an Alltech Alltima-C18 column (150mm2.1mm, 3?m, Deerfield, IL, USA) with isocratic elution at a flow rate of 0.35ml/min. Detection was performed under the multiple reaction monitoring (MRM) mode using an electrospray ionization (ESI) in the positive ion mode. The protein precipitation and liquid-liquid extraction methods were used for the pretreatment of plasma and brain homogenates, respectively. The calibration curves of meserine showed good linearity over the concentration range of 0.5-1000ng/ml for mouse and rat plasma and 0.5-500ng/ml for mouse brain. The intra- and inter-day precision were less than 9.34% and the accuracy was from 95.34% to 107.78% for QC samples. The validated method was successfully applied to a preclinical pharmacokinetic study of meserine in mice and rats after intravenous and subcutaneous administration. The results showed that this novel drug could easily cross the blood-brain barrier to reach the site of drug action. Meserine was rapidly absorbed with a high subcutaneous absolute bioavailability (>90%). PMID:24747147

  18. Homodimeric bis-quaternary heterocyclic ammonium salts as potent acetyl- and butyrylcholinesterase inhibitors: a systematic investigation of the influence of linker and cationic heads over affinity and selectivity.

    PubMed

    Conejo-García, Ana; Pisani, Leonardo; Núñez, Maria del Carmen; Catto, Marco; Nicolotti, Orazio; Leonetti, Francesco; Campos, Joaquín M; Gallo, Miguel A; Espinosa, Antonio; Carotti, Angelo

    2011-04-28

    A molecular library of quaternary ammonium salts (QASs), mainly composed of symmetrical bis-quaternary heterocyclic bromides exhibiting choline kinase (ChoK) inhibitory activity, were evaluated for their ability to inhibit acetyl- and butyrylcholinesterase (AChE and BChE, respectively). The molecular framework of QASs consisted of two positively charged heteroaromatic (pyridinium or quinolinium) or sterically hindered aliphatic (quinuclidinium) nitrogen rings kept at an appropriate distance by lipophilic rigid or semirigid linkers. Many homodimeric QASs showed AChE and BChE inhibitory potency in the nanomolar range along with a low enzymatic selectivity. Computational studies on AChE, BChE, and ChoK allowed identification of the key molecular determinants for high affinity and selectivity over either one of the three enzymes and guided the design of a hybrid bis-QAS (56) exhibiting the highest AChE affinity (IC(50) = 15 nM) and selectivity over BChE and ChoK (SI = 50 and 562, respectively) and a promising pharmacological potential in myasthenia gravis and neuromuscular blockade. PMID:21417225

  19. AChE inhibitor: a regio- and stereo-selective 1,3-dipolar cycloaddition for the synthesis of novel substituted 5,6-dimethoxy spiro[5.3']-oxindole-spiro-[6.3?]-2,3-dihydro-1H-inden-1?-one-7-(substituted aryl)-tetrahydro-1H-pyrrolo[1,2-c][1,3]thiazole.

    PubMed

    Ashraf Ali, Mohamed; Ismail, Rusli; Choon, Tan Soo; Kumar, Raju Suresh; Osman, Hasnah; Arumugam, Natarajan; Almansour, Abdulrahman I; Elumalai, Karthikeyan; Singh, Abhimanyu

    2012-01-01

    Pyrrolothiazolyloxindole analogues share vital pharmacological properties, considered useful in Alzheimer's disease (AD). The aim of this study was synthesis and evaluate pyralothiazolyloxindole analogues if possess acetyl cholinesterase (AChE) inhibitory activity. The easily accessible one-pot synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compound was the most potent inhibitors of the series against acetyl cholinesterase enzyme with IC(50) 0.11?mol/L. PMID:22142546

  20. Acetylcholinesterase inhibitors from Stephania venosa tuber.

    PubMed

    Ingkaninan, Kornkanok; Phengpa, Preeda; Yuenyongsawad, Supreeya; Khorana, Nantaka

    2006-05-01

    Acetylcholinesterase (AChE) inhibitors have lately gained interest as potential drugs in the treatment of Alzheimer's disease. Three AChE inhibitors were isolated from tubers of a Thai medicinal plant, Stephania venosa (Bl) Spreng. They were identified as quaternary protoberberine alkaloids, stepharanine, cyclanoline and N-methyl stepholidine. They expressed inhibitory activity on AChE with IC50 values (concentration that caused 50% inhibition of activity) of 14.10 +/- 0.81, 9.23 +/- 3.47 and 31.30 +/- 3.67 microM, respectively. The AChE inhibitory activity of these compounds was compared with those of the related compounds, palmatine, jatrorrhizine and berberine, as well as tertiary protoberberine alkaloids isolated from the same plant, stepholidine and corydalmine. The results suggest that the positive charge at the nitrogen of the tetrahydroisoquinoline portion, steric substitution at the nitrogen, planarity of the molecule or substitutions at C-2, -3, -9, and -10 affect the AChE inhibitory activity of protoberberine alkaloids. PMID:16640839

  1. Searching for Multi-Targeting Neurotherapeutics against Alzheimer's: Discovery of Potent AChE-MAO B Inhibitors through the Decoration of the 2H-Chromen-2-one Structural Motif.

    PubMed

    Pisani, Leonardo; Farina, Roberta; Soto-Otero, Ramon; Denora, Nunzio; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio; Mendez-Alvarez, Estefania; Altomare, Cosimo Damiano; Catto, Marco; Carotti, Angelo

    2016-01-01

    The need for developing real disease-modifying drugs against neurodegenerative syndromes, particularly Alzheimer's disease (AD), shifted research towards reliable drug discovery strategies to unveil clinical candidates with higher therapeutic efficacy than single-targeting drugs. By following the multi-target approach, we designed and synthesized a novel class of dual acetylcholinesterase (AChE)-monoamine oxidase B (MAO-B) inhibitors through the decoration of the 2H-chromen-2-one skeleton. Compounds bearing a propargylamine moiety at position 3 displayed the highest in vitro inhibitory activities against MAO-B. Within this series, derivative 3h emerged as the most interesting hit compound, being a moderate AChE inhibitor (IC50 = 8.99 µM) and a potent and selective MAO-B inhibitor (IC50 = 2.8 nM). Preliminary studies in human neuroblastoma SH-SY5Y cell lines demonstrated its low cytotoxicity and disclosed a promising neuroprotective effect at low doses (0.1 µM) under oxidative stress conditions promoted by two mitochondrial toxins (oligomycin-A and rotenone). In a Madin-Darby canine kidney (MDCK)II-MDR1 cell-based transport study, Compound 3h was able to permeate the BBB-mimicking monolayer and did not result in a glycoprotein-p (P-gp) substrate, showing an efflux ratio = 0.96, close to that of diazepam. PMID:26999091

  2. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    SciTech Connect

    Xia Menghang; Shahane, Sampada A.; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-05-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K{sup +}) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC{sub 50} potencies ranging from 0.26 to 22 {mu}M. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC{sub 50} value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo.

  3. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    PubMed Central

    Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-01-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 ?M. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439

  4. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus – Multiple gene expression presents an opportune model system for elucidation of multiple functions of AChEs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...

  5. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system.

    PubMed

    Schmidt, Hayden R; Radi?, Zoran; Taylor, Palmer; Fradinger, Erica A

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The ki values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, kr, in both zebrafish and human AChE. However, differences between the Kox and k2 constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, Ki and ?Ki, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. PMID:25701203

  6. Centrally Acting Oximes in Reactivation of Tabun-Phosphoramidated AChE

    PubMed Central

    Kovarik, Zrinka; Maček, Nikolina; Sit, Rakesh K.; Radić, Zoran; Fokin, Valery V.; Sharpless, K. Barry; Taylor, Palmer

    2012-01-01

    Organophosphates (OP) inhibit acetylcholinesterase (AChE, E.C.3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM. PMID:22960624

  7. Virtual Screening of Acetylcholinesterase Inhibitors Using the Lipinski's Rule of Five and ZINC Databank

    PubMed Central

    Nogara, Pablo Andrei; Saraiva, Rogério de Aquino; Caeran Bueno, Diones; Lissner, Lílian Juliana; Lenz Dalla Corte, Cristiane; Braga, Marcos M.; Rosemberg, Denis Broock; Rocha, João Batista Teixeira

    2015-01-01

    Alzheimer's disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinski's rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1) aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE) activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE) from Equus ferus (EfBChE), with IC50 ranging from 1.69 ± 0.46 to 5.64 ± 2.47 µM. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms. PMID:25685814

  8. Virtual screening of acetylcholinesterase inhibitors using the Lipinski's rule of five and ZINC databank.

    PubMed

    Nogara, Pablo Andrei; Saraiva, Rogrio de Aquino; Caeran Bueno, Diones; Lissner, Llian Juliana; Lenz Dalla Corte, Cristiane; Braga, Marcos M; Rosemberg, Denis Broock; Rocha, Joo Batista Teixeira

    2015-01-01

    Alzheimer's disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinski's rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1) aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE) activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE) from Equus ferus (EfBChE), with IC50 ranging from 1.69 0.46 to 5.64 2.47 M. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms. PMID:25685814

  9. Studies of the interaction between a quaternary amine inhibitor and pipeline steel using XPS and ToFSIMS surface analysis techniques

    SciTech Connect

    Palmer, J.W.; Piercy, A.R.; Hibbert, S.; Mitchell, R.; Swift, A.J.; Turgoose, S.

    1995-12-01

    Coupons of X60-pipeline steel have been taken directly from electrochemical testing apparatus for characterization by surface analysis using novel sample transfer methods developed for the analysis of `wet` samples. In this way the correlation between surface concentration, solution concentration and inhibitor efficiency for a quaternary amine inhibitor has been determined. The mechanisms of surface activity of the quaternary amine inhibitor has been investigated. Firstly, surface analysis data for a liquid film of neat inhibitor has been compared with that for a steel coupon rinsed after exposure to neat inhibitor in a static immersion test. Surface analysis results have then been compared to corrosion rate measurements for a range of increasing inhibitor solution concentrations from 0--100ppm for coupons removed directly from an electrochemical test cell and transferred using a novel cryogenic method for sample transfer. Coupons were exposed to solutions of pre-inhibited, deaerated 3% NaCl solution under 1 bara CO{sub 2} at 25 C. Time of flight secondary ion mass spectrometry (ToFSIMS) and X-ray photoelectron spectroscopy (XPS) were the principal surface analysis techniques used. The results show that the quaternary amine inhibitor achieved efficiencies in excess of 90% at solution concentrations of 40ppm and above. Adsorbed inhibitor was detected both by XPS and ToFSIMS at all concentrations studied. Efficiency and surface coverage of this inhibitor increase directly in proportion to solution concentration. Detailed study of surface analysis results shows that, under these cell conditions, adsorption of quaternary amine proceeds via a simple ionic interaction between the inhibitor and the coupon surface with longer chain amine components preferentially adsorbed.

  10. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver

    PubMed Central

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  11. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    PubMed

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  12. Modular construction of quaternary hemiaminal-based inhibitor candidates and their in cellulo assessment with HIV-1 protease.

    PubMed

    Gros, Guillaume; Martinez, Lorena; Gimenez, Anna Servat; Adler, Paula; Maurin, Philippe; Wolkowicz, Roland; Falson, Pierre; Hasserodt, Jens

    2013-09-01

    Non-peptidomimetic drug-like protease inhibitors have potential for circumventing drug resistance. We developed a much-improved synthetic route to our previously reported inhibitor candidate displaying an unusual quaternized hemi-aminal. This functional group forms from a linear precursor upon passage into physiological media. Seven variants were prepared and tested in cellulo with our HIV-1 fusion-protein technology that result in an eGFP-based fluorescent readout. Three candidates showed inhibition potency above 20?M and toxicity at higher concentrations, making them attractive targets for further refinement. Importantly, our class of original inhibitor candidates is not recognized by two major multidrug resistance pumps, quite in contrast to most clinically applied HIV-1 protease inhibitors. PMID:23911197

  13. Synthesis of the DNA probe for the determination of rat AChE mRNA.

    PubMed

    Grubic, Z; Komel, R

    1993-06-01

    This is a preliminary report on our attempts of synthesis by polymerase chain reaction (PCR), the cDNA probe for the determination of mRNA of the AChE catalytic subunit. As our strategy we took the advantage of the fact that sequence identity of AChE gene increases with phylogenetic proximity. Single codon usage could therefore be applied. Two non-degenerate PCR primers were synthesised corresponding to AChE regions which were highly conservative among species analyzed until now. The sequence amplified by these two primers should be 339 base pairs long as concluded from mouse AChE sequence. By determining the nucleotide sequence of the PCR product and by comparison of this sequence with the corresponding mouse AChE region, we would be able to verify the correspondence of our PCR product to the rat AChE gene fragment. Only the first four amino acids of our PCR product flanking Phe 200, which is the first amino acid from the A2 primer, are 100% homologous with the mouse AChE. However, from the next 18 amino acids towards the N-terminal, only 4 are homologous with the mouse AChE. Since we expected more than 90% homology between the phylogenetically closely related species of mouse and rat, we doubt that the DNA sequence obtained belongs to the rat AChE gene. PMID:8343981

  14. Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions?

    PubMed Central

    Blohberger, J; Kunz, L; Einwang, D; Berg, U; Berg, D; Ojeda, S R; Dissen, G A; Frhlich, T; Arnold, G J; Soreq, H; Lara, H; Mayerhofer, A

    2015-01-01

    Proliferation, differentiation and death of ovarian cells ensure orderly functioning of the female gonad during the reproductive phase, which ultimately ends with menopause in women. These processes are regulated by several mechanisms, including local signaling via neurotransmitters. Previous studies showed that ovarian non-neuronal endocrine cells produce acetylcholine (ACh), which likely acts as a trophic factor within the ovarian follicle and the corpus luteum via muscarinic ACh receptors. How its actions are restricted was unknown. We identified enzymatically active acetylcholinesterase (AChE) in human ovarian follicular fluid as a product of human granulosa cells. AChE breaks down ACh and thereby attenuates its trophic functions. Blockage of AChE by huperzine A increased the trophic actions as seen in granulosa cells studies. Among ovarian AChE variants, the readthrough isoform AChE-R was identified, which has further, non-enzymatic roles. AChE-R was found in follicular fluid, granulosa and theca cells, as well as luteal cells, implying that such functions occur in vivo. A synthetic AChE-R peptide (ARP) was used to explore such actions and induced in primary, cultured human granulosa cells a caspase-independent form of cell death with a distinct balloon-like morphology and the release of lactate dehydrogenase. The RIPK1 inhibitor necrostatin-1 and the MLKL-blocker necrosulfonamide significantly reduced this form of cell death. Thus a novel non-enzymatic function of AChE-R is to stimulate RIPK1/MLKL-dependent regulated necrosis (necroptosis). The latter complements a cholinergic system in the ovary, which determines life and death of ovarian cells. Necroptosis likely occurs in the primate ovary, as granulosa and luteal cells were immunopositive for phospho-MLKL, and hence necroptosis may contribute to follicular atresia and luteolysis. The results suggest that interference with the enzymatic activities of AChE and/or interference with necroptosis may be novel approaches to influence ovarian functions. PMID:25766324

  15. Quaternary investigation

    SciTech Connect

    Stieve, A.

    1991-05-15

    The primary purpose of the Quaternary investigation is to provide information on the location and age of Quaternary deposits for use in evaluating the presence or absence of neotectonic deformation or paleoliquefaction features within the Savannah River Site (SRS) region. The investigation will provide a basis for evaluating the potential for capable faults and associated deformation in the SRS vicinity. Particular attention will be paid to the Pen Branch fault.

  16. Activation of nicotinic ACh receptors with ?4 subunits induces adenosine release at the rat carotid body

    PubMed Central

    Conde, Slvia V; Monteiro, Emlia C

    2006-01-01

    The effect of ACh on the release of adenosine was studied in rat whole carotid bodies, and the nicotinic ACh receptors involved in the stimulation of this release were characterized. ACh and nicotinic ACh receptor agonists, cytisine, DMPP and nicotine, caused a concentration-dependent increase in adenosine production during normoxia, with nicotine being more potent and efficient in stimulating adenosine release from rat CB than cytisine and DMPP. D-Tubocurarine, mecamylamine, DH?E and ?-bungarotoxin, nicotinic ACh receptor antagonists, caused a concentration-dependent reduction in the release of adenosine evoked by hypoxia. The rank order of potency for nicotinic ACh receptor antagonists that inhibit adenosine release was DH?E>mecamylamine>D-tubocurarine>?-bungarotoxin. The effect of the endogenous agonist, ACh, which was mimicked by nicotine, was antagonized by DH?E, a selective nicotinic receptor antagonist. The ecto-5?-nucleotidase inhibitor AOPCP produces a 72% inhibition in the release of adenosine from CB evoked by nicotine. Taken together, these data indicate that ACh induced the production of adenosine, mainly from extracellular ATP catabolism at the CB through a mechanism that involves the activation of nicotinic receptors with ?4 and ?2 receptor subunits. PMID:16444287

  17. Searching for the Multi-Target-Directed Ligands against Alzheimer's disease: discovery of quinoxaline-based hybrid compounds with AChE, H?R and BACE 1 inhibitory activities.

    PubMed

    Huang, Wenhai; Tang, Li; Shi, Ying; Huang, Shufang; Xu, Lei; Sheng, Rong; Wu, Peng; Li, Jia; Zhou, Naiming; Hu, Yongzhou

    2011-12-01

    A novel series of quinoxaline derivatives, as Multi-Target-Directed Ligands (MTDLs) for AD treatment, were designed by lending the core structural elements required for H(3)R antagonists and hybridizing BACE 1 inhibitor 1 with AChE inhibitor BYYT-25. A virtual database consisting of quinoxaline derivatives was first screened on a pharmacophore model of BACE 1 inhibitors, and then filtered by a molecular docking model of AChE. Seventeen quinoxaline derivatives with high score values were picked out, synthesized and evaluated for their biological activities. Compound 11a, the most effective MTDL, showed the potent activity to H(3)R/AChE/BACE 1 (H(3)R antagonism, IC(50)=280.0 98.0 nM; H(3)R inverse agonism, IC(50)=189.3 95.7 nM; AChE, IC(50)=483 5 nM; BACE 1, 46.642.55% inhibitory rate at 20 ?M) and high selectivity over H(1)R/H(2)R/H(4)R. Furthermore, the protein binding patterns between 11a and AChE/BACE 1 showed that it makes several essential interactions with the enzymes. PMID:22019465

  18. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity. PMID:24028855

  19. Discovering New Acetylcholinesterase Inhibitors by Mining the Buzhongyiqi Decoction Recipe Data.

    PubMed

    Cui, Lu; Wang, Yu; Liu, Zhihong; Chen, Hongzhuan; Wang, Hao; Zhou, Xinxin; Xu, Jun

    2015-11-23

    Myasthenia gravis (MG) is a neuromuscular disease that is conventionally treated with acetylcholinesterase (AChE) inhibitors, which may not fully remove the symptom for many reasons. When AChE inhibitors do not work, Chinese patients turn to Chinese medicine, such as the Buzhongyiqi decoction (BD), to treat MG. By elucidating the relations between the herbs of the Buzhongyiqi decoction recipe and AChE inhibitors with structure-based and ligand-based drug design methods and chemoinformatics approaches, we have found the key active components of BD. Using these key active components as templates, we have discovered five new AChE inhibitors through virtual screening of a commercial compound library. The new AChE inhibitors have been confirmed with Ellman assays. This study demonstrates that lead identification can be inspired by elucidating Chinese medicine. Since BD is a mixture, further studies against other drug targets are needed. PMID:26509353

  20. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling.

    PubMed

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-08-01

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury. PMID:26066647

  1. A first principles investigation of aging processes in soman conjugated AChE.

    PubMed

    Chandar, Nellore Bhanu; Ganguly, Bishwajit

    2013-08-25

    We have examined the aging process of soman inhibited AChE using Density functional theory (DFT) calculations. The catalytic serine of AChE can be phosphonylated by the nerve agent soman, and subsequently can undergo an aging process. The consequences of irreversible inhibition of AChE due to the aging process is fatal for mammals. The DFT calculations shed light on some intricate features of aging process of soman inhibited AChE, which has been pondering in the literature. The DFT calculations (M05-2X/6-31G(?) level of theory) performed with the model systems revealed that the dealkylation of pinacolyl group and the methyl migration takes place simultaneously. The role of pre-protonation and electrostatic stabilization by histidine (His440(+)) in catalyzing the aging process of soman inhibited AChE is energetically comparable. The aging process catalyzed by the histidine (His440(+)) residue reduces the free energy of activation by ?14.0kcal/mol, which is in good agreement with the reported experimental results. Further, the calculated results reveal that tryptophan residue (Trp84) of the catalytic anionic subsite (CAS) assists the rearrangement reaction in the rearrangement process via cation-? interactions. PMID:23747845

  2. Vasoactive intestinal polypeptide modulation of nicotinic ACh receptor channels in rat intracardiac neurones.

    PubMed Central

    Cuevas, J; Adams, D J

    1996-01-01

    1. The effects of vasoactive intestinal polypeptide (VIP) on isolated parasympathetic neurones of rat intracardiac ganglia were examined under voltage clamp using dialysed and perforated patch whole-cell and excised outside-out membrane patch recording configurations. 2. VIP reversibly potentiated nicotinic ACh-evoked whole-cell currents, with half-maximal potentiation (EC50) obtained with 260 pM VIP. However, VIP had no effect on muscarinic ACh-evoked currents, ATP-evoked currents, or depolarization-activated ionic currents in these neurones. 3. VIP-induced potentiation of nicotinic ACh-evoked whole-cell currents was observed following cell dialysis, and was inhibited reversibly by bath application of the VIP receptor-binding inhibitor L-8-K (5 microM) or the neuronal nicotinic receptor antagonist mecamylamine (3 microM). 4. The signal transduction pathway mediating VIP-induced potentiation of nicotinic ACh-evoked currents involves a guanine nucleotide-binding protein (G-protein) but not cyclic AMP. Intracellular application of 100 microM GDP-beta-S, or pre-incubation of neurones with pertussis toxin, inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. 5. In outside-out membrane patches, co-application of ACh (4 microM) and VIP (4 nM) decreased the duration of closings between bursts and clusters of bursts of ACh single-channel activity relative to control (4 microM, ACh alone). VIP, however, did not alter single ACh receptor channel current amplitude, duration of closings and openings within a burst, or mean burst duration. 6. VIP-induced modification of nicotinic ACh receptor channel kinetics results in an increase in the open-channel probability which is sufficient to account for the VIP-mediated potentiation of nicotinic ACh-evoked whole-cell currents. 7. The potentiation of nicotinic ACh-evoked currents by VIP is likely to account for the altered neuronal activity observed in the mammalian intracardiac ganglia in vivo and consequent changes in heart rate and cardiac contractility. Images Figure 5 Figure 6 PMID:8782112

  3. Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides.

    PubMed

    Kakani, Evdoxia G; Bon, Suzanne; Massouli, Jean; Mathiopoulos, Kostas D

    2011-03-01

    The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B.oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance. OP-resistance in the olive fly was previously shown to be associated with two mutations in the acetylcholinesterase (AChE) enzyme that, apparently, hinder the entrance of the OP into the active site. The search for additional mutations in the ace gene that encodes AChE revealed a short deletion of three glutamines (?3Q) from a stretch of five glutamines, in the C-terminal peptide that is normally cleaved and substituted by a GPI anchor. We verified that AChEs from B. oleae and other Dipterans are actually GPI-anchored, although this is not predicted by the "big-PI" algorithm. The ?3Q mutation shortens the unusually long hydrophilic spacer that follows the predicted GPI attachment site and may thus improve the efficiency of GPI anchor addition. We expressed the wild type B. oleae AChE, the natural mutant ?3Q and a constructed mutant lacking all 5 consecutive glutamines (?5Q) in COS cells and compared their kinetic properties. All constructs presented identical K(m) and k(cat) values, in agreement with the fact that the mutations did not affect the catalytic domain of the enzyme. In contrast, the mutants produced higher AChE activity, suggesting that a higher proportion of the precursor protein becomes GPI-anchored. An increase in the number of GPI-anchored molecules in the synaptic cleft may reduce the sensitivity to insecticides. PMID:21112395

  4. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life.

    PubMed

    Noy-Porat, Tal; Cohen, Ofer; Ehrlich, Sharon; Epstein, Eyal; Alcalay, Ron; Mazor, Ohad

    2015-08-19

    Acetylcholinesterase (AChE) is the physiological target of organophosphate nerve agent compounds. Currently, the development of a formulation for prophylactic administration of cholinesterases as bioscavengers in established risk situations of exposure to nerve agents is the incentive for many efforts. While cholinesterase bioscavengers were found to be highly effective in conferring protection against nerve agent exposure in animal models, their therapeutic use is complicated by short circulatory residence time. To create a bioscavenger with prolonged plasma half-life, compatible with biotechnological production and purification, a chimeric recombinant molecule of HuAChE coupled to the Fc region of human IgG1 was designed. The novel fusion protein, expressed in cultured cells under optimized conditions, maintains its full enzymatic activity, at levels similar to those of the recombinant AChE enzyme. Thus, this novel fusion product retained its binding affinity toward BW284c5 and propidium, and its bioscavenging reactivity toward the organophosphate-AChE inhibitors sarin and VX. Furthermore, when administered to mice, AChE-Fc exhibits exceptional circulatory residence longevity (MRT of 6000 min), superior to any other known cholinesterase-based recombinant bioscavengers. Owing to its optimized pharmacokinetic performance, high reactivity toward nerve agents, and ease of production, AChE-Fc emerges as a promising next-generation organophosphate bioscavenger. PMID:26121420

  5. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods.

    PubMed

    Lv, Wei; Xue, Ying

    2010-03-01

    Acetylcholinesterase (AChE) has become an important drug target and its inhibitors have proved useful in the symptomatic treatment of Alzheimer's disease. This work explores several machine learning methods (support vector machine (SVM), k-nearest neighbor (k-NN), and C4.5 decision tree (C4.5 DT)) for predicting AChE inhibitors (AChEIs). A feature selection method is used for improving prediction accuracy and selecting molecular descriptors responsible for distinguishing AChEIs and non-AChEIs. The prediction accuracies are 76.3% approximately 88.0% for AChEIs and 74.3% approximately 79.6% for non-AChEIs based on the three kinds of machine learning methods. This work suggests that machine learning methods such as SVM are facilitating for predicting AChEIs potential of unknown sets of compounds and for exhibiting the molecular descriptors associated with AChEIs. PMID:20053484

  6. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study

    PubMed Central

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil

    2013-01-01

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117

  7. Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins.

    PubMed

    Dash, Raju; Emran, Talha Bin; Uddin, Mir Muhammad Nasir; Islam, Ashekul; Junaid, Md

    2014-01-01

    Alzheimer׳s disease (AD) is one of the most common dementias showing slow progressive cognitive decline. Progression of intracerebral accumulation of beta amyloid (Aβ) peptides by the action of amyloid binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the degradation of Acetylcholinesterase (AChE) the main pathological characteristics of AD. Therefore, it is of interest to evaluate the importance of fisetin (a flavonol that belongs to the flavonoid group of polyphenols) binding with AChE, ABAD and BACE1 proteins. Docking experiment of fisetin with these proteins using two different tools namely iGEMDOCK and FlexX show significant binding with acceptable binding values. Thus, the potential inhibitory role of fisetin with AD associated proteins is documented. PMID:25352723

  8. Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins

    PubMed Central

    Dash, Raju; Emran, Talha Bin; Uddin, Mir Muhammad Nasir; Islam, Ashekul; Junaid, Md

    2014-01-01

    Alzheimer?s disease (AD) is one of the most common dementias showing slow progressive cognitive decline. Progression of intracerebral accumulation of beta amyloid (A?) peptides by the action of amyloid binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme and ?-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the degradation of Acetylcholinesterase (AChE) the main pathological characteristics of AD. Therefore, it is of interest to evaluate the importance of fisetin (a flavonol that belongs to the flavonoid group of polyphenols) binding with AChE, ABAD and BACE1 proteins. Docking experiment of fisetin with these proteins using two different tools namely iGEMDOCK and FlexX show significant binding with acceptable binding values. Thus, the potential inhibitory role of fisetin with AD associated proteins is documented. PMID:25352723

  9. Alpha-adrenergic and muscarinic cholinergic inhibition of ACh release in guinea pig trachea: role of neuronal K+ channels.

    PubMed

    Baker, D G; Don, H F; Brown, J K

    1994-06-01

    Our goals were to establish that an alpha 2-adrenergic agonist (clonidine) inhibits ACh release from airway nerve endings and to test effects of iberiotoxin (IBTX), an inhibitor of fast-conductance, Ca(2+)-activated K+ channels on alpha 2-adrenergic and muscarinic attenuation of ACh release. Guinea pig tracheas were mounted between electrodes in buffer containing indomethacin and neostigmine, and high-performance liquid chromatography with electrochemical detection was used to measure ACh release during electrical field stimulation. Clonidine inhibited ACh release in a concentration-dependent fashion [maximum reduction: 48 +/- 3%; 50% inhibitory constant (IC50): 0.1 microM], and idazoxan, alpha 2-adrenergic antagonist, reversed the effect. However, IBTX failed to alter clonidine-induced attenuation of ACh release. In contrast, IBTX did cause an increase in tracheal tension. In addition, IBTX failed to reverse any of the potent autoinhibitory effects of endogenous ACh. Our results confirm the presence of inhibitory alpha 2-adrenergic receptors. However, activation of IBTX-sensitive K+ channels does not appear necessary for either alpha 2-adrenergic or muscarinic cholinergic inhibition of ACh release. PMID:8023959

  10. Acetylcholinesterase inhibitors activate septohippocampal GABAergic neurons via muscarinic but not nicotinic receptors.

    PubMed

    Wu, Min; Newton, Samuel S; Atkins, Joshua B; Xu, Changqing; Duman, Ronald S; Alreja, Meenakshi

    2003-11-01

    Acetylcholinesterase (AChE) inhibitors, which increase synaptic levels of available acetylcholine (ACh) by preventing its degradation, are the most extensively prescribed drugs for the treatment of Alzheimer's disease. In animals, AChE inhibitors improve learning and memory, reverse scopolamine-induced amnesia, and produce hippocampal theta rhythm. The medial septum/diagonal band of Broca (MSDB), which maintains hippocampal theta rhythm and associated mnemonic functions via the septohippocampal pathway, is considered a critical locus for mediating the effects of AChE inhibitors. Using electrophysiological recordings and fluorescent labeling techniques to identify living septohippocampal neurons in rat brain slices, we report that AChE inhibitors, in the absence of exogenous ACh, produce a profound excitation in 94% of septohippocampal GABAergic neurons and an inhibition in 24% of septohippocampal cholinergic neurons. The inhibitory and excitatory effects of AChE inhibitors, presumably, occur due to accumulation of ACh that is released locally within the MSDB via axon collaterals of septohippocampal cholinergic neurons. The excitatory effects of AChE inhibitors on septohippocampal GABAergic neurons were blocked by muscarinic but not nicotinic receptor antagonists, especially by the M3 receptor antagonist, 4-diphenylacetoxy-N-methylpiperidine mustard, and not by M1 or M2/M4 muscarinic receptor antagonists. M3 muscarinic receptor mRNA colocalized with the calcium-binding protein, parvalbumin, a marker of septohippocampal GABAergic neurons. These findings may be useful in designing therapeutic strategies that do not depend on endogenous ACh and may therefore be effective in situations where AChE inhibitors cease to be effective, such as in progressive neurodegeneration. PMID:12966162

  11. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"…

  12. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"

  13. Baculovirus expression, biochemical characterization and organophosphate sensitivity of rBmAChE1, rBmAChE2, and rBmAChE3 of Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhipicephalus (Boophilus) microplus cDNAs, BmAChE1, BmAChE2, and BmAChE3,were previously identified as presumptively encoding acetylcholinesterases, but biochemical identity was confirmed only for recombinant BmAChE3. In the present study, four recombinant BmAChE1 constructs and single recombinant c...

  14. Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae).

    PubMed

    Bu, Chunya; Peng, Bo; Cao, Yang; Wang, Xiaoqin; Chen, Qing; Li, Jinling; Shi, Guanglu

    2015-11-01

    The carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychidae), is an economically important and extremely polyphagous herbivorous pest, with the title of "resistance champion" among arthropods. Anticholinesterase insecticides such as organophosphate and carbamate account for more than one-third of global insecticide sales. The non-target toxicity and resistance problem of organophosphate and carbamate have become of growing concern, which may be due to the fact that they target the ubiquitous catalytic serine residue of acetylcholinesterase (AChE) in mammals, birds, and beneficial insects. In this study, the structural differences between T. cinnabarinus AChE and human AChE, at or near the catalytic pocket, were illustrated. From the SPECS chemical lead-compound database, 55 AChE inhibitor candidates were screened for high affinity for T. cinnabarinus AChE, but low affinity for human AChE, using the DOCK 6 and AutoDock Vina software. Three of the fifty-five candidates had inhibitory activity greater than that of the reversible AChE inhibitor eserine, with no observed inhibitory activities against human AChE. Two of the three had toxicity to T. cinnabarinus comparable to that of natural insecticidal pyrethrins. However, their potency is low compared with that of etoxazole, and further work is needed to optimize their potency. The selectivity of the three compounds over human and mite AChE may be due to their interaction with the mite-specific residues, as analyzed by Cyscore. The three compounds are potential lead compounds for development of novel acaricides against T. cinnabarinus with reduced toxicity to non-target species and a low propensity for resistance. PMID:26520174

  15. ACH-806, an NS4A Antagonist, Inhibits Hepatitis C Virus Replication by Altering the Composition of Viral Replication Complexes

    PubMed Central

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind

    2013-01-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication. PMID:23629709

  16. Novel Triazole-Quinoline Derivatives as Selective Dual Binding Site Acetylcholinesterase Inhibitors.

    PubMed

    Mantoani, Susimaire P; Chierrito, Talita P C; Vilela, Adriana F L; Cardoso, Carmen L; Martínez, Ana; Carvalho, Ivone

    2016-01-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. Currently, the only strategy for palliative treatment of AD is to inhibit acetylcholinesterase (AChE) in order to increase the concentration of acetylcholine in the synaptic cleft. Evidence indicates that AChE also interacts with the β-amyloid (Aβ) protein, acting as a chaperone and increasing the number and neurotoxicity of Aβ fibrils. It is known that AChE has two binding sites: the peripheral site, responsible for the interactions with Aβ, and the catalytic site, related with acetylcholine hydrolysis. In this work, we reported the synthesis and biological evaluation of a library of new tacrine-donepezil hybrids, as a potential dual binding site AChE inhibitor, containing a triazole-quinoline system. The synthesis of hybrids was performed in four steps using the click chemistry strategy. These compounds were evaluated as hAChE and hBChE inhibitors, and some derivatives showed IC50 values in the micro-molar range and were remarkably selective towards hAChE. Kinetic assays and molecular modeling studies confirm that these compounds block both catalytic and peripheral AChE sites. These results are quite interesting since the triazole-quinoline system is a new structural scaffold for AChE inhibitors. Furthermore, the synthetic approach is very efficient for the preparation of target compounds, allowing a further fruitful new chemical library optimization. PMID:26861273

  17. Modelling interactions between Loop1 of Fasciculin2 (Fas2) and Torpedo californica acetylcholinesterase ( Tc AChE)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2006-11-01

    Four interaction models for the binding of Torpedo californica acetylcholinesterase ( TcAChE) with Loop1 of Fasciculin2 are investigated at the B3LYP/6-311G(d,p) level of theory. The total binding energy of three fragments (P1-P3) which belong to the omega loop Cys67-Cys94 of TcAChE contributes almost 67% of the entire binding, suggesting the domination of this omega loop on the interaction between AChE and Loop1 of Fas2. The energy decomposition illustrates that the interactions mainly consist of electrostatic components. The polar solvent which reduces the binding energies of the studied models implies the significant impact of the solvent on the binding of Fas2 and AChE.

  18. A therapeutic approach to cerebrovascular diseases based on indole substituted hydrazides and hydrazines able to interact with human vascular adhesion protein-1, monoamine oxidases (A and B), AChE and BuChE.

    PubMed

    Esteban, Gerard; Bolea, Irene; Sun, Ping; Sol, Montse; Samadi, Abdelouahid; Marco-Contelles, Jos; Unzeta, Mercedes

    2013-06-01

    Herein, we report the biological evaluation of a series of indole substituted hydrazides and hydrazines throughout the assessment of their multipotent inhibitory potency towards monoamine oxidase (MAO) A and B, semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1), and the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Hydrazine JL72 (3-(3-hydrazinylpropyl)-1H-indole) showed a potent, reversible and non-time-dependent inhibition of MAO-A, which suggests its capacity in restoring serotoninergic neurotransmission being devoid of the side effects observed for classic MAO-A inhibitors. In addition, JL72 behaved as a moderate BuChE inhibitor. Finally, both hydrazines and hydrazides derivatives showed high affinity towards SSAO/VAP-1. Among them, JL72 behaved as a noncompetitive and the most potent inhibitor (IC50 = 0.19 0.04 ?M), possessing also a significant anti-inflammatory activity. The combined inhibition of SSAO/VAP-1, MAO (A and B), AChE and BuChE appear as an important therapeutic target to be considered in the treatment of cerebrovascular and neurological disorders such as Alzheimer's disease. PMID:23263540

  19. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides.

    PubMed

    Musilek, Kamil; Dolezal, Martin; Gunn-Moore, Frank; Kuca, Kamil

    2011-07-01

    Organophosphate pesticides (OPPs; e.g. chlorpyrifos, diazinon, paraoxon) are a wide and heterogeneous group of organophosphorus compounds. Their biological activity of inhibiting acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) ranks them as life endangering agents. The necessary treatment after OPP exposure involves the use of parasympatolytics (e.g. atropine), oxime reactivators (e.g. obidoxime), and anticonvulsive drugs (e.g. diazepam). Therefore, the reactivators of AChE are essential compounds in the treatment of OPP intoxications. Commercial AChE reactivators (e.g. pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) were originally developed for other members of the organophosphate family, such as nerve agents (e.g. sarin, soman, tabun, VX). Pralidoxime, HI-6, and methoxime were found to be weak reactivators of OPP-inhibited AChE. Obidoxime and trimedoxime showed satisfactory reactivation against various OPPs with minor toxicity issues. During the last two decades, the treatment of OPP exposure has become more widely discussed because of growing agricultural production, industrialization, and harmful social issues (e.g. suicides). In this review is the summarized design, evaluation, and structure-activity relationship studies of recently produced AChE reactivators. Since pralidoxime, over 300 oximes have been produced or tested against OPP poisoning, and several novel compounds show very promising abilities as comparable (or higher) to commercial oximes. Some of these are highlighted for their further testing of OPP exposure and, additionally, the main structure-activity relationship of AChE reactivators against OPP is discussed. PMID:20027669

  20. In vivo protection against soman toxicity by known inhibitors of acetylcholine synthesis in vitro.

    PubMed

    Sterling, G H; Doukas, P H; Sheldon, R J; O'Neill, J J

    1988-02-01

    Soman inhibits the enzyme acetylcholinesterase, essentially irreversibly, producing an accumulation of acetylcholine (ACh) which is responsible for many of its toxic effects. Current approaches to treatment include: (1) atropine, a muscarinic receptor blocker; (2) pyridine-2-aldoxime methylchloride (2-PAM), an enzyme reactivator; and (3) carbamate protection of the enzyme. However, no fully satisfactory regimen has been found, primarily because of the rapid aging process. In this study, compounds known to inhibit ACh synthesis in vitro were evaluated in combination with atropine and 2-PAM so as to assess their potential utility in protection against soman toxicity in rats. Acetylsecohemicholinium (100 micrograms/kg, i.c.v.t., 30 min prior to soman), an inhibitor of high affinity choline uptake (HAChU) and cholineacetyltransferase (ChAT) activity in vitro, enhanced the protective effects of atropine and 2-PAM, reducing the mortality within the first 2 hr following soman. N-Hydroxyethylnaphthylvinylpyridine (NHENVP), a quaternary ChAT inhibitor (1.7 mumol/kg, i.m.), significantly reduced the overall percent mortality due to soman from 80% to 20%. The compound was most effective when administered 2-3 min prior to soman and was effective only by the intramuscular route. N-Allyl-3-quinuclidinol, a potent HAChU inhibitor (1 mumol/kg, i.m.) was the most effective quinuclidine analog evaluated, also reducing the percent mortality for a 24-hr period. Unlike NHENVP, it was most effective when given 30-60 min prior to soman. It is suggested from the data that compounds that disrupt presynaptic ACh synthesis in vitro may prove effective in treating organophosphate poisoning. The results demonstrate interesting differences among the compounds studied and provide insight for the design of protectants against soman toxicity. These findings further underscore the need to examine the structure activity and pharmacokinetic properties of these compounds, i.e. comparison of routes of administration, dose-response relationships, and time to effect. PMID:3337738

  1. Acetylcholinesterase-ISFET based system for the detection of acetylcholine and acetylcholinesterase inhibitors.

    PubMed

    Hai, Aviad; Ben-Haim, Deborah; Korbakov, Nina; Cohen, Ariel; Shappir, Joseph; Oren, Ruthi; Spira, Micha E; Yitzchaik, Shlomo

    2006-12-15

    A bioelectronic hybrid system for the detection of acetylcholine esterase (AChE) catalytic activity was assembled by way of immobilizing the enzyme to the gate surface of an ion-sensitive field-effect transistor (ISFET). Photometric methods used to characterize bonded enzyme and linker layers on silicon substrates confirm the existence of a stable amino-cyanurate containing AChE monolayer. The transduction of the enzyme-functionalized ISFET, in ionic solutions, is detected in response to application of acetylcholine (ACh). Recorded sensitivity of the modified ISFET to ACh has reached levels of up to 10(-5)M. The Michaelis-Menten constant of the immobilized AChE is only moderately altered. Nevertheless, the maximum reaction velocity is reduced by over an order of magnitude. The ISFET response time to bath or ionophoretic application of ACh from a micropipette was in the range of a second. The catalytic activity of the immobilized AChE is inhibited in a reversible manner by eserine, a competitive inhibitor of AChE. We conclude that the immobilized enzyme maintains its pharmacological properties, and thus the described bioelectronic hybrid can serve as a detector for reagents that inhibit AChE activity. PMID:16529923

  2. Gripped by Gout: Avoiding the Ache and Agony

    MedlinePLUS

    ... please review our exit disclaimer . Subscribe Gripped by Gout Avoiding the Ache and Agony Sudden, painful swelling ... toe is often the first warning sign of gout. It can affect other joints as well. Without ...

  3. Potent AChE enzyme inhibition activity of Zizyphus oxyphylla: A new source of antioxidant compounds.

    PubMed

    Mazhar, Farhana; Khanum, Raisa; Ajaib, Muhammad; Jahangir, Muhammad

    2015-11-01

    The purpose of this study was to assess the antioxidant potential and enzyme inhibition of various fractions of Zizyphus oxyphylla. The plant metabolites were extracted in methanol and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol successively. Phytochemical screening showed presence of alkaloids, terpenoids and flavonoids in ethyl acetate and n-butanol fractions. The antioxidant potential and acetylcholine esterase assay of all these fractions and remaining aqueous fraction was evaluated by using reported methods. The results revealed that chloroform soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 95.01 0.37% inhibition of DPPH radical at a concentration of 120 ?g/mL. The IC?? of this fraction was 13.20 0.27 ?g/mL, relative to butylated hydroxytoluene (BHT, a reference standard), having IC?? of 12.10 0.29 ?g/mL. It also showed highest total antioxidant activity i.e. 1.723 0.34 as well as highest FRAP value (339.5 0.57 TE ?m/mL) and highest total phenolic contents (142.65 1.20 GAE mg/g) as compared to the other studied fractions. The fractions were also studied for Acetylcholine esterase enzyme (AChE) enzyme inhibition activity and n-butanol soluble fraction exhibited maximum inhibition (95.5 0.13 mg/mL with IC50 =9.58 0.08 mg/mL relative to galanthamine (13.26 0.73 mg/mL), while n- hexane soluble fraction (165.15 0.94 mg/mL) showed non-significant. We are still working to isolate pure compounds for active fractions targeting potent inhibition responsible for some activities. PMID:26639499

  4. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.

    PubMed

    Khaw, K Y; Choi, S B; Tan, S C; Wahab, H A; Chan, K L; Murugaiyah, V

    2014-09-25

    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 ?M. The most potent inhibitor of AChE was garcinone C while ?-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 ?M, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and ?-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while ?-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both ?-mangostin and garcinone C are mixed-mode inhibitors, while ?-mangostin is a non-competitive inhibitor of AChE. In contrast, both ?-mangostin and garcinone C are uncompetitive inhibitors, while ?-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that ?-mangostin, ?-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. PMID:25172794

  5. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5mg/kg, respectively. PMID:26293707

  6. Endogenous ACh suppresses LTD induction and nicotine relieves the suppression via different nicotinic ACh receptor subtypes in the mouse hippocampus

    PubMed Central

    Nakauchi, Sakura; Sumikawa, Katumi

    2014-01-01

    Aims Studying the normal role of nicotinic cholinergic systems in hippocampal synaptic plasticity is critical for understanding how cholinergic loss in Alzheimers disease (AD) and tobacco use affect cognitive function. However, it is largely unknown how nicotinic cholinergic systems regulate the induction of long-term depression (LTD). Main methods Extracellular field potential recordings were performed in hippocampal slices prepared from wild-type, ?2, ?7, and ?2 knockout (KO) mice. Effects of nicotine and nicotinic antagonists on LTD induction in wild-type, ?2, ?7, and ?2 KO mice were compared. Key findings Activation of ?7 nicotinic acetylcholine receptors (nAChRs) occurs during LTD-inducing stimulation to suppress LTD induction at CA3-CA1 synapses. Nicotine relieves this suppression, causing larger LTD. This nicotine effect was mediated by the activation of non-?7 nAChR subtypes, which were not activated by ACh released during LTD-inducing stimulation, and requires the presence of endogenous ACh-induced ?7 nAChR activation. Furthermore, the effect of nicotine was prevented in the presence of mecamylamine, but not dihydro-?-erythroidine, and was still observed in both ?2 KO and ?2 KO mice. Significance This is the first report to evaluate the involvement of different nAChR subtypes in LTD induction. Findings indicate the involvement of unique non-?7 nAChR subtypes, which have not been considered in the nicotinic modulation of hippocampal long-term potentiation, in the control of LTD induction. The implication of our results is that the loss of cholinergic projections to the hippocampus, which reduces ACh release as seen in AD patients, and nicotine from tobacco smoking can differentially affect LTD induction. PMID:25046735

  7. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement

    PubMed Central

    Chiapinotto Spiazzi, Cristiano; Bucco Soares, Melina; Pinto Izaguirry, Aryele; Musacchio Vargas, Laura; Zanchi, Mariane Magalhes; Frasson Pavin, Natasha; Ferreira Affeldt, Ricardo; Seibert Ldtke, Diogo; Prigol, Marina; Santos, Francielli Weber

    2015-01-01

    Alzheimer's disease (AD) is becoming more common due to the increase in life expectancy. This study evaluated the effect of selenofuranoside (Se) in an Alzheimer-like sporadic dementia animal model. Male mice were divided into 4 groups: control, A?, Se, and A? + Se. Single administration of A? peptide (fragments 2535; 3?nmol/3??L) or distilled water was administered via intracerebroventricular (i.c.v.) injection. Selenofuranoside (5?mg/kg) or vehicle (canola oil) was administered orally 30?min before A? and for 7 subsequent days. Memory was tested through the Morris water maze (MWM) and step-down passive-avoidance (SDPA) tests. Antioxidant defenses along with reactive species (RS) were assessed. Inflammatory cytokines levels and AChE activity were measured. SOD activity was inhibited in the A? group whereas RS were increased. AChE activity, GSH, and IL-6 levels were increased in the A? group. These changes were reflected in impaired cognition and memory loss, observed in both behavioral tests. Se compound was able to protect against memory loss in mice in both behavioral tests. SOD and AChE activities as well as RS and IL-6 levels were also protected by Se administration. Therefore, Se is promising for further studies. PMID:26090073

  8. An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for the detection of pesticides.

    PubMed

    Warner, John; Andreescu, Silvana

    2016-01-01

    Solvent tolerance of immobilized enzymes is important for many biosensing and biotechnological applications. In this paper we report an acetylcholinesterase (AChE) biosensor based on chitosan that exhibits high solvent resistance and enables sensitive detection of pesticides in presence of a high content of organic solvents. The solvent effect was established comparatively for the enzyme immobilized in chitosan and covalently cross-linked with glutaraldehyde. The activity of the immobilized AChE was dependent on the immobilization method and solvent type. The enzyme entrapped in chitosan fully conserved its activity in up to 25% methanol, 15% acetonitrile and 100% cyclohexane while the enzyme cross-linked with glutaraldehyde gradually lost its activity starting at 5% acetonitrile and methanol, and showed variable levels in cyclohexane. The detection limits of the biosensor for paraoxon were: 7.5nM in 25% methanol, 100nM in 15% acetonitrile and 2.5?M in 100% cyclohexane. This study demonstrates that chitosan provides an excellent immobilization environment for AChE biosensors designed to operate in environments containing high amounts of organic solvents. It also highlights the effect of the immobilization material and solvent type on enzyme stability. These findings can enable future selection of the immobilization matrix and solvent type for the development of organic phase enzyme based systems. PMID:26695264

  9. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively correlated sensitivity, being insensitive to phosphamidon and monocrotophos and sensitive to N-methyl carbamates. PMID:25373165

  10. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  11. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the ?7 and ?4?2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimers disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  12. In vitro effect of H2O 2, some transition metals and hydroxyl radical produced via fenton and fenton-like reactions, on the catalytic activity of AChE and the hydrolysis of ACh.

    PubMed

    Mndez-Garrido, Armando; Hernndez-Rodrguez, Maricarmen; Zamorano-Ulloa, Rafael; Correa-Basurto, Jos; Mendieta-Wejebe, Jessica Elena; Ramrez-Rosales, Daniel; Rosales-Hernndez, Martha Cecilia

    2014-11-01

    It is well known that the principal biomolecules involved in Alzheimer's disease (AD) are acetylcholinesterase (AChE), acetylcholine (ACh) and the amyloid beta peptide of 42 amino acid residues (A?42). ACh plays an important role in human memory and learning, but it is susceptible to hydrolysis by AChE, while the aggregation of A?42 forms oligomers and fibrils, which form senile plaques in the brain. The A?42 oligomers are able to produce hydrogen peroxide (H2O2), which reacts with metals (Fe(2+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)) present at high concentrations in the brain of AD patients, generating the hydroxyl radical (()OH) via Fenton (FR) and Fenton-like (FLR) reactions. This mechanism generates high levels of free radicals and, hence, oxidative stress, which has been correlated with the generation and progression of AD. Therefore, we have studied in vitro how AChE catalytic activity and ACh levels are affected by the presence of metals (Fe(3+), Cu(2+), Cr(3+), Zn(2+), and Cd(2+)), H2O2 (without A?42), and () OH radicals produced from FR and FLR. The results showed that the H2O2 and the metals do not modify the AChE catalytic activity, but the ()OH radical causes a decrease in it. On the other hand, metals, H2O2 and ()OH radicals, increase the ACh hydrolysis. This finding suggests that when H2O2, the metals and the ()OH radicals are present, both, the AChE catalytic activity and ACh levels diminish. Furthermore, in the future it may be interesting to study whether these effects are observed when H2O2 is produced directly from A?42. PMID:25096900

  13. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors.

    PubMed

    Aslam, Sana; Zaib, Sumera; Ahmad, Matloob; Gardiner, John M; Ahmad, Aqeel; Hameed, Abdul; Furtmann, Norbert; Gtschow, Michael; Bajorath, Jrgen; Iqbal, Jamshed

    2014-05-01

    Two series of novel pyrazolobenzothiazine-based hybrid compounds were efficiently synthesized starting from saccharin sodium salt. Pyrazolo[4,3-c][1,2]benzothiazine scaffolds were N-arylated by using p-fluorobenzaldehyde, followed by the incorporation of a benzimidazole or similar ring systems by treatment with arylenediamines. These phenylene-connected hybrid compounds were investigated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Compounds 12d and 12k were the most potent AChE inhibitors with IC50 values of 11 and 13 nM, respectively, while 6j (IC50 = 17 nM) proved to be the most active inhibitor against BuChE with remarkable selectivity for BuChE over AChE. Molecular docking studies were also performed on human AChE and BuChE to suggest possible binding modes in which the inhibitor's extended structure is accommodated along the active site gorge of both enzymes. PMID:24681070

  14. GW1929 inhibits ?7 nAChR expression through PPAR?-independent activation of p38 MAPK and inactivation of PI3-K/mTOR: The role of Egr-1.

    PubMed

    Hahn, Swei Sunny; Tang, Qing; Zheng, Fang; Zhao, Shunyu; Wu, Jingjing

    2014-04-01

    Studies demonstrated that peroxisome proliferator-activated receptor gamma (PPAR?) ligands reduce nicotine-induced non small cell lung carcinoma (NSCLC) cell growth through inhibition of nicotinic acetylcholine receptor (nAChR) mediated signaling pathways. However, the mechanisms by which PPAR? ligands inhibited nAChR expression remain elucidated. Here, we show that GW1929, a synthetic PPAR? ligand, not only inhibited but also antagonized the stimulatory effect of acetylcholine on NSCLC cell proliferation. Interestingly, GW1929 inhibited ?7 nAChR expression, which was not blocked by GW9662, an antagonist of PPAR?, or by PPAR? siRNA, but was abrogated by the p38 MPAK inhibitor SB239063. GW1929 reduced the promoter activity of ?7 nAChR and induced early growth response-1 (Egr-1) protein expression, which was overcame by SB239063, but enhanced by inhibitors of PI3-K and mTOR. Silencing of Egr-1 blocked, while overexpression of Egr-1 enhanced, the effect of GW1929 on ?7 nAChR expression and promoter activity. Finally, GW1929 induced Egr-1 bound to specific DNA areas in the ?7 nAChR gene promoter. Collectively, these results demonstrate that GW1929 not only inhibits but also antagonizes Ach-induced NSCLC cell growth by inhibition of ?7 nAChR expression through PPAR?-independent signals that are associated with activation of p38 MPAK and inactivation of PI3-K/mTOR, followed by inducing Egr-1 protein and Egr-1 binding activity in the ?7 nAChR gene promoter. By downregulation of the ?7 nAchR, GW1929 blocks cholinergic signaling and inhibits NSCLC cell growth. PMID:24412748

  15. ACh-evoked membrane hyperpolarization in smooth muscle cells of rat vas deferens in vitro: involvement of K(+) channels and NO.

    PubMed

    Fan, Pin; Li, Li; Liu, Zheng-Jiang; Si, Jun-Qiang; Zhang, Zhi-Qin; Zhao, Lei; Ma, Ke-Tao

    2007-06-25

    To explore the underlying mechanism of acetylcholine (ACh)-evoked membrane hyperpolarizing response in isolated rat vas deferens smooth muscle cells (SMCs), intracellular microelectrode recording technique and intracellular microelectrophoresis fluorescent staining technique were used to study ACh-evoked membrane hyperpolarizing response in SMCs freshly isolated from Wistar rat vas deferens. By using microelectrodes containing fluorescent dye 0.1% propidium iodide (PI), 37 and 17 cells were identified as SMCs in outer longitudinal and inner circular muscular layers, respectively. The resting membrane potentials of SMCs were (-53.56+/-3.88) mV and (-51.62+/-4.27) mV, respectively. The membrane input resistances were (2245.60+/-372.50) MOmega and (2101.50+/-513.50) MOmega, respectively. ACh evoked membrane hyperpolarizing response in a concentration-dependent manner with an EC(50) of 36 micromol/L. This action of ACh was abolished by both a non-sepcific muscarinic (M) receptor antagonist atropine (1 mumol/L) and a selective M(3 ) receptor antagonist diphenylacetoxy-N-methylpiperidine-methiodide (DAMP, 100 nmol/L). ACh-evoked membrane hyperpolarization was also abolished by a nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME, 300 micromol/L) and suppressed by an ATP-sensitive potassium (K(ATP)) channel blocker glipizide (5 micromol/L) and an inward rectifier potassium (K(ir)) channel inhibitor bariumion (50 micromol/L). A combination of glipizide and bariumion abolished ACh-evoked membrane hyperpolarizing response. The results suggest that ACh-evoked membrane hyperpolarization in rat vas deferens SMCs is mediated by M(3) receptor followed with activation of K(ATP) channels, K(ir) channels, and NO release. PMID:17579789

  16. NO decreases evoked quantal ACh release at a synapse of Aplysia by a mechanism independent of Ca2+ influx and protein kinase G.

    PubMed Central

    Mothet, J P; Fossier, P; Tauc, L; Baux, G

    1996-01-01

    1. The exogenous nitric oxide (NO) donor, SIN-1, decreased the postsynaptic response evoked by a presynaptic spike at an identified cholinergic neuro-neuronal synapse in the buccal ganglion of Aplysia californica. 2. The statistical analysis of long duration postsynaptic responses evoked by square depolarizations of the voltage-clamped presynaptic neurone showed that the number of evoked acetylcholine (ACh) quanta released was decreased by SIN-1, pointing to a presynaptic action of the drug. 3. Vitamin E, a scavenger of free radicals, prevented the effects of SIN-1 on ACh release. SIN-1 still decreased ACh release in the presence of superoxide dismutase, whereas haemoglobin suppressed the effects of SIN-1. These results showed that NO is the active compound. 4. 8-Bromoguanosine 3', 5' cyclic monophosphate (8-Br-cGMP) mimicked the inhibitory effect of NO on ACh release suggesting the involvement of a NO-sensitive guanylate cyclase. This was reinforced by the reversibility of the effects of SIN-1 by inhibitors of guanylate cyclase, Methylene Blue, cystamine or LY83583. Methylene Blue partially reduced the inhibitory effect of NO. In addition, in the presence of superoxide dismutase, Methylene Blue blocked and cystamine significantly reduced the NO-induced inhibition of ACh release. 5. In the presence of KT5823 or R-p-8-pCPT-cGMPS, two inhibitors of protein kinase G, the reduction of ACh release by SIN-1 still took place indicating that the effects of NO most probably did not involve protein kinase G-dependent phosphorylation. 6. Presynaptic voltage-dependent Ca2+ (L-, N- and P-types) and K+ (IA and late outward rectifier) currents were unmodified by SIN-1. 7. The modulation of ACh release in opposite ways by L-arginine and N omega-nitro-L-arginine points to the involvement of an endogenous NO synthase-dependent regulation of transmitter release. PMID:8799898

  17. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells

    PubMed Central

    Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin. PMID:26909550

  18. Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates inhibited-AChE: a kinetic study.

    PubMed

    Sharma, Rahul; Gupta, Bhanushree; Acharya, J; Kaushik, M P; Ghosh, Kallol K

    2014-02-28

    Reactivation of organophosphate (OP) inhibited acetylcholinesterase (AChE) by oximes is inadequate against various OP nerve agents known till date owing to their diverse structural features. As a consequence, in the past decades widespread research programs have been undertaken independently throughout the world to develop and identify more effective oxime reactivators. The efficacy of oxime reactivators is estimated through different in vitro and in vivo models using AChE from various sources against structurally different OPs. In the present study, reactivation kinetics of OP (paraoxon, DFP, sarin and VX) inhibited AChE by xylene linked carbamoyl bis-pyridinum mono-oximes have been described. It was found that the reactivation potency of tested oximes varied with the inhibitors used as 5l (4-carbamoyl-2' hydroxyiminomethyl-1-1'-(1,3-phenylenedimethyl)-bis-pyridinium dibromide) was found to be the most effective reactivator against paraoxon. In case of DFP, 5k (3-carbamoyl-2' hydroxyiminomethyl-1-1'-(1,3-phenylenedimethyl)-bis-pyridinium dibromide) showed best reactivation while in case of sarin 5e (3-carbamoyl-2' hydroxyiminomethyl-1-1'-(1,4-phenylenedimethyl)-bis-pyridinium dibromide) exhibited outstanding reactivation ability in comparison to standard oximes (2-PAM, obidoxime and TMB-4) as indicated by its highest value of second order reactivation rate constant (k(r2)) 3.26 mM? min?. The enhanced reactivation efficacy of oximes may be attributed to the optimal length of xylene linker which facilitates appropriate positioning of carbamoyl function to the peripheral anionic site (PAS) and extending the oxime moiety to the active site of AChE. PMID:24345352

  19. Inhibitor profile of bis(n)-tacrines and N-methylcarbamates on acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    PubMed Central

    Swale, Daniel R.; Tong, Fan; Temeyer, Kevin B.; Li, Andrew; Lam, Polo C-H.; Totrov, Maxim M.; Carlier, Paul R.; Pérez de León, Adalberto A.; Bloomquist, Jeffrey R.

    2013-01-01

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAChE) compared to human and bovine AChE, in order to identify divergent pharmacology that might lead to selective inhibitors. Results indicate that BmAChE has low sensitivity (IC50 = 200 μM) toward tacrine, a monovalent catalytic site inhibitor with sub micromolar blocking potency in all previous species tested. Similarly, a series of bis(n)-tacrine dimer series, bivalent inhibitors and peripheral site AChE inhibitors possess poor potency toward BmAChE. Molecular homology models suggest the rBmAChE enzyme possesses a W384F orthologous substitution near the catalytic site, where the larger tryptophan side chain obstructs the access of larger ligands to the active site, but functional analysis of this mutation suggests it only partially explains the low sensitivity to tacrine. In addition, BmAChE1 and PpAChE have low nanomolar sensitivity to some experimental carbamate anticholinesterases originally designed for control of the malaria mosquito, Anopheles gambiae. One experimental compound, 2-((2-ethylbutyl)thio)phenyl methylcarbamate, possesses >300-fold selectivity for BmAChE1 and PpAChE over human AChE, and a mouse oral LD50 of >1500 mg/kg, thus providing an excellent new lead for vector control. PMID:24187393

  20. AChR-specific immunosuppressive therapy of myasthenia gravis.

    PubMed

    Luo, Jie; Lindstrom, Jon

    2015-10-15

    Myasthenia gravis (MG) is an organ-specific autoimmune disease characterized by muscle fatigability. In most cases, it is mediated by autoantibodies targeting muscle nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. Experimental autoimmune myasthenia gravis (EAMG) is an animal model for MG, which is usually induced by immunization with AChR purified from fish electric organ. Pathological autoantibodies to AChRs are directed at the extracellular surface, especially the main immunogenic region (MIR). Current treatments for MG can help many but not all patients. Antigen-specific immunosuppressive therapy for MG that specifically suppresses the autoimmune response without affecting the entire immune system and avoids side effects of general immunosuppression is currently unavailable. Early attempts at antigen-specific immunosuppression for EAMG using AChR extracellular domain sequences that form epitopes for pathological autoantibodies risked provoking autoimmunity rather than suppressing it. We discovered a novel approach to specific immunosuppression of EAMG with a therapeutic vaccine consisting of bacterially-expressed human AChR cytoplasmic domains, which has the potential to specifically suppress MG without danger of causing exacerbation. This approach prevents development of chronic EAMG when initiated immediately after the acute phase of EAMG, and rapidly reverses established chronic EAMG when started during the chronic phase of EAMG. Successfully treated rats exhibited long-term resistance to re-induction of EAMG. In this review we also discuss the current understanding of the mechanisms by which the therapy works. Vaccination with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG. PMID:26215875

  1. High-performance liquid chromatography-mass spectrometry-based acetylcholinesterase assay for the screening of inhibitors in natural extracts.

    PubMed

    de Jong, Camiel F; Derks, Rico J E; Bruyneel, Ben; Niessen, Wilfried; Irth, Hubertus

    2006-04-21

    The present paper describes a High-performance liquid chromatography-mass spectrometry (LC-MS) methodology for the screening of acetylcholinesterase (AChE) inhibitors in natural extracts. AChE activity of sample components is monitored by a post-column biochemical assay that is based on the separate, sequential mixing of AChE and acetylcholine, respectively, with the HPLC eluate. AChE inhibitors are detected by measuring a decrease of product formation using electrospray MS. Ammonium bicarbonate was used as buffer in order to achieve optimum compatibility between biochemical assay and MS detection conditions. The assay is robust and stable for over 13 h and compares favourably with other AChE assays in terms of stability and sensitivity. IC(50) values of 9-aminoacridine, galanthamine, gallamine, (-)-huperzine A and thioflavin T were determined to be 0.12, 0.38, 6.4, 0.46 and 3.2 microM, respectively. The assay was used to effectively identify an AChE inhibitor present in a crude extract of Narcissus c.v. "Bridal Crown". PMID:16516896

  2. The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies.

    PubMed

    Lo, Rabindranath; Chandar, Nellore Bhanu; Ghosh, Shibaji; Ganguly, Bishwajit

    2016-04-22

    A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods. The overall study shows that after mutagenesis (Y337A), the reactivator can approach more freely towards the phosphorylated active site of serine without any significant steric hindrance in the presence of tabun compared to the wild type and double mutant. Furthermore, the poor binding of Ortho-7 with the peripheral residues of mAChE in the case of the single mutant compared to that of the wild-type and double mutant (Y337A/F338A) can contribute to better efficacy in the former case. Ortho-7 has formed a greater number of hydrogen bonds with the active site surrounding residues His447 and Phe295 in the case of the single mutant (Y337A), and that stabilizes the drug molecule for an effective reactivation process. The DFT M05-2X/6-31+G(d) level of theory shows that the binding energy of Ortho-7 with the single mutant (Y337A) is energetically more preferred (-19.8 kcal mol(-1)) than the wild-type (-8.1 kcal mol(-1)) and double mutant (Y337A/F338A) (-16.0 kcal mol(-1)). The study reveals that both the orientation of the oxime reactivator for nucleophilic attack and the stabilization of the reactivator at the active site would be crucial for the design of an efficient reactivator. PMID:26879641

  3. Selective and Irreversible Inhibitors of Mosquito Acetylcholinesterases for Controlling Malaria and Other Mosquito-Borne Diseases

    PubMed Central

    Pang, Yuan-Ping; Ekström, Fredrik; Polsinelli, Gregory A.; Gao, Yang; Rana, Sandeep; Hua, Duy H.; Andersson, Björn; Andersson, Per Ola; Peng, Lei; Singh, Sanjay K.; Mishra, Rajesh K.; Zhu, Kun Yan; Fallon, Ann M.; Ragsdale, David W.; Brimijoin, Stephen

    2009-01-01

    New insecticides are urgently needed because resistance to current insecticides allows resurgence of disease-transmitting mosquitoes while concerns for human toxicity from current compounds are growing. We previously reported the finding of a free cysteine (Cys) residue at the entrance of the active site of acetylcholinesterase (AChE) in some insects but not in mammals, birds, and fish. These insects have two AChE genes (AP and AO), and only AP-AChE carries the Cys residue. Most of these insects are disease vectors such as the African malaria mosquito (Anopheles gambiae sensu stricto) or crop pests such as aphids. Recently we reported a Cys-targeting small molecule that irreversibly inhibited all AChE activity extracted from aphids while an identical exposure caused no effect on the human AChE. Full inhibition of AChE in aphids indicates that AP-AChE contributes most of the enzymatic activity and suggests that the Cys residue might serve as a target for developing better aphicides. It is therefore worth investigating whether the Cys-targeting strategy is applicable to mosquitocides. Herein, we report that, under conditions that spare the human AChE, a methanethiosulfonate-containing molecule at 6 µM irreversibly inhibited 95% of the AChE activity extracted from An. gambiae s. str. and >80% of the activity from the yellow fever mosquito (Aedes aegypti L.) or the northern house mosquito (Culex pipiens L.) that is a vector of St. Louis encephalitis. This type of inhibition is fast (∼30 min) and due to conjugation of the inhibitor to the active-site Cys of mosquito AP-AChE, according to our observed reactivation of the methanethiosulfonate-inhibited AChE by 2-mercaptoethanol. We also note that our sulfhydryl agents partially and irreversibly inhibited the human AChE after prolonged exposure (>4 hr). This slow inhibition is due to partial enzyme denaturation by the inhibitor and/or micelles of the inhibitor, according to our studies using atomic force microscopy, circular dichroism spectroscopy, X-ray crystallography, time-resolved fluorescence spectroscopy, and liquid chromatography triple quadrupole mass spectrometry. These results support our view that the mosquito-specific Cys is a viable target for developing new mosquitocides to control disease vectors and to alleviate resistance problems with reduced toxicity toward non-target species. PMID:19714254

  4. The Ache: Genocide Continues in Paraguay. IWGIA Document No. 17.

    ERIC Educational Resources Information Center

    Munzel, Mark

    In 1972, the Paraguayan Roman Catholic Church protested against the massacre of Indians in Paraguay. This was followed by further protests from Paraguayan intellectuals. These protests led to the removal of Jesus de Pereira, one of the executors of the official Ache policy. Thus, the critics were appeased. Since the beginning of 1973, new protests

  5. Effect of acetylcholinesterase (AChE) point-of-care testing in OP poisoning on knowledge, attitudes and practices of treating physicians in Sri Lanka

    PubMed Central

    2014-01-01

    Background Toxicology and Emergency medicine textbooks recommend measurement of acetylcholinesterase (AChE) in all symptomatic cases of organophosphorus (OP) poisoning but laboratory facilities are limited in rural Asia. The accuracy of point-of-care (POC) acetylcholinesterase testing has been demonstrated but it remains to be shown whether results would be valued by clinicians. This study aims to assess the effect of seeing AChE POC test results on the knowledge, attitudes and practices of doctors who frequently manage OP poisoning. Methods We surveyed 23 clinicians, who had different levels of exposure to seeing AChE levels in OP poisoned patients, on a) knowledge of OP poisoning and biomarker interpretation, b) attitudes towards AChE in guiding poison management, oxime therapy and discharge decisions, and c) practices of ordering AChE in poisoning scenarios. Results An overall high proportion of doctors valued the test (68-89%). However, we paradoxically found that doctors who were more experienced in seeing AChE results valued the test less. Lower proportions valued the test in guidance of acute poisoning management (50%, p = 0.015) and guidance of oxime therapy (25%, p = 0.008), and it was apparent it would not generally be used to facilitate early discharge. The highest proportion of respondents valued it on admission (p < 0.001). A lack of correlation of test results with the clinical picture, and a perception that the test was a waste of money when compared to clinical observation alone were also comments raised by some of the respondents. Greater experience with seeing AChE test results was associated with increased knowledge (p = 0.034). However, a disproportionate lack of knowledge on interpretation of biomarkers and the pharmacology of oxime therapy (12-50%) was noted, when compared with knowledge on the mechanism of OP poisoning and management (78-90%). Conclusions Our findings suggest an AChE POC test may not be valued by rural doctors. The practical use of AChE in OP poisoning management is complex, and a poor understanding of how to interpret test results may have affected its perceived utility. Future research should evaluate the impact of providing both AChE and training in interpretation on clinicians attitudes and practice. PMID:24589276

  6. A Novel Application of Multiscale Entropy in Electroencephalography to Predict the Efficacy of Acetylcholinesterase Inhibitor in Alzheimer's Disease

    PubMed Central

    Tsai, Ping-Huang; Chang, Shih-Chieh; Liu, Fang-Chun; Tsao, Jenho; Wang, Yung-Hung; Lo, Men-Tzung

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia. According to one hypothesis, AD is caused by the reduced synthesis of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) inhibitors are considered to be an effective therapy. For clinicians, however, AChE inhibitors are not a predictable treatment for individual patients. We aimed to disclose the difference by biosignal processing. In this study, we used multiscale entropy (MSE) analysis, which can disclose the embedded information in different time scales, in electroencephalography (EEG), in an attempt to predict the efficacy of AChE inhibitors. Seventeen newly diagnosed AD patients were enrolled, with an initial minimental state examination (MMSE) score of 18.8 4.5. After 12 months of AChE inhibitor therapy, 7 patients were responsive and 10 patients were nonresponsive. The major difference between these two groups is Slope 2 (MSE6 to 20). The area below the receiver operating characteristic (ROC) curve of Slope 2 is 0.871 (95% CI = 0.691). The sensitivity is 85.7% and the specificity is 60%, whereas the cut-off value of Slope 2 is ?0.024. Therefore, MSE analysis of EEG signals, especially Slope 2, provides a potential tool for predicting the efficacy of AChE inhibitors prior to therapy. PMID:26120358

  7. Isolation, Identification and Characterization of a Antidementia Acetylcholinesterase Inhibitor-Producing Yarrowia lipolytica S-3

    PubMed Central

    Kang, Min-Gu; Yoon, Min-Ho; Choi, Young-Jun

    2012-01-01

    This report describes the isolation and identification of a potent acetylcholinesterase (AChE) inhibitor-producing yeasts. Of 731 species of yeast strain, the S-3 strain was selected as a potent producer of AChE inhibitor. The selected S-3 strain was investigated for its microbiological characteristics. The S-3 strain was found to be short-oval yeast that did not form an ascospore. The strain formed a pseudomycelium and grew in yeast malt medium containing 50% glucose and 10% ethanol. Finally, the S-3 strain was identified by its physiological characteristics and 26S ribosomal DNA sequences as Yarrowia lipolytica S-3. PMID:22783133

  8. Gypsogenin derivatives: an unexpected class of inhibitors of cholinesterases.

    PubMed

    Heller, Lucie; Schwarz, Stefan; Weber, Bjrn A; Csuk, Ren

    2014-10-01

    Gypsogenin (1) was obtained by acidic hydrolysis from its saponin. While the parent compound 1 acted as a selective inhibitor for butyrylcholinesterase (from equus) possessing a moderate mixed-type inhibition of the enzyme, Ki values as low as 2.67??0.59??M were determined for (3?,4?) 3-O-acetyl-olean-12-ene-23,28-dinitrile (11) and acetylcholinesterase (AChE, from electric eel). Thus, 11 possesses one-fifth of the inhibitory activity of the "gold standard" galantamine hydrobromide; this compound is one of the first pentacyclic triterpenoids described as a potent AChE-selective inhibitor. PMID:25042600

  9. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  10. Functional Analysis and Molecular Docking studies of Medicinal Compounds for AChE and BChE in Alzheimers Disease and Type 2 Diabetes Mellitus

    PubMed Central

    Kaladhar, Dowluru SVGK; Yarla, Nagendra Sastry; Anusha, N.

    2013-01-01

    Acetylcholinesterase and Butyrylcholinesterase share unravelling link with components of metabolic syndromes thats characterised by low levels of HDL cholesterol, obesity, high fast aldohexose levels, hyper-trigliceridaemia and high blood pressure, by regulation of cholinergic transmission and therefore the enzyme activity within a living system. The phosphomotifs associated with amino acid and tyrosine binding motifs in AChE and BChE were known to be common. Phylogenetic tree was constructed to these proteins usinf UPGMA and Maximum Likelihood methods in MEGA software has shown interaction of AChE and BChE with ageing diseases like Alzheimers disease and Diabetes. AChE has shown closely related to BChE, retinol dehydrogenase and ?-polypeptide. The present studies is also accomplished that AChE, BChE, COLQ, HAND1, APP, NLGN2 and NGF proteins has interactions with diseases such as Alzheimers and D2M using Pathwaylinker and STRING. Medicinal compounds like Ortho-7, Dibucaine and HI-6 are predicted as good targets for modeled AChE and BChE proteins based on docking studies. Hence perceptive studies of cholinesterase structure and the biological mechanisms of inhibition are necessary for effective drug development. PMID:23936743

  11. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II).

    PubMed

    Hung, Tran Manh; Lee, Joo Sang; Chuong, Nguyen Ngoc; Kim, Jeong Ah; Oh, Sang Ho; Woo, Mi Hee; Choi, Jae Sue; Min, Byung Sun

    2015-10-01

    Acetylcholinesterase (AChE) inhibitors increase the availability of acetylcholine in central cholinergic synapses and are the most promising drugs currently available for the treatment of Alzheimer's disease (AD). Our screening study indicated that the water fraction of the methanolic extract of Lycopodiella cernua (L.) Pic. Serm. significantly inhibited AChE invitro. Bioassay-guided fractionation led to the isolation of a new lignan glycoside, lycocernuaside A (12), and fourteen known compounds (1-11 and 13-15). Compound 7 exhibited the most potent AChE inhibitory activity with an IC50 value of 0.23?M. Compound 15 had the most potent inhibitory activity against BChE and BACE1 with IC50 values of 0.62 and 2.16?M, respectively. Compounds 4 and 7 showed mixed- and competitive-type AChE inhibition. Compound 7 noncompetitively inhibited BChE whereas 15 showed competitive and 8, 13, and 14 showed mixed-type inhibition. The docking results for complexes with AChE or BChE revealed that inhibitors 4, 7, and 15 stably positioned themselves in several pocket/catalytic domains of the AChE and BChE residues. PMID:26297990

  12. Identification of Novel ?4?2-Nicotinic Acetylcholine Receptor (nAChR) Agonists Based on an Isoxazole Ether Scaffold that Demonstrate Antidepressant-like Activity

    PubMed Central

    Yu, Li-Fang; Tckmantel, Werner; Eaton, J. Brek; Caldarone, Barbara; Fedolak, Allison; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J.; Kozikowski, Alan P.

    2012-01-01

    There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening towards other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested. PMID:22148173

  13. Real time ligand-induced motion mappings of AChBP and nAChR using X-ray single molecule tracking.

    PubMed

    Sekiguchi, Hiroshi; Suzuki, Yasuhito; Nishino, Yuri; Kobayashi, Suzuko; Shimoyama, Yoshiko; Cai, Weiyan; Nagata, Kenji; Okada, Masato; Ichiyanagi, Kouhei; Ohta, Noboru; Yagi, Naoto; Miyazawa, Atsuo; Kubo, Tai; Sasaki, Yuji C

    2014-01-01

    We observed the dynamic three-dimensional (3D) single molecule behaviour of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) using a single molecule tracking technique, diffracted X-ray tracking (DXT) with atomic scale and 100??s time resolution. We found that the combined tilting and twisting motions of the proteins were enhanced upon acetylcholine (ACh) binding. We present the internal motion maps of AChBP and nAChR in the presence of either ACh or ?-bungarotoxin (?Btx), with views from two rotational axes. Our findings indicate that specific motion patterns represented as biaxial angular motion maps are associated with channel function in real time and on an atomic scale. PMID:25223459

  14. Real Time Ligand-Induced Motion Mappings of AChBP and nAChR Using X-ray Single Molecule Tracking

    PubMed Central

    Sekiguchi, Hiroshi; Suzuki, Yasuhito; Nishino, Yuri; Kobayashi, Suzuko; Shimoyama, Yoshiko; Cai, Weiyan; Nagata, Kenji; Okada, Masato; Ichiyanagi, Kouhei; Ohta, Noboru; Yagi, Naoto; Miyazawa, Atsuo; Kubo, Tai; Sasaki, Yuji C.

    2014-01-01

    We observed the dynamic three-dimensional (3D) single molecule behaviour of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) using a single molecule tracking technique, diffracted X-ray tracking (DXT) with atomic scale and 100??s time resolution. We found that the combined tilting and twisting motions of the proteins were enhanced upon acetylcholine (ACh) binding. We present the internal motion maps of AChBP and nAChR in the presence of either ACh or ?-bungarotoxin (?Btx), with views from two rotational axes. Our findings indicate that specific motion patterns represented as biaxial angular motion maps are associated with channel function in real time and on an atomic scale. PMID:25223459

  15. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.

    PubMed

    Manthey, Arthur A

    2006-06-01

    During prolonged exposure of postjunctional nicotinic acetylcholine receptors (nAChR) of skeletal muscle to acetylcholine (ACh), agonist-activated nAChR (nAChRa) gradually fall into a refractory "desensitized" state (nAChRd), which no longer supports the high-conductance channel openings characteristic of the initially active nAChRa. In the present study, the possibility was examined that nAChRd, rather than simply constituting a passive "trap" for nAChRa, may actively promote further conversions of nAChRa to nAChRd in a formally autocatalytic manner. Single-ion whole-cell voltage-clamp currents (Na+ and Li+ in separate trials) were measured using two KCl-filled capillary electrodes (5-10 MOmega) implanted at the postjunctional locus of single frog skeletal muscle fibers (Rana pipiens) equilibrated in 30 mM K+ bath media to eliminate mechanical responses. Various nAChR agonists (carbamylcholine, acetylcholine, suberyldicholine) at different concentrations were delivered focally by positive pressure microjet. It was found that the decline of postmaximal agonist-induced currents under these different conditions (driven by the growth of the subpool of nAChRd) consistently followed an autocatalytic logistic rule modified for population growth of fixed units in a planar array: [Formula: see text] (where y represents the remaining agonist-induced current at time t, A=initial maximum current, and n is a constant). Some further experimental features that might result from a self-promoting growth of nAChRd were also tested, namely, (1) the effect of increased nAChRa and (2) the effect of increased nAChRd. Increase in agonist concentration of the superfusate, by increasing the planar density of active nAChRa at the outset, should enhance the probability of autocatalytic interactions with emerging nAChRd, hence, the rate of decline of agonist-induced current, and this was a consistent finding under all conditions tested. Raising the initial level of desensitized nAChRd by pretreatment of fibers with very low concentrations of agonist would be another way to increase autocatalytic interactions with active nAChRa, and this was also found to produce increased rates of decline of agonist-induced currents when tested in additional trials. It is concluded that several kinetic features of nAChR desensitization in skeletal muscle are consistent with an action of nAChRd to promote further transitions of nAChRa to desensitized forms. This could occur by a direct effect of nAChRd on contiguous nAChRa or perhaps through some intermediary membrane component or local intracellular pathway. PMID:16555103

  16. Applications of Integrated Data Mining Methods to Exploring Natural Product Space for Acetylcholinesterase Inhibitors

    PubMed Central

    Schuster, Daniela; Kern, Lisa; Hristozov, Dimitar P.; Terfloth, Lothar; Bienfait, Bruno; Laggner, Christian; Kirchmair, Johannes; Grienke, Ulrike; Wolber, Gerhard; Langer, Thierry; Stuppner, Hermann; Gasteiger, Johann; Rollinger, Judith M.

    2013-01-01

    Nature, especially the plant kingdom, is a rich source for novel bioactive compounds that can be used as lead compounds for drug development. In order to exploit this resource, the two neural network-based virtual screening techniques novelty detection with self-organizing maps (SOMs) and counterpropagation neural network were evaluated as tools for efficient lead structure discovery. As application scenario, significant descriptors for acetylcholinesterase (AChE) inhibitors were determined and used for model building, theoretical model validation, and virtual screening. Top-ranked virtual hits from both approaches were docked into the AChE binding site to approve the initial hits. Finally, in vitro testing of selected compounds led to the identification of forsythoside A and (+)-sesamolin as novel AChE inhibitors. PMID:20214575

  17. Development and validation of a sample stabilization strategy and a UPLC-MS/MS method for the simultaneous quantitation of acetylcholine (ACh), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF).

    PubMed

    Zhang, Yanhua; Tingley, F David; Tseng, Elaine; Tella, Max; Yang, Xin; Groeber, Elizabeth; Liu, Jianhua; Li, Wenlin; Schmidt, Christopher J; Steenwyk, Rick

    2011-07-15

    A UPLC-MS/MS assay was developed and validated for simultaneous quantification of acetylcholine (ACh), histamine (HA), tele-methylhistamine (t-mHA), and tele-methylimidazolacetic acid (t-MIAA) in rat cerebrospinal fluid (CSF). The biological stability of ACh in rat CSF was investigated. Following fit-for-purpose validation, the method was applied to monitor the drug-induced changes in ACh, HA, t-mHA, and t-MIAA in rat CSF following administration of donepezil or prucalopride. The quantitative method utilizes hydrophilic interaction chromatography (HILIC) Core-Shell HPLC column technology and a UPLC system to achieve separation with detection by positive ESI LC-MS/MS. This UPLC-MS/MS method does not require extraction or derivatization, utilizes a stable isotopically labeled internal standard (IS) for each analyte, and allows for rapid throughput with a 4 min run time. Without an acetylcholinesterase (AChE) inhibitor present, ACh was found to have 1.9±0.4 min in vitro half life in rat CSF. Stability studies and processing modification, including the use of AChE inhibitor eserine, extended this half life to more than 60 min. The UPLC-MS/MS method, including stabilization procedure, was validated over a linear concentration range of 0.025-5 ng/mL for ACh and 0.05-10 ng/mL for HA, t-mHA, and t-MIAA. The intra-run precision and accuracy for all analytes were 1.9-12.3% CV and -10.2 to 9.4% RE, respectively, while inter-run precision and accuracy were 4.0-16.0% CV and -5.3 to 13.4% RE, respectively. By using this developed and validated method, donepezil caused increases in ACh levels at 0.5, 1, 2, and 4h post dose as compared to the corresponding vehicle group, while prucalopride produced approximately 1.6- and 3.1-fold increases in the concentrations of ACh and t-mHA at 1h post dose, respectively, compared to the vehicle control. Overall, this methodology enables investigations into the use of CSF ACh and HA as biomarkers in the study of these neurotransmitter systems and related drug discovery efforts. PMID:21684223

  18. Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say).

    PubMed

    Malekmohammadi, M; Galehdari, H

    2016-01-01

    In the present study, we demonstrated the use and optimization of the tetra-primer ARMS-PCR procedure to detect and analyze the frequency of the R30K and I392T mutations in resistant field populations of CPB. The R30K mutation was detected in 72%, 84%, 52% and 64% of Bahar, Dehpiaz, Aliabad and Yengijeh populations, respectively. Overall frequencies of the I392T mutation were 12%, 8% and 16% of Bahar, Aliabad and Yengijeh populations, respectively. No I392T point mutation was found among samples from Dehpiaz field population. Moreover, only 31% and 2% of samples from the resistant field populations were homozygous for R30K and I392T mutations, respectively. No individual simultaneously had both I392T and S291G/R30K point mutations. The incidence of individuals with both S291G and R30K point mutations in the samples from Bahar, Dehpiaz, Aliabad, and Yengijeh populations were 31.5%, 44.7%, 41.6%, and 27.3% respectively. Genotypes determined by the tetra-primer ARMS-PCR method were consistent with those determined by PCR sequencing. There was no significant correlation between the mutation frequencies and resistance levels in the resistant populations, indicating that other mutations may contribute to this variation. Polymorphism in the partial L. decemlineata cDNA AChE gene Ldace2 of four field populations was identified by direct sequencing of PCR-amplified fragments. Among 45 novel mutations detected in this study, T29P mutation was found across all four field populations that likely contribute to the AChE insensitivity. Site-directed mutagenesis and protein expression experiments are needed for a more complete evaluation. PMID:26778439

  19. Synthesis, Pharmacological Assessment, and Molecular Modeling of Acetylcholinesterase/Butyrylcholinesterase Inhibitors: Effect against Amyloid-β-Induced Neurotoxicity

    PubMed Central

    2013-01-01

    The synthesis, molecular modeling, and pharmacological analysis of phenoxyalkylamino-4-phenylnicotinates (2–7), phenoxyalkoxybenzylidenemalononitriles (12, 13), pyridonepezils (14–18), and quinolinodonepezils (19–21) are described. Pyridonepezils 15–18 were found to be selective and moderately potent regarding the inhibition of hAChE, whereas quinolinodonepezils 19–21 were found to be poor inhibitors of hAChE. The most potent and selective hAChE inhibitor was ethyl 6-(4-(1-benzylpiperidin-4-yl)butylamino)-5-cyano-2-methyl-4-phenylnicotinate (18) [IC50 (hAChE) = 0.25 ± 0.02 μM]. Pyridonepezils 15–18 and quinolinodonepezils 20–21 are more potent selective inhibitors of EeAChE than hAChE. The most potent and selective EeAChE inhibitor was ethyl 6-(2-(1-benzylpiperidin-4-yl)ethylamino)-5-cyano-2-methyl-4-phenylnicotinate (16) [IC50 (EeAChE) = 0.0167 ± 0.0002 μM], which exhibits the same inhibitory potency as donepezil against hAChE. Compounds 2, 7, 13, 17, 18, 35, and 36 significantly prevented the decrease in cell viability caused by Aβ1–42. All compounds were effective in preventing the enhancement of AChE activity induced by Aβ1–42. Compounds 2–7 caused a significant reduction whereas pyridonepezils 17 and 18, and compound 16 also showed some activity. The pyrazolo[3,4-b]quinolines 36 and 38 also prevented the upregulation of AChE induced by Aβ1–42. Compounds 2, 7, 12, 13, 17, 18, and 36 may act as antagonists of voltage sensitive calcium channels, since they significantly prevented the Ca2+ influx evoked by KCl depolarization. Docking studies show that compounds 16 and 18 adopted different orientations and conformations inside the active-site gorges of hAChE and hBuChE. The structural and energetic features of the 16-AChE and 18-AChE complexes compared to the 16-BuChE and 18-BuChE complexes account for a higher affinity of the ligand toward AChE. The present data indicate that compounds 2, 7, 17, 18, and 36 may represent attractive multipotent molecules for the potential treatment of Alzheimer’s disease. PMID:23379636

  20. Screening of ?-secretase and acetylcholinesterase inhibitors from plant resources.

    PubMed

    Murata, Kazuya; Matsumura, Shinichi; Yoshioka, Yuri; Ueno, Yoshihiro; Matsuda, Hideaki

    2015-01-01

    The therapeutic agents for dementia are limited due to the complex system underlying the mechanisms. Taking a preventive point of view, we focused on the inhibition of ?-secretase and acetylcholinesterase (AChE). In addition, plant resources including herbs and spices have been widely consumed, and further, may be consumed for a long period over a lifetime. Considering this background, we screened ?-secretase and AChE inhibitors from curry spices. Amongst them, curry leaf, black pepper, and turmeric extracts were effective to inhibit ?-secretase. Furthermore, black pepper and turmeric extracts were also effective to inhibit AChE. Having these results in hand, we focused on the investigation of ?-secretase inhibitors since the inhibitor of this enzyme has not previously been well investigated. As a result, ?- and ?-caryophyllene, ?-caryophyllene oxide (from curry leaf), piperine (from black pepper), curcumin, demethoxycurcumin, and bisdemethoxycurcumin (from turmeric) were successfully identified as low molecular inhibitors. This is the first report to determine ?- and ?-caryophyllene, ?-caryophyllene oxide, and piperine as ?-secretase inhibitors. These compounds may pass through the blood brain barrier since their molecular weights are relatively low. PMID:25119528

  1. Steric and Dynamic Parameters Influencing In Situ Cycloadditions to Form Triazole Inhibitors with Crystalline Acetylcholinesterase.

    PubMed

    Bourne, Yves; Sharpless, K Barry; Taylor, Palmer; Marchot, Pascale

    2016-02-10

    Ligand binding sites on acetylcholinesterase (AChE) comprise an active center, at the base of a deep and narrow gorge lined by aromatic residues, and a peripheral site at the gorge entry. These features launched AChE as a reaction vessel for in situ click-chemistry synthesis of high-affinity TZ2PA6 and TZ2PA5 inhibitors, forming a syn-triazole upon cycloaddition within the gorge from alkyne and azide reactants bound at the two sites, respectively. Subsequent crystallographic analyses of AChE complexes with the TZ2PA6 regioisomers demonstrated that syn product association is accompanied by side chain reorganization within the gorge, freezing-in-frame a conformation distinct from an unbound state or anti complex. To correlate inhibitor dimensions with reactivity and explore whether in situ cycloaddition could be accelerated in a concentrated, crystalline template, we developed crystal-soaking procedures and solved structures of AChE complexes with the TZ2PA5 regioisomers and their TZ2/PA5 precursors (2.1-2.7 resolution). The structures reveal motions of residue His447 in the active site and, unprecedentedly, residue Tyr341 at the gorge mouth, associated with TZ2 binding and coordinated with other side chain motions in the gorge that may guide AChE toward a transient state favoring syn-triazole formation. Despite precursor binding to crystalline AChE, coupling of rapid electric field fluctuations in the gorge with proper alignments of the azide and alkyne reactants to form the triazole remains a likely limiting step. These observations point to a prime requirement for AChE to interconvert dynamically between sequential conformations to promote favorable electrostatic factors enabling a productive apposition of the reactants for reactivity. PMID:26731630

  2. The First Total Synthesis of () Cyclophostin and () Cyclipostin P: Inhibitors of the Serine Hydrolases Acetyl Cholinesterase and Hormone Sensitive Lipase

    PubMed Central

    Malla, Raj K.; Bandyopadhyay, Saibal; Spilling, Christopher D.; Dutta, Supratik; Dupureur, Cynthia M.

    2011-01-01

    Cyclophostin, a structurally unique and potent naturally occurring acetyl cholinesterase (AChE) inhibitor, and its unnatural diastereomer were prepared in 6 steps and 15% overall yield from hydroxymethyl butyrolactone. The unnatural diastereomer of cyclophostin was converted into cyclipostin P, a potent naturally occurring hormone sensitive lipase (HSL) inhibitor, using a one pot dealkylation-alkylation process. The inhibition [IC50] of human AChE by cyclophostin and its diastereomer are reported, as well as constituent binding (KI) and reactivity (k2) constants. PMID:21591624

  3. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies

    PubMed Central

    2011-01-01

    Background Alzheimer's disease (AD) is the most common cause of dementia characterized by progressive cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system, and hence, inhibition of AChE has emerged as one of the most promising strategies for the treatment of AD. Methods In this study, we suggest a workflow for the identification and prioritization of potential compounds targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5) program based on a set of known AChE inhibitors. Results The best five-features pharmacophore model, which includes one hydrogen bond donor and four hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of R = 0.851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R2 = 0.830. Our pharmacophore model also has a high Güner-Henry score and enrichment factor. Virtual screening performed on the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from Aβ toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological activity scores. These compounds showed interactions with important residues at the active site. Conclusions The information gained from this study may assist in the discovery of potential AChE inhibitors that are highly selective for its dual binding sites. PMID:21251245

  4. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals.

    PubMed

    Amat-Ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  5. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals

    PubMed Central

    Amat-ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  6. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration.

    PubMed

    del Pino, Javier; Moyano, Paula; Anadon, Mara Jos; Garca, Jos Manuel; Daz, Mara Jess; Garca, Jimena; Frejo, Mara Teresa

    2015-10-01

    Chlorpyrifos (CPF) is one of the most widely used organophosphates insecticides that has been reported to induce cognitive disorders both after acute and repeated administration similar to those induced in Alzheimer's disease (AD). However, the mechanisms through which it induces these effects are unknown. On the other hand, the cholinergic system, mainly basal forebrain cholinergic neurons, is involved in learning and memory regulation, and an alteration of cholinergic transmission or/and cholinergic cell loss could induce these effects. In this regard, it has been reported that CPF can affect cholinergic transmission, and alter AChE variants, which have been shown to be related with basal forebrain cholinergic neuronal loss. According to these data, we hypothesized that CPF could induce basal forebrain cholinergic neuronal loss through cholinergic transmission and AChE variants alteration. To prove this hypothesis, we evaluated in septal SN56 basal forebrain cholinergic neurons, the CPF toxic effects after 24h and 14 days exposure on neuronal viability and the cholinergic mechanisms related to it. This study shows that CPF impaired cholinergic transmission, induced AChE inhibition and, only after long-term exposure, increased CHT expression, which suggests that acetylcholine levels alteration could be mediated by these actions. Moreover, CPF induces, after acute and long-term exposure, cell death in cholinergic neurons in the basal forebrain and this effect is independent of AChE inhibition and acetylcholine alteration, but was mediated partially by AChE variants alteration. Our present results provide a new understanding of the mechanisms contributing to the harmful effects of CPF on neuronal function and viability, and the possible relevance of CPF in the pathogenesis of neurodegenerative diseases. PMID:26210949

  7. Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs.

    PubMed

    Kawashima, Koichiro; Fujii, Takeshi; Moriwaki, Yasuhiro; Misawa, Hidemi; Horiguchi, Kazuhide

    2015-11-01

    In 1929, Dale and Dudley described the first reported natural occurrence of acetylcholine (ACh) in an animal's body. They identified this ACh in the spleens of horses and oxen, which we now know suggests possible involvement of ACh in the regulation of lymphocyte activity and immune function. However, the source and function of splenic ACh were left unexplored for several decades. Recent studies on the source of ACh in the blood revealed ACh synthesis catalyzed by choline acetyltransferase (ChAT) in CD4(+) T cells. T and B cells, macrophages and dendritic cells (DCs) all express all five muscarinic ACh receptor subtypes (mAChRs) and several subtypes of nicotinic AChRs (nAChRs), including α7 nAChRs. Stimulation of these mAChRs and nAChRs by their respective agonists causes functional and biochemical changes in the cells. Using AChR knockout mice, we found that M(1)/M(5) mAChR signaling up-regulates IgG(1) and pro-inflammatory cytokine production, while α7 nAChR signaling has the opposite effect. These findings suggest that ACh synthesized by T cells acts in an autocrine/paracrine fashion at AChRs on various immune cells to modulate immune function. In addition, an endogenous allosteric and/or orthosteric α7 nAChR ligand, SLURP-1, facilitates functional development of T cells and increases ACh synthesis via up-regulation of ChAT mRNA expression. SLURP-1 is expressed in CD205(+) DCs residing in the tonsil in close proximity to T cells, macrophages and B cells. Collectively, these findings suggest that ACh released from T cells along with SLURP-1 regulates cytokine production by activating α7 nAChRs on various immune cells, thereby facilitating T cell development and/or differentiation, leading to immune modulation. PMID:25907239

  8. Acetylcholinesterase complexes with the natural product inhibitors dihydrotanshinone I and territrem B: binding site assignment from inhibitor competition and validation through crystal structure determination.

    PubMed

    Cheung, Jonah; Beri, Veena; Shiomi, Kazuro; Rosenberry, Terrone L

    2014-07-01

    Acetylcholinesterase (AChE) is a critical enzyme that regulates neurotransmission by degrading the neurotransmitter acetylcholine in synapses of the nervous system. It is an important target for both therapeutic drugs that treat Alzheimer's disease and organophosphate (OP) chemical warfare agents that cripple the nervous system and cause death through paralysis. We are exploring a strategy to design compounds that bind tightly at or near a peripheral or P-site near the mouth of the AChE active site gorge and exclude OPs from the active site while interfering minimally with the passage of acetylcholine. However, to target the AChE P-site, much more information must be gathered about the structure-activity relationships of ligands that bind specifically to the P-site. Here, we review our recent reports on two uncharged, natural product inhibitors of AChE, dihydrotanshinone I and territrem B, that have relatively high affinities for the enzyme. We describe an inhibitor competition assay and comment on the structures of these inhibitors in complex with recombinant human acetylcholinesterase as determined by X-ray crystallography. Our results reveal that dihydrotanshinone I binding is specific to only the P-site, while territrem B binding spans the P-site and extends into the acylation or A-site at the base of the gorge. PMID:24573600

  9. Increased ratio of rapsyn to ACh receptor stabilizes postsynaptic receptors at the mouse neuromuscular synapse

    PubMed Central

    Gervsio, Othon L; Phillips, William D

    2005-01-01

    The metabolic turnover of nicotinic ACh receptors (AChR) at the neuromuscular synapse is regulated over a tenfold range by innervation status, muscle electrical activity and neural agrin, but the downstream effector of such changes has not been defined. The AChR-associated protein rapsyn is essential for forming AChR clusters during development. Here, rapsyn was tagged with enhanced green fluorescent protein (EGFP) to begin to probe its influence at the adult synapse. In C2 myotubes, rapsynEGFP participated with AChR in agrin-induced AChR cluster formation. When electroporated into the tibialis anterior muscle of young adult mice, rapsynEGFP accumulated in discrete subcellular structures, many of which colocalized with Golgi markers, consistent with the idea that rapsyn assembles with AChR in the exocytic pathway. RapsynEGFP also targeted directly to the postsynaptic membrane where it occupied previously vacant rapsyn binding sites, thereby increasing the rapsyn to AChR ratio. At endplates displaying rapsynEGFP, the metabolic turnover of AChR (labelled with rhodamine-?-bungarotoxin) was slowed. Thus, the metabolic half-life of receptors at the synapse may be modulated by local changes in the subsynaptic ratio of rapsyn to AChR. PMID:15550459

  10. Pharmacological and immunochemical characterization of ?2* nicotinic acetylcholine receptors (nAChRs) in mouse brain

    PubMed Central

    Whiteaker, Paul; Wilking, Jennifer A; Brown, Robert WB; Brennan, Robert J; Collins, Allan C; Lindstrom, Jon M; Boulter, Jim

    2009-01-01

    Aim: ?2 nAChR subunit mRNA expression in mice is most intense in the olfactory bulbs and interpeduncular nucleus. We aimed to investigate the properties of ?2* nAChRs in these mouse brain regions. Methods: ?2 nAChR subunit-null mutant mice were engineered. Pharmacological and immunoprecipitation studies were used to determine the composition of ?2 subunit-containing (?2*) nAChRs in these two regions. Results: [125I]Epibatidine (200 pmol/L) autoradiography and saturation binding demonstrated that ?2 deletion reduces nAChR expression in both olfactory bulbs and interpeduncular nucleus (by 4.81.7 and 9226 fmol?mg-1 protein, respectively). Pharmacological characterization using the ?2-selective drug A85380 to inhibit [125I]epibatidine binding proved inconclusive, so immunoprecipitation methods were used to further characterize ?2* nAChRs. Protocols were established to immunoprecipitate ?2 and ?4 nAChRs. Immunoprecipitation specificity was ascertained using tissue from ?2- and ?4-null mutant mice, and efficacy was good (>90% of ?2* and >80% of ?4* nAChRs were routinely recovered). Conclusion: Immunoprecipitation experiments indicated that interpeduncular nucleus ?2* nAChRs predominantly contain ?2 subunits, while those in olfactory bulbs contain mainly ?4 subunits. In addition, the immunoprecipitation evidence indicated that both nuclei, but especially the interpeduncular nucleus, express nAChR complexes containing both ?2 and ?4 subunits. PMID:19498420

  11. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway

    PubMed Central

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  12. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer's disease: acetylcholinesterase inhibitors.

    PubMed

    Russo, P; Frustaci, A; Del Bufalo, A; Fini, M; Cesario, A

    2013-01-01

    The leading Alzheimer's disease (AD) therapeutics to date involves inhibitors of acetylcholinesterase (AChE), which should, in principle, elevate cholinergic signaling and limit inflammation. In spite of the effectiveness in 20%-30% of AD patients, more attention has been paid to find new anti-AChE agents from medicinal plants. Galanthamine, contained in the bulbs and flowers of Galanthus and related genera like Narcissus, represents a good example. The aim of this study is to review the role of possible AChE inhibitors (AChEI) present in plants traditionally used in European medicine for improving memory. Starting from Galanthamine, properties of Melissa species, Salvia officinalis, Arnica chamissonis and Ruta graveolens are discussed to point to the role of these plants as potential sources for the development of therapeutic agents for AD. PMID:23210783

  13. Characterization of a T-superfamily conotoxin TxVC from Conus textile that selectively targets neuronal nAChR subtypes.

    PubMed

    Wang, Shuo; Du, Tianpeng; Liu, Zhuguo; Wang, Sheng; Wu, Ying; Ding, Jiuping; Jiang, Ling; Dai, Qiuyun

    2014-11-01

    T-superfamily conotoxins have a typical cysteine pattern of "CC-CC", and are known to mainly target calcium or sodium ion channels. Recently, we screened the targets of a series of T-superfamily conotoxins and found that a new T-superfamily conotoxin TxVC (KPCCSIHDNSCCGL-NH2) from the venom of Conus textile. It selectively targeted the neuronal nicotinic acetylcholine receptor (nAChR) subtypes ?4?2 and ?3?2, with IC50 values of 343.4 and 1047.2nM, respectively, but did not exhibit obvious pharmacological effects on voltage-gated potassium, sodium or calcium channel in DRG cells, the BK channels expressed in HEK293 cells, or the Kv channels in L?T2 cells. The changes in the inhibitory activities of its Ala mutants, the NMR structure, and molecular simulation results based on other conotoxins targeting nAChR ?4?2, all demonstrated that the residues Ile(6) and Leu(14) were the main hydrophobic pharmacophores. To our best knowledge, this is the first T-superfamily conotoxin that inhibits neuronal nAChRs and possesses high binding affinity to ?4?2. This finding will expand the knowledge of the targets of T-superfamily conotoxins and the motif information could help the design of new nAChR inhibitors. PMID:25450372

  14. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives.

    PubMed

    Wang, Yali; Sun, Yang; Guo, Yueyan; Wang, Zechen; Huang, Ling; Li, Xingshu

    2016-06-01

    Because of the complexity of Alzheimer's disease (AD), the multi-target-directed ligand (MTDL) strategy is expected to provide superior effects for the treatment of AD, instead of the classic one-drug-one-target strategy. In this context, we focused on the design, synthesis and evaluation of homoisoflavonoid derivatives as dual acetyl cholinesterase (AChE) and monoamine oxidase (MAO-B) inhibitors. Among all the synthesized compounds, compound 10 provided a desired balance of AChE and hMAO-B inhibition activities, with IC50 value of 3.94 and 3.44 μM, respectively. Further studies revealed that compound 10 was a mixed-type inhibitor of AChE and an irreversible inhibitor of hMAO-B, which was also confirmed by molecular modeling studies. Taken together, the data indicated that 10 was a promising dual functional agent for the treatment of AD. PMID:25798687

  15. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimers disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a cholinergic anti-inflammatory pathway which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  16. Dihydroquinoline Carbamate Derivatives as "Bio-oxidizable" Prodrugs for Brain Delivery of Acetylcholinesterase Inhibitors: [C] Radiosynthesis and Biological Evaluation.

    PubMed

    Bohn, Pierre; Gourand, Fabienne; Papamical, Cyril; Ibazizne, Mziane; Dhilly, Martine; Gembus, Vincent; Alix, Florent; ?n?a?, Mihaela-Liliana; Marsais, Francis; Barr, Louisa; Levacher, Vincent

    2015-05-20

    With the aim of improving the efficiency of marketed acetylcholinesterase (AChE) inhibitors in the symptomatic treatment of Alzheimer's disease, plagued by adverse effects arising from peripheral cholinergic activation, this work reports a biological evaluation of new central AChE inhibitors based on an original "bio-oxidizable" prodrug strategy. After peripheral injection of the prodrug 1a [IC50 > 1 mM (hAChE)] in mice, monitoring markers of central and peripheral cholinergic activation provided in vivo proof-of-concept for brain delivery of the drug 2a [IC50 = 20 nM (hAChE)] through central redox activation of 1a. Interestingly, peripheral cholinergic activation has been shown to be limited in time, likely due to the presence of a permanent positive charge in 2a promoting rapid elimination of the AChE inhibitor from the circulation of mice. To support these assumptions, the radiosynthesis with carbon-11 of prodrug 1a was developed for additional ex vivo studies in rats. Whole-body biodistribution of radioactivity revealed high accumulation in excretory organs along with moderate but rapid brain uptake. Radio-HPLC analyses of brain samples confirm rapid CNS penetration of [(11)C]1a, while identification of [(11)C]2a and [(11)C]3a both accounts for central redox activation of 1a and pseudoirreversible inhibition of AChE, respectively. Finally, Caco-2 permeability assays predicted metabolite 3a as a substrate for efflux transporters (P-gp inter alia), suggesting that metabolite 3a might possibly be actively transported out of the brain. Overall, a large body of evidence from in vivo and ex vivo studies on small animals has been collected to validate this "bio-oxidizable" prodrug approach, emerging as a very promising strategy in the rational design of selective central AChE inhibitors. PMID:25695305

  17. Rapid identification of cholinesterase inhibitors from the seedcases of mangosteen using an enzyme affinity assay.

    PubMed

    Ryu, Hyung Won; Oh, Sei-Ryang; Curtis-Long, Marcus J; Lee, Ji Hye; Song, Hyuk-Hwan; Park, Ki Hun

    2014-02-12

    Enzyme binding affinity has been recently introduced as a selective screening method to identify bioactive substances within complex mixtures. We used an assay which identified small molecule binders of acetylcholinesterase (AChE) using the following series of steps: incubation of enzyme with extract; centrifugation and filtration; identification of small molecule content in the flow through. The crude extract contained 10 peaks in the UPLC chromatogram. However, after incubation the enzyme, six peaks were reduced, indicating these compounds bound AChE. All these isolated compounds (2, 3, and 5-8) significantly inhibited human AChE with IC??s = 5.4-15.0 ?M and butyrylcholinsterase (IC??s = 0.7-11.0 ?M). All compounds exhibited reversible mixed kinetics. Consistent with the binding screen and fluorescence quenching, ?-mangostin 6 had a much higher affinity for AChE than 9-hydroxycalabaxanthone 9. This validates this screening protocol as a rapid method to identify inhibitors of AChE. PMID:24446804

  18. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases

    NASA Astrophysics Data System (ADS)

    Dou, Dengfeng; Park, Jewn Giew; Rana, Sandeep; Madden, Benjamin J.; Jiang, Haobo; Pang, Yuan-Ping

    2013-01-01

    We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604-458,597 M-1sec-1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M-1sec-1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.

  19. Synthesis of Novel 3-Aryl-N-Methyl-1,2,5,6-Tetrahydropyridine Derivatives by Suzuki coupling: As Acetyl Cholinesterase Inhibitors

    PubMed Central

    Prasad, S.B. Benaka; Kumar, Y.C. Sunil; Kumar, C.S. Ananda; Sadashiva, C.T; Vinaya, K; Rangappa, K.S

    2007-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder affecting the central nervous system, which is also associated with progressive loss of memory and cognition. The development of numerous structural classes of compounds with different pharmacological profile could be an evolving, promising therapeutic approach for the treatment of AD. Thus, providing a symptomatic treatment for this disease are cholinomimetics with the pharmacological profile of Acetylcholinesterase (AChE) inhibitors. In view of this, we have synthesized novel 3-aryl-N-methyl-1,2,5,6-tetrahydropyridine derivatives 5a-k by Suzuki coupling and screened the efficacy of these derivatives for their AChE inhibitor activity. PMID:19662135

  20. Evidence for a role for ?6(?) nAChRs in l-dopa-induced dyskinesias using Parkinsonian ?6(?) nAChR gain-of-function mice.

    PubMed

    Bordia, T; McGregor, M; McIntosh, J M; Drenan, R M; Quik, M

    2015-06-01

    l-Dopa-induced dyskinesias (LIDs) are a serious side effect of dopamine replacement therapy for Parkinson's disease. The mechanisms that underlie LIDs are currently unclear. However, preclinical studies indicate that nicotinic acetylcholine receptors (nAChRs) play a role, suggesting that drugs targeting these receptors may be of therapeutic benefit. To further understand the involvement of ?6?2(?) nAChRs in LIDs, we used gain-of-function ?6(?) nAChR (?6L9S) mice that exhibit a 20-fold enhanced sensitivity to nAChR agonists. Wildtype (WT) and ?6L9S mice were lesioned by unilateral injection of 6-hydroxydopamine (6-OHDA, 3?g/ml) into the medial forebrain bundle. Three to 4wk later, they were administered l-dopa (3mg/kg) plus benserazide (15mg/kg) until stably dyskinetic. l-dopa-induced abnormal involuntary movements (AIMs) were similar in ?6L9S and WT mice. WT mice were then given nicotine in the drinking water in gradually increasing doses to a final 300?g/ml, which resulted in a 40% decline AIMs. By contrast, there was no decrease in AIMs in ?6L9S mice at a maximally tolerated nicotine dose of 20?g/ml. However, the nAChR antagonist mecamylamine (1mg/kg ip 30min before l-dopa) reduced l-dopa-induced AIMs in both ?6L9S and WT mice. Thus, both a nAChR agonist and antagonist decreased AIMs in WT mice, but only the antagonist was effective in ?6L9S mice. Since nicotine appears to reduce LIDs via desensitization, hypersensitive ?6?2(?) nAChRs may desensitize less readily. The present data show that ?6?2(?) nAChRs are key regulators of LIDs, and may be useful therapeutic targets for their management in Parkinson's disease. PMID:25813704

  1. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  2. Inhibitor Profile of bis(n)-tacrines and N-methylcarbamates on Acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAchE) compared to h...

  3. The Quaternary History of Scandinavia

    NASA Astrophysics Data System (ADS)

    Donner, Joakim

    1995-02-01

    During the Quaternary Period, Scandinavia's mountains were the source for repeated glaciation that covered much of eastern, central and western Europe. With a particular emphasis on Denmark, Norway, Sweden and Finland, this text describes how these glaciations, and their intervening warmer stages, affected Scandinavia and the surrounding areas. In particular, this account focuses on the last cold stage, the Weichselian, with its extensive Late Weichselian glaciation and the subsequent deglaciation, and on the last 10,000 years, the Holocene, with its well documented environmental changes. The Quaternary History of Scandinavia provides a cross-frontier synthesis of how the glaciation affected this vast region.

  4. The Quaternary History of Scandinavia

    NASA Astrophysics Data System (ADS)

    Donner, Joakim

    2005-08-01

    During the Quaternary Period, Scandinavia's mountains were the source for repeated glaciation that covered much of eastern, central and western Europe. With a particular emphasis on Denmark, Norway, Sweden and Finland, this text describes how these glaciations, and their intervening warmer stages, affected Scandinavia and the surrounding areas. In particular, this account focuses on the last cold stage, the Weichselian, with its extensive Late Weichselian glaciation and the subsequent deglaciation, and on the last 10,000 years, the Holocene, with its well documented environmental changes. The Quaternary History of Scandinavia provides a cross-frontier synthesis of how the glaciation affected this vast region.

  5. The 3D-QSAR study of 110 diverse, dual binding, acetylcholinesterase inhibitors based on alignment independent descriptors (GRIND-2). The effects of conformation on predictive power and interpretability of the models.

    PubMed

    Vitorovi?-Todorovi?, Maja D; Cvijeti?, Ilija N; Jurani?, Ivan O; Drakuli?, Branko J

    2012-09-01

    The 3D-QSAR analysis based on alignment independent descriptors (GRIND-2) was performed on the set of 110 structurally diverse, dual binding AChE reversible inhibitors. Three separate models were built, based on different conformations, generated following next criteria: (i) minimum energy conformations, (ii) conformation most similar to the co-crystalized ligand conformation, and (iii) docked conformation. We found that regardless on conformation used, all the three models had good statistic and predictivity. The models revealed the importance of protonated pyridine nitrogen of tacrine moiety for anti AChE activity, and recognized HBA and HBD interactions as highly important for the potency. This was revealed by the variables associated with protonated pyridinium nitrogen, and the two amino groups of the linker. MIFs calculated with the N1 (pyridinium nitrogen) and the DRY GRID probes in the AChE active site enabled us to establish the relationship between amino acid residues within AChE active site and the variables having high impact on models. External predictive power of the models was tested on the set of 40 AChE reversible inhibitors, most of them structurally different from the training set. Some of those compounds were tested on the different enzyme source. We found that external predictivity was highly sensitive on conformations used. Model based on docked conformations had superior predictive ability, emphasizing the need for the employment of conformations built by taking into account geometrical restrictions of AChE active site gorge. PMID:23073222

  6. Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis.

    PubMed

    Artursson, Elisabet; Akfur, Christine; Hrnberg, Andreas; Worek, Franz; Ekstrm, Fredrik

    2009-11-30

    The nerve agent tabun inhibits the essential enzyme acetylcholinesterase (AChE) by a rapid phosphoramidation of the catalytic serine residue. Oximes, such as K027 and HL-7, can reactivate tabun-inhibited human AChE (tabun-hAChE) whereas the activity of their close structural analogue HI-6 is notably low. To investigate HI-6, K027 and HL-7, residues lining the active-site gorge of hAChE were substituted and the effects on kinetic parameters for reactivation were determined. None of the mutants (Asp74Asn, Asp74Glu, Tyr124Phe, Tyr337Ala, Tyr337Phe, Phe338Val and Tyr341Ala) were able to facilitate HI-6-mediated reactivation of tabun-hAChE. In contrast, Tyr124Phe and Tyr337Phe induce a 2-2.5-fold enhancement of the bimolecular rate constant for K027 and HL-7. The largest effects on the dissociation constant (3.5-fold increase) and rate constant (20-fold decrease) were observed for Tyr341Ala and Asp74Asn, respectively. These findings demonstrate the importance of residues located distant from the conjugate during the reactivation of tabun-hAChE. PMID:19761810

  7. HSP90? Regulates Rapsyn Turnover and Subsequent AChR Cluster Formation and Maintenance

    PubMed Central

    Luo, Shiwen; Zhang, Bin; Dong, Xian-ping; Tao, Yanmei; Ting, Annie; Zhou, Zheng; Meixiong, James; Luo, Junjie; Chiu, F.C. Alex; Xiong, Wen C.; Mei, Lin

    2008-01-01

    SUMMARY Rapsyn, an acetylcholine receptor (AChR)-interacting protein, is essential for synapse formation at the neuromuscular junction (NMJ). Like many synaptic proteins, rapsyn turns over rapidly at synapses. However, little is known about molecular mechanisms that govern rapsyn stability. Using a differential mass-spectrometry approach, we identified heat-shock protein 90? (HSP90?) as a component in surface AChR clusters. The HSP90?-AChR interaction required rapsyn and was stimulated by agrin. Inhibition of HSP90? activity or expression, or disruption of its interaction with rapsyn attenuated agrin-induced formation of AChR clusters in vitro and impaired the development and maintenance of the NMJ in vivo. Finally, we showed that HSP90? was necessary for rapsyn stabilization and regulates its proteasome-dependent degradation. Together, these results indicate a role of HSP90? in NMJ development by regulating rapsyn turnover and subsequent AChR cluster formation and maintenance. PMID:18940591

  8. alpha-Actinin interacts with rapsyn in agrin-stimulated AChR clustering

    PubMed Central

    Dobbins, G Clement; Luo, Shiwen; Yang, Zhihua; Xiong, Wen C; Mei, Lin

    2008-01-01

    AChR is concentrated at the postjunctional membrane at the neuromuscular junction. However, the underlying mechanism is unclear. We show that ?-actinin, a protein known to cross-link F-actin, interacts with rapsyn, a scaffold protein essential for neuromuscular junction formation. ?-Actinin, rapsyn, and surface AChR form a ternary complex. Moreover, the rapsyn-?-actinin interaction is increased by agrin, a factor known to stimulate AChR clustering. Downregulation of ?-actinin expression inhibits agrin-mediated AChR clustering. Furthermore, the rapsyn-?-actinin interaction can be disrupted by inhibiting Abl and by cholinergic stimulation. Together these results indicate a role for ?-actinin in AChR clustering. PMID:19055765

  9. Anniston community health survey: Follow-up and dioxin analyses (ACHS-II)-methods.

    PubMed

    Birnbaum, Linda S; Dutton, N D; Cusack, C; Mennemeyer, S T; Pavuk, M

    2016-02-01

    High serum concentrations of polychlorinated biphenyls (PCBs) have been reported previously among residents of Anniston, Alabama, where a PCB production facility was located in the past. As the second of two cross-sectional studies of these Anniston residents, the Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) will yield repeated measurements to be used to evaluate changes over time in ortho-PCB concentrations and selected health indicators in study participants. Dioxins, non-ortho PCBs, other chemicals, heavy metals, and a variety of additional clinical tests not previously measured in the original ACHS cohort will be examined in ACHS-II. The follow-up study also incorporates a questionnaire with extended sections on diet and occupational history for a more comprehensive assessment of possible exposure sources. Data collection for ACHS-II from 359 eligible participants took place in 2014, 7 to 9years after ACHS. PMID:25982988

  10. Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) - Methods

    PubMed Central

    Birnbaum, L.S.; Dutton, N.D.; Cusack, C.; Mennemeyer, S.T.; Pavuk, M.

    2015-01-01

    High serum concentrations of polychlorinated biphenyls (PCBs) have been reported previously among residents of Anniston, Alabama, where a PCB production facility was located in the past. As the second of two cross-sectional studies of these Anniston residents, the Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) will yield repeated measurements to be used to evaluate changes over time in ortho-PCB concentrations and selected health indicators in study participants. Dioxins, non-ortho PCBs, other chemicals, heavy metals, and a variety of additional clinical tests not previously measured in the original ACHS cohort will be examined in ACHS-II. The follow-up study also incorporates a questionnaire with extended sections on diet and occupational history for a more comprehensive assessment of possible exposure sources. Data collection for ACHS-II from 359 eligible participants took place in 2014, seven to nine years after ACHS. PMID:25982988

  11. The α7 nAChR selective agonists as drug candidates for Alzheimer's disease.

    PubMed

    Fan, Huaimeng; Gu, Ruoxu; Wei, Dongqing

    2015-01-01

    The nicotinic acetylcholine receptors (nAChRs) are ion channels distribute in the central or peripheral nervous system. They are receptors of the neurotransmitter acetylcholine and activation of them by agonists mediates synaptic transmission in the neuron and muscle contraction in the neuromuscular junction. Current studies reveal relationship between the nAChRs and the learning and memory as well as cognation deficit in various neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia and drug addiction. There are various subtypes in the nAChR family and the α7 nAChR is one of the most abundant subtypes in the brain. The α7 nAChR is significantly reduced in the patients of Alzheimer's disease and is believed to interact with the Aβ amyloid. Aβ amyloid is co-localized with α7 nAChR in the senile plaque and interaction between them induces neuron apoptosis and reduction of the α7 nAChR expression. Treatment with α7 agonist in vivo shows its neuron protective and procognation properties and significantly improves the learning and memory ability of the animal models. Therefore, the α7 nAChR agonists are excellent drug candidates for Alzheimer's disease and we summarized here the current agonists that have selectivity of the α7 nAChR over the other nAChR, introduced recent molecular modeling works trying to explain the molecular mechanism of their selectivity and described the design of novel allosteric modulators in our lab. PMID:25387975

  12. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 110(-11)-110(-6) M of malaoxon, 110(-8)-710(-6) M of methyl-paraoxon, 110(-10)-210(-6) M of carbofuran and 710(-9)-110(-5) M of aldicarb with 10 min incubation. The limits of detection were 410(-12), 510(-9), 210(-11) and 610(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown. PMID:26452862

  13. Robustness of Quaternary glacial cycles

    NASA Astrophysics Data System (ADS)

    Ganopolski, Andrei; Brovkin, Victor; Calov, Reinhard

    2015-04-01

    In spite of significant progress in paleoclimate reconstructions and modeling some aspects of Quaternary climate cycles are still poorly understood. Among them is the question of whether glacial cycles are deterministic and solely externally forced or, at least partially, they are stochastic. The answer to this question can only be obtained using a comprehensive Earth system models which incorporates all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, aeolian dust and marine biogeochemistry. Here, we used the Earth system model of intermediate complexity CLIMBER-2. The model was optimally tuned to reproduce climate, ice volume and CO2 variability for the last 0.8 million years. Using the same model version, we performed a large set of simulations covering the entire Quaternary (3 million years). By starting the model at different times (with the time step of 100,000 years) and using identical initial conditions we run the model for 500,000 years using the Earth's orbital variations as the only prescribed radiative forcing. We show that within less than 100,000 years after the beginning of each experiment the modeling results converge to the same solution which depends only on the orbital forcing and boundary conditions, such as topography and terrestrial sediment thickness for the ice sheets or volcanic CO2 outgassing for the carbon cycle. By using only several sets of the Northern Hemisphere orography and sediment thickness which represent different stages of landscape evolution during Quaternary, we are able to reproduce all major regimes of Quaternary long-term climate variability. Our results thus strongly support the notion that Quaternary glacial cycles are deterministic and externally forced.

  14. Cellular Membrane Phospholipids Act as a Depository for Quaternary Amine containing Drugs thus competing with the Acetylcholine / Nicotinic Receptor

    PubMed Central

    Barbacci, Damon; Jackson, Shelley N.; Muller, Ludovic; Egan, Thomas; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2014-01-01

    We previously demonstrated that ammonium- or guanidinium- phosphate interactions are key to forming non-covalent complexes (NCXs) through salt bridge formation with G-protein coupled receptors (GPCR), which are immersed in the cell membrane's lipids. The present work highlights MALDI ion mobility coupled to orthogonal time-of-flight mass spectrometry (MALDI IM oTOF MS) as a method to determine qualitative and relative quantitative affinity of drugs to form NCXs with targeted GPCRs' epitopes in a model system using, bis-quaternary amine based drugs, α- and β- subunit epitopes of the nicotinic acetylcholine receptor' (nAChR) and phospholipids. Bis-quaternary amines proved to have a strong affinity for all nAChR epitopes and negatively charged phospholipids, even in the presence of the physiological neurotransmitter acetylcholine. Ion mobility baseline separated isobaric phosphatidyl ethanolamine and a matrix cluster, providing an accurate estimate for phospholipid counts. Overall this technique is a powerful method for screening drugs' interactions with targeted lipids and protein respectively containing quaternary amines and guanidinium moieties. PMID:22506649

  15. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Järvinen, Päivi; Karlsson, Daniela; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-02-15

    Dual binding site acetylcholinesterase (AChE) inhibitors are promising for the treatment of Alzheimer's disease (AD). They alleviate the cognitive deficits and AD-modifying agents, by inhibiting the β-amyloid (Aβ) peptide aggregation, through binding to both the catalytic and peripheral anionic sites, the so called dual binding site of the AChE enzyme. In this Letter, chemical features based 3D-pharmacophore models were developed based on the eight potent and structurally diverse AChE inhibitors (I-VIII) obtained from high-throughput in vitro screening technique. The best 3D-pharmacophore model, Hypo1, consists of two hydrogen-bond acceptor lipid, one hydrophobe, and two hydrophobic aliphatic features obtained by Catalyst/HIPHOP algorithm adopted in Discovery studio program. Hypo1 was used as a 3D query in sequential virtual screening study to filter three small compound databases. Further, a total of nine compounds were selected and followed on in vitro analysis. Finally, we identified two leads--Specs1 (IC(50)=3.279 μM) and Spec2 (IC(50)=5.986 μM) dual binding site compounds from Specs database, having good AChE enzyme inhibitory activity. PMID:21273074

  16. Pharmacological Evaluation and Docking Studies of 3-Thiadiazolyl- and Thioxo-1,2,4-triazolylcoumarin Derivatives as Cholinesterase Inhibitors

    PubMed Central

    Raza, Ahsan; Saeed, Aamer; Ibrar, Aliya; Muddassar, Muhammad; Khan, Aftab Ahmed; Iqbal, Jamshed

    2012-01-01

    Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is considered a promising strategy for the treatment of Alzheimer's disease (AD). This research project aims to provide a comprehensive knowledge of newly synthesized coumarin analogues with anti-AD potential. In the present work a series of 3-thiadiazolyl- and thioxo-1,2,4-triazolylcoumarins derivatives were designed, synthesized, and tested as potent inhibitors of cholinesterases. These compounds were assayed against AChE from electrophorus electricus and rabbit; and BChE from horse serum and rabbit by Ellman's method using neostigmine methylsulphate and donepezil as reference drugs. Some of the assayed compounds proved to be potent inhibitors of AChE and BChE with Ki values in the micromolar range. 4b was found to be the most active compound with Ki value 0.028 ± 0.002 μM and higher selectivity for AChE/BChE. The ability of 4b to interact with AChE was further confirmed through computational studies, in which a primary binding was proved to occur at the active gorge site, and a secondary binding was revealed at the peripheral anionic site. Structure activity relationships of prepared compounds were also discussed. PMID:22966467

  17. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors

    PubMed Central

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-01-01

    Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. Results: A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion: Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies. PMID:19578388

  18. Functional ?7 Nicotinic ACh Receptors on Astrocytes in Rat Hippocampal CA1 Slices

    PubMed Central

    Shen, Jian-xin

    2012-01-01

    Although much is known about the functional expression of the neuronal nicotinic acetylcholine receptors (nAChRs) in various neuronal populations in the brain and elsewhere, much less is known about their expression and functional relevance in glial cells. The expression of functional nAChRs has been reported for cultured astrocytes; however, previous work has failed to detect nAChR-mediated responses in astrocytes in acute slices. In the current study, functional ?7 nAChRs on astrocytes in the CA1 region of the rat hippocampus were studied in situ using whole-cell patch-clamp recording and two-photon calcium imaging techniques in acute slices. We found that astrocytes and the chondroitin sulfate proteoglycan NG2-expressing (i.e., NG2) cells did express functional ?7 nAChRs. Although the amplitudes of the responses were small, they could be enhanced by the ?7-selective positive allosteric modulator PNU-120596. Under these conditions, we found that in comparing the properties of these responses between astrocytes, NG2, and interneurons, there were differences in the kinetics and increases in intracellular calcium levels. This is the first demonstration of functional ?7 nAChR-mediated current responses in astrocytes in acute hippocampal slices, data which may shed light on the role of ?7 nAChRs in neuroprotection. PMID:22351110

  19. 6-Methyluracil Derivatives as Bifunctional Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease.

    PubMed

    Semenov, Vyacheslav E; Zueva, Irina V; Mukhamedyarov, Marat A; Lushchekina, Sofya V; Kharlamova, Alexandra D; Petukhova, Elena O; Mikhailov, Anatoly S; Podyachev, Sergey N; Saifina, Lilya F; Petrov, Konstantin A; Minnekhanova, Oksana A; Zobov, Vladimir V; Nikolsky, Evgeny E; Masson, Patrick; Reznik, Vladimir S

    2015-11-01

    Novel 6-methyluracil derivatives with ?-(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron-withdrawing substituents on the benzyl rings. The compounds are mixed-type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10,000-fold higher than that for human butyrylcholinesterase (hBuChE). Molecular modeling studies indicate that these compounds are bifunctional AChE inhibitors, spanning the enzyme active site gorge and binding to its peripheral anionic site (PAS). In vivo experiments show that the 6-methyluracil derivatives are able to penetrate the blood-brain barrier (BBB), inhibiting brain-tissue AChE. The most potent AChE inhibitor, 3?d (1,3-bis[5-(o-nitrobenzylethylamino)pentyl]-6-methyluracil), was found to improve working memory in scopolamine and transgenic APP/PS1 murine models of Alzheimer's disease, and to significantly decrease the number and area of ?-amyloid peptide plaques in the brain. PMID:26412714

  20. Mitigation of Acetylcholine Esterase Activity in the 1,7-Diazacarbazole Series of Inhibitors of Checkpoint Kinase 1.

    PubMed

    Gazzard, Lewis; Williams, Karen; Chen, Huifen; Axford, Lorraine; Blackwood, Elizabeth; Burton, Brenda; Chapman, Kerry; Crackett, Peter; Drobnick, Joy; Ellwood, Charles; Epler, Jennifer; Flagella, Michael; Gancia, Emanuela; Gill, Matthew; Goodacre, Simon; Halladay, Jason; Hewitt, Joanne; Hunt, Hazel; Kintz, Samuel; Lyssikatos, Joseph; Macleod, Calum; Major, Sarah; Mdard, Guillaume; Narukulla, Raman; Ramiscal, Judi; Schmidt, Stephen; Seward, Eileen; Wiesmann, Christian; Wu, Ping; Yee, Sharon; Yen, Ivana; Malek, Shiva

    2015-06-25

    Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development. A campaign of analogue synthesis established SAR delineating ChK1 and AChE activities and allowing identification of new leads with improved profiles. In silico docking using a model of AChE permitted rationalization of the observed SAR. Compounds 19 (GNE-900) and 30 (GNE-145) were identified as selective, orally bioavailable ChK1 inhibitors offering excellent in vitro potency with significantly reduced AChE activity. In combination with gemcitabine, these compounds demonstrate an in vivo pharmacodynamic effect and are efficacious in a mouse p53 mutant xenograft model. PMID:25988399

  1. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor.

    PubMed

    Wang, Yi; Hu, Qiongzheng; Guo, Yongxian; Yu, Li

    2015-10-15

    In this paper, construction of the liquid crystal (LC)-based sensing platform for simple and sensitive detection of acetylcholinesterase (AChE) and its inhibitor using a cationic surfactant-decorated LC interface was demonstrated. A change of the optical images of LCs from bright to dark appearance was observed when the cationic surfactant, myristoylcholine chloride (Myr), was transferred onto the aqueous/LC interface, due to the formation of a stable surfactant monolayer at the interface. A dark-to-bright change of the optical appearance was then observed when AChE was transferred onto the Myr-decorated LC interface. The sensitivity of this new type of LC-based sensor is 3 orders of magnitude higher in the serum albumin solution than that only in the buffer solution. Noteworthy is that the AChE LC sensor shows a very high sensitivity for the detection of the enzyme inhibitor, which is around 1 fM. The constructed low-cost LC-based sensor is quite simple and convenient, showing high promise for label-free detection of AChE and its inhibitors. PMID:25957073

  2. Myasthenia Gravis and the Tops and Bottoms of AChRs Antigenic Structure of the MIR and Specific Immunosuppression of EAMG Using AChR Cytoplasmic Domains

    PubMed Central

    Lindstrom, Jon; Luo, Jie; Kuryatov, Alexander

    2009-01-01

    The main immunogenic region (MIR), against which half or more of the autoantibodies to acetylcholine receptors (AChRs) in myasthenia gravis (MG) or experimental autoimmune MG (EAMG) are directed, is located at the extracellular end of ?1 subunits. Rat monoclonal antibodies (mAbs) to the MIR efficiently compete with MG patient autoantibodies for binding to human muscle AChRs. Antibodies bound to the MIR do not interfere with cholinergic ligand binding or AChR function, but target complement and trigger antigenic modulation. Rat mAbs to the MIR also bind to human ganglionic AChR ?3 subunits, but MG patient antibodies do not. By making chimeras of ?1 subunits with ?7 subunits or ACh binding protein, the structure of the MIR and its functional effects are being investigated. Many mAbs to the MIR bind only to the native conformation of ?1 subunits because they bind to sequences that are adjacent only in the native structure. The MIR epitopes recognized by these mAbs are not recognized by most patient antibodies whose epitopes must be nearby. The presence of the MIR epitopes in ?1/?7 chimeras greatly promotes AChR expression and sensitivity to activation. EAMG can be suppressed by treatment with denatured, bacterially expressed mixtures of extracellular and cytoplasmic domains of human ?1, ?1, ?, ?, and ? subunits. A mixture of only the cytoplasmic domains not only avoids the potential liability of provoking formation antibodies to pathologically significant epitopes on the extracellular surface, but also potently suppresses the development of EAMG. PMID:18567851

  3. Silver nanoparticles inhibit the gill Na?/K?-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio).

    PubMed

    Katuli, Kheyrollah Khosravi; Massarsky, Andrey; Hadadi, Ali; Pourmehran, Zahra

    2014-08-01

    Silver nanoparticles (AgNPs) are the most commonly used metallic nanoparticles in industrial applications, including medical and consumer products. In the recent years, however, concerns regarding their environmental and health impacts have emerged. Aquatic organisms are of special concern since water bodies often serve as sinks for anthropogenic activities. This study assessed the effects of AgNPs on the activities of the gill Na(+)/K(+)-ATPase and erythrocyte acetylcholinestrase (AChE), as well as the plasma biochemistry in adult zebrafish (Danio rerio). In an acute exposure scenario the fish were exposed for 4d to 16.76 mg/L AgNPs, which was the 96 h LC50 value determined in preliminary experiments. In a prolonged exposure scenario the fish were exposed for 1, 2, or 3 weeks to AgNPs at concentrations of 2 and 4 mg/L, corresponding to the 1/10th and 2/10th of the 96 h LC50 value. Generally the activity of the gill Na(+)/K(+)-ATPase decreased, but this was only significant starting at 14 d of the prolonged exposure scenario, whereas the activity of the erythrocyte AChE was significantly decreased in both exposure scenarios. Finally, the plasma electrolytes levels were reduced and the plasma glucose and cortisol levels were increased in exposed fish. This study demonstrates that AgNPs could inhibit the activities of Na(+)/K(+)-ATPase and AChE, thus interfering with the proper ionoregulation and neuroregulation, respectively, and act as stressors. PMID:24840880

  4. High throughput enzyme inhibitor screening by functionalized magnetic carbonaceous microspheres and graphene oxide-based MALDI-TOF-MS.

    PubMed

    Liu, Yang; Li, Yan; Liu, Junyan; Deng, Chunhui; Zhang, Xiangmin

    2011-12-01

    In this work, a high throughput methodology for screening enzyme inhibitors has been demonstrated by combining enzyme immobilized magnetic carbonaceous microspheres and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with grapheme oxide as matrix. First, model enzyme acetylcholinesterase (AChE) was immobilized onto the 3-glycidoxypropyltrimethoxysilane (GLYMO)-modified magnetic carbonaceous (MC) microspheres, displaying a high enzyme activity and stability, and also facilitating the separation of enzyme from substrate and product. The efficiency of immobilized AChE was monitored by biochemical assay, which was carried out by mixing enzyme-immobilized MC microspheres with model substrate acetylcholine (ACh), and subsequent quantitative determination of substrate ACh and product choline using graphene oxide-based MALDI-TOF-MS with no background inference. The limit of detection (LOD) for ACh was 0.25 fmol/?L, and excellent linearity (R(2)=0.9998) was maintained over the range of 0.5 and 250 fmol/?L. Choline was quantified over the range of 0.05 and 15 pmol/?L, also with excellent linearity (R(2)=0.9994) and low LOD (0.15 fmol/?L). Good accuracy and precision were obtained for all concentrations within the range of the standard curves. All together, eight compounds (four known AChE inhibitors and four control chemical compounds with no AChE inhibit effect) were tested with our promoted methodology, and the obtained results demonstrated that our high throughput screening methodology could be a great help to the routine enzyme inhibitor screening. PMID:21952774

  5. High Throughput Enzyme Inhibitor Screening by Functionalized Magnetic Carbonaceous Microspheres and Graphene Oxide-Based MALDI-TOF-MS

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Yan; Liu, Junyan; Deng, Chunhui; Zhang, Xiangmin

    2011-12-01

    In this work, a high throughput methodology for screening enzyme inhibitors has been demonstrated by combining enzyme immobilized magnetic carbonaceous microspheres and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with grapheme oxide as matrix. First, model enzyme acetylcholinesterase (AChE) was immobilized onto the 3-glycidoxypropyltrimethoxysilane (GLYMO)-modified magnetic carbonaceous (MC) microspheres, displaying a high enzyme activity and stability, and also facilitating the separation of enzyme from substrate and product. The efficiency of immobilized AChE was monitored by biochemical assay, which was carried out by mixing enzyme-immobilized MC microspheres with model substrate acetylcholine (ACh), and subsequent quantitative determination of substrate ACh and product choline using graphene oxide-based MALDI-TOF-MS with no background inference. The limit of detection (LOD) for ACh was 0.25 fmol/μL, and excellent linearity (R2 = 0.9998) was maintained over the range of 0.5 and 250 fmol/μL. Choline was quantified over the range of 0.05 and 15 pmol/μL, also with excellent linearity (R2 = 0.9994) and low LOD (0.15 fmol/μL). Good accuracy and precision were obtained for all concentrations within the range of the standard curves. All together, eight compounds (four known AChE inhibitors and four control chemical compounds with no AChE inhibit effect) were tested with our promoted methodology, and the obtained results demonstrated that our high throughput screening methodology could be a great help to the routine enzyme inhibitor screening.

  6. Andrei Sher and Quaternary science

    NASA Astrophysics Data System (ADS)

    Kuzmina, Svetlana; Lister, Adrian M.; Edwards, Mary E.

    2011-08-01

    Andrei Sher (1939-2008) was a key individual in Beringian studies who made substantial and original contributions, but also, importantly, built bridges between western and eastern Beringian scientists spanning some five decades of research. He is perhaps best known as a Quaternary palaeontologist, specializing in large mammals, and mammoths in particular, but his field of his scientific research was much broader, encompassing Quaternary geology, stratigraphy, geocryology, and paleoenvironmental reconstructions. He worked mainly in Siberia, in the Kolyma and Indigirka lowlands, and Chukotka, but also completed fieldwork in Alaska and Yukon through joint projects with American and Canadian scientists. Andrei was an active scientist until the last days of his life. He was involved in many different research projects ranging from mammoth evolution, fossil insects and environmental changes and ancient DNA. Without Andrei's connections between researchers, many unique discoveries would likely be unknown.

  7. Quaternary ecology: A paleoecological perspective

    SciTech Connect

    Delcourt, H.R.; Delcourt, P.A.

    1991-01-01

    This book considers issues and problems in ecology which may be illuminated, if not solved, by considering paleoecology. The five central chapters include a discussion of application of Quaternary ecology to future global climate change, including global warming. Other areas presented include: population dispersal, invasions, expansions, and migrations; plant successions; ecotones; factors in community structure; ecosystem patterns and processes. Published case studies are numerous. The role played by continuing climatic change in vegetation change is acknowledged but not stressed.

  8. Sequence polymorphism in acetylcholinesterase transcripts and genotyping survey of BmAChE1 in laboratory and Mexican strains of Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BmAChE1, BmAChE2, and BmAChE3 cDNAs of Rhipicephalus (Boophilus) microplus were sequenced and found to exhibit significant polymorphism. A portion of the predicted amino acid substitutions in BmAChE1, BmAChE2 and BmAChE3 were found predominantly in organophosphate-resistant (OP-R) strains, but most ...

  9. Synthesis and screening for acetylcholinesterase inhibitor activity of some novel 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-ones: derivatives of irbesartan key intermediate.

    PubMed

    Kavitha, C V; Gaonkar, S L; Narendra Sharath Chandra, J N; Sadashiva, C T; Rangappa, K S

    2007-12-01

    The association of bioactive nucleus with other pharmacological agents is hoped to improve the efficacy of the treatment by combining the effects of different pharmacological mechanisms of action. Keeping this in view, a series of 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-one derivatives have been synthesized by interaction of 2-butyl-1,3-diaza-spiro[4,4]non-1-en-4-one with different bioactive aralkyl halides in presence of powdered potassium carbonate by two different methods viz., conventional and microwave irradiation. The yields under conventional and microwave irradiation methods were in the range of 60-65% and 80-90%, respectively. The structure elucidation of the new compounds has been carried out with the help of elemental analysis and spectral data. All the synthesized compounds have been screened for their efficacy as acetylcholinesterase (AChE) inhibitor. AChE inhibitory activity study was carried out by using Ellman colorimetric assay with neostigmine as a reference standard against targets from different species, such as pure electric eel AChE, human serum AChE, and rat brain AChE. Among the compounds synthesized, compounds 5a, 5b, 5j showed good inhibition against AChE. PMID:17888667

  10. Gating of nicotinic ACh receptors: latest insights into ligand binding and function

    PubMed Central

    Yakel, Jerrel L

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are in the superfamily of cys-loop receptors, and are widely expressed in the nervous system where they participate in a variety of physiological functions, including regulating excitability and neurotransmitter release, as well as neuromuscular contraction. Members of the cys-loop family of receptors, which also includes the molluscan ACh-binding protein (AChBP), a soluble protein that is analogous to the extracellular ligand-binding domain of the cys-loop receptors, are pentameric assemblies of five subunits, with each subunit arranged around a central pore. The binding of ACh to the extracellular interface between two subunits induces channel opening. With the recent 4 resolution of the Torpedo nAChR, and the crystal structure of the AChBP, much has been learned about the structure of the ligand-binding domain and the channel pore, as well as major structural rearrangements that may confer channel opening, including a major rearrangement of the C-loop within the ligand binding pocket, and perhaps other regions including the F-loop (the ?8?9 linker), the ?1?2 linker and the cys-loop. Here I will review the latest findings from my lab aimed at a further understanding of the function of the neuronal nAChR channels (and in particular the role of desensitization), and our search for novel AChBP species that may lead to a further understanding of the function of the cys-loop receptor family. PMID:19917567

  11. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  12. Effect of low benzene exposure on neurobehavioral function, AChE in blood and brain and bone marrow picture in mice

    SciTech Connect

    Sun, W.; Gong, Z.; Li, X. )

    1992-12-01

    The purpose of this study was to examine the effect of low level benzene exposure on neurobehavioral functions, AChE in blood and brain, bone marrow picture in Kunming mice. Forty adult Kunming male mice were divided into 4 groups. They were exposed to 12.52, 3.13, 0.78 and 0 ppm benzene for 2 h.d-1 for 30 d. Central nervous system (CNS) function was inhibited by 12.52 ppm and excited by 0.78 ppm benzene exposure, but irregularly affected by 3.13 ppm. AChE in blood and brain was decreased in 12.52, 3.13 ppm group. The weight of liver to body weight ratios in 12.52 ppm group was higher than those of control group significantly. Bone marrow picture revealed inhibited proliferation of white and red cell systems, especially in 12.52 ppm group, consisting of decrease of percentage of myeloblast, premyelocytes, myelocytes, erythroblasts and megakaryocytes, especially in 12.52 ppm group.

  13. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR

    PubMed Central

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E.; Tsetlin, Victor I.; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  14. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR.

    PubMed

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E; Tsetlin, Victor I; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  15. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: a meta-analysis.

    PubMed

    Noori, Hamid R; Fliegel, Sarah; Brand, Ines; Spanagel, Rainer

    2012-10-01

    In vivo microdialysis has become a key method in investigating the dynamics of different neurotransmitter systems such as acetylcholine in the extracellular fluid. Depending on the sensitivity of the analytical method applied for measuring acetylcholine levels in brain dialysates, acetylcholinesterase (AChE) inhibitors are often used to increase the basal acetylcholine level up to a detectable magnitude. This artificial manipulation of the system questions the outcome of pharmacological studies and has led to a large number of experiments pursuing the appropriate physiological and pharmacological concentration of the AChE inhibitors in a range between 0.01 and 100 μM. However, the complexity of the action of these substances, particularly through the involvement of muscarinic autoreceptors and the induction of an autoinhibitory effect on acetylcholine release, did not allow this quest to be resolved completely and suggests the application of advanced mathematical methods for the evaluation of acetylcholine baseline levels. Here we performed a meta-analysis on published datasets of in vivo microdialysis measurements to assess the concentration-dependent effects of various AChE inhibitors on acetylcholine levels within the prefrontal cortex, nucleus accumbens, caudate putamen, and hippocampus in adult rats. In total 3255 rats were analyzed and we found that when compared with the minority of studies (14%) that did not use AChE inhibitors (these studies yielded basal levels between 0.55 and 2.71 nM depending on the brain site) an up to 350-fold increase in baseline values after the application of an inhibitor could be detected. Especially, the derivates neostigmine bromide and physostigmine sulfate seem to produce dramatic effects. Furthermore, concentration-dependent effects after the application of AChE inhibitors could not be established. In the case of neostigmine bromide an inverted concentration (0.1-10 μM)-response relationship was even detected. We conclude that although the presynaptic action of AChE inhibitors is well understood the nonphysiological and concentration-independent augmentation of the acetylcholine system requires the use of a standard protocol in order to produce replicable and comparable results. Our meta-analysis suggests the use of 0.1 μM neostigmine which produces an approximately 10-fold boost of brain baseline levels. PMID:22733599

  16. 3'-R/S-hydroxyvoacamine, a potent acetylcholinesterase inhibitor from Tabernaemontana divaricata.

    PubMed

    Chaiyana, Wantida; Schripsema, Jan; Ingkaninan, Kornkanok; Okonogi, Siriporn

    2013-04-15

    Guided by the acetylcholinesterase inhibiting activity, the bisindole alkaloid 3'-R/S-hydroxyvoacamine was isolated from a stem extract of Tabernaemontana divaricata, a plant used in Thailand in traditional rejuvenation remedies for improving the memory. The structure of the alkaloid was elucidated by extensive use of NMR spectroscopy and the complete assignment of the (1)H and (13)C NMR spectra is reported. The alkaloid acted as a non-competitive inhibitor against AChE with an IC50 value of 7.00±1.99 μM. An HPLC method was developed for the quantitative analysis of the AChE inhibitor. It suggested that there was 12.4% (w/w) of 3'-R/S-hydroxyvoacamine in the alkaloid enriched fraction of T. divaricata stem. PMID:23375813

  17. Ethynylphenyl carbonates and carbamates as dual-action acetylcholinesterase inhibitors and anti-inflammatory agents.

    PubMed

    Saxena, Jaya; Meloni, David; Huang, Mou-Tuan; Heck, Diane E; Laskin, Jeffrey D; Heindel, Ned D; Young, Sherri C

    2015-12-01

    Novel ethynylphenyl carbonates and carbamates containing carbon- and silicon-based choline mimics were synthesized from their respective phenol and aniline precursors and screened for anticholinesterase and anti-inflammatory activities. All molecules were micromolar inhibitors of acetylcholinesterase (AChE), with IC50s of 28-86 ?M; the carbamates were two-fold more potent than the carbonates. Two of the most potent AChE inhibitors suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation by 40%. Furthermore, these molecules have physicochemical properties in the range of other CNS drugs. These molecules have the potential to treat inflammation; they could also dually target Alzheimer's disease through restoration of cholinergic balance and inflammation suppression. PMID:26510670

  18. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  19. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.

    PubMed

    Killi, Uday K; Wsol, Vladimir; Soukup, Ondrej; Kuca, Kamil; Winder, Michael; Tobin, Gunnar

    2014-02-01

    Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 ?mol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 ?mol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 ?mol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 ?mol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime. PMID:24341923

  20. Impact of acetylcholinesterase inhibitors on the occurrence of acute coronary syndrome in patients with dementia

    PubMed Central

    Wu, Ping-Hsun; Lin, Yi-Ting; Hsu, Po-Chao; Yang, Yi-Hsin; Lin, Tsung-Hsien; Huang, Chia-Tsuan

    2015-01-01

    The study aimed to investigate the association of acetylcholinesterase inhibitors (AChEIs) use with the risk of acute coronary syndrome (ACS). We conducted a population-based retrospective cohort study of dementia patients during 1 January 1999 to 31 December 2008 using the National Health Insurance Database in Taiwan. New AChEI users during the study period were matched with AChEI nonusers in age-matched and gender-matched cohorts. The risk of ACS associated with use of AChEIs was analyzed using modified Kaplan-Meier analysis and Cox proportional hazard models after adjustment for competing death risk. Use of AChEIs was associated with a lower incidence of ACS (212.8/10,000 person-years) compared to the matched reference cohort (268.7/10,000 person-years). The adjusted hazard ratio for ACS in patients with dementia treated with AChEIs was 0.836 (95% confidence interval, 0.750–0.933; P < 0.001). Further sensitivity analysis of different study populations demonstrated consistent results. A statistical dose–response relationship for AChEI use and ACS risk was significant for the patients with dementia. In patients with dementia, AChEI treatment was associated with decreased risk of ACS. PMID:26577589

  1. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones.

    PubMed

    Ak?nc?o?lu, Ak?n; Ak?nc?o?lu, Hlya; Glin, ?lhami; Durdagi, Serdar; Supuran, Claudiu T; Gksu, Sleyman

    2015-07-01

    In this study, several novel sulfamides were synthesized and evaluated for their acetylcholine esterase (AChE) and human carbonic anhydrase I, and II isoenzymes (hCA I and II) inhibition profiles. Reductive amination of methoxyacetophenones was used for the synthesis of amines. Amines were converted to sulfamoylcarbamates with chlorosulfonyl isocyanate (CSI) in the presence of BnOH. Pd-C catalyzed hydrogenolysis of sulfamoylcarbamates afforded sulfamides. These novel compounds were good inhibitors of the cytosolic hCA I, and hCA II with Ki values in the range of 45.98.9-687.584.3 pM for hCA I, and 48.808.2-672.271.9pM for hCA II. The inhibitory effects of the synthesized novel compounds on AChE were also investigated. The Ki values of these compounds were in the range of 4.520.61-38.286.84pM for AChE. These results show that hCA I, II, and AChE were effectively inhibited by the novel sulfamoylcarbamates 17-21 and sulfamide derivatives 22-26. All investigated compounds were docked within the active sites of the corresponding enzymes revealing the reasons of the effective inhibitory activity. PMID:25921269

  2. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of ?-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  3. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis. PMID:25112677

  4. Pterostilbene-O-acetamidoalkylbenzylamines derivatives as novel dual inhibitors of cholinesterase with anti-β-amyloid aggregation and antioxidant properties for the treatment of Alzheimer's disease.

    PubMed

    Li, Yuxing; Qiang, Xiaoming; Li, Yan; Yang, Xia; Luo, Li; Xiao, Ganyuan; Cao, Zhongcheng; Tan, Zhenghuai; Deng, Yong

    2016-04-15

    A series of pterostilbene-O-acetamidoalkylbenzylamines were designed, synthesized and evaluated as dual inhibitors of AChE and BuChE. To further explore the multifunctional properties of the new derivatives, their antioxidant activities and inhibitory effects on self-induced Aβ1-42 aggregation and HuAChE-induced Aβ1-40 aggregation were also tested. The results showed that most of these compounds could effectively inhibit AChE and BuChE. Particularly, compound 21d exhibited the best AChE inhibitory activity (IC50=0.06μM) and good inhibition of BuChE (IC50=28.04μM). Both the inhibition kinetic analysis and molecular modeling study revealed that these compounds showed mixed-type inhibition, binding simultaneously to the CAS and PAS of AChE. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activity. However, the inhibitory activities against self-induced and HuAChE-induced Aβ aggregation of these new derivatives were unsatisfied. Taking into account the results of the biological evaluation, further modifications will be designed in order to increase the potency on the different targets. The results displayed in this Letter can be a new starting point for further development of multifunctional agents for Alzheimer's disease. PMID:26947607

  5. 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: Resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae

    PubMed Central

    Verma, Astha; Wong, Dawn M.; Islam, Rafique; Tong, Fan; Ghavami, Maryam; Mutunga, James M.; Slebodnick, Carla; Li, Jianyong; Viayna, Elisabet; Lam, Polo C.-H.; Totrov, Maxim M.; Bloomquist, Jeffrey R.; Carlier, Paul R.

    2015-01-01

    To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification. PMID:25684426

  6. 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: Resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae.

    PubMed

    Verma, Astha; Wong, Dawn M; Islam, Rafique; Tong, Fan; Ghavami, Maryam; Mutunga, James M; Slebodnick, Carla; Li, Jianyong; Viayna, Elisabet; Lam, Polo C-H; Totrov, Maxim M; Bloomquist, Jeffrey R; Carlier, Paul R

    2015-03-15

    To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification. PMID:25684426

  7. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    SciTech Connect

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  8. Temperature effect of the a-C:H gate pH-ISFET

    NASA Astrophysics Data System (ADS)

    Chou, Jung Chuan; Tsai, Hsjian-Ming

    2001-10-01

    In the pH-ISFET (ion sensitive field effect transistor) applications, the temperature is one of the important factors for the stability. The hydrogenated amorphous carbon (a-C:H) films is used for the sensitive layer of the pH-ISFET. The a- C:H pH-ISFET device is prepared by the plasma-enhanced low pressure chemical vapor deposition (PE-LPCVD). The thickness of the a-C:H was 2000 Angstrom, and the a-C:H gate pH-ISFET was encapsulated by epoxy. The Keithley 236 instrument was used to measure the IDS - VGS curves of the a-C:H gate pH-ISFET in the various pH buffer solutions at 15 degree(s)C - 55 degree(s)C. According to the experimental results, we found the sensitivity of the a-C:H gate pH-ISFET is increased with the temperature. Finally, the TCS (temperature coefficient of sensitivity) can also be calculated.

  9. Sensitivity of the a-C:H gate pH-ISFET

    NASA Astrophysics Data System (ADS)

    Chou, Jung Chuan; Tsai, Hsjian-Ming

    2001-10-01

    The hydrogenated amorphous carbon (a-C:H) contains significant fractions of sp3 type C bondings, giving them attractive physical and mechanical properties, some similar to a certain extent to the diamond. Otherwise, the dielectric constant of the a-C:H films covers the range of 2.5 - 6, and the a-C:H also can be used for the protective and isolated layer. In this paper, we study the sensitivity of the a-C:H applied to the pH-ISFET (ion sensitive field effect transistor). The a- C:H gate pH-ISFET devices were prepared by the plasma-enhanced low pressure chemical vapor deposition (PE-LPCVD). The sensitivity is determined by the IDS - VGS and C-V curves shift in the various pH buffer solutions. We can also measure the pH at zero charge point (pHpzc) for the a-C:H gate pH-ISFET.

  10. Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction

    PubMed Central

    Slutsky, I; Parnas, H; Parnas, I

    1999-01-01

    Presynaptic effects of muscarine on neurotransmitter release were studied at the frog neuromuscular junction, using focal depolarization of the presynaptic terminal to different levels. Muscarine (10 ?M) had a dual effect on ACh release: concomitant inhibition and enhancement of release at the same patch of presynaptic membrane. These two effects were maximal at low depolarizing pulses and diminished as depolarization increased. At low depolarizing pulses, atropine (1 ?M) enhanced release, suggesting that ACh in the synaptic cleft causes a net tonic inhibition of ACh release. In the presence of the M2 antagonist methoctramine (1 ?M), muscarine (10 ?M) enhanced ACh release. In the presence of the M1 antagonist pirenzepine (10 ?M), muscarine (10 ?M) produced stronger inhibition. These results show that the M2 receptor is responsible for inhibition of ACh release, while the M1 receptor is responsible for its enhancement. The inhibitory effect of muscarine did not depend on extracellular [Ca2+]. Enhancement of release was abolished at low extracellular [Ca2+]. The muscarine inhibitory effect was not associated with a reduction of Ca2+ current, while release enhancement was associated with an increase of Ca2+ current. PMID:9882749

  11. Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction.

    PubMed

    Slutsky, I; Parnas, H; Parnas, I

    1999-02-01

    1. Presynaptic effects of muscarine on neurotransmitter release were studied at the frog neuromuscular junction, using focal depolarization of the presynaptic terminal to different levels. 2. Muscarine (10 microM) had a dual effect on ACh release: concomitant inhibition and enhancement of release at the same patch of presynaptic membrane. 3. These two effects were maximal at low depolarizing pulses and diminished as depolarization increased. 4. At low depolarizing pulses, atropine (1 microM) enhanced release, suggesting that ACh in the synaptic cleft causes a net tonic inhibition of ACh release. 5. In the presence of the M2 antagonist methoctramine (1 microM), muscarine (10 microM) enhanced ACh release. 6. In the presence of the M1 antagonist pirenzepine (10 microM), muscarine (10 microM) produced stronger inhibition. 7. These results show that the M2 receptor is responsible for inhibition of ACh release, while the M1 receptor is responsible for its enhancement. 8. The inhibitory effect of muscarine did not depend on extracellular [Ca2+]. Enhancement of release was abolished at low extracellular [Ca2+]. 9. The muscarine inhibitory effect was not associated with a reduction of Ca2+ current, while release enhancement was associated with an increase of Ca2+ current. PMID:9882749

  12. Rational design of central selective acetylcholinesterase inhibitors by means of a "bio-oxidisable prodrug" strategy.

    PubMed

    Bohn, Pierre; Le Fur, Nicolas; Hagues, Guillaume; Costentin, Jean; Torquet, Nicolas; Papamical, Cyril; Marsais, Francis; Levacher, Vincent

    2009-06-21

    This work deals with the design of a bio-oxidisable prodrug strategy for the development of new central selective acetylcholinesterase inhibitors. This prodrug approach is expected to reduce peripheral anticholinesterase activity responsible for various side effects observed with presently marketed AChE inhibitors. The design of these new AChE inhibitors in quinoline series is roughly based on cyclic analogues of rivastigmine. The key activation step of the prodrug involves an oxidation of an N-alkyl-1,4-dihydroquinoline 1 to the corresponding quinolinium salt 2 unmasking the positive charge required for binding to the catalytic anionic site of the enzyme. The synthesis of a set of 1,4-dihydroquinolines 1 and their corresponding quinolinium salts 2 is presented. An in vitro biological evaluation revealed that while all reduced forms 1 were unable to exhibit any anticholinesterase activity (IC50 > 10(6) nM), most of the quinolinium salts 2 displayed high AChE inhibitory activity (IC50 ranging from 6 microM to 7 nM). These preliminary in vitro assays validate the use of these cyclic analogues of rivastigmine in quinoline series as appealing chemical tools for further in vivo development of this bio-oxidisable prodrug approach. PMID:19503937

  13. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  14. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases.

    PubMed

    Schwarz, Stefan; Lucas, Susana Dias; Sommerwerk, Sven; Csuk, Ren

    2014-07-01

    The development of remedies against the Alzheimer's disease (AD) is one of the biggest challenges in medicinal chemistry nowadays. Although not completely understood, there are several strategies fighting this disease or at least bringing some relief. During the progress of AD, the level of acetylcholine (ACh) decreases; hence, a therapy using inhibitors should be of some benefit to the patients. Drugs presently used for the treatment of AD inhibit the two ACh controlling enzymes, acetylcholinesterase as well as butyrylcholinesterase; hence, the design of selective inhibitors is called for. Glycyrrhetinic acid seems to be an interesting starting point for the development of selective inhibitors. Although its glycon, glycyrrhetinic acid is known for being an AChE activator, several derivatives, altered in position C-3 and C-30, exhibited remarkable inhibition constants in micro-molar range. Furthermore, five representative compounds were subjected to three more enzyme assays (on carbonic anhydrase II, papain and the lipase from Candida antarctica) to gain information about the selectivity of the compounds in comparison to other enzymes. In addition, photometric sulforhodamine B assays using murine embryonic fibroblasts (NiH 3T3) were performed to study the cytotoxicity of these compounds. Two derivatives, bearing either a 1,3-diaminopropyl or a 1H-benzotriazolyl residue, showed a BChE selective inhibition in the single-digit micro-molar range without being cytotoxic up to 30?M. In silico molecular docking studies on the active sites of AChE and BChE were performed to gain a molecular insight into the mode of action of these compounds and to explain the pronounced selectivity for BChE. PMID:24853320

  15. A mutation in the extracellular domain of the ?7 nAChR reduces calcium permeability

    PubMed Central

    Coln-Sez, Jos O.

    2013-01-01

    The ?7 neuronal nicotinic acetylcholine receptor (nAChR) displays the highest calcium permeability among the different subtypes of nAChRs expressed in the mammalian brain and can impact cellular events including neurotransmitter release, second messenger cascades, cell survival, and apoptosis. The selectivity for cations in nAChRs is thought to be achieved in part by anionic residues which are located on either side of the channel mouth and increase relative cationic concentration. Mutagenesis studies have improved our understanding of the role of the second transmembrane domain and the intracellular loop of the channel in ion selectivity. However, little is known about the influence that the extracellular domain (ECD) plays in ion permeation. In the ?7 nAChR, it has been found that the ECD contains a ring of ten aspartates (two per subunit) that is believed to face the lumen of the pore and could attract cations for permeation. Using mutagenesis and a combination of electrophysiology and imaging techniques, we tested the possible involvement of these aspartate residues in the calcium permeability of the rat ?7 nAChR. We found that one of these residues (the aspartate at position 44) appears to be essential since mutating it to alanine resulted in a decrease in amplitude for both whole cell and single-channel responses and in the complete disappearance of detectable calcium changes in most cells, which indicates that the ECD of the ?7 nAChR plays a key role in calcium permeation. PMID:24177919

  16. Tribendimidine: Mode of Action and nAChR Subtype Selectivity in Ascaris and Oesophagostomum

    PubMed Central

    Robertson, Alan P.; Puttachary, Sreekanth; Buxton, Samuel K.; Martin, Richard J.

    2015-01-01

    The cholinergic class of anthelmintic drugs is used for the control of parasitic nematodes. One of this class of drugs, tribendimidine (a symmetrical diamidine derivative, of amidantel), was developed in China for use in humans in the mid-1980s. It has a broader-spectrum anthelmintic action against soil-transmitted helminthiasis than other cholinergic anthelmintics, and is effective against hookworm, pinworms, roundworms, and Strongyloides and flatworm of humans. Although molecular studies on C. elegans suggest that tribendimidine is a cholinergic agonist that is selective for the same nematode muscle nAChR as levamisole, no direct electrophysiological observations in nematode parasites have been made to test this hypothesis. Also the hypothesis that levamisole and tribendimine act on the same receptor, does not explain why tribendimidine is effective against some nematode parasites when levamisole is not. Here we examine the effects of tribendimidine on the electrophysiology and contraction of Ascaris suum body muscle and show that tribendimidine produces depolarization antagonized by the nicotinic antagonist mecamylamine, and that tribendimidine is an agonist of muscle nAChRs of parasitic nematodes. Further pharmacological characterization of the nAChRs activated by tribendimidine in our Ascaris muscle contraction assay shows that tribendimidine is not selective for the same receptor subtypes as levamisole, and that tribendimidine is more selective for the B-subtype than the L-subtype of nAChR. In addition, larval migration inhibition assays with levamisole-resistant Oesophagostomum dentatum isolates show that tribendimidine is as active on a levamisole-resistant isolate as on a levamisole-sensitive isolate, suggesting that the selectivity for levamisole and tribendimidine is not the same. It is concluded that tribendimidine can activate a different population of nematode parasite nAChRs than levamisole, and is more like bephenium. The different nAChR subtype selectivity of tribendimidine may explain why the spectrum of action of tribendimidine is different to that of other cholinergic anthelmintics like levamisole. PMID:25679515

  17. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  18. Opening of Aryl-Substituted Epoxides to form Quaternary Stereogenic Centers: Synthesis of (−)-Mesembrine

    PubMed Central

    Taber, Douglass F.; He, Yigang

    2011-01-01

    Cycloalkanones are easily converted into aryl-substituted cyclic alkenes by the addition of an aryl Grignard reagent followed by dehydration. These alkenes are good substrates for asymmetric epoxidation. We have found that the addition of allylic and benzylic Grignard reagents can occur preferentially at the benzylic position of the derived epoxides, to give the quaternary stereogenic center. This approach led to a short synthesis of the nanomolar serotonin re-uptake inhibitor (−)-mesembrine. PMID:16149803

  19. Enantioselective Construction of Remote Quaternary Stereocenters

    PubMed Central

    Mei, Tian-Sheng; Patel, Harshkumar H.; Sigman, Matthew S.

    2014-01-01

    Summary Molecules containing all-carbon quaternary stereocenters carbon atoms bonded to four distinct carbon substituents are prevalent in Nature. However, the construction of such compounds in an enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In particular, methods for forging quaternary stereocenters that are remote from other functional groups are underdeveloped. Herein we report a catalytic and enantioselective intermolecular Heck-type reaction of trisubstituted-alkenyl alcohols with aryl boronic acids. The reported method allows direct access to quaternary all-carbon-substituted ?-, ?-, ?-, ?- or ? aryl carbonyl compounds, as the unsaturation of the alkene is relayed to the alcohol resulting in the formation of a carbonyl group. The scope of the process also includes incorporation of pre-existing stereocenters along the alkyl chain, which links the alkene and the alcohol, wherein the stereocenter is preserved. The described method is flexible, allowing access to diverse building blocks containing an enantiomerically enriched, quaternary center. PMID:24717439

  20. Functional expression and axonal transport of ?7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion.

    PubMed

    Shelukhina, Irina; Paddenberg, Renate; Kummer, Wolfgang; Tsetlin, Victor

    2015-07-01

    In recent pain studies on animal models, ?7 nicotinic acetylcholine receptor (nAChR) agonists demonstrated analgesic, anti-hyperalgesic and anti-inflammatory effects, apparently acting through some peripheral receptors. Assuming possible involvement of ?7 nAChRs on nociceptive sensory neurons, we investigated the morphological and neurochemical features of the ?7 nAChR-expressing subpopulation of dorsal root ganglion (DRG) neurons and their ability to transport ?7 nAChR axonally. In addition, ?7 receptor activity and its putative role in pain signal neurotransmitter release were studied. Medium-sized ?7 nAChR-expressing neurons prevailed, although the range covered all cell sizes. These cells accounted for one-fifth of total medium and large DRG neurons and <5% of small ones. 83.2% of ?7 nAChR-expressing DRG neurons were peptidergic nociceptors (CGRP-immunopositive), one half of which had non-myelinated C-fibers and the other half had myelinated A?- and likely A?/?-fibers, whereas 15.2% were non-peptidergic C-fiber nociceptors binding isolectin B4. All non-peptidergic and a third of peptidergic ?7 nAChR-bearing nociceptors expressed TRPV1, a capsaicin-sensitive noxious stimulus transducer. Nerve crush experiments demonstrated that CGRPergic DRG nociceptors axonally transported ?7 nAChRs both to the spinal cord and periphery. ?7 nAChRs in DRG neurons were functional as their specific agonist PNU282987 evoked calcium rise enhanced by ?7-selective positive allosteric modulator PNU120596. However, ?7 nAChRs do not modulate neurotransmitter CGRP and glutamate release from DRG neurons since nicotinic ligands affected neither their basal nor provoked levels, showing the necessity of further studies to elucidate the true role of ?7 nAChRs in those neurons. PMID:24706047

  1. A magnetron sputtering technique to prepare a-C:H films: Effect of substrate bias

    NASA Astrophysics Data System (ADS)

    Wang, Yongxia; Ye, Yinping; Li, Hongxuan; Ji, Li; Chen, Jianmin; Zhou, Huidi

    2011-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited by magnetron sputtering with a mixture gas of Ar and CH 4. The a-C:H films deposited by this method have relatively low internal stress (<1 GPa) compared to some films deposited by conventional deposition process. The effects of substrate bias voltage on microstructure, surface morphology and mechanical properties of the films were investigated by various techniques. It has been found that the polymer-like structure is dominated at low bias voltage (-100 V), while the diamond-like structure with the highest hardness and internal stress is the main feature of the a-C:H films deposited under high bias voltage (-300 V). With increasing the bias voltage further, the feature of diamond-like structure decreases associating with the increase of graphitization. The frictional test shows that the friction coefficient and wear rate of the a-C:H films are depended strongly on structure and mechanical properties, which were ultimately influenced by the deposition method and bias voltage.

  2. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation.

    PubMed

    Alamiddine, Zakaria; Selvam, Balaji; Cern-Carrasco, Jos P; Math-Allainmat, Monique; Lebreton, Jacques; Thany, Steeve H; Laurent, Adle D; Graton, Jrme; Le Questel, Jean-Yves

    2015-12-01

    The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein (Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI-Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH?/CHO and ?-? stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI-Ac-AChBP amino acid pairs. PMID:26589615

  3. Helium permeation through a-C:H films deposited on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Bellachioma, M. C.; Lozzi, L.; Santucci, S.; Kenny, J. M.

    2002-09-01

    The influence of amorphous hydrogenated carbon a-C:H coatings on gas permeation through polymer films was investigated. Hydrogenated amorphous carbon (a-C:H) films were deposited, at room temperature, from a CH4/Ar plasma produced by a radio frequency glow discharge system at 13.56 MHz. Polyether-etherketone (PEEK) and polyetherimide foils with different thicknesses were used as substrates. The permeation of He was measured and the reduction of the permeability coefficient is correlated here to the composition and density of the a-C:H films. The density and film structure of the layers were analyzed using x-ray reflectivity and Raman spectroscopy of films deposited onto silicon reference samples. A less pronounced reduction of the permeability coefficients for hard, dense diamond-like layers is reported with respect to those obtained for soft, polymer-like layers on PEEK substrates. Surprisingly, the barrier efficacy of the coating decreases with an increase in a-C:H film density. This unexpected result is attributed to intrinsic stress and the corresponding formation of microcracks. The effect of nitrogen incorporation, which reduces film permeability, is investigated in terms of the stress relaxation mechanism promoted. copyright 2002 American Vacuum Society.

  4. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  5. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false What happens if an ACH payment is returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC...

  6. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false What happens if an ACH payment is returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT REGULATIONS GOVERNING SECURITIES HELD IN...

  7. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false What happens if an ACH payment is returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC...

  8. 31 CFR 363.41 - What happens if an ACH payment is returned to Public Debt?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What happens if an ACH payment is returned to Public Debt? 363.41 Section 363.41 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC...

  9. Voltage-dependent interaction between the muscarinic ACh receptor and proteins of the exocytic machinery.

    PubMed Central

    Linial, M; Ilouz, N; Parnas, H

    1997-01-01

    1. Release of neurotransmitter into the synaptic cleft is the last step in the chain of molecular events following the arrival of an action potential at the nerve terminal. The neurotransmitter exerts negative feedback on its own release. This inhibition would be most effective if exerted on the first step in this chain of events, i.e. a step that is mediated by membrane depolarization. Indeed, in numerous studies feedback inhibition was found to be voltage dependent. 2. The purpose of this study is to investigate whether the mechanism underlying feedback inhibition of transmitter release resides in interaction between the presynaptic autoreceptors and the exocytic apparatus, specifically the soluble NSF-attachment protein receptor (SNARE) complex. 3. Using rat synaptosomes we show that the muscarinic ACh autoreceptor (mAChR) is an integral component of the exocytic machinery. It interacts with syntaxin, synaptosomal-associated protein of 25 kDa (SNAP-25), vesicle-associated membrane protein (VAMP) and synaptotagmin as shown using both cross-linking and immunoprecipitation. 4. The interaction between mAChRs and both syntaxin and SNAP-25 is modulated by depolarization levels; binding is maximal at resting potential and disassembly occurs at higher depolarization. 5. This voltage-dependent interaction of mAChRs with the secretory core complex appears suitable for controlling the rapid, synchronous neurotransmitter release at nerve terminals. Images Figure 2 Figure 3 PMID:9365901

  10. Design, Synthesis and Structure-Activity Relationship (SAR) Studies of 2,4-Disubstituted Pyrimidine Derivatives: Dual Activity as Cholinesterase and A?-Aggregation Inhibitors

    PubMed Central

    Mohamed, Tarek; Zhao, Xiaobei; Habib, Lila K.; Yang, Jerry; Rao, Praveen P. N.

    2011-01-01

    A novel class of 2,4-disubstituted pyrimidines (7au, 8af, 9ae) that possess substituents with varying steric and electronic properties at the C-2 and C-4 positions, were designed, synthesized and evaluated as dual cholinesterase and amyloid-? (A?)-aggregation inhibitors. In vitro screening identified N-(naphth-1-ylmethyl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (9a) as the most potent AChE inhibitor (IC50 = 5.5 ?M). Among this class of compounds, 2-(4-methylpiperidin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine (9e) was identified as the most potent and selective BuChE inhibitor (IC50 = 2.2 ?M, Selectivity Index = 11.7) and was about 5.7-fold more potent compared to the commercial, approved reference drug galanthamine (BuChE IC50 = 12.6 ?M). In addition, the selective AChE inhibitor N-benzyl-2-(4-methylpiperazin-1-yl)pyrimidin-4-amine (7d), exhibited good inhibition of hAChE-induced aggregation of A?140 fibrils (59% inhibition). Furthermore, molecular modeling studies indicate that a central pyrimidine ring serves as a suitable template to develop dual inhibitors of cholinesterase and AChE-induced A? aggregation thereby targeting multiple pathological routes in AD. PMID:21429752

  11. A fluorometric assay for acetylcholinesterase activity and inhibitor detection based on DNA-templated copper/silver nanoclusters.

    PubMed

    Li, Wenhua; Li, Wang; Hu, Yufang; Xia, Yalin; Shen, Qinpeng; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-09-15

    A novel label-free, rapid, cost-effective, and highly sensitive fluorometric sensor has been constructed for the detection of acetylcholinesterase (AChE) activity and its inhibitor based on the fluorescence quenching of DNA-templated copper/silver nanoclusters (DNA-Cu/AgNCs). In this assay, AChE catalyzes the hydrolysis of acetylthiocholine (ATCh) to form thiocholine which induces fluorescence quenching of DNA-Cu/AgNCs. The AChE activity could be detected as low as 0.05mU/mL and with a linear range from 0.05 to 2.0mU/mL. This assay offers a very convenient "mix and detect" approach for AChE activity. On the other hand, tacrine and organophosphorus pesticides (OPPs) were employed to inhibit the hydrolysis of ATCh, which could eliminate the fluorescence quenching of DNA-Cu/AgNCs. The IC50 of tacrine and methamidophos were estimated to be 16.9nM and 0.075mg/L, respectively. This method was also used to detect spiked OPPs in agricultural products successfully. The present work may expand the use of DNA-Cu/AgNCs to the field of enzyme sensors. PMID:23603132

  12. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    PubMed

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChR?7, ?4 and ?2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p < 0.05). While 8-hydroxy-2-deoxyguanosine and malondialdehyde levels were significantly decreased, NR2B and nAChR?7 expressions were significantly increased in the aspirin+ascorbic acid group as compared to the control group (p < 0.05). Subchronic treatment with aspirin+ascorbic acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process. PMID:24699240

  13. Synthesis of novel triazoles and a tetrazole of escitalopram as cholinesterase inhibitors.

    PubMed

    Mehr-un-Nisa; Munawar, Munawar A; Chattha, Fauzia A; Kousar, Samina; Munir, Jawaria; Ismail, Tayaba; Ashraf, Muhammad; Khan, Misbahul A

    2015-09-01

    A novel serie of escitalopram triazoles (60-88) and a tetrazole (89) have been synthesized and subjected to a study to establish the inhibitory potential of these compounds toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Some selectivity in inhibition has been observed. The 4-chlorophenyl- (75, IC50, 6.71 0.25 ?M) and 2-methylphenyl- (70, IC50, 9.52 0.23 ?M) escitalopram triazole derivatives depicted high AChE inhibition, while 2-fluorophenyl- (76, IC50 = 4.52 0.17 ?M) and 4-fluorophenyl- (78, IC50 = 5.31 0.43 ?M) have found to be excellent BChE inhibitors. It has also been observed that ortho, meta and para substituted electron donating groups increase the inhibition, while electron withdrawing groups reduce the inhibition. Docking analyses of inhibitors with AChE have depicted the binding energies for 70 and 75 as ?G(bind) -6.42 and -6.93 kcal/mol, respectively, while ligands 76 and 78 have shown the binding affinity ?G(bind) -9.04 and -8.51 kcal/mol, respectively, for BChE. PMID:26189031

  14. A novel PDE1A coupled to M2AChR at plasma membranes from bovine tracheal smooth muscle.

    PubMed

    Mastromatteo-Alberga, Patrizzia; Placeres-Uray, Fabiola; Alfonzo-González, Marcelo A; Alfonzo, Ramona Gonzalez de; Becemberg, Itala Lippo de; Alfonzo, Marcelo J

    2016-06-01

    Muscarinic antagonists, via muscarinic receptors increase the cAMP/cGMP levels at bovine tracheal smooth muscle (BTSM) through the inhibition of phosphodiesterases (PDEs), displaying a similar behavior of vinpocetine (a specific-PDE1 inhibitor). The presence of PDE1 hydrolyzing both cyclic nucleotides in BTSM strips was revealed. Moreover, a vinpocetine and muscarinic antagonists inhibited PDE1 located at plasma membranes (PM) fractions from BTSM showing such inhibition, an M2AChR pharmacological profile. Therefore, a novel Ca(2+)/CaM dependent and vinpocetine inhibited PDE1 was purified and characterized at PM fractions from BTSM. This PDE1 activity was removed from PM fractions using a hypotonic buffer and purified some 38 fold using two columns (Q-Sepharose and CaM-agarose). This PDE1 was stimulated by CaM and inhibited by vinpocetine showing two bands in PAGE-SDS (56, 58 kDa) being the 58 kDa identified as PDE1A by Western blotts. This PDE1A activity was assayed with [(3)H]cGMP and [(3)H]cAMP exhibiting a higher affinity as Km (μM) for cGMP than cAMP but being close values with Vmax cAMP/cGMP ratio of 1.5. The co-factor Mg(2+) showed similar K(A) (mM) for both cyclic nucleotides. Vinpocetine showed similar inhibition concentration 50% (IC50 of 4.9 and 4.6 μM) for cAMP and cGMP, respectively. CaM stimulated the cyclic nucleotides hydrolysis by PDE1A exhibiting similar activation constant as K(CaM), in nM range. The original finding was the identification and purification of a vinpocetine and muscarinic antagonist-inhibited and CaM-activated PM-bound PDE1A, linked to M2AChR. A model of this novel signal transducing cascade for the regulation of cyclic nucleotides levels at BTSM is proposed. PMID:26513204

  15. Book Review: Reconstructing Quaternary Environments

    NASA Astrophysics Data System (ADS)

    Bridgland, David R.; Evans, David J. A.; Roberts, David H.

    2016-02-01

    A third edition of this, the foremost Quaternary textbook, is most welcome, coming seventeen years after the 1997 second edition (which was 13 years after the first). The general impression is one of advancement, not least because of the extensive updating of literature cited and examples used, with the status maintained of an impressive compendium of a specialism with a very wide subject base. Some changes are cosmetic, with chapter and section headers having a more modern style and a profusion of new colour photographs and diagrams. Some of the latter are redrawn from black and white figures in the previous edition, although not all have been improved, as some are smaller and have been simplified. For example, black and white Fig. 3.10 of the Second Edition compares very favourably with the much smaller colour 3.17 in this latest volume (erratic sources). On the plus side, the number change, for a figure that appears in the same place within the chapter, shows that the latest edition is considerably better illustrated than its predecessor, perhaps accounting for a significant proportion of the increased page total (up from 446 to 538).

  16. Quaternary geologic map of Minnesota

    NASA Technical Reports Server (NTRS)

    Goebel, J. E.

    1977-01-01

    The Quaternary Geologic Map of Minnesota is a compilation based both on the unique characteristics of satellite imagery and on the results of previous field investigations, both published and unpublished. The use of satellite imagery has made possible the timely and economical construction of this map. LANDSAT imagery interpretation proved more useful than expected. Most of the geologic units could be identified by extrapolating from specific sites where the geology had been investigated into areas where little was known. The excellent geographic registry coupled with the multi-spectral record of these images served to identify places where the geologic materials responded to their ecological environment and where the ecology responded to the geologic materials. Units were well located on the map at the scale selected for the study. Contacts between till units could be placed with reasonable accuracy. The reference points that were used to project delineations between units (rivers, lakes, hills, roads and other features), which had not been accurately located on early maps, could be accurately located with the help of the imagery. The tonal and color contrasts, the patterns reflecting geologic change and the resolution of the images permitted focusing attention on features which could be represented at the final scale of the map without distraction by other interesting but site-specific details.

  17. The Irish quaternary fauna project

    NASA Astrophysics Data System (ADS)

    Woodman, Peter; Mccarthy, Margaret; Monaghan, Nigel

    Much of Ireland's Pleistocene and Early Holocene mammalian faunas are derived from a series of late 19th/early 20th century cave excavations. In many instances it would appear that the deposits containing these faunal remains were disturbed. This project assessed the chronological range of the mammalian species present in the caves using 14C dating, in particular accelerator mass spectrometry (AMS). The research has shown that (1) a wide range of mammals colonised Ireland in the period between at least 45 ka and 20 ka, with some elements surviving until close to the Last Glacial Maximum; (2) a more restricted range of species re-colonised Ireland during the Lateglacial period, with evidence for a slightly more temperature fauna being replaced by an Arctic fauna at about 11 ka; (3) certain elements of Ireland's Holocene fauna may have survived through from the Lateglacial into the Holocene; (4) there is a lack of evidence for red deer, Cervus elaphus, being present in the Early Holocene in Ireland; and (5) horse is only documented in the Irish Holocene from 4 ka. The paper also discusses the implications of the Quaternary Fauna Project for the Late Pleistocene of Ireland, the mechanism and period of colonisation of Ireland as well as the introduction of domesticates in the Mid Holocene.

  18. Biological Evaluation of Azomethine-dihydroquinazolinone Conjugates as Cancer and Cholinesterase Inhibitors.

    PubMed

    Iqbal, Jamshed; Saeed, Aamer; Shah, Syed J A; Al-Rashida, Mariya; Mahmood, Shams-Ul

    2016-01-01

    In an attempt to discover novel anti-cancer agents and potent cholinesterase inhibitors, 11 azomethine-dihydroquinazolinone conjugates were evaluated against lung carcinoma cells and cholinesterases. Most of the compounds exhibited significant cytotoxicity at low micromolar concentrations and were less toxic to normal cells. After 24 h incubation period, 2i showed maximum cytotoxicity. The 4-bromine substituted compounds showed higher acetylcholinesterase (AChE) inhibitory activity than other screened compounds. The most active compound 2c, among the series, had an IC50 value 209.8 M against AChE. The tested compounds showed less inhibition against butyrylcholinesterase. Molecular docking studies were performed in order to investigate the plausible binding modes of synthesized compounds. The compounds can be further optimized to treat cancer and Alzheimer's disease. These derivatives may open new pathways for introducing new therapies for curing cancer and senile dementia. PMID:26152145

  19. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  20. Effect of acetaldehyde on hemoglobin: HbA1ach as a potential marker of heavy drinking.

    PubMed

    Sillanaukee, P; Seppä, K; Koivula, T

    1991-01-01

    The appearance of a new acetaldehyde-induced hemoglobin fraction, HbA1ach, and the effect of alcohol consumption on it and on the ratio of HbA1ach and glycated hemoglobin, HbA1c, were studied in vivo by cation exchange liquid chromatography. The mean +/- SEM of blood HbA1ach level was 171 +/- 13.10(-3)% of total hemoglobin as measured in 34 male teetotallers. Blood HbA1ach levels of 127 social drinkers (182 +/- 6.10(-3)%) were compared with those of 72 heavy drinkers (213 +/- 8.10(-3)%, p less than 0.01), 79 alcoholics (209 +/- 6.10(-3)%, p less than 0.01) and 16 diabetics (419 +/- 28.10(-3)%, p less than 0.001). HbA1ach correlated positively with HbA1c (p less than 0.001) and negatively with HbAo (p less than 0.001). The ratio of HbA1ach/HbA1c was effective in detecting the alcohol-induced increase in the HbA1ach fraction because the ratio reduced the disturbing effect of glucose. The sensitivity of the HbA1ach/HbA1c ratio was 33% in the heavy drinker group as compared to 40% of gamma-glutamyltransferase and 24% of mean corpuscular volume. The HbA1ach fraction and the HbA1ach/HbA1c ratio seem to be valuable in detecting excessive alcohol consumption in its early phase. PMID:1686709

  1. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis.

    PubMed

    Vandeput, Marie; Parsajoo, Cobra; Vanheuverzwijn, Jérôme; Patris, Stéphanie; Yardim, Yavuz; le Jeune, Alexandre; Sarakbi, Ahmad; Mertens, Dominique; Kauffmann, Jean-Michel

    2015-01-01

    A commercially available thin-layer flow-through amperometric detector, with the sensing block customized in an original design, was applied to the screening of drug compounds known as acetylcholinesterase (AChE) inhibitors. AChE from electric eel was covalently immobilized onto a cysteamine modified gold disk adjacent to a silver disk working electrode. On-line studies were performed by flow injection analysis (FIA) in PBS buffer pH 7.4. Seven commercially available AChE inhibitors used in the medical field, namely neostigmine, eserine, tacrine, donepezil, rivastigmine, pyridostigmine and galantamine as well as two natural compounds, quercetin and berberine, were investigated. The same trend of inhibitory potency as described in the literature was observed. Of particular interest and in addition to the determination of the IC50 values, this flow-through system allowed the study of both, the stability of the enzyme-inhibitor complex and the kinetic of the enzyme activity recovery. PMID:25459923

  2. Ice Age refugia and Quaternary extinctions: An issue of Quaternary evolutionary palaeoecology

    NASA Astrophysics Data System (ADS)

    Stewart, John R.; Cooper, Alan

    2008-12-01

    Quaternary palaeoecology, as a discipline, involves the analysis of a large range of fossil organisms from the last ca. 2 million years. This paper considers the role that these Quaternary records can take in better understanding the evolution of those organisms. We also discuss the surprisingly low uptake of evolutionary biology in Quaternary palaeoecological studies. This leads us to encourage an advance on both these fronts with a greater degree of collaboration with phylogeographic and ancient DNA researchers. These discussions accompany a summary of a special issue of Quaternary Science Reviews representing the proceedings of the XVII INQUA held in Cairns Australia in 2007. This special issue includes papers on a wide variety of Quaternary evolutionary palaeoecological and population dynamic subjects including extinct Pacific Island palm trees, Beringian beetles, Scandinavian trees, and the effects on human and animal populations of an extraterrestrial impact event in the Late Glacial of North America.

  3. Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Švarcová, Markéta; Vinšová, Jarmila

    2016-01-01

    Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization. PMID:26875979

  4. Isoflurane-Induced Spatial Memory Impairment in Mice is Prevented by the Acetylcholinesterase Inhibitor Donepezil

    PubMed Central

    Wang, Beilei; Xu, Huan; Li, Wen; Chen, Jie; Wang, Xiangrui

    2011-01-01

    Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA) for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg) or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2%) for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE), choline acetylase (ChAT) and ?7 nicotinic receptor (?7-nAChR) were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or ?7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane. PMID:22114680

  5. Muscle aches

    MedlinePLUS

    ... and fibromyalgia often respond well to massage. Gentle stretching exercises after a long rest period are also ... to try. A physical therapist can teach you stretching, toning, and aerobic exercises to help you feel ...

  6. Invokana (Canagliflozin) as a dual inhibitor of acetylcholinesterase and sodium glucose co-transporter 2: advancement in Alzheimer's disease- diabetes type 2 linkage via an enzoinformatics study.

    PubMed

    Rizvi, Syed M D; Shakil, Shahnawaz; Biswas, Deboshree; Shakil, Shazi; Shaikh, Sibhghatulla; Bagga, Paramdeep; Kamal, Mohammad A

    2014-04-01

    Acetylcholinesterase (AChE) is a primary target for Alzheimer's therapy while recently sodium glucose cotransporter 2 (SGLT2) has gained importance as a potential target for Type 2 Diabetes Mellitus (T2DM) therapy. The present study emphasizes the molecular interactions between a new Food and Drug Administration (FDA) approved antidiabetic drug 'Invokana' (chemically known as Canagliflozin) with AChE and SGLT2 to establish a link between the treatment of T2DM and Alzheimer's Disease (AD). Docking study was performed using 'Autodock4.2'. Both hydrophobic and ?-? interactions play an important role in the correct positioning of Canagliflozin within SGLT2 and catalytic site (CAS) of AChE to permit docking. Free energy of binding (?G) for 'Canagliflozin-SGLT2' interaction and 'Canagliflozin - CAS domain of AChE' interaction were found to be -10.03 kcal/mol and -9.40 kcal/mol, respectively. During 'Canagliflozin-SGLT2' interaction, Canagliflozin was found to interact with the most important amino acid residue Q457 of SGLT2. This residue is known for its interaction with glucose during reabsorption in kidney. However, 'Canagliflozin-CAS domain of AChE' interaction revealed that out of the three amino acids constituting the catalytic triad (S203, H447 and E334), two amino acid residues (S203 and H447) interact with Canagliflozin. Hence, Invokana (Canagliflozin) might act as a potent dual inhibitor of AChE and SGLT2. However, scope still remains in the determination of the three-dimensional structure of SGLT2-Canagliflozin and AChE-Canagliflozin complexes by X-ray crystallography to validate the described data. Since the development of diabetes is associated with AD, the design of new AChE inhibitors based on antidiabetic drug scaffolds would be particularly beneficial. Moreover, the present computational study reveals that Invokana (Canagliflozin) is expected to form the basis of a future dual therapy against diabetes associated neurological disorders. PMID:24059302

  7. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids

    PubMed Central

    Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José

    2014-01-01

    The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer’s disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13–15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hAChE and selective irreversible hMAO B inhibitor which might be considered as a promising compound for further development for the treatment of AD. PMID:25378907

  8. Sound localisation ability of soldiers wearing infantry ACH and PASGT helmets.

    PubMed

    Scharine, Angelique A; Binseel, Mary S; Mermagen, Timothy; Letowski, Tomasz R

    2014-01-01

    Helmets provide soldiers with ballistic and fragmentation protection but impair auditory spatial processing. Missed auditory information can be fatal for a soldier; therefore, helmet design requires compromise between protection and optimal acoustics. Twelve soldiers localised two sound signals presented from six azimuth angles and three levels of elevation presented at two intensity levels and with three background noises. Each participant completed the task while wearing no helmet and with two U.S. Army infantry helmets - the Personnel Armor System for Ground Troops (PASGT) helmet and the Advanced Combat Helmet (ACH). Results showed a significant effect of helmet type on the size of both azimuth and elevation error. The effects of level, background noise, azimuth and elevation were found to be significant. There was no effect of sound signal type. As hypothesised, localisation accuracy was greatest when soldiers did not wear helmet, followed by the ACH. Performance was worst with the PASGT helmet. PMID:24840132

  9. Two rare variations, D478N and D478E, that occur at the same amino acid residue in nicotinic acetylcholine receptor (nAChR) ?2 subunit influence nAChR function

    PubMed Central

    Dash, Bhagirathi; Li, Ming D.

    2014-01-01

    There occur two rare variations, Asp(D)478Asn(N) and Asp(D)478Glu(E), in the putative cytoplasmic amphipathic ?-helices of human nicotinic acetylcholine receptor (nAChR) ?2 subunit as a result of mutation in the 1st (G?A: rs141072985) and 3rd (C?A: rs56344740) nucleotide of its 478th triplet codon (GAC). We assessed the effects of these two variations on the function of ?2?2- and ?2?4-nAChRs as they could alter the electronegativity and/or the structure of the cytoplasmic portals (framed by subunit amphipathic ?-helices) necessary for obligate ion permeation from extracellular space to cytoplasm. We injected decreasing ratio of subunit cRNAs (?:?; 10:1, 1:1 and 1:10) into Xenopus oocytes to express putative low sensitivity (LS; 10:1), intermediate-sensitivity (IS; 1:1) and high sensitivity (HS; 1:10) isoforms of wild type and variant ?2?2- and ?2?4-nAChRs. Two-electrode voltage clamp analyses indicate that the agonist (ACh or nicotine) induced peak current responses (Imax) of ?2?2-nAChR isoforms and those of ?2?4-nAChR isoforms are increased (1.34.7-fold) as a result of D478E variation. The ?2 subunit D478N variation only increases the Imax of IS (~2-fold) or HS (1.42.1-fold) ?2?2-nAChRs. Concentration-response curves constructed indicate no effect on agonist sensitivities of LS and HS isoforms of ?2?2- or ?2?4-nAChRs as a result of either variation in ?2 subunit. Between the two variant nAChRs, ?2(D478E)*-nAChR isoforms generally yield higher Imax than those of respective ?2(D478N)*-nAChR isoforms. These effects could be attributed to alteration in cytoplasmic portals and/or ion permeation through it owing to change in amino acid electronegativity (D?N) and side chain length (D?E) in nAChR ?2 subunit. PMID:24950454

  10. Difluoromethyl ketones: Potent inhibitors of wild type and carbamate-insensitive G119S mutant Anopheles gambiae acetylcholinesterase.

    PubMed

    Camerino, Eugene; Wong, Dawn M; Tong, Fan; Körber, Florian; Gross, Aaron D; Islam, Rafique; Viayna, Elisabet; Mutunga, James M; Li, Jianyong; Totrov, Maxim M; Bloomquist, Jeffrey R; Carlier, Paul R

    2015-10-15

    Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE. Fluoromethyl ketones 10c-i exhibited submicromolar to micromolar inhibition of WT AgAChE, but again only weakly inhibited G119S AgAChE. Interestingly, difluoromethyl ketone inhibitors 9c and 9g had single digit nanomolar inhibition of WT AgAChE, and 9g had excellent potency against G119S AgAChE. Approach to steady-state inhibition was quite slow, but after 23 h incubation an IC50 value of 25.1 ± 1.2 nM was measured. We attribute the slow, tight-binding G119S AgAChE inhibition of 9g to a balance of steric size and electrophilicity. However, toxicities of 5g, 9g, and 10g to adult A. gambiae in tarsal contact, fumigation, and injection assays were lower than expected based on WT AgAChE inhibition potency and volatility. Potential toxicity-limiting factors are discussed. PMID:26386602

  11. Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Bolea, Irene; Juárez-Jiménez, Jordi; de Los Ríos, Cristóbal; Chioua, Mourad; Pouplana, Ramón; Luque, F Javier; Unzeta, Mercedes; Marco-Contelles, José; Samadi, Abdelouahid

    2011-12-22

    A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl propargylamino moiety of the MAO inhibitor N-[(5-benzyloxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (2), connected through an oligomethylene linker. The most promising hybrid (5) is a potent inhibitor of both MAO-A (IC50=5.2±1.1 nM) and MAO-B (IC50=43±8.0 nM) and is a moderately potent inhibitor of AChE (IC50=0.35±0.01 μM) and BuChE (IC50=0.46±0.06 μM). Moreover, molecular modeling and kinetic studies support the dual binding site to AChE, which explains the inhibitory effect exerted on Aβ aggregation. Overall, the results suggest that the new compounds are promising multitarget drug candidates with potential impact for Alzheimer's disease therapy. PMID:22023459

  12. Deposition of a-C:H films on UHMWPE substrate and its wear-resistance

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Liu, Hengjun; Deng, Xingrui; Leng, Y. X.; Huang, Nan

    2009-10-01

    In prosthetic hip replacements, ultrahigh molecular weight polyethylene (UHMWPE) wear debris is identified as the main factor limiting the lifetime of the artificial joints. Especially UHMWPE debris from the joint can induce tissue reactions and bone resorption that may lead to the joint loosening. The diamond like carbon (DLC) film has attracted a great deal of interest in recent years mainly because of its excellent tribological property, biocompatibility and chemically inert property. In order to improve the wear-resistance of UHMWPE, a-C:H films were deposited on UHMWPE substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-PECVD) technology. During deposition, the working gases were argon and acetylene, the microwave power was set to 800 W, the biased pulsed voltage was set to -200 V (frequency 15 kHz, duty ratio 20%), the pressure in vacuum chamber was set to 0.5 Pa, and the process time was 60 min. The films were analysed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, nano-indentation, anti-scratch and wear test. The results showed that a typical amorphous hydrogenated carbon (a-C:H) film was successfully deposited on UHMWPE with thickness up to 2 ?m. The nano-hardness of the UHMWPE coated with a-C:H films, measured at an applied load of 200 ?N, was increased from 10 MPa (untreated UHMWPE) to 139 MPa. The wear test was carried out using a ball ( 6 mm, SiC) on disk tribometer with an applied load of 1 N for 10000 cycles, and the results showed a reduction of worn cross-sectional area from 193 ?m 2 of untreated UHMWPE to 26 ?m 2 of DLC coated sample. In addition the influence of argon/acetylene gas flow ratio on the growth of a-C:H films was studied.

  13. Mechanism of Interaction of Novel Uncharged, Centrally Active Reactivators with OP-hAChE Conjugates

    PubMed Central

    Radić, Zoran; Sit, Rakesh K.; Garcia, Edzna; Zhang, Limin; Berend, Suzana; Kovarik, Zrinka; Amitai, Gabriel; Fokin, Valery V.; Sharpless, K. Barry; Taylor, Palmer

    2012-01-01

    A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k2. Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated Kox reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity. PMID:22975155

  14. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klckner, J; Dallanoce, C; Rack, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such superagonism has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a superagonist. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. Superagonism is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structuresignalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that superagonism of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR superagonism is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  15. Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay).

    PubMed

    Libertini, G

    2013-09-01

    In the late seventies, a small tribal population of Paraguay, the Ache, living under natural conditions, was studied. Data from this population turn out to be useful for considerations about evolutionary hypotheses on the aging phenomenon. 1) Ache show an age-related increasing mortality, which strongly limits the mean duration of life, as observed in other studies on mammal and bird species. 2) According to current theories on aging, in the wild very few or no individual reach old age and, so, aging cannot be directly influenced by natural selection. However, data from our population show that a significant proportion of the population reaches in the wild 60 and 70 years of age. 3) Data from Ache are also in agreement with the observation about an inverse correlation between extrinsic mortality and deaths due to the age-related increasing mortality. 4) For many gerontologists, the age-related decline of vital functions is a consequence of the gradual decline of cell turnover, genetically determined and regulated by the declining duplication capacities of stem cells. The current interpretation is that these restrictions are a general defense against the proliferation of any tumoral mass. However, among wild Ache cancer is virtually unknown in non-elderly subjects, and only among older individuals are there deaths attributable to oncological diseases. Moreover, fitness decline begins long before oncological diseases have fatal effects in significant numbers. This completely disproves the current hypothesis, because a supposed defense against a deadly disease cannot exterminate a population before the disease begins to kill. These data are consistent with similar data from other species studied under natural conditions, and they bring new arguments against the non-adaptive interpretation of aging and in support of the adaptive interpretation. PMID:24228924

  16. Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]octanes as Selective ?4?2-nAChR Ligands.

    PubMed

    Onajole, Oluseye K; Eaton, J Brek; Lukas, Ronald J; Brunner, Dani; Thiede, Lucinda; Caldarone, Barbara J; Kozikowski, Alan P

    2014-11-13

    We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at ?4?2-nicotinic acetylcholine receptor (nAChR) subtype. Structure-activity relationship studies revealed that incorporation of a cyclopropane-containing side chain at the 5-position of the pyridine ring provides ligands with improved subtype selectivity for nAChR ?2 subunit-containing nAChR subtypes (?2*-nAChRs) over ?4*-nAChRs compared to the parent compound 4. Compound 15 exhibited subnanomolar binding affinity for ?4?2- and ?4?2*-nAChRs with negligible interaction. Functional assays confirm selectivity for ?4?2-nAChRs. Furthermore, using the SmartCube assay system, this ligand showed antidepressant, anxiolytic, and antipsychotic features, while mouse forced-swim assay further confirm the antidepressant-like property of 15. PMID:25408831

  17. Expression of human AChR extracellular domain mutants with improved characteristics.

    PubMed

    Lazaridis, Konstantinos; Zisimopoulou, Paraskevi; Giastas, Petros; Bitzopoulou, Kalliopi; Evangelakou, Panagiota; Sideri, Anastasia; Tzartos, Socrates J

    2014-02-01

    The muscle nicotinic acetylcholine receptor (AChR) has a central role in neuromuscular transmission, and is the major target in the autoimmune disease myasthenia gravis (MG). We created mutants of the extracellular domains (ECDs) of the human ?1, ?1, ? and ? AChR subunits, whereby their Cys-loop was exchanged for that of the acetylcholine binding protein. The mutants were expressed in Pichia pastoris and had improved solubility resulting in 2- to 43-fold higher expression yields compared to the wild type. An additional mutant was created for the ?1 ECD restoring its glycosylation site within the Cys-loop and its ?-bungarotoxin binding ability. Furthermore, we constructed dimeric and pentameric concatamers of the mutant ECDs. All concatamers were successfully expressed as soluble secreted proteins, although the pentamers had about 10-fold lower expression than the dimers and were more susceptible to fragmentation. Initial crystallizations with the mutant ECDs were promising, and we reproducibly obtained crystals of the ?1 ECD, diffracting at ~12 . Further optimization is underway to obtain crystals suitable for high resolution crystallography. The proteins described herein are useful tools in structural studies of the human muscle AChR and can be used in applications requiring high yields such as therapeutic adsorbents for MG autoantibodies. PMID:24246999

  18. Choline acetyltransferase and the nicotinic acetylcholine receptor AChR?7 in experimental myositis.

    PubMed

    Spang, Christoph; Forsgren, Sture

    2015-11-01

    It is not known to what extent a non-neuronal cholinergic system is involved in myositis (muscle inflammation) evoked by marked muscle overuse. Therefore, in the present study, a recently established rabbit myositis model was used and the expression patterns of ChAT and nicotinic acetylcholine receptor AChR?7 (?7nAChR) were evaluated. Immunohistochemistry and in situ hybridization were used. The model leads to myositis including occurrence of muscle fiber necrosis. It was found that the infiltrating white blood cells as well the walls of small blood vessels exhibited immunoreactivity for both ChAT and ?7nAChR. There was also pronounced immunoreactivity for these in the white blood cells that had coalesced within the necrotic muscle fibers. The findings show that there is a presence of a non-neuronal cholinergic system in the situation of muscle inflammation. Cholinergic effects may be highly involved in the inflammation-modifying events that occur in muscle overuse. PMID:26086364

  19. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  20. Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese.

    PubMed Central

    Ennahar, S; Aoude-Werner, D; Sorokine, O; Van Dorsselaer, A; Bringel, F; Hubert, J C; Hasselmann, C

    1996-01-01

    Among 1,962 bacterial isolates from a smear-surface soft cheese (Munster cheese) screened for activity against Listeria monocytogenes, six produced antilisterial compounds other than organic acids. The bacterial strain WHE 92, which displayed the strongest antilisterial effect, was identified at the DNA level as Lactobacillus plantarum. The proteinaceous nature, narrow inhibitory spectrum, and bactericidal mode of action of the antilisterial compound produced by this bacterium suggested that it was a bacteriocin. Purification to homogeneity and sequencing of this bacteriocin showed that it was a 4.6-kDa, 44-amino-acid peptide, the primary structure of which was identical to that of pediocin AcH produced by different Pediococcus acidilactici strains. We report the first case of the same bacteriocin appearing naturally with bacteria of different genera. Whereas the production of pediocin AcH from P. acidilactici H was considerably reduced when the final pH of the medium exceeded 5.0, no reduction in the production of pediocin AcH from L. plantarum WHE 92 was observed when the pH of the medium was up to 6.0. This fact is important from an industrial angle. As the pH of dairy products is often higher than 5.0, L. plantarum WHE 92, which develops particularly well in cheeses, could constitute an effective means of biological combat against L. monocytogenes in this type of foodstuff. PMID:8953710

  1. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    PubMed

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Vernica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. PMID:25431195

  2. Pharmacological chaperoning of nAChRs: a therapeutic target for Parkinson's disease.

    PubMed

    Srinivasan, Rahul; Henderson, Brandon J; Lester, Henry A; Richards, Christopher I

    2014-05-01

    Chronic exposure to nicotine results in an upregulation of neuronal nicotinic acetylcholine receptors (nAChRs) at the cellular plasma membrane. nAChR upregulation occurs via nicotine-mediated pharmacological receptor chaperoning and is thought to contribute to the addictive properties of tobacco as well as relapse following smoking cessation. At the subcellular level, pharmacological chaperoning by nicotine and nicotinic ligands causes profound changes in the structure and function of the endoplasmic reticulum (ER), ER exit sites, the Golgi apparatus and secretory vesicles of cells. Chaperoning-induced changes in cell physiology exert an overall inhibitory effect on the ER stress/unfolded protein response. Cell autonomous factors such as the repertoire of nAChR subtypes expressed by neurons and the pharmacological properties of nicotinic ligands (full or partial agonist versus competitive antagonist) govern the efficiency of receptor chaperoning and upregulation. Together, these findings are beginning to pave the way for developing pharmacological chaperones to treat Parkinson's disease and nicotine addiction. PMID:24593907

  3. The ?3?4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies

    PubMed Central

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-01-01

    BACKGROUND AND PURPOSE Recent data have indicated that ?3?4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. EXPERIMENTAL APPROACHES To assess the role of ?3?4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. KEY RESULTS BXD recombinant mouse lines demonstrated an increased expression of ?3, ?4 and ?5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, ?5 and ?4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective ?3?4* nACh receptor antagonists, ?-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the ?3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the ?4?2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. CONCLUSION AND IMPLICATIONS Overall, our findings suggest an important role for the ?3?4* nACh receptor subtype in morphine physical dependence. PMID:24750073

  4. Quaternary Marine Sulfur Cycle Dynamics

    NASA Astrophysics Data System (ADS)

    Markovic, S.; Paytan, A.; Wortmann, U. G.

    2011-12-01

    Published data show a -0.8% change in marine sulfate ?34S ratios in the past 2 Ma. Prior to this period it was stable at ~ 22% for ~ 50Ma since the Eocene. Compared to the residence time of sulfate (>10 Ma) the observed change is large and implies a major disturbance of the marine sulfur cycle. However, the cause of the disturbance, as well as the timing of its onset are poorly constrained. Here we present a new set of ?34S ratios of marine sulfate for the last 3 Ma with a temporal resolution of ~300ka, which shows a linear decline from 22 to ~21% in the past 1.75Ma. This may represent a change in volcanic and hydrothermal activity, pyrite burial or erosion and weathering of exposed evaporites and sulfides, which are the main processes affecting sulfate ?34S. However, during this period there is no geological evidence for exceptional volcanic and hydrothermal activity and consequently, the observed negative shift reflects either a change in isotopic composition and volume of erosional input of sulfate to the ocean, or a decrease in pyrite burial. The isotopic composition of the input flux depends on the relative proportion of sulfide vs. sulfate weathering. Sedimentary sulfides are mostly concentrated in organic rich sediments on continental shelves. Existing sea level records suggest periodic sea level drops during glacial stages related to the formation of ice sheets. This could affect sulfur cycling in two ways: a) exposure to surface weathering and erosion agents of large parts of continental shelves increased global sulfide oxidation and thus the input flux of sulfate to the ocean and/or b) the reduction of shelf areas resulted in decreased pyrite burial. We explore the effects of these changes with a simple box model. The modeling results indicate that the observed isotopic shift requires a 150% increase of pyrite weathering or a 90% reduction of pyrite burial over the past 1.75Ma. When both of these processes change in concert the same effect is produced with the doubling of pyrite weathering and 50% decrease of pyrite burial. As pyrite burial and organic matter burial are intimately linked, a drastic decrease in pyrite burial should leave its mark in the carbon isotopic record which shows no evidence of a major change in carbon cycling. We thus propose that increased sulfide weathering, either from subaerial exposure, or as a result of increased winnowing might be the principal cause of the negative ?34S shift in the Quaternary.

  5. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocenters

    PubMed Central

    Quasdorf, Kyle W.; Overman, Larry E.

    2015-01-01

    Preface Quaternary carbon stereocenterscarbon atoms to which four distinct carbon substituents are attachedare common features of molecules found in nature. However, prior to recent advances in chemical catalysis, there were few methods available for constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for synthesizing organic molecules containing such carbon atoms. This progress now makes it possible to selectively incorporate quaternary stereocenters in many high-value organic molecules for use in medicine, agriculture, and other areas. PMID:25503231

  6. Bacterial metabolism of quaternary ammonium compounds.

    PubMed Central

    Dean-Raymond, D; Alexander, M

    1977-01-01

    Of 10 quaternary ammonium compounds tested for biodegradation by the biological oxygen demand technique, only decyl- and hexadecyltrimethylammonium bromides were decomposed by organisms derived from sewage and soil. A mixture consisting of individual strains of Pseudomonas and Xanthomonas grew in solutions containing decyltrimethylammonium bromide as sole carbon source. The xanthomonad metabolized this quaternary ammonium compound in the presence of other organic molecules. The products of this activity included 9-carboxynomyl- and 7-carboxyheptyltrimethylammonium, suggesting that the terminal carbon of the decyl moiety is oxidized and the resulting carboxylic acid is subject to beta-oxidation. PMID:879767

  7. Synthesis, antioxidant and cathepsin D inhibition activity of quaternary ammonium chitosan derivatives.

    PubMed

    Li, Wenjuan; Duan, Yunfei; Huang, Jianying; Zheng, Qunxiong

    2016-01-20

    Two (2-hydroxypropyl) trimethyl ammonium and/or imidazole-based quaternary ammonium chitosan derivatives (NHT-chitosan and Im-OHT-chitosan) were synthesized by using nucleophilic substitution reaction. These two synthesized chitosan derivatives were characterized by Fourier transform infrared spectroscopy, NMR spectra, and UV-visible spectra. The applications as antioxidant agents and cathepsin D inhibitors were further investigated. Both of quaternary ammonium chitosan derivatives exhibited good antioxidant activity upon scavenging against hydroxyl radical and hydrogen peroxide as well as the lipid peroxidation inhibition in the linoleic acid emulsion system. They also exhibited good inhibition activity of cathepsin D protease. NHT-chitosan and Im-OHT-chitosan are potential the natural, healthy and safe preservatives in food industry. PMID:26572425

  8. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Ganda, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; Lpez, M. G.; Martnez-Sierra, R.; Borges, R.; Garca, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by otilonium. This extraordinary potency of otilonium in blocking nicotinic AChR, unrecognised until now, might account in part for its well known spasmolytic effects. Images Figure 8 PMID:8821535

  9. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed

    Ganda, L; Villarroya, M; Lara, B; Olmos, V; Gilabert, J A; Lpez, M G; Martnez-Sierra, R; Borges, R; Garca, A G

    1996-02-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by otilonium. This extraordinary potency of otilonium in blocking nicotinic AChR, unrecognised until now, might account in part for its well known spasmolytic effects. PMID:8821535

  10. 40 CFR 721.10569 - Tricyclic quaternary amine salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tricyclic quaternary amine salt... Specific Chemical Substances 721.10569 Tricyclic quaternary amine salt (generic). (a) Chemical substance... tricyclic quaternary amine salt (PMN P-08-471) is subject to reporting under this section for...

  11. 40 CFR 721.10569 - Tricyclic quaternary amine salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tricyclic quaternary amine salt... Specific Chemical Substances 721.10569 Tricyclic quaternary amine salt (generic). (a) Chemical substance... tricyclic quaternary amine salt (PMN P-08-471) is subject to reporting under this section for...

  12. Docking studies of benzylidene anabaseine interactions with α7 nicotinic acetylcholine receptor (nAChR) and acetylcholine binding proteins (AChBPs): Application to the design of related α7 selective ligands

    PubMed Central

    Kombo, David C.; Mazurov, Anatoly; Tallapragada, Kartik; Hammond, Philip S.; Chewning, Joseph; Hauser, Terry A.; Vasquez-Valdivieso, Montserrat; Yohannes, Daniel; Talley, Todd T.; Taylor, Palmer; Caldwell, William S.

    2016-01-01

    AChBPs isolated from Lymnaea stagnalis (Ls), Aplysia californica (Ac) and Bulinus truncatus (Bt) have been extensively used as structural prototypes to understand the molecular mechanisms that underlie ligand-interactions with nAChRs [1]. Here, we describe docking studies on interactions of benzylidene anabaseine analogs with AChBPs and α7 nAChR. Results reveal that docking of these compounds using Glide software accurately reproduces experimentally-observed binding modes of DMXBA and of its active metabolite, in the binding pocket of Ac. In addition to the well-known nicotinic pharmacophore (positive charge, hydrogen-bond acceptor, and hydrophobic aromatic groups), a hydrogen-bond donor feature contributes to binding of these compounds to Ac, Bt, and the α7 nAChR. This is consistent with benzylidene anabaseine analogs with OH and NH2 functional groups showing the highest binding affinity of these congeners, and the position of the ligand shown in previous X-ray crystallographic studies of ligand-Ac complexes. In the predicted ligand-Ls complex, by contrast, the ligand OH group acts as hydrogen-bond acceptor. We have applied our structural findings to optimizing the design of novel spirodiazepine and spiroimidazoline quinuclidine series. Binding and functional studies revealed that these hydrogen-bond donor containing compounds exhibit improved affinity and selectivity for the α7 nAChR subtype and demonstrate partial agonism. The gain in affinity is also due to conformational restriction, tighter hydrophobic enclosures, and stronger cation-π interactions. The use of AChBPs structure as a surrogate to predict binding affinity to α7 nAChR has also been investigated. On the whole, we found that molecular docking into Ls binding site generally scores better than when a α7 homology model, Bt or Ac crystal structure is used. PMID:21986237

  13. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  14. Distribution of Intravenously Administered Acetylcholinesterase Inhibitor and Acetylcholinesterase Activity in the Adrenal Gland: 11C-Donepezil PET Study in the Normal Rat

    PubMed Central

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Purpose Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered 11C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. Methods The distribution of 11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight ?=?2208.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of 11C-DNP (45.010.7 MBq). The whole-body distribution of the 11C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. Results The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of 11C-DNP in the body (following the liver) (13.331.08 and 19.431.29 ml/cm3, respectively), indicating that the distribution of 11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.91.6, 83.13.0, and 38.58.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. Conclusions We demonstrated the whole-body distribution of 11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of 11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors. PMID:25225806

  15. Nicotinic ACh receptor subtypes on gastrointestinally projecting neurones in the dorsal motor vagal nucleus of the rat

    PubMed Central

    Sahibzada, Niaz; Ferreira, Manuel; Williams, Bernice; Wasserman, Adam; Vicini, Stefano; Gillis, Richard A

    2002-01-01

    To determine the predominant nicotinic ACh receptor (nAChR) located on neurones in the dorsal motor nucleus of the vagus (DMV) that project to the gastrointestinal tract, we used the rat brainstem slice preparation and whole-cell recordings of DMV neurones identified by retrograde DiI tracing to pharmacologically characterize nAChRs. Pressure ejection of acetylcholine (ACh, 250 ?m for 200 ms) from a patch pipette placed ?10-20 ?m from the surface of the recorded cell produced an inward current in most DMV neurones sampled. The average currents for neurones projecting to the fundus, antrum and caecum were 149 38 (n = 25), 115 18 (n = 29) and 117 23 pA (n = 6), respectively. Blockade of the ?7 subtype of nAChR with either ?-bungarotoxin (?-BGT) or methyllycaconitine (MLA) counteracted 60-75 % of the ACh-evoked current in DMV neurones projecting to the fundus, antrum and caecum. In neurones projecting to the fundus and the antrum, currents resistant to ?-BGT were significantly blocked by dihydro-?-erythroidine (10-20 nm), an antagonist of the ?4?2 subtype of nAChR. In neurones projecting to the caecum, currents resistant to ?-BGT were significantly depressed by a low concentration of mecamylamine (1 ?m). Cytisine (100 ?m), an agonist of nAChRs that contain the ?7 or the ?4 subunit, evoked significant currents in caecum-projecting neurones that were previously exposed to ?-BGT. In contrast, cytisine had no effect on DMV neurones previously exposed to ?-BGT that project to the fundus or antrum. Our data indicate that the prevailing nAChR subtype in DMV neurones projecting to the GI tract is the ?7 subtype. In addition, we obtained evidence for the co-expression of the ?4?2 nAChR subtype on DMV neurones projecting to the fundus and antrum, and the ?3?4 nAChR subtype on DMV neurones projecting to the caecum. PMID:12482903

  16. Enantioselective construction of remote quaternary stereocentres

    NASA Astrophysics Data System (ADS)

    Mei, Tian-Sheng; Patel, Harshkumar H.; Sigman, Matthew S.

    2014-04-01

    Small molecules that contain all-carbon quaternary stereocentres--carbon atoms bonded to four distinct carbon substituents--are found in many secondary metabolites and some pharmaceutical agents. The construction of such compounds in an enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In particular, methods for synthesizing quaternary stereocentres that are remote from other functional groups are underdeveloped. Here we report a catalytic and enantioselective intermolecular Heck-type reaction of trisubstituted-alkenyl alcohols with aryl boronic acids. This method provides direct access to quaternary all-carbon-substituted β-, γ-, δ-, ɛ- or ζ-aryl carbonyl compounds, because the unsaturation of the alkene is relayed to the alcohol, resulting in the formation of a carbonyl group. The scope of the process also includes incorporation of pre-existing stereocentres along the alkyl chain, which links the alkene and the alcohol, in which the stereocentre is preserved. The method described allows access to diverse molecular building blocks containing an enantiomerically enriched quaternary centre.

  17. nAChR-induced octopamine release mediates the effect of nicotine on a startle response in Drosophila melanogaster.

    PubMed

    Fuenzalida-Uribe, Nicols; Meza, Rodrigo C; Hoffmann, Hernn A; Varas, Rodrigo; Campusano, Jorge M

    2013-04-01

    Biogenic amines (BAs) play a central role in the generation of complex behaviors in vertebrates and invertebrates, including the fly Drosophila melanogaster. The comparative advantages of Drosophila as a genetic model to study the contribution of BAs to behaviors stumble upon the difficulty to access the fly brain to ask relevant physiological questions. For instance, it is not known whether the activation of nicotinic acetylcholine receptors (nAChRs) induces the release of BAs in fly brain, a phenomenon associated to several behaviors in vertebrates. Here, we describe a new preparation to study the efflux of BAs in the adult fly brain by in vitro chronoamperometry. Using this preparation we show that nAChR agonists including nicotine induce a fast, transient, dose-dependent efflux of endogenous BAs, an effect mediated by ?-bungarotoxin-sensitive nAChRs. By using different genetic tools we demonstrate that the BA whose efflux is induced by nAChR activation is octopamine (Oct). Furthermore, we show that the impairment of a mechanically induced startle response after nicotine exposure is not observed in flies deficient in Oct transmission. Thus, our data show that the efflux of BAs in Drosophila brain is increased by nAChR activation as in vertebrates, and that then AChR-induced Oct release could have implications in a nicotine-induced behavioral response. PMID:23331098

  18. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria.

    PubMed

    Schrey, Silvia D; Schellhammer, Michael; Ecke, Margret; Hampp, Rüdiger; Tarkka, Mika T

    2005-10-01

    The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric (Amanita muscaria) and spruce (Picea abies) was investigated. The effects of both bacteria on the mycelial growth of different ectomycorrhizal fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture with AcH 505 were determined. The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances. PMID:16159334

  19. Roles for N-terminal Extracellular Domains of Nicotinic Acetylcholine Receptor (nAChR) ?3 Subunits in Enhanced Functional Expression of Mouse ?6?2?3- and ?6?4?3-nAChRs*

    PubMed Central

    Dash, Bhagirathi; Li, Ming D.; Lukas, Ronald J.

    2014-01-01

    Functional heterologous expression of naturally expressed mouse ?6*-nicotinic acetylcholine receptors (m?6*-nAChRs; where * indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid m?6m?4h?3- (?58-fold) or WT m?6m?4m?3-nAChRs (?2-fold) yielded higher function than m?6m?4-nAChRs. Function was not detected when m?6 and m?2 subunits were expressed together or in the additional presence of h?3 or m?3 subunits. However, function emerged upon expression of m?6m?2m?3V9?S-nAChRs containing ?3 subunits having gain-of-function V9?S (valine to serine at the 9?-position) mutations in transmembrane domain II and was further elevated 9-fold when h?3V9?S subunits were substituted for m?3V9?S subunits. Studies involving WT or gain-of-function chimeric mouse/human ?3 subunits narrowed the search for domains that influence functional expression of m?6*-nAChRs. Using h?3 subunits as templates for site-directed mutagenesis studies, substitution with m?3 subunit residues in extracellular N-terminal domain loops C (Glu221 and Phe223), E (Ser144 and Ser148), and ?2-?3 (Gln94 and Glu101) increased function of m?6m?2*- (?23-fold) or m?6m?4* (?24-fold)-nAChRs. EC50 values for nicotine acting at m?6m?4*-nAChR were unaffected by ?3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops ?2-?3 and E) interfaces of ?3 subunits are some of the molecular impediments for functional expression of m?6m?2?3- or m?6m?4?3-nAChRs. PMID:25028511

  20. In Vitro and In Vivo Profiles of ACH-702, an Isothiazoloquinolone, against Bacterial Pathogens?

    PubMed Central

    Pucci, Michael J.; Podos, Steven D.; Thanassi, Jane A.; Leggio, Melissa J.; Bradbury, Barton J.; Deshpande, Milind

    2011-01-01

    ACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency against Haemophilus influenzae, Moraxella catarrhalis, and a Neisseria sp. but was less active against members of the Enterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well as Legionella pneumophila and Mycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10 MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple. In vivo efficacy was demonstrated against S. aureus with murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (?0.25 ?g/ml) against staphylococcal strains with single mutations in both gyrA and grlA (parC), retention of good antibacterial activity (MICs of ?0.5 ?g/ml) against staphylococcal strains with two mutations in both gyrA and grlA, and low frequencies for the selection of higher-level resistance (<10?10). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates. PMID:21464250

  1. Development and testing of a low-toxicity acid corrosion inhibitor for industrial cleaning applications

    SciTech Connect

    Frenier, W.W.

    1996-12-01

    A low toxicity corrosion inhibitor for use in hydrochloric acid cleaning formulations has been developed. This formulation does not contains formaldehyde. It contains cinnamaldehyde, quaternary nitrogen salts, and a nonionic surfactant, none of which are currently known or suspected to be carcinogens. In laboratory tests, corrosion protection values were equivalent to those provided by current commercial acid inhibitors. Field tests using the low toxicity inhibitor have been conducted.

  2. Development and testing of a low toxicity acid corrosion inhibitor for industrial cleaning applications

    SciTech Connect

    Frenier, W.W.

    1997-02-01

    A low toxicity corrosion inhibitor used in hydrochloric acid cleaning formulations has been developed. This formulation does not contain formaldehyde. It contains cinnamaldehyde, quaternary nitrogen salts, and a nonionic surfactant, none of which are currently known or suspected to be carcinogens. In laboratory tests, corrosion protection values were equivalent to those provided by current commercial acid inhibitors. Field tests using the low toxicity inhibitor were conducted.

  3. Extracellular polysaccharidases synthesized by the epiphytic lichen Evernia prunastri (L.) Ach.

    PubMed

    Yagüe, E; Orus, M I; Estevez, M P

    1984-03-01

    Evernia prunastri Ach., an epiphytic lichen growing on Quercus rotundifolia Lam., produces a β-1,4-glucanase (EC 3.2.1.4) and a polygalacturonase (EC 3.2.1.15). The activity of these polysaccharidases increases as a response to incubation of the lichen with carboxymethylcellulose or sodium polygalacturonate, respectively. This increase in activity is thought to be the result of enzyme induction because it is inhibited by both cycloheximide and 8-azaguanine. Both polysaccharide-degrading enzymes are partially secreted into the incubation media. PMID:24258502

  4. ?6 nAChR subunit residues that confer ?-conotoxin BuIA selectivity

    PubMed Central

    Kim, Hyun-Woo; McIntosh, J. Michael

    2012-01-01

    Nicotinic acetylcholine receptors (nAChRs) containing ?6 and/or ?4 subunits modulate the release of dopamine. However, few compounds can effectively discriminate between ligand-binding sites that contain ?6 vs. ?4 nAChR subunits. Using a chimeric (?6/?4) subunit, we showed that ?-conotoxin BuIA binds the extracellular rat ?6?2 vs. ?4?2 interface with ?60,000-fold selectivity. Chimeras containing residues from the ?6 subunit were inserted into the homologous position of the ?4 subunit to identify critical sequence segments. The region between residues 184 and 207 in the ?6 subunit accounted for the potency difference. Chimeras within this region followed by point mutations were constructed for further definition. ?6 Lys185, Thr187, and Ile188 form a triad of key residues that influence BuIA binding; when these 3 ?6 residues were inserted into the ?4 subunit, there was an ?2000-fold increase in toxin potency. We used a crystal structure of BuIA bound to the acetylcholine-binding protein together with the structure of the Torepedo marmorata nAChR to build a homology model of BuIA bound to the interface between ?6 and ?2 subunits. The results indicate that the triad of ?6 residues lies outside the C loop and is distantly located from bound BuIA (>10 ). This suggests that alterations in potency are not caused by the direct interaction between the triad and BuIA. Instead, alterations in C-loop 3-dimensional structure and/or flexibility may account for differential potency. Thr198 and Tyr205 also contributed to BuIA potency. In addition, Thr198 caused BuIA potency differences between the closely related ?6 and ?3 subunits. Together, the findings provide insight into differences between the ?6 and other ? subunits that may be exploited by ?-conotoxins to achieve binding selectivity.Kim, H.-W., McIntosh, J. M. ?6 nAChR subunit residues that confer ?-conotoxin BuIA selectivity. PMID:22751014

  5. [Stomach ache and fever after consumption of watercress in Turkey: fascioliasis].

    PubMed

    van Daele, P L; Madretsma, G S; van Agtmael, M A

    2001-09-29

    A 52-year-old woman presented several months after returning from a visit to Turkey with stomach-ache and fever. Laboratory results showed leucocytosis with marked eosinophilia. Furthermore, serum liver enzyme activities were slightly elevated. A CT scan of the abdomen showed several spots which, on a later scan, had migrated. Serologic tests confirmed the clinical diagnosis of fascioliasis. The patient was successfully treated with triclabendazole. Infection presumably occurred after eating watercress which the patient had bought on a market in Turkey. PMID:11605314

  6. Inhibitory mechanisms and binding site location for serotonin selective reuptake inhibitors on nicotinic acetylcholine receptors.

    PubMed

    Arias, Hugo R; Feuerbach, Dominik; Bhumireddy, Pankaj; Ortells, Marcelo O

    2010-05-01

    Functional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit h alpha1beta1 gammadelta AChR-induced Ca(2+) influx with higher potencies than dizocilpine. The potency of fluoxetine is increased approximately 10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-(3)H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [(3)H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction. This is supported by our molecular docking results where neutral dizocilpine and fluoxetine and the conformer of protonated fluoxetine with the highest LUDI score interact with the domain between the valine (position 13') and leucine (position 9') rings. Molecular mechanics calculations also evidence electrostatic interactions of protonated fluoxetine at positions 20', 21', and 24'. Protonated dizocilpine bridges these two binding domains by interacting with the valine and outer (position 20') rings. The high proportion of protonated fluoxetine and dizocilpine calculated at physiological pH suggests that the protonated drugs can be attracted to the channel mouth before binding deeper within the AChR ion channel between the leucine and valine rings, a domain shared with phencyclidine, finally blocking ion flux and inducing AChR desensitization. PMID:20079457

  7. Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer's disease (AD).

    PubMed

    Bahrani, Hirbod; Mohamad, Jamaludin; Paydar, Mohammad Javad; Rothan, Hussin A

    2014-02-01

    Aquilaria subintegra, locally known as "Gaharu", belongs to the Thymelaeceae family. This plant's leaves have been claimed to be effective for the treatment of Alzheimer's disease (AD) by Malay traditional practitioner in Malaysia. In this research, the chloroform extracts of the leaves and stem of A. subintegra were tested for acetylcholinesterase (AChE) inhibitory activity. The Thin Layer Chromatography (TLC) results indicated the presence of phenols, flavonoids, terpenoids, and alkaloids compounds in the extracts. Analysis of the stem chloroform extracts with LCMS/MS displayed that it contains kaempferol 3,4,7-trimethyl ether. The AChE inhibitory activity of leaves and stem chloroform extracts and kaempferol were 80%, 93% and 85.8%, respectively. The Brine Shrimp Lethality Assay (BSLA) exhibited low to moderate toxicity of the chloroform extract from leaves (LC50=531.18 49.53 ?g/ml), the stem chloroform extract (LC50=407.34 68.05 ?g/ml) and kaempferol (LC50=762.41 45.09 ?g/ml). The extracts and kaempferol were not cytotoxic to human umbilical vein endothelial cells (HUVEC), human normal gastric epithelial cell line (GES-1) and human normal hepatic cell line (WRL-68). The effect of leaf and stem chloroform extracts and kaempferol were determined in the Radial Arm Maze (RAM) after administration by oral gavage to ICR male and female mice with valium-impaired memory. Administration of kaempferol to the mice significantly reduced the number of repeated entries into the arms of maze in males and females. In conclusion, the inhibition of AChE by leaf and stem chloroform extracts of A. subintegra could be due to the presence of kaempferol. This extract is safe for use as a natural AChE inhibitor as an alternative to berberine for the treatment of AD. PMID:24479629

  8. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction

    PubMed Central

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-01-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR ?-subunit-Y390 was reduced at endplates. In contrast, endplate staining for ?-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174

  9. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  10. The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries

    PubMed Central

    Huynh, NN; Harris, EE; Chin-Dusting, JFP; Andrews, KL

    2009-01-01

    Background and purpose Arginase and nitric oxide (NO) synthase share the common substrate L-arginine, and arginase inhibition is proposed to increase NO production by increasing intracellular levels of L-arginine. Many different inhibitors are used, and here we have examined the effects of these inhibitors on vascular tissue. Experimental approach Each arginase inhibitor was assessed by its effects on isolated rings of aorta and mesenteric arteries from rats by: (i) their ability to preserve the tolerance to repeated applications of the endothelium-dependent agonist acetylcholine (ACh); and (ii) their direct vasorelaxant effect. Key results In both vessel types, tolerance (defined as a reduced response upon second application) to ACh was reversed with addition of L-arginine, (S)-(2-boronethyl)-L-cysteine HCl (BEC) or NG-Hydroxy-L-arginine (L-NOHA). On the other hand, N?-hydroxy-nor-L-arginine (nor-NOHA) significantly augmented the response to ACh, an effect that was partially reversed with L-arginine. No effect on tolerance to ACh was observed with L-valine, nor-valine or D,L, ?-difluoromethylornithine (DFMO). BEC, L-NOHA and nor-NOHA elicited endothelium-independent vasorelaxation in both endothelium intact and denuded aorta while L-valine, DFMO and nor-valine did not. Conclusions and implications BEC and L-NOHA, but not nor-NOHA, L-valine, DFMO or nor-valine, significantly reversed tolerance to ACh possibly conserving L-arginine levels and therefore increasing NO bioavailability. However, both BEC and L-NOHA caused endothelium-independent vasorelaxation in rat aorta, suggesting that these inhibitors have a role beyond arginase inhibition alone. Our data thus questions the interpretation of many studies using these antagonists as specific arginase inhibitors in the vasculature, without verification with other methods. PMID:19133993

  11. Corrosion inhibition of iron in acidic solutions by alkyl quaternary ammonium halides: Correlation between inhibition efficiency and molecular structure

    NASA Astrophysics Data System (ADS)

    Niu, Lin; Zhang, Hu; Wei, Fenghua; Wu, Suxiang; Cao, Xiaoli; Liu, Pengpeng

    2005-12-01

    The corrosion inhibition of iron in 0.5 M H 2SO 4 solutions by alkyl quaternary ammonium halides (AQAH) inhibitors has been studied by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. The correlation between inhibition efficiency and molecular structure of the AQAH compounds is investigated. The results show that besides the concentration, the structure of alkyl groups and the type of halide ions of these AQAH inhibitors greatly influence the inhibition efficiency. Data obtained from EIS measurements are analyzed to model the corrosion inhibition process through appropriate equivalent circuit models.

  12. Methadone's effect on nAChRs--a link between methadone use and smoking?

    PubMed

    Talka, Reeta; Tuominen, Raimo K; Salminen, Outi

    2015-10-15

    Methadone is a long-acting opioid agonist that is frequently prescribed as a treatment for opioid addiction. Almost all methadone maintenance patients are smokers, and there is a correlation between smoking habit and use of methadone. Methadone administration increases tobacco smoking, and heavy smokers use higher doses of methadone. Nevertheless, methadone maintenance patients are willing to quit smoking although their quit rates are low. Studies on nicotine-methadone interactions provide an example of the bedside-to-bench approach, i.e., observations in clinical settings have been studied experimentally in vivo and in vitro. In vivo studies have revealed the interplay between nicotine and the endogenous opioid system. At the receptor level, methadone has been shown to be an agonist of human α7 nAChRs and a non-competitive antagonist of human α4β2 and α3* nAChRs. These drugs do not have significant interactions at the level of drug metabolism, and thus the interaction is most likely pharmacodynamic. The net effect of the interaction may depend on individual characteristics because pharmacogenetic factors influence the disposition of both methadone and nicotine. PMID:26231941

  13. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-?-erythroidine, and CP-601932 (a partial agonist of the ?3?4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  14. Blockade of neuronal ?7-nAChR by ?-conotoxin ImI explained by computational scanning and energy calculations.

    PubMed

    Yu, Rilei; Craik, David J; Kaas, Quentin

    2011-03-01

    ?-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to investigate the structure-activity relationships of conotoxin/nAChR complexes. However, the structural determinants of their binding interactions are still ambiguous in the absence of experimental structures of conotoxin-receptor complexes. In this study, the binding modes of ?-conotoxin ImI to the ?7-nAChR, currently the best-studied system experimentally, were investigated using comparative modeling and molecular dynamics simulations. The structures of more than 30 single point mutants of either the conotoxin or the receptor were modeled and analyzed. The models were used to explain qualitatively the change of affinities measured experimentally, including some nAChR positions located outside the binding site. Mutational energies were calculated using different methods that combine a conformational refinement procedure (minimization with a distance dependent dielectric constant or explicit water, or molecular dynamics using five restraint strategies) and a binding energy function (MM-GB/SA or MM-PB/SA). The protocol using explicit water energy minimization and MM-GB/SA gave the best correlations with experimental binding affinities, with an R2 value of 0.74. The van der Waals and non-polar desolvation components were found to be the main driving force for binding of the conotoxin to the nAChR. The electrostatic component was responsible for the selectivity of the various ImI mutants. Overall, this study provides novel insights into the binding mechanism of ?-conotoxins to nAChRs and the methodological developments reported here open avenues for computational scanning studies of a rapidly expanding range of wild-type and chemically modified ?-conotoxins. PMID:21390272

  15. [Quaternary prevention: containment as an ethical necessity].

    PubMed

    Martnez Gonzlez, C; Riao Galn, I; Snchez Jacob, M; Gonzlez de Dios, J

    2014-12-01

    The growing capacity of medicine to generate more iatrogenic events than ever, and the risk of unsustainability of health systems have led to new prevention concept: quaternary prevention aimed at restraining medicalization. Quaternary prevention is essential in the phenomenon called disease mongering, which could be translated as commercialization of disease. Encouraging this sort of prevention and halting the consequences of disease mongering requires the development of all the institutional potential for prevention, as well as all the personal willingness for restraint; it involves separating us from the unnecessary auspices of industry, being critical of our work, not being maleficent, respecting the principle of justice as managers of the limited public resources and making ourselves feel responsible for the social cost resulting from medical decisions. From this point of view, this work analyses neonatal screening, developments in the area of neonatology and primary health care. PMID:24907862

  16. Quaternary glaciations in the Northern Hemisphere

    SciTech Connect

    Sibrava, V.; Bowen, D.Q.; Richmond, G.M.

    1987-01-01

    This volume presents the final report of Project 24 of the International Geological Correlation Programme. The publication is drawn from the contributions of leading individual scientist as well as from scientific research teams. It reflects the present state of knowledge of the Quaternary Glaciations in the Northern Hemisphere and their correlation in space and time, as well as providing a unique summary of climatic change.

  17. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  18. Late quaternary sequence stratigraphy, South Florida margin

    SciTech Connect

    Locker, S.D.; Hine, A.C.

    1995-12-01

    Late Quaternary sea-level change and the Florida Current have combined to produce a progradational shelf-slope margin along the western portion of the south Florida Platform facing the Straits of Florida. Analysis of high resolution seismic reflection profiles suggest at least eight 5th order late Quaternary sequences downlap onto the Pourtales Terrace at 250 m water depth. Along most of the south Florida margin, this Late Quaternary section is very thin, and only where significant accumulations occur can the stratigraphic patterns produced by sea-level change be clearly observed. Recognition of systems tracts and their boundaries from high-resolution seismic data is important for prediction of sedimentary facies and stratigraphic development of margins. Many south Florida seismic boundaries can be fit to the Exxon sequence stratigraphy model. Others appear to reflect the added effect of bottom-current erosion that complicates the signal produced by sea-level change. Overall, the sea-level signal appears to dominate the stratigraphic record, especially from the 2-dimensional perspective of dip-oriented seismic profiles. However, the 3-dimensional geometry of deposits are strongly influenced by along slope accumulation patterns controlled by the Florida Current. This study provides new insight on the importance of both geostrophic boundary currents and sea-level change in controlling stratigraphic development of a carbonate platform margin. Similar anomalously thick slope deposits in ancient sequences may indicate similar controls on accumulation and could lend to predictions of related paleo-platform configurations.

  19. Memantine Inhibits ?3?2-nAChRs-Mediated Nitrergic Neurogenic Vasodilation in Porcine Basilar Arteries

    PubMed Central

    Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu

    2012-01-01

    Memantine, an NMDA receptor antagonist used for treatment of Alzheimers disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited ?3?2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing ?3?2-, ?7- or ?4?2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting ?3?2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimers disease. PMID:22792283

  20. Going up in smoke? A review of nAChRs-based treatment strategies for improving cognition in schizophrenia.

    PubMed

    Boggs, Douglas L; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H; D'Souza, D Cyril

    2014-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to selfmedicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  1. Amyloid-? peptide increases cell surface localization of ?7 ACh receptor to protect neurons from amyloid ?-induced damage.

    PubMed

    Jin, Yu; Tsuchiya, Ayako; Kanno, Takeshi; Nishizaki, Tomoyuki

    2015-12-01

    Amyloid-? peptide 1-42 (A?1-42) reduced PC-12 cell viability in a concentration (1-10?M)- and treatment time (48-72h)-dependent manner. Nicotine prevented A?1-42-induced PC-12 cell death, but conversely, the ?7 ACh receptor antagonist ?-bungarotoxin enhanced A?1-42-induced cell toxicity. Extracellularly applied A?1-42 significantly increased cell surface localization of ?7 ACh receptor in PC-12 cells as compared with that for non-treated control cells. Cell surface localization of ?7 ACh receptor in the brain of 5xFAD mouse, an animal model of Alzheimer's disease (AD), apparently increased in an age (1-12 months)-dependent manner in association with increased accumulation of A?1-42 in the plasma membrane component. Taken together, these results indicate that A?1-42 promotes translocation of ?7 ACh receptor towards the cell surface and that ?7 ACh receptor rescues neuronal cells from A?1-42-induced damage. PMID:26522221

  2. Scaffold Ranking and Positional Scanning Utilized in the Discovery of nAChR-Selective Compounds Suitable for Optimization Studies

    PubMed Central

    Wu, Jinhua; Zhang, Yaohong; Maida, Laura E.; Santos, Radleigh G.; Welmaker, Gregory S.; LaVoi, Travis M.; Nefzi, Adel; Yu, Yongping; Houghten, Richard A.; Toll, Lawrence; Giulianotti, Marc A.

    2014-01-01

    Nicotine binds to nicotinic acetylcholine receptors (nAChR), which can exist as many different subtypes. The ?4?2 nAChR is the most prevalent subtype in the brain and possesses the most evidence linking it to nicotine seeking behavior. Herein we report the use of mixture based combinatorial libraries for the rapid discovery of a series of ?4?2 nAChR selective compounds. Further chemistry optimization provided compound 301, which was characterized as a selective ?4?2 nAChR antagonist. This compound displayed no agonist activity but blocked nicotine-induced depolarization of HEK cells with an IC50 of approximately 430 nM. 301 demonstrated nearly 500-fold selectivity for binding and 40-fold functional selectivity for ?4?2 over ?3?4 nAChR. In total over 5 million compounds were assessed through the use of just 170 samples in order to identify a series of structural analogues suitable for future optimization toward the goal of developing clinically relevant smoking cessation medications. PMID:24274400

  3. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    PubMed Central

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; DSouza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  4. H2 formation via the UV photo-processing of a-C:H nano-particles

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Habart, E.

    2015-09-01

    Context. The photolysis of hydrogenated amorphous carbon, a-C(:H), dust by UV photon-irradiation in the laboratory leads to the release of H2 as well as other molecules and radicals. This same process is also likely to be important in the interstellar medium. Aims: We investigate molecule formation arising from the photo-dissociatively-driven, regenerative processing of a-C(:H) dust. Methods: We explore the mechanism of a-C(:H) grain photolysis leading to the formation of H2 and other molecules/radicals. Results: The rate constant for the photon-driven formation of H2 from a-C(:H) grains is estimated to be 2 10-17 cm3 s-1. In intense radiation fields photon-driven grain decomposition will lead to fragmentation into daughter species rather than H2 formation. Conclusions: The cyclic re-structuring of arophatic a-C(:H) nano-particles appears to be a viable route to formation of H2 for low to moderate radiation field intensities (1 ? G0 ? 102), even when the dust is warm (T ~ 50-100 K).

  5. Rationale, pharmacology and clinical efficacy of partial agonists of alpha4beta2 nACh receptors for smoking cessation.

    PubMed

    Rollema, Hans; Coe, Jotham W; Chambers, Leslie K; Hurst, Raymond S; Stahl, Stephen M; Williams, Kathryn E

    2007-07-01

    Most smokers repeatedly fail in their attempts to stop smoking because of the addictive nature of the nicotine in tobacco products. Nicotine dependence is probably mediated through the activation of multiple subtypes of neuronal nicotinic acetylcholine receptor (nAChR), among which the mesolimbic alpha(4)beta(2) subtype has a pivotal role. Here, we discuss the rationale for and the design of alpha(4)beta(2) nAChR partial agonists as novel treatments for tobacco addiction. Such agents are expected to exhibit a dual action by sufficiently stimulating alpha(4)beta(2)-nAChR-mediated dopamine release to reduce craving when quitting and by inhibiting nicotine reinforcement when smoking. Potent and selective alpha(4)beta(2) nAChR partial agonists that exhibit dual agonist and antagonist activity in preclinical models can be identified. The validity of this approach is demonstrated by the clinical efficacy of the alpha(4)beta(2) nAChR partial agonist varenicline, which has significantly better quit rates than do other treatments and offers a new option for smoking cessation pharmacotherapy. PMID:17573127

  6. 7-Methoxytacrine-p-Anisidine Hybrids as Novel Dual Binding Site Acetylcholinesterase Inhibitors for Alzheimer's Disease Treatment.

    PubMed

    Korabecny, Jan; Andrs, Martin; Nepovimova, Eugenie; Dolezal, Rafael; Babkova, Katerina; Horova, Anna; Malinak, David; Mezeiova, Eva; Gorecki, Lukas; Sepsova, Vendula; Hrabinova, Martina; Soukup, Ondrej; Jun, Daniel; Kuca, Kamil

    2015-01-01

    Alzheimer's disease (AD) is a debilitating progressive neurodegenerative disorder that ultimately leads to the patient's death. Despite the fact that novel pharmacological approaches endeavoring to block the neurodegenerative process are still emerging, none of them have reached use in clinical practice yet. Thus, palliative treatment represented by acetylcholinesterase inhibitors (AChEIs) and memantine are still the only therapeutics used. Following the multi-target directed ligands (MTDLs) strategy, herein we describe the synthesis, biological evaluation and docking studies for novel 7-methoxytacrine-p-anisidine hybrids designed to purposely target both cholinesterases and the amyloid cascade. Indeed, the novel derivatives proved to be effective non-specific cholinesterase inhibitors showing non-competitive AChE inhibition patterns. This compounds' behavior was confirmed in the subsequent molecular modeling studies. PMID:26690394

  7. Selective Acetylcholinesterase Inhibitor Activated by Acetylcholinesterase Releases an Active Chelator with Neurorescuing and Anti-Amyloid Activities

    PubMed Central

    2010-01-01

    The finding that acetylcholinesterase (AChE) colocalizes with β-amyloid (Aβ) and promotes and accelerates Aβ aggregation has renewed an intense interest in developing new multifunctional AChE inhibitors as potential disease-modifying drugs for Alzheimer’s therapy. To this end, we have developed a new class of selective AChE inhibitors with site-activated chelating activity. The identified lead, HLA20A, exhibits little affinity for metal (Fe, Cu, and Zn) ions but can be activated following inhibition of AChE to liberate an active chelator, HLA20. HLA20 has been shown to possess neuroprotective and neurorescuing activities in vitro and in vivo with the ability to lower amyloid precursor holoprotein (APP) expression and Aβ generation and inhibit Aβ aggregation induced by metal (Fe, Cu, and Zn) ion. HLA20A inhibited AChE in a time and concentration dependent manner with an HLA20A−AChE complex constant (Ki) of 9.66 × 10−6 M, a carbamylation rate (k+2) of 0.14 min−1, and a second-order rate (ki) of 1.45 × 10 4 M−1 min−1, comparable to those of rivastigmine. HLA20A showed little iron-binding capacity and activity against iron-induced lipid peroxidation (LPO) at concentrations of 1−50 μM, while HLA20 exhibited high potency in iron-binding and in inhibiting iron-induced LPO. At a concentration of 10 μM, HLA20A showed some activity against monoamine oxidase (MAO)-A and -B when tested in rat brain homogenates. Defined restrictively by Lipinski’s rules, both HLA20A and HLA20 satisfied drug-like criteria and possible oral and brain permeability, but HLA20A was more lipophilic and considerably less toxic in human SHSY5Y neuroblastoma cells at high concentrations (25 or 50 μM). Together our data suggest that HLA20A may represent a promising lead for further development for Alzheimer's disease therapy. PMID:22778810

  8. CFTR Inhibitors

    PubMed Central

    Verkman, Alan S.; Synder, David; Tradtrantip, Lukmanee; Thiagarajah, Jay R.; Anderson, Marc O.

    2014-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl? channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease. PMID:23331030

  9. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Mazzoni, Annalisa; Carvalho, Ricardo M.; Carrilho, Marcela; Tersariol, Ivarne L.; Nascimento, Fabio D.; Imazato, Satoshi; Tjäderhane, Leo; Breschi, Lorenzo; Tay, Franklin R; Pashley, David H.

    2014-01-01

    Objective Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. Methods Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24 h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. Results Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15 wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5–10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. Significance CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation. PMID:25467953

  10. Deoxyribonuclease inhibitors.

    PubMed

    Kolarevic, Ana; Yancheva, Denitsa; Kocic, Gordana; Smelcerovic, Andrija

    2014-12-17

    Deoxyribonucleases (DNases) are a class of enzymes able to catalyze DNA hydrolysis. DNases play important roles in cell function, while DNase inhibitors control or modify their activities. This review focuses on DNase inhibitors. Some DNase inhibitors have been isolated from various natural sources, such as humans, animals (beef, calf, rabbit and rat), plants (Nicotiana tabacum), and microorganisms (some Streptomyces and Adenovirus species, Micromonospora echinospora and Escherichia coli), while others have been obtained by chemical synthesis. They differ in chemical structure (various proteins, nucleotides, anthracycline and aminoglycoside antibiotics, synthetic organic and inorganic compounds) and mechanism of action (forming complexes with DNases or DNA). Some of the inhibitors are specific toward only one type of DNase, while others are active towards two or more. Physico-chemical properties of DNase inhibitors are calculated using the Molinspiration tool and most of them meetall criteria for good solubility and permeability. DNase inhibitors may be used as pharmaceuticals for preventing, monitoring and treating various diseases. PMID:25042005

  11. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases

    PubMed Central

    Simonini, M. V.; Camargo, L. M.; Dong, E.; Maloku, E.; Veldic, M.; Costa, E.; Guidotti, A.

    2006-01-01

    The association of the histone deacetylase (HDAC) inhibitor valproate (VPA) with atypical antipsychotics has become a frequent treatment strategy for schizophrenia and bipolar disorder. Because the VPA doses administered are elevated, one cannot assume that the benefits of the VPA plus antipsychotic treatment are exclusively related to the covalent modifications of nucleosomal histone tails. We compared the actions of N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)aminomethyl]benzamide derivative (MS-275), which is a potent HDAC inhibitor in vitro, with the actions of VPA for their ability to (i) increase the acetylated status of brain nucleosomal histone tail domains and (ii) to regulate brain histone-RELN and histone-GAD67 promoter interactions. MS-275 increases the content of acetylhistone 3 (Ac-H3) in the frontal cortex. Whereas this response peaks after a s.c. injection of 15 ?mol/kg, the increase in Ac-H3 content in the hippocampus becomes significant only after an injection of 60 ?mol/kg, suggesting that MS-275 is 30- to 100-fold more potent than VPA in increasing Ac-H3 in these brain regions. In contrast to VPA, MS-275, in doses up to 120 ?mol/kg, fails to increase Ac-H3 content in the striatum. Chromatin immunoprecipitation shows that MS-275 increases Ac-H3-RELN and Ac-H3-GAD67 promoter interaction in the frontal cortex. These results suggest that MS-275 is a potent brain region-selective HDAC inhibitor. It is likely that, in addition to MS-275, other benzamide derivatives, such as sulpiride, are brain-region selective inhibitors of HDACs. Hence, some benzamide derivatives may express a greater efficacy than VPA as an adjunctive to antipsychotics in the treatment of epigentically induced psychiatric disorders. PMID:16432198

  12. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology

    PubMed Central

    Padilla-Morales, Luis F.; Coln-Sez, Jos O.; Gonzlez-Nieves, Joel E.; Quesada-Gonzlez, Orestes; Lasalde-Dominicci, Jos A.

    2015-01-01

    The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR) rich membrane solubilized with long chain (16 saturated carbons) lysophospholipid with glycerol headgroup (LFG-16). The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP) was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP) and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique. PMID:26870753

  13. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Coln-Sez, Jos O; Gonzlez-Nieves, Joel E; Quesada-Gonzlez, Orestes; Lasalde-Dominicci, Jos A

    2016-03-01

    The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR) rich membrane solubilized with long chain (16 saturated carbons) lysophospholipid with glycerol headgroup (LFG-16). The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP) was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP) and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique. PMID:26870753

  14. Upregulation of Lhx8 increase VAChT expression and ACh release in neuronal cell line SHSY5Y.

    PubMed

    Li, Haoming; Jin, Guohua; Zhu, Peipei; Zou, Linqing; Shi, Jinhong; Yi, Xin; Zhang, Xinhua; Tian, Meiling; Qin, Jianbing

    2014-01-24

    Lhx8 is a transcription factor for cholinergic differentiation. Our previous experiments found upregulation of Lhx8 promoted cholinergic neuronal differentiation of hippocampal neural stem/progenitor cells or hippocampal newborn neurons in vitro. However, the role of Lhx8 in VAChT expression and ACh release is still less understood. In this report, we transfected Lhx8 cDNA into neuronal cell line SHSY5Y by lentiviral vectors to acquire the cells which stably expressed high level of Lhx8. Using this cell model, we provided experimental evidence that increasing Lhx8 upregulated the expression of ChAT and VAChT, and also increased the ACh release in culture medium. We suggested that Lhx8 overexpression is a useful strategy to increase the release of ACh and maybe of therapeutic value to neurodegenerative diseases. PMID:24316404

  15. Improving the tribological performance of a-C:H film in a high vacuum by surface texture

    NASA Astrophysics Data System (ADS)

    Song, Hui; Ji, Li; Li, Hongxuan; Liu, Xiaohong; Zhou, Huidi; Liu, Liu; Chen, Jianmin

    2014-06-01

    In this study, a new synergy lubricating system was designed by combining the surface texture and film deposition technology to improve the tribological performances of amorphous hydrogenated carbon (a-C:H) films in a ball-on-disk tribometer under vacuum conditions. Tribological behaviours of the untextured and textured films in a vacuum environment were investigated in detail. The results suggest that the wear life of a-C:H film is dramatically prolonged by surface texture with appropriate interval distances. A comprehensive friction and wear mechanism model is proposed based on substantial structural characterization and wear trace analyses. In this model, the generation of the hard and brittle wear debris is considered as the key unfavourable factor resulting in the rapid failure of a-C:H films, while the surface texture is beneficial in reducing the formation of wear debris, and further trapping it during the friction process.

  16. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  17. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  18. Correlation of hydrogen content with the microstructure of a-C:H films

    NASA Astrophysics Data System (ADS)

    Som, T.; Malhotra, M.; Kulkarni, V. N.; Kumar, Satyendra

    2005-01-01

    This paper shows the correlation of hydrogen content with the microstructure of a-C:H films. Samples having hydrogen content ranging from ∼3 to 40 at% and varying microstructures have been prepared using the DC-glow discharge of acetylene (C 2H 2). Infrared absorption spectroscopy was employed primarily for extracting the bonding information, elastic recoil detection analysis was used to measure the total hydrogen concentration and mass spectroscopic thermal effusion was used for studying the thermal stability of the films. Ion-beam-induced release of hydrogen during elastic recoil detection analysis suggests that the kinetics of this release process is related to the total hydrogen content and microstructure of the samples. Significant differences in the mass spectroscopic thermal effusion spectra obtained from soft as well as hard films also reveal that effusion of various species is dependent on the film microstructure, which in turn is governed by the film growth parameters.

  19. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  20. In search of allosteric modulators of a7-nAChR by solvent density guided virtual screening.

    PubMed

    Dey, Raja; Chen, Lin

    2011-04-01

    Nicotinic acetylcholine receptors (nAChR) are pentameric ligand gated ion channels whose activity can be modulated by endogenous neurotransmitters as well as by synthetic ligands that bind the same or distinct sites from the natural ligand. The subtype of ?7 nAChR has been considered as a potenial therapeutic target for Alzheimer's disease, schizophrenia and other neurological and psychiatric disorders. Here we have developed a homology model of ?7 nAChR based on two high resolution crystal structures with Brookhaven Protein Data Bank (PDB) codes 2QC1 and 2WN9 for threading on one monomer and then for building a pentamer, respectively. A number of small molecule binding sites are identified using Pocket Finder (J. An, M. Tortov, and R. Abagyan, Molecular & Cellular Proteomics, 4.6, 752-761 (2005)) of Internal Coordinate Mechanics (ICM). Remarkably, these computer-identified sites match perfectly with ordered solvent densities found in the high-resolution crystal structure of ?1 nAChR, suggesting that the surface cavities in the ?7 nAChR model are likely binding sites of small molecules. A high throughput virtual screening by flexible ligand docking of 5008 small molecule compounds was performed at three potential allosteric modulator (AM) binding sites of ?7 nAChR using Molsoft ICM software (R. Abagyan, M. Tortov and D. Kuznetsov, J Comput Chem 15, 488-506, (1994)). Some experimentally verified allosteric modulators of ?7 like CCMI comp-6, LY 7082101, 5-HI, TQS, PNU-120596, genistein, and NS-1738 ranked among top 100 compounds, while the rest of the compounds in the list could guide further search for new allosteric modulators. PMID:21294583

  1. Association between Anti-Ganglionic Nicotinic Acetylcholine Receptor (gAChR) Antibodies and HLA-DRB1 Alleles in the Japanese Population

    PubMed Central

    Maeda, Yasuhiro; Migita, Kiyoshi; Higuchi, Osamu; Mukaino, Akihiro; Furukawa, Hiroshi; Komori, Atsumasa; Nakamura, Minoru; Hashimoto, Satoru; Nagaoka, Shinya; Abiru, Seigo; Yatsuhashi, Hiroshi; Matsuo, Hidenori; Kawakami, Atsushi; Yasunami, Michio; Nakane, Shunya

    2016-01-01

    Background/Aims Anti-ganglionic nicotinic acetylcholine receptor (gAChR) antibodies are observed in autoimmune diseases, as well as in patients with autoimmune autonomic ganglionopathy. However, the genetic background of anti-gAChR antibodies is unclear. Here, we investigated HLA alleles in autoimmune hepatitis (AIH) patients with or without anti-gAChR antibodies. Methodology/Principal Findings Genomic DNA from 260 patients with type-1 autoimmune hepatitis (AIH) were genotyped for HLA-A, B, DRB1, and DQB1 loci. Anti-gAChR antibodies in the sera form AIH patients were measured using the luciferase immunoprecipitation system, and examined allelic association in patients with or without anti-gAChR antibodies. Methodology/ Methods We detected anti-α3 or -β4 gAChR antibodies in 11.5% (30/260) of patients with AIH. Among AIH patients there was no significant association between HLA-A, B DQB1 alleles and the positivity for anti-gAChR antibodies. Whereas the HLA-DRB1*0403 allele showed a significantly increased frequency in AIH patients with anti-gAChR antibodies compared with those without anti-gAChR antibodies. Conclusions/Significance The frequency of the HLA-DRB1*0403 allele differed among Japanese patients with AIH according to the presence or absence of anti-gAChR antibodies. Our findings suggest that particular HLA class II molecules might control the development of anti-gAChR antibodies in the autoimmune response to gAChR. PMID:26807576

  2. Unravelling the mechanism of action of NS9283, a positive allosteric modulator of (α4)3(β2)2 nicotinic ACh receptors

    PubMed Central

    Grupe, M; Jensen, AA; Ahring, PK; Christensen, JK; Grunnet, M

    2013-01-01

    Background and Purpose Strong implications in major neurological diseases make the neuronal α4β2 nicotinic ACh receptor (nAChR) a highly interesting drug target. In this study, we present a detailed electrophysiological characterization of NS9283, a potent positive allosteric modulator acting selectively at 3α:2β stoichiometry of α2* and α4* nAChRs. Experimental Approach The whole-cell patch-clamp technique equipped with an ultra-fast drug application system was used to perform electrophysiological characterization of NS9283 modulatory actions on human α4β2 nAChRs stably expressed in HEK293 cells (HEK293-hα4β2). Key Results NS9283 was demonstrated to increase the potency of ACh-evoked currents in HEK293-hα4β2 cells by left-shifting the concentration–response curve ∼60-fold. Interestingly, this modulation did not significantly alter maximal efficacy levels of ACh. Further, NS9283 did not affect the rate of desensitization of ACh-evoked currents, was incapable of reactivating desensitized receptors and only moderately slowed recovery from desensitization. However, NS9283 strongly decreased the rate of deactivation kinetics and also modestly decreased the rate of activation. This resulted in a left-shift of the ACh window current of (α4)3(β2)2 nAChRs in the presence of NS9283. Conclusions and Implications This study demonstrates that NS9283 increases responsiveness of human (α4)3(β2)2 nAChR to ACh with no change in maximum efficacy. We propose that this potentiation is due to a significant slowing of deactivation kinetics. In summary, the mechanism of action of NS9283 bears high resemblance to that of benzodiazepines at the GABAA receptor and to our knowledge, NS9283 constitutes the first nAChR compound of this class. PMID:23278456

  3. Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors.

    PubMed

    Pejchal, Vladimír; Štěpánková, Šárka; Pejchalová, Marcela; Královec, Karel; Havelek, Radim; Růžičková, Zdeňka; Ajani, Haresh; Lo, Rabindranath; Lepšík, Martin

    2016-04-01

    In the current study, sixteen novel derivatives of (R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethanamine were synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. Chemical structures together with purity of the synthesized compounds were substantiated by IR, (1)H, (13)C, (19)F NMR, high resolution mass spectrometry and elemental analysis. The optical activities were confirmed by optical rotation measurements. The synthesized compounds were evaluated for their AChE and BChE inhibitory activities. In addition, the cytotoxicity of the most active compounds was investigated against human cell lines employing XTT tetrazolium salt reduction assay and xCELLigence system allowing a label-free assessment of the cells proliferation. Our results demonstrated that the inhibitory mechanism was confirmed to be pseudo-irreversible, in line with previous studies on carbamates. Compounds indicated as 3b, 3d, 3l and 3n showed the best AChE inhibitory activity of all the evaluated compounds and were up to tenfold more potent than standard drug rivastigmine. The binding mode was determined using state-of-the-art covalent docking and scoring methodology. The obtained data clearly demonstrated that 3b, 3d, 3l and 3n benzothiazole carbamates possess high inhibitory activity against AChE and BChE and concurrently negligible cytotoxicity. In conclusion, our results indicate, that these derivatives could be promising in an effective therapeutic intervention for Alzheimer's disease. PMID:26947959

  4. Efficient expression of functional (?6?2)2?3 AChRs in Xenopus oocytes from free subunits using slightly modified ?6 subunits.

    PubMed

    Ley, Carson Kai-Kwong; Kuryatov, Alexander; Wang, Jingyi; Lindstrom, Jon Martin

    2014-01-01

    Human (?6?2)(?4?2)?3 nicotinic acetylcholine receptors (AChRs) are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of ?6* AChRs and to efficiently express ?6* AChRs using free subunits, we investigated expression of the simpler (?6?2)2?3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of ?6 with the closely related ?3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of ?6 was replaced with that of ?3 increased assembly with ?2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of ?6 with leucine found at this position in transmembrane domain 1 of ?3 and other ? subunits increased assembly of mature subunits containing ?3 subunits within oocytes. Combining both ?3 sequences in an ?6 chimera increased expression of functional (?6?2)2?3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of ?6 subunit structure that limit its expression in transfected cells. PMID:25068303

  5. Efficient Expression of Functional (?6?2)2?3 AChRs in Xenopus Oocytes from Free Subunits Using Slightly Modified ?6 Subunits

    PubMed Central

    Ley, Carson Kai-Kwong; Kuryatov, Alexander; Wang, Jingyi; Lindstrom, Jon Martin

    2014-01-01

    Human (?6?2)(?4?2)?3 nicotinic acetylcholine receptors (AChRs) are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of ?6* AChRs and to efficiently express ?6* AChRs using free subunits, we investigated expression of the simpler (?6?2)2?3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of ?6 with the closely related ?3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of ?6 was replaced with that of ?3 increased assembly with ?2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of ?6 with leucine found at this position in transmembrane domain 1 of ?3 and other ? subunits increased assembly of mature subunits containing ?3 subunits within oocytes. Combining both ?3 sequences in an ?6 chimera increased expression of functional (?6?2)2?3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of ?6 subunit structure that limit its expression in transfected cells. PMID:25068303

  6. Acetylcholinesterase inhibitors: structure based design, synthesis, pharmacophore modeling, and virtual screening.

    PubMed

    Valasani, Koteswara Rao; Chaney, Michael O; Day, Victor W; Shidu Yan, Shirley

    2013-08-26

    Acetylcholinesterase (AChE) is a main drug target, and its inhibitors have demonstrated functionality in the symptomatic treatment of Alzheimer's disease (AD). In this study, a series of novel AChE inhibitors were designed and their inhibitory activity was evaluated with 2D quantitative structure-activity relationship (QSAR) studies using a training set of 20 known compounds for which IC?? values had previously been determined. The QSAR model was calculated based on seven unique descriptors. Model validation was determined by predicting IC?? values for a test set of 20 independent compounds with measured IC?? values. A correlation analysis was carried out comparing the statistics of the measured IC?? values with predicted ones. These selectivity-determining descriptors were interpreted graphically in terms of principal component analyses (PCA). A 3D pharmacophore model was also created based on the activity of the training set. In addition, absorption, distribution, metabolism, and excretion (ADME) descriptors were also determined to evaluate their pharmacokinetic properties. Finally, molecular docking of these novel molecules into the AChE binding domain indicated that three molecules (6c, 7c, and 7h) should have significantly higher affinities and solvation energies than the known standard drug donepezil. The docking studies of 2H-thiazolo[3,2-a]pyrimidines (6a-6j) and 5H-thiazolo[3,2-a] pyrimidines (7a-7j) with human AChE have demonstrated that these ligands bind to the dual sites of the enzyme. Simple and ecofriendly syntheses and diastereomeric crystallizations of 2H-thiazolo [3,2-a]pyrimidines and 5H-thiazolo[3,2-a] pyrimidines are described. The solid-state structures for the HBr salts of compounds 6a, 6e, 7a, and 7i have been determined using single-crystal X-ray diffraction techniques, and X-ray powder patterns were measured for the bulk solid remaining after solvent was removed from solutions containing 6a and 7a. These studies provide valuable insight for designing more potent and selective inhibitors for the treatment of AD. PMID:23777291

  7. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum.

    PubMed Central

    Clarke, P. B.; Reuben, M.; el-Bizri, H.

    1994-01-01

    1. The acetylcholinesterase inhibitors physostigmine, neostigmine, tetrahydroaminoacridine (tacrine; THA) and diisopropylfluorophosphate (DFP) were tested for possible direct nicotinic actions in rat striatal synaptosomes preloaded with [3H]-dopamine. In this preparation, nicotinic cholinoceptor activation evoked [3H]-dopamine release. 2. Antagonist activity was examined by giving a brief nicotine (1 microM) challenge after 30 min superfusion with an acetylcholinesterase (AChE) inhibitor (0.3-300 microM). Physostigmine, neostigmine and tacrine produced a concentration-dependent blockade. Physostigmine and tacrine were particularly potent (IC50S approx. 10 microM and 1 microM, respectively). DFP reduced nicotinic responses only at the highest concentration tested (300 microM). 3. Nicotinic blockade produced by superfusion with physostigmine (30 microM) was insurmountable when tested against nicotine (0.1-100 microM). 4. Physostigmine (30 microM) also reduced responses to the nicotinic agonists 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) and cytisine, but did not alter responses to high K+ or (+)-amphetamine. A higher concentration of physostigmine (300 microM) completely blocked responses to nicotine, somewhat reduced responses to amphetamine, and did not alter responses to high K+. Tacrine (3 microM) reduced responses to nicotine and to high K+ but did not affect responses to amphetamine. 5. Physostigmine (0.3-300 microM), given as a brief pulse, did not produce a nicotinic agonist-like effect. 6. Physostigmine, neostigmine, tacrine and DFP (all at 30 microM) each produced near-total (> 96%) inhibition of AChE activity. However, DFP at a concentration (60 microM) that produced a degree of AChE inhibition equal to that of physostigmine 30 microM, did not significantly reduce nicotine-induced dopamine release.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8019748

  8. Quaternary stratigraphy of northern Chukchi Sea, Alaska

    SciTech Connect

    Phillips, R.L.; Barnes, P.W.; Colgan, M.W., Miley, J.M.

    1986-05-01

    A widespread ash deposit within Quaternary marine sediments of the northern Chukchi Sea, Alaska, provides a unique time-stratigraphic horizon that defines both regions of sediment erosion and regions of deposition on a shallow, ice-covered epeiric sea. High-resolution seismic profiles show a thin, usually less than 5 m thick, Quaternary sediment cover overlying folded bed rock, which is incised by filled fluvial channels. Vibracores, to 6 m depth, record the stratigraphy and depositional history preserved within the thin blanket deposit. The basal units cored consist of overconsolidated silt, sand, and pebbly mudstone. They represent the underlying bed rock, channel-fill deposits, or Quaternary shallow-marine sequences containing ice-rafted cobbles. The ash deposit, ranging in thickness from 2 m to over 3 m, covers the basal stratigraphic units. It lies from 1 to 4 m beneath the sea floor and forms a distinctive reflector on 3.5 khz seismic profiles. The ash extends laterally at least 100 km east-west and 200 km north-south. The well-sorted, massive to laminated ash was deposited in a marine environment based on the occurrence of diatoms, foraminifera, and sponge spicules. Overlying the ash is a thin, less than 1 m thick, pebbly mudstone or marine sand. An abrupt textural break separates the uppermost depositional sequence from the strata overlying the ash. The uppermost sequence grades vertically from a gravel-shell lag, granules, or coarse sand to bioturbated mud and represents marine sediments deposited since the Holocene transgression. Recognition of the stratigraphic sequences bounding the ash deposit will aid in correlating and interpreting the depositional events and processes on this shallow sea.

  9. Quaternary vertebrates from Greenland: A review

    NASA Astrophysics Data System (ADS)

    Bennike, Ole

    Remains of fishes, birds and mammals are rarely reported from Quaternary deposits in Greenland. The oldest remains come from Late Pliocene and Early Pleistocene deposits and comprise Atlantic cod, hare, rabbit and ringed seal. Interglacial and interstadial deposits have yielded remains of cod, little auk, collared lemming, ringed seal, reindeer and bowhead whale. Early and Mid-Holocene finds include capelin, polar cod, red fish, sculpin, three-spined stickleback, Lapland longspur, Arctic hare, collared lemming, wolf, walrus, ringed seal, reindeer and bowhead whale. It is considered unlikely that vertebrates could survive in Greenland during the peak of the last glaciation, but many species had probably already immigrated in the Early Holocene.

  10. Global increase in quaternary explosive volcanism.

    PubMed

    Kennett, J P; Thunell, R C

    1975-02-14

    The worldwide distribution of volcanic ash has been determinmined from 320 deep-sea sections drilled during the Deep Sea Drilling Project. The ash distribution in the deep-sea sections, which span the last 20 million years, indicates that there has been a much higher rate of explosive volcanism from both island arc and hot spot volcanoes during the last 2 million years. This episode, and perhaps another in the Middle Miocene cprrelates with previously reported widespread synchronism in increased volcanicity in certain oceanic islands. Increased Quaternary volcanism coincides approximately with that episode of the Cenozoic marked by major and rapidly fluctuating climatic change. PMID:17769151

  11. Efficacy of acetylcholinesterase inhibitors versus nootropics in Alzheimer's disease: a retrospective, longitudinal study.

    PubMed

    Tsolaki, M; Pantazi, T; Kazis, A

    2001-01-01

    The aim of this study was to investigate the efficacy of nootropics (piracetam, aniracetam, nimodopine and dihydroergicristine) versus acetylcholinesterase inhibitors (AChE-Is) (tacrine and donepezil) in the treatment of Alzheimer's disease. This is a retrospective study of 510 patients with Alzheimer's disease. To determine clinical efficacy of treatment, we used the mean change over time in scores for the following tests: the Mini-Mental State Examination (MMSE); the Cambridge Cognitive Examination for the Elderly; and the Functional Rating Scale for Symptoms of Dementia. In all patients and in patients with severe Alzheimer's disease (baseline MMSE < 11), no significant differences were seen in the neuropsychological test scores between the two treatment groups. In patients with moderate dementia (baseline MMSE between 11 and 20), however, there was a significantly greater deterioration, as shown on the CAMCOG scale, after 12 months' treatment for patients receiving AChE-Is compared with those receiving nootropics (-4.38 for AChE-Is group versus 1.48 for nootropics group). For patients with mild dementia (baseline MMSE score between 21 and 26), there was a significantly greater deterioration on the MMSE scale for each time-point in the nootropics group compared with the AChE-Is group. In conclusion, we did not find any strong evidence that a difference in efficacy exists between AChE-Is and nootropics in the treatment of Alzheimer's disease. PMID:11277345

  12. Semisynthetic analogues of toxiferine I and their pharmacological properties at ?7 nAChRs, muscle-type nAChRs, and the allosteric binding site of muscarinic M2 receptors.

    PubMed

    Zlotos, Darius P; Trnkle, Christian; Holzgrabe, Ulrike; Gndisch, Daniela; Jensen, Anders A

    2014-09-26

    A new series of analogues of the calabash curare alkaloid toxiferine I was prepared and pharmacologically evaluated at ?7 and muscle-type nAChRs and the allosteric site of muscarinic M2 receptors. The new ligands differ from toxiferine I by the absence of one (2a-c) or two (3a-c) hydroxy groups, saturation of the exocyclic double bonds, and various N-substituents (methyl, allyl, 4-nitrobenzyl). At the muscle-type nAChRs, most ligands showed similar binding to the muscle relaxant alcuronium, indicating neuromuscular blocking activity, with the nonhydroxylated analogues 3b (Ki = 75 nM) and 3c (Ki = 82 nM) displaying the highest affinity. At ?7 nAChRs, all ligands showed a moderate to low antagonistic effect, suggesting that the alcoholic functions are not necessary for antagonistic action. Compound 3c exerted the highest preference for the muscle-type nAChRs (Ki = 82 nM) over ?7 (IC50 = 21 ?M). As for the allosteric site of M2 receptors, binding was found to be dependent on N-substitution rather than on the nature of the side chains. The most potent ligands were the N-allyl analogues 2b and 3b (EC0.5,diss = 12 and 36 nM) and the N-nitrobenzyl derivatives 2c and 3c (EC0.5,diss = 32 and 49 nM). The present findings should help delineate the structural requirements for activity at different types of AChRs and for the design of novel selective ligands. PMID:25192059

  13. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  14. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  15. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  16. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  17. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  18. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  19. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  20. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  1. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  2. Resistance to Inhibitors of Cholinesterase 3 (Ric-3) Expression Promotes Selective Protein Associations with the Human ?7-Nicotinic Acetylcholine Receptor Interactome.

    PubMed

    Mulcahy, Matthew J; Blattman, Sydney B; Barrantes, Francisco J; Lukas, Ronald J; Hawrot, Edward

    2015-01-01

    The ?7-nicotinic acetylcholine receptor (?7-nAChR) is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, ?7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of ?7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3) has been reported to interact with, and enhance the surface expression of, ?7-nAChRs. In this study, we identified proteins that associate with ?7-nAChRs when Ric-3 is expressed. Using ?-bungarotoxin (?-bgtx), we isolated and compared ?7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-h?7 expressing human ?7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-h?7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with ?7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how ?-bgtx may be used to isolate and identify ?7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with ?7-nAChRs. These associating proteins may alter activities of ?7-nAChRs to expand their functionally-relevant repertoire as well as to affect biogenesis and membrane trafficking of ?7-nAChRs. PMID:26258666

  3. Resistance to Inhibitors of Cholinesterase 3 (Ric-3) Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome

    PubMed Central

    Mulcahy, Matthew J.; Blattman, Sydney B.; Barrantes, Francisco J.; Lukas, Ronald J.; Hawrot, Edward

    2015-01-01

    The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3) has been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed. Using α-bungarotoxin (α-bgtx), we isolated and compared α7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These associating proteins may alter activities of α7-nAChRs to expand their functionally-relevant repertoire as well as to affect biogenesis and membrane trafficking of α7-nAChRs. PMID:26258666

  4. New insights on the molecular recognition of imidacloprid with Aplysia californica AChBP: a computational study.

    PubMed

    Cerón-Carrasco, José P; Jacquemin, Denis; Graton, Jérôme; Thany, Steeve; Le Questel, Jean-Yves

    2013-04-18

    The binding of imidacloprid (IMI), the forerunner of neonicotinoid insecticides, with the acetylcholine binding protein (AChBP) from Aplysia californica, the established model for the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a two-layer ONIOM partition approach (M06-2X/6-311G(d):PM6). Our calculations allow delineating the contributions of the key residues of AChBP for IMI binding. In particular, the importance of Trp147 and Cys190-191, through weak CH···π interactions and both van der Waals and hydrogen-bond (H-bond) interactions, respectively, are highlighted. Furthermore, H-bonds between hydroxyl groups of both Ser189 and Tyr55 and the IMI nitro group are pointed out. The participation of Ile118, whose main chain NH and carbonyl group are hydrogen-bonded with the IMI pyridinic nitrogen through a water molecule, is characterized. Our simulations also indicate the presence of a significant contribution of this residue through van der Waals interactions. The various trends obtained by the calculations of the pairwise interaction energies are confirmed through a complementary noncovalent interaction (NCI) analysis of selected IMI-AChBP amino acid pairs. Indeed, the contribution of a halogen-bond interaction between IMI and AChBP, recently proposed in the literature, is corroborated by our NCI analysis. PMID:23521537

  5. R86Q, a mutation in BmAChE3 yielding a Rhipicephalus microplus organophosphate-insensitive acetylcholinesterase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations were identified in the sequence encoding the acetylcholinesterase, BmAChE3, in strains of Rhipicephalus (Boophilus) microplus (Canestrini) resistant or susceptible to orgaonphosphorus acaricide. The mutation which appeared most frequently in the organophosphorus-resistant San Román strain...

  6. Carboxylesterase inhibitors

    PubMed Central

    Hatfield, M. Jason; Potter, Philip M.

    2011-01-01

    Introduction Carboxylesterases play major roles in the hydrolysis of numerous therapeutically active compounds. This is, in part, due to the prevalence of the ester moiety in these small molecules. However, the impact these enzymes may play on drug stability and pharmacokinetics is rarely considered prior to molecule development. Therefore, the application of selective inhibitors of this class of proteins may have utility in modulating the metabolism, distribution and toxicity of agents that are subjected to enzyme hydrolysis. Areas covered This review details the development of all such compounds dating back to 1986, but principally focuses on the very recent identification of selective human carboxylesterases inhibitors. Expert opinion The implementation of carboxylesterase inhibitors may significantly revolutionize drug discovery. Such molecules may allow for improved efficacy of compounds inactivated by this class of enzymes and/or reduce the toxicity of agents that are activated by these proteins. Furthermore, since lack of carboxylesterase activity appears to have no obvious biological consequence, these compounds could be applied in combination with virtually any esterified drug. Therefore, inhibitors of these proteins may have utility in altering drug hydrolysis and distribution in vivo. The characteristics, chemical and biological properties, and potential uses of such agents, are discussed here. PMID:21609191

  7. Aromatase Inhibitors

    MedlinePLUS

    ... My Saved Articles » My ACS » Medicines to Reduce Breast Cancer Risk + - Text Size Download Printable Version [PDF] » TOPICS Document Topics GO » SEE A LIST » What drugs are used to reduce the risk of breast cancer? Tamoxifen and raloxifene Aromatase inhibitors Who should consider ...

  8. Photocurable, Antimicrobial Quaternary Ammonium-modified Nanosilica.

    PubMed

    Makvandi, P; Ghaemy, M; Ghadiri, A A; Mohseni, M

    2015-10-01

    In this study, novel, quaternary ammonium methacrylate-modified silica nanoparticles (QMSNs) were synthesized for the first time and proposed as possible antimicrobial particles for free-radical, photocurable monomers. Such monomers have the potential to polymerize with other methacrylate monomers and create antimicrobial polymers. The silica nanoparticles were modified by quaternary ammonium methacrylate functionality and incorporated at 0 to 10 wt% into a 1:1 (by mass) bisphenol A glycerolate dimethacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) resin. Thermal stability of the pristine and modified silica nanoparticles was examined by thermogravimetric analyses. Atomic force microscopy was used to investigate the size distribution and topography of the nanoparticles. For evaluation of the mechanical properties of the samples, flexural strength was measured using a 3-point bending test method. The flexural strength of the composites containing QMSNs increased with increasing modified silica content. The antimicrobial activity of samples was investigated against some standard microorganisms (Streptococcus mutans, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans), and then cytotoxicity and viability were quantified. Incorporation of 2.5% to 10% (by mass) QMSNs into BisGMA/TEGDMA demonstrated antimicrobial activity, but ?5 wt% significantly reduced cell viability. PMID:26276372

  9. AQW051, a novel, potent and selective ?7 nicotinic ACh receptor partial agonist: pharmacological characterization and phase I evaluation

    PubMed Central

    Feuerbach, Dominik; Pezous, Nicole; Weiss, Markus; Shakeri-Nejad, Kasra; Lingenhoehl, Kurt; Hoyer, Daniel; Hurth, Konstanze; Bilbe, Graeme; Pryce, Christopher R; McAllister, Kevin; Chaperon, Frederique; Kucher, Klaus; Johns, Donald; Blaettler, Thomas; Lopez Lopez, Cristina

    2015-01-01

    Background and Purpose Activation of the ?7 nicotinic ACh receptor (nACh receptor) is considered an attractive target for the treatment of cognitive impairment associated with neurological disorders. Here we describe the novel ?7-nACh receptor agonist AQW051 as a promising drug candidate for this indication. Experimental Approach AQW051 was functionally characterized in vitro and cognitive effects evaluated in rodent behavioural models. Pharmacokinetics and tolerability were evaluated in three phase I placebo-controlled studies in 180 healthy subjects. Key Results In vitro, AQW051 bound with high affinity to ?7-nACh receptors and stimulated calcium influx in cells recombinantly expressing the human ?7-nACh receptor. In vivo, AQW051 demonstrated good oral bioavailability and rapid penetration into the rodent brain. AQW051 administered over a broad dose range facilitated learning/memory performance in the object recognition and social recognition test in mice and the water maze model in aged rats. Clinically, AQW051 was well tolerated in healthy young and elderly subjects, with an adverse event (AE) profile comparable with placebo. No serious AEs were reported and all AEs were either mild or moderate in severity at single oral doses up to 200?mg and multiple daily doses up to 75?mg. Once-daily oral administration of AQW051 resulted in continuous exposure and a two- to threefold accumulation compared with steady state was achieved by 1 week. Conclusions and Implications These data support further development of AQW051 as a cognitive-enhancing agent, as a therapeutic, for example, in Alzheimer's disease or schizophrenia. PMID:25363835

  10. Involvement of ?7 nAChR subtype in rat oxaliplatin-induced neuropathy: effects of selective activation.

    PubMed

    Di Cesare Mannelli, Lorenzo; Pacini, Alessandra; Matera, Carlo; Zanardelli, Matteo; Mello, Tommaso; De Amici, Marco; Dallanoce, Clelia; Ghelardini, Carla

    2014-04-01

    Oxaliplatin, unlike other platinum anticancer agents, has only mild toxic effects on the hematopoietic, urinary and gastrointestinal systems. Its dose-limiting side effect is neurotoxicity that may evolve to a neuropathic syndrome which is difficult to treat. In this study we treated rats with oxaliplatin (2.4mg/kg/day intraperitoneally, for 3 weeks), and observed that expression levels of the ?7 nicotinic acetylcholine receptor (nAChR) subunit were dramatically decreased both in the peripheral and central nervous system. The repeated administration (30mg/kg/day per os, for 3 weeks) of (R)-ICH3, the most active enantiomer of a novel ?7 nAChR agonist, and of PNU-282987 prevented the receptor down-regulation. On the other hand, both agonists per se up-regulated the ?7 nAChR subunit compared to control. (R)-ICH3 and PNU-282987 significantly reduced oxaliplatin-dependent alterations of the pain threshold when noxious or non-noxious stimuli were used. Further exvivo analysis highlighted their neuroprotective effects in dorsal root ganglia and peripheral nerves. The two agonists did not prevent the increase in microglia cell number induced by oxaliplatin in the central nervous system. Astrocyte density was enhanced by the agonist treatment in the spinal cord, thalamus and somatosensory area 1 as opposed to the effects of oxaliplatin treatment. (R)-ICH3 and PNU-282987 per se increased glial cell number in a region-specific manner. In summary, ?7 nAChR is involved in oxaliplatin-dependent neuropathology and the agonists (R)-ICH3 and PNU-282987 reduce pain and protect nervous tissue with concomitant glial activation. Since glial cells play a role both in pain and in neuroprotection, an ?7 AChR-dependent modulation of glial functions is suggested to distinguish rescue signals from the pathological pain-mediating pathway. PMID:24225197

  11. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  12. Inactivation of M2 AChR/NF-?B signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC)

    PubMed Central

    Gu, Xiajing; Chen, Hongzhuan; Xu, Lu

    2015-01-01

    Non-neuronal cholinergic system is involved in lung physiology and lung cancer. However, the biochemical events downstream acetylcholine (ACh) receptor activation leading to carcinogenesis and tumor progression are not fully understood. Our previous work has shown that non-neuronal ACh acts as an autoparacrine growth factor to stimulate cell proliferation and promote epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) via activation of M2 muscarinic receptor (M2R). The aim of the present study was to delineate the underlying mechanisms linking M2R and lung tumor progression, which may provide potential therapeutic targets to delay lung cancer progression. Inhibition of M2R by antagonist or siRNA suppresses NSCLC cell migratory and invasive capacities, reverses EMT and simultaneously inactivates PI3K/Akt, MAPK ERK and NF-?B p65. On the other hand, M2R activation stimulates NSCLC migration and invasion and promotes EMT via NF-?B p65 activation. Moreover, NF-?B p65 activation induced by M2R activation was partially inhibited by either Akt or ERK inhibitor. Taken together, these results demonstrated for the first time that NF-?B p65 activation is essential in NSCLC progression associated with non-neuronal cholinergic system. Our data suggest that M2R/ERK/Akt/NF-?B axis could be a potential target for NSCLC treatment. PMID:26336823

  13. Continuing Education in the Era of Quantum Change. 2003 ACHE Proceedings. (65th Annual Meeting, Charlottesville, VA, November 8-12, 2003)

    ERIC Educational Resources Information Center

    Barrineau, Irene T., Ed.

    2003-01-01

    This document presents the proceedings of the 2003 annual meeting of the Association for Continuing Higher Education (ACHE). These proceedings record the 65th Annual Meeting of ACHE held in Charlottesville, Virginia. President Allen Varner's theme for this annual meeting was, "Continuing Education in the Era of Quantum Change." The theme was…

  14. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  15. Rinodina sophodes (Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur City, India.

    PubMed

    Satya; Upreti, Dalip K; Patel, D K

    2012-01-01

    The aim of this study is to determine the possibility of using Rinodina sophodes (Ach.) Massal., a crustose lichen as polycyclic aromatic hydrocarbons (PAHs) bioaccumulator for evaluation of atmospheric pollution in tropical areas of India, where few species of lichens are able to grow. PAHs were identified, quantified and compared to evaluate the potential utility of R. sophodes. The limit of detection for different PAHs was found to be 0.008-0.050?gg(?-?1). The total PAHs in different sites were ranged between 0.189 0.029 and 0.494 0.105?gg(?-?1). The major sources of PAHs were combustion of organic materials, traffic and vehicular exhaust (diesel and gasoline engine). Significantly higher concentration of acenaphthylene and phenanthrene indicates road traffic as major source of PAH pollution in the city. Two-way ANOVA also confirms that all PAHs content showed significant differences between all sampling sites (P 1%). This study establishes the utility of R. sophodes in monitoring the PAHs accumulation potentiality for development of effective tool and explores the most potential traits resistant to the hazardous environmental conditions in the tropical regions of north India, where no such other effective way of biomonitoring is known so far. PMID:21465135

  16. Adsorption of alcohols and fatty acids onto hydrogenated (a-C:H) DLC coatings

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.; Kovač, J.; Jakša, G.

    2016-02-01

    Information about the interactions between lubricants and DLC coatings is scarce, despite there having been many studies over the years. In this investigation we used ToF-SIMS, XPS and contact-angle analyses to examine the adsorption ability and mechanisms with respect to two oiliness additives, i.e., hexadecanol and hexadecanoic acid, on an a-C:H coating. In addition, we analyzed the resistance of the adsorbed films to external influences like solvent cleaning. The results show that both molecules adsorb onto surface oxides and hydroxides present on the initial DLC surface and shield these structures with their hydrocarbon tails. This makes the surfaces less polar, which is manifested in a smaller polar component of the surface energy. We also showed that ultrasonic cleaning in heptane has no significant effect on the quantity of adsorbed molecules or on their chemical state. This not only shows the relatively strong adsorption of these molecules, but also provides useful information for future experimental work. Of the two examined molecules, the acid showed a greater adsorption ability than the alcohol, which explains some of the previously reported better tribological properties in the case of the acid with respect to the alcohol.

  17. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia.

    PubMed

    Beinat, Corinne; Banister, Samuel D; Herrera, Marco; Law, Vivian; Kassiou, Michael

    2015-07-01

    Homomeric α7 nicotinic acetylcholine receptors (α7 nAChRs) have implications in the regulation of cognitive processes such as memory and attention, and have shown promise as a therapeutic target for the treatment of the cognitive deficits associated with schizophrenia. Multiple α7 nAChR agonists have entered human trials; however, unfavorable side effects and pharmacokinetic issues have hindered the development of a clinical α7 nAChR agonist. Currently, EVP-6124 is in phase III clinical trials, and several other α7 nAChR agonists (GTS-21 and AQW051) are in earlier stages of development. This review will summarize the recent advances and failures of α7 nAChR agonists in clinical trials for the treatment of the aforementioned pathology. PMID:26242477

  18. ACh-induced depolarization in inner ear artery is generated by activation of a TRP-like non-selective cation conductance and inactivation of a potassium conductance

    PubMed Central

    Ma, Ke-Tao; Guan, Bing-Cai; Yang, Yu-Qin; Zhao, Hui; Jiang, Zhi-Gen

    2008-01-01

    Adequate cochlear blood supply by the spiral modiolar artery (SMA) is critical for normal hearing. ACh may play a role in neuroregulation of the SMA but several key issues including its membrane action mechanisms remain poorly understood. Besides its well-known endothelium-dependent hyperpolarizing action, ACh can induce a depolarization in vascular cells. Using intracellular and whole-cell recording techniques on cells in guinea pig in vitro SMA, we studied the ionic mechanism underlying the ACh-depolarization and found that: 1) ACh induced a DAMP-sensitive depolarization when intermediate conductance KCa channels were blocked by charybdotoxin or nitrendipine. The ACh-depolarization was associated with a decrease in input resistance (Rinput) in high membrane potential (Vm) (~−40 mV) cells but with no change or an increase in Rinput in low Vm (~−75 mV) cells. ACh-depolarization was attenuated by background membrane depolarization from ~−70 mV in the majority of cells; 2) ACh-induced inward current in smooth muscle cells embedded in a SMA segment often showed a U-shaped I/V curve, the reversal potential of its two arms being near EK and 0 mV respectively; 3) ACh-depolarization was reduced by low Na+, zero K+ or 20 mM K+ bath solutions; 4) ACh-depolarization was inhibited by La3+ in all cells tested, by 4-AP and flufenamic acid in low Vm cells, but was not sensitive to Cd2+, Ni2+, nifedipine, niflumic acid, DIDS, IAA94, linopirdine or amiloride. We conclude that ACh-induced vascular depolarization was generated mainly by activation of a TRP-like non-selective cation channel and by inactivation of an inward rectifier K+ channel. PMID:18313244

  19. Conotoxin Interactions with α9α10-nAChRs: Is the α9α10-Nicotinic Acetylcholine Receptor an Important Therapeutic Target for Pain Management?

    PubMed Central

    Mohammadi, Sarasa A.; Christie, MacDonald J.

    2015-01-01

    The α9α10-nicotinic acetylcholine receptor (nAChR) has been implicated in pain and has been proposed to be a novel target for analgesics. However, the evidence to support the involvement of the α9α10-nAChR in pain is conflicted. This receptor was first implicated in pain with the characterisation of conotoxin Vc1.1, which is highly selective for α9α10-nAChRs and is an efficacious analgesic in chronic pain models with restorative capacities and no reported side effects. Numerous other analgesic conotoxin and non-conotoxin molecules have been subsequently characterised that also inhibit α9α10-nAChRs. However, there is evidence that α9α10-nAChR inhibition is neither necessary nor sufficient for analgesia. α9α10-nAChR-inhibiting analogues of Vc1.1 have no analgesic effects. Genetically-modified α9-nAChR knockout mice have a phenotype that is markedly different from the analgesic profile of Vc1.1 and similar conotoxins, suggesting that the conotoxin effects are largely independent of α9α10-nAChRs. Furthermore, an alternative mechanism of analgesia by Vc1.1 and other similar conotoxins involving non-canonical coupling of GABAB receptors to voltage-gated calcium channels is known. Additional incongruities regarding α9α10-nAChRs in analgesia are discussed. A more comprehensive characterisation of the role of α9α10-nAChRs in pain is crucial for understanding the analgesic action of conotoxins and for improved drug design. PMID:26426047

  20. Tryptophan substitutions reveal the role of nicotinic acetylcholine receptor alpha-TM3 domain in channel gating: differences between Torpedo and muscle-type AChR.

    PubMed

    Navedo, Manuel; Nieves, Madeline; Rojas, Legier; Lasalde-Dominicci, Jose A

    2004-01-13

    A recent tryptophan scanning of the alpha-TM3 domain of the Torpedo californica AChR demonstrated that this domain can modulate ion-channel gating [Guzman, G., Santiago, J., Ricardo, A., Mart-Arbona, R., Rojas, L., Lasalde-Dominicci, J. (2003) Biochemistry 42, 12243-12250]. Here we extend the study of the alpha-TM3 domain to the muscle-type AChR by examining functional consequences of single tryptophan substitutions at five conserved positions (alphaM282, alphaF284, alphaV285, alphaA287, and alphaI290) homologous to the alpha-TM3 positions that were recently characterized in the Torpedo AChR. Similarly to the Torpedo AChR, mutations alphaM282W and alphaV285W, which are presumed to face the interior of the protein, did not exhibit functional channel activity. Nevertheless, significant expression levels of these mutants were observed at the oocyte surface. In contrast to the Torpedo AChR, in the muscle-type AChR, tryptophan substitution at positions F284, A287, and I290 produces a significant increase in normalized macroscopic response. Single-channel recordings at low ACh concentration revealed that the increase in AChR sensitivity for the F284W, A287W, and I290W is due to an increase in the mean open duration. These results suggest that tryptophan substitution directly affects channel gating, primarily the channel closing rate. Our results suggest that residues facing the interior of the protein (i.e., alphaM282 and alphaV285) may similarly affect channel gating in Torpedo and muscle-type AChR. However, equivalent mutations (i.e., F284W and I290W) presumably facing the lipid environment display a very different functional response between these two AChR species. PMID:14705933

  1. Quaternary coral reef refugia preserved fish diversity.

    PubMed

    Pellissier, Loc; Leprieur, Fabien; Parravicini, Valeriano; Cowman, Peter F; Kulbicki, Michel; Litsios, Glenn; Olsen, Steffen M; Wisz, Mary S; Bellwood, David R; Mouillot, David

    2014-05-30

    The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity. PMID:24876495

  2. Antifungal activity of gemini quaternary ammonium salts.

    PubMed

    Obłąk, Ewa; Piecuch, Agata; Krasowska, Anna; Luczyński, Jacek

    2013-12-14

    A series of gemini quaternary ammonium chlorides and bromides with various alkyl chain and spacer lengths was synthesized. The most active compounds against fungi were chlorides with 10 carbon atoms within the hydrophobic chain. Among these compounds were few with no hemolytic activity at minimal inhibitory concentrations. None of the tested compounds were cytotoxic and mutagenic. Cationic gemini surfactants poorly reduced the adhesion of microorganisms to the polystyrene plate, but inhibited the filamentation of Candida albicans. One of the tested compounds eradicated C. albicans and Rodotorula mucilaginosa biofilm, what could be important in overcoming catheter-associated infections. It was also shown that gemini surfactants enhanced the sensitivity of C. albicans to azoles and polyenes, thus they might be potentially used in combined therapy against fungi. PMID:23827647

  3. Quaternary geology of Avery Island, Louisiana

    SciTech Connect

    Autin, W.J.; McCulloh, R.P.; Davison, A.T.

    1986-09-01

    Avery Island, one of the Five Islands salt domes of south-central Louisiana, is a piercement-type dome that has been uplifted from several kilometers' depth. It is nearly circular in plan with a maximum elevation approximately 50 m above the surrounding coastal marsh. Dissection has produced a terrain of gullies and steep slopes. The features identified indicate a complex geologic history for Avery Island. Deposition of late Pleistocene sediments in a low-relief alluvial plain and subsequent soil development predate domal uplift. The stratigraphy of loess and colluvial silts indicates the island was emergent during loess depositions. The degree of dissection, distribution of colluvium, and shearing of Quaternary sediments reflects continual uplift after loess deposition.

  4. Suggested terminology for Quaternary dating methods

    USGS Publications Warehouse

    Colman, Steven M.; Pierce, K.L.; Birkeland, P.W.

    1987-01-01

    Classification of Quaternary dating methods should be based on the level of quantitative information and the degree of confidence contained in the age estimates produced by the dating methods. We recommend the use of the terms numerical-age, calibrated-age, relative-age, and correlated-age to describe these levels. We also classify dating methods by type into sideral, isotopic, radiogenic, chemical and biological, geomorphic, and correlation methods. The use of "absolute" is inappropriate for most dating methods, and should be replaced by "numerical." The use of "date" should be minimized in favor of "age" or "age estimate." We recommend use of the abbreviations ka and Ma for most ages; calender dates can be used where appropriate and yr B.P. can be used for radiocarbon ages. ?? 1987.

  5. On Quaternary glaciations, observations and theories

    NASA Astrophysics Data System (ADS)

    Paillard, D.

    2015-07-01

    In a recent paper, Paillard (2015) presents a rapid overview of both major theoretical and empirical studies of Pleistocene glaciations. In particular, it is explained how, over the last 150 years, astronomical theories were confronted to observational constraints and why the "100-kyr problem" is still the major unsolved issue of Quaternary ice ages. This paper also discusses the main alternative theory, which involves changes in atmospheric carbon dioxide concentration. It is then argued that a synthesis of both theories would better account for empirical evidences, as well as for our current knowledge of climate physics. Indeed, if there is no doubt that ice ages are "paced" by the astronomy as evidenced in Hays et al. (1976), the cause of terminations, and therefore the dynamics of the 100-kyr cycles, appears to be closely linked to Southern Ocean climate and atmospheric pCO2.

  6. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2015-08-01

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation from the Raman behavior of a-C:H films deposited by bipolar PBII&D. This tendency intensifies as the negative voltage becomes greater. Also, the energy of incident ions on the sidewall of the trench increases with increasing negative voltage, which causes a shift in the Raman data of the sidewall to the bottom right corner on the figure depicting the relationship of the FWHM(G) and the G-peak position, indicating increased graphitization of a-C:H film.

  7. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts

    PubMed Central

    Xue, Yan; Xiao, Huining; Zhang, Yi

    2015-01-01

    Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the art of antimicrobial polymers with quaternary ammonium/phosphonium salts. In particular, it discusses the structure and synthesis method, mechanisms of antimicrobial action, and the comparison of antimicrobial performance between these two kinds of polymers. PMID:25667977

  8. Biocide comparison: Aldehyde versus mixture of aldehyde and quaternary amine

    SciTech Connect

    Prasad, R.

    1994-12-31

    Glutaraldehyde and quaternary ammonium chloride salts are widely used biocides in oil field systems to control microbiologically influenced corrosion (MIC). These biocides and others were evaluated for their efficacy to control sessile and planktonic sulfate reducing bacteria (SRB) and aerobic bacteria. The efficacy of these biocides was then compared. In addition to laboratory evaluation, all the biocides were evaluated against SRB and acid producing bacteria in two different field waters. It was found that the blend containing aldehyde and quaternary amino was, in general, a more effective biocide than either glutaraldehyde or quaternary amine alone.

  9. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  10. In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048.

    PubMed

    Chandar, Nellore Bhanu; Ghosh, Shibaji; Lo, Rabindranath; Banjo, Semire; Ganguly, Bishwajit

    2015-12-01

    Organophosphorus compound (OP) tabun is resistant to reactivate by many oxime drugs after the formation of OP-conjugate with AChE. The reactivation of tabun-inhibited mAChE and site-directed mutants by bispyridinium oxime, K048 (N-[4-(4-hydroxyiminomethylpyridinio)butyl]-4-carbamoylpyridinium dibromide) showed that the mutations significantly poor the overall reactivation efficacy of K048. We have unravelled the lowered efficacy of K048 with the tabun-mutant mAChE(Y337A) using docking and steered molecular dynamics (SMD) simulations. The computed results showed some interesting features for the interaction of drug molecule K048 with tabun-mAChE(wild-type) and tabun-mutant mAChE(Y337A). The SMD simulations showed that the active pyridinium ring of K048 is directed towards the phosphorus atom conjugated to the active serine (SUN203) of tabun-mAChE(wild-type). The cradle shaped residues Tyr337-Phe338 present in the choline binding site stabilize the active pyridinium ring of K048 with ?-? interaction and the residue Trp86 involved in T-shaped cation-? interaction. However, in the case of tabun-mutant mAChE(Y337A).K048 conjugate, the replacement of aromatic Tyr337 with the aliphatic alanine unit in the choline binding site, however, loses one of the ?-? interaction between the active pyridinium ring of K048 and the Tyr337. The placement of aliphatic alanine unit resulted in the displacement of the side chain of Phe338 towards the His447. Such displacement is causing the inaccessibility of the drug towards the phosphorus atom conjugated to the active serine (SUN203) of tabun-mutant mAChE(Y337A). Furthermore, the unbinding of the K048 with SMD studies showed that the active pyridinium ring of the drug undergoes a complete turn along the gorge axis and is directed away from the phosphorus atom conjugated to the active serine of the tabun-mutant mAChE(Y337A). Such effects inside the gorge of tabun-mutant mAChE(Y337A) would lower the efficacy of the drug molecule (K048) for the reactivation process. The binding free energy computed for the tabun-mAChE(wild-type) and tabun-mutant mAChE(Y337A) with K048 showed that the drug molecule prefers to bind strongly with the former enzyme (?30kJ/mol) than the later one. PMID:26494532

  11. Heritability and Fitness Correlates of Personality in the Ache, a Natural-Fertility Population in Paraguay

    PubMed Central

    Bailey, Drew H.; Walker, Robert S.; Blomquist, Gregory E.; Hill, Kim R.; Hurtado, A. Magdalena; Geary, David C.

    2013-01-01

    The current study assessed the heritability of personality in a traditional natural-fertility population, the Ache of eastern Paraguay. Self-reports (n = 110) and other-reports (n = 66) on the commonly used Big Five Personality Inventory (i.e., extraversion, agreeableness, conscientiousness, neuroticism, openness) were collected. Self-reports did not support the Five Factor Model developed with Western samples, and did not correlate with other-reports for three of the five measured personality factors. Heritability was assessed using factors that were consistent across self- and other-reports and factors assessed using other-reports that showed reliabilities similar to those found in Western samples. Analyses of these items in combination with a multi-generation pedigree (n = 2,132) revealed heritability estimates similar to those found in most Western samples, although we were not able to separately estimate the influence of the common environment on these traits. We also assessed relations between personality and reproductive success (RS), allowing for a test of several mechanisms that might be maintaining heritable variation in personality. Phenotypic analyses, based largely on other-reports, revealed that extraverted men had higher RS than other men, but no other dimensions of personality predicted RS in either sex. Mothers with more agreeable children had more children, and parents mated assortatively on personality. Of the evolutionary processes proposed to maintain variation in personality, assortative mating, selective neutrality, and temporal variation in selection pressures received the most support. However, the current study does not rule out other processes affecting the evolution and maintenance of individual differences in human personality. PMID:23527163

  12. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Yang, P.; Kwok, S. C. H.; Chu, P. K.; Leng, Y. X.; Chen, J. Y.; Wang, J.; Huang, N.

    2003-05-01

    Diamond-like-carbon has attracted much attention recently as a potential biomaterial in blood contacting biomedical devices. However, previous reports in this area have not adequately addressed the biocompatibility and acceptability of the materials in blood contacting applications. In this study, hydrogenated amorphous carbon (a-C:H) films were fabricated on silicon wafers (1 0 0) using plasma immersion ion implantation-deposition. A series of a-C:H films with different structures and chemical bonds were fabricated under different substrate voltages. The results indicate that film graphitization is promoted at higher substrate bias. The film deposited at a lower substrate bias of -75 V possesses better blood compatibility than the films at higher bias and stainless steel. Our results suggest two possible paths to improve the blood compatibility, suppression of the endogenic clotting system and reduction of platelet activation.

  13. Density of ?4?2* nAChR on the surface of neurons is modulated by chronic antagonist exposure

    PubMed Central

    Zambrano, Cristian A; Short, Caitlin A; Salamander, Rakel M; Grady, Sharon R; Marks, Michael J

    2015-01-01

    The expression of high-affinity ?4?2* nicotinic acetylcholine receptors (nAChR) increases following chronic exposure to nicotinic agonists. While, nAChR antagonists can also produce upregulation, these changes are often less pronounced than achieved with agonists. It is unknown if nAChR agonists and antagonists induce receptor upregulation by the same mechanisms. In this study, primary neuronal cultures prepared from cerebral cortex, hippocampus, diencephalon, and midbrain/hindbrain of C57BL/6J mouse embryos were treated chronically with nicotine (agonist), mecamylamine (noncompetitive antagonist) or dihydro-?-erythroidine (competitive antagonist) or the combination of nicotine with each antagonist. The distribution of intracellular and surface [125I]epibatidine-binding sites were subsequently measured. Treatment with 1?mol/L nicotine upregulated intracellular and cell surface [125I]epibatidine binding after 96h. Chronic dihydro-?-erythroidine (10?mol/L) treatment also increased [125I]epibatidine binding on the cell surface; however, mecamylamine was ineffective in upregulating receptors by itself. The combination of 1?mol/L nicotine plus 10?mol/L mecamylamine elicited a significantly higher upregulation than that achieved by treatment with nicotine alone due to an increase of [125I]epibatidine binding on the cell surface. This synergistic effect of mecamylamine and nicotine was found in neuronal cultures from all four brain regions. Chronic treatment with nicotine concentrations as low as 10nmol/L produced upregulation of [125I]epibatidine binding. However, the effect of mecamylamine was observed only after coincubation with nicotine concentrations equal to or greater than 100nmol/L. Vesicular trafficking was required for both nicotine and nicotine plus mecamylamine-induced upregulation. Results presented here support the idea of multiple mechanisms for nAChR upregulation. PMID:25729578

  14. Development of M1 mAChR Allosteric and Bitopic Ligands: Prospective Therapeutics for the Treatment of Cognitive Deficits

    PubMed Central

    2013-01-01

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer’s disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues. PMID:23659787

  15. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (?7nAchR)-mediated autophagy flux

    PubMed Central

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-01-01

    Activation of the alpha7 nicotinic acetylcholine receptor (?7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate ?7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106126) treatment decreased ?7nAchR expression and activation of autophagic flux. In addition, the ?7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased ?7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via ?7nAchR activation. This is the first report demonstrating that activation of ?7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of ?7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that ?7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases. PMID:26295309

  16. Neuroprotective effect of cellular prion protein (PrPC) is related with activation of alpha7 nicotinic acetylcholine receptor (?7nAchR)-mediated autophagy flux.

    PubMed

    Jeong, Jae-Kyo; Park, Sang-Youel

    2015-09-22

    Activation of the alpha7 nicotinic acetylcholine receptor (?7nAchR) is regulated by prion protein (PrPC) expression and has a neuroprotective effect by modulating autophagic flux. In this study, we hypothesized that PrPC may regulate ?7nAchR activation and that may prevent prion-related neurodegenerative diseases by regulating autophagic flux. PrP(106-126) treatment decreased ?7nAchR expression and activation of autophagic flux. In addition, the ?7nAchR activator PNU-282987 enhanced autophagic flux and protected neuron cells against PrP(106-126)-induced apoptosis. However, activation of autophagy and the protective effects of PNU-282987 were inhibited in PrPC knockout hippocampal neuron cells. In addition, PrPC knockout hippocampal neuron cells showed decreased ?7nAchR expression levels. Adenoviral overexpression of PrPC in PrPC knockout hippocampal neuron cells resulted in activation of autophagic flux and inhibition of prion peptide-mediated cell death via ?7nAchR activation. This is the first report demonstrating that activation of ?7nAchR-mediated autophagic flux is regulated by PrPC, and that activation of ?7nAchR regulated by PrPC expression may play a pivotal role in protection of neuron cells against prion peptide-induced neuron cell death by autophagy. These results suggest that ?7nAchR-mediated autophagic flux may be involved in the pathogenesis of prion-related diseases and may be a therapeutic target for prion-related neurodegenerative diseases. PMID:26295309

  17. Refractoriness to a second episode of experimental myasthenia gravis. Correlation with AChR concentration and morphologic appearance of the postsynaptic membrane.

    PubMed

    Corey, A L; Richman, D P; Agius, M A; Wollmann, R L

    1987-05-15

    Rats injected with anti-acetylcholine receptor (anti-AChR)2 monoclonal antibodies (mAb) develop the acute phase of experimental autoimmune myasthenia gravis characterized by a macrophage inflammation of muscle endplates (EP). These animals are subsequently refractory to induction of a second such episode up to 8 wk after the initial injection. Analysis of this phenomenon to date has shown that mechanisms such as anti-idiotypic regulation, epitopic modulation, and cellular suppression or deletion are not significantly involved. In the present study, animals reinjected from 11 wk on developed a second episode of cellular EP inflammation. This renewed susceptibility correlated temporally with an increase in postsynaptic membrane length and AChR content. When the second injection of anti-AChR mAb was given at 8 wk, mAb bound to muscle EP caused a small reduction in AChR content in the absence of cellular inflammation. These observations suggested that total inaccessibility of AChR to mAb is not responsible for the refractoriness to cellular EP inflammation. More likely, a certain AChR concentration or density is necessary to bind a critical amount or density of antibody to activate complement and set in motion the events leading to a cellular inflammatory response. In human myasthenia gravis, in which initially damaged EP are continuously exposed to anti-AChR antibodies, this critical AChR concentration or density may not be reached again because of continuous complement-mediated lysis and/or increased AChR turnover. Hence, these data may explain the infrequency of cellular EP inflammation in motor point muscle biopsies in this disease. PMID:3494763

  18. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought. Rather, during the Quaternary period, they occur nearly three times as often as full polarity reversals. I will address analytical issues, including the size and consistency of system blanks, that have led to the recognition of minor (1%) discrepencies between the 40Ar/39Ar age for a particular reversal or excursion and the best astrochronologic estimates from ODP sediment cores. For example, re-analysis of lava flows from Haleakala volcano, Maui that record in detail the Matuyama-Brunhes polarity reversal have been undertaken with blanks an order of magntitude smaller and more stable than was common a decade ago. Using the modern astrochronologic calibration of 28.201 Ma for the age of the Fish Canyon sanidine standard, results thus far yield an 40Ar/39Ar age of 772 11 ka for the reversal that is identical to the most precise and accurate astrochronologic age of 773 2 ka for this reversal from ODP cores. Similarly, new dating of sanidine in the Cerro Santa Rosa I rhyolite dome, New Mexico reveals an age of 932 5 ka for the excursion it records, in perfect agreement with astrochronologically dated ODP core records. Work underway aims at refining the 40Ar/39Ar ages that underpin the entire GITS by further eliminating the bias between the radioisotopic and astrochronologically determined ages for several reversals and excursions.

  19. Bis-quaternary oximes amplify the effectiveness of acetylcholinesterase to detoxify organophosphorus compounds

    SciTech Connect

    Caranto, G.R.; Waibel, K.H.; Asher, J.M.; Larrison, R.W.; Brecht, K.M.

    1993-05-13

    Pretreatment of rhesus monkeys with fetal bovine serum acetylcholinesterase (FBS AChE) provides complete protection against 5 LD(50), of organophosphate (OP) without any signs of toxicity or performance decrements as measured by serial probe recognition tests or primate equilibrium platform performance (7,8). Although such use of enzyme as a single pretreatment drug for OP toxicity is sufficient to provide complete protection, a relatively large (stoichiometric) amount of enzyme was required in vivo to neutralize OP. To improve the efficacy of ChEs as pretreatment drugs, we have developed an approach in which the catalytic activity of OP-inhibited FBS AChE was rapidly and continuously restored, thus detoxifying the OP and minimizing enzyme aging by having sufficient amounts of appropriate oxime present. The efficacy of FBS AChE to detoxify several OPs was amplified by addition of bisquaternary oximes, particularly HI-6. When mice were pretreated with sufficient amounts of FBS AChE and HI-6 and challenged with repeated doses of sarin, the OP was continuously detoxified so long as the molar concentration of the sarin dose was less than the molar concentration of AChE in circulation. The in vitro experiments showed that the stoichiometry of sarin:FBS AChE was higher than 3200:1 and in vivo stoichiometry with mice was as high as 57:1. Addition of HI-6 to FBS AChE as a pretreatment drug amplified the efficacy of enzyme as a scavenger of nerve agents.

  20. Experimental investigation into Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Kuhn, Nikolaus; Yair, Aaron; Bryan, Rorke; Schwanghart, Wolfgang

    2010-05-01

    Badland morphology is commonly linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. In this study, the precipitation characteristics that are critical for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel are investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Currently, the geomorphic development in the Dinosaur badlands is characterized by weathering/supply limited conditions, leading to slope retreat independent of lithology. In the Negev, transport limited conditions cause frequent runoff discontinuity, creating a pattern of areas dominated by erosion or deposition. The results of the weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring and summer rainfall and erosion determine the rate of slope retreat in the Dinosaur Badlands. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a sediment sink. The experiments illustrate that the badland slopes experienced an auto-stabilization during the Quaternary in the Zin Valley. In the Dinosaur Badlands Holocene climatic variations have not caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. In their current state, both badland slope systems appear to be fairly stable against climate change in the range of those occurring during the Holocene. However, the stability is achieved in different ways. In the Dinosaur Badlands, weathering rates are low compared to erosion capacity, maintaining continuous evacuation of sediment from slopes to the flood planes of the Red Deer River system. Only a very pronounced contrast between winter weathering and drier summers would generate a colluvium and thus change slope hydrology. In the Zin Valley the development of a thick colluvium at the foot of the slopes has increased infiltration capacity, reducing runoff and sediment yield into the floodplain. Here, only an increase in rainfall magnitude would improve runoff continuity and induce the erosion of the colluvium. This would in turn reduce infiltration capacity and thus initiate a positive feedback on runoff and sediment yield into the Zin River. Overall, Holocene climate change appears to be insufficient to change the geomorphic development in both badlands. However, this stability is achieved not despite of climate, but because of the specific history of geomorphic development. In addition, the combination of erosion and weathering experiments with numerical modeling demonstrates the versatility of Experimental Geomorphology in landscape evolution studies.

  1. Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases.

    PubMed

    Farina, Roberta; Pisani, Leonardo; Catto, Marco; Nicolotti, Orazio; Gadaleta, Domenico; Denora, Nunzio; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passos, Carolina S; Muncipinto, Giovanni; Altomare, Cosimo D; Nurisso, Alessandra; Carrupt, Pierre-Alain; Carotti, Angelo

    2015-07-23

    The multifactorial nature of Alzheimer's disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2-12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity. More rigid inhibitors, bearing meta- and para-xylyl linkers, displayed good inhibitory activities and high MAO-B selectivity. Compounds 21, 24, 37, and 39, the last two featuring an improved hydrophilic/lipophilic balance, exhibited excellent activity profiles with nanomolar inhibitory potency toward hMAO-B, high hMAO-B over hMAO-A selectivity and submicromolar potency at hAChE. Cell-based assays of BBB permeation, neurotoxicity, and neuroprotection supported the potential of compound 37 as a BBB-permeant neuroprotective agent against H2O2-induced oxidative stress with poor interaction as P-gp substrate and very low cytotoxicity. PMID:26107513

  2. Synthesis, biological assessment and molecular modeling of new multipotent MAO and cholinesterase inhibitors as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Samadi, Abdelouahid; Chioua, Mourad; Bolea, Irene; de Los Ríos, Cristóbal; Iriepa, Isabel; Moraleda, Ignacio; Bastida, Agatha; Esteban, Gerard; Unzeta, Mercedes; Gálvez, Enrique; Marco-Contelles, José

    2011-09-01

    The synthesis, biological evaluation and molecular modeling of new multipotent inhibitors of type I and type II, able to simultaneously inhibit monoamine oxidases (MAO) as well as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), is described. Compounds of type I were prepared by sequential reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (14) [or 2,6-dichloropyridine-3,5-dicarbonitrile (15)] with prop-2-yn-1-amine (or N-methylprop-2-yn-1-amine) and 2-(1-benzyl-piperidin-4-yl)alkylamines 22-25. Compounds of type II were prepared by Friedländer type reaction of 6-amino-5-formyl-2-(methyl(prop-2-yn-1-yl)amino)nicotinonitriles 32 and 33 with 4-(1-benzylpiperidin-4-yl)butan-2-one (31). The biological evaluation of molecules 1-11 showed that most of these compounds are potent, in the nanomolar range, and selective AChEI, with moderate and equipotent selectivity for MAO-A and MAO-B inhibition. Kinetic studies of compound 8 proved that this is a EeAChE mixed type inhibitor (IC(50) = 16 ± 2; Ki = 12 ± 3 nM). Molecular modeling investigation on compound 8 confirmed its dual AChE inhibitory profile, binding simultaneously at the catalytic active site (CAS) and at the peripheric anionic site (PAS). In overall, compound 11, as a potent and selective dual AChEI, showing a moderate and selective MAO-A inhibitory profile, can be considered as an attractive multipotent drug for further development on two key pharmacological targets playing key roles in the therapy of Alzheimer's disease. PMID:21669479

  3. When the Earth has a Belly-Ache: Young Seismologists at School

    NASA Astrophysics Data System (ADS)

    Burrato, P.; Nostro, C.; Tertulliani, A.; Winkler, A.; Casale, P.; Marsili, A.; Castellano, C.; Cultrera, G.; Scarlato, P.; Alfonsi, L.; Ciaccio, M.; Frepoli, A.

    2004-12-01

    The INGV cohoperates with schools of different grades to promote Earth science programs and geophysical knowledge. This is particularly important in areas prone to seismic and volcanic hazards, like Italy. The E&O Group organizes every year school visits to the scientific laboratories of the INGV center of Rome, during which more than 4,000 students interact with scientists and learn about the dynamic Earth. Besides that the E&O Group brings on the road educational activities, carring out projects with schools and partecipating to science festivals. In March 2000 a small size earthquake hit the towns of Subiaco and Agosta, near Rome. This event was strongly felt by teachers and students of the local primary schools, and sprang the idea of a project focused on earthquakes. The aim of the project was to gain knowledge of what causes earthquakes and to familiarize with a phenomenon considered random and unforeseeable. Another goal was to train students and teachers to behave properly during the occurrence of an earthquake. The project was developed starting from the personal experience of the students, with theoretical lessons and practical experiments. The INGV researchers partecipated giving talks and producing educational materials. During the talks they showed that earthquakes are not phenomena so rare and random as thought by most people. They also showed the instruments used to register seismicity, and encouraged kids to produce their own earthquakes jumping close to a portable seismometer. In a second phase the students were divided in groups that investigated different topics of the seismic event, giving a talk to their school mates at the end of the research. The teachers used a cooperative learning approach to stimulate the ability of the kids to team up and work in cooperation. At the end of the project the kids published a book (When the Earth has a belly-ache) and a calendar, that tell about earthquakes using the kid's original drawings. The book illustrates using a kids language, though scientifically correct, what is an earthquake, what can be its effects, and what should be do if an earthquake occurs. The project was presented in a public conference to the local authorities and to the community, extending the issues regarding the natural hazards.

  4. Autophagy inhibitors.

    PubMed

    Pasquier, Benoit

    2016-03-01

    Autophagy is a lysosome-dependent mechanism of intracellular degradation. The cellular and molecular mechanisms underlying this process are highly complex and involve multiple proteins, including the kinases ULK1 and Vps34. The main function of autophagy is the maintenance of cell survival when modifications occur in the cellular environment. During the past decade, extensive studies have greatly improved our knowledge and autophagy has exploded as a research field. This process is now widely implicated in pathophysiological processes such as cancer, metabolic, and neurodegenerative disorders, making it an attractive target for drug discovery. In this review, we will summarize the different types of inhibitors that affect the autophagy machinery and provide some potential therapeutic perspectives. PMID:26658914

  5. Late Quaternary history of the Atacama Desert

    USGS Publications Warehouse

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (1626S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  6. A Quaternary Fault Database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, S.; Ehlers, T. A.; Bendick, R.; Stübner, K.; Strube, T.

    2015-09-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for Central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for Central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic and structural characteristics, short descriptions, narrative comments and references to peer-reviewed publications. The interactive map displays 1196 fault segments and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 122 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. This work has implications for seismic hazard studies in Central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  7. Quaternary ammonium biocides: efficacy in application.

    PubMed

    Gerba, Charles P

    2015-01-01

    Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance. PMID:25362069

  8. Quaternary Ammonium Biocides: Efficacy in Application

    PubMed Central

    2014-01-01

    Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance. PMID:25362069

  9. Late Quaternary mammalian zoogeography of eastern Washington

    NASA Astrophysics Data System (ADS)

    Lyman, R. Lee; Livingston, Stephanie D.

    1983-11-01

    The late Quaternary mammalian zoogeographic history of eastern Washington as revealed by archaeological and paleontological research conforms to a set of past environmental conditions inferred from botanical data. During the relatively cool and moist late Pleistocene and early Holocene, Cervus cf. elaphus, Ovis canadensis, Vulpes vulpes, Martes americana, Alopex lagopus, and perhaps Rangifer sp., taxa with ecological preferences for mesic steppe habitats, were present in the now xeric Columbia Basin. As the climate became progressively warmer and drier during the late Pleistocene and early Holocene, Antilocapra americana, Onychomys leucogaster, Spermophilus townsendii, and Neotoma cinerea, taxa with ecological preferences for xeric steppe habitats, appear in the Columbia Basin. Bison sp. and Taxidea taxus may have been present in eastern Washington for the last 20,000 yr. Middle and late Holocene records for Oreamnos americanus, Spermophilus columbianus, S. townsendii, Lagurus curtatus, and Urocyon cinereoargenteus in central eastern Washington suggest fluctuations in the ranges of these taxa that conform to a middle Holocene period of less effective precipitation and a ca. 3500-yr-old period of more effective precipitation before essentially modern environmental conditions prevailed.

  10. A Quaternary fault database for central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  11. Redefining the Role of the Quaternary Shift in Bacillus stearothermophilus Phosphofructokinase

    PubMed Central

    Mosser, Rockann; Reddy, Manchi C. M.; Bruning, John B.; Sacchettini, James C.; Reinhart, Gregory D.

    2013-01-01

    Bacillus stearothermophilus PFK (BsPFK) is a homotetramer that is allosterically inhibited by phosphoenolpyruvate (PEP), which binds along one dimer-dimer interface. The substrate, fructose 6-phosphate (Fru-6-P), binds along the other dimer-dimer interface. Evans et al., observed that the inhibitor, phosphoglycolate, bound structure, when compared to the substrate and activator bound structure of wild-type BsPFK, exhibits a 7 rotation about the substrate-binding interface, termed the quaternary shift [Schirmer, T., and Evans, P. R. (1990) Nature 343, 140-145]. We report that the variant D12A BsPFK exhibits a 100-fold increase in the binding affinity for PEP, a 50-fold decrease in the binding affinity for Fru-6-P, but an inhibitory coupling comparable to wild type. Crystal structures of the apo and PEP bound forms of D12A BsPFK have been determined (Protein Data Bank ID codes 4I36 and 4I7E, respectively), and both indicate a shifted structure similar to the inhibitor-bound structure of wild type. D12 does not directly bind to either substrate or inhibitor and is located along the substrate-binding interface. A conserved hydrogen bond between D12 and T156 forms across the substrate-binding subunit-subunit interface in the substrate-bound form of BsPFK. The variant T156A BsPFK, when compared to wild-type, shows a 30-fold increase in PEP binding affinity, a 17-fold decrease in Fru-6-P binding affinity, and an estimated coupling that is also approximately equal to wild-type. In addition, the T156A BsPFK crystal structure bound to PEP is reported (Protein Data Bank ID code 4I4I), and it exhibits a shifted structure similar to D12A BsPFK and the inhibitor-bound structure of wild type. The results suggest that main role of the quaternary shift may be to influence ligand binding and not to cause the heterotropic allosteric inhibition per se. PMID:23859543

  12. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-01-01

    In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex display a significant delay in the ACh-induce channel activation. In summary, these results suggest that the physical properties of the lipid analog detergents (headgroup and acyl chain length) are the most effective in maintaining both the stability and functionality of the nAChR in the detergent solubilized complex. PMID:26454038

  13. The use of ?-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to ?7 nAChR-overexpressing breast cancer.

    PubMed

    Mei, Dong; Lin, Zhiqiang; Fu, Jijun; He, Bing; Gao, Wei; Ma, Ling; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Lu, Wanliang; Zhou, Demin; Zhang, Qiang

    2015-02-01

    Alpha7 nicotinic acetylcholine receptor (?7 nAChR), a ligand-gated ion channel, is increasingly emerging as a new tumor target owing to its expression specificity and significancy for cancer. In an attempt to increase the targeted drug delivery to the ?7 nAChR-overexpressing tumors, herein, ?-conotoxin ImI, a disulfide-rich toxin with highly affinity for ?7 nAChR, was modified on the PEG-DSPE micelles (ImI-PMs) for the first time. The DLS, TEM and HPLC detections showed the spherical nanoparticle morphology about 20 nm with negative charge and high drug encapsulation. The ligand modification did not induce significant differences. The immunofluorescence assay confirmed the expression level of ?7 nAChR in MCF-7 cells. In vitro and in vivo experiments demonstrated that the ?7 nAChR-targeted nanomedicines could deliver more specifically and faster into ?7 nAChR-overexpressing MCF-7 cells. Furthermore, fluo-3/AM fluorescence imaging technique indicated that the increased specificity was attributed to the ligand-receptor interaction, and the inducitivity for intracellular Ca(2+) transient by ImI was still remained after modification. Moreover, paclitaxel, a clinical frequently-used anti-tumor drug for breast cancer, was loaded in ImI-modified nanomedicines to evaluate the targeting efficacy. Besides of exhibiting greater cytotoxicity and inducing more cell apoptosis in vitro, paclitaxel-loaded ImI-PMs displayed stronger anti-tumor efficacy in MCF-7 tumor-bearing nu/nu mice. Finally, the active targeting system showed low systemic toxicity and myelosuppression evidenced by less changes in body weight, white blood cells, neutrophilic granulocyte and platelet counts. In conclusion, ?7 nAChR is also a promising target for anti-tumor drug delivery and in this case, ?-conotoxin ImI-modified nanocarrier is a potential delivery system for targeting ?7 nAChR-overexpressing tumors. PMID:25542793

  14. Genotyping mutation in BmAChE3: A survey of laboratory and Mexican strains of Rhipicephalus (Boophilus) microplus that are resistant or susceptible to coumaphos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BmAChE3 mutations I48L, I54V, R86Q, V137I, I492M, and T548A were previously identified in the organophosphate (OP) acaricide-resistant San Román strain of Rhipicephalus (Boophilus) microplus. Recombinant BmAChE3 acetylcholinesterase containing the R86Q mutation was shown to exhibit nearly 20-fold r...

  15. Development of [(18)F]ASEM, a specific radiotracer for quantification of the α7-nAChR with positron-emission tomography.

    PubMed

    Horti, Andrew G

    2015-10-15

    The alpha-7 subtype of the nicotinic acetylcholine receptor (α7-nAChR) is fundamental to physiology; it mediates various brain functions and represents an important target for drug discovery. Exploration of the brain nicotinic acetylcholine receptors (nAChRs) using positron-emission tomography (PET) will make it possible to better understand the important role of this receptor and to study its involvement in schizophrenia, bipolar disorder, Alzheimer's and Parkinson's diseases, drug dependence, inflammation and many other disorders and simplify the development of nicotinic drugs for treatment of these disorders. Until recently, PET imaging of α7-nAChRs has been impeded by the absence of good radiotracers. This review describes various endeavors to develop α7-nAChR PET tracers by several research groups including the author's group. Most initial PET tracers for imaging α7-nAChRs did not exhibit suitable imaging properties due to their low specific binding. Newly discovered [(18)F]ASEM is the first highly specific α7-nAChR radioligand and in 2014 it was translated to human PET imaging. PMID:26232729

  16. Chronic ethanol (EtOH) feeding increases muscarinic receptor (mAChR) density in esophagus without parallel change in dose response (D-R) to cholinergic agonists

    SciTech Connect

    Keshavarzian, A.; Gordon, J.H.; Urban, G.; Fields, J.Z. VA Hospital, Hines, IL )

    1991-03-11

    The mAChR/effector pathway for signal transduction is important in the physiology of esophagus and mAChR alterations are involved in EtOH induced changes in several organs. To see if EtOH-induced increases in lower esophageal sphincter pressure (LESP) are due to upregulation of mAChR, the authors evaluated mAChR binding and D-R curves for bethanechol (IV) induced increases in LESP, and compared these values to changes in LESP after acute and chronic EtOH. EtOH was given to cats acutely or chronically. The number of mAChR sites (Bmax) in esophagus was lowered by acute EtOH, withdrawal from chronic EtOH raised Bmax. Acute injection of EtOH to cats in withdrawal reversed this increase in mAChR density. These changes correlated with the earlier data on EtOH-induced changes in LESP. In contrast, the D-R curve for bethanechol shifted to the right. Thus, the withdrawal-associated increase in Bmax is more likely to be a compensatory response to deficits distal to the receptor recognition site than to proximal deficits and doesn't cause LESP hyperactivity. Also, receptor binding changes do not necessarily translate into physiological changes.

  17. ELIC-?7 Nicotinic acetylcholine receptor (?7nAChR) chimeras reveal a prominent role of the extracellular-transmembrane domain interface in allosteric modulation.

    PubMed

    Tillman, Tommy S; Seyoum, Edom; Mowrey, David D; Xu, Yan; Tang, Pei

    2014-05-16

    The native ?7 nicotinic acetylcholine receptor (?7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of ?7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human ?7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-?7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or ?7nAChR interface (EA?7). Both EA?7 and EAELIC show similar activation response and desensitization characteristics, but only EA?7 retained the unique pharmacology of ?7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation. PMID:24695730

  18. Effects of deposition rate and ion bombardment on properties of a-C:H films deposited by H-assisted plasma CVD method

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Koga, Kazunori; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Setsuhara, Yuichi; Sekine, Makoto; Hori, Masaru

    2016-01-01

    In our previous study, we realized conformal, subconformal, and anisotropic deposition profiles of hydrogenated amorphous carbon (a-C:H) films formed on trench substrates by plasma CVD using toluene. To obtain information on the film structures, we investigated the effects of deposition rate and ion bombardment on hydrogen bonding configurations and hydrogen content in the a-C:H films deposited by plasma CVD using toluene. The structure of a-C:H films transforms from polymer-like a-C:H (PLCH) for the ion energy <75 eV to diamond-like a-C:H (DLCH) for the ion energy ?75 eV. The hydrogen bonding configurations in a-C:H films are closely related to the ion energy, whereas they are less dependent on ion flux and deposition rate. The mass density increases gradually with decreasing hydrogen content in the PLCH region, and it increases sharply with decreasing hydrogen content in the DLCH region. This difference is due to the different CC sp3 concentration in PLCH and DLCH films.

  19. Quaternary Evolution of Karliova Triple Junction

    NASA Astrophysics Data System (ADS)

    Sanar, Taylan; Zabc?, Cengiz; Akyz, H. Serdar

    2013-04-01

    The arguments to explain Quaternary evolution of Karl?ova Triple Junction (KTJ) depends upon two different analogue models. The compressional type of Prandtl Cell Model (PCM) and 60 km wide shear zone with concomitant counter clockwise block rotation used to modelled for west and east of the KTJ respectively. The data for the model of west of the KTJ acquired by extensive field studies, and quantified geomorphic features. Compressional PCM put forward that behavior of slip lines controlled by boundary faults. But the model is not enough to explain slip distribution, age relation of them. At west of the KTJ boundary faults presented by eastern most segments of the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ). Slip lines, however, presented by Baheli and Toklular faults. Both field studies and morphometric analyses undisputedly set forth that there are two different fault types between the NAFZ and EAFZ. The most strain loaded fault type, which are positioned near the NAFZ, start as a strike-slip fault and when it turn to SE its sense of motion change to oblique normal due to changing orientation of principal stress axes. The new orientation of stress axes exposed in the field as a special kind of caprock -cuesta-. The younger slip lines formed very close to junction point and accommodate less slip. Even though slip trajectories started from the boundary faults in compressional PCM, at the west of KTJ, right lateral trajectories more clearly formed close the NAFZ and left lateral trajectories, relatively less strain loaded fault type, are poorly formed close the EAFZ . We think that, this differences between KTJ and compressional PCM result from the distinction of velocity of boundary faults. East of the KTJ governed by completely different mechanism. The region controlled two main fault systems. The Varto Fault Zone (VFZ), the eastern branch of the KTJ, and Murat Fault (MF) delimited the region from north and south respectively. The region also delimited at west by the EAFZ. All secondary faults between these three faults are strike slip faults. The faults which are positioned NW-SE and nearly parallel to the N70W oriented VFZ are dextral, whereas sinistral faults are N-S oriented and nearly orthogonal to NW-SE trending right lateral faults. Sinistral faults develop in the overlap area between adjacent left stepping of dextral faults which are arranged in an en echelon pattern. This configuration formed under shear zone regime with one Previous shear zone model studies proposed that right lateral faults form the 17-24 degree to principal displacement zone. Paleo-magnetic studies of Plio-Quaternary rocks, which covered the all region, show that there is a counterclockwise block rotation between 18 to 23 degree that is clearly explain position of the secondary right lateral faults.

  20. Landward-advancing Quaternary eolianites of Bermuda

    NASA Astrophysics Data System (ADS)

    Rowe, Mark P.; Bristow, Charlie S.

    2015-12-01

    The landscape of Bermuda is dominated by Quaternary carbonate cemented dunes, or "eolianites", which form the islands' topography. Sections through the dunes are revealed in extensive natural and man-made rock faces, which expose the dune stratigraphy as well as the preserved morphology. An analysis of 3751 foreset measurements confirms the conclusion reached by earlier researchers that Bermuda's dunes advanced sub-perpendicularly to the coast in a landward direction away from source beaches. Dune orientation, being multi-directional, is not consistent with northeast net sand transportation predicted by a drift potential analysis of modern wind data. The putative predisposition of Bermuda's carbonate dunes to rapid cementation is supposed to have curtailed their landward advance such that younger dunes developed as static ridges at the seaward margin of their lithified predecessors. Geological mapping has revealed, however, that in many cases young dunes did advance inland onto interior terrain, overstepping older dune ridges. Molds of large trees, preserved within the dunes, and a sharp contact of steep slip-face dune foresets on palaeosols evoke the encroachment of landward-advancing precipitation ridges into a forested landscape. The internal structure of the dunes, featuring thick sets of slip-face foresets truncated by sub-horizontal planar bounding surfaces, uphold the ascendancy of sand transportation processes over those of sand retention and vertical accretion. Although meteoric cementation was responsible for the ultimate preservation of eolianite ridges which dominate Bermuda's landscape, it took effect too slowly to influence the behaviour of the carbonate dunes at the time of their emplacement.

  1. Topographic Characterization of Cu-Ni NPs @ a-C:H Films by AFM and Multifractal Analysis.

    PubMed

    Ţălu, Ştefan; Stach, Sebastian; Ghodselahi, Tayebeh; Ghaderi, Atefeh; Solaymani, Shahram; Boochani, Arash; Garczyk, Żaneta

    2015-04-30

    In the present work three-dimensional (3-D) surface topography of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with constant thickness of Cu and three thicknesses of Ni prepared by RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) system were investigated. The thin films of Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni deposited by radio frequency (RF)-sputtering and RF-PECVD systems, were characterized. To determine the mass thickness and atomic structure of the films, the Rutherford backscattering spectroscopy (RBS) spectra was applied. The absorption spectra were applied to study localized surface plasmon resonance (LSPR) peaks of Cu-Ni NPs (observed around 608 nm in visible spectra), which is widened and shifted to lower wavelengths as the thickness of Ni over layer increases, and their changes are also evaluated by the 3-D surface topography. These nanostructures were investigated over square areas of 1 μm × 1 μm using atomic force microscopy (AFM) and multifractal analysis. Topographic characterization of surface samples (in amplitude, spatial distribution, and pattern of surface characteristics) highlighted 3-D surfaces with multifractal features which can be quantitatively estimated by the multifractal measures. The 3-D surface topography Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni prepared by RF-PECVD system can be characterized using the multifractal geometry in correlation with the surface statistical parameters. PMID:25839675

  2. A geometricla error in some Computer Programs based on the Aki-Christofferson-Husebye (ACH) Method of Teleseismic Tomography

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.; Pritchard, M.J.; Foulger, G.R.

    2000-01-01

    Some computer programs based on the Aki-Christofferson-Husebye (ACH) method of teleseismic tomography contain an error caused by identifying local grid directions with azimuths on the spherical Earth. This error, which is most severe in high latitudes, introduces systematic errors into computed ray paths and distorts inferred Earth models. It is best dealt with by explicity correcting for the difference between true and grid directions. Methods for computing these directions are presented in this article and are likely to be useful in many other kinds of regional geophysical studies that use Cartesian coordinates and flat-earth approximations.

  3. [18F]ASEM, a radiolabeled antagonist for imaging the ?7-nicotinic acetylcholine receptor (?7-nAChR) with positron emission tomography (PET)

    PubMed Central

    Horti, Andrew G.; Gao, Yongjun; Kuwabara, Hiroto; Wang, Yuchuan; Abazyan, Sofya; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Sahibzada, Niaz; Holt, Daniel P.; Kellar, Kenneth J.; Pletnikov, Mikhail V.; Pomper, Martin G.; Wong, Dean F.; Dannals, Robert F.

    2014-01-01

    The ?7-nicotinic cholinergic receptor (?7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for ?7-nAChR are suitable for quantitative PET imaging, mostly due to insufficient specific binding. The goal of this study was to evaluate the potential of [18F]ASEM ([18F]JHU82132) as an ?7-nAChR radioligand for PET. Methods Inhibition binding assay and receptor functional properties of ASEM were assessed in vitro. The brain regional distribution of [18F]ASEM in baseline and blockade were evaluated in DISC1 mice (dissection) and baboons (PET). Results ASEM is an antagonist for the ?7-nAChR with high binding affinity (Ki = 0.3 nM). [18F]ASEM readily entered the baboon brain and specifically labeled ?7-nAChR. The in vivo specific binding of [18F]ASEM in the brain regions enriched with ?7-nAChRs was 8090%. SSR180711, an ?7-nAChR selective partial agonist, blocked [18F]ASEM binding in the baboon brain in a dose-dependent manner, suggesting that the binding of [18F]ASEM was mediated by ?7-nAChRs and the radioligand was suitable for drug evaluation studies. In the baboon baseline studies, the brain regional volume of distribution (VT) values for [18F]ASEM were 23 (thalamus), 22 (insula), 18 (hippocampus) and 14 (cerebellum), whereas in the binding selectivity (blockade) scan, all regional VT values were reduced to less than 4. The range of regional binding potential (BPND) values in the baboon brain was from 3.9 to 6.6. In vivo cerebral binding of [18F]ASEM and ?7-nAChR expression in mutant DISC1 mice, a rodent model of schizophrenia, was significantly lower than in control animals, which is in agreement with previous post-mortem human data. Conclusion [18F]ASEM holds promise as a radiotracer with suitable imaging properties for quantification of ?7-nAChR in the human brain. PMID:24556591

  4. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  5. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  6. Characterization of Quaternary and suspected Quaternary faults, Amargosa area, Nevada and California

    SciTech Connect

    Anderson, R.E.; Crone, A.J.; Machette, M.N.; Bradley, L.A.; Diehl, S.F.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies by S. Pezzopane (written commun., 1995) that resulted in the identification of 51 relevant and potentially relevant (see appendix A for definitions) individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. These structures were divided into local and regional categories by Pezzopane (1995); this report deals with selected regional structures. In this introduction, the authors outline the scope and strategy of the studies and the tectonic environment of the studied structures.

  7. CC4, a dimer of cytisine, is a selective partial agonist at ?4?2/?6?2 nAChR with improved selectivity for tobacco smoking cessation

    PubMed Central

    Sala, Mariaelvina; Braida, Daniela; Pucci, Luca; Manfredi, Irene; Marks, Michael J; Wageman, Charles R; Grady, Sharon R; Loi, Barbara; Fucile, Sergio; Fasoli, Francesca; Zoli, Michele; Tasso, Bruno; Sparatore, Fabio; Clementi, Francesco; Gotti, Cecilia

    2013-01-01

    Background and Purpose Many of the addictive and rewarding effects of nicotine are due to its actions on the neuronal nicotinic ACh receptor (nAChR) subtypes expressed in dopaminergic mesocorticolimbic cells. The partial agonists, cytisine and varenicline, are helpful smoking cessation aids. These drugs have a number of side effects that limit their usefulness. The aim of this study was to investigate the preclinical pharmacology of the cytisine dimer1,2-bisN-cytisinylethane (CC4). Experimental Approach The effects of CC4 on nAChRs were investigated using in vitro assays and animal behaviours. Key Results When electrophysiologically tested using heterologously expressed human subtypes, CC4 was less efficacious than cytisine on neuronal ?4?2, ?3?4, ?7 and muscle-type receptors, and had no effect on 5-hydroxytryptamine3 receptors. Acting through ?4?2 and ?6?2 nAChRs, CC4 is a partial agonist of nAChR-mediated striatal dopamine release and, when co-incubated with nicotine, prevented nicotine's maximal effect on this response. In addition, it had low affinity for, and was less efficacious than nicotine and cytisine on the ?3?4 and ?7-nAChR subtypes. Like cytisine and nicotine, CC4-induced conditioned place preference (CPP), and its self-administration shows an inverted-U doseresponse curve. Pretreatment with non-reinforcing doses of CC4 significantly reduced nicotine-induced self-administration and CPP without affecting motor functions. Conclusion and Implications Our in vitro and in vivo findings reveal that CC4 selectively reduces behaviours associated with nicotine addiction consistent with the partial agonist selectivity of CC4 for ?2-nAChRs. The results support the possible development of CC4 or its derivatives as a promising drug for tobacco smoking cessation. PMID:22957729

  8. Milestones and Lacunae in Quaternary Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bradley, R. S.

    2008-12-01

    It has been just over 40 years since Nick Shackleton submitted his PhD thesis on, 'The Measurement of Palaeotemperatures in the Quaternary Era'. Only a few years earlier, Libby was awarded the Nobel Prize for his work on radiocarbon dating. Looking back, we recognize that these were seminal events which provided essential insight and tools for generations of future researchers, opening the window to our interpretation of the earth's recent history. Research in paleoclimatology and paleoceanography has made enormous advances since these early steps were taken, and our understanding of how climates have changed, and why, has exploded. Hardly a week goes by without a new and interesting record or model simulation being published. Yet gaps remain, and new questions continue to emerge. New analytical techniques provide higher and higher resolution data sets, yet chronology remains a challenge in many records. This is especially important in deciphering times of abrupt change in earth history, when the synchronism of geographically dispersed events (or lack thereof) is of critical importance. The role of abrupt climate change in driving societal change is also controversial. Certainly there is evidence from many regions for abrupt, unprecedented and persistent climate anomalies for which we commonly have no explanation, and such episodes appear to have had significant effects of societies in the past. Deciphering the causes of such episodes, and how they affected societies has important implications for our understanding of the past and the future. Understanding the role of forcing and feedbacks is also essential. For example, many questions remain about the role of solar forcing. If small changes in solar irradiance have driven climate changes (as many have argued) large feedbacks must be involved. Modelling may help in resolving such questions. Many new proxies have been developed, though often our understanding of how these relate to climate is rudimentary at best. In fact, this is true even for some of our most cherished proxies. Improvements in the calibration of these proxies, through both mechanistic (process-based) studies and modeling will pay dividends and help avoid misinterpretations and the pursuit of archives that may not yield useful results. Paleoclimatologists and paleoceanographers have made spectacular discoveries over the past 40 years. Although anthropogenic effects will increasingly dominate the climate system in coming decades, establishing a firm understanding of pre-anthropogenic climate variability is still an essential challenge: whatever anthropogenic climate changes occur in the future, they will be superimposed on, and interact with, underlying natural variability. Therefore, to anticipate future changes, we must continue our efforts to understand how and why climates varied in the past.

  9. Identification and Characterization of ML352: A Novel, Noncompetitive Inhibitor of the Presynaptic Choline Transporter

    PubMed Central

    2015-01-01

    The high-affinity choline transporter (CHT) is the rate-limiting determinant of acetylcholine (ACh) synthesis, yet the transporter remains a largely undeveloped target for the detection and manipulation of synaptic cholinergic signaling. To expand CHT pharmacology, we pursued a high-throughput screen for novel CHT-targeted small molecules based on the electrogenic properties of transporter-mediated choline transport. In this effort, we identified five novel, structural classes of CHT-specific inhibitors. Chemical diversification and functional analysis of one of these classes identified ML352 as a high-affinity (Ki = 92 nM) and selective CHT inhibitor. At concentrations that fully antagonized CHT in transfected cells and nerve terminal preparations, ML352 exhibited no inhibition of acetylcholinesterase (AChE) or cholineacetyltransferase (ChAT) and also lacked activity at dopamine, serotonin, and norepinephrine transporters, as well as many receptors and ion channels. ML352 exhibited noncompetitive choline uptake inhibition in intact cells and synaptosomes and reduced the apparent density of hemicholinium-3 (HC-3) binding sites in membrane assays, suggesting allosteric transporter interactions. Pharmacokinetic studies revealed limited in vitro metabolism and significant CNS penetration, with features predicting rapid clearance. ML352 represents a novel, potent, and specific tool for the manipulation of CHT, providing a possible platform for the development of cholinergic imaging and therapeutic agents. PMID:25560927

  10. Quaternary Structure Analyses of an Essential Oligomeric Enzyme.

    PubMed

    da Costa, Tatiana P Soares; Christensen, Janni B; Desbois, Sebastien; Gordon, Shane E; Gupta, Ruchi; Hogan, Campbell J; Nelson, Tao G; Downton, Matthew T; Gardhi, Chamodi K; Abbott, Belinda M; Wagner, John; Panjikar, Santosh; Perugini, Matthew A

    2015-01-01

    Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure. PMID:26412653

  11. Ice Age Earth: Late Quaternary geology and climate

    SciTech Connect

    Dawson, A.G.

    1992-01-01

    This book is a concise and readable account of the most important geologic records of the late Quaternary. It provides a synopsis of the major environmental changes that took place from approximately 13,000 to 7,000 years ago, highlighting the complexity and rapidity of past climate changes and the environmental responses they produced. The text is well illustrated, though some figures are rough and need more explanation. Also needed is a critical appraisal of the geochronology which places the paleoenvironmental records into the temporal domain. However, as a whole the book reaches its objective of summarizing the most important scientific findings about the nature of the late Quaternary climate changes.

  12. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  13. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  14. 40 CFR 721.10479 - Quaternary ammonium compounds, tris(hydrogenated tallow alkyl)methyl, chlorides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, tris... SUBSTANCES Significant New Uses for Specific Chemical Substances 721.10479 Quaternary ammonium compounds... subject to reporting. (1) The chemical substance identified as quaternary ammonium compounds,...

  15. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  16. 40 CFR 721.10479 - Quaternary ammonium compounds, tris(hydrogenated tallow alkyl)methyl, chlorides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, tris... SUBSTANCES Significant New Uses for Specific Chemical Substances 721.10479 Quaternary ammonium compounds... subject to reporting. (1) The chemical substance identified as quaternary ammonium compounds,...

  17. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  18. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  19. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  20. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  1. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  2. Further proof of the existence of a non-neuronal cholinergic system in the human Achilles tendon: Presence of the AChR?7 receptor in tendon cells and cells in the peritendinous tissue.

    PubMed

    Forsgren, Sture; Alfredson, Hkan; Andersson, Gustav

    2015-11-01

    Human tendon cells have the capacity for acetylcholine (ACh) production. It is not known if the tendon cells also have the potential for ACh breakdown, nor if they show expression of the nicotinic acetylcholine receptor AChR?7 (?7nAChR). Therefore, tendon tissue specimens from patients with midportion Achilles tendinopathy/tendinosis and from normal midportion Achilles tendons were examined. Reaction for the degradative enzyme acetylcholinesterase (AChE) was found in some tenocytes in only a few tendinopathy tendons, and was never found in those of control tendons. Tenocytes displayed more regularly ?7nAChR immunoreactivity. However, there was a marked heterogeneity in the degree of this reaction within and between the specimens. ?7nAChR immunoreactivity was especially pronounced for tenocytes showing an oval/widened appearance. There was a tendency that the magnitude of ?7nAChR immunoreactivity was higher in tendinopathy tendons as compared to control tendons. A stronger ?7nAChR immunoreactivity than seen for tenocytes was observed for the cells in the peritendinous tissue. It is likely that the ?7nAChR may be an important part of an auto-and paracrine loop of non-neuronal ACh that is released from the tendon cells. The effects may be related to proliferative and blood vessel regulatory functions as well as features related to collagen deposition. ACh can furthermore be of importance in leading to anti-inflammatory effects in the peritendinous tissue, a tissue nowadays considered to be of great relevance for the tendinopathy process. Overall, the findings show that tendon tissue, a tissue known to be devoid of cholinergic innervation, is a tissue in which there is a marked non-neuronal cholinergic system. PMID:25981114

  3. PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting.

    PubMed

    Jayakar, Selwyn S; Pugh, Phyllis C; Dale, Zack; Starr, Eric R; Cole, Samantha; Margiotta, Joseph F

    2014-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of ?7 subunits (?7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with ?7-nAChRs, many of which are perisynaptic, as well as with heteromeric ?3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such coordination has broad relevance for understanding the control of autonomic synapses and consequent visceral functions. PMID:25168001

  4. Involvement of M3 muscarinic receptors in ACh-induced increase in membrane-associated RhoA of rat bronchial smooth muscle.

    PubMed

    Sakai, Hiroyasu; Shirai, Tsuyoshi; Yamamoto, Maki; Chiba, Yoshihiko; Misawa, Miwa

    2005-04-01

    It is known that RhoA is translocated from cytoplasm to cell membrane in bronchial smooth muscle when activated by acetylcholine (ACh) stimulation. In the present study, the effects of selective muscarinic receptor antagonist methoctramine, AF-DX116 (for M(2)) and 4-diphenylacetoxy N-methylpiperidine (4-DAMP; for M(3)) on the ACh-induced rat bronchial smooth muscle contraction and increase in membrane-associated RhoA were investigated to elucidate the muscarinic receptor subtype participating in these responses. To evaluate ACh-induced contraction of bronchial smooth muscle, bronchial ring of rat was prepared, suspended in an organ bath and the tension was measured isometrically. To quantify the ACh-induced increase in membrane-associated RhoA protein, western blot analysis was performed by using homogenates of membrane and cytosolic fractions of the rat bronchi. The muscarinic M(2) and M(3) receptors were detected by using RT-PCR in rat bronchial smooth muscle. Both the ACh-induced smooth muscle contraction and increase in membrane-associated RhoA were markedly inhibited by 4-DAMP, but not by methoctramine or AF-DX116. In conclusion, these results indicated contraction for the first time that the activation of RhoA occurs via M(3) receptor in rat bronchial smooth muscle. PMID:15802799

  5. Co-activation of nAChR and mGluR induces γ oscillation in rat medial septum diagonal band of Broca slices

    PubMed Central

    Wang, Ya-li; Wang, Jian-gang; Ou-yang, Gao-xiang; Li, Xiao-li; Henderson, Zaineb; Lu, Cheng-biao

    2014-01-01

    Aim: To examine whether co-activation of nAChR and mGluR1 induced γ oscillation (20–60 Hz) in rat medial septum diagonal band of Broca (MSDB) slices. Methods: Rat brain sagittal slices containing the MSDB were prepared. Extracellular field potentials were recorded with glass microelectrodes. The nAChR and mGluR1 agonists were applied to the slices to induce network activity. Data analysis was performed off-line using software Spike 2. Results: Co-application of the nAChR agonist nicotine (1 μmol/L) and the mGluR1 agonist dihydroxyphenylglycine (DHPG, 25 μmol/L) was able to induce γ oscillation in MSDB slices. The intensity of nAChR and mGluR1 activation was critical for induction of network oscillation at a low (θ oscillation) or high frequency (γ oscillation): co-application of low concentrations of the two agonists only increased the power and frequency of oscillation within the range of θ, whereas γ oscillation mostly appeared when high concentrations of the two agonists were applied. Conclusion: Activation of mGluR1 and nAChR is able to program slow or fast network oscillation by altering the intensity of receptor activation, which may provide a mechanism for modulation of learning and memory. PMID:24389946

  6. Structure of ?-conglutin: insight into the quaternary structure of 7S basic globulins from legumes.

    PubMed

    Czubinski, Jaroslaw; Barciszewski, Jakub; Gilski, Miroslaw; Szpotkowski, Kamil; Debski, Janusz; Lampart-Szczapa, Eleonora; Jaskolski, Mariusz

    2015-02-01

    ?-Conglutin from lupin seeds is an unusual 7S basic globulin protein. It is capable of reducing glycaemia in mammals, but the structural basis of this activity is not known. ?-Conglutin shares a high level of structural homology with glycoside hydrolase inhibitor proteins, although it lacks any kind of inhibitory activity against plant cell-wall degradation enzymes. In addition, ?-conglutin displays a less pronounced structural similarity to pepsin-like aspartic proteases, but it is proteolytically dysfunctional. Only one structural study of a legume 7S basic globulin, that isolated from soybean, has been reported to date. The quaternary assembly of soybean 7S basic globulin (Bg7S) is arranged as a cruciform-shaped tetramer comprised of two superposed dimers. Here, the crystal structure of ?-conglutin isolated from Lupinus angustifolius seeds (LangC) is presented. The polypeptide chain of LangC is post-translationally cleaved into ? and ? subunits but retains its covalent integrity owing to a disulfide bridge. The protomers of LangC undergo an intricate quaternary assembly, resulting in a ring-like hexamer with noncrystallographic D3 symmetry. The twofold-related dimers are similar to those in Bg7S but their assembly is different as a consequence of mutations in a ?-strand that is involved in intermolecular ?-sheet formation in ?-conglutin. Structural elucidation of ?-conglutin will help to explain its physiological role, especially in the evolutionary context, and will guide further research into the hypoglycaemic activity of this protein in humans, with potential consequences for novel antidiabetic therapies. PMID:25664733

  7. Alkyl 2-arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates as new effective and selective inhibitors of carboxylesterase.

    PubMed

    Boltneva, N P; Makhaeva, G F; Kovaleva, N V; Lushchekina, S V; Burgart, Ya V; Shchegol'kov, E V; Saloutin, V I; Chupakhin, O N

    2015-11-01

    A series of alkyl 2-Arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates was synthesized and their inhibitory activity with respect to porcine liver carboxylesterase (CaE, EC 3.1.1.1), human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7), and horse serum butyrylcholinesterase (BChE, EC 3.1.1.8) was studied. The molecular docking method was used to study the binding mode of the compounds in the active site of CaE. It was found that compounds containing the trifluoromethyl group in the third position of carbonyl chain are highly effective and selective inhibitors of CaE with nanomolar IC50 values, which agrees well with the results of molecular docking. PMID:26728730

  8. Synthesis of Adjacent Quaternary Stereocenters by Catalytic Asymmetric Allylboration.

    PubMed

    Alam, Rauful; Vollgraff, Tobias; Eriksson, Lars; Szab, Klmn J

    2015-09-01

    Allylboration of ketones with ?-disubstituted allylboronic acids is performed in the presence of chiral BINOL derivatives. The reaction is suitable for single-step creation of adjacent quaternary stereocenters with high selectivity. We show that, with an appropriate choice of the chiral catalyst and the stereoisomeric prenyl substrate, full control of the stereo- and enantioselectivity is possible in the reaction. PMID:26316158

  9. Lignin biogeochemistry: from modern processes to Quaternary archives

    NASA Astrophysics Data System (ADS)

    Jex, Catherine N.; Pate, Gary H.; Blyth, Alison J.; Spencer, Robert G. M.; Hernes, Peter J.; Khan, Stuart J.; Baker, Andy

    2014-03-01

    Lignin has been analysed as a proxy for vegetation change in the Quaternary science literature since the early 1990s in archives such as peat, lakes, and intertidal and marine sediment cores. Historically, it has been regarded as comparatively resistant to various types of degradation in comparison to other plant components. However, studies of modern biogeochemical processes affecting organic carbon have demonstrated significant degradation and alteration of lignin as it is transported through the terrestrial biosphere, including phase changes from particulate to dissolved organic matter, mineral binding and decay due to biotic and abiotic processes. The literature of such topics is vast, however it is not particularly useful to Quaternary research without a comprehensive review to link our understanding of modern processes involving lignin to Quaternary environments. This review will outline the current state of the art in lignin phenol research that is relevant to the Quaternary scientist, and highlight the potential future applications for this important biomarker for vegetation change and terrestrial organic carbon cycling.

  10. Application of Analytic Geometry to Ternary and Quaternary Diagrams.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1986-01-01

    Advantages of representing ternary and quaternary composition diagrams by means of rectangular coordinates were pointed out in a previous paper (EJ 288 693). A further advantage of that approach is that analytic geometry, based on rectangular coordinates, is directly applicable as demonstrated by the examples presented. (JN)

  11. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature

  12. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  13. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    NASA Astrophysics Data System (ADS)

    Gjermundsen, Endre F.; Briner, Jason P.; Akar, Naki; Foros, Jrn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5 N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbards alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbards alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  14. Impact of Quaternary Structure Dynamics on Allosteric Drug Discovery

    PubMed Central

    Jaffe, Eileen K.

    2013-01-01

    The morpheein model of allosteric regulation draws attention to proteins that can exist as an equilibrium of functionally distinct assemblies where: one subunit conformation assembles into one multimer; a different subunit conformation assembles into a different multimer; and the various multimers are in a dynamic equilibrium whose position can be modulated by ligands that bind to a multimer-specific ligand binding site. The case study of porphobilinogen synthase (PBGS) illustrates how such an equilibrium holds lessons for disease mechanisms, drug discovery, understanding drug side effects, and identifying proteins wherein drug discovery efforts might focus on quaternary structure dynamics. The morpheein model of allostery has been proposed as applicable for a wide assortment of disease-associated proteins (Selwood, T., Jaffe, E., (2012) Arch. Bioch. Biophys, 519:131143). Herein we discuss quaternary structure dynamics aspects to drug discovery for the disease-associated putative morpheeins phenylalanine hydroxylase, HIV integrase, pyruvate kinase, and tumor necrosis factor ?. Also highlighted is the quaternary structure equilibrium of transthyretin and successful drug discovery efforts focused on controlling its quaternary structure dynamics. PMID:23409765

  15. Quaternary Ammonium Disinfectant Issues Encountered in an Environmental Services Department.

    PubMed

    Boyce, John M; Sullivan, Linda; Booker, Arica; Baker, James

    2016-03-01

    We identified several factors affecting the use of quaternary ammonium-based (Quat) disinfectant in our facility. Microfiber wipers, cotton towels, and 1 of 2 types of disposable wipes soaked in a Quat disinfectant revealed significant binding of the disinfectant. Concentrations of Quat delivered by automated disinfectant dispensers varied widely. Infect. Control Hosp. Epidemiol. 2016;37(3):340-342. PMID:26821275

  16. Bifunctional compounds targeting both D2 and non-?7 nACh receptors: design, synthesis and pharmacological characterization.

    PubMed

    Matera, Carlo; Pucci, Luca; Fiorentini, Chiara; Fucile, Sergio; Missale, Cristina; Grazioso, Giovanni; Clementi, Francesco; Zoli, Michele; De Amici, Marco; Gotti, Cecilia; Dallanoce, Clelia

    2015-08-28

    We designed, prepared and tested a set of structural analogs 1-4 as new hybrid compounds by incorporating, through a common alkyl chain of variable length, the pharmacophoric elements of N-n-alkyl nicotinium salts (non-?7 nicotinic acetylcholine receptors antagonists) and of 7-hydroxy-2-(aminomethyl)chromanes (dopaminergic D2 receptor agonists). The target compounds, which were assayed in binding experiments and electrophysiological, functional and Erk1/2 activation tests, essentially combined the pharmacological profiles of their individual receptor ligands. Among the studied derivatives, hybrid 2, one of the shortest homologs, in addition to the antagonist nicotinic profile similar to the other three congeners, behaved as a high affinity ligand at the investigated heteromeric nAChRs and as a low efficacy agonist at D2Rs. These bifunctional derivatives represent novel pharmacological tools in the study of nicotine addiction. PMID:26164842

  17. Presynaptic M(2) muscarinic receptors are involved in controlling the kinetics of ACh release at the frog neuromuscular junction.

    PubMed

    Slutsky, I; Silman, I; Parnas, I; Parnas, H

    2001-11-01

    1. Macropatch recording was used to study release of acetylcholine in the frog neuromuscular junction evoked by either direct local depolarization or by an action potential. 2. The quantal content was established by directly counting the released quanta. The time course of release was obtained by constructing synaptic delay histograms. 3. Perfusion of the neuromuscular junction with methoctramine, a selective M(2)/M(4) muscarinic antagonist, increased the quantal content and slowed the exponential decay of the synaptic delay histograms. Addition of the agonist muscarine reversed these effects. 4. Addition of acetylcholinesterase prolonged the decay of the delay histogram, and muscarine reversed this effect. 5. Methoctramine slowed the rise time of the postsynaptic current produced by axon stimulation without affecting either the excitatory nerve terminal current or the presynaptic Ca(2+) current. 6. These results show that presynaptic M(2) muscarinic receptors are involved in the process which terminates evoked ACh release. PMID:11691867

  18. Presynaptic M2 muscarinic receptors are involved in controlling the kinetics of ACh release at the frog neuromuscular junction

    PubMed Central

    Slutsky, I; Silman, I; Parnas, I; Parnas, H

    2001-01-01

    Macropatch recording was used to study release of acetylcholine in the frog neuromuscular junction evoked by either direct local depolarization or by an action potential. The quantal content was established by directly counting the released quanta. The time course of release was obtained by constructing synaptic delay histograms. Perfusion of the neuromuscular junction with methoctramine, a selective M2/M4 muscarinic antagonist, increased the quantal content and slowed the exponential decay of the synaptic delay histograms. Addition of the agonist muscarine reversed these effects. Addition of acetylcholinesterase prolonged the decay of the delay histogram, and muscarine reversed this effect. Methoctramine slowed the rise time of the postsynaptic current produced by axon stimulation without affecting either the excitatory nerve terminal current or the presynaptic Ca2+ current. These results show that presynaptic M2 muscarinic receptors are involved in the process which terminates evoked ACh release. PMID:11691867

  19. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-S, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  20. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia

    PubMed Central

    Tremblay, Marie-Ève; Lecours, Cynthia; Samson, Louis; Sánchez-Zafra, Víctor; Sierra, Amanda

    2015-01-01

    Under the guidance of Ramón y Cajal, a plethora of students flourished and began to apply his silver impregnation methods to study brain cells other than neurons: the neuroglia. In the first decades of the twentieth century, Nicolás Achúcarro was one of the first researchers to visualize the brain cells with phagocytic capacity that we know today as microglia. Later, his pupil Pío del Río-Hortega developed modifications of Achúcarro's methods and was able to specifically observe the fine morphological intricacies of microglia. These findings contradicted Cajal's own views on cells that he thought belonged to the same class as oligodendroglia (the so called “third element” of the nervous system), leading to a long-standing discussion. It was only in 1924 that Río-Hortega's observations prevailed worldwide, thus recognizing microglia as a unique cell type. This late landing in the Neuroscience arena still has repercussions in the twenty first century, as microglia remain one of the least understood cell populations of the healthy brain. For decades, microglia in normal, physiological conditions in the adult brain were considered to be merely “resting,” and their contribution as “activated” cells to the neuroinflammatory response in pathological conditions mostly detrimental. It was not until microglia were imaged in real time in the intact brain using two-photon in vivo imaging that the extreme motility of their fine processes was revealed. These findings led to a conceptual revolution in the field: “resting” microglia are constantly surveying the brain parenchyma in normal physiological conditions. Today, following Cajal's school of thought, structural and functional investigations of microglial morphology, dynamics, and relationships with neurons and other glial cells are experiencing a renaissance and we stand at the brink of discovering new roles for these unique immune cells in the healthy brain, an essential step to understand their causal relationship to diseases. PMID:25926775

  1. Up-scaling the production of modified a-C:H coatings in the framework of plasma polymerization processes

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2009-10-01

    Hydrogenated amorphous carbon (a-C:H) films with silicon and oxygen additions, which exhibit mechanical, tribological and wetting properties adequate for protective coating performance, have been synthesized at room temperature in a small- (0.1 m 3) and a large-scale (1 m 3) coaters by low-pressure Plasma-Activated Chemical Vapour Deposition (PACVD). Hence, a-C:H:Si and a-C:H:Si:O coatings were produced in atmospheres of tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO), respectively, excited either by radiofrequency (RF - small scale) or by pulsed-DC power (large scale). Argon was employed as a carrier gas to stabilize the glow discharge. Several series of 2-5 μm thick coatings have been prepared at different mass deposition rates, Rm, by varying total gas flow, F, and input power, W. Arrhenius-type plots of Rm/ F vs. ( W/ F) -1 show linear behaviours for both plasma reactors, as expected for plasma polymerization processes at moderated energies. The calculation of apparent activation energy, Ea, in each series permitted us to define the regimes of energy-deficient and monomer-deficient PACVD processes as a function of the key parameter W/ F. Moreover, surface properties of the modified a-C:H coatings, such as contact angle, abrasive wear rate and hardness, appear also correlated to this parameter. This work shows an efficient methodology to scale up PACVD processes from small, lab-scale plasma machines to industrial plants by the unique evaluation of macroscopic parameters of deposition.

  2. nAChRs Mediate Human Embryonic Stem Cell-Derived Endothelial Cells: Proliferation, Apoptosis, and Angiogenesis

    PubMed Central

    Velotta, Jeffrey B.; Huang, Mei; Li, Zongjin; Lee, Andrew; Robbins, Robert C.; Cooke, John P.; Wu, Joseph C.

    2009-01-01

    Background Many patients with ischemic heart disease have cardiovascular risk factors such as cigarette smoking. We tested the effect of nicotine (a key component of cigarette smoking) on the therapeutic effects of human embryonic stem cell-derived endothelial cells (hESC-ECs). Methods and Results To induce endothelial cell differentiation, undifferentiated hESCs (H9 line) underwent 4-day floating EB formation and 8-day outgrowth differentiation in EGM-2 media. After 12 days, CD31+ cells (13.72.5%) were sorted by FACScan and maintained in EGM-2 media for further differentiation. After isolation, these hESC-ECs expressed endothelial specific markers such as vWF (96.31.4%), CD31 (97.22.5%), and VE-cadherin (93.72.8%), form vascular-like channels, and incorporated DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). Afterward, 5106 hESC-ECs treated for 24 hours with nicotine (10?8 M) or PBS (as control) were injected into the hearts of mice undergoing LAD ligation followed by administration for two weeks of vehicle or nicotine (100 g/ml) in the drinking water. Surprisingly, bioluminescence imaging (BLI) showed significant improvement in the survival of transplanted hESC-ECs in the nicotine treated group at 6 weeks. Postmortem analysis confirmed increased presence of small capillaries in the infarcted zones. Finally, in vitro mechanistic analysis suggests activation of the MAPK and Akt pathways following activation of nicotinic acetylcholine receptors (nAChRs). Conclusions This study shows for the first time that short-term systemic administrations of low dose nicotine can improve the survival of transplanted hESC-ECs, and enhance their angiogenic effects in vivo. Furthermore, activation of nAChRs has anti-apoptotic, angiogenic, and proliferative effects through MAPK and Akt signaling pathways. PMID:19753305

  3. In vitro activity of ACH-702, a new isothiazoloquinolone, against Nocardia brasiliensis compared with econazole and the carbapenems imipenem and meropenem alone or in combination with clavulanic acid.

    PubMed

    Vera-Cabrera, Lucio; Campos-Rivera, Mayra Paola; Escalante-Fuentes, Wendy G; Pucci, Michael J; Ocampo-Candiani, Jorge; Welsh, Oliverio

    2010-05-01

    The in vitro activities of ACH-702 and other antimicrobials against 30 Nocardia brasiliensis isolates were tested. The MIC(50) (MIC for 50% of the strains tested) and MIC(90) values of ACH-702 were 0.125 and 0.5 microg/ml. The same values for econazole were 2 and 4 microg/ml. The MIC(50) and MIC(90) values of imipenem and meropenem were 64 and >64 microg/ml and 2 and 8 microg/ml, respectively; the addition of clavulanic acid to the carbapenems had no effect. PMID:20308390

  4. Patterned high-frequency stimulation induces a form of long-term depression dependent on GABAA and mACh receptors in the hippocampus.

    PubMed

    Zhu, Y-Y; Jing, L; Duan, T-T; Yuan, Q; Cao, J; Zhou, Q-X; Xu, L

    2013-10-10

    Certain patterns of neural activity can induce N-methyl-D-aspartic acid receptor (NMDAR)-dependent synaptic plasticity, one of the important foundations of memory. Here, we report that a patterned high-frequency stimulation (PHS) induces rat hippocampal long-term depression (LTD) in an NMDAR-independent manner that requires coactivation of GABA(A)Rs and muscarinic acetylcholine receptors (mAChRs), and endocytosis of AMPARs. Thus, we disclose that a patterned high-frequency stimulation triggers GABAAR and mAChR-dependent LTD in the hippocampus. PMID:23911810

  5. Characterization of Quaternary and suspected Quaternary faults, regional studies, Nevada and California

    SciTech Connect

    Anderson, R.E.; Bucknam, R.C.; Crone, A.J.; Haller, K.M.; Machette, M.N.; Personius, S.F.; Barnhard, T.P.; Cecil, M.J.; Dart, R.L.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies that resulted in the identification of 51 relevant and potentially relevant individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. Geologic data used to characterize the regional faults and fault zones as relevant or potentially relevant seismic sources includes age and displacement information, maximum fault lengths, and minimum distances between the fault and the Yucca Mountain site. For many of the regional faults, no paleoseismic field studies have previously been conducted, and age and displacement data are sparse to nonexistent. In November 1994, the Branch of Earthquake and Landslide Hazards entered into two Memoranda of Agreement with the Yucca Mountain Project Branch to conduct field reconnaissance, analysis, and interpretation of six relevant and six potentially relevant regional faults. This report describes the results of study of those faults exclusive of those in the Pahrump-Stewart Valley-Ash Meadows-Amargosa Valley areas. We also include results of a cursory study of faults on the west flank of the Specter Range and in the northern part of the Last Chance Range. A four-phase strategy was implemented for the field study.

  6. Quaternary and pre-Quaternary( ) materials and processes of southeast Ohio: Overview, speculations, and recommendations

    SciTech Connect

    Berg, T.M. )

    1992-01-01

    Investigations and mapping of surficial deposits in Ohio have focused largely on the glacial deposits which cover nearly two-thirds of the state. Research on Quaternary deposits beyond the glacial border has been done by Foster, Hildreth, Andrews, Leverett, Tight, Stout, Goldthwait, Forsyth, Lessig, White, Totten, Hoyer, and Noltimier. However, growing human interaction with surficial materials of southeast Ohio now requires much more detailed mapping and characterization of these deposits. Recognition of periglacial, proglacial, and preglacial processes and materials in eastern and southern states has led to the search for similar processes and materials in southeast Ohio. Evidence for gelifraction, gelifluction, cryoturbation, and considerable periglacial colluviation is more extensive than previously thought. Proglacial deposits are also much more extensive, outwash and glaciolacustrine deposits cover large areas in southeast Ohio and are poorly mapped and characterized, or not mapped at all. Preglacial processes including a long span of profound weathering and formation of saprolite have been given little or no attention in southeast Ohio. The signature of protracted preglacial weathering still remains in this part of the state, and should change prevailing views of the terrain upon which periglacial processes worked. Mapping and characterization of these materials are urgently needed as citizens make important land-use decisions such as locating landfills and new developments.

  7. Conjugates of ?-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease.

    PubMed

    Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Sokolov, Vladimir B; Grigoriev, Vladimir V; Serebryakova, Olga G; Vikhareva, Ekaterina A; Aksinenko, Alexey Yu; Barreto, George E; Aliev, Gjumrakch; Bachurin, Sergey O

    2015-01-01

    Alzheimer disease is a multifactorial pathology and the development of new multitarget neuroprotective drugs is promising and attractive. We synthesized a group of original compounds, which combine in one molecule ?-carboline fragment of dimebon and phenothiazine core of methylene blue (MB) linked by 1-oxo- and 2-hydroxypropylene spacers. Inhibitory activity of the conjugates toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and structurally close to them carboxylesterase (CaE), as well their binding to NMDA-receptors were evaluated in vitro and in silico. These newly synthesized compounds showed significantly higher inhibitory activity toward BChE with IC50 values in submicromolar and micromolar range and exhibited selective inhibitory action against BChE over AChE and CaE. Kinetic studies for the 9 most active compounds indicated that majority of them were mixed-type BChE inhibitors. The main specific protein-ligand interaction is ?-? stacking of phenothiazine ring with indole group of Trp82. These compounds emerge as promising safe multitarget ligands for the further development of a therapeutic approach against aging-related neurodegenerative disorders such as Alzheimer and/or other pathological conditions. PMID:26281952

  8. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    PubMed Central

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  9. Roles for N-terminal extracellular domains of nicotinic acetylcholine receptor (nAChR) β3 subunits in enhanced functional expression of mouse α6β2β3- and α6β4β3-nAChRs.

    PubMed

    Dash, Bhagirathi; Li, Ming D; Lukas, Ronald J

    2014-10-10

    Functional heterologous expression of naturally expressed mouse α6*-nicotinic acetylcholine receptors (mα6*-nAChRs; where "*" indicates the presence of additional subunits) has been difficult. Here we expressed and characterized wild-type (WT), gain-of-function, chimeric, or gain-of-function chimeric nAChR subunits, sometimes as hybrid nAChRs containing both human (h) and mouse (m) subunits, in Xenopus oocytes. Hybrid mα6mβ4hβ3- (∼ 5-8-fold) or WT mα6mβ4mβ3-nAChRs (∼ 2-fold) yielded higher function than mα6mβ4-nAChRs. Function was not detected when mα6 and mβ2 subunits were expressed together or in the additional presence of hβ3 or mβ3 subunits. However, function emerged upon expression of mα6mβ2mβ3(V9'S)-nAChRs containing β3 subunits having gain-of-function V9'S (valine to serine at the 9'-position) mutations in transmembrane domain II and was further elevated 9-fold when hβ3(V9'S) subunits were substituted for mβ3(V9'S) subunits. Studies involving WT or gain-of-function chimeric mouse/human β3 subunits narrowed the search for domains that influence functional expression of mα6*-nAChRs. Using hβ3 subunits as templates for site-directed mutagenesis studies, substitution with mβ3 subunit residues in extracellular N-terminal domain loops "C" (Glu(221) and Phe(223)), "E" (Ser(144) and Ser(148)), and "β2-β3" (Gln(94) and Glu(101)) increased function of mα6mβ2*- (∼ 2-3-fold) or mα6mβ4* (∼ 2-4-fold)-nAChRs. EC50 values for nicotine acting at mα6mβ4*-nAChR were unaffected by β3 subunit residue substitutions in loop C or E. Thus, amino acid residues located in primary (loop C) or complementary (loops β2-β3 and E) interfaces of β3 subunits are some of the molecular impediments for functional expression of mα6mβ2β3- or mα6mβ4β3-nAChRs. PMID:25028511

  10. Design, synthesis, and SAR studies of novel polycyclic acids as potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1).

    PubMed

    Ye, Xiang-Yang; Chen, Stephanie Y; Nayeem, Akbar; Golla, Rajasree; Seethala, Ramakrishna; Wang, Mengmeng; Harper, Timothy; Sleczka, Bogdan G; Li, Yi-Xin; He, Bin; Kirby, Mark; Gordon, David A; Robl, Jeffrey A

    2011-11-15

    Starting from high throughput screening hit 2-adamantyl acetic acid 3, a series of polycyclic acids have been designed and synthesized as novel, potent, and selective inhibitors of human 11β-HSD-1. Structure-activity relationships of two different regions of the chemotype (polycyclic ring and substituents on quaternary carbon) are discussed. PMID:21983439

  11. Mapping a buried Quaternary valley and pre-Quaternary faults through seismic methods in Copenhagen, Denmark.

    NASA Astrophysics Data System (ADS)

    Martinez, Kerim; Alfredo Mendoza, Jose; Henrik, Olsen

    2010-05-01

    Limited knowledge of the subsurface geology motivates the use of geophysical techniques before large engineering projects are conducted. These applications are normally restricted to satisfy the project aims, like mapping the near surface sediments, unconsolidated rocks and/or geological structures that may affect the construction locally. However, the applications can also contribute to the general knowledge of the regional geology around the location of interest. This report highlights the mapping of a buried Quaternary valley and identification of regional faults by a reflection and refraction seismic survey performed in Copenhagen. A 13.9 Km seismic survey was carried out at Copenhagen city along six crooked lines in order to determine the velocity fields in the near subsurface segment of a planned metro line and reflection patterns in deeper levels. The aim of the survey was to collect information needed for designing the underground metro. In particular it was sought to map the interface between Quaternary sedimentary layers of clay, till and sand, and the underlying layers of Palaeogene limestone found between 7 and 40 m below the ground surface. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 5 m spacing following a roll along technique to complete the survey spreads. The urban environment demanded extensive survey planning including traffic control, notifications to residents and a fluent coordination with municipal authorities in order to minimize disturbances and ensure data acquisition. The reflection data was processed under a conventional scheme and the refraction data was interpreted using a non-linear traveltime tomography algorithm. The reflection results indicate the presence of faults oriented NW-SE to NNW-SSE affecting the limestone sequences. The faults may be associated to the Sorgenfrei-Tornquist Zone at the transition between the Danish Basin and the Baltic Shield. The refraction interpretation allowed the mapping of the velocity distribution in the upper sediments and their interface with the underlying limestone sequences. In this work two sections along the northern part of the survey are presented and discussed. The cases show the ability of the seismic results to image the presence of a buried valley that has been previously reported but was geophysically mapped for the first time under these investigations. The results delineate the sediments-limestone interface as the depth to the limestone increases. These results are validated through borehole data from locations along the surveyed lines. Other minor lateral variations are also observed and compared to a geological model. The location of the buried valley corresponds to a fault zone observed in the reflection seismic investigation. Accordingly, the location of the valley may in part have been controlled by the faults. The overall results of the seismic investigations are currently being used as part of the design basis for the construction of the metro line and may be useful for future engineering projects in the area. In general, the investigation results demonstrated that in addition to meet specific project objectives near surface geophysics has the potential to provide insights to the general understanding of geological processes. The authors wish to acknowledge Metroselskabet I/S for permission in presenting the results, and the Cityringen Joint Venture partners COWI, Arup and Systra.

  12. Community ecology in a changing environment: Perspectives from the Quaternary

    PubMed Central

    Jackson, Stephen T.; Blois, Jessica L.

    2015-01-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit. PMID:25901314

  13. Organic non-quaternary clathrate salts for petroleum separation

    SciTech Connect

    Boate, D.R.; Zaworotko, M.J.

    1993-06-15

    A method is described for separating hydrocarbon feed streams containing mixtures of aromatic hydrocarbons and non-aromatic hydrocarbons into aromatics lean raffinate streams and aromatics rich extract streams by contacting the hydrocarbon feed streams with an organic non-quaternary clathrate salt having less than 16 carbon atoms in the cation, whereby the clathrate salt selectively interacts with the aromatic component of the hydrocarbon feed mixture producing a raffinate phase of reduced aromatic content a hydrocarbon - salt clathrate and an extract phase of increased aromatic content containing the clathrate salt and combined aromatic hydrocarbon, separating the raffinate phase from the extract phase and releasing the aromatic hydrocarbon from the clathrate salt of the extract phase to recover an aromatics rich stream and the organic non-quaternary salt which is recycled for contact with fresh hydrocarbon feed.

  14. Unexpected primitive rodents in the Quaternary of Argentina

    NASA Astrophysics Data System (ADS)

    Vucetich, Mara G.; Vieytes, Emma C.; Verzi, Diego H.; Noriega, Jorge I.; Tonni, Eduardo P.

    2005-10-01

    This article describes the first fossils recorded in the Hernandarias Formation (Pleistocene) in Entre Ros province (eastern Argentina). They are represented by three teeth assigned to the caviomorph rodents (Rodentia, Mammalia) Aenigmys diamantensis gen. et sp. nov. and Eumysops. To establish the phylogenetic affinities of the two most enigmatic teeth, their enamel microstructure was studied. Aenigmys diamantensis is considered the most primitive taxon of a clade formed by Dinomyidae-Neoepiblemidae-Heptaxodontidae. Evidence of the close relationships among these families also is presented herein. The new fossils reinforce previous hypotheses about the survival of primitive Brazilian taxa after their extinction in the Pampas and Patagonia of southern South America. They also show that the diversity of caviomorph rodents during the Quaternary was greater than supposed and that an important Quaternary extinction, not previously detected, affected several lineages. With the available evidence, it is not possible to determine if these rodents indicate a warm pulse or a particular biogeographic situation in Entre Ros.

  15. Quaternary ammonium polyethylenimine nanoparticles for treating bacterial contaminated water.

    PubMed

    Farah, Shady; Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Beyth, Nurit; Domb, Abraham J

    2015-04-01

    This study highlights the potential application of antimicrobial quaternary ammonium nanomaterials for water disinfection. Quaternary ammonium polyethylenimine (QA-PEI) nanoparticles (NPs) were synthesized by polyethylenimine crosslinking and alkylation with octyl iodide followed by methyl iodide quaternization. Particles modified with octyldodecyl alkyl chains were also prepared and evaluated. The antimicrobial activity of QA-PEI NPs was studied after anchoring in non-leaching polymeric coatings and also in aqueous suspension. Particles at different loadings (w/w) were embedded in polyethylene vinyl acetate and polyethylene methacrylic acid coatings and tested for antimicrobial activity against four representative strains of bacteria in static and dynamic modes. Coatings embedded with fluorescent labelled particles tracked by Axioscope fluorescence microscope during the antimicrobial test indicates no particles leaching out. Coatings loaded with 5% w/w QA-PEI exhibited strong antibacterial activity. Aqueous suspension was tested and found effective for bacterial decontamination at 0.1 ppm and maintains its activity for several weeks. PMID:25800358

  16. Population diversity and distinct haplotype frequencies associated with ACHE and BCHE genes of Israeli Jews from trans-caucasian Georgia and from Europe

    SciTech Connect

    Ehrlich, G.; Ginzberg, D.; Loewenstein, Y.

    1994-07-15

    Variant alleles of the butyrylcholinesterase gene, BCHE, have often been used to trace the genetic histories of populations. The D70G substitution in BCHE causes prolonged postanesthesia apnea ({open_quotes}atypical{close_quotes} phenotype); H322N substitution in the closely related acetylcholinesterase gene, ACHE, is the basis of the mutually incompatible YT blood groups. In both genes, additional point mutations were reported to be linked to these phenotypically evident ones. To examine whether the intragenic linkage reported for the ACHE and BCHE mutations in Americans is universal, the authors studied frequencies of these mutations in trans-Caucasian Georgian Jews, a population that has remained relatively isolated for 1500 years. To this end they employed PCR amplification followed by DNA sequencing and enzymatic restriction and compared the frequencies found to corresponding reported phenotype data. Georgian Jews` N322 ACHE was a rather low 7.0% and was totally linked to a P446 mutation, in agreement with a recent report. In BCHE, however, G70 was a relatively high 5.8%, and the V497 and T539 mutations were not found, either in Georgian or in Ashkenazi Jews, in contrast to reported findings in Americans. The findings reveal distinct displays of ACHE and BCHE haplotypes in Georgian Jews and suggest different founder effects, genetic drifts, and/or selection pressures in the evolution of each of these genes. 29 refs., 3 figs., 2 tabs.

  17. Effects of acetylcholine (ACh) and norepinephrine (NE) on phosphatidylinositol 4,5-bisphosphate (PIP/sub 2/) turnover in rabbit cornea

    SciTech Connect

    Akhtar, R.A.; Abdel-Latif, A.A.

    1986-05-01

    Muscarinic cholinergic and ..cap alpha../sub 1/-adrenergic agonists provoke hydrolysis of PIP/sub 2/ into diacylglycerol (DG) and inositol trisphosphate (IP/sub 3/) in a wide variety of tissue. Recently, IP/sub 3/ has been shown to mobilize Ca/sup 2 +/ from ER in several permeabilized tissue preparations. Although rabbit cornea is enriched in ACh and NE, the physiological function of these neurotransmitters is unclear. The present studies were initiated to determine the effects of cholinergic and adrenergic agonists on PIP/sub 2/ turnover in the cornea. Addition of ACh or NE (50 ..mu..M each) to the /sup 32/P-labeled corneas for 10 min decreased the radioactivity in PIP/sub 2/ by 33 and 36%, and increased the radioactivity in phosphatidic acid by 72 and 52%, respectively. When the corneas were labeled with myo-(/sup 3/H)inositol, ACh and NE increased the accumulation of IP/sub 3/ by 92 and 48%, respectively. The effects of ACh and NE on phospholipid labeling and IP/sub 3/ accumulation were specifically inhibited by atropine (10 ..mu..M) and prazosin (10 ..mu..M), respectively. The data suggest the presence of muscarinic cholinergic and ..cap alpha../sub 1/-adrenergic receptors in the rabbit cornea. Furthermore, activation of these receptors leads to cleavage of PIP/sub 2/ into DG and IP/sub 3/ which may function as second messengers in this tissue.

  18. Comparative experimental analysis of the a-C:H deposition processes using CH4 and C2H2 as precursors

    NASA Astrophysics Data System (ADS)

    Peter, S.; Graupner, K.; Grambole, D.; Richter, F.

    2007-09-01

    The plasma enhanced chemical vapor deposition of a-C:H films using methane and acetylene as precursors was studied. Noninvasive in situ techniques were used to analyze the plasma processes with respect to the self-bias voltage, the displacement currents to the grounded electrode, the neutral gas composition, the optical sheath thickness as well as current and energy of the ions hitting the powered electrode. The a-C:H films were characterized for their deposition rate, surface roughness, hardness, mass density, and hydrogen content. Ion mean free paths, suitable for low-pressure rf sheaths, have been quantified for both precursors. The film with the highest hardness of 25GPa was formed in the C2H2 discharge when the mean energy per deposited carbon atom was approximately 50eV. The hardness obtained with the CH4 discharge was lower at 17GPa and less sensitive to changes in the process parameters. It was found that the creation of hard (hardness >15GPa) a-C:H films from both precursors is possible if the mean energy per deposited carbon atom exceeds only ˜15eV. Further film characteristics such as surface roughness and hydrogen content show the interplay of ion flux and deposition from radicals to form the a-C:H structure and properties.

  19. Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505

    PubMed Central

    Riedlinger, Julia; Schrey, Silvia D.; Tarkka, Mika T.; Hampp, Rdiger; Kapur, Manmohan; Fiedler, Hans-Peter

    2006-01-01

    The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigated. Auxofuran and its synthetic analogue 7-dehydroxy-auxofuran were most effective at a concentration of 15 ?M, and application of these compounds led to increased lipid metabolism-related gene expression. Cocultivation of strain AcH 505 and A. muscaria stimulated auxofuran production by the streptomycete. The antifungal substances produced by strain AcH 505 were identified as the antibiotics WS-5995 B and C. WS-5995 B completely blocked mycelial growth at a concentration of 60 ?M and caused a cell stress-related gene expression response in A. muscaria. Characterization of these compounds provides the foundation for molecular analysis of the fungus-bacterium interaction in the ectomycorrhizal symbiosis between fly agaric and spruce. PMID:16672502

  20. Sharing the Vision, Leading the Way: Continuing Educators in the New Millennium. ACHE Proceedings (62nd, Myrtle Beach, South Carolina, October 14-17, 2000).

    ERIC Educational Resources Information Center

    Barrineau, Irene T., Ed.

    This document presents the proceedings of the 2000 annual meeting of the Association for Continuing Higher Education (ACHE). Part 1 contains the text of the presidential address, "Building Solid Communities within Higher Education" (Nancy Thomason), as well as summaries of the following addresses: "Riding the Rapids of Change: Survival Tactics for

  1. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505.

    PubMed

    Riedlinger, Julia; Schrey, Silvia D; Tarkka, Mika T; Hampp, Rüdiger; Kapur, Manmohan; Fiedler, Hans-Peter

    2006-05-01

    The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigated. Auxofuran and its synthetic analogue 7-dehydroxy-auxofuran were most effective at a concentration of 15 microM, and application of these compounds led to increased lipid metabolism-related gene expression. Cocultivation of strain AcH 505 and A. muscaria stimulated auxofuran production by the streptomycete. The antifungal substances produced by strain AcH 505 were identified as the antibiotics WS-5995 B and C. WS-5995 B completely blocked mycelial growth at a concentration of 60 microM and caused a cell stress-related gene expression response in A. muscaria. Characterization of these compounds provides the foundation for molecular analysis of the fungus-bacterium interaction in the ectomycorrhizal symbiosis between fly agaric and spruce. PMID:16672502

  2. Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes.

    PubMed

    Kombo, David C; Bencherif, Merouane

    2013-12-23

    We have carried out a comparative study between docking into homology models and Bayesian categorization, as applied to virtual screening of nicotinic ligands for binding at various nAChRs subtypes (human and rat ?4?2, ?7, ?3?4, and ?6?2?3). We found that although results vary with receptor subtype, Bayesian categorization exhibits higher accuracy and enrichment than unconstrained docking into homology models. However, docking accuracy is improved when one sets up a hydrogen-bond (HB) constraint between the cationic center of the ligand and the main-chain carbonyl group of the conserved Trp-149 or its homologue (a residue involved in cation-? interactions with the ligand basic nitrogen atom). This finding suggests that this HB is a hallmark of nicotinic ligands binding to nAChRs. Best predictions using either docking or Bayesian were obtained with the human ?7 nAChR, when 100 nM was used as cutoff for biological activity. We also found that ligand-based Bayesian-derived enrichment factors and structure-based docking-derived enrichment factors highly correlate to each other. Moreover, they correlate with the mean molecular fractional polar surface area of actives ligands and the fractional hydrophobic/hydrophilic surface area of the binding site, respectively. This result is in agreement with the fact that hydrophobicity strongly contributes in promoting nicotinic ligands binding to their cognate nAChRs. PMID:24328365

  3. Analysis of Human Dopamine D3 Receptor Quaternary Structure.

    PubMed

    Marsango, Sara; Caltabiano, Gianluigi; Pou, Chantevy; Varela Liste, Mara Jos; Milligan, Graeme

    2015-06-12

    The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric ?1-adrenoreceptor, ?-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a ?1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a "rhombic" tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures. PMID:25931118

  4. Quaternary fluvial archives: achievements of the Fluvial Archives Group

    NASA Astrophysics Data System (ADS)

    Bridgland, David; Cordier, Stephane; Herget, Juergen; Mather, Ann; Vandenberghe, Jef; Maddy, Darrel

    2013-04-01

    In their geomorphological and sedimentary records, rivers provide valuable archives of environments and environmental change, at local to global scales. In particular, fluvial sediments represent databanks of palaeoenvironment and palaeoclimatic (for example) of fossils (micro- and macro-), sedimentary and post-depositional features and buried soils. Well-dated sequences are of the most value, with dating provided by a wide range of methods, from radiometric (numerical) techniques to included fossils (biostratigraphy) and/or archaeological material. Thus Quaternary fluvial archives can also provide important data for studies of Quaternary biotic evolution and early human occupation. In addition, the physical disposition of fluvial sequences, be it as fragmented terrace remnants or as stacked basin-fills, provides valuable information about geomorphological and crustal evolution. Since rivers are long-term persistent features in the landscape, their sedimentary archives can represent important frameworks for regional Quaternary stratigraphy. Fluvial archives are distributed globally, being represented on all continents and across all climatic zones, with the exception of the frozen polar regions and the driest deserts. In 1999 the Fluvial Archives Group (FLAG) was established, as a working group of the Quaternary Research Association (UK), aimed at bringing together those interested in such archives. This has evolved into an informal organization that has held regular biennial combined conference and field-trip meetings, has co-sponsored other meetings and conference sessions, and has presided over two International Geoscience Programme (IGCP) projects: IGCP 449 (2000-2004) 'Global Correlation of Late Cenozoic Fluvial Deposits' and IGCP 518 (2005-2007) 'Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic'. Through these various activities a sequence of FLAG publications has appeared, including special issues in a variety of journals, amassing a substantial volume of information on fluvial archives worldwide. This presentation will highlight some of these data and will describe important patterns observed and interpretations arising therefrom.

  5. U.S. Quaternary Fault and Fold Database Released

    NASA Astrophysics Data System (ADS)

    Haller, Kathleen M.; Machette, Michael N.; Dart, Richard L.; Rhea, B. Susan

    2004-06-01

    A comprehensive online compilation of Quaternary-age faults and folds throughout the United States was recently released by the U.S. Geological Survey, with cooperation from state geological surveys, academia, and the private sector. The Web site at http://Qfaults.cr.usgs.gov/ contains searchable databases and related geo-spatial data that characterize earthquake-related structures that could be potential seismic sources for large-magnitude (M > 6) earthquakes.

  6. Modified quaternary ammonium salts as potential antimalarial agents.

    PubMed

    Basilico, Nicoletta; Migotto, Mara; Ilboudo, Denise Patoinewende; Taramelli, Donatella; Stradi, Riccardo; Pini, Elena

    2015-08-01

    A series of new quaternary ammonium salts containing a polyconjugated moiety has been synthesized and characterized; their biological activity as potential antimalarial agents was investigated, as well. All compounds were screened against chloroquine resistant W-2 (CQ-R) and chloroquine sensitive, D-10 (CQ-S) strains of Plasmodium falciparum showing IC50 in the submicromolar range and low toxicity against human endothelial cells. PMID:26081764

  7. Fjord erosion, Quaternary sedimentation and isostatic rebound in western Scandinavia

    NASA Astrophysics Data System (ADS)

    Steer, P.; Huismans, R. S.; Gac, S.; Herman, F.

    2011-12-01

    Quaternary topographic evolution of western Scandinavia is investigated in relation to fjord erosion, offshore sedimentation, and induced flexural motion. Erosion is computed on the Sognefjord by identification and interpolation of the flat surfaces that border the fjord. We found a mean erosion of ~300 m averaged for the Sognefjord basin, with up to 2.2 km in its main stream. Erosion deduced from geophysical relief gives a similar averaged erosion, when computed using a sliding window with a radius of ~1 km, while it correlates best with the erosion deduced from the flat surface for a radius of ~2 km. Still using the geophysical relief, we find that the total volume of fjord erosion of western Scandinavia is 70.000 km3 or 115.000 km3, for a radius of 1 or 2 km, respectively. It represents between 45 % and 70 % of the total volume of erosion ~160.000km3, deduced from Quaternary sediment deposits offshore Norway, including the Naust formation, the North Sea Fan and Plateau, and the Channel of Norway. Isostatic vertical motion induces by theses transfers of mass is computed using a realistic map of effective elastic thickness. Our results indicate a maximum onshore uplift of 400 to 600 m in the main fjord region, and an offshore subsidence of 1200 m in the North Sea Fan and Naust Formation. Putting back all the sediments onshore induces a vertical motion up to 900 m in the main fjord area. Our results indicate that fjords were mainly shaped during the Quaternary, probably because of a cooling of climate. Our findings are not compatible with a shaping of fjord induced by a Neogene uplift. They even implies that another source of erosion is required to match the volume of erosion with Quaternary sediment, which can be possibly explained by a glacial "buzzsaw" erosion affecting the entire topography.

  8. Organocatalytic Asymmetric Synthesis of Dihydrobenzoxazinones Bearing Trifluoromethylated Quaternary Stereocenters.

    PubMed

    Lou, Hengqiao; Wang, Yongtao; Jin, Enze; Lin, Xufeng

    2016-03-01

    Chiral phosphoric acid-catalyzed enantioselective aza-Friedel-Crafts reaction of trifluoromethyl benzoxazinones with pyrroles is reported. Under mild conditions, a range of enantioenriched dihydrobenzoxazinones bearing trifluoromethylated quaternary stereocenters could be obtained in good to excellent yield and ee. A remarkable fluorine effect is observed, and preliminary mechanistic studies combined with theory calculations suggest that triple-hydrogen-bonding interactions hold the transition structure rigidly and allow the bulky substituents of the catalyst to influence the enantioselectivity. PMID:26882280

  9. Ecological impacts of the late Quaternary megaherbivore extinctions.

    PubMed

    Gill, Jacquelyn L

    2014-03-01

    As a result of the late Quaternary megafaunal extinctions (50,000-10,000 before present (BP)), most continents today are depauperate of megaherbivores. These extinctions were time-transgressive, size- and taxonomically selective, and were caused by climate change, human hunting, or both. The surviving megaherbivores often act as ecological keystones, which was likely true in the past. In spite of this and extensive research on the causes of the Late Quaternary Extinctions, the long-term ecological consequences of the loss of the Pleistocene megafauna remained unknown until recently, due to difficulties in linking changes in flora and fauna in paleorecords. The quantification of Sporormiella and other dung fungi have recently allowed for explicit tests of the ecological consequences of megafaunal extirpations in the fossil pollen record. In this paper, I review the impacts of the loss of keystone megaherbivores on vegetation in several paleorecords. A growing number of studies support the hypothesis that the loss of the Pleistocene megafauna resulted in cascading effects on plant community composition, vegetation structure and ecosystem function, including increased fire activity, novel communities and shifts in biomes. Holocene biota thus exist outside the broader evolutionary context of the Cenozoic, and the Late Quaternary Extinctions represent a regime shift for surviving plant and animal species. PMID:24649488

  10. Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata.

    PubMed

    Ishida, Seiji; Taylor, Derek J

    2007-02-01

    The effects of Quaternary glacial range partitioning on the diversification of Holarctic biota remain unclear. Glacial refugial lineages may form vicariant species, hybrid products, or merge after secondary contact. Here, we assess the effects of Quaternary glaciation on a Holarctic sexual zooplankter, Daphnia galeata, with apparently marked dispersal capacity and a widespread hybrid lineage in the New World. We collected samples of this species from 148 Holarctic lakes, analysed the nuclear and mitochondrial gene sequences, and tested predictions for hypotheses that account for the origin and spread of the New World D. galeata. We detected five nuclear phylogroups and four mitochondrial phylogroups, most of which were restricted to either the New World or the Old World. The oldest mitochondrial phylogroup was restricted to Japan. One major mitochondrial clade was distributed throughout the Holarctic, but only four haplotypes were shared among continents, and analysis of molecular variance indicated significant structure at the continental level. Haplotype sharing among continents could largely be attributed to anthropogenic introductions. Mismatch distributions, haplotype networks, phylogenetic trees, longitudinal haplotype diversity erosion and coalescence analyses are consistent with colonization from an Old World and a New World refugium. Our nuclear and mitochondrial DNA sequence evidence supports the hypothesis that the New World D. galeata underwent introgression with Daphnia dentifera, with dispersal being enhanced by glaciation. We conclude that Quaternary glaciation had a pronounced effect on the diversification of a Holarctic sexual zooplankter. PMID:17257114

  11. U-Pb dating of a speleothem of Quaternary age

    NASA Astrophysics Data System (ADS)

    Richards, David A.; Bottrell, Simon H.; Cliff, Robert A.; Strhle, Klaus; Rowe, Peter J.

    1998-12-01

    We demonstrate that U-Pb dating is a promising method for secondary carbonate materials of Quaternary age and older by obtaining a 206Pb?/ 238U age for a speleothem with high U (>10 ?g g -1) and very low Pb (<10 ng g -1) that is supported by an independent 230Th age. Thermal ionisation mass-spectrometry was used to determine the U and Pb isotopic ratios and concentrations for subsamples of a stalactite from Winnats Head Cave, Peak District, UK. We obtained 206Pb/ 204Pb ratios up to 50, and determined a 206Pb?/ 238U age of 248 10 ka, which is within error of the 207Pb?/ 235U age of 333 79 ka and a-spectrometric U-Th age of 255 ka. For samples of Tertiary and Quaternary age, the initial state of U-series disequilibrium is an important consideration and, as with most radiometric dating techniques, the mineral must have remained closed to U, Th, Pb, and all intermediate daughters. We show that dense calcite speleothems are ideal in this respect and that no loss of Rn has occurred. Unlike U-series disequilibrium methods, U-Pb dating has no upper limit and, hence, materials of Quaternary age older than 0.6 Ma can be analysed to investigate landscape development, paleoclimate, hominid evolution or hydrogeochemistry in carbonate terrains.

  12. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  13. Quaternary erosion in the Sognefjord drainage basin, western Norway

    NASA Astrophysics Data System (ADS)

    Nesje, A.; Dahl, S. O.; Valen, V.; vstedal, J.

    1992-09-01

    The preglacial (palic) landscape configuration in the Sognefjord drainage basin of western Norway is reconstructed, and the total Quaternary erosion is quantitatively determined to 7610 km 3 by subtracting the present topography from the reconstructed preglacial surface. With an average erosion of 610 m during the suggested time span of 600,000 yr when Scandinavian ice sheets reached the continental shelf off western Norway, mean Quaternary erosion rates are calculated to ca. 1.02 mm/yr. Using the average relief of 2000 m along the fjord, however, the rate of glacial erosion was 3.3 mm/yr. Taking into account the selective nature of glacial erosion by ice streams along the fjord, an estimate of 2 0.5 mm/yr is likely. Limited to the east by the main watershed, a rough estimate of the total Quaternary glacial erosion in the fjord region of western Norway is calculated to about 35,000 km 3 of rock. With a soft-sediment porosity of 30-50%, this corresponds to about 45,500-52,500 km 3 of continental shelf/deep-sea sediments.

  14. Genetic ages for Quaternary topographic evolution: A new dating tool

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Burridge, Chris; Norris, Richard; Waters, Jon

    2008-01-01

    All eukaryote populations accumulate mutations in their mitochondrialDNA (mtDNA) over time, so reproductively isolated populationsbecome characterized by distinct mtDNA lineages. In addition,the degree of genetic differentiation among distinct populationscan be used to estimate time elapsed since their isolation.We have identified an informative system for calibrating themtDNA "clock" by genetically comparing freshwater galaxiid fishpopulations isolated in different river drainages. Calibrationusing a range of Quaternary geological events in southern NewZealand shows that the mtDNA divergence rate in galaxiid fishesis between 1% and 2%/100 k.y. up to 250 k.y., with the ratedecreasing with increasing age. The estimated divergence rateslows to around 4%/m.y. for the middle Quaternary, althoughcalibration is poor. A calibration curve has been fitted toall data: divergence (%) = -2.2e-9t + 2.5t + 2.2,where t is isolation age (in m.y.). This molecular clock haspotential as a dating tool for glacially related and activetectonic events that have caused river drainage changes in thelate Quaternary in the Southern Hemisphere, where galaxiidsare widespread. An application of this dating tool to an examplein northern South Island uses three different species of freshwater-limitedfish, and all three data sets imply formation of a drainagedivide at 320 110 ka, at about the time of a majorglacial advance though the divide (oxygen isotope stage 8).

  15. LC3 overexpression reduces A? neurotoxicity through increasing ?7nAchR expression and autophagic activity in neurons and mice.

    PubMed

    Hung, Shih-Ya; Huang, Wei-Pang; Liou, Houng-Chi; Fu, Wen-Mei

    2015-06-01

    Autophagy is an intracellular degradation pathway with dynamic interactions for eliminating damaged organelles and protein aggregates by lysosomal digestion. The EGFP-conjugated microtubule-associated protein 1 light chain 3 (EGFP-LC3) serves to monitor autophagic process. Extracellular ?-amyloid peptide accumulation is reported as a major cause in Alzheimer's disease (AD) pathogenesis; large numbers of autophagic vacuoles accumulate in patients' brains. We previously demonstrated that extracellular A? (eA?) induces strong autophagic response and ?7nAChR acts as a carrier to bind with eA?; which further inhibits A?-induced neurotoxicity via autophagic degradation. In the present study, we overexpressed LC3 in both neuroblastoma cells (SH-SY5Y/pEGFP-LC3) and mice (TgEGFP-LC3) to assess the effect of LC3 overexpression on A? neurotoxicity. SH-SY5Y/pEGFP-LC3 cells and primary cortical neuron cultures derived from E17 (embryonic day 17) TgEGFP-LC3 mice showed not only better resistance against A? neurotoxicity but also higher ?7nAChR expression and autophagic activity than control. Administration of ?-bungarotoxin (?-BTX) to block ?7nAChR antagonized the neuroprotective action of SH-SY5Y/pECGF-LC3 cells, suggesting that eA? binding with ?7nAChR is an important step in A? detoxification. LC3 overexpression thus exerts neuroprotection through increasing ?7nAChR expression for eA? binding and further enhancing autophagic activity for A? clearance invitro and invivo. PMID:25686800

  16. Anti-Allergic Role of Cholinergic Neuronal Pathway via α7 Nicotinic ACh Receptors on Mucosal Mast Cells in a Murine Food Allergy Model

    PubMed Central

    Yamamoto, Takeshi; Kodama, Toshihisa; Lee, Jaemin; Utsunomiya, Naho; Hayashi, Shusaku; Sakamoto, Hiroshi; Kuramoto, Hirofumi; Kadowaki, Makoto

    2014-01-01

    The prevalence of food allergy (FA) has increased in developed countries over the past few decades. However, no effective drug therapies are currently available. Therefore, we investigated cholinergic anti-inflammatory pathway as a regulatory system to ameliorate disrupted mucosal immune homeostasis in the gut based on the pathophysiological elucidation of mucosal mast cells (MMCs) in a murine FA model. BALB/c mice sensitized with ovalbumin received repeated oral ovalbumin for the development of FA. FA mice developed severe allergic diarrhea and exhibited enhanced type 2 helper T (Th2) cell immune responses in both systemic immunity and mucosal immunity, along with MMCs hyperplasia in the colon. MMCs were localized primarily in the strategic position of the mucosal epithelium. Furthermore, the allergic symptoms did not develop in p85α disrupted phosphoinositide-3 kinase-deficient mice that lacked mast cells in the gut. Vagal stimulation by 2-deoxy-D-glucose and drug treatment with nicotinic ACh receptor (nAChR) agonists (nicotine and α7 nAChR agonist GTS-21) alleviated the allergic symptoms in the FA mice. Nicotine treatment suppressed MMCs hyperplasia, enhanced MPO and upregulated mRNA expression of Th1 and Th2 cytokines in the FA mice colon. MMCs, which are negatively regulated by α7 nAChRs, were often located in close proximity to cholinergic CGRP-immunoreactive nerve fibers in the FA mice colon. The present results reveal that the cholinergic neuroimmune interaction via α7 nAChRs on MMCs is largely involved in maintaining intestinal immune homeostasis and can be a target for a new therapy against mucosal immune diseases with homeostatic disturbances such as FA. PMID:24454942

  17. Pharmacological stress is required for the anti-alcohol effect of the ?3?4* nAChR partial agonist AT-1001.

    PubMed

    Cippitelli, Andrea; Brunori, Gloria; Gaiolini, Kelly A; Zaveri, Nurulain T; Toll, Lawrence

    2015-06-01

    Alcohol and nicotine are often taken together. The mechanisms underlying this frequent co-abuse are not well known. Genetic and pharmacological evidence suggests that the nicotinic acetylcholine receptors (nAChRs) containing the ?3 and ?4 subunits play a role in alcohol as well as nicotine addiction. AT-1001 is a high affinity ?3?4 nAChR partial agonist recently found to block nicotine self-administration and relapse-like behavior in rats. Here, to study the involvement of ?3?4 nAChRs in the mechanisms that regulate alcohol abuse we evaluated the effects of AT-1001 on alcohol taking and seeking in Sprague-Dawley rats. AT-1001 reduced operant alcohol self-administration at the highest dose examined (3.0mg/kg), an effect also observed for food self-administration. A dose of 1.5mg/kg AT-1001, which had no effect on alcohol or food self-administration, essentially eliminated reinstatement of alcohol seeking induced by yohimbine (0.625mg/kg) whereas, reinstatement induced by alcohol-associated cues was not altered, nor did AT-1001 induce reinstatement of extinguished self-administration on its own. Finally, AT-1001 showed an anxiolytic activity when measured in the presence or absence of yohimbine stress in the elevated plus maze paradigm. Together, these observations do not support a specific involvement of the ?3?4 nAChR in mediating alcohol reward or cue-induced relapse to alcohol seeking but rather indicate that the ?3?4 nAChR partial agonism may constitute an attractive approach for treating alcohol use disorders exacerbated by elevated stress response. PMID:25689019

  18. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    SciTech Connect

    Machaalani, R.; Ghazavi, E.; Hinton, T.; Waters, K.A.; Hennessy, A.

    2014-05-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.

  19. An explanation for laser-induced spallation effect in a-C:H films: Altered phase evolution route caused by hydrogen doping

    SciTech Connect

    Ding Qi; Hu Tianchang; Wang Liping; Hu Litian; Wang Yunfeng; Zhang Yaonan

    2011-01-01

    The laser-induced spalling effect has been recognized as a unique phenomenon for amorphous carbon (a-C) films during laser processing. In this work, the origin of spalling effect was investigated by ablating two different types of a-C film: hydrogenated a-C (a-C:H) and nonhydrogenated a-C with an Nd-yttrium aluminum garnet laser system. Comparisons of ablating results demonstrated that the spalling effect only occurred in a-C:H rather than nonhydrogenated a-C. Laser heating simulation indicated that the temperature distributions in both films after laser pulse are similar with a high temperature gradient in depth direction. Annealing test results, Raman spectra and nanoindentation show that with the increase in annealing temperature, a-C film transforms into grassy carbon directly, while a-C:H experiences two subprocess under heating: the hydrogen mobilization and rearrangement of C-C network at a relatively low temperature range resulting in a denser C-C network and raised film density; the graphitization at high temperature which would lower the film density. We propose that the reason of laser-induced spalling effect in a-C:H might depend on two aspects: (1) the heat source like laser pulse which could produce a high temperature gradient in depth direction within ultrashort time and (2) the unique evolution process of film microstructure under heating. Based on above model, the spalling effect is ascribed to the concentrated stress caused by different structure evolution subprocess at different depth in a-C:H during the laser irradiation. It is remarkable that the conclusions deduced from our model are proven to be in good agreement with our experimental results and the previous articles reported by others.

  20. The Quaternary adakite distribution of Kyushu Island, Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Yoshikawa, M.; Takemura, K.

    2011-12-01

    The Quaternary volcanoes are widely distributed in Kyusu Island, Japan. Philippine Sea plate is subducting beneath Kyushu. Clear distribution of deep seismic foci is observed below the Quaternary volcanoes in southern area, but not in northern area. Notsu et al. (1990, JVGR) examined the contribution of subduction to the magma source, and emphasized that no slab derived material is observed in northern area from Sr isotopic compositions. Volcanic activity similar to the within-plate type volcanism has been also emphasized for the magma genesis of this area (e.g. Kita et al, 2001, JVGR). However, we found adakitic rocks, which show high Sr/Y ratios and low Y concentrations (e.g. Defant and Drummond, 1990, Nature) from some Quaternary volcanoes in north Kyushu on the basis of published data (Otha et al, 1990, GANKO; Itoh, 1990, GANKO). Therefore, the magma genesis is still controversial. We studied lateral variations of Sr, Nd and Pb isotopic and trace element compositions for Quaternary volcanics from Kyushu to investigate the magma genesis. From the results, a clear variation of Sr/Y ratio, decreasing from north to south, is observed along the volcanic front. Some of the Sr/Y ratio of the most northern part of Kyusu shows the value >100. The all analyzed Pb isotope compositions show a single liner trend in 208Pb/204Pb v.s. 206Pb/204Pb diagram. The liner trend of Pb isotope ratios can be explained by the binary mixing of the Shikoku Basin basalt and tereginious sediment which might be a constituent of the subducting slab. The similar binary mixing relationships are found in Sr and Nd isotopic systematics. The isotopic characteristics of the Quaternary magma in Kyushu can be explained by the magma generation process of island arc, in spite of the lack of deep seismic foci in northern area. It is considered that high and low Sr/Y ratios suggest the contributions of partial melt in the north and aqueous fluid derived from subducting slab in the south, respectively. If these suggestions are correct, the difference of magma genesis in north and south might be related with the ages of subducting Philippine Sea plate which are < 25Ma at northern and >50 Ma at southern area.

  1. Short Communication: Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor.

    PubMed

    Li, Hongmei; He, Hui; Gong, Leyi; Fu, Mingui; Wang, Tony T

    2016-02-01

    We report that the addition of an host paracaspase MALT1 inhibitor, MI-2, to HIV latently infected ACH-2, Jurkat E4, and J-LAT cells accelerated cell death in the presence of cell stimuli or the protein kinase C agonist, bryostatin 1. MI-2-mediated cell death correlated with the induction of the cellular RNase MCPIP1 and requires the presence of viral component(s). Altogether, the combination of MI-2 and bryostatin 1 displays selective killing of HIV latently infected CD4(+) T cells. PMID:26728103

  2. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor.

    PubMed

    Jozwiak, Krzysztof; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Kozak, Joanna; Ligeza, Agnieszka; Szacon, Elzbieta; Wrobel, Tomasz M; Budzynska, Barbara; Biala, Grazyna; Fornal, Emilia; Poso, Antti; Wainer, Irving W; Matosiuk, Dariusz

    2014-12-15

    9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction. PMID:25464883

  3. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type (i.e., well constrained, moderately constrained, or inferred), and mapped scale. Each fault is assigned a three-integer CODE, based upon age, slip rate, and how well the fault is located. This CODE dictates the line-type for the GIS files. To host the database, we are developing an interactive web-map application with ArcGIS for Server and the ArcGIS API for JavaScript from Environmental Systems Research Institute, Inc. (Esri). The web-map application will present the database through a visible scale range with each fault displayed at the resolution of the original map. Application functionality includes: search by name or location, identification of fault by manual selection, and choice of base map. Base map options include topographic, satellite imagery, and digital elevation maps available from ArcGIS on-line. We anticipate that the database will be publically accessible from a portal embedded on the DGGS website by the end of 2011.

  4. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase.

    PubMed

    Chen, Yun; Zhang, Yiming; Siewers, Verena; Nielsen, Jens

    2015-05-01

    Acetyl-coenzyme A (acetyl-CoA) is not only an essential intermediate in central carbon metabolism, but also an important precursor metabolite for native or engineered pathways that can produce many products of commercial interest such as pharmaceuticals, chemicals or biofuels. In the yeast Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nucleus, and cannot be directly transported between these compartments. With the acetyl-carnitine or glyoxylate shuttle, acetyl-CoA produced in peroxisomes or the cytoplasm can be transported into the cytoplasm or the mitochondria. However, whether acetyl-CoA generated in the mitochondria can be exported to the cytoplasm is still unclear. Here, we investigated whether the transfer of acetyl-CoA from the mitochondria to the cytoplasm can occur using a pyruvate decarboxylase negative, non-fermentative yeast strain. We found that mitochondrial Ach1 can convert acetyl-CoA in this compartment into acetate, which crosses the mitochondrial membrane before being converted into acetyl-CoA in the cytosol. Based on our finding we propose a model in which acetate can be used to exchange acetyl units between mitochondria and the cytosol. These results will increase our fundamental understanding of intracellular transport of acetyl units, and also help to develop microbial cell factories for many kinds of acetyl-CoA derived products. PMID:25852051

  5. Active ghrelin levels across time and associations with leptin and anthropometrics in healthy ache Amerindian women of Paraguay.

    PubMed

    Bribiescas, Richard G; Betancourt, Jaime; Torres, Anglica M; Reiches, Meredith

    2008-01-01

    Active (acylated) ghrelin is a peptide hormone secreted primarily by the stomach, positively associated with fasting, orexigenic, and promotes growth hormone secretion. It is therefore important to energy intake management. The objective of this pilot research was to (1) compare active ghrelin with previous measurements of leptin and anthropometrics; (2) assess the consistency of active ghrelin across time in this population; (3) extend our understanding of potential population variation in active ghrelin. Two serum samples separated by 10 days at the same time between meals were collected from healthy Ache women (n = 12, mean age 32.2 +/- 14.0 SD) to determine consistency over time, associations with leptin, and anthropmetric values. Mean active ghrelin was 72.9 +/- 23.0 pg/ml, highly correlated (r(2) = 0.95, P < 0.0001) between collections, and showed no paired mean differences (P < 0.18). There was no significant correlation with leptin, age, or anthropometric measures. Active ghrelin appears to be consistent over time in this population, perhaps reflecting regimented meal schedules and less interpopulation variation compared to leptin. PMID:18161038

  6. Optical Characterization of Amorphous Hydrogenated Carbon (a-C:H) Thin Films Prepared by Single RF Plasma Method

    NASA Astrophysics Data System (ADS)

    Dogan, Mansuroglu; Kadir, Goksen; Sinan, Bilikmen

    2015-06-01

    Methane (CH4) plasma was used to produce amorphous hydrogenated carbon (a-C:H) films by a single capacitively coupled radio frequency (RF) powered plasma system. The system consists of two parallel electrodes: the upper electrode is connected to 13.56 MHz RF power and the lower one is connected to the ground. Thin films were deposited on glass slides with different sizes and on silicon wafers. The influence of the plasma species on film characteristics was studied by changing the plasma parameters. The changes of plasma species during the deposition were investigated by optical emission spectroscopy (OES). The structural and optical properties were analyzed via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and UV-visible spectroscopy, and the thicknesses of the samples were measured by a profilometer. The sp3/sp2 ratio and the existing H atoms play a significant role in the determination of the chemical properties of thin films in the plasma. The film quality and deposition rate were both increased by raising the power and the flow rate.

  7. The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5.

    PubMed Central

    Gielen, J; De Beuckeleer, M; Seurinck, J; Deboeck, F; De Greve, H; Lemmers, M; Van Montagu, M; Schell, J

    1984-01-01

    We have determined the complete primary structure (13 637 bp) of the TL-region of Agrobacterium tumefaciens octopine plasmid pTiAch5 . This sequence comprises two small direct repeats which flank the TL-region at each extremity and are involved in the transfer and/or integration of this DNA segment in plants. TL-DNA specifies eight open-reading frames corresponding to experimentally identified transcripts in crown gall tumor tissue. The eight coding regions are not interrupted by intervening sequences and are separated from each other by AT-rich regions. Potential transcriptional control signals upstream of the 5' and 3' ends of all the transcribed regions resemble typical eukaryotic signals: (i) transcriptional initiation signals ('TATA' or Goldberg- Hogness box) are present upstream to the presumed translational start codons; (ii) ' CCAAT ' sequences are present upstream of the proposed 'TATA' box; (iii) polyadenylation signals are present in the 3'-untranslated regions. Furthermore, no Shine-Dalgarno sequences are present upstream of the presumed translational start codons. PMID:6327292

  8. Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment

    PubMed Central

    Lecoutey, Cédric; Hedou, Damien; Freret, Thomas; Giannoni, Patrizia; Gaven, Florence; Since, Marc; Bouet, Valentine; Ballandonne, Céline; Corvaisier, Sophie; Malzert Fréon, Aurélie; Mignani, Serge; Cresteil, Thierry; Boulouard, Michel; Claeysen, Sylvie; Rochais, Christophe; Dallemagne, Patrick

    2014-01-01

    RS67333 is a partial serotonin subtype 4 receptor (5-HT4R) agonist that has been widely studied for its procognitive effect. More recently, it has been shown that its ability to promote the nonamyloidogenic cleavage of the precursor of the neurotoxic amyloid-β peptide leads to the secretion of the neurotrophic protein sAPPα. This effect has generated great interest in RS67333 as a potential treatment for Alzheimer’s disease (AD). We show herein that RS67333 is also a submicromolar acetylcholinesterase (AChE) inhibitor and therefore, could contribute, through this effect, to the restoration of the cholinergic neurotransmission that becomes altered in AD. We planned to pharmacomodulate RS67333 to enhance its AChE inhibitory activity to take advantage of this pleiotropic pharmacological profile in the design of a novel multitarget-directed ligand that is able to exert not only a symptomatic but also, a disease-modifying effect against AD. These efforts allowed us to select donecopride as a valuable dual (h)5-HT4R partial agonist (Ki = 10.4 nM; 48.3% of control agonist response)/(h)AChEI (IC50 = 16 nM) that further promotes sAPPα release (EC50 = 11.3 nM). Donecopride, as a druggable lead, was assessed for its in vivo procognitive effects (0.1, 0.3, 1, and 3 mg/kg) with an improvement of memory performances observed at 0.3 and 1 mg/kg on the object recognition test. On the basis of these in vitro and in vivo activities, donecopride seems to be a promising drug candidate for AD treatment. PMID:25157130

  9. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  10. Polarization-encoded all-optical quaternary universal inverter and design of multivalued flip-flop

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2010-03-01

    Quaternary inverters are the fundamental building blocks of multivalued flip-flops (MVFFs). A novel all-optical quaternary universal inverter circuit with the help of a semiconductor optical amplifier-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization states of light. A terahertz optical asymmetric multiplexer-based gate plays an important role here. Numerical simulation results confirming the described method are given. An all-optical circuit for a MVFF (quaternary) with the help of our proposed quaternary universal inverter is also designed, and simulation results are presented.

  11. Inhibitors of Pyruvate Carboxylase

    PubMed Central

    Zeczycki, Tonya N.; Maurice, Martin St.; Attwood, Paul V.

    2010-01-01

    This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin – biotin, FTP – ATP binding site, oxamate – pyruvate binding site, phosphonoacetate – binding site of the putative carboxyphosphate intermediate. PMID:22180764

  12. Automated Docking with Protein Flexibility in the Design of Femtomolar “Click Chemistry” Inhibitors of Acetylcholinesterase

    PubMed Central

    Morris, Garrett M.; Green, Luke G.; Radić, Zoran; Taylor, Palmer; Sharpless, K. Barry; Olson, Arthur J.; Grynszpan, Flavio

    2013-01-01

    The use of computer-aided structure-based drug design prior to synthesis has proven to be generally valuable in suggesting improved binding analogues of existing ligands.1 Here we describe the application of the program AutoDock2 to the design of a focused library that was used in the “click chemistry in-situ” generation of the most potent non-covalent inhibitor of the enzyme acetylcholinesterase (AChE) yet developed (Kd = ~100 fM).3 AutoDock version 3.0.5 has been widely distributed and successfully used to predict bound conformations of flexible ligands. Here, we also used a version of AutoDock which permits additional conformational flexibility in selected amino acid sidechains of the target protein. PMID:23451944

  13. Human serum albumin reduces the potency of acetylcholinesterase inhibitor based drugs for Alzheimer's disease.

    PubMed

    Islam, Mullah Muhaiminul; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-04-01

    Human serum albumin (HSA) induced modulation of acetylcholinesterase (AChE) inhibition activity of four well-known cholinergic inhibitors like tacrine hydrochloride (TAC), donepezil hydrochloride monohydrate (DON), (-) Huperzine A (HuPA), eserine (ESE) was monitored quantitatively by Ellman's method. Kinetic analysis of enzyme hydrolysis reaction revealed that while the mechanism of inhibition does not change significantly, the inhibition efficiency changes drastically in presence of HSA, particularly for DON and TAC. However, interestingly, no notable difference was observed in the cases of HuPA and/or ESE. For example, the IC50 value of AChE inhibition increases by almost 135% in presence of ∼250 μM HSA (IC50 = 159 ± 8 nM) while comparing with aqueous buffer solution of pH 8.0 (IC50 = 68 ± 4 nM) in DON. On the other hand, the change is almost insignificant (<10%) in case of HuPA under the similar condition. The experimentally observed difference in the extent of modulatory effect was correlated with the sequestration ability of HSA towards different drugs predicted from molecular docking calculations. The result in this study demonstrates the importance to consider the plasma protein binding tendency of a newly synthesized AD drug before claiming its potency over the existing one. Further, development of new and intelligent delivery medium that shields the administered drugs from serum adsorption may reduce the optimal drug dose requirement. PMID:26902639

  14. Experimental and computational studies on the inhibition of acetylcholinesterase by curcumin and some of its derivatives.

    PubMed

    Tello-Franco, Veronica; Lozada-García, Maria Concepcion; Soriano-García, Manuel

    2013-06-01

    Recent studies have demonstrated several biological activities of curcumin with therapeutic potential against Alzheimer's disease, among them the inhibition of the enzyme acetylcholinesterase (AChE). Aiming at identifying the chemical features relevant for this activity, the inhibition of curcumin and a set of 7 derivatives against AChE of E. electricus was measured. These derivatives presented lower activity than curcumin, allowing for the identification of possible unfavorable enzyme-inhibitor interactions. Our computational approach was to dock the molecules to the active site of AChE, followed by an analysis of hydrogen bonds and close contacts to relevant aromatic amino acid residues. To account for inhibitory activity, we sought to define the common structural features between known acetylcholinesterase inhibitors and the tested derivatives. A pharmacophore model was generated, which consisted of two hydrophobic, one aromatic and one hydrogen bond acceptor features. We conclude that the presence of two aromatic rings and the distance between them, allows curcumin and its derivatives to favorably interact with both the quaternary and peripheral sites of AChE. Hydrogen bonds can be formed with the quaternary and acyl sites, which should further stabilize the complex. The acylation of the hydroxyl groups and the reduction of the conjugated double bonds lowered the inhibitory activity, pointing to the modification of the keto-enol moiety as the best alternative for the design of more potent curcumin derivatives as acetylcholinesterase inhibitors. PMID:23106780

  15. Esterase metabolism of cholinesterase inhibitors using rat liver in vitro

    EPA Science Inventory

    A variety of chemicals, such as organophosphate (OP) and carbamate pesticides, nerve agents, and industrial chemicals, inhibit acetylcholinesterase (AChE) leading to overstimulation of the cholinergic nervous system. The resultant neurotoxicity is similar across mammalian species...

  16. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.

    PubMed

    Mizutani, Miho Yamada; Itai, Akiko

    2004-09-23

    A method of easily finding ligands, with a variety of core structures, for a given target macromolecule would greatly contribute to the rapid identification of novel lead compounds for drug development. We have developed an efficient method for discovering ligand candidates from a number of flexible compounds included in databases, when the three-dimensional (3D) structure of the drug target is available. The method, named ADAM&EVE, makes use of our automated docking method ADAM, which has already been reported. Like ADAM, ADAM&EVE takes account of the flexibility of each molecule in databases, by exploring the conformational space fully and continuously. Database screening has been made much faster than with ADAM through the tuning of parameters, so that computational screening of several hundred thousand compounds is possible in a practical time. Promising ligand candidates can be selected according to various criteria based on the docking results and characteristics of compounds. Furthermore, we have developed a new tool, EVE-MAKE, for automatically preparing the additional compound data necessary for flexible docking calculation, prior to 3D database screening. Among several successful cases of lead discovery by ADAM&EVE, the finding of novel acetylcholinesterase (AChE) inhibitors is presented here. We performed a virtual screening of about 160 000 commercially available compounds against the X-ray crystallographic structure of AChE. Among 114 compounds that could be purchased and assayed, 35 molecules with various core structures showed inhibitory activities with IC(50) values less than 100 microM. Thirteen compounds had IC(50) values between 0.5 and 10 microM, and almost all their core structures are very different from those of known inhibitors. The results demonstrate the effectiveness and validity of the ADAM&EVE approach and provide a starting point for development of novel drugs to treat Alzheimer's disease. PMID:15369385

  17. Oooh, Your Aching Head!

    MedlinePLUS

    ... bologna, and hot dogs. The caffeine in sodas, chocolate, coffee, and tea may cause headaches, too. Kids ... a sign of anything serious, such as a brain tumor or meningitis. This is especially true for ...

  18. Oooh, Your Aching Head!

    MedlinePLUS

    ... RYE SIN-drome). previous continue When Should You Go to a Doctor? Headaches are very rarely a ... is particularly painful when a headache doesn't go away easily when a headache follows an injury, ...

  19. Generalized Body Aches

    MedlinePLUS

    ... powered by a computer program that performs symptom triage. The goal of symptom triage is to decide when, and where, you should seek care when you have symptoms. Symptom triage does not replace a physician evaluation or make ...

  20. Proton pump inhibitors

    MedlinePLUS

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in the lining ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a condition in ...

  1. Resveratrol derived butyrylcholinesterase inhibitors.

    PubMed

    Csuk, René; Albert, Sabrina; Kluge, Ralph; Ströhl, Dieter

    2013-07-01

    Novel polyhydroxylated (E)-stilbenes were synthesized by Mizoroki-Heck reactions and tested for their ability to inhibit the enzymes acetyl- and butyrylcholinesterase. Several of them are good inhibitors of butyrylcholinesterase; one of them carrying an extra fluorine substituent is a 94-fold stronger inhibitor of butyrylcholinesterase than of acetylcholinesterase. PMID:23722618

  2. Low toxicity corrosion inhibitors

    SciTech Connect

    Prince, P.; Naraghi, A.R.; Saffer, C.E.

    1996-12-01

    This paper discusses the design and testing of low toxicity corrosion inhibitors. New chemistries have been investigated with respect to corrosion protection and impact on the marine environment. The resulting chemicals, while they are effective corrosion inhibitors, present significant improvements in terms of environmental properties over current products. The discussion includes results of the corrosion inhibition, toxicity, biodegradability and partitioning studies.

  3. A novel route to recognizing quaternary ammonium cations using electrospray mass spectrometry.

    PubMed

    Shackman, Holly M; Ding, Wei; Bolgar, Mark S

    2015-01-01

    Characterizing and elucidating structures is a commonplace and necessary activity in the pharmaceutical industry with mass spectrometry and NMR being the primary tools for analysis. Although many functional groups are readily identifiable, quaternary ammonium cations have proven to be difficult to unequivocally identify using these techniques. Due to the lack of an N-H bond, quaternary ammonium groups can only be detected in the (1)H NMR spectra by weak signals generated from long-range (14)N-H coupling, which by themselves are inconclusive evidence of a quaternary ammonium functional group. Due to their low intensity, these signals are frequently not detected. Additionally, ions cannot be differentiated in a mass spectrum as an M(+) or [M + H](+) ion without prior knowledge of the compound's structure. In order to utilize mass spectrometry as a tool for determining this functionality, ion cluster formation of quaternary ammonium cations and non-quaternary amines was studied using electrospray ionization. Several mobile phase modifiers were compared; however, the addition of small amounts of trifluoroacetic acid proved superior in producing characteristic and intense [M +2TFA](-) clusters for compounds containing quaternary ammonium cations when using negative electrospray. By fragmenting this characteristic ion using CID, nearly all compounds studied could be unambiguously identified as containing a quaternary ammonium cation or a non-quaternary amine attributable to the presence (non-quaternary amine) or absence (quaternary ammonium cation) of the resulting [2TFA + H](-) ion in the product spectra. This method of analysis provides a rapid, novel, and reliable technique for indicating the presence of quaternary ammonium cations in order to aid in structural elucidation. PMID:25391726

  4. A Novel Route to Recognizing Quaternary Ammonium Cations Using Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Shackman, Holly M.; Ding, Wei; Bolgar, Mark S.

    2015-01-01

    Characterizing and elucidating structures is a commonplace and necessary activity in the pharmaceutical industry with mass spectrometry and NMR being the primary tools for analysis. Although many functional groups are readily identifiable, quaternary ammonium cations have proven to be difficult to unequivocally identify using these techniques. Due to the lack of an N-H bond, quaternary ammonium groups can only be detected in the 1H NMR spectra by weak signals generated from long-range 14N-H coupling, which by themselves are inconclusive evidence of a quaternary ammonium functional group. Due to their low intensity, these signals are frequently not detected. Additionally, ions cannot be differentiated in a mass spectrum as an M+ or [M + H]+ ion without prior knowledge of the compound's structure. In order to utilize mass spectrometry as a tool for determining this functionality, ion cluster formation of quaternary ammonium cations and non-quaternary amines was studied using electrospray ionization. Several mobile phase modifiers were compared; however, the addition of small amounts of trifluoroacetic acid proved superior in producing characteristic and intense [M +2TFA]- clusters for compounds containing quaternary ammonium cations when using negative electrospray. By fragmenting this characteristic ion using CID, nearly all compounds studied could be unambiguously identified as containing a quaternary ammonium cation or a non-quaternary amine attributable to the presence (non-quaternary amine) or absence (quaternary ammonium cation) of the resulting [2TFA + H]- ion in the product spectra. This method of analysis provides a rapid, novel, and reliable technique for indicating the presence of quaternary ammonium cations in order to aid in structural elucidation.

  5. An aminostratigraphy for the British Quaternary based on Bithynia opercula

    NASA Astrophysics Data System (ADS)

    Penkman, Kirsty E. H.; Preece, Richard C.; Bridgland, David R.; Keen, David H.; Meijer, Tom; Parfitt, Simon A.; White, Tom S.; Collins, Matthew J.

    2013-02-01

    Aminostratigraphies of Quaternary non-marine deposits in Europe have been previously based on the racemization of a single amino acid in aragonitic shells from land and freshwater molluscs. The value of analysing multiple amino acids from the opercula of the freshwater gastropod Bithynia, which are composed of calcite, has been demonstrated. The protocol used for the isolation of intra-crystalline proteins from shells has been applied to these calcitic opercula, which have been shown to more closely approximate a closed system for indigenous protein residues. Original amino acids are even preserved in bithyniid opercula from the Eocene, showing persistence of indigenous organics for over 30 million years. Geochronological data from opercula are superior to those from shells in two respects: first, in showing less natural variability, and second, in the far better preservation of the intra-crystalline proteins, possibly resulting from the greater stability of calcite. These features allow greater temporal resolution and an extension of the dating range beyond the early Middle Pleistocene. Here we provide full details of the analyses for 480 samples from 100 horizons (75 sites), ranging from Late Pliocene to modern. These show that the dating technique is applicable to the entire Quaternary. Data are provided from all the stratotypes from British stages to have yielded opercula, which are shown to be clearly separable using this revised method. Further checks on the data are provided by reference to other type-sites for different stages (including some not formally defined). Additional tests are provided by sites with independent geochronology, or which can be associated with a terrace stratigraphy or biostratigraphy. This new aminostratigraphy for the non-marine Quaternary deposits of southern Britain provides a framework for understanding the regional geological and archaeological record. Comparison with reference to sites yielding independent geochronology, in combination with other lines of evidence, allows tentative correlation with the marine oxygen isotope record.

  6. An aminostratigraphy for the British Quaternary based on Bithynia opercula

    PubMed Central

    Penkman, Kirsty E.H.; Preece, Richard C.; Bridgland, David R.; Keen, David H.; Meijer, Tom; Parfitt, Simon A.; White, Tom S.; Collins, Matthew J.

    2013-01-01

    Aminostratigraphies of Quaternary non-marine deposits in Europe have been previously based on the racemization of a single amino acid in aragonitic shells from land and freshwater molluscs. The value of analysing multiple amino acids from the opercula of the freshwater gastropod Bithynia, which are composed of calcite, has been demonstrated. The protocol used for the isolation of intra-crystalline proteins from shells has been applied to these calcitic opercula, which have been shown to more closely approximate a closed system for indigenous protein residues. Original amino acids are even preserved in bithyniid opercula from the Eocene, showing persistence of indigenous organics for over 30 million years. Geochronological data from opercula are superior to those from shells in two respects: first, in showing less natural variability, and second, in the far better preservation of the intra-crystalline proteins, possibly resulting from the greater stability of calcite. These features allow greater temporal resolution and an extension of the dating range beyond the early Middle Pleistocene. Here we provide full details of the analyses for 480 samples from 100 horizons (75 sites), ranging from Late Pliocene to modern. These show that the dating technique is applicable to the entire Quaternary. Data are provided from all the stratotypes from British stages to have yielded opercula, which are shown to be clearly separable using this revised method. Further checks on the data are provided by reference to other type-sites for different stages (including some not formally defined). Additional tests are provided by sites with independent geochronology, or which can be associated with a terrace stratigraphy or biostratigraphy. This new aminostratigraphy for the non-marine Quaternary deposits of southern Britain provides a framework for understanding the regional geological and archaeological record. Comparison with reference to sites yielding independent geochronology, in combination with other lines of evidence, allows tentative correlation with the marine oxygen isotope record. PMID:23396683

  7. Quaternary geology and waste disposal in South Norfolk, England

    NASA Astrophysics Data System (ADS)

    Gray, J. M.

    South Norfolk is dominated by the till plain of the Anglian Glaciation in eastern England, and therefore there are very few disused gravel pits and quarries suitable for the landfilling of municipal waste. Consequently, in May 1991, Norfolk County Council applied for planning permission to develop an above ground or 'landraise' waste disposal site at a disused U.S. World War II Airfield at Hardwick in South Norfolk. The proposal involved excavating a pit 2-4 m deep into the Lowestoft Till and overfilling it to create a hill of waste up to 10 m above the existing till plain. In general, leachate containment was to be achieved by utilising the relatively low permeability till on the floor of the site, but with reworking of the till around the site perimeter because of sand lenses in the upper part of the till. This paper examines three aspects of the proposal and the wider issues relating to Quaternary geology and waste disposal planning in South Norfolk: (i) the suitability of the till as a natural leachate containment system; (ii) the appropriateness of the landraise landform; and (iii) alternative sites. A Public Inquiry into the proposals was held in January/February 1993 and notification of refusal of planning permission was published in August 1993. Among the grounds for refusal were an inadequate knowledge of the site's geology and hydrogeology and the availability of alternative sites. The paper concludes by stressing that a knowledge of Quaternary geology is crucial to both the planning and design of landfill sites in areas of glacial/Quaternary sediments.

  8. The Effect of Two Amine-Based Corrosion Inhibitors in Improving the Corrosion Resistance of Carbon Steel in Sea Water

    NASA Astrophysics Data System (ADS)

    Rihan, Rihan; Shawabkeh, Reyad; Al-Bakr, Nawaf

    2014-03-01

    This study investigates the effect of two amine-based corrosion inhibitors in reducing the corrosion rate (CR) of 1018 carbon steel in formulated sea water. For discussion purposes, the two inhibitors are named Inhibitor A (belongs to the alkyl pyridine benzyl chloride quaternary family of inhibitors) and Inhibitor B (belongs to the alkyl amines family of inhibitors). The two inhibitors are routinely considered for applications by Saudi Aramco, the world's largest oil producing and processing company, for reducing its corrosion problems in carbon steel pipelines carrying oil and gas. The experimental apparatus was a circulating flow loop system inside an autoclave. The experimental work was performed at pH 8.2, 55 C, and 1000 rpm. The inhibitors were evaluated at three different concentrations of 5, 10, and 15 ppm. The CR was determined using the weight loss method and electrochemical methods such potentiodynamic sweep and linear polarization resistance. The experimental results indicate that Inhibitor B reduced the CR more than that of Inhibitor A.

  9. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  10. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    SciTech Connect

    Sharma, Bhupesh Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.

  11. Cyclic explosive activity of the Iceland plume in the quaternary

    NASA Astrophysics Data System (ADS)

    Eroshenko, D. V.; Kharin, G. S.

    2014-02-01

    Data on the volcanic ash layers in 70 DSDP and ODP Sites and 100 cores obtained during cruises of the R/V Akademik Kurchatov and Mikhail Lomonosov were used for compiling tephrostratigraphic scale and schematic distribution maps of the pyroclastic material in the Quaternary sediments of the North Atlantic and Norwegian-Greenland Basin. It is revealed that the distribution of pyroclastic material through this region is characterized by cyclic and spatially irregular patterns. Based on their petrochemical and geochemical properties, these ashes are compared with the volcanics of Iceland and the Jan Mayen islands. The relations between the extreme climatic and cyclic explosive events are discussed.

  12. Charophytes as lacustrine biomarkers during the quaternary in North Africa

    NASA Astrophysics Data System (ADS)

    Soulié-Märsche, I.

    The use of charophytes as biomarkers is discussed with emphasis on the differences in study methods for cosmopolitan and ecotype species. A first extensive inventory of Quaternary deposits of charophytes in Africa north of the equator comprising 18 sites from Senegal to the Sudan is drawn up with data on spatial and temporal distribution. The existence of relatively deep cold lakes in the Holocene is shown by the frequent presence of specimens of cold flora no longer present in Africa today. All the original data show the complementary nature of the study of fossil Charophyta for the multidisciplinary reconstitution of palaeoenvironments.

  13. Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms.

    PubMed

    Tang, Chuyi; Skibsbye, Lasse; Yuan, Lei; Bentzen, Bo H; Jespersen, Thomas

    2015-10-01

    Although several physiological, pathophysiological and regulatory properties of classical inward rectifier K+ current I(K1), G-protein coupled inwardly-rectifying K+ current I(K,ACh) and the small-conductance Ca2+ activated K+ current I(K,Ca) have been identified, quantitative biophysical details remain unclear. Both I(K1) and I(K,ACh) are implicated in atrial fibrillation (AF), and recently also I(K,Ca) has been speculated to be linked with the genesis and sustainability of AF. All these three currents have been shown to be involved in the electrical remodeling in the atria of patients suffering from AF, and it is therefore important to characterize their biophysical properties and compare their relative current contribution in atrial electrophysiology in both sinus rhythm (SR) and AF. The aim of this study is to investigate the contribution of the three potassium currents when subjected to voltage protocols adapted from atrial action potentials recorded in human tissue at 1 and 3 Hz. The current recordings were performed in the HEK-293 heterologous cell system expressing either I(K1), I(K,ACh) or I(K,Ca) to establish the individual contribution of each of these currents during the voltage changes of atrial action potential waveforms. I(K1) primarily contributes to the atrial electrophysiology at the latter part of repolarization and during the diastolic phase, while both I(K,Ca) under high [Ca2+]i and I(K,ACh) contribute relatively most during repolarization. PMID:26001288

  14. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production.

    PubMed

    Dong, Miao-Wu; Li, Ming; Chen, Jie; Fu, Tong-Tong; Lin, Ke-Zhi; Ye, Guang-Hua; Han, Jun-Ge; Feng, Xiang-Ping; Li, Xing-Biao; Yu, Lin-Sheng; Fan, Yan-Yan

    2016-04-01

    Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNF-α production from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNF-α production in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNF-α production from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNF-α production, which may be closely associated with the blockage of NF-κB activation in macrophages. PMID:26650489

  15. APS8, a Polymeric Alkylpyridinium Salt Blocks ?7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma

    PubMed Central

    Zovko, Ana; Viktorsson, Kristina; Lewensohn, Rolf; Koloa, Katja; Filipi?, Metka; Xing, Hong; Kem, William R.; Paleari, Laura; Turk, Tom

    2013-01-01

    Naturally occurring 3-alkylpyridinium polymers (poly-APS) from the marine sponge Reniera sarai, consisting of monomers containing polar pyridinium and nonpolar alkyl chain moieties, have been demonstrated to exert a wide range of biological activities, including a selective cytotoxicity against non-small cell lung cancer (NSCLC) cells. APS8, an analog of poly-APS with defined alkyl chain length and molecular size, non-competitively inhibits ?7 nicotinic acetylcholine receptors (nAChRs) at nanomolar concentrations that are too low to be acetylcholinesterase (AChE) inhibitory or generally cytotoxic. In the present study we show that APS8 inhibits NSCLC tumor cell growth and activates apoptotic pathways. APS8 was not toxic for normal lung fibroblasts. Furthermore, in NSCLC cells, APS8 reduced the adverse anti-apoptotic, proliferative effects of nicotine. Our results suggest that APS8 or similar compounds might be considered as lead compounds to develop antitumor therapeutic agents for at least certain types of lung cancer. PMID:23880932

  16. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric).

    PubMed

    Schrey, Silvia D; Salo, Vanamo; Raudaskoski, Marjatta; Hampp, Rüdiger; Nehls, Uwe; Tarkka, Mika T

    2007-08-01

    The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect. PMID:17632722

  17. External-Field-Induced Growth Effect of an a-C:H Film for Manipulating Its Medium-Range Nanostructures and Properties.

    PubMed

    Song, Hui; Ji, Li; Li, Hongxuan; Liu, Xiaohong; Wang, Weiqi; Zhou, Huidi; Chen, Jianmin

    2016-03-16

    A special catalytic growth effect (called the "external-field-induced effect") was found to exist on the poisoning target surface during the reactive sputtering process of a-C:H films. Enlightened by this effect, we demonstrate a facile approach to manipulate the medium-range-ordered nanostructure and mechanical and tribological properties of a-C:H films. By adjusting the plasma ionization degree, a graphene precursor was successfully produced at the graphite target surface through the synergistic catalytic effects of both the catalyst and plasma. Then, graphene was further sputtered into amorphous carbon films to form graphene-like nanoclusters. This special graphene-like nanostructure endows the a-C:H film with outstanding hardness, high elasticity, and excellent tribological properties. The elastic recovery of the film was improved to 92.5%, and the wear life in a vacuum environment was also prolonged to 8.8 × 10(5) cycles at a contact stress of 0.9 GPa, which suggests that medium-range-ordered clusters in an amorphous carbon matrix provide an important way to improve the properties of carbon films. PMID:26895554

  18. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary ?-Amino Acids

    PubMed Central

    Cativiela, Carlos; Ordez, Mario

    2010-01-01

    The most recent papers describing the stereoselective synthesis of cyclic quaternary ?-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton. PMID:20300486

  19. 40 CFR 721.10666 - Quaternary ammonium compounds, bis(fattyalkyl) dimethyl, salts with tannins (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, bis... SUBSTANCES Significant New Uses for Specific Chemical Substances 721.10666 Quaternary ammonium compounds... compounds, bis(fattyalkyl) dimethyl, salts with tannins (PMN P-12-437) is subject to reporting under...

  20. 40 CFR 721.10666 - Quaternary ammonium compounds, bis(fattyalkyl) dimethyl, salts with tannins (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, bis... SUBSTANCES Significant New Uses for Specific Chemical Substances 721.10666 Quaternary ammonium compounds... compounds, bis(fattyalkyl) dimethyl, salts with tannins (PMN P-12-437) is subject to reporting under...

  1. All-optical quaternary logic gates - An extension of binary logic gates

    NASA Astrophysics Data System (ADS)

    Garai, Sisir Kumar

    2015-04-01

    All optical multivalued logic processors are of paramount importance in optical computing and signal processing. In this communication, the author proposes a new method of developing all-optical quaternary logic gates which are the extension of binary logic gates. To develop the quaternary logic gate the authors first coverts the quaternary frequency encoded data into equivalent binary intensity encoded data; then binary logic operations are done among the equivalent binary data, and finally the intensity encoded data outputs are converted into frequency encoded quaternary logic output. Simulation result supports the feasibility of the proposed scheme. Novelty of the scheme is that the same optical circuit is dedicated to implement any two-input quaternary logic operation only by changing two basic switches functioning as binary logic gates. Finally, the authors have cascaded these logic gates using "12" all-optical switches to develop quaternary logic unit by means of which any kind of quaternary logic operation as proposed in this scheme can be performed. Dense wavelength division demultiplexers (DMUX) are used here for wavelength routing purpose, and switching and frequency conversion characters of semiconductor optical amplifiers are exploited to develop very fast and secure quaternary logic unit.

  2. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease

    PubMed Central

    Makhaeva, Galina F.; Lushchekina, Sofya V.; Boltneva, Natalia P.; Sokolov, Vladimir B.; Grigoriev, Vladimir V.; Serebryakova, Olga G.; Vikhareva, Ekaterina A.; Aksinenko, Alexey Yu.; Barreto, George E.; Aliev, Gjumrakch; Bachurin, Sergey O.

    2015-01-01

    Alzheimer disease is a multifactorial pathology and the development of new multitarget neuroprotective drugs is promising and attractive. We synthesized a group of original compounds, which combine in one molecule γ-carboline fragment of dimebon and phenothiazine core of methylene blue (MB) linked by 1-oxo- and 2-hydroxypropylene spacers. Inhibitory activity of the conjugates toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and structurally close to them carboxylesterase (CaE), as well their binding to NMDA-receptors were evaluated in vitro and in silico. These newly synthesized compounds showed significantly higher inhibitory activity toward BChE with IC50 values in submicromolar and micromolar range and exhibited selective inhibitory action against BChE over AChE and CaE. Kinetic studies for the 9 most active compounds indicated that majority of them were mixed-type BChE inhibitors. The main specific protein-ligand interaction is π-π stacking of phenothiazine ring with indole group of Trp82. These compounds emerge as promising safe multitarget ligands for the further development of a therapeutic approach against aging-related neurodegenerative disorders such as Alzheimer and/or other pathological conditions. PMID:26281952

  3. Engineering ?4?2 nAChRs with reduced or increased nicotine sensitivity via selective disruption of consensus sites in the M3-M4 cytoplasmic loop of the ?4 subunit.

    PubMed

    Biaggi-Labiosa, Nilza M; Avils-Pagn, Emir; Caballero-Rivera, Daniel; Bez-Pagn, Carlos A; Lasalde-Dominicci, Jos A

    2015-12-01

    The ?4?2 neuronal nicotinic acetylcholine receptor (nAChR) plays a crucial role in nicotine addiction. These receptors are known to desensitize and up-regulate after chronic nicotine exposure, but the mechanism remains unknown. Currently, the structure and functional role of the intracellular domains of the nAChR are obscure. To study the effect of subunit phosphorylation on ?4?2 nAChR function and expression, eleven residues located in the M3-M4 cytoplasmic loop were mutated to alanine and aspartic acid. Two-electrode voltage clamp and (125)I-labeled epibatidine binding assays were performed on Xenopus oocytes to assess agonist activation and receptor expression. When ACh was used as an agonist, a decrease in receptor activation was observed for the majority of the mutations. When nicotine was used as an agonist, four mutations exhibited a statistically significant hypersensitivity to nicotine (S438D, S469A, Y576A, and S589A). Additionally, two mutations (S516D and T536A) that displayed normal activation with ACh displayed remarkable reductions in sensitivity to nicotine. Binding assays revealed a constitutive up-regulation in these two nicotine mutations with reduced nicotine sensitivity. These results suggest that consensus phosphorylation residues in the M3-M4 cytoplasmic loop of the ?4 subunit play a crucial role in regulating ?4?2 nAChR agonist selectivity and functional expression. Furthermore, these results suggest that disruption of specific interactions at PKC putative consensus sites can render ?4?2 nAChRs almost insensitive to nicotine without substantial effects on normal AChR function. Therefore, these PKC consensus sites in the M3-M4 cytoplasmic loop of the ?4 nAChR subunit could be a target for smoking cessation drugs. PMID:25957813

  4. Evolution of views on Quaternary stratigraphic scales worked out in the Geological Institute, Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Vangengeim, E. A.

    2010-12-01

    The Pliocene and Quaternary stratigraphic schemes of Russia elaborated during the last 60 years by the scientists of the Department of Quaternary Geology (presently the Laboratory of the Quaternary Stratigraphy) of the Geological Institute, RAS, are analyzed. Principles of compilation of the schemes, taxonomic rank of subdivisions, and the problem of the lower boundary of the Quaternary, are discussed. All the schemes are based on mammal paleontology of East European continental sediments and on correlation with the West European faunas.

  5. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2015-06-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing tectonic landforms.

  6. Why renin inhibitors?

    PubMed

    Haber, E

    1989-04-01

    Angiotensin converting enzyme inhibitors are widely used in the treatment of hypertension and congestive heart failure. They are potent drugs and have few side effects. The search for potent and orally absorbable agents that either block the angiotensin II receptor or inhibit the catalytic action of renin has not been so successful. This paper reviews present efforts to develop renin inhibitors. Most of the work has been based on the design of peptide analogues of angiotensinogen, many of which contain the unusual amino acid statine (or one of its variants) in place of the scissile bond (the peptide bond that renin cleaves in angiotensinogen). Substitutions at other sites in the molecule determine potency and species selectivity; for example, substitutions at the carboxyl terminus permit the construction of potent renin inhibitors that contain fewer amino acid residues. Peptide analogues of the prorenin segment of the enzyme, however, are but weak inhibitors and show little promise. Progress has also been slow in efforts to understand the principles required in the synthesis of potent renin inhibitors with significant bioavailability after oral administration. Finally, the question of whether renin inhibitors will offer a clinical advantage over converting enzyme inhibitors has not been answered. PMID:2666619

  7. Late Quaternary geomorphology and soils in Crater Flat, Yucca mountain area, southern Nevada

    SciTech Connect

    Peterson, F.F.; Bell, J.W.; Ramelli, A.R.; Dorn, R.I.; Ku, T.L.

    1995-04-01

    Crater Flat is an alluvium-filled structural basin on the west side of Yucca Mountain, Nevada, which is under consideration for a high-level nuclear waste repository. North-trending, late Quaternary faults offset alluvium in Crater Flat both along the canyons of the western flanks of Yucca Mountain and out on the piedmont slope. We believe the initial lack of young offsets at Yucca Mountain was in part due to unrecognized late Quaternary stratigraphy. We hypothesize that alluviation in the Yucca Mountain region was more active during the late Quaternary than previously thought. Several techniques were tried to test this hypothesis. Results are compared with previous soils and surface-exposure dating studies, and correlated to stratigraphy of other late Quaternary units in the southern Nevada, Death Valley, and Mojave Desert areas, and provide new stratigraphic data relevant to understanding climatic-alluvial processes in the Basin and Range Province during the late Quaternary. 76 refs., 7 figs., 6 tabs.

  8. High-quality quaternary AlInGaN epilayers on sapphire

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Egawa, Takashi; Ishikawa, Hiroyasu; Jimbo, Takashi

    2003-11-01

    Quaternary AlInGaN epilayers were grown on sapphire substrates by atmospheric pressure metalorganic chemical vapour deposition (MOCVD). The characterization data indicate that the grown quaternary AlInGaN epilayers are of high-quality. The influence of indium incorporation on the properties of quaternary epilayers were studied. The PL spectra of the quaternary layers showed narrow full-width at half-maximum (FWHM) values (52 meV) at room temperature, which are comparable to that of GaN. The X-ray rocking curves of quaternary layers for (0004) diffraction exhibited narrow FWHM values ranged from 250 to 280 arcsec. To the best of our knowledge, these are the best results among those published in the literature. (

  9. European quaternary refugia: a factor in large carnivore extinction?

    NASA Astrophysics Data System (ADS)

    O'Regan, Hannah J.; Turner, Alan; Wilkinson, David M.

    2002-12-01

    The extinction of large carnivores in Europe during the Quaternary is reviewed and the potential role of glacial refugia in these extinctions is investigated using the VORTEX model for population viability analysis. A model was built for a medium sized big cat similar to the extinct Panthera gombaszoegensis utilising life history data from the modern jaguar Panthera onca. This approach highlighted the potential importance of glacial refugia in the extinction process. Even model refugia the size of the Italian peninsula did not guarantee persistence of a population over a 1000 yr time span, illustrating the role of chance in survival in such a refugium. An area the size of the largest Mediterranean island was unable to support a big cat population for a period of 1000 yr. The models also demonstrated the importance of inbreeding as a mechanism for extinction in refugia. It is suggested that repeated genetic bottlenecks during successive glaciations would tend to remove lethal recessive alleles from the population, increasing the probability of survival in refugia in subsequent glaciations. The history of extinction of large carnivores in the European Quaternary is interpreted in the light of these results.

  10. Quaternary glaciations in the Southern Ocean and Antarctic peninsula area

    NASA Astrophysics Data System (ADS)

    Clapperton, Chalmers M.

    There are three main difficulties in constructing detailed time series for Late Quaternary glacier fluctuations in the Southern Ocean-sub-Antarctic region: sea level control on ice extent, differential tectonics and lack of material for radiometric dating. South of 60°S, the glacial Equilibrium Line Altitude is low enough for glaciers to expand without a decrease in temperature, if sea level falls. Thus most tidewater glaciers in this region are not reliable indicators of small scale fluctuations in climate. Tectonic uplift during the Quaternary may explain why the Falkland Islands did not develop most of their glacial and nivoglacial features until the last glaciation. The South Shetland Islands have a unique assemblage of raised marine features in the sub-Antarctic, possibly because the crustal block overlies a zone of magmatism and may respond sensitively to isostatic changes imposed by fluctuating ice masses. Despite the lack of vegetation, some radiometric dates have been obtained from peat, seaweed and fossil remains of marine shells and bones associated with glacial and raised beach deposits. Together with relative weathering criteria and drift distribution, these suggestthat glaciers in the Southern Ocean and sub-Antarctic region have fluctuated synchronously with glaciers elsewhere in the southern hemisphere during the last 100 ka. The last glaciation maximum culminated after 26 ka BP and glacier advances are inferred for the late-glacial intervals (15-14 ka and 12-10 ka BP) and the Neoglacial interval (last 5 ka).

  11. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  12. Ecostratigraphic datums and sequence stratigraphy: Application to the marine Quaternary

    SciTech Connect

    Martin, R.E. ); Neff, E. ); Johnson, G.W. ); Krantz, D. )

    1991-03-01

    The marine Quaternary is characterized by few evolutionary appearances and extinctions of planktonic foraminifera. Because climatic fluctuations are a fundamental characteristic of Pleistocene, however, better stratigraphic resolution of the marine Quaternary can be gained by the establishment of biozones based on climatically controlled foraminiferal assemblages. Utilizing relative abundances of the warm-water Globorotalia menardii complex and temperature-water G. inflata, supplemented by left- and right-coiling variet