Science.gov

Sample records for quaternary ache inhibitors

  1. New potential AChE inhibitor candidates.

    PubMed

    de Paula, A A N; Martins, J B L; dos Santos, M L; Nascente, L de C; Romeiro, L A S; Areas, T F M A; Vieira, K S T; Gambôa, N F; Castro, N G; Gargano, R

    2009-09-01

    We have theoretically studied new potential candidates of acetylcholinesterase (AChE) inhibitors designed from cardanol, a non-isoprenoid phenolic lipid of cashew Anacardium occidentale nut-shell liquid. The electronic structure calculations of fifteen molecule derivatives from cardanol were performed using B3LYP level with 6-31G, 6-31G(d), and 6-311+G(2d,p) basis functions. For this study we used the following groups: methyl, acetyl, N,N-dimethylcarbamoyl, N,N-dimethylamine, N,N-diethylamine, piperidine, pyrrolidine, and N,N-methylbenzylamine. Among the proposed compounds we identified that the structures with substitution by N,N-dimethycarbamoyl, N,N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine, and represent possible AChE inhibitors against Alzheimer disease. PMID:19446931

  2. Novel AChE Inhibitors for Sustainable Insecticide Resistance Management

    PubMed Central

    Alout, Haoues; Labbé, Pierrick; Berthomieu, Arnaud; Djogbénou, Luc; Leonetti, Jean-Paul; Fort, Philippe; Weill, Mylène

    2012-01-01

    Resistance to insecticides has become a critical issue in pest management and it is particularly chronic in the control of human disease vectors. The gravity of this situation is being exacerbated since there has not been a new insecticide class produced for over twenty years. Reasoned strategies have been developed to limit resistance spread but have proven difficult to implement in the field. Here we propose a new conceptual strategy based on inhibitors that preferentially target mosquitoes already resistant to a currently used insecticide. Application of such inhibitors in rotation with the insecticide against which resistance has been selected initially is expected to restore vector control efficacy and reduce the odds of neo-resistance. We validated this strategy by screening for inhibitors of the G119S mutated acetylcholinesterase-1 (AChE1), which mediates insensitivity to the widely used organophosphates (OP) and carbamates (CX) insecticides. PyrimidineTrione Furan-substituted (PTF) compounds came out as best hits, acting biochemically as reversible and competitive inhibitors of mosquito AChE1 and preferentially inhibiting the mutated form, insensitive to OP and CX. PTF application in bioassays preferentially killed OP-resistant Culex pipiens and Anopheles gambiae larvae as a consequence of AChE1 inhibition. Modeling the evolution of frequencies of wild type and OP-insensitive AChE1 alleles in PTF-treated populations using the selectivity parameters estimated from bioassays predicts a rapid rise in the wild type allele frequency. This study identifies the first compound class that preferentially targets OP-resistant mosquitoes, thus restoring OP-susceptibility, which validates a new prospect of sustainable insecticide resistance management. PMID:23056599

  3. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  4. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  5. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  6. Amine substitution of quinazolinones leads to selective nanomolar AChE inhibitors with 'inverted' binding mode.

    PubMed

    Darras, Fouad H; Wehle, Sarah; Huang, Guozheng; Sotriffer, Christoph A; Decker, Michael

    2014-09-01

    Selective and nanomolar acetylcholinesterase inhibitors were obtained by connecting tri- and tetracyclic quinazolinones-previously described as moderately active and unselective cholinesterase (ChE) inhibitors-via a hydroxyl group in para position to an anilinic nitrogen with different amines linked via a three carbon atom spacer. These tri- and tetracyclic quinazolinones containing different alicyclic ring sizes and connected to tertiary amines were docked to a high-resolution hAChE crystal structure to investigate the preferred binding mode in relation to results obtained by experimental structure-activity relationships. While the 'classical orientation' locating the heterocycle in the active site was rarely found, an alternative binding mode with the basic aliphatic amine in the active center ('inverted' orientation) was obtained for most compounds. Analyses of extended SARs based on this inverted binding mode are able to explain the compounds' binding affinities at AChE. PMID:25047936

  7. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures.

    PubMed

    Forsberg, Erica M; Green, James R A; Brennan, John D

    2011-07-01

    A method is described for identifying bioactive compounds in complex mixtures based on the use of capillary-scale monolithic enzyme-reactor columns for rapid screening of enzyme activity. A two-channel nanoLC system was used to continuously infuse substrate coupled with automated injections of substrate/small molecule mixtures, optionally containing the chromogenic Ellman reagent, through sol-gel derived acetylcholinesterase (AChE) doped monolithic columns. This is the first report of AChE encapsulated in monolithic silica for use as an immobilized enzyme reactor (IMER), and the first use of such IMERs for mixture screening. AChE IMER columns were optimized to allow rapid functional screening of compound mixtures based on changes in the product absorbance or the ratio of mass spectrometric peaks for product and substrate ions in the eluent. The assay had robust performance and produced a Z' factor of 0.77 in the presence of 2% (v/v) DMSO. A series of 52 mixtures consisting of 1040 compounds from the Canadian Compound Collection of bioactives was screened and two known inhibitors, physostigmine and 9-aminoacridine, were identified from active mixtures by manual deconvolution. The activity of the compounds was confirmed using the enzyme reactor format, which allowed determination of both IC(50) and K(I) values. Screening results were found to correlate well with a recently published fluorescence-based microarray screening assay for AChE inhibitors. PMID:21591743

  8. Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin.

    PubMed

    Martin, Benjamin P; Vasilieva, Elena; Dupureur, Cynthia M; Spilling, Christopher D

    2015-12-15

    New monocyclic phosphate, phosphonate and difluorophosphonate analogs of the natural AChE inhibitor cyclophostin were synthesized and their activity toward human AChE examined. Surprisingly, the phosphate, phosphonate, and difluorophosphonate analogs all showed diminished activity when compared with the natural product. PMID:26585276

  9. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors.

    PubMed

    Costanzo, Paola; Cariati, Luca; Desiderio, Doriana; Sgammato, Roberta; Lamberti, Anna; Arcone, Rosaria; Salerno, Raffaele; Nardi, Monica; Masullo, Mariorosario; Oliverio, Manuela

    2016-05-12

    An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged. PMID:27190595

  10. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer's disease.

    PubMed

    Lemes, Laís Flávia Nunes; de Andrade Ramos, Giselle; de Oliveira, Andressa Souza; da Silva, Fernanda Motta R; de Castro Couto, Gina; da Silva Boni, Marina; Guimarães, Marcos Jorge R; Souza, Isis Nem O; Bartolini, Manuela; Andrisano, Vincenza; do Nascimento Nogueira, Patrícia Coelho; Silveira, Edilberto Rocha; Brand, Guilherme D; Soukup, Ondřej; Korábečný, Jan; Romeiro, Nelilma C; Castro, Newton G; Bolognesi, Maria Laura; Romeiro, Luiz Antonio Soares

    2016-01-27

    Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 μM, and a similar inhibition profile of the human isoform (IC50 = 5.7 μM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 μM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development. PMID:26735910

  11. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs.

    PubMed

    Olsen, Elisabeth K; Hansen, Espen; W K Moodie, Lindon; Isaksson, Johan; Sepčić, Kristina; Cergolj, Marija; Svenson, Johan; Andersen, Jeanette H

    2016-02-01

    Barettin, 8,9-dihydrobarettin, bromoconicamin and a novel brominated marine indole were isolated from the boreal sponge Geodia barretti collected off the Norwegian coast. The compounds were evaluated as inhibitors of electric eel acetylcholinesterase. Barettin and 8,9-dihydrobarettin displayed significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 μM respectively towards acetylcholinesterase via a reversible noncompetitive mechanism. These activities are comparable to those of several other natural acetylcholinesterase inhibitors of marine origin. Bromoconicamin was less potent against acetylcholinesterase, and the novel compound was inactive. Based on the inhibitory activity, a library of 22 simplified synthetic analogs was designed and prepared to probe the role of the brominated indole, common to all the isolated compounds. From the structure-activity investigation it was shown that the brominated indole motif is not sufficient to generate a high acetylcholinesterase inhibitory activity, even when combined with natural cationic ligands for the acetylcholinesterase active site. The four natural compounds were also analysed for their butyrylcholinesterase inhibitory activity in addition and shown to display comparable activities. The study illustrates how both barettin and 8,9-dihydrobarettin display additional bioactivities which may help to explain their biological role in the producing organism. The findings also provide new insights into the structure-activity relationship of both natural and synthetic acetylcholinesterase inhibitors. PMID:26695619

  12. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    SciTech Connect

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  13. Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease: synthesis, biological assessment, and molecular modeling.

    PubMed

    Samadi, Abdelouahid; Estrada, Martín; Pérez, Concepción; Rodríguez-Franco, María Isabel; Iriepa, Isabel; Moraleda, Ignacio; Chioua, Mourad; Marco-Contelles, José

    2012-11-01

    The synthesis, biological assessment and molecular modeling of new pyridonepezils1-8, able to inhibit human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBuChE), are described. The new compounds have been designed as hybrids resulting from a conjunctive approach that combines the N-benzylpiperidine moiety, present in donepezil, and the 2-amino-6-chloropyridine heterocyclic ring system, connected by an appropriate polymethylene linker. Compounds 1-8 were prepared by reaction of 2-amino-6-chloro-4-phenylpyridine-3,5-dicarbonitrile (13) [or 2-amino-6-chloropyridine-3,5-dicarbonitrile (14)] with 2-(1-benzylpiperidin-4-yl)alkylamines (9-12). The biological evaluation of molecules 1-8 showed that compounds 1-6 are potent AChE inhibitors, in the submicromolar, while compounds 7 and 8 are on the nanomolar range, the most potent, 2-amino-6-((3-(1-benzylpiperidin-4-yl)propyl)amino)pyridine-3,5-dicarbonitrile (7), showing a IC(50) (hAChE) = 9.4 ± 0.4 nM. Inhibitors 2-8 are permeable as determined in the PAMPA assay. Compared to donepezil, compound 7 is in the same range of inhibitory activity for hAChE, and 703-fold more selective for hAChE than for hBuChE. Molecular modeling investigation on pyridonepezil7 supports its dual AChE inhibitory profile, binding simultaneously at the catalytic active and at peripheral anionic sites of the enzyme. The theoretical ADME analysis of pyridonepezils1-8 has been carried out. Overall, compound 7, a potent and selective dual AChEI, can be considered as a candidate with potential impact for further pharmacological development in Alzheimer's therapy. PMID:23078965

  14. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile.

    PubMed

    Strelnik, Alexey D; Petukhov, Alexey S; Zueva, Irina V; Zobov, Vladimir V; Petrov, Konstantin A; Nikolsky, Evgeny E; Balakin, Konstantin V; Bachurin, Sergey O; Shtyrlin, Yurii G

    2016-08-15

    We report a novel class of carbamate-type ChE inhibitors, structural analogs of pyridostigmine. A small library of congeneric pyridoxine-based compounds was designed, synthesized and evaluated for AChE and BChE enzymes inhibition in vitro. The most active compounds have potent enzyme inhibiting activity with IC50 values in the range of 0.46-2.1μM (for AChE) and 0.59-8.1μM (for BChE), with moderate selectivity for AChE comparable with that of pyridostigmine and neostigmine. Acute toxicity studies using mice models demonstrated excellent safety profile of the obtained compounds with LD50 in the range of 22-326mg/kg, while pyridostigmine and neostigmine are much more toxic (LD50 3.3 and 0.51mg/kg, respectively). The obtained results pave the way to design of novel potent and safe cholinesterase inhibitors for symptomatic treatment of neuromuscular disorders. PMID:27377327

  15. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  16. Synthesis, pharmacological assessment, and molecular modeling of 6-chloro-pyridonepezils: new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease.

    PubMed

    Samadi, Abdelouahid; de la Fuente Revenga, Mario; Pérez, Concepción; Iriepa, Isabel; Moraleda, Ignacio; Rodríguez-Franco, María Isabel; Marco-Contelles, José

    2013-09-01

    6-Chloro-pyridonepezils are chloropyridine-donepezil hybrids designed by combining the N-benzylpiperidine moiety present in donepezil with the 2-chloropyridine-3,5-dicarbonitrile heterocyclic ring system, both connected by an appropriate polymethylene linker. 6-Chloro-pyridonepezils1-8 were prepared by reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (13) [or 2,6-dichloropyridine-3,5-dicarbonitrile (14)] with suitable 2-(1-benzylpiperidin-4-yl)alkylamines (9-12). The biological evaluation showed that these new compounds are cholinesterase inhibitors, in the submicromolar range, one of them (6) being a potent hBuChE inhibitor (IC50 = 0.47 ± 0.08 μM). 6-Chloro-pyridonepezils4, 7 and 8 are potent hAChE inhibitors showing IC50 in the 0.013-0.054 μM range. Particularly, 6-chloro-pyridonepezil8 is 625-fold more selective for hAChE than for hBuChE and compared to donepezil is equipotent for the inhibition of hAChE. Molecular modeling investigation on 6-chloro-pyridonepezils4, 6-8 supports its dual AChE inhibitory profile, by binding simultaneously at the catalytic active and at peripheral anionic sites of the enzyme. The in vitro Blood Brain Barrier (BBB) and theoretical ADME analysis of 6-chloro-pyridonepezils1-8 have been carried out. Overall, compound 8, is a permeable potent and selective dual AChEI that can be considered as a good candidate with potential impact for further pharmacological development in Alzheimer's therapy. PMID:23838422

  17. Acetylcholinesterase Inhibitors (AChEI's) for the treatment of visual hallucinations in schizophrenia: a case report

    PubMed Central

    2010-01-01

    Background Visual hallucinations are commonly seen in various neurological and psychiatric disorders including schizophrenia. Current models of visual processing and studies in diseases including Parkinsons Disease and Lewy Body Dementia propose that Acetylcholine (Ach) plays a pivotal role in our ability to accurately interpret visual stimuli. Depletion of Ach is thought to be associated with visual hallucination generation. AchEI's have been used in the targeted treatment of visual hallucinations in dementia and Parkinson's Disease patients. In Schizophrenia, it is thought that a similar Ach depletion leads to visual hallucinations and may provide a target for drug treatment Case Presentation We present a case of a patient with Schizophrenia presenting with treatment resistant and significantly distressing visual hallucinations. After optimising treatment for schizophrenia we used Rivastigmine, an AchEI, as an adjunct to treat her symptoms successfully. Conclusions This case is the first to illustrate this novel use of an AchEI in the targeted treatment of visual hallucinations in a patient with Schizophrenia. Targeted therapy of this kind can be considered in challenging cases although more evidence is required in this field. PMID:20822516

  18. The dual-acting H3 receptor antagonist and AChE inhibitor UW-MD-71 dose-dependently enhances memory retrieval and reverses dizocilpine-induced memory impairment in rats.

    PubMed

    Khan, Nadia; Saad, Ali; Nurulain, Syed M; Darras, Fouad H; Decker, Michael; Sadek, Bassem

    2016-01-15

    Both the histamine H3 receptor (H3R) and acetylcholine esterase (AChE) are involved in the regulation of release and metabolism of acetylcholine and several other central neurotransmitters. Therefore, dual-active H3R antagonists and AChE inhibitors (AChEIs) have shown in several studies to hold promise to treat cognitive disorders like Alzheimer's disease (AD). The novel dual-acting H3R antagonist and AChEI 7-(3-(piperidin-1-yl)propoxy)-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazoline (UW-MD-71) with excellent selectivity profiles over both the three other HRs as well as the AChE's isoenzyme butyrylcholinesterase (BChE) shows high and balanced in vitro affinities at both H3R and AChE with IC50 of 33.9nM and hH3R antagonism with Ki of 76.2nM, respectively. In the present study, the effects of UW-MD-71 (1.25-5mg/kg, i.p.) on acquisition, consolidation, and retrieval in a one-trial inhibitory avoidance task in male rats were investigated applying donepezil (DOZ) and pitolisant (PIT) as reference drugs. Furthermore, the effects of UW-MD-71 on memory deficits induced by the non-competitive N-methyl-d-aspartate (NMDA) antagonist dizocilpine (DIZ) were tested. Our results indicate that administration of UW-MD-71 before the test session dose-dependently increased performance and enhanced procognitive effect on retrieval. However neither pre- nor post-training acute systemic administration of UW-MD-71 facilitated acquisition or consolidation. More importantly, UW-MD-71 (2.5mg/kg, i.p.) ameliorated the DIZ-induced amnesic effects. Furthermore, the procognitive activity of UW-MD-71 in retrieval was completely reversed and partly abrogated in DIZ-induced amnesia when rats were pretreated with the centrally-acting H2R antagonist zolantidine (ZOL), but not with the CNS penetrant H1R antagonist pyrilamine (PYR). These results demonstrate the procognitive effects of UW-MD-71 in two in vivo memory models, and are to our knowledge the first demonstration in vivo that a potent dual

  19. Beyond acetylcholinesterase inhibitors for treating Alzheimer's disease: α7-nAChR agonists in human clinical trials.

    PubMed

    Russo, Patrizia; Del Bufalo, Alessandra; Frustaci, Alessandra; Fini, Massimo; Cesario, Alfredo

    2014-01-01

    The neuronal nicotinic alpha7-acetylcholine receptor (α7-nAChR) is a promising and attractive drug target for improving cognitive deficits in neuropsychiatric and neurological disorders such as Alzheimer's disease (AD). α7-nAChR belongs to the family of ligand gated ion channels. α7-nAChR is expressed in key brain regions (e.g. pre- and frontal cortex, hippocampus). It is involved in essential cognitive functions such as memory, thinking, comprehension, learning capacity, calculation, orientation, language, and judgment. α7-nAChR binds to amyloid peptide (Aβ) inducing either receptor activation or inhibition in an Aβ concentration-dependent mode. Aβ oligomers induce τ phosphorylation via α7-nAChR activation. α7-nAChR agonists and/or α7-nAChR positive allosteric modulators may be useful in AD therapy. The current review enlightens: (i) α7-nAChR neurobiology, (ii) α7-nAChR role in cognition and (iii) in AD, and (iv) the clinical status of the most promising molecules for the treatment of cognitive dysfunction in AD. PMID:24641224

  20. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  1. Alzheimer patients treated with an AchE inhibitor show higher IL-4 and lower IL-1 beta levels and expression in peripheral blood mononuclear cells.

    PubMed

    Gambi, Francesco; Reale, Marcella; Iarlori, Carla; Salone, Anatolia; Toma, Lucia; Paladini, Carlo; De Luca, Giovanna; Feliciani, Claudio; Salvatore, Mirella; Salerno, Rosa M; Theoharides, Theoharis C; Conti, Pio; Exton, Michael; Gambi, Domenico

    2004-06-01

    The study evaluates the expression and production of cytokines in peripheral blood mononuclear cells of patients with Alzheimer disease treated or not treated with acetylcholinesterase inhibitor, which enhances neuronal transmission. Cytokines associated with brain inflammation such as interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha have been implicated in the regulation of amyloid peptide protein synthesis. The anti-inflammatory cytokine, IL-4, may suppress the activity of IL-1beta. Patients were assessed for clinical and immunologic features at baseline and after 1 month of treatment with Donepezil, an acetylcholinesterase inhibitor. Peripheral blood mononuclear cells were cultured with and without phytohemagglutinin stimulation. IL-1beta and IL-4 levels were measured by enzyme-linked immunosorbent assay. Reverse transcriptase-polymerase chain reaction was used to determine the expression of cytokines in peripheral mononuclear cells. Compared with untreated patients and healthy control subjects, IL-1beta levels and expression decreased in Alzheimer disease patients treated with Donepezil (P < 0.001). In contrast, IL-4 levels and expression were significantly higher in Alzheimer patients treated with the acetylcholinesterase inhibitor. This increment was observed in both unstimulated and phytohemagglutinin-stimulated peripheral blood mononuclear cells. PMID:15118486

  2. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli.

    PubMed

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  3. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli

    PubMed Central

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  4. Modulation of nicotinic ACh-, GABAA- and 5-HT3-receptor functions by external H-7, a protein kinase inhibitor, in rat sensory neurones

    PubMed Central

    Hu, Hong-Zhen; Li, Zhi-Wang

    1997-01-01

    The effects of external H-7, a potent protein kinase inhibitor, on the responses mediated by γ-aminobutyric acid A type (GABAA)-, nicotinic acetylcholine (nicotinic ACh)-, ionotropic 5-hydroxytryptamine (5-HT3)-, adenosine 5′-triphosphate (ATP)-, N-methyl-D-aspartate (NMDA)- and kainate (KA)-receptors were studied in freshly dissociated rat dorsal root ganglion neurone by use of whole cell patch-clamp technique. External H-7 (1–1000 μM) produced a reversible, dose-dependent inhibition of whole cell currents activated by GABA, ACh and 5-HT. Whole-cell currents evoked by ATP, 2-methylthio-ATP, NMDA and KA were insensitive to external H-7. External H-7 shifted the dose-response curve of GABA-activated currents downward without changing the EC50 significantly (from 15.0±4.0 μM to 18.0±5.0 μM). The maximum response to GABA was depressed by 34.0±5.3%. This inhibitory action of H-7 was voltage-independent. Intracellular application of H-7 (20 μM), cyclic AMP (1 mM) and BAPTA (10 mM) could not reverse the H-7 inhibition of GABA-activated currents. The results suggest that external H-7 selectively and allosterically modulates the functions of GABAA-, nicotine ACh- and 5-HT3 receptors via a common conserved site in the external domain of these receptors. PMID:9401786

  5. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    SciTech Connect

    Xia Menghang; Shahane, Sampada A.; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-05-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K{sup +}) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC{sub 50} potencies ranging from 0.26 to 22 {mu}M. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC{sub 50} value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo.

  6. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    PubMed Central

    Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-01-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439

  7. Acetylcholinesterases of Rhipicephalus (Boophilus) microplus – Multiple gene expression presents an opportune model system for elucidation of multiple functions of AChEs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acetylcholinesterase (AChE) is a key neural enzyme of both vertebrates and invertebrates, and is the biochemical target of organophosphate and carbamate pesticides for invertebrates, as well as vertebrate nerve agents, e.g., soman, tabun, VX, and others. AChE inhibitors are also key drugs among thos...

  8. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    SciTech Connect

    Schmidt, Hayden R.; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A.

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not

  9. Studies of the interaction between a quaternary amine inhibitor and pipeline steel using XPS and ToFSIMS surface analysis techniques

    SciTech Connect

    Palmer, J.W.; Piercy, A.R.; Hibbert, S.; Mitchell, R.; Swift, A.J.; Turgoose, S.

    1995-12-01

    Coupons of X60-pipeline steel have been taken directly from electrochemical testing apparatus for characterization by surface analysis using novel sample transfer methods developed for the analysis of `wet` samples. In this way the correlation between surface concentration, solution concentration and inhibitor efficiency for a quaternary amine inhibitor has been determined. The mechanisms of surface activity of the quaternary amine inhibitor has been investigated. Firstly, surface analysis data for a liquid film of neat inhibitor has been compared with that for a steel coupon rinsed after exposure to neat inhibitor in a static immersion test. Surface analysis results have then been compared to corrosion rate measurements for a range of increasing inhibitor solution concentrations from 0--100ppm for coupons removed directly from an electrochemical test cell and transferred using a novel cryogenic method for sample transfer. Coupons were exposed to solutions of pre-inhibited, deaerated 3% NaCl solution under 1 bara CO{sub 2} at 25 C. Time of flight secondary ion mass spectrometry (ToFSIMS) and X-ray photoelectron spectroscopy (XPS) were the principal surface analysis techniques used. The results show that the quaternary amine inhibitor achieved efficiencies in excess of 90% at solution concentrations of 40ppm and above. Adsorbed inhibitor was detected both by XPS and ToFSIMS at all concentrations studied. Efficiency and surface coverage of this inhibitor increase directly in proportion to solution concentration. Detailed study of surface analysis results shows that, under these cell conditions, adsorption of quaternary amine proceeds via a simple ionic interaction between the inhibitor and the coupon surface with longer chain amine components preferentially adsorbed.

  10. Virtual Screening of Acetylcholinesterase Inhibitors Using the Lipinski's Rule of Five and ZINC Databank

    PubMed Central

    Nogara, Pablo Andrei; Saraiva, Rogério de Aquino; Caeran Bueno, Diones; Lissner, Lílian Juliana; Lenz Dalla Corte, Cristiane; Braga, Marcos M.; Rosemberg, Denis Broock; Rocha, João Batista Teixeira

    2015-01-01

    Alzheimer's disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinski's rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1) aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE) activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE) from Equus ferus (EfBChE), with IC50 ranging from 1.69 ± 0.46 to 5.64 ± 2.47 µM. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms. PMID:25685814

  11. Synthesis, Biological Evaluation, and Molecular Docking of 8-imino-2-oxo-2H,8H-pyrano[2,3-f]chromene Analogs: New Dual AChE Inhibitors as Potential Drugs for the Treatment of Alzheimer's Disease.

    PubMed

    Shaik, Jeelan Basha; Palaka, Bhagath Kumar; Penumala, Mohan; Eadlapalli, Siddhartha; Darla Mark, Manidhar; Ampasala, Dinakara Rao; Vadde, Ramakrishna; Amooru Gangaiah, Damu

    2016-07-01

    Alzheimer's disease onset and progression are associated with the dysregulation of multiple and complex physiological processes, and a successful therapeutic approach should therefore address more than one target. In line with this modern paradigm, a series of 8-imino-2-oxo-2H,8H-pyrano[2,3-f]chromene analogs (4a-q) were synthesized and evaluated for their multitarget-directed activity on acetylcholinesterase, butyrylcholinesterase (BuChE), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, and amyloid-β peptide (Aβ) specific targets for Alzheimer's disease therapy. Most of the synthesized compounds showed remarkable acetylcholinesterase inhibitory activities in low nm concentrations and good ABTS radical scavenging activity, however, no evidence of BuChE inhibitory activity. Among them, 3-bromobenzylamide derivative 4m exhibited the best acetylcholinesterase inhibitory activity with IC50 value of 13 ± 1.4 nm which is 51-fold superior to galantamine, a reference drug. Kinetic and molecular docking studies indicated 4m as mixed-type inhibitor, binding simultaneously to catalytic active and peripheral anionic sites of acetylcholinesterase. Five compounds 4e, 4f, 4g, 4j, and 4k have shown 1.4- to 2.5-fold of higher antioxidant activities than trolox. Interestingly, the most active compound 4m demonstrated dosage-dependent acceleration of Aβ1-42 aggregation, which may reduce toxicity of oligomers. Overall, these results lead to discovery of fused tricyclic coumarins as promising dual binding site inhibitors of acetylcholinesterase and afford multifunctional compounds with potential impact for further pharmacological development in Alzheimer's therapy. PMID:26833890

  12. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Morais-Cabral, João H.; Mann, Sabine; MacKinnon, Roderick

    2001-06-01

    Many voltage-dependent K+ channels open when the membrane is depolarized and then rapidly close by a process called inactivation. Neurons use inactivating K+ channels to modulate their firing frequency. In Shaker-type K+ channels, the inactivation gate, which is responsible for the closing of the channel, is formed by the channel's cytoplasmic amino terminus. Here we show that the central cavity and inner pore of the K+ channel form the receptor site for both the inactivation gate and small-molecule inhibitors. We propose that inactivation occurs by a sequential reaction in which the gate binds initially to the cytoplasmic channel surface and then enters the pore as an extended peptide. This mechanism accounts for the functional properties of K+ channel inactivation and indicates that the cavity may be the site of action for certain drugs that alter cation channel function.

  13. Identification of Environmental Quaternary Ammonium Compounds as Direct Inhibitors of Cholesterol Biosynthesis.

    PubMed

    Herron, Josi; Reese, Rosalyn C; Tallman, Keri A; Narayanaswamy, Rohini; Porter, Ned A; Xu, Libin

    2016-06-01

    In this study, we aim to identify environmental molecules that can inhibit cholesterol biosynthesis, potentially leading to the same biochemical defects as observed in cholesterol biosynthesis disorders, which are often characterized by congenital malformations and developmental delay. Using the Distributed Structure-Searchable Toxicity (DSSTox) Database Network developed by EPA, we first carried out in silico screening of environmental molecules that display structures similar to AY9944, a known potent inhibitor of 3β-hydroxysterol-Δ(7)-reductase (DHCR7)-the last step of cholesterol biosynthesis. Molecules that display high similarity to AY9944 were subjected to test in mouse and human neuroblastoma cells for their effectiveness in inhibiting cholesterol biosynthesis by analyzing cholesterol and its precursor using gas chromatography-mass spectrometry. We found that a common disinfectant mixture, benzalkonium chlorides (BACs), exhibits high potency in inhibiting DHCR7, as suggested by greatly elevated levels of the cholesterol precursor, 7-dehydrocholesterol (7-DHC). Subsequent structure-activity studies suggested that the potency of BACs as Dhcr7 inhibitors decrease with the length of their hydrocarbon chain: C10 > C12 ≫ C14 > C16. Real-time qPCR analysis revealed upregulation of the genes related to cholesterol biosynthesis and downregulation of the genes related to cholesterol efflux, suggesting a feedback response to the inhibition. Furthermore, an oxidative metabolite of 7-DHC that was previously identified as a biomarker in vivo was also found in cells exposed to BACs by liquid chromatography-mass spectrometry. Our findings suggest that certain environmental molecules could potently inhibit cholesterol biosynthesis, which could be a new link between environment and developmental disorders. PMID:26919959

  14. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.

    PubMed

    Yokota, Shin-Ichi; Nakamura, Kaai; Ando, Midori; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shibata, Shigenobu

    2014-01-01

    Although fasting induces hepatic triglyceride (TG) accumulation in both rodents and humans, little is known about the underlying mechanism. Because parasympathetic nervous system activity tends to attenuate the secretion of very-low-density-lipoprotein-triglyceride (VLDL-TG) and increase TG stores in the liver, and serum cholinesterase activity is elevated in fatty liver disease, the inhibition of the parasympathetic neurotransmitter acetylcholinesterase (AChE) may have some influence on hepatic lipid metabolism. To assess the influence of AChE inhibition on lipid metabolism, the effect of physostigmine, an AChE inhibitor, on fasting-induced increase in liver TG was investigated in mice. In comparison with ad libitum-fed mice, 30 h fasting increased liver TG accumulation accompanied by a downregulation of sterol regulatory element-binding protein 1 (SREBP-1) and liver-fatty acid binding-protein (L-FABP). Physostigmine promoted the 30 h fasting-induced increase in liver TG levels in a dose-dependent manner, accompanied by a significant fall in plasma insulin levels, without a fall in plasma TG. Furthermore, physostigmine significantly attenuated the fasting-induced decrease of both mRNA and protein levels of SREBP-1 and L-FABP, and increased IRS-2 protein levels in the liver. The muscarinic receptor antagonist atropine blocked these effects of physostigmine on liver TG, serum insulin, and hepatic protein levels of SREBP-1 and L-FABP. These results demonstrate that AChE inhibition facilitated fasting-induced TG accumulation with up regulation of the hepatic L-FABP and SREBP-1 in mice, at least in part via the activation of muscarinic acetylcholine receptors. Our studies highlight the crucial role of parasympathetic regulation in fasting-induced TG accumulation, and may be an important source of information on the mechanism of hepatic disorders of lipid metabolism. PMID:25383314

  15. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo.

    PubMed

    Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie

    2016-04-01

    Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. PMID:26976216

  16. Structural basis of femtomolar inhibitors for acetylcholinesterase subtype selectivity: insights from computational simulations.

    PubMed

    Zhu, Xiao-Lei; Yu, Ning-Xi; Hao, Ge-Fei; Yang, Wen-Chao; Yang, Guang-Fu

    2013-04-01

    Acetylcholinesterase (AChE) is a key enzyme of the cholinergic nervous system. More than one gene encodes the synaptic AChE target. As the most potent known AChE inhibitor, the syn1-TZ2PA6 isomer was recently shown to have higher affinity as a reversible organic inhibitor of acetylcholinesterase1 (AChE1) than the anti1-TZ2PA6 isomer. Opposite selectivity has been shown for acetylcholinesterase2 (AChE2). In an attempt to understand the selectivity of the syn1-TZ2PA6 and anti1-TZ2PA6 isomers for AChE1 and AChE2, six molecular dynamics (MD) simulations were carried out with mouse AChE (mAChE, type of AChE1), Torpedo californica AChE (TcAChE, type of AChE1), and Drosophila melanogaster AChE (DmAChE, type of AChE2) bound with syn1-TZ2PA6 and anti1-TZ2PA6 isomers. Within the structure of the inhibitor, the 3,8-diamino-6-phenylphenanthridinium subunit and 9-amino-1,2,3,4-tetrahydroacridine subunit, via π-π interactions, made more favorable contributions to syn1-TZ2PA6 or anti1-TZ2PA6 isomer binding in the mAChE/TcAChE enzyme than the 1,2,3-triazole subunit. Compared to AChE1, the triazole subunit had increased binding energy with AChE2 due to a greater negative charge in the active site. The binding free energy calculated using the MM/PBSA method suggests that selectivity between AChE1 and AChE2 is mainly attributed to decreased binding affinity for the inhibitor. PMID:23500627

  17. Aches and pains during pregnancy

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000580.htm Aches and pains during pregnancy To use the sharing features on ... the end of your pregnancy, tell your provider. Pain in Your Lower Abdomen (Belly) or Groin Most ...

  18. Synthetic conversion of ACAT inhibitor to acetylcholinesterase inhibitor.

    PubMed

    Obata, R; Sunazuka, T; Otoguro, K; Tomoda, H; Harigaya, Y; Omura, S

    2000-06-19

    Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM. PMID:10890154

  19. Novel assay utilizing fluorochrome-tagged physostigmine (Ph-F) to in situ detect active acetylcholinesterase (AChE) induced during apoptosis.

    PubMed

    Huang, Xuan; Lee, Brian; Johnson, Gary; Naleway, John; Guzikowski, Anthony; Dai, Wei; Darzynkiewicz, Zbigniew

    2005-01-01

    It was recently reported that acetylcholinesterase (AChE) is expressed in cells undergoing apoptosis and that its presence is essential for assembly of the apoptosome and subsequent caspase-9 activation. To obtain a marker of active AChE that could assay this enzyme in live intact cells and be applicable to fluorescence microscopy and cytometry, the fluorescein-tagged physostigmine (Ph-F), high affinity ligand (inhibitor) reactive with the active center of AChE, was constructed and tested for its ability to in situ label AChE and measure its induction during apoptosis. Ph-F inhibited cholinesterase activity in vitro (IC50 = 10(-6) and 5 x 10(-6) M for equine butyrylcholinesterase and human erythrocyte AChE, respectively) and was a selective marker of cells and structures that were AChE-positive. Thus, exposure of mouse bone marrow cells to Ph-F resulted in the exclusive labeling of megakaryocytes, and of the diaphragm muscle, preferential labeling of the nerve-muscle junctions (end-plates). During apoptosis of carcinoma HeLa cells and leukemic HL-60 or Jurkat cells triggered either by the DNA topoisomerase 1 inhibitor topotecan (TPT) or by oxidative stress (H2O2), the cells become reactive with Ph-F. Their Ph-F derived fluorescence was measured by flow and laser scanning cytometry. The appearance of Ph-F binding sites during apoptosis was preceded by the loss of mitochondrial potential, was concurrent with the presence of activated caspases, and was followed by loss of membrane integrity. At a very early stage of apoptosis, when nucleolar segregation was apparent, the Ph-F binding sites were distinctly localized within the nucleolus and at later stages of apoptosis in the cytoplasm. During apoptosis triggered by TPT, Ph-F binding was preferentially induced in S-phase cells. Our data on megakaryocytes and end-plates indicate that Ph-F reacts with active sites of AChE, and can be used to reveal the presence of this enzyme in live cells and possibly to study its

  20. Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions?

    PubMed

    Blohberger, J; Kunz, L; Einwang, D; Berg, U; Berg, D; Ojeda, S R; Dissen, G A; Fröhlich, T; Arnold, G J; Soreq, H; Lara, H; Mayerhofer, A

    2015-01-01

    Proliferation, differentiation and death of ovarian cells ensure orderly functioning of the female gonad during the reproductive phase, which ultimately ends with menopause in women. These processes are regulated by several mechanisms, including local signaling via neurotransmitters. Previous studies showed that ovarian non-neuronal endocrine cells produce acetylcholine (ACh), which likely acts as a trophic factor within the ovarian follicle and the corpus luteum via muscarinic ACh receptors. How its actions are restricted was unknown. We identified enzymatically active acetylcholinesterase (AChE) in human ovarian follicular fluid as a product of human granulosa cells. AChE breaks down ACh and thereby attenuates its trophic functions. Blockage of AChE by huperzine A increased the trophic actions as seen in granulosa cells studies. Among ovarian AChE variants, the readthrough isoform AChE-R was identified, which has further, non-enzymatic roles. AChE-R was found in follicular fluid, granulosa and theca cells, as well as luteal cells, implying that such functions occur in vivo. A synthetic AChE-R peptide (ARP) was used to explore such actions and induced in primary, cultured human granulosa cells a caspase-independent form of cell death with a distinct balloon-like morphology and the release of lactate dehydrogenase. The RIPK1 inhibitor necrostatin-1 and the MLKL-blocker necrosulfonamide significantly reduced this form of cell death. Thus a novel non-enzymatic function of AChE-R is to stimulate RIPK1/MLKL-dependent regulated necrosis (necroptosis). The latter complements a cholinergic system in the ovary, which determines life and death of ovarian cells. Necroptosis likely occurs in the primate ovary, as granulosa and luteal cells were immunopositive for phospho-MLKL, and hence necroptosis may contribute to follicular atresia and luteolysis. The results suggest that interference with the enzymatic activities of AChE and/or interference with necroptosis may be novel

  1. Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells.

    PubMed

    Nimnual, A S; Chang, W; Chang, N S; Ross, A F; Gelman, M S; Prives, J M

    1998-10-20

    The innervation of embryonic skeletal muscle cells is marked by the redistribution of nicotinic acetylcholine receptors (AChRs) on muscle surface membranes into high-density patches at nerve-muscle contacts. To investigate the role of protein phosphorylation pathways in the regulation of AChR surface distribution, we have identified the sites on AChR delta-subunits that undergo phosphorylation associated with AChR cluster dispersal in cultured myotubes. We found that PKC-catalyzed AChR phosphorylation is targeted to Ser378, Ser393, and Ser450, all located in the major intracellular domain of the AChR delta-subunit. Adjacent to one of these sites is a PKA consensus target site (Ser377) that was efficiently phosphorylated by purified PKA in vitro. The PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA) and the phosphoprotein phosphatase inhibitor okadaic acid (OA) produced increased phosphorylation of AChR delta-subunits on the three serine residues that were phosphorylated by purified PKC in vitro. In contrast, treatment of these cells with the PKA activator forskolin, or with the cell-permeable cAMP analogue 8-bromo-cAMP, did not alter the phosphorylation state of surface AChR, suggesting that PKA does not actively phosphorylate the delta-subunit in intact chick myotubes. The effects of TPA and OA included an increase in the proportion of surface AChR that is extracted in Triton X-100, as well as the spreading of AChR from cluster regions to adjacent areas of the muscle cell surface. These findings suggest that PKC-catalyzed phosphorylation on the identified serine residues of AChR delta-subunits may play a role in the surface distribution of these receptors. PMID:9778356

  2. Quaternary investigation

    SciTech Connect

    Stieve, A.

    1991-05-15

    The primary purpose of the Quaternary investigation is to provide information on the location and age of Quaternary deposits for use in evaluating the presence or absence of neotectonic deformation or paleoliquefaction features within the Savannah River Site (SRS) region. The investigation will provide a basis for evaluating the potential for capable faults and associated deformation in the SRS vicinity. Particular attention will be paid to the Pen Branch fault.

  3. Anticholinesterase inhibitory activity of quaternary alkaloids from Tinospora crispa.

    PubMed

    Yusoff, Mashitah; Hamid, Hazrulrizawati; Houghton, Peter

    2014-01-01

    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition. PMID:24448061

  4. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus.

    PubMed

    Menéndez-Helman, Renata J; Ferreyroa, Gisele V; dos Santos Afonso, Maria; Salibián, Alfredo

    2015-01-01

    The use of biomarkers as a tool to assess responses of organisms exposed to pollutants in toxicity bioassays, as well as in aquatic environmental risk assessment protocols, requires the understanding of the natural fluctuation of the particular biomarker. The aim of this study was to characterize the intrinsic variations of acetylcholinesterase (AChE) activity in tissues of a native freshwater teleost fish to be used as biomarker in toxicity tests, taking into account both seasonal influence and fish size. Specific AChE activity was measured by the method of Ellman et al. (1961) in homogenates of fish anterior section finding a seasonal variability. The highest activity was observed in summer, decreasing significantly below 40% in winter. The annual AChE activity cycle in the anterior section was fitted to a sinusoidal function with a period of 11.2 months. Moreover, an inverse relationship between enzymatic activity and the animal size was established. The results showed that both the fish length and seasonal variability affect AChE activity. AChE activity in fish posterior section showed a similar trend to that in the anterior section, while seasonal variations of the activity in midsection were observed but differences were not statistically significant. In addition, no relationship between AChE and total tissue protein was established in the anterior and posterior sections suggesting that the circannual rhythms observed are AChE-specific responses. Results highlight the importance of considering both the fish size and season variations to reach valid conclusions when AChE activity is employed as neurotoxicity biomarker. PMID:25450939

  5. Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Jeong, Chang-Bum; Park, Heum Gi; Leung, Kenneth Mei Yee; Lee, Young-Mi; Lee, Jae-Seong

    2013-11-01

    Pharmaceuticals are widely used in human and veterinary medicine. However, they are emerging as a significant contaminant in aquatic environments through wastewater. Due to the persistent and accumulated properties of pharmaceuticals via the food web, their potential harmful effects on aquatic animals are a great concern. In this study, we investigated the effects of six pharmaceuticals: acetaminophen, ATP; atenolol, ATN; carbamazepine, CBZ; oxytetracycline, OTC; sulfamethoxazole, SMX; and trimethoprim, TMP on acetylcholinesterase (AChE; EC 3.1.1.7) activity and its transcript expression with chlorpyrifos (as a positive control) in the monogonont rotifer, Brachionus koreanus. ATP, CBZ, and TMP exposure also remarkably inhibited Bk-AChE activity at 100 μg/L (24 h) and 1000 μg/L (12 h and 24 h). ATP, CBZ, and TMP exposure showed a significant decrease in the Bk-AChE mRNA level in a concentration-dependent manner. However, in the case of OTC and SMX, a slight decrease in Bk-AChE mRNA expression was found but only at the highest concentration. The time-course experiments showed that ATP positively induced Bk-AChE mRNA 12 h after exposure at both 100 and 1000 μg/L, while the Bk-AChE mRNA expression was significantly downregulated over 6 to 24 h after exposure to 1000 μg/L of CBZ, OTC, SMX, and TMP. Our findings suggest that Bk-AChE would be a useful biomarker for risk assessment of pharmaceutical compounds as an early signal of their toxicity in aquatic environments. Particularly, ATP, CBZ, and TMP may have a toxic cholinergic effect on rotifer B. koreanus by inhibiting AChE activity. PMID:24028855

  6. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling.

    PubMed

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-08-01

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury. PMID:26066647

  7. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling

    PubMed Central

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-01-01

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury. PMID:26066647

  8. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction. PMID:19689389

  9. Behavioral phenotyping of heterozygous acetylcholinesterase knockout (AChE+/-) mice showed no memory enhancement but hyposensitivity to amnesic drugs.

    PubMed

    Espallergues, Julie; Galvan, Laurie; Sabatier, Florence; Rana-Poussine, Vanessa; Maurice, Tangui; Chatonnet, Arnaud

    2010-01-20

    Decrease in the expression or activity of acetylcholinesterase (AChE) enzymatic activity results in increased cholinergic tonus in the brain and periphery, with concomitant regulations of nicotinic and muscarinic receptors expression. We generated AChE knockout mice and characterized the behavioral phenotype of heterozygous animals, focusing on learning and memory functions. Male and female, AChE+/- and AChE+/+ littermate controls (129 sv strain) were tested at 5-9 weeks of age. AChE activity was significantly decreased in the hippocampus and cortex of AChE+/- mice, but butyrylcholinesterase activity was preserved. AChE+/- mice failed to show any difference in terms of locomotion, exploration and anxiety parameters in the open-field test. Animals were then tested for place learning in the water-maze. They were trained using a 'sustained acquisition' protocol (3 swim trials per day) or a 'mild acquisition' protocol (2 swim trials per day) to locate an invisible platform in fixed position (reference memory procedure). Then, during 3 days, they were trained to locate the platform in a variable position (working memory procedure). Learning profiles and probe test performances were similar for AChE+/- and AChE+/+ mice. Mice were then treated with the muscarinic receptor antagonist scopolamine (0.5, 5 mg/kg) 20 min before each training session. Scopolamine impaired learning at both doses in AChE+/+ mice, but only at the highest dose in AChE+/- mice. Moreover, the intracerebroventricular injection of amyloid-beta25-35 peptide, 9 nmol, 7 days before water-maze acquisition, failed to induce learning deficits in AChE+/- mice, but impaired learning in AChE+/+ controls. The peptide failed to be toxic in forebrain structures of AChE+/- mice, since an increase in lipid peroxidation levels was measured in the hippocampus of AChE+/+ but not AChE+/- mice. We conclude that the increase in cholinergic tonus observed in AChE+/- mice did not result in increased memory functions but

  10. Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor.

    PubMed

    Liao, Shuzhen; Qiao, Yanan; Han, Wenting; Xie, Zhaoxia; Wu, Zhaoyang; Shen, Guoli; Yu, Ruqin

    2012-01-01

    A novel acetylcholinesterase (AChE) liquid crystal (LC) biosensor based on enzymatic growth of gold nanoparticles (Au NPs) has been developed for amplified detection of acetylcholine (ACh) and AChE inhibitor. In this method, AChE mediates the hydrolysis of acetylthiocholine (ATCl) to form thiocholine, and the latter further reduces AuCl(4)(-) to Au NPs without Au nanoseeds. This process, termed biometallization, leads to a great enhancement in the optical signal of the LC biosensor due to the large size of Au NPs, which can greatly disrupt the orientational arrangement of LCs. On the other hand, the hydrolysis of ATCl is inhibited in the presence of ACh or organophosphate pesticides (OPs, a AChE inhibitor), which will decrease the catalytic growth of Au NPs and, as a result, reduce the orientational response of LCs. On the basis of such an inhibition mechanism, the AChE LC biosensor can be used as an effective way to realize the detection of ACh and AChE inhibitors. The results showed that the AChE LC biosensor was highly sensitive to ACh with a detection limit of 15 μmol/L and OPs with a detection limit of 0.3 nmol/L. This study provides a simple and sensitive AChE LC biosensing approach and offers effective signal enhanced strategies for the development of enzyme LC biosensors. PMID:22148672

  11. Identification of petrogenic produced water components as acetylcholine esterase inhibitors.

    PubMed

    Froment, Jean; Langford, Katherine; Tollefsen, Knut Erik; Bråte, Inger Lise N; Brooks, Steven J; Thomas, Kevin V

    2016-08-01

    Effect-directed analysis (EDA) was applied to identify acetylcholine esterase (AChE) inhibitors in produced water. Common produced water components from oil production activities, such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and naphthenic acids were tested for AChE inhibition using a simple mixture of PAHs and naphthenic acids. Produced water samples collected from two offshore platforms in the Norwegian sector of the North Sea were extracted by solid phase extraction and fractionated by open-column liquid solid chromatography and high-performance liquid chromatography (HPLC) before being tested using a high-throughput and automated AChE assay. The HPLC fractions causing the strongest AChE inhibition were analysed by gas chromatography coupled to a high-resolution time-of-flight mass spectrometry (GC-HR-ToF-MS). Butylated hydroxytoluene and 4-phenyl-1,2-dihydronaphthalene were identified as two produced water components capable of inhibiting AChE at low concentrations. In order to assess the potential presence of such compounds discharged into aquatic ecosystems, AChE activity in fish tissues was measured. Saithe (Pollachius virens) caught near two offshore platforms showed lower enzymatic activity than those collected from a reference location. Target analysis of saithe did not detected the presence of these two putative AChE inhibitors and suggest that additional compounds such as PAHs, naphthenic acids and yet un-identified compounds may also contribute to the purported AChE inhibition observed in saithe. PMID:27176761

  12. Flexibility versus “rigidity” of the functional architecture of AChE active center

    PubMed Central

    Shafferman, Avigdor; Barak, Dov; Stein, Dana; Kronman, Chanoch; Velan, Baruch; Greig, Nigel H.; Ordentlich, Arie

    2008-01-01

    Functional architecture of the AChE active center appears to be characterized by both structural “rigidity”, necessary to stabilize the catalytic triad as well as by flexibility in accommodating the different, high affinity AChE ligands. These seemingly conflicting structural properties of the active center are demonstrated through combination of structural methods with kinetic studies of the enzyme and its mutant derivatives with plethora of structurally diverse ligands and in particular with series of stereoselective covalent and noncovalent AChE ligands. Thus, steric perturbation of the acyl pocket precipitates in a pronounced stereoselectivity toward methylphosphonates by disrupting the stabilizing environment of the catalytic histidine rather than through steric exclusion demonstrating the functional importance of the “rigid” environment of the catalytic machinery. The acyl pocket, the cation-binding subsite (Trp86) and the peripheral anionic subsite were also found to be directly involved in HuAChE stereoselectivity toward charged chiral phosphonates, operating through differential positioning of the ligand cationic moiety within the active center. Residue Trp86 is also a part of the “hydrophobic patch” which seems flexible enough to accommodate the structurally diverse ligands like tacrine, galanthamine and the two diastereomers of huperzine A. Also, we have recently discovered further aspects of the role of both the unique structure and the flexibility of the “hydrophobic patch” in determining the reactivity and stereoselectivity of HuAChE toward certain carbamates including analogs of physostigmine. In these cases the ligands are accommodated mostly through hydrophobic interactions and their stereoselectivity delineates precisely the steric limits of the pocket. Hence, the HuAChE stereoselectivity provides a sensitive tool in the in depth exploration of the functional architecture of the active center. These studies suggest that the

  13. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  14. Acetylcholinesterase-Fc Fusion Protein (AChE-Fc): A Novel Potential Organophosphate Bioscavenger with Extended Plasma Half-Life.

    PubMed

    Noy-Porat, Tal; Cohen, Ofer; Ehrlich, Sharon; Epstein, Eyal; Alcalay, Ron; Mazor, Ohad

    2015-08-19

    Acetylcholinesterase (AChE) is the physiological target of organophosphate nerve agent compounds. Currently, the development of a formulation for prophylactic administration of cholinesterases as bioscavengers in established risk situations of exposure to nerve agents is the incentive for many efforts. While cholinesterase bioscavengers were found to be highly effective in conferring protection against nerve agent exposure in animal models, their therapeutic use is complicated by short circulatory residence time. To create a bioscavenger with prolonged plasma half-life, compatible with biotechnological production and purification, a chimeric recombinant molecule of HuAChE coupled to the Fc region of human IgG1 was designed. The novel fusion protein, expressed in cultured cells under optimized conditions, maintains its full enzymatic activity, at levels similar to those of the recombinant AChE enzyme. Thus, this novel fusion product retained its binding affinity toward BW284c5 and propidium, and its bioscavenging reactivity toward the organophosphate-AChE inhibitors sarin and VX. Furthermore, when administered to mice, AChE-Fc exhibits exceptional circulatory residence longevity (MRT of 6000 min), superior to any other known cholinesterase-based recombinant bioscavengers. Owing to its optimized pharmacokinetic performance, high reactivity toward nerve agents, and ease of production, AChE-Fc emerges as a promising next-generation organophosphate bioscavenger. PMID:26121420

  15. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors.

    PubMed

    Herkert, Nadja M; Eckert, Saskia; Eyer, Peter; Bumm, Rudolf; Weber, Georg; Thiermann, Horst; Worek, Franz

    2008-04-18

    The efficacy of oxime treatment in soman poisoning is limited due to rapid aging of inhibited acetylcholinesterase (AChE). Pre-treatment with carbamates was shown to improve antidotal treatment substantially. Recently, by using a dynamically working in vitro model with real-time determination of membrane-bound AChE activity, we were able to demonstrate that pre-inhibition of human erythrocyte AChE with pyridostigmine or physostigmine resulted in a markedly higher residual AChE activity after inhibition by soman or paraoxon than in the absence of reversible inhibitors. The purpose of the present study was to compare the effect of carbamate pre-treatment and soman challenge with human erythrocyte and muscle homogenate AChE. Both enzyme sources were immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. AChE activity was continuously analyzed in a flow-through detector. Pre-inhibition of AChE with pyridostigmine or physostigmine resulted in a concentration-dependent increase in carbamylation, residual activity after soman inhibition and fraction of decarbamylation AChE after discontinuation of the inhibitors without differences between human erythrocyte and muscle AChE. This data support the view that human erythrocyte AChE is an adequate surrogate marker for synaptic AChE in OP poisoning. PMID:18304715

  16. Oximes: Inhibitors of Human Recombinant Acetylcholinesterase. A Structure-Activity Relationship (SAR) Study

    PubMed Central

    Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil

    2013-01-01

    Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117

  17. Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins

    PubMed Central

    Dash, Raju; Emran, Talha Bin; Uddin, Mir Muhammad Nasir; Islam, Ashekul; Junaid, Md

    2014-01-01

    Alzheimer׳s disease (AD) is one of the most common dementias showing slow progressive cognitive decline. Progression of intracerebral accumulation of beta amyloid (Aβ) peptides by the action of amyloid binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and the degradation of Acetylcholinesterase (AChE) the main pathological characteristics of AD. Therefore, it is of interest to evaluate the importance of fisetin (a flavonol that belongs to the flavonoid group of polyphenols) binding with AChE, ABAD and BACE1 proteins. Docking experiment of fisetin with these proteins using two different tools namely iGEMDOCK and FlexX show significant binding with acceptable binding values. Thus, the potential inhibitory role of fisetin with AD associated proteins is documented. PMID:25352723

  18. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"…

  19. Current acetylcholinesterase-inhibitors: a neuroinformatics perspective.

    PubMed

    Shaikh, Sibhghatulla; Verma, Anupriya; Siddiqui, Saimeen; Ahmad, Syed S; Rizvi, Syed M D; Shakil, Shazi; Biswas, Deboshree; Singh, Divya; Siddiqui, Mohmmad H; Shakil, Shahnawaz; Tabrez, Shams; Kamal, Mohammad A

    2014-04-01

    This review presents a concise update on the inhibitors of the neuroenzyme, acetylcholinesterase (AChE; EC 3.1.1.7). AChE is a serine protease, which hydrolyses the neurotransmitter, acetylcholine into acetate and choline thereby terminating neurotransmission. Molecular interactions (mode of binding to the target enzyme), clinical applications and limitations have been summarized for each of the inhibitors discussed. Traditional inhibitors (e.g. physostigmine, tacrine, donepezil, rivastigmine etc.) as well as novel inhibitors like various physostigmine-derivatives have been covered. This is followed by a short glimpse on inhibitors derived from nature (e.g. Huperzine A and B, Galangin). Also, a discussion on 'hybrid of pre-existing drugs' has been incorporated. Furthermore, current status of therapeutic applications of AChEinhibitors has also been summarized. PMID:24059296

  20. Optical Detection of Enzymatic Activity and Inhibitors on Non-Covalently Functionalized Fluorescent Graphene Oxide.

    PubMed

    Kang, Tae Woog; Jeon, Su-Ji; Kim, Hye-In; Park, Jung Hyun; Yim, DaBin; Lee, Hye-Rim; Ju, Jong-Min; Kim, Man-Jin; Kim, Jong-Ho

    2016-05-24

    It has been of great interest to measure the activity of acetylcholinesterase (AChE) and its inhibitor, as AChE is known to accelerate the aggregation of the amyloid beta peptides that underlie Alzheimer's disease. Herein, we report the development of graphene oxide (GO) fluorescence-based biosensors for the detection of AChE activity and AChE inhibitors. To this end, GO was non-covalently functionalized with phenoxy-modified dextran (PhO-dex-GO) through hydrophobic interaction; the resulting GO showed excellent colloidal stability and intense fluorescence in various aqueous solutions as compared to pristine GO and the GO covalently functionalized with dextran. The fluorescence of PhO-dex-GO remarkably increased as AChE catalyzed the hydrolysis of acetylthiocholine (ATCh) to give thiocholine and acetic acid. It was found that the turn-on fluorescence response of PhO-dex-GO to AChE activity was induced by protonation of carboxyl groups on it from the product of the enzymatic hydrolysis reaction, acetic acid. On the basis of its turn-on fluorescence response, PhO-dex-GO was able to report kinetic and thermodynamic parameters involving a maximum velocity, a Michaelis constant, and an inhibition dissociation constant for AChE activity and inhibition. These parameters enable us to determine the activity of AChE and the efficiency of the inhibitor. PMID:27136042

  1. Different Cholinesterase Inhibitor Effects on CSF Cholinesterases in Alzheimer Patients

    PubMed Central

    Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger

    2014-01-01

    Background The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. Methods and Findings AD patients aged 50–85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman’s colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2%increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. Conclusion The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation. PMID:19199870

  2. Time Evolution of the Quaternary Structure of Escherichia Coli Aspartate Transcarbamoylase Upon Reaction With the Natural Substrates And a Slow Tight Binding Inhibitor

    SciTech Connect

    West, J.M.; Xia, J.; Tsuruta, H.; Guo, W.; O'Day, E.M.; Kantrowitz, E.R.

    2009-05-26

    Here, we present a study of the conformational changes of the quaternary structure of Escherichia coli aspartate transcarbamoylase, as monitored by time-resolved small-angle X-ray scattering, upon combining with substrates, substrate analogs, and nucleotide effectors at temperatures between 5 and 22 {sup o}C, obviating the need for ethylene glycol. Time-resolved small-angle X-ray scattering time courses tracking the T {yields} R structural change after mixing with substrates or substrate analogs appeared to be a single phase under some conditions and biphasic under other conditions, which we ascribe to multiple ligation states producing a time course composed of multiple rates. Increasing the concentration of substrates up to a certain point increased the T {yields} R transition rate, with no further increase in rate beyond that point. Most strikingly, after addition of N-phosphonacetyl-l-aspartate to the enzyme, the transition rate was more than 1 order of magnitude slower than with the natural substrates. These results on the homotropic mechanism are consistent with a concerted transition between structural and functional states of either low affinity, low activity or high affinity, high activity for aspartate. Addition of ATP along with the substrates increased the rate of the transition from the T to the R state and also decreased the duration of the R-state steady-state phase. Addition of CTP or the combination of CTP/UTP to the substrates significantly decreased the rate of the T {yields} R transition and caused a shift in the enzyme population towards the T state even at saturating substrate concentrations. These results on the heterotropic mechanism suggest a destabilization of the T state by ATP and a destabilization of the R state by CTP and CTP/UTP, consistent with the T and R state crystallographic structures of aspartate transcarbamoylase in the presence of the heterotropic effectors.

  3. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: a further study based on Flavokawain B Mannich base derivatives.

    PubMed

    Liu, Haoran; Fan, Haoqun; Gao, Xiaohui; Huang, Xueqing; Liu, Xianjun; Liu, Linbo; Zhou, Chao; Tang, Jingjing; Wang, Qiuan; Liu, Wukun

    2016-08-01

    In order to study the structure-activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4 a-8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85 μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE. PMID:26186269

  4. Baculovirus expression, biochemical characterization and organophosphate sensitivity of rBmAChE1, rBmAChE2, and rBmAChE3 of Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhipicephalus (Boophilus) microplus cDNAs, BmAChE1, BmAChE2, and BmAChE3,were previously identified as presumptively encoding acetylcholinesterases, but biochemical identity was confirmed only for recombinant BmAChE3. In the present study, four recombinant BmAChE1 constructs and single recombinant c...

  5. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  6. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  7. Comparative study of oxime-induced reactivation of erythrocyte and muscle AChE from different animal species following inhibition by sarin or paraoxon.

    PubMed

    Herkert, Nadja M; Aurbek, Nadine; Eyer, Peter; Thiermann, Horst; Worek, Franz

    2010-05-01

    Standard treatment of acute poisoning by organophosphorus compounds (OP) includes administration of an antimuscarinic (e.g. atropine) and of an oxime-based reactivator of OP-inhibited acetylcholinesterase (AChE). A recently introduced dynamically working in vitro model with real-time determination of membrane-bound AChE activity was shown to be a very versatile and promising model to investigate oxime-induced reactivation kinetics of OP-inhibited enzyme. In this assay, human AChE from erythrocytes or muscle tissue was immobilized on a particle filter. This bioreactor was continuously perfused with substrate and chromogen and AChE activity was analyzed on-line in a flow-through detector. The model has been successfully adopted to Rhesus monkey, swine and guinea pig erythrocytes and intercostal muscle AChE. In addition, the basic kinetic constants of inhibition, aging, spontaneous- and oxime-induced-reactivation of erythrocyte AChE from these species were determined with a standard static model. The major findings were, in part substantial species differences in the inhibition (sarin, paraoxon) and reactivation kinetics (obidoxime, HI 6) of erythrocyte AChE, but comparable kinetics of inhibition and reactivation between erythrocyte and muscle AChE. Hence, these data provide further support of the assumption that erythrocyte AChE is an adequate surrogate of muscle (synaptic) AChE and admonish that major species differences have to be considered for the design and evaluation of therapeutic animal models. PMID:20156534

  8. Development of a dynamic model for real-time determination of membrane-bound acetylcholinesterase activity upon perfusion with inhibitors and reactivators.

    PubMed

    Eckert, Saskia; Eyer, Peter; Mückter, Harald; Worek, Franz

    2006-07-28

    Quantitative predictions of the course of acetylcholinesterase (AChE) activity, following interference of inhibitors and reactivators, are usually obscured by the time-dependent changes of all reaction partners. To mimic these dynamics we developed an in vitro model. Immobilized human erythrocyte ghosts in a bioreactor were continuously perfused while AChE activity was monitored by a modified Ellman method. The perfusion system consisted of two HPLC pumps with integrated quaternary low-pressure gradient formers that were programmed by a computer using commercial HPLC software. The combined eluates passed a particle filter (Millex-GS, 0.22 microm) containing a thin layer of erythrocytes that was immersed in a temperature-controlled water bath. The effluent passed a flow cell in a UV-vis detector, the signal of which was digitized, written to disc and calculated with curve fitting programs. AChE activity decreased by 3.4% within 2.5 h. The day-to-day variation of the freshly prepared bioreactor using the same enzyme source was +/-3.3%. Residual activity of 0.2% marked the limit of quantification. Following perfusion with paraoxon, pseudo first-order rate constants of inhibition were established that did not differ from results obtained in conventional assays. The same holds true for reactivation with obidoxime. The set-up presented allows freely programmable time-dependent changes of up to eight solvents to mimic pharmacokinetic profiles without accumulation of products. Due to some hysteresis in the system, reaction half-lives should be >3 min and concentration changes in critical compounds should exceed half-lives of 5 min. Otherwise, the system offers much flexibility and operates with high precision. PMID:16725113

  9. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes.

    PubMed

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind; Huang, Mingjun

    2013-07-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication. PMID:23629709

  10. In vivo protection against soman toxicity by known inhibitors of acetylcholine synthesis in vitro.

    PubMed

    Sterling, G H; Doukas, P H; Sheldon, R J; O'Neill, J J

    1988-02-01

    Soman inhibits the enzyme acetylcholinesterase, essentially irreversibly, producing an accumulation of acetylcholine (ACh) which is responsible for many of its toxic effects. Current approaches to treatment include: (1) atropine, a muscarinic receptor blocker; (2) pyridine-2-aldoxime methylchloride (2-PAM), an enzyme reactivator; and (3) carbamate protection of the enzyme. However, no fully satisfactory regimen has been found, primarily because of the rapid aging process. In this study, compounds known to inhibit ACh synthesis in vitro were evaluated in combination with atropine and 2-PAM so as to assess their potential utility in protection against soman toxicity in rats. Acetylsecohemicholinium (100 micrograms/kg, i.c.v.t., 30 min prior to soman), an inhibitor of high affinity choline uptake (HAChU) and cholineacetyltransferase (ChAT) activity in vitro, enhanced the protective effects of atropine and 2-PAM, reducing the mortality within the first 2 hr following soman. N-Hydroxyethylnaphthylvinylpyridine (NHENVP), a quaternary ChAT inhibitor (1.7 mumol/kg, i.m.), significantly reduced the overall percent mortality due to soman from 80% to 20%. The compound was most effective when administered 2-3 min prior to soman and was effective only by the intramuscular route. N-Allyl-3-quinuclidinol, a potent HAChU inhibitor (1 mumol/kg, i.m.) was the most effective quinuclidine analog evaluated, also reducing the percent mortality for a 24-hr period. Unlike NHENVP, it was most effective when given 30-60 min prior to soman. It is suggested from the data that compounds that disrupt presynaptic ACh synthesis in vitro may prove effective in treating organophosphate poisoning. The results demonstrate interesting differences among the compounds studied and provide insight for the design of protectants against soman toxicity. These findings further underscore the need to examine the structure activity and pharmacokinetic properties of these compounds, i.e. comparison of routes of

  11. New Acetylcholinesterase Inhibitors for Alzheimer's Disease

    PubMed Central

    Mehta, Mona; Adem, Abdu; Sabbagh, Marwan

    2012-01-01

    Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in Alzheimer's disease (AD) because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AchE for myasthenia gravis had effectively proven that AchE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEI) continue to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs in development and their respective mechanisms of actions. This pharmacological approach continues to be active with many promising compounds. PMID:22216416

  12. The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats.

    PubMed

    Larsen, Karen E; Lifschitz, Adrián L; Lanusse, Carlos E; Virkel, Guillermo L

    2016-07-01

    The current work evaluated the inhibitory potency of the herbicide glyphosate (GLP) on acetylcholinesterase (AChE) activity in male and female rat tissues. The AChE activity in brain was higher (p<0.05) than those observed in kidney (females: 2.2-fold; males: 1.9-fold), liver (females: 6-fold; males: 6.9-fold) and plasma (females: 14.7-fold; males: 25.3-fold). Enzyme activities were higher in presence of 10mM GLP compared to those measured at an equimolar concentration of the potent AChE inhibitor dichlorvos (DDVP). Moreover, IC50s for GLP resulted between 6×10(4)- and 6.8×10(5)-fold higher than those observed for DDVP. In conclusion, GLP is a weak inhibitor of AChE in rats. PMID:27258137

  13. Novel multipotent AChEI-CCB attenuates hyperhomocysteinemia-induced memory deficits and Neuropathologies in rats.

    PubMed

    Xia, Yiyuan; Liu, Rong; Chen, Rong; Tian, Qing; Zeng, Kuan; Hu, Jichang; Liu, Xinghua; Wang, Qun; Wang, Peng; Wang, Xiao-Chuan; Wang, Jian-Zhi

    2014-01-01

    Alzheimer's disease (AD) has multiple etiopathogenic factors, yet the definitive cause remains unclear and the therapeutic strategies have been elusive. Combination therapy, as one of the promising treatments, has been studied for years and may exert synergistic beneficial effects on AD through polytherapeutic targets. In this study, we tested the effects of a synthesized juxtaposition (named SCR1693) composed of an acetylcholinesterase inhibitor (AChEI) and a calcium channel blocker (CCB) on the hyperhomocysteinemia (HHcy)-induced AD rat model, and found that SCR1693 remarkably improved the HHcy-induced memory deficits and preserved dendrite morphologies as well as spine density by upregulating synapse-associated proteins PSD95 and synapsin-1. In addition, SCR1693 attenuated HHcy-induced tau hyperphosphorylation at multiple AD-associated sites by regulating the activity of protein phosphatase-2A and glycogen synthase kinase-3β. Furthermore, SCR1693 was more effective than individual administration of both donepezil and nilvadipine which were used as AChEI and CCB, respectively, in the clinical practice. In conclusion, our data suggest that the polytherapeutic targeting juxtaposition SCR1693 (AChEI-CCB) is a promising therapeutic candidate for AD. PMID:25024319

  14. Neuromuscular therapeutics by RNA-targeted suppression of ACHE gene expression.

    PubMed

    Dori, Amir; Soreq, Hermona

    2006-10-01

    RNA-targeted therapeutics offers inherent advantages over small molecule drugs wherever one out of several splice variant enzymes should be inhibited. Here, we report the use of Monarsen, a 20-mer acetylcholinesterase-targeted antisense agent with three 3'-2'o-methyl-protected nucleotides, for selectively attenuating the stress-induced accumulation of the normally rare, soluble "readthrough" acetylcholinesterase variant AChE-R. Acetylcholine hydrolysis by AChE-R may cause muscle fatigue and moreover, limit the cholinergic anti-inflammatory blockade, yielding inflammation-associated pathology. Specific AChE-R targeting by Monarsen was achieved in cultured cells, experimental animals, and patient volunteers. In rats with experimental autoimmune myasthenia gravis, oral delivery of Monarsen improved muscle action potential in a lower dose regimen (nanomolar versus micromolar), rapid and prolonged manner (up to 72 h versus 2-4 h) as compared with the currently used small molecule anticholinesterases. In central nervous system neurons of both rats and cynomolgus monkeys, systematic Monarsen treatment further suppressed the levels of the proinflammatory cytokines interleukin-1 (IL-1) and IL-6. Toxicology testing and ongoing clinical trials support the notion that Monarsen treatment would offer considerable advantages over conventional cholinesterase inhibitors with respect to dosing, specificity, side effects profile, and duration of efficacy, while raising some open questions regarding its detailed mechanism of action. PMID:17145929

  15. Synthesis and biological evaluation of a phosphonate analog of the natural acetyl cholinesterase inhibitor cyclophostin.

    PubMed

    Bandyopadhyay, Saibal; Dutta, Supratik; Spilling, Christopher D; Dupureur, Cynthia M; Rath, Nigam P

    2008-11-01

    Two diastereomers of a phosphonate analog 6 of the AChE inhibitor cyclophostin were synthesized. The substitution reaction of phosphono allylic carbonate 10a with methyl acetoacetate gave the vinyl phosphonate 9a. Attempted hydrogenation/debenzylation gave an unexpected enolether lactone. Alternatively, selective hydrogenation, demethylation, cyclization and debenzylation gave the phosphonate analog of cyclophostin as a separable mixture of diastereomers 6. The trans phosphonate isomer was more active than the cis isomer against AChE from two sources. PMID:18821801

  16. Gripped by Gout: Avoiding the Ache and Agony

    MedlinePlus

    ... please review our exit disclaimer . Subscribe Gripped by Gout Avoiding the Ache and Agony Sudden, painful swelling ... toe is often the first warning sign of gout. It can affect other joints as well. Without ...

  17. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line.

    PubMed

    Masha'our, R Shehadeh; Heinrich, R; Garzozi, H J; Perlman, I

    2012-01-01

    Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16-24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. Mission(TM) shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells. PMID:22685426

  18. Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: an enzoinformatics approach.

    PubMed

    Alam, Aftab; Shaikh, Sibhghatulla; Ahmad, Syed S; Ansari, Mohammad A; Shakil, Shahnawaz; Rizvi, Syed M D; Shakil, Shazi; Imran, Mohammad; Haneef, Mohammad; Abuzenadah, Adel M; Kamal, Mohammad A

    2014-04-01

    The present study emphasizes the molecular interactions between human brain acetylcholinesterase (AChE) and the natural ligand Huperzine-B and its comparison to 'AChE-Tolserine interactions'. Docking between Huperzine-B and AChE was performed using 'Autodock4.2'. Hydrophobic interactions and hydrogen bonds both play an equally important role in the correct positioning of Huperzine-B within the 'catalytic site' of AChE to permit docking. However, docking of Tolserine to AChE is largely dominated by hydrophobic interactions. Such information may aid in the design of versatile AChE-inhibitors, and is expected to aid in safe clinical use of Huperzine-B. Scope still remains in the determination of the three-dimensional structure of AChE-Huperzine-B complex by X-ray crystallography to validate the described data. Furthermore, this study confirms that Huperzine-B is a more efficient inhibitor of human brain AChE compared to tolserine with reference to Ki and ΔG values. PMID:24059299

  19. Potent AChE enzyme inhibition activity of Zizyphus oxyphylla: A new source of antioxidant compounds.

    PubMed

    Mazhar, Farhana; Khanum, Raisa; Ajaib, Muhammad; Jahangir, Muhammad

    2015-11-01

    The purpose of this study was to assess the antioxidant potential and enzyme inhibition of various fractions of Zizyphus oxyphylla. The plant metabolites were extracted in methanol and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol successively. Phytochemical screening showed presence of alkaloids, terpenoids and flavonoids in ethyl acetate and n-butanol fractions. The antioxidant potential and acetylcholine esterase assay of all these fractions and remaining aqueous fraction was evaluated by using reported methods. The results revealed that chloroform soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 95.01 ± 0.37% inhibition of DPPH radical at a concentration of 120 μg/mL. The IC₅₀ of this fraction was 13.20 ± 0.27 μg/mL, relative to butylated hydroxytoluene (BHT, a reference standard), having IC₅₀ of 12.10 ± 0.29 μg/mL. It also showed highest total antioxidant activity i.e. 1.723 ± 0.34 as well as highest FRAP value (339.5 ± 0.57 TE μm/mL) and highest total phenolic contents (142.65 ± 1.20 GAE mg/g) as compared to the other studied fractions. The fractions were also studied for Acetylcholine esterase enzyme (AChE) enzyme inhibition activity and n-butanol soluble fraction exhibited maximum inhibition (95.5 ± 0.13 mg/mL with IC50 =9.58 ± 0.08 mg/mL relative to galanthamine (13.26 ± 0.73 mg/mL), while n- hexane soluble fraction (165.15 ± 0.94 mg/mL) showed non-significant. We are still working to isolate pure compounds for active fractions targeting potent inhibition responsible for some activities. PMID:26639499

  20. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    PubMed

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively. PMID:26293707

  1. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.

    PubMed

    Khaw, K Y; Choi, S B; Tan, S C; Wahab, H A; Chan, K L; Murugaiyah, V

    2014-09-25

    Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE. Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. PMID:25172794

  2. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae.

    PubMed

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (K(M)) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  3. Toxicological and Biochemical Characterizations of AChE in Phosalone-Susceptible and Resistant Populations of the Common Pistachio Psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity (KM) and hydrolyzing efficiency (Vmax) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively

  4. Acetylcholinesterase inhibitors and Gulf War illnesses

    PubMed Central

    Golomb, Beatrice Alexandra

    2008-01-01

    Increasing evidence suggests excess illness in Persian Gulf War veterans (GWV) can be explained in part by exposure of GWV to organophosphate and carbamate acetylcholinesterase inhibitors (AChEis), including pyridostigmine bromide (PB), pesticides, and nerve agents. Evidence germane to the relation of AChEis to illness in GWV was assessed. Many epidemiological studies reported a link between AChEi exposure and chronic symptoms in GWV. The link is buttressed by a dose–response relation of PB pill number to chronic symptoms in GWV and by a relation between avidity of AChEi clearance and illness, based on genotypes, concentrations, and activity levels of enzymes that detoxify AChEis. Triangulating evidence derives from studies linking occupational exposure to AChEis to chronic health symptoms that mirror those of ill GWV. Illness is again linked to lower activity of AChEi detoxifying enzymes and genotypes conferring less-avid AChEi detoxification. AChEi exposure satisfies Hill's presumptive criteria for causality, suggesting this exposure may be causally linked to excess health problems in GWV. PMID:18332428

  5. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  6. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  7. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  8. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Schrage, William G.; Woodman, Christopher R.; Laughlin, M. Harold

    2002-01-01

    The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.

  9. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    PubMed Central

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  10. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors.

    PubMed

    Chen, Yao; Bian, Yaoyao; Sun, Yuan; Kang, Chen; Yu, Sheng; Fu, Tingming; Li, Wei; Pei, Yuqiong; Sun, Haopeng

    2016-01-01

    Inhibition of acetylcholinesterase (AChE) using small molecules is still one of the most successful therapeutic strategies in the treatment of Alzheimer's disease (AD). Previously we reported compound T5369186 with a core of quinolone as a new cholinesterase inhibitor. In the present study, in order to identify new cores for the designing of AChE inhibitors, we screened different derivatives of this core with the aim to identify the best core as the starting point for further optimization. Based on the results, we confirmed that only 4-aminoquinoline (compound 04 and 07) had cholinesterase inhibitory effects. Considering the simple structure and high inhibitory potency against AChE, 4-aminoquinoline provides a good starting core for further designing novel multifunctional AChEIs. PMID:27441112

  11. Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors

    PubMed Central

    Chen, Yao; Bian, Yaoyao; Sun, Yuan; Kang, Chen; Yu, Sheng; Fu, Tingming; Li, Wei

    2016-01-01

    Inhibition of acetylcholinesterase (AChE) using small molecules is still one of the most successful therapeutic strategies in the treatment of Alzheimer’s disease (AD). Previously we reported compound T5369186 with a core of quinolone as a new cholinesterase inhibitor. In the present study, in order to identify new cores for the designing of AChE inhibitors, we screened different derivatives of this core with the aim to identify the best core as the starting point for further optimization. Based on the results, we confirmed that only 4-aminoquinoline (compound 04 and 07) had cholinesterase inhibitory effects. Considering the simple structure and high inhibitory potency against AChE, 4-aminoquinoline provides a good starting core for further designing novel multifunctional AChEIs. PMID:27441112

  12. The linoleic acid derivative DCP-LA increases membrane surface localization of the α7 ACh receptor in a protein 4.1N-dependent manner.

    PubMed

    Kanno, Takeshi; Tsuchiya, Ayako; Tanaka, Akito; Nishizaki, Tomoyuki

    2013-03-01

    In yeast two-hybrid screening, protein 4.1N, a scaffolding protein, was identified as a binding partner of the α7 ACh (acetylcholine) receptor. For rat hippocampal slices, the linoleic acid derivative DCP-LA {8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid} increased the association of the α7 ACh receptor with 4.1N, and the effect was inhibited by GF109203X, an inhibitor of PKC (protein kinase C), although DCP-LA did not induce PKC phosphorylation of 4.1N. For PC-12 cells, the presence of the α7 ACh receptor in the plasma membrane fraction was significantly suppressed by knocking down 4.1N. DCP-LA increased the presence of the α7 ACh receptor in the plasma membrane fraction, and the effect was still inhibited by knocking down 4.1N. In the monitoring of α7 ACh receptor mobilization, DCP-LA enhanced signal intensities for the α7 ACh receptor at the membrane surface in PC-12 cells, which was clearly prevented by knocking down 4.1N. Taken together, the results of the present study show that 4.1N interacts with the α7 ACh receptor and participates in the receptor tethering to the plasma membrane. The results also indicate that DCP-LA increases membrane surface localization of the α7 ACh receptor in a 4.1N-dependent manner under the control of PKC, but without phosphorylating 4.1N. PMID:23256752

  13. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells.

    PubMed

    Jia, Yanfei; Sun, Haiji; Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin. PMID:26909550

  14. Inhibitor profile of bis(n)-tacrines and N-methylcarbamates on acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    PubMed Central

    Swale, Daniel R.; Tong, Fan; Temeyer, Kevin B.; Li, Andrew; Lam, Polo C-H.; Totrov, Maxim M.; Carlier, Paul R.; Pérez de León, Adalberto A.; Bloomquist, Jeffrey R.

    2013-01-01

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAChE) compared to human and bovine AChE, in order to identify divergent pharmacology that might lead to selective inhibitors. Results indicate that BmAChE has low sensitivity (IC50 = 200 μM) toward tacrine, a monovalent catalytic site inhibitor with sub micromolar blocking potency in all previous species tested. Similarly, a series of bis(n)-tacrine dimer series, bivalent inhibitors and peripheral site AChE inhibitors possess poor potency toward BmAChE. Molecular homology models suggest the rBmAChE enzyme possesses a W384F orthologous substitution near the catalytic site, where the larger tryptophan side chain obstructs the access of larger ligands to the active site, but functional analysis of this mutation suggests it only partially explains the low sensitivity to tacrine. In addition, BmAChE1 and PpAChE have low nanomolar sensitivity to some experimental carbamate anticholinesterases originally designed for control of the malaria mosquito, Anopheles gambiae. One experimental compound, 2-((2-ethylbutyl)thio)phenyl methylcarbamate, possesses >300-fold selectivity for BmAChE1 and PpAChE over human AChE, and a mouse oral LD50 of >1500 mg/kg, thus providing an excellent new lead for vector control. PMID:24187393

  15. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    PubMed

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  16. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms

    PubMed Central

    Spieker, Janine; Ackermann, Anica; Salfelder, Anika; Vogel-Höpker, Astrid; Layer, Paul G.

    2016-01-01

    Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS). Here, we first analyzed the expression of acetylcholinesterase (AChE) by IHC and of choline acetyltransferase (ChAT) by ISH in developing embryonic chicken limbs (stages HH17-37). AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER) and zone of polarizing activity (ZPA), respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB) and Alizarin red (AR) stainings, respectively. Both acetylcholine (ACh)- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein. PMID:27574787

  17. Screening of acetylcholinesterase inhibitors by CE after enzymatic reaction at capillary inlet.

    PubMed

    Martín-Biosca, Yolanda; Asensi-Bernardi, Lucia; Villanueva-Camañas, Rosa M; Sagrado, Salvador; Medina-Hernández, Maria J

    2009-05-01

    In this study the development of a procedure based on capillary electrophoresis after enzymatic reaction at capillary inlet methodology for the screening and in vitro evaluation of the biological activity of acetylcholinesterase (AChE) inhibitors is presented. The progress of the enzymatic reaction of the hydrolysis of acetylthiocholine at pH 8 in the presence of AChE and the inhibitor studied is determined by measuring at 230 nm the peak area of the reaction product thiocholine (TCh). In the method employed the capillary was first filled with 30 mM borate-phosphate buffer (pH 8.0) and subsequently, plugs of: (i) water, (ii) AChE solution, (iii) substrate solution with or without inhibitor, (iv) AChE solution, and (v) water, were hydrodynamically injected into the capillary, and were allowed to stand (and react) during a waiting period of 2 min. The applicability of the proposed methodology to estimate different kinetic parameters of interest such as inhibition constants K(i), identification of inhibitory action mechanism and IC(50), is evaluated using compounds with known activity, tacrine edrophonium, and neostigmine. The results obtained are compared with bibliographic values and confirm the effectiveness of the methodology proposed. Finally a method for AChE Inhibitor screening is proposed. PMID:19472276

  18. The Ache: Genocide Continues in Paraguay. IWGIA Document No. 17.

    ERIC Educational Resources Information Center

    Munzel, Mark

    In 1972, the Paraguayan Roman Catholic Church protested against the massacre of Indians in Paraguay. This was followed by further protests from Paraguayan intellectuals. These protests led to the removal of Jesus de Pereira, one of the executors of the official Ache policy. Thus, the critics were appeased. Since the beginning of 1973, new protests…

  19. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate.

    PubMed

    Yoshida, Ken-Ichi; Nakayama, Kiyoshi; Ohtsuka, Masami; Kuru, Noriko; Yokomizo, Yoshihiro; Sakamoto, Atsunobu; Takemura, Makoto; Hoshino, Kazuki; Kanda, Hiroko; Nitanai, Hironobu; Namba, Kenji; Yoshida, Kumi; Imamura, Yuichiro; Zhang, Jason Z; Lee, Ving J; Watkins, William J

    2007-11-15

    A series of 4-oxo-4H-pyrido[1,2-a]pyrimidine derivatives, substituted at the 2-position with piperidines bearing quaternary ammonium salt side chains, were synthesized and evaluated for their ability to potentiate the activity of the fluoroquinolone levofloxacin (LVFX) and the beta-lactam aztreonam (AZT) in Pseudomonas aeruginosa. Attachment of the charged entity using an N-ethylcarbamoyloxy linker led to the discovery of the highly soluble compound 22 (D13-9001), which maintained good potency in vitro and displayed excellent activity in vivo in a rat pneumonia model of P. aeruginosa. PMID:17869116

  20. A Novel Application of Multiscale Entropy in Electroencephalography to Predict the Efficacy of Acetylcholinesterase Inhibitor in Alzheimer's Disease

    PubMed Central

    Tsai, Ping-Huang; Chang, Shih-Chieh; Liu, Fang-Chun; Tsao, Jenho; Wang, Yung-Hung; Lo, Men-Tzung

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia. According to one hypothesis, AD is caused by the reduced synthesis of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) inhibitors are considered to be an effective therapy. For clinicians, however, AChE inhibitors are not a predictable treatment for individual patients. We aimed to disclose the difference by biosignal processing. In this study, we used multiscale entropy (MSE) analysis, which can disclose the embedded information in different time scales, in electroencephalography (EEG), in an attempt to predict the efficacy of AChE inhibitors. Seventeen newly diagnosed AD patients were enrolled, with an initial minimental state examination (MMSE) score of 18.8 ± 4.5. After 12 months of AChE inhibitor therapy, 7 patients were responsive and 10 patients were nonresponsive. The major difference between these two groups is Slope 2 (MSE6 to 20). The area below the receiver operating characteristic (ROC) curve of Slope 2 is 0.871 (95% CI = 0.69–1). The sensitivity is 85.7% and the specificity is 60%, whereas the cut-off value of Slope 2 is −0.024. Therefore, MSE analysis of EEG signals, especially Slope 2, provides a potential tool for predicting the efficacy of AChE inhibitors prior to therapy. PMID:26120358

  1. A Novel Application of Multiscale Entropy in Electroencephalography to Predict the Efficacy of Acetylcholinesterase Inhibitor in Alzheimer's Disease.

    PubMed

    Tsai, Ping-Huang; Chang, Shih-Chieh; Liu, Fang-Chun; Tsao, Jenho; Wang, Yung-Hung; Lo, Men-Tzung

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia. According to one hypothesis, AD is caused by the reduced synthesis of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) inhibitors are considered to be an effective therapy. For clinicians, however, AChE inhibitors are not a predictable treatment for individual patients. We aimed to disclose the difference by biosignal processing. In this study, we used multiscale entropy (MSE) analysis, which can disclose the embedded information in different time scales, in electroencephalography (EEG), in an attempt to predict the efficacy of AChE inhibitors. Seventeen newly diagnosed AD patients were enrolled, with an initial minimental state examination (MMSE) score of 18.8 ± 4.5. After 12 months of AChE inhibitor therapy, 7 patients were responsive and 10 patients were nonresponsive. The major difference between these two groups is Slope 2 (MSE6 to 20). The area below the receiver operating characteristic (ROC) curve of Slope 2 is 0.871 (95% CI = 0.69-1). The sensitivity is 85.7% and the specificity is 60%, whereas the cut-off value of Slope 2 is -0.024. Therefore, MSE analysis of EEG signals, especially Slope 2, provides a potential tool for predicting the efficacy of AChE inhibitors prior to therapy. PMID:26120358

  2. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody.

    PubMed

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-05-15

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  3. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody

    PubMed Central

    Morsch, Marco; Reddel, Stephen W; Ghazanfari, Nazanin; Toyka, Klaus V; Phillips, William D

    2013-01-01

    In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft. PMID:23440963

  4. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator.

    PubMed

    Hamouda, Ayman K; Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B

    2016-05-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR. PMID:26976945

  5. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II).

    PubMed

    Hung, Tran Manh; Lee, Joo Sang; Chuong, Nguyen Ngoc; Kim, Jeong Ah; Oh, Sang Ho; Woo, Mi Hee; Choi, Jae Sue; Min, Byung Sun

    2015-10-01

    Acetylcholinesterase (AChE) inhibitors increase the availability of acetylcholine in central cholinergic synapses and are the most promising drugs currently available for the treatment of Alzheimer's disease (AD). Our screening study indicated that the water fraction of the methanolic extract of Lycopodiella cernua (L.) Pic. Serm. significantly inhibited AChE in vitro. Bioassay-guided fractionation led to the isolation of a new lignan glycoside, lycocernuaside A (12), and fourteen known compounds (1-11 and 13-15). Compound 7 exhibited the most potent AChE inhibitory activity with an IC50 value of 0.23 μM. Compound 15 had the most potent inhibitory activity against BChE and BACE1 with IC50 values of 0.62 and 2.16 μM, respectively. Compounds 4 and 7 showed mixed- and competitive-type AChE inhibition. Compound 7 noncompetitively inhibited BChE whereas 15 showed competitive and 8, 13, and 14 showed mixed-type inhibition. The docking results for complexes with AChE or BChE revealed that inhibitors 4, 7, and 15 stably positioned themselves in several pocket/catalytic domains of the AChE and BChE residues. PMID:26297990

  6. Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees

    PubMed Central

    Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.

    2013-01-01

    Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834

  7. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. PMID:27343862

  8. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.

    PubMed

    Manthey, Arthur A

    2006-06-01

    During prolonged exposure of postjunctional nicotinic acetylcholine receptors (nAChR) of skeletal muscle to acetylcholine (ACh), agonist-activated nAChR (nAChRa) gradually fall into a refractory "desensitized" state (nAChRd), which no longer supports the high-conductance channel openings characteristic of the initially active nAChRa. In the present study, the possibility was examined that nAChRd, rather than simply constituting a passive "trap" for nAChRa, may actively promote further conversions of nAChRa to nAChRd in a formally autocatalytic manner. Single-ion whole-cell voltage-clamp currents (Na+ and Li+ in separate trials) were measured using two KCl-filled capillary electrodes (5-10 MOmega) implanted at the postjunctional locus of single frog skeletal muscle fibers (Rana pipiens) equilibrated in 30 mM K+ bath media to eliminate mechanical responses. Various nAChR agonists (carbamylcholine, acetylcholine, suberyldicholine) at different concentrations were delivered focally by positive pressure microjet. It was found that the decline of postmaximal agonist-induced currents under these different conditions (driven by the growth of the subpool of nAChRd) consistently followed an autocatalytic logistic rule modified for population growth of fixed units in a planar array: [Formula: see text] (where y represents the remaining agonist-induced current at time t, A=initial maximum current, and n is a constant). Some further experimental features that might result from a self-promoting growth of nAChRd were also tested, namely, (1) the effect of increased nAChRa and (2) the effect of increased nAChRd. Increase in agonist concentration of the superfusate, by increasing the planar density of active nAChRa at the outset, should enhance the probability of autocatalytic interactions with emerging nAChRd, hence, the rate of decline of agonist-induced current, and this was a consistent finding under all conditions tested. Raising the initial level of desensitized nAChRd by

  9. Synthesis and evaluation of substituted 4-methyl-2-oxo-2H-chromen-7-yl phenyl carbamates as potent acetylcholinesterase inhibitors and anti- amnestic agents.

    PubMed

    Anand, Preet; Singh, Baldev

    2013-08-01

    The study aimed to synthesize and evaluate substituted 4-methyl-2-oxo-2H-chromen-7-yl phenylcarbamates as potent acetylcholinesterase (AChE) inhibitors and anti-amnestic agents. The compounds were evaluated for AChE and butyrylcholinesterase (BuChE) inhibitory activity in rat brain homogenate and plasma, respectively. The most potent test compound 4d was evaluated for memory testing in scopolamine-induced amnesia. The phenylcarbamate substituted coumarins (4a-4h) demonstrated more potent AChE inhibitory as compared to parent 7-hydroxy-4-methylcoumarin. The introduction of phenylcarbamate moiety to coumarin template also significantly increased BuChE inhibitory activity, albeit less than AChE inhibitory activity with approximate BuChE/AChE selectivity ratio of 20. The compound 4d displayed the most potent AChE inhibitory activity with IC50 = 13.5 ± 1.7 nM, along with amelioration of amnesia in mice in terms of restoration of time spent in target quadrant and escap latency time. It is concluded that carbamate derivatives of coumarin may be employed as potential AChE inhibitors and anti-amnestic agents. PMID:23072555

  10. Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies.

    PubMed

    García, Manuela E; Borioni, José L; Cavallaro, Valeria; Puiatti, Marcelo; Pierini, Adriana B; Murray, Ana P; Peñéñory, Alicia B

    2015-12-01

    The investigation of natural products in medicinal chemistry is essential today. In this context, acetylcholinesterase (AChE) inhibitors comprise one type of the compounds most actively studied in the search for an effective treatment of symptoms of Alzheimer's disease. This work describes the isolation of a natural compound, solanocapsine, the preparation of its chemical derivatives, the evaluation of AChE inhibitory activity, and the structure-activity analysis of relevant cases. The influence of structural variations on the inhibitory potency was carefully investigated by modifying different reactive parts of the parent molecule. A theoretical study was also carried out into the binding mode of representative compounds to the enzyme through molecular modeling. The biological properties of the series were investigated. Through this study valuable information was obtained of steroidal alkaloid-type compounds as a starting point for the synthesis of AChE inhibitors. PMID:26362598

  11. Applications of Integrated Data Mining Methods to Exploring Natural Product Space for Acetylcholinesterase Inhibitors

    PubMed Central

    Schuster, Daniela; Kern, Lisa; Hristozov, Dimitar P.; Terfloth, Lothar; Bienfait, Bruno; Laggner, Christian; Kirchmair, Johannes; Grienke, Ulrike; Wolber, Gerhard; Langer, Thierry; Stuppner, Hermann; Gasteiger, Johann; Rollinger, Judith M.

    2013-01-01

    Nature, especially the plant kingdom, is a rich source for novel bioactive compounds that can be used as lead compounds for drug development. In order to exploit this resource, the two neural network-based virtual screening techniques novelty detection with self-organizing maps (SOMs) and counterpropagation neural network were evaluated as tools for efficient lead structure discovery. As application scenario, significant descriptors for acetylcholinesterase (AChE) inhibitors were determined and used for model building, theoretical model validation, and virtual screening. Top-ranked virtual hits from both approaches were docked into the AChE binding site to approve the initial hits. Finally, in vitro testing of selected compounds led to the identification of forsythoside A and (+)-sesamolin as novel AChE inhibitors. PMID:20214575

  12. 77 FR 40148 - Proposed Collection of Information: ACH Vendor/Miscellaneous Payment Enrollment Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... Fiscal Service Proposed Collection of Information: ACH Vendor/Miscellaneous Payment Enrollment Form... comments concerning the SF 3881 ``ACH Vendor/Miscellaneous Payment Enrollment Form.'' DATES: Written... solicits comments on the collection of information described below: Title: ACH Vendor/Miscellaneous...

  13. Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say).

    PubMed

    Malekmohammadi, M; Galehdari, H

    2016-01-01

    In the present study, we demonstrated the use and optimization of the tetra-primer ARMS-PCR procedure to detect and analyze the frequency of the R30K and I392T mutations in resistant field populations of CPB. The R30K mutation was detected in 72%, 84%, 52% and 64% of Bahar, Dehpiaz, Aliabad and Yengijeh populations, respectively. Overall frequencies of the I392T mutation were 12%, 8% and 16% of Bahar, Aliabad and Yengijeh populations, respectively. No I392T point mutation was found among samples from Dehpiaz field population. Moreover, only 31% and 2% of samples from the resistant field populations were homozygous for R30K and I392T mutations, respectively. No individual simultaneously had both I392T and S291G/R30K point mutations. The incidence of individuals with both S291G and R30K point mutations in the samples from Bahar, Dehpiaz, Aliabad, and Yengijeh populations were 31.5%, 44.7%, 41.6%, and 27.3% respectively. Genotypes determined by the tetra-primer ARMS-PCR method were consistent with those determined by PCR sequencing. There was no significant correlation between the mutation frequencies and resistance levels in the resistant populations, indicating that other mutations may contribute to this variation. Polymorphism in the partial L. decemlineata cDNA AChE gene Ldace2 of four field populations was identified by direct sequencing of PCR-amplified fragments. Among 45 novel mutations detected in this study, T29P mutation was found across all four field populations that likely contribute to the AChE insensitivity. Site-directed mutagenesis and protein expression experiments are needed for a more complete evaluation. PMID:26778439

  14. Development and validation of a sample stabilization strategy and a UPLC-MS/MS method for the simultaneous quantitation of acetylcholine (ACh), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF).

    PubMed

    Zhang, Yanhua; Tingley, F David; Tseng, Elaine; Tella, Max; Yang, Xin; Groeber, Elizabeth; Liu, Jianhua; Li, Wenlin; Schmidt, Christopher J; Steenwyk, Rick

    2011-07-15

    A UPLC-MS/MS assay was developed and validated for simultaneous quantification of acetylcholine (ACh), histamine (HA), tele-methylhistamine (t-mHA), and tele-methylimidazolacetic acid (t-MIAA) in rat cerebrospinal fluid (CSF). The biological stability of ACh in rat CSF was investigated. Following fit-for-purpose validation, the method was applied to monitor the drug-induced changes in ACh, HA, t-mHA, and t-MIAA in rat CSF following administration of donepezil or prucalopride. The quantitative method utilizes hydrophilic interaction chromatography (HILIC) Core-Shell HPLC column technology and a UPLC system to achieve separation with detection by positive ESI LC-MS/MS. This UPLC-MS/MS method does not require extraction or derivatization, utilizes a stable isotopically labeled internal standard (IS) for each analyte, and allows for rapid throughput with a 4 min run time. Without an acetylcholinesterase (AChE) inhibitor present, ACh was found to have 1.9±0.4 min in vitro half life in rat CSF. Stability studies and processing modification, including the use of AChE inhibitor eserine, extended this half life to more than 60 min. The UPLC-MS/MS method, including stabilization procedure, was validated over a linear concentration range of 0.025-5 ng/mL for ACh and 0.05-10 ng/mL for HA, t-mHA, and t-MIAA. The intra-run precision and accuracy for all analytes were 1.9-12.3% CV and -10.2 to 9.4% RE, respectively, while inter-run precision and accuracy were 4.0-16.0% CV and -5.3 to 13.4% RE, respectively. By using this developed and validated method, donepezil caused increases in ACh levels at 0.5, 1, 2, and 4h post dose as compared to the corresponding vehicle group, while prucalopride produced approximately 1.6- and 3.1-fold increases in the concentrations of ACh and t-mHA at 1h post dose, respectively, compared to the vehicle control. Overall, this methodology enables investigations into the use of CSF ACh and HA as biomarkers in the study of these neurotransmitter systems

  15. Discovery of butyrylcholinesterase inhibitors among derivatives of azaphenothiazines.

    PubMed

    Lodarski, Krzysztof; Jończyk, Jakub; Guzior, Natalia; Bajda, Marek; Gładysz, Joanna; Walczyk, Joanna; Jeleń, Małgorzata; Morak-Młodawska, Beata; Pluta, Krystian; Malawska, Barbara

    2015-02-01

    The study presents the discovery of novel butyrylcholinesterase (BuChE) inhibitors among derivatives of azaphenothiazines by application of in silico and in vitro screening methods. From an in-house library of compounds, 143 heterocyclic molecules derived from the azaphenothiazine scaffold were chosen for virtual screening. Based on results of the docking procedure, 15 compounds were identified as exhibiting the best fit for the two screening complexes (ligand - AChE and ligand - BuChE). Five compounds displayed moderate AChE and good BuChE inhibitory activity at screening concentrations of 10 µM. The IC50 values for active BuChE inhibitors were in the 11.8-122.2 nM range. Three of the most active inhibitors are tetra- or pentacyclic derivatives of azaphenothiazines with the same N-methyl-2-piperidinethyl substituent. PMID:24666296

  16. Fluorescence Quenching Determination of Uranium (VI) Binding Properties by Two Functional Proteins: Acetylcholinesterase (AChE) and Vitellogenin (Vtg).

    PubMed

    Coppin, Frédéric; Michon, Jérôme; Garnier, Cédric; Frelon, Sandrine

    2015-05-01

    The interactions between uranium and two functional proteins (AChE and Vtg) were investigated using fluorescence quenching measurements. The combined use of a microplate spectrofluorometer and logarithmic additions of uranium into protein solutions allowed us to define the fluorescence quenching over a wide range of [U]/[Pi] ratios (from 1 to 3235) at physiologically relevant conditions of pH. Results showed that fluorescence from the two functional proteins was quenched by UO2 (2+). Stoichiometry reactions, fluorescence quenching mechanisms and complexing properties of proteins, i.e. binding constants and binding sites densities, were determined using classic fluorescence quenching methods and curve-fitting software (PROSECE). It was demonstrated that in our test conditions, the protein complexation by uranium could be simulated by two specific sites (L1 and L2). The obtained complexation constant values are log K1 = 5.7 (±1.0), log K2 = 4.9 (±1.1); L1 = 83 (±2), L2 = 2220 (±150) for U(VI) - Vtg and log K1 = 8.1 (±0.9), log K2 = 6.6 (±0.5), L1 = 115 (±16), L2 = 530 (±23) for U(VI)-AChE (Li is expressed in mol/mol of protein). PMID:25764300

  17. WblAch, a Pivotal Activator of Natamycin Biosynthesis and Morphological Differentiation in Streptomyces chattanoogensis L10, Is Positively Regulated by AdpAch

    PubMed Central

    Yu, Pin; Liu, Shui-Ping; Bu, Qing-Ting; Zhou, Zhen-Xing; Zhu, Zhen-Hong; Huang, Fang-Liang

    2014-01-01

    Detailed mechanisms of WhiB-like (Wbl) proteins involved in antibiotic biosynthesis and morphological differentiation are poorly understood. Here, we characterize the role of WblAch, a Streptomyces chattanoogensis L10 protein belonging to this superfamily. Based on DNA microarray data and verified by real-time quantitative PCR (qRT-PCR), the expression of wblAch was shown to be positively regulated by AdpAch. Gel retardation assays and DNase I footprinting experiments showed that AdpAch has specific DNA-binding activity for the promoter region of wblAch. Gene disruption and genetic complementation revealed that WblAch acts in a positive manner to regulate natamycin production. When wblAch was overexpressed in the wild-type strain, the natamycin yield was increased by ∼30%. This provides a strategy to generate improved strains for natamycin production. Moreover, transcriptional analysis showed that the expression levels of whi genes (including whiA, whiB, whiH, and whiI) were severely depressed in the ΔwblAch mutant, suggesting that WblAch plays a part in morphological differentiation by influencing the expression of the whi genes. PMID:25172865

  18. Steric and Dynamic Parameters Influencing In Situ Cycloadditions to Form Triazole Inhibitors with Crystalline Acetylcholinesterase.

    PubMed

    Bourne, Yves; Sharpless, K Barry; Taylor, Palmer; Marchot, Pascale

    2016-02-10

    Ligand binding sites on acetylcholinesterase (AChE) comprise an active center, at the base of a deep and narrow gorge lined by aromatic residues, and a peripheral site at the gorge entry. These features launched AChE as a reaction vessel for in situ click-chemistry synthesis of high-affinity TZ2PA6 and TZ2PA5 inhibitors, forming a syn-triazole upon cycloaddition within the gorge from alkyne and azide reactants bound at the two sites, respectively. Subsequent crystallographic analyses of AChE complexes with the TZ2PA6 regioisomers demonstrated that syn product association is accompanied by side chain reorganization within the gorge, freezing-in-frame a conformation distinct from an unbound state or anti complex. To correlate inhibitor dimensions with reactivity and explore whether in situ cycloaddition could be accelerated in a concentrated, crystalline template, we developed crystal-soaking procedures and solved structures of AChE complexes with the TZ2PA5 regioisomers and their TZ2/PA5 precursors (2.1-2.7 Å resolution). The structures reveal motions of residue His447 in the active site and, unprecedentedly, residue Tyr341 at the gorge mouth, associated with TZ2 binding and coordinated with other side chain motions in the gorge that may guide AChE toward a transient state favoring syn-triazole formation. Despite precursor binding to crystalline AChE, coupling of rapid electric field fluctuations in the gorge with proper alignments of the azide and alkyne reactants to form the triazole remains a likely limiting step. These observations point to a prime requirement for AChE to interconvert dynamically between sequential conformations to promote favorable electrostatic factors enabling a productive apposition of the reactants for reactivity. PMID:26731630

  19. The natural product dihydrotanshinone I provides a prototype for uncharged inhibitors that bind specifically to the acetylcholinesterase peripheral site with nanomolar affinity.

    PubMed

    Beri, Veena; Wildman, Scott A; Shiomi, Kazuro; Al-Rashid, Ziyad F; Cheung, Jonah; Rosenberry, Terrone L

    2013-10-22

    Cholinergic synaptic transmission often requires extremely rapid hydrolysis of acetylcholine by acetylcholinesterase (AChE). AChE is inactivated by organophosphates (OPs) in chemical warfare nerve agents. The resulting accumulation of acetylcholine disrupts cholinergic synaptic transmission and can lead to death. A potential long-term strategy for preventing AChE inactivation by OPs is based on evidence that OPs must pass through a peripheral site or P-site near the mouth of the AChE active site gorge before reacting with a catalytic serine in an acylation site or A-site at the base of the gorge. An ultimate goal of this strategy is to design compounds that bind tightly at or near the P-site and exclude OPs from the active site while interfering minimally with the passage of acetylcholine. However, to target the AChE P-site with ligands and potential drugs that selectively restrict access, much more information must be gathered about the structure-activity relationships of ligands that bind specifically to the P-site. We apply here an inhibitor competition assay that can correctly determine whether an AChE inhibitor binds to the P-site, the A-site, or both sites. We have used this assay to examine three uncharged, natural product inhibitors of AChE, including aflatoxin B1, dihydrotanshinone I, and territrem B. The first two of these inhibitors are predicted by the competition assay to bind selectively to the P-site, while territrem B is predicted to span both the P- and A-sites. These predictions have recently been confirmed by X-ray crystallography. Dihydrotanshinone I, with an observed binding constant (KI) of 750 nM, provides a good lead compound for the development of high-affinity, uncharged inhibitors with specificity for the P-site. PMID:24040835

  20. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies

    PubMed Central

    2011-01-01

    Background Alzheimer's disease (AD) is the most common cause of dementia characterized by progressive cognitive impairment in the elderly people. The most dramatic abnormalities are those of the cholinergic system. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system, and hence, inhibition of AChE has emerged as one of the most promising strategies for the treatment of AD. Methods In this study, we suggest a workflow for the identification and prioritization of potential compounds targeted against AChE. In order to elucidate the essential structural features for AChE, three-dimensional pharmacophore models were constructed using Discovery Studio 2.5.5 (DS 2.5.5) program based on a set of known AChE inhibitors. Results The best five-features pharmacophore model, which includes one hydrogen bond donor and four hydrophobic features, was generated from a training set of 62 compounds that yielded a correlation coefficient of R = 0.851 and a high prediction of fit values for a set of 26 test molecules with a correlation of R2 = 0.830. Our pharmacophore model also has a high Güner-Henry score and enrichment factor. Virtual screening performed on the NCI database obtained new inhibitors which have the potential to inhibit AChE and to protect neurons from Aβ toxicity. The hit compounds were subsequently subjected to molecular docking and evaluated by consensus scoring function, which resulted in 9 compounds with high pharmacophore fit values and predicted biological activity scores. These compounds showed interactions with important residues at the active site. Conclusions The information gained from this study may assist in the discovery of potential AChE inhibitors that are highly selective for its dual binding sites. PMID:21251245

  1. N-Ethylmaleimide Dissociates α7 ACh Receptor from a Complex with NSF and Promotes Its Delivery to the Presynaptic Membrane.

    PubMed

    Nishizaki, Tomoyuki

    2016-08-01

    N-Ethylmaleimide (NEM)-sensitive factor (NSF) associates with soluble NSF attachment protein (SNAP), that binds to SNAP receptors (SNAREs) including syntaxin, SNAP25, and synaptobrevin. The complex of NSF/SNAP/SNAREs plays a critical role in the regulation of vesicular traffic. The present study investigated NEM-regulated α7 ACh receptor translocation. NSF associated with β-SNAP and the SNAREs syntaxin 1 and synaptobrevin 2 in the rat hippocampus. NSF also associated with the α7 ACh receptor subunit, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, and the γ-aminobutyric acid A (GABAA) receptor γ2 subunit. NEM, an inhibitor of NSF, significantly dissociated the α7 ACh receptor subunit from a complex with NSF and increased cell surface localization of the receptor subunit, but such effect was not obtained with the GluA1, GluA2 or γ2 subunits. NEM, alternatively, dissociated synaptobrevin 2 from an assembly of NSF/β-SNAP/syntaxin 1/synaptobrevin 2. NEM significantly increased the rate of nicotine-triggered AMPA receptor-mediated miniature excitatory postsynaptic currents, without affecting the amplitude, in rat hippocampal slices. The results of the present study indicate that NEM releases the α7 ACh receptor subunit and synaptobrevin 2 from an assembly of α7 ACh receptor subunit/NSF/β-SNAP/syntaxin 1/synaptobrevin 2, thereby promoting delivery of the α7 ACh receptor subunit to presynaptic membrane. PMID:27105867

  2. Designing Second Generation Anti-Alzheimer Compounds as Inhibitors of Human Acetylcholinesterase: Computational Screening of Synthetic Molecules and Dietary Phytochemicals

    PubMed Central

    Amat-ur-Rasool, Hafsa; Ahmed, Mehboob

    2015-01-01

    Alzheimer's disease (AD), a big cause of memory loss, is a progressive neurodegenerative disorder. The disease leads to irreversible loss of neurons that result in reduced level of acetylcholine neurotransmitter (ACh). The reduction of ACh level impairs brain functioning. One aspect of AD therapy is to maintain ACh level up to a safe limit, by blocking acetylcholinesterase (AChE), an enzyme that is naturally responsible for its degradation. This research presents an in-silico screening and designing of hAChE inhibitors as potential anti-Alzheimer drugs. Molecular docking results of the database retrieved (synthetic chemicals and dietary phytochemicals) and self-drawn ligands were compared with Food and Drug Administration (FDA) approved drugs against AD as controls. Furthermore, computational ADME studies were performed on the hits to assess their safety. Human AChE was found to be most approptiate target site as compared to commonly used Torpedo AChE. Among the tested dietry phytochemicals, berberastine, berberine, yohimbine, sanguinarine, elemol and naringenin are the worth mentioning phytochemicals as potential anti-Alzheimer drugs The synthetic leads were mostly dual binding site inhibitors with two binding subunits linked by a carbon chain i.e. second generation AD drugs. Fifteen new heterodimers were designed that were computationally more efficient inhibitors than previously reported compounds. Using computational methods, compounds present in online chemical databases can be screened to design more efficient and safer drugs against cognitive symptoms of AD. PMID:26325402

  3. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity.

    PubMed

    Richendrfer, Holly; Creton, Robbert

    2015-07-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  4. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    PubMed Central

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  5. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. PMID:26961950

  6. Medicinal studies of dimeric phenols with multiple quaternary-ammonium pendant arms.

    PubMed

    Tian, Tian; Weng, Xiao-Cheng; Song, Yang; Zhang, Li-Xia; Zhou, Xiang; Wang, Yi

    2007-05-01

    A series of biphenol-derived quaternary ammonium salts, originally developed as DNA-cross-linking agents, and carrying either two (i.e., 1) or four (i.e., 2) net positive charges, were investigated for their in vitro DNA-transcription- and acetylcholinesterase (AChE)-inhibitory activities. The effects of charge and type of linker between the two phenolic residues were systematically investigated. Several compounds showed good activities in both tests, which makes them potential lead candidates for drug design. PMID:17511008

  7. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration.

    PubMed

    del Pino, Javier; Moyano, Paula; Anadon, María José; García, José Manuel; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2015-10-01

    Chlorpyrifos (CPF) is one of the most widely used organophosphates insecticides that has been reported to induce cognitive disorders both after acute and repeated administration similar to those induced in Alzheimer's disease (AD). However, the mechanisms through which it induces these effects are unknown. On the other hand, the cholinergic system, mainly basal forebrain cholinergic neurons, is involved in learning and memory regulation, and an alteration of cholinergic transmission or/and cholinergic cell loss could induce these effects. In this regard, it has been reported that CPF can affect cholinergic transmission, and alter AChE variants, which have been shown to be related with basal forebrain cholinergic neuronal loss. According to these data, we hypothesized that CPF could induce basal forebrain cholinergic neuronal loss through cholinergic transmission and AChE variants alteration. To prove this hypothesis, we evaluated in septal SN56 basal forebrain cholinergic neurons, the CPF toxic effects after 24h and 14 days exposure on neuronal viability and the cholinergic mechanisms related to it. This study shows that CPF impaired cholinergic transmission, induced AChE inhibition and, only after long-term exposure, increased CHT expression, which suggests that acetylcholine levels alteration could be mediated by these actions. Moreover, CPF induces, after acute and long-term exposure, cell death in cholinergic neurons in the basal forebrain and this effect is independent of AChE inhibition and acetylcholine alteration, but was mediated partially by AChE variants alteration. Our present results provide a new understanding of the mechanisms contributing to the harmful effects of CPF on neuronal function and viability, and the possible relevance of CPF in the pathogenesis of neurodegenerative diseases. PMID:26210949

  8. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs)

    PubMed Central

    Abraham, Nikita; Paul, Blessy; Ragnarsson, Lotten; Lewis, Richard J.

    2016-01-01

    Nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP). AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli) expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies. PMID:27304486

  9. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway.

    PubMed

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  10. Phe362Tyr in AChE: A Major Factor Responsible for Azamethiphos Resistance in Lepeophtheirus salmonis in Norway

    PubMed Central

    Kaur, Kiranpreet; Jansen, Peder Andreas; Aspehaug, Vidar Teis; Horsberg, Tor Einar

    2016-01-01

    Organophosphates (OP) are one of the major treatments used against the salmon louse (Lepeophtherius salmonis) in Norwegian salmonid aquaculture. The use of OP since the late 1970s has resulted in widespread resistant parasites. Recently, we reported a single mutation (Phe362Tyr) in acetylcholinesterase (AChE) as the major mechanism behind resistance in salmon louse towards OP. The present study was carried out to validate this mechanism at the field level. A total of 6658 salmon louse samples were enrolled from 56 different fish farms across the Norwegian coast, from Vest Agder in the south to Finnmark in the north. All the samples were genotyped using a TaqMan probe assay for the Phe362Tyr mutation. A strong association was observed between areas with frequent use of the OP (azamethiphos) and the Phe362Tyr mutation. This was confirmed at 15 sites where results from independently conducted bioassays and genotyping of parasites correlated well. Furthermore, genotyping of surviving and moribund parasites from six bioassay experiments demonstrated a highly significant negative correlation between the frequency of resistance alleles and the probability of dying when exposed to azamethiphos in a bioassay. Based on these observations, we could strongly conclude that the Phe362Tyr mutation is a major factor responsible for OP resistance in salmon louse on Norwegian fish farms. PMID:26882536

  11. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer's disease: acetylcholinesterase inhibitors.

    PubMed

    Russo, P; Frustaci, A; Del Bufalo, A; Fini, M; Cesario, A

    2013-01-01

    The leading Alzheimer's disease (AD) therapeutics to date involves inhibitors of acetylcholinesterase (AChE), which should, in principle, elevate cholinergic signaling and limit inflammation. In spite of the effectiveness in 20%-30% of AD patients, more attention has been paid to find new anti-AChE agents from medicinal plants. Galanthamine, contained in the bulbs and flowers of Galanthus and related genera like Narcissus, represents a good example. The aim of this study is to review the role of possible AChE inhibitors (AChEI) present in plants traditionally used in European medicine for improving memory. Starting from Galanthamine, properties of Melissa species, Salvia officinalis, Arnica chamissonis and Ruta graveolens are discussed to point to the role of these plants as potential sources for the development of therapeutic agents for AD. PMID:23210783

  12. Dihydroagarofuranoid Sesquiterpenes as Acetylcholinesterase Inhibitors from Celastraceae Plants: Maytenus disticha and Euonymus japonicus.

    PubMed

    Alarcón, Julio; Cespedes, Carlos L; Muñoz, Evelyn; Balbontin, Cristian; Valdes, Francisco; Gutierrez, Margarita; Astudillo, Luis; Seigler, David S

    2015-12-01

    Natural cholinesterase inhibitors have been found in many biological sources. Nine compounds with agarofuran (epoxyeudesmane) skeletons were isolated from seeds and aerial parts of Maytenus disticha and Euonymus japonicus. The identification and structural elucidation of compounds were based on spectroscopic data analyses. All compounds had inhibitory acetylcholinesterase (AChE) activity. These natural compounds, which possessed mixed or uncompetitive mechanisms of inhibitory activity against AChE, may be considered as models for the design and development of new naturally occurring drugs for management strategies for neurodegenerative diseases. This is the first report of these chemical structures for seeds of M. disticha. PMID:26545100

  13. Acetylcholinesterase Inhibitors with Photoswitchable Inhibition of β-Amyloid Aggregation

    PubMed Central

    2014-01-01

    Photochromic cholinesterase inhibitors were obtained from cis-1,2-α-dithienylethene-based compounds by incorporating one or two aminopolymethylene tacrine groups. All target compounds are potent acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors in the nanomolar concentration range. Compound 11b bearing an octylene linker exhibited interactions with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Yet upon irradiation with light, the mechanism of interaction varied from one photochromic form to another, which was investigated by kinetic studies and proved “photoswitchable”. The AChE-induced β-amyloid (Aβ) aggregation assay gave further experimental support to this finding: Aβ1–40 aggregation catalyzed by the PAS of AChE might be inhibited by compound 11b in a concentration-dependent manner and seems to occur only with one photochromic form. Computational docking studies provided potential binding modes of the compound. Docking studies and molecular dynamics (MD) simulations for the ring-open and -closed form indicate a difference in binding. Although both forms can interact with the PAS, more stable interactions are observed for the ring-open form based upon stabilization of a water molecule network within the enzyme, whereas the ring-closed form lacks the required conformational flexibility for an analogous binding mode. The photoswitchable inhibitor identified might serve as valuable molecular tool to investigate the different biological properties of AChE as well as its role in pathogenesis of AD in in vitro assays. PMID:24628027

  14. 1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.

    PubMed

    Di Pietro, Ornella; Viayna, Elisabet; Vicente-García, Esther; Bartolini, Manuela; Ramón, Rosario; Juárez-Jiménez, Jordi; Clos, M Victòria; Pérez, Belén; Andrisano, Vincenza; Luque, F Javier; Lavilla, Rodolfo; Muñoz-Torrero, Diego

    2014-02-12

    A series of 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridines differently substituted at positions 1, 5, and 9 have been designed from the pyrano[3,2-c]quinoline derivative 1, a weak inhibitor of acetylcholinesterase (AChE) with predicted ability to bind to the AChE peripheral anionic site (PAS), at the entrance of the catalytic gorge. Fourteen novel benzonaphthyridines have been synthesized through synthetic sequences involving as the key step a multicomponent Povarov reaction between an aldehyde, an aniline and an enamine or an enamide as the activated alkene. The novel compounds have been tested against Electrophorus electricus AChE (EeAChE), human recombinant AChE (hAChE), and human serum butyrylcholinesterase (hBChE), and their brain penetration has been assessed using the PAMPA-BBB assay. Also, the mechanism of AChE inhibition of the most potent compounds has been thoroughly studied by kinetic studies, a propidium displacement assay, and molecular modelling. We have found that a seemingly small structural change such as a double O → NH bioisosteric replacement from the hit 1 to 16a results in a dramatic increase of EeAChE and hAChE inhibitory activities (>217- and >154-fold, respectively), and in a notable increase in hBChE inhibitory activity (>11-fold), as well. An optimized binding at the PAS besides additional interactions with AChE midgorge residues seem to account for the high hAChE inhibitory potency of 16a (IC50 = 65 nM), which emerges as an interesting anti-Alzheimer lead compound with potent dual AChE and BChE inhibitory activities. PMID:24389509

  15. Marine natural products as acetylcholinesterase inhibitor: comparative quantum mechanics and molecular docking study.

    PubMed

    Farrokhnia, Maryam; Nabipour, Iraj

    2014-03-01

    Alzheimer's disease (AD) is the most common form of dementia which affects the elderly population throughout the world. The inhibition of acetylcholinesterase (AChE) has appeared as one of the most promising strategies for the AD treatment. In this study, the density functional theory and molecular docking studies have been carried out on seven halogenated sesquiterpenes derived from the Persian Gulf sea hare, Aplysia dactylomela, to reveal their electronic, structural and chemical properties. Moreover, influences of these properties on their AChE-inhibition properties have been investigated theoretically. The results indicate that these compounds have several interactions with important residues of AChE active sites. Three of the investigated molecules correlate better to well-known AD drugs such as huperzine A, galanthamine and donepezil which represent possible AChE inhibitors against Alzheimer disease. In conclusion, the information obtained from this theoretical study may aid in the discovery of new potential AChE inhibitors with marine origin. PMID:24712383

  16. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  17. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  18. Clinical application of clustered-AChR for the detection of SNMG

    PubMed Central

    Zhao, Guang; Wang, Xiaoqing; Yu, Xiaowen; Zhang, Xiutian; Guan, Yangtai; Jiang, Jianming

    2015-01-01

    Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG. PMID:26068604

  19. Synthesis and biological activities of indolizine derivatives as alpha-7 nAChR agonists.

    PubMed

    Xue, Yu; Tang, Jingshu; Ma, Xiaozhuo; Li, Qing; Xie, Bingxue; Hao, Yuchen; Jin, Hongwei; Wang, Kewei; Zhang, Guisen; Zhang, Liangren; Zhang, Lihe

    2016-06-10

    Human α7 nicotinic acetylcholine receptor (nAChR) is a promising therapeutic target for the treatment of schizophrenia accompanied with cognitive impairment. Herein, we report the synthesis and agonistic activities of a series of indolizine derivatives targeting to α7 nAChR. The results show that all synthesized compounds have affinity to α7 nAChR and some give strong agonistic activity, particularly most active agonists show higher potency than control EVP-6124. The docking and structure-activity relationship studies provide insights to develop more potent novel α7 nAChR agonists. PMID:26994846

  20. Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations

    PubMed Central

    Pecic, Stevan; McAnuff, Marie A.; Harding, Wayne W.

    2015-01-01

    Nantenine, as well as a number of flexible analogs, were evaluated for acetylcholinesterase (AChE) inhibitory activity in microplate spectrophotometric assays based on Ellman’s method. It was found that the rigid aporphine core of nantenine is an important structural requirement for its anticholinesterase activity. Nantenine showed mixed inhibition kinetics in enzyme assays. Molecular docking experiments suggest that nantenine binds preferentially to the catalytic site of AChE but is also capable of interacting with the peripheral anionic site (PAS) of the enzyme, thus accounting for its mixed inhibition profile. The aporphine core of nantenine may thus be a useful template for the design of novel PAS or dual-site AChE inhibitors. Inhibiting the PAS is desirable for prevention of aggregation of the amyloid peptide Aβ, a major causative factor in the progression of Alzheimer’s disease (AD). PMID:20583856

  1. Role of acetylcholinesterase inhibitors in the metabolism of amyloid precursor protein.

    PubMed

    Pakaski, M; Kasa, P

    2003-06-01

    Potentiation of central cholinergic activity has been proposed as a therapeutic approach for improving the cognitive function in patients with Alzheimer's disease (AD). Increasing the acetylcholine concentration in the brain by modulating acetylcholine-sterase (AChE) activity is among the most promising therapeutic strategies. Efforts to treat the underlying pathology based on the modulation of amyloid precursor protein (APP) processing in order to decrease the accumulation of beta-amyloid are also very important. Alterations in APP metabolism have recently been proposed to play a key role in the long-lasting effects of AChE inhibitors. This review surveys recent data from in vivo and in vitro studies that have contributed to our understanding of the role of AChE inhibitors in APP processing. The regulatory mechanisms relating to the muscarinic agonist effect, protein kinase C activation and mitogen-activated protein kinase phosphorylation, involving the alpha-secretase or the 5 -UTR region of the APP gene, are also discussed. Further work is warranted to elucidate the exact roles in APP metabolism of the AChE inhibitors used in AD therapy at present. PMID:12769797

  2. Rapid identification of cholinesterase inhibitors from the seedcases of mangosteen using an enzyme affinity assay.

    PubMed

    Ryu, Hyung Won; Oh, Sei-Ryang; Curtis-Long, Marcus J; Lee, Ji Hye; Song, Hyuk-Hwan; Park, Ki Hun

    2014-02-12

    Enzyme binding affinity has been recently introduced as a selective screening method to identify bioactive substances within complex mixtures. We used an assay which identified small molecule binders of acetylcholinesterase (AChE) using the following series of steps: incubation of enzyme with extract; centrifugation and filtration; identification of small molecule content in the flow through. The crude extract contained 10 peaks in the UPLC chromatogram. However, after incubation the enzyme, six peaks were reduced, indicating these compounds bound AChE. All these isolated compounds (2, 3, and 5-8) significantly inhibited human AChE with IC₅₀s = 5.4-15.0 μM and butyrylcholinsterase (IC₅₀s = 0.7-11.0 μM). All compounds exhibited reversible mixed kinetics. Consistent with the binding screen and fluorescence quenching, γ-mangostin 6 had a much higher affinity for AChE than 9-hydroxycalabaxanthone 9. This validates this screening protocol as a rapid method to identify inhibitors of AChE. PMID:24446804

  3. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases

    NASA Astrophysics Data System (ADS)

    Dou, Dengfeng; Park, Jewn Giew; Rana, Sandeep; Madden, Benjamin J.; Jiang, Haobo; Pang, Yuan-Ping

    2013-01-01

    We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604-458,597 M-1sec-1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M-1sec-1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.

  4. Quaternary alkaloids of tinospora species.

    PubMed

    Bisset, N G; Nwaiwu, J

    1983-08-01

    The occurrence of quaternary alkaloids in TINOSPORA (and PARABAENA) species (Menispermaceae) has been studied. The main components were generally the protoberberine bases berberine and palmatine, with jatrorrhizine an occasional minor constituent, and the aporphine base magnoflorine. Choline was also often present. Only magnoflorine was detected in the PARABAENA material examined. PMID:17404996

  5. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism

    PubMed Central

    Bourne, Yves; Radić, Zoran; Aráoz, Rómulo; Talley, Todd T.; Benoit, Evelyne; Servent, Denis; Taylor, Palmer; Molgó, Jordi; Marchot, Pascale

    2010-01-01

    Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type α12βγδ and neuronal α3β2 and α4β2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP (≈2.4Å) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity. PMID:20224036

  6. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism.

    PubMed

    Bourne, Yves; Radic, Zoran; Aráoz, Rómulo; Talley, Todd T; Benoit, Evelyne; Servent, Denis; Taylor, Palmer; Molgó, Jordi; Marchot, Pascale

    2010-03-30

    Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type alpha1(2)betagammadelta and neuronal alpha3beta2 and alpha4beta2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble receptor surrogates, exhibits picomolar affinities governed by diffusion-limited association and slow dissociation, accounting for apparent irreversibility. Crystal structures of the phycotoxins bound to Aplysia-AChBP ( approximately 2.4A) show toxins neatly imbedded within the nest of ar-omatic side chains contributed by loops C and F on opposing faces of the subunit interface, and which in physiological conditions accommodates acetylcholine. The structures also point to three major features: (i) the sequence-conserved loop C envelops the bound toxins to maximize surface complementarity; (ii) hydrogen bonding of the protonated imine nitrogen in the toxins with the carbonyl oxygen of loop C Trp147 tethers the toxin core centered within the pocket; and (iii) the spirolide bis-spiroacetal or gymnodimine tetrahydrofuran and their common cyclohexene-butyrolactone further anchor the toxins in apical and membrane directions, along the subunit interface. In contrast, the se-quence-variable loop F only sparingly contributes contact points to preserve the broad receptor subtype recognition unique to phycotoxins compared with other nicotinic antagonists. These data offer unique means for detecting spiroimine toxins in shellfish and identify distinctive ligands, functional determinants and binding regions for the design of new drugs able to target several receptor subtypes with high affinity. PMID:20224036

  7. Synthesis of Novel 3-Aryl-N-Methyl-1,2,5,6-Tetrahydropyridine Derivatives by Suzuki coupling: As Acetyl Cholinesterase Inhibitors

    PubMed Central

    Prasad, S.B. Benaka; Kumar, Y.C. Sunil; Kumar, C.S. Ananda; Sadashiva, C.T; Vinaya, K; Rangappa, K.S

    2007-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder affecting the central nervous system, which is also associated with progressive loss of memory and cognition. The development of numerous structural classes of compounds with different pharmacological profile could be an evolving, promising therapeutic approach for the treatment of AD. Thus, providing a symptomatic treatment for this disease are cholinomimetics with the pharmacological profile of Acetylcholinesterase (AChE) inhibitors. In view of this, we have synthesized novel 3-aryl-N-methyl-1,2,5,6-tetrahydropyridine derivatives 5a-k by Suzuki coupling and screened the efficacy of these derivatives for their AChE inhibitor activity. PMID:19662135

  8. Design, synthesis, and evaluation of 7H-thiazolo-[3,2-b]-1,2,4-triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors.

    PubMed

    Liu, Sijie; Shang, Ruofeng; Shi, Lanxiang; Zhou, Ran; He, Jingyu; Wan, David Chi-Cheong

    2014-08-01

    New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as a new drug candidate for the treatment of Alzheimer's disease (AD) through the binding to both catalytic and peripheral sites of the enzyme. Therefore, a series of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives 6a-j were synthesized and investigated for their ability to inhibit the activity of human AChE (hAChE) in comparison with huperzine-A. All the compounds were found to inhibit AChE activity, especially compounds 6c and 6i with the inhibition value of 76.10% and 77.82%, respectively. The molecular docking study indicated that they were nicely accommodated by AChE. The molecular docking study revealed that 6c and 6i possessed a more optimal binding conformation than 6a and can perfectly fit into the active and peripheral site of hAChE, and consequently exhibited highly improved inhibitor potency to hAChE. PMID:24890706

  9. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  10. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI. PMID:24820623

  11. Inhibitor Profile of bis(n)-tacrines and N-methylcarbamates on Acetylcholinesterase from Rhipicephalus (Boophilus) microplus and Phlebotomus papatasi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAchE) compared to h...

  12. 31 CFR 363.38 - What happens if my financial institution returns an ACH debit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What happens if my financial... TreasuryDirect § 363.38 What happens if my financial institution returns an ACH debit? If your designated...Direct ® account. If the ACH return occurs after the security has been redeemed, transferred, or...

  13. 31 CFR 363.38 - What happens if my financial institution returns an ACH debit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false What happens if my financial... TreasuryDirect § 363.38 What happens if my financial institution returns an ACH debit? If your designated...Direct ® account. If the ACH return occurs after the security has been redeemed, transferred, or...

  14. THE ACHES THAT TAKE YOUR BREATH (AND TEARS) AWAY.

    PubMed

    Becerril, J; Gonzales, H; Saketkoo, L A

    2015-01-01

    An 80-year-old man presented with a complaint of three months of fatigue and aching of his shoulders and hips, as well as pain, swelling, and stiffness in bilateral fingers that was worse in the morning but improved with movement. Associated symptoms included worsening dry mouth and eyes, dysphagia, exertional dyspnea, and right foot drop. Physical exam was significant for edematous and tender bilateral proximal interphalangeal joints, metacarpophalangeal joints and wrists with decreased grip, extension and flexion, as well as bilateral pulmonary crackles. Laboratory analysis revealed Anti-Ro (SSA) and Anti-La (SSB) positivity with elevated erythrocyte sedimentation rate (70mm/hr) and C-reactive peptide (13mg/L). Pulmonary function testing was notable for a forced vital capacity (FVC) of 64% and carbon monoxide diffusing capacity (DLCO) of 44%. High resolution chest computed tomography demonstrated fibrotic changes consistent with nonspecific interstitial pneumonitis. The patient was started on mycophenolate mofetil, hydroxychloroquine, and prednisone for Sjögren's syndrome (SjS). Symptoms improved and repeat FVC revealed a 20 percent improvement, however subsequent tapering of prednisone resulted in worsening dyspnea and increase of FVC to 60 prcent. Prednisone was restarted and rituximab 2g divided in two doses was administered with overall symptom improvement. Symptoms and FVC continued to wax and wane over the following 18 months requiring re-dosing of rituximab with most recent FVC improved to 71 percent and DLCO 41 percent. PMID:27159479

  15. Anniston community health survey: Follow-up and dioxin analyses (ACHS-II)--methods.

    PubMed

    Birnbaum, Linda S; Dutton, N D; Cusack, C; Mennemeyer, S T; Pavuk, M

    2016-02-01

    High serum concentrations of polychlorinated biphenyls (PCBs) have been reported previously among residents of Anniston, Alabama, where a PCB production facility was located in the past. As the second of two cross-sectional studies of these Anniston residents, the Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) will yield repeated measurements to be used to evaluate changes over time in ortho-PCB concentrations and selected health indicators in study participants. Dioxins, non-ortho PCBs, other chemicals, heavy metals, and a variety of additional clinical tests not previously measured in the original ACHS cohort will be examined in ACHS-II. The follow-up study also incorporates a questionnaire with extended sections on diet and occupational history for a more comprehensive assessment of possible exposure sources. Data collection for ACHS-II from 359 eligible participants took place in 2014, 7 to 9 years after ACHS. PMID:25982988

  16. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene.

    PubMed

    Shamagsumova, Rezeda V; Shurpik, Dmitry N; Padnya, Pavel L; Stoikov, Ivan I; Evtugyn, Gennady A

    2015-11-01

    New acetylcholinesterase (AChE) biosensor based on unsubstituted pillar[5]arene (P[5]A) as electron mediator was developed and successfully used for highly sensitive detection of organophosphate and carbamate pesticides. The AChE from electric eel was immobilized by carbodiimide binding on carbon black (CB) placed on glassy carbon electrode. The working potential of 200mV was obtained in chronoamperometric mode with the measurement time of 180 s providing best inter-biosensors precision of the results. The AChE biosensor developed made it possible to detect 1×10(-11)-1×10(-6) M of malaoxon, 1×10(-8)-7×10(-6) M of methyl-paraoxon, 1×10(-10)-2×10(-6) M of carbofuran and 7×10(-9)-1×10(-5) M of aldicarb with 10 min incubation. The limits of detection were 4×10(-12), 5×10(-9), 2×10(-11) and 6×10(-10) M, respectively. The AChE biosensor was tested in the analysis of pesticide residuals in spiked samples of peanut and beetroot. The protecting effect of P[5]A derivative bearing quaternary ammonia groups on malaoxon inhibition was shown. PMID:26452862

  17. Quaternary ecology: A paleoecological perspective

    SciTech Connect

    Delcourt, H.R.; Delcourt, P.A.

    1991-01-01

    This book considers issues and problems in ecology which may be illuminated, if not solved, by considering paleoecology. The five central chapters include a discussion of application of Quaternary ecology to future global climate change, including global warming. Other areas presented include: population dispersal, invasions, expansions, and migrations; plant successions; ecotones; factors in community structure; ecosystem patterns and processes. Published case studies are numerous. The role played by continuing climatic change in vegetation change is acknowledged but not stressed.

  18. Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques.

    PubMed

    Gupta, Shikhar; Fallarero, Adyary; Järvinen, Päivi; Karlsson, Daniela; Johnson, Mark S; Vuorela, Pia M; Mohan, C Gopi

    2011-02-15

    Dual binding site acetylcholinesterase (AChE) inhibitors are promising for the treatment of Alzheimer's disease (AD). They alleviate the cognitive deficits and AD-modifying agents, by inhibiting the β-amyloid (Aβ) peptide aggregation, through binding to both the catalytic and peripheral anionic sites, the so called dual binding site of the AChE enzyme. In this Letter, chemical features based 3D-pharmacophore models were developed based on the eight potent and structurally diverse AChE inhibitors (I-VIII) obtained from high-throughput in vitro screening technique. The best 3D-pharmacophore model, Hypo1, consists of two hydrogen-bond acceptor lipid, one hydrophobe, and two hydrophobic aliphatic features obtained by Catalyst/HIPHOP algorithm adopted in Discovery studio program. Hypo1 was used as a 3D query in sequential virtual screening study to filter three small compound databases. Further, a total of nine compounds were selected and followed on in vitro analysis. Finally, we identified two leads--Specs1 (IC(50)=3.279 μM) and Spec2 (IC(50)=5.986 μM) dual binding site compounds from Specs database, having good AChE enzyme inhibitory activity. PMID:21273074

  19. Determinants of quaternary association in legume lectins

    PubMed Central

    Brinda, K.V.; Mitra, Nivedita; Surolia, Avadhesha; Vishveshwara, Saraswathi

    2004-01-01

    It is well known that the sequence of amino acids in proteins code for its tertiary structure. It is also known that there exists a relationship between sequence and the quaternary structure of proteins. The question addressed here is whether the nature of quaternary association can be predicted from the sequence, similar to the three-dimensional structure prediction from the sequence. The class of proteins called legume lectins is an interesting model system to investigate this problem, because they have very high sequence and tertiary structure homology, with diverse forms of quaternary association. Hence, we have used legume lectins as a probe in this paper to (1) gain novel insights about the relationship between sequence and quaternary structure; (2) identify the sequence motifs that are characteristic of a given type of quaternary association; and (3) predict the quaternary association from the sequence motif. PMID:15215518

  20. Screening of β-secretase and acetylcholinesterase inhibitors from plant resources.

    PubMed

    Murata, Kazuya; Matsumura, Shinichi; Yoshioka, Yuri; Ueno, Yoshihiro; Matsuda, Hideaki

    2015-01-01

    The therapeutic agents for dementia are limited due to the complex system underlying the mechanisms. Taking a preventive point of view, we focused on the inhibition of β-secretase and acetylcholinesterase (AChE). In addition, plant resources including herbs and spices have been widely consumed, and further, may be consumed for a long period over a lifetime. Considering this background, we screened β-secretase and AChE inhibitors from curry spices. Amongst them, curry leaf, black pepper, and turmeric extracts were effective to inhibit β-secretase. Furthermore, black pepper and turmeric extracts were also effective to inhibit AChE. Having these results in hand, we focused on the investigation of β-secretase inhibitors since the inhibitor of this enzyme has not previously been well investigated. As a result, α- and β-caryophyllene, β-caryophyllene oxide (from curry leaf), piperine (from black pepper), curcumin, demethoxycurcumin, and bisdemethoxycurcumin (from turmeric) were successfully identified as low molecular inhibitors. This is the first report to determine α- and β-caryophyllene, β-caryophyllene oxide, and piperine as β-secretase inhibitors. These compounds may pass through the blood brain barrier since their molecular weights are relatively low. PMID:25119528

  1. Dihydroquinoline Carbamate Derivatives as "Bio-oxidizable" Prodrugs for Brain Delivery of Acetylcholinesterase Inhibitors: [¹¹C] Radiosynthesis and Biological Evaluation.

    PubMed

    Bohn, Pierre; Gourand, Fabienne; Papamicaël, Cyril; Ibazizène, Méziane; Dhilly, Martine; Gembus, Vincent; Alix, Florent; Ţînţaş, Mihaela-Liliana; Marsais, Francis; Barré, Louisa; Levacher, Vincent

    2015-05-20

    With the aim of improving the efficiency of marketed acetylcholinesterase (AChE) inhibitors in the symptomatic treatment of Alzheimer's disease, plagued by adverse effects arising from peripheral cholinergic activation, this work reports a biological evaluation of new central AChE inhibitors based on an original "bio-oxidizable" prodrug strategy. After peripheral injection of the prodrug 1a [IC50 > 1 mM (hAChE)] in mice, monitoring markers of central and peripheral cholinergic activation provided in vivo proof-of-concept for brain delivery of the drug 2a [IC50 = 20 nM (hAChE)] through central redox activation of 1a. Interestingly, peripheral cholinergic activation has been shown to be limited in time, likely due to the presence of a permanent positive charge in 2a promoting rapid elimination of the AChE inhibitor from the circulation of mice. To support these assumptions, the radiosynthesis with carbon-11 of prodrug 1a was developed for additional ex vivo studies in rats. Whole-body biodistribution of radioactivity revealed high accumulation in excretory organs along with moderate but rapid brain uptake. Radio-HPLC analyses of brain samples confirm rapid CNS penetration of [(11)C]1a, while identification of [(11)C]2a and [(11)C]3a both accounts for central redox activation of 1a and pseudoirreversible inhibition of AChE, respectively. Finally, Caco-2 permeability assays predicted metabolite 3a as a substrate for efflux transporters (P-gp inter alia), suggesting that metabolite 3a might possibly be actively transported out of the brain. Overall, a large body of evidence from in vivo and ex vivo studies on small animals has been collected to validate this "bio-oxidizable" prodrug approach, emerging as a very promising strategy in the rational design of selective central AChE inhibitors. PMID:25695305

  2. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  3. 6-Methyluracil Derivatives as Bifunctional Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease.

    PubMed

    Semenov, Vyacheslav E; Zueva, Irina V; Mukhamedyarov, Marat A; Lushchekina, Sofya V; Kharlamova, Alexandra D; Petukhova, Elena O; Mikhailov, Anatoly S; Podyachev, Sergey N; Saifina, Lilya F; Petrov, Konstantin A; Minnekhanova, Oksana A; Zobov, Vladimir V; Nikolsky, Evgeny E; Masson, Patrick; Reznik, Vladimir S

    2015-11-01

    Novel 6-methyluracil derivatives with ω-(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron-withdrawing substituents on the benzyl rings. The compounds are mixed-type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10,000-fold higher than that for human butyrylcholinesterase (hBuChE). Molecular modeling studies indicate that these compounds are bifunctional AChE inhibitors, spanning the enzyme active site gorge and binding to its peripheral anionic site (PAS). In vivo experiments show that the 6-methyluracil derivatives are able to penetrate the blood-brain barrier (BBB), inhibiting brain-tissue AChE. The most potent AChE inhibitor, 3 d (1,3-bis[5-(o-nitrobenzylethylamino)pentyl]-6-methyluracil), was found to improve working memory in scopolamine and transgenic APP/PS1 murine models of Alzheimer's disease, and to significantly decrease the number and area of β-amyloid peptide plaques in the brain. PMID:26412714

  4. Mitigation of Acetylcholine Esterase Activity in the 1,7-Diazacarbazole Series of Inhibitors of Checkpoint Kinase 1.

    PubMed

    Gazzard, Lewis; Williams, Karen; Chen, Huifen; Axford, Lorraine; Blackwood, Elizabeth; Burton, Brenda; Chapman, Kerry; Crackett, Peter; Drobnick, Joy; Ellwood, Charles; Epler, Jennifer; Flagella, Michael; Gancia, Emanuela; Gill, Matthew; Goodacre, Simon; Halladay, Jason; Hewitt, Joanne; Hunt, Hazel; Kintz, Samuel; Lyssikatos, Joseph; Macleod, Calum; Major, Sarah; Médard, Guillaume; Narukulla, Raman; Ramiscal, Judi; Schmidt, Stephen; Seward, Eileen; Wiesmann, Christian; Wu, Ping; Yee, Sharon; Yen, Ivana; Malek, Shiva

    2015-06-25

    Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development. A campaign of analogue synthesis established SAR delineating ChK1 and AChE activities and allowing identification of new leads with improved profiles. In silico docking using a model of AChE permitted rationalization of the observed SAR. Compounds 19 (GNE-900) and 30 (GNE-145) were identified as selective, orally bioavailable ChK1 inhibitors offering excellent in vitro potency with significantly reduced AChE activity. In combination with gemcitabine, these compounds demonstrate an in vivo pharmacodynamic effect and are efficacious in a mouse p53 mutant xenograft model. PMID:25988399

  5. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor.

    PubMed

    Wang, Yi; Hu, Qiongzheng; Guo, Yongxian; Yu, Li

    2015-10-15

    In this paper, construction of the liquid crystal (LC)-based sensing platform for simple and sensitive detection of acetylcholinesterase (AChE) and its inhibitor using a cationic surfactant-decorated LC interface was demonstrated. A change of the optical images of LCs from bright to dark appearance was observed when the cationic surfactant, myristoylcholine chloride (Myr), was transferred onto the aqueous/LC interface, due to the formation of a stable surfactant monolayer at the interface. A dark-to-bright change of the optical appearance was then observed when AChE was transferred onto the Myr-decorated LC interface. The sensitivity of this new type of LC-based sensor is 3 orders of magnitude higher in the serum albumin solution than that only in the buffer solution. Noteworthy is that the AChE LC sensor shows a very high sensitivity for the detection of the enzyme inhibitor, which is around 1 fM. The constructed low-cost LC-based sensor is quite simple and convenient, showing high promise for label-free detection of AChE and its inhibitors. PMID:25957073

  6. Myasthenia Gravis and the Tops and Bottoms of AChRs Antigenic Structure of the MIR and Specific Immunosuppression of EAMG Using AChR Cytoplasmic Domains

    PubMed Central

    Lindstrom, Jon; Luo, Jie; Kuryatov, Alexander

    2009-01-01

    The main immunogenic region (MIR), against which half or more of the autoantibodies to acetylcholine receptors (AChRs) in myasthenia gravis (MG) or experimental autoimmune MG (EAMG) are directed, is located at the extracellular end of α1 subunits. Rat monoclonal antibodies (mAbs) to the MIR efficiently compete with MG patient autoantibodies for binding to human muscle AChRs. Antibodies bound to the MIR do not interfere with cholinergic ligand binding or AChR function, but target complement and trigger antigenic modulation. Rat mAbs to the MIR also bind to human ganglionic AChR α3 subunits, but MG patient antibodies do not. By making chimeras of α1 subunits with α7 subunits or ACh binding protein, the structure of the MIR and its functional effects are being investigated. Many mAbs to the MIR bind only to the native conformation of α1 subunits because they bind to sequences that are adjacent only in the native structure. The MIR epitopes recognized by these mAbs are not recognized by most patient antibodies whose epitopes must be nearby. The presence of the MIR epitopes in α1/α7 chimeras greatly promotes AChR expression and sensitivity to activation. EAMG can be suppressed by treatment with denatured, bacterially expressed mixtures of extracellular and cytoplasmic domains of human α1, β1, γ, δ, and ε subunits. A mixture of only the cytoplasmic domains not only avoids the potential liability of provoking formation antibodies to pathologically significant epitopes on the extracellular surface, but also potently suppresses the development of EAMG. PMID:18567851

  7. High Throughput Enzyme Inhibitor Screening by Functionalized Magnetic Carbonaceous Microspheres and Graphene Oxide-Based MALDI-TOF-MS

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Yan; Liu, Junyan; Deng, Chunhui; Zhang, Xiangmin

    2011-12-01

    In this work, a high throughput methodology for screening enzyme inhibitors has been demonstrated by combining enzyme immobilized magnetic carbonaceous microspheres and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with grapheme oxide as matrix. First, model enzyme acetylcholinesterase (AChE) was immobilized onto the 3-glycidoxypropyltrimethoxysilane (GLYMO)-modified magnetic carbonaceous (MC) microspheres, displaying a high enzyme activity and stability, and also facilitating the separation of enzyme from substrate and product. The efficiency of immobilized AChE was monitored by biochemical assay, which was carried out by mixing enzyme-immobilized MC microspheres with model substrate acetylcholine (ACh), and subsequent quantitative determination of substrate ACh and product choline using graphene oxide-based MALDI-TOF-MS with no background inference. The limit of detection (LOD) for ACh was 0.25 fmol/μL, and excellent linearity (R2 = 0.9998) was maintained over the range of 0.5 and 250 fmol/μL. Choline was quantified over the range of 0.05 and 15 pmol/μL, also with excellent linearity (R2 = 0.9994) and low LOD (0.15 fmol/μL). Good accuracy and precision were obtained for all concentrations within the range of the standard curves. All together, eight compounds (four known AChE inhibitors and four control chemical compounds with no AChE inhibit effect) were tested with our promoted methodology, and the obtained results demonstrated that our high throughput screening methodology could be a great help to the routine enzyme inhibitor screening.

  8. Natural cholinesterase inhibitors from Myristica cinnamomea King.

    PubMed

    Abdul Wahab, Siti Mariam; Sivasothy, Yasodha; Liew, Sook Yee; Litaudon, Marc; Mohamad, Jamaludin; Awang, Khalijah

    2016-08-01

    A new acylphenol, malabaricone E (1) together with the known malabaricones A-C (2-4), maingayones A and B (5 and 6) and maingayic acid B (7) were isolated from the ethyl acetate extract of the fruits of Myristica cinnamomea King. Their structures were determined by 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 3 (1.84±0.19 and 1.76±0.21μM, respectively) and 4 (1.94±0.27 and 2.80±0.49μM, respectively) were identified as dual inhibitors, with almost equal acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibiting potentials. The Lineweaver-Burk plots of compounds 3 and 4 indicated that they were mixed-mode inhibitors. Based on the molecular docking studies, compounds 3 and 4 interacted with the peripheral anionic site (PAS), the catalytic triad and the oxyanion hole of the AChE. As for the BChE, while compound 3 interacted with the PAS, the catalytic triad and the oxyanion hole, compound 4 only interacted with the catalytic triad and the oxyanion hole. PMID:27236720

  9. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-D-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Min, Byung-Sun; Jung, Hyun Ah; Choi, Jae Sue

    2016-06-01

    We evaluated the major active components isolated from Corni Fructus: loganin, morroniside, and 7-O-galloyl-D-sedoheptulose as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) for use in Alzheimer's disease treatment. These compounds exhibited predominant cholinesterase (ChEs) inhibitory effects with IC50 values of 0.33, 3.95, and 10.50 ± 1.16 µM, respectively, for AChE, and 33.02, 37.78, and 87.94 ± 4.66 µM, respectively, for BChE. Kinetics studies revealed that loganin and 7-O-galloyl-D-sedoheptulose inhibited AChE with characteristics typical of mixed inhibitors, while morroniside was found to be a noncompetitive inhibitor against AChE and also exerted mixed BChE inhibitory activities. For BACE1, loganin showed noncompetitive type inhibitory effects, while morroniside and 7-O-galloyl-D-sedoheptulose were found to be mixed inhibitors. Furthermore, these compounds exhibited dose-dependent inhibitory activity with ONOO(-)-mediated protein tyrosine nitration. Molecular docking simulation of these compounds demonstrated negative binding energies for ChEs, and BACE1, indicating high affinity and tighter binding capacity for the active site of the enzyme. Loganin was the most potent inhibitor against both ChEs and BACE1. The data suggest that these compounds together can act as a triple inhibitor of AChE, BChE, and BACE1, providing a preventive and therapeutic strategy for Alzheimer's disease treatment. PMID:27106028

  10. Sequence polymorphism in acetylcholinesterase transcripts and genotyping survey of BmAChE1 in laboratory and Mexican strains of Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BmAChE1, BmAChE2, and BmAChE3 cDNAs of Rhipicephalus (Boophilus) microplus were sequenced and found to exhibit significant polymorphism. A portion of the predicted amino acid substitutions in BmAChE1, BmAChE2 and BmAChE3 were found predominantly in organophosphate-resistant (OP-R) strains, but most ...

  11. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of α-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  12. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  13. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR

    PubMed Central

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E.; Tsetlin, Victor I.; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  14. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR.

    PubMed

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E; Tsetlin, Victor I; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  15. Synthesis, Biological Evaluation and Molecular Modelling of 2'-Hydroxychalcones as Acetylcholinesterase Inhibitors.

    PubMed

    Sukumaran, Sri Devi; Chee, Chin Fei; Viswanathan, Geetha; Buckle, Michael J C; Othman, Rozana; Abd Rahman, Noorsaadah; Chung, Lip Yong

    2016-01-01

    A series of 2'-hydroxy- and 2'-hydroxy-4',6'-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE). The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40-85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE. PMID:27455222

  16. 3'-R/S-hydroxyvoacamine, a potent acetylcholinesterase inhibitor from Tabernaemontana divaricata.

    PubMed

    Chaiyana, Wantida; Schripsema, Jan; Ingkaninan, Kornkanok; Okonogi, Siriporn

    2013-04-15

    Guided by the acetylcholinesterase inhibiting activity, the bisindole alkaloid 3'-R/S-hydroxyvoacamine was isolated from a stem extract of Tabernaemontana divaricata, a plant used in Thailand in traditional rejuvenation remedies for improving the memory. The structure of the alkaloid was elucidated by extensive use of NMR spectroscopy and the complete assignment of the (1)H and (13)C NMR spectra is reported. The alkaloid acted as a non-competitive inhibitor against AChE with an IC50 value of 7.00±1.99 μM. An HPLC method was developed for the quantitative analysis of the AChE inhibitor. It suggested that there was 12.4% (w/w) of 3'-R/S-hydroxyvoacamine in the alkaloid enriched fraction of T. divaricata stem. PMID:23375813

  17. Kinetics and Molecular Docking Study of an Anti-diabetic Drug Glimepiride as Acetylcholinesterase Inhibitor: Implication for Alzheimer's Disease-Diabetes Dual Therapy.

    PubMed

    Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Naaz, Deeba; Shakil, Shazi; Ahmad, Adnan; Haneef, Mohd; Abuzenadah, Adel M

    2016-06-01

    At the present time, treatment of two most common degenerative disorders of elderly population i.e., Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD) is a major concern worldwide. As there are several evidences that proved strong linkages between these two disorders, the idea of using dual therapeutic agent for both the diseases might be considered as a good initiative. Earlier reports have revealed that oral anti-diabetic drugs such as peroxisome proliferator activated receptor γ (PPARγ) agonists (thiazolidinediones) when used in T2DM patients suffering from AD showed improved memory and cognition. However, the underlying mechanism still needs to be deciphered. Therefore, the present study was carried out to find whether glimepiride, an oral antidiabetic drug which is a PPARγ agonist could inhibit the activity of acetylcholine esterase (AChE) enzyme. Actually, AChE inhibitors seize the breakdown of acetylcholine which forms the main therapeutic strategy for AD. Here, glimepiride showed dose dependent inhibitory activity against AChE enzyme with IC50 value of 235 μM. Kinetic analysis showed competitive inhibition, which was verified by in silico docking studies. Glimepiride was found to interact with AChE enzyme at the same locus as that of substrate acetylcholine iodide (AChI). Interestingly, amino acid residues, Q71, Y72, V73, D74, W86, N87, Y124, S125, W286, F295, F297, Y337, F338 and Y341 of AChE were found to be common for 'glimepiride-AChE interaction' as well as 'AChI-AChE interaction'. Thus the present computational and kinetics study concludes that glimepiride and other thiazolidinediones derivatives could form the basis of future dual therapy against diabetes associated neurological disorders. PMID:26886763

  18. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. PMID:26141104

  19. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    PubMed

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. PMID:27385587

  20. Cathodoluminescence in Quaternary carbonate deposits

    NASA Astrophysics Data System (ADS)

    Braithwaite, Colin J. R.

    2016-05-01

    The cathodoluminescent oscillatory and sectoral growth zones common in crystals formed in ancient limestone successions in a variety of putative environments appear to be rare or absent from Recent and Pleistocene marine carbonate sequences. The factors controlling cathodoluminescence and reasons for this disparity are examined. The cathodoluminescent zones in the cements of ancient rocks have been interpreted as responses to variations in the redox potential of formative pore waters during crystal growth; although similar cathodoluminescent behaviour is recorded from some deposits, including travertines and Quaternary speleothems, formed in what are thought to have been strongly oxidizing environments. The apparent absence of cathodoluminescence in the most Recent and Pleistocene marine deposits, that presumably reflect deposition and diagenesis in environments that are also characteristically oxidized, therefore seems anomalous. The controlling influences on cathodoluminescence are reviewed, together with evidence relating to observations of Pleistocene marine deposits and likely conditions of formation but, where it is present, the mechanism(s) for its development remain elusive.

  1. Impact of acetylcholinesterase inhibitors on the occurrence of acute coronary syndrome in patients with dementia

    PubMed Central

    Wu, Ping-Hsun; Lin, Yi-Ting; Hsu, Po-Chao; Yang, Yi-Hsin; Lin, Tsung-Hsien; Huang, Chia-Tsuan

    2015-01-01

    The study aimed to investigate the association of acetylcholinesterase inhibitors (AChEIs) use with the risk of acute coronary syndrome (ACS). We conducted a population-based retrospective cohort study of dementia patients during 1 January 1999 to 31 December 2008 using the National Health Insurance Database in Taiwan. New AChEI users during the study period were matched with AChEI nonusers in age-matched and gender-matched cohorts. The risk of ACS associated with use of AChEIs was analyzed using modified Kaplan-Meier analysis and Cox proportional hazard models after adjustment for competing death risk. Use of AChEIs was associated with a lower incidence of ACS (212.8/10,000 person-years) compared to the matched reference cohort (268.7/10,000 person-years). The adjusted hazard ratio for ACS in patients with dementia treated with AChEIs was 0.836 (95% confidence interval, 0.750–0.933; P < 0.001). Further sensitivity analysis of different study populations demonstrated consistent results. A statistical dose–response relationship for AChEI use and ACS risk was significant for the patients with dementia. In patients with dementia, AChEI treatment was associated with decreased risk of ACS. PMID:26577589

  2. Impact of acetylcholinesterase inhibitors on the occurrence of acute coronary syndrome in patients with dementia.

    PubMed

    Wu, Ping-Hsun; Lin, Yi-Ting; Hsu, Po-Chao; Yang, Yi-Hsin; Lin, Tsung-Hsien; Huang, Chia-Tsuan

    2015-01-01

    The study aimed to investigate the association of acetylcholinesterase inhibitors (AChEIs) use with the risk of acute coronary syndrome (ACS). We conducted a population-based retrospective cohort study of dementia patients during 1 January 1999 to 31 December 2008 using the National Health Insurance Database in Taiwan. New AChEI users during the study period were matched with AChEI nonusers in age-matched and gender-matched cohorts. The risk of ACS associated with use of AChEIs was analyzed using modified Kaplan-Meier analysis and Cox proportional hazard models after adjustment for competing death risk. Use of AChEIs was associated with a lower incidence of ACS (212.8/10,000 person-years) compared to the matched reference cohort (268.7/10,000 person-years). The adjusted hazard ratio for ACS in patients with dementia treated with AChEIs was 0.836 (95% confidence interval, 0.750-0.933; P < 0.001). Further sensitivity analysis of different study populations demonstrated consistent results. A statistical dose-response relationship for AChEI use and ACS risk was significant for the patients with dementia. In patients with dementia, AChEI treatment was associated with decreased risk of ACS. PMID:26577589

  3. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies.

    PubMed

    Chigurupati, Sridevi; Selvaraj, Manikandan; Mani, Vasudevan; Selvarajan, Kesavanarayanan Krishnan; Mohammad, Jahidul Islam; Kaveti, Balaji; Bera, Hriday; Palanimuthu, Vasanth Raj; Teh, Lay Kek; Salleh, Mohd Zaki

    2016-08-01

    The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68±0.13μM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77±0.25μM and IC50: 12.59±0.21μM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74±0.09μM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52±0.62μM and IC50: 13.13±0.85μM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents. PMID:27231830

  4. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    PubMed

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis. PMID:25112677

  5. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    SciTech Connect

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  6. 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: Resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae

    PubMed Central

    Verma, Astha; Wong, Dawn M.; Islam, Rafique; Tong, Fan; Ghavami, Maryam; Mutunga, James M.; Slebodnick, Carla; Li, Jianyong; Viayna, Elisabet; Lam, Polo C.-H.; Totrov, Maxim M.; Bloomquist, Jeffrey R.; Carlier, Paul R.

    2015-01-01

    To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification. PMID:25684426

  7. Differential effects of lysophosphatidylcholine and ACh on muscarinic K(+),non-selective cation and Ca(2+) currents in guinea-pig atrial cells.

    PubMed

    Li, Libing; Matsuoka, Isao; Sakamoto, Kazuho; Kimura, Junko

    2016-06-01

    We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh). PMID:26911304

  8. A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia.

    PubMed

    Agrawal, Rahul; Tyagi, Ethika; Shukla, Rakesh; Nath, Chandishwar

    2009-03-01

    In the present study, role of brain insulin receptors (IRs) in memory functions and its correlation with acetylcholinesterase (AChE) activity and oxidative stress in different brain regions were investigated in intracerebroventricular (ICV) streptozotocin (STZ) induced dementia model. Rats were treated with STZ (3 mg/kg, ICV) on day 1 and 3. Donepezil (5 mg/kg po) and melatonin (20 mg/kg ip) were administered in pre- and post-treatment schedules. Morris water maze test was done on day 14 and animals were sacrificed on day 21 from 1st STZ injection. Memory deficit was found in STZ group as indicated by no significant decrease in latency time antagonized by donepezil and melatonin. IR protein level was found significantly increased in trained group as compared to control, whereas STZ decreased IR level significantly as compared to trained rats in hippocampus which indicates that IR is associated with memory functions. STZ induced decrease in IR was reversed by melatonin but not by donepezil. Melatonin per se did not show any significant change in IR level as compared to control. AChE activity (DS and SS fraction) was found to be increased in hippocampus in STZ group as compared to trained which was inhibited by donepezil and melatonin. Increase in MDA level and decrease in GSH level were obtained in STZ group indicating oxidative stress, which was attenuated by donepezil and melatonin. Effectiveness of antioxidant, melatonin but not of anti-cholinesterase, donepezil against STZ induced changes in IR indicates that IR is more affected with oxidative stress than cholinergic changes. PMID:19705549

  9. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  10. Tribendimidine: Mode of Action and nAChR Subtype Selectivity in Ascaris and Oesophagostomum

    PubMed Central

    Robertson, Alan P.; Puttachary, Sreekanth; Buxton, Samuel K.; Martin, Richard J.

    2015-01-01

    The cholinergic class of anthelmintic drugs is used for the control of parasitic nematodes. One of this class of drugs, tribendimidine (a symmetrical diamidine derivative, of amidantel), was developed in China for use in humans in the mid-1980s. It has a broader-spectrum anthelmintic action against soil-transmitted helminthiasis than other cholinergic anthelmintics, and is effective against hookworm, pinworms, roundworms, and Strongyloides and flatworm of humans. Although molecular studies on C. elegans suggest that tribendimidine is a cholinergic agonist that is selective for the same nematode muscle nAChR as levamisole, no direct electrophysiological observations in nematode parasites have been made to test this hypothesis. Also the hypothesis that levamisole and tribendimine act on the same receptor, does not explain why tribendimidine is effective against some nematode parasites when levamisole is not. Here we examine the effects of tribendimidine on the electrophysiology and contraction of Ascaris suum body muscle and show that tribendimidine produces depolarization antagonized by the nicotinic antagonist mecamylamine, and that tribendimidine is an agonist of muscle nAChRs of parasitic nematodes. Further pharmacological characterization of the nAChRs activated by tribendimidine in our Ascaris muscle contraction assay shows that tribendimidine is not selective for the same receptor subtypes as levamisole, and that tribendimidine is more selective for the B-subtype than the L-subtype of nAChR. In addition, larval migration inhibition assays with levamisole-resistant Oesophagostomum dentatum isolates show that tribendimidine is as active on a levamisole-resistant isolate as on a levamisole-sensitive isolate, suggesting that the selectivity for levamisole and tribendimidine is not the same. It is concluded that tribendimidine can activate a different population of nematode parasite nAChRs than levamisole, and is more like bephenium. The different nAChR subtype

  11. Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids.

    PubMed

    Bautista-Aguilera, Oscar M; Esteban, Gerard; Chioua, Mourad; Nikolic, Katarina; Agbaba, Danica; Moraleda, Ignacio; Iriepa, Isabel; Soriano, Elena; Samadi, Abdelouahid; Unzeta, Mercedes; Marco-Contelles, José

    2014-01-01

    The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer's disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13-15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hACh

  12. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases.

    PubMed

    Schwarz, Stefan; Lucas, Susana Dias; Sommerwerk, Sven; Csuk, René

    2014-07-01

    The development of remedies against the Alzheimer's disease (AD) is one of the biggest challenges in medicinal chemistry nowadays. Although not completely understood, there are several strategies fighting this disease or at least bringing some relief. During the progress of AD, the level of acetylcholine (ACh) decreases; hence, a therapy using inhibitors should be of some benefit to the patients. Drugs presently used for the treatment of AD inhibit the two ACh controlling enzymes, acetylcholinesterase as well as butyrylcholinesterase; hence, the design of selective inhibitors is called for. Glycyrrhetinic acid seems to be an interesting starting point for the development of selective inhibitors. Although its glycon, glycyrrhetinic acid is known for being an AChE activator, several derivatives, altered in position C-3 and C-30, exhibited remarkable inhibition constants in micro-molar range. Furthermore, five representative compounds were subjected to three more enzyme assays (on carbonic anhydrase II, papain and the lipase from Candida antarctica) to gain information about the selectivity of the compounds in comparison to other enzymes. In addition, photometric sulforhodamine B assays using murine embryonic fibroblasts (NiH 3T3) were performed to study the cytotoxicity of these compounds. Two derivatives, bearing either a 1,3-diaminopropyl or a 1H-benzotriazolyl residue, showed a BChE selective inhibition in the single-digit micro-molar range without being cytotoxic up to 30μM. In silico molecular docking studies on the active sites of AChE and BChE were performed to gain a molecular insight into the mode of action of these compounds and to explain the pronounced selectivity for BChE. PMID:24853320

  13. Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties.

    PubMed

    Choudhary, M Iqbal; Nawaz, Sarfraz Ahmad; ul-Haq, Zaheer; Lodhi, M Arif; Ghayur, M Nabeel; Jalil, Saima; Riaz, Naheed; Yousuf, Sammer; Malik, Abdul; Gilani, Anwarul Hassan; ur-Rahman, Atta

    2005-08-19

    The withanolides 1-3 and 4-5 isolated from Ajuga bracteosa and Withania somnifera, respectively, inhibited acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) enzymes in a concentration-dependent fashion with IC50 values ranging between 20.5 and 49,2 microm and 29.0 and 85.2 microm for AChE and BChE, respectively. Lineweaver-Burk as well as Dixon plots and their secondary replots indicated that compounds 1, 3, and 5 are the linear mixed-type inhibitors of AChE, while 2 and 4 are non-competitive inhibitors of AChE with K(i) values ranging between 20.0 and 45.0 microm. All compounds were found to be non-competitive inhibitors of BChE with K(i) values ranging between 27.7 and 90.6 microm. Molecular docking study revealed that all the ligands are completely buried inside the aromatic gorge of AChE, while compounds 1, 3, and 5 extend up to the catalytic triad. A comparison of the docking results showed that all ligands generally adopt the same binding mode and lie parallel to the surface of the gorge. The superposition of the docked structures demonstrated that the non-flexible skeleton of the ligands always penetrates the aromatic gorge through the six-membered ring A, allowing their simultaneous interaction with more than one subsite of the active center. The affinity of ligands with AChE was found to be the cumulative effects of number of hydrophobic contacts and hydrogen bonding. Furthermore, all compounds also displayed dose-dependent (0.005-1.0 mg/mL) spasmolytic and Ca2+ antagonistic potentials in isolated rabbit jejunum preparations, compound 4 being the most active with an ED50 value of 0.09 +/- 0.001 mg/mL and 0.22 +/- 0.01 microg/mL on spontaneous and K+ -induced contractions, respectively. The cholinesterase inhibitory potential along with calcium antagonistic ability and safe profile in human neutrophil viability assay could make compounds 1-5 possible drug candidates for further study to treat Alzheimer's disease and

  14. Double layer structure-based virtual screening reveals 3'-Hydroxy-A-Naphthoflavone as novel inhibitor candidate of human acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Ichsan, Mochammad; Pangastuti, Ardini; Habibi, Mohammad Wildan; Juliana, Kartika

    2016-03-01

    One of the most effective target for Alzheimer's disease's (AD) treatment is the inhibition of human acetylcholinesterase (hAChE) eventhough it has many side effects. So that, this study was aimed to discover a new candidate of hAChE's inhibitor that has more negative binding affinity than existing drugs. hAChE's 3D model used in this study has a good quality according to its number of residues in most favoured regions (92%), three bad contacts, >50 ERRAT's score (85,870) and successfully passed the VERIFY 3D threshold (>80%). Based on the first layer of SBVS againts more than 12.180.630 ligands, we discovered 11.806 hits and then we found 359 hits from the second layer of SBVS. Based on our previous steps, we found that 3'-Hydroxy-a-Naphthoflavone was the only one candidate, that directly interacted with Trp286 via hydrogen bond and hydrophobic interactions and also has the most negative binding affinity (-10,6 kcal/mol) and also has more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc. 3'-Hydroxy-a-Naphthoflavone is the best candidate of hAChE's inhibitor based on its binding affinity (-10,6 kcal/mol) that is more negative than existing hAChE's inhibitors, such as tacrine, donepezil, etc.

  15. Quaternary geologic map of Minnesota

    NASA Technical Reports Server (NTRS)

    Goebel, J. E.

    1977-01-01

    The Quaternary Geologic Map of Minnesota is a compilation based both on the unique characteristics of satellite imagery and on the results of previous field investigations, both published and unpublished. The use of satellite imagery has made possible the timely and economical construction of this map. LANDSAT imagery interpretation proved more useful than expected. Most of the geologic units could be identified by extrapolating from specific sites where the geology had been investigated into areas where little was known. The excellent geographic registry coupled with the multi-spectral record of these images served to identify places where the geologic materials responded to their ecological environment and where the ecology responded to the geologic materials. Units were well located on the map at the scale selected for the study. Contacts between till units could be placed with reasonable accuracy. The reference points that were used to project delineations between units (rivers, lakes, hills, roads and other features), which had not been accurately located on early maps, could be accurately located with the help of the imagery. The tonal and color contrasts, the patterns reflecting geologic change and the resolution of the images permitted focusing attention on features which could be represented at the final scale of the map without distraction by other interesting but site-specific details.

  16. Book Review: Reconstructing Quaternary Environments

    NASA Astrophysics Data System (ADS)

    Bridgland, David R.; Evans, David J. A.; Roberts, David H.

    2016-02-01

    A third edition of this, the foremost Quaternary textbook, is most welcome, coming seventeen years after the 1997 second edition (which was 13 years after the first). The general impression is one of advancement, not least because of the extensive updating of literature cited and examples used, with the status maintained of an impressive compendium of a specialism with a very wide subject base. Some changes are cosmetic, with chapter and section headers having a more modern style and a profusion of new colour photographs and diagrams. Some of the latter are redrawn from black and white figures in the previous edition, although not all have been improved, as some are smaller and have been simplified. For example, black and white Fig. 3.10 of the Second Edition compares very favourably with the much smaller colour 3.17 in this latest volume (erratic sources). On the plus side, the number change, for a figure that appears in the same place within the chapter, shows that the latest edition is considerably better illustrated than its predecessor, perhaps accounting for a significant proportion of the increased page total (up from 446 to 538).

  17. Quaternary glaciation of Mount Everest

    NASA Astrophysics Data System (ADS)

    Owen, Lewis A.; Robinson, Ruth; Benn, Douglas I.; Finkel, Robert C.; Davis, Nicole K.; Yi, Chaolu; Putkonen, Jaakko; Li, Dewen; Murray, Andrew S.

    2009-07-01

    The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24-27 ka (Jilong moraine), 14-17 ka (Rongbuk moraine), 8-2 ka (Samdupo moraines) and ˜1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8-7.7 ka) and Samdupo II (˜2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.

  18. [Mechanisms of neuroprotective effects of therapeutic acetylcholinesterase inhibitors used in treatment of Alzheimer's disease].

    PubMed

    Takatori, Yuki

    2006-08-01

    Donepezil, galanthamine, and tacrine are therapeutic acetylcholinesterase (AChE) inhibitors used for the treatment of Alzheimer's disease. The aim of this paper is to review recent findings on their neuroprotective properties and the mechanisms of neuroprotection against glutamate neurotoxicity in rat cortical neurons. First, the hallmark of neurotoxicity induced by two different glutamate treatment conditions was examined, revealing that acute glutamate treatment (1 mM, 10 min) induces necrotic neuronal death and that moderate glutamate treatment (100 microM, 24 hr) induces apoptotic neuronal death. Next, we showed that therapeutic AChE inhibitors protect cortical neurons from glutamate neurotoxicity in a time- and concentration-dependent manner. We examined the mechanism of this neuroprotective effect and found that the neuroprotective effects against both acute and moderate glutamate treatments are mediated through nicotinic acetylcholine receptors (nAChRs), or more specifically, the effects of donepezil and galanthamine are mediated through alpha4- and alpha7-nAChR. We also showed that donepezil and galanthamine protect cortical neurons against acute glutamate treatment-induced neurotoxicity at steps before, and that tacrine protects at steps after, nitric oxide radical formation. On the other hand, the neuroprotective effects of donepezil and galanthamine, but not of tacrine, against neurotoxicity induced by moderate glutamate treatment were mediated through the phosphatidylinositol 3-kinase-Akt pathway. These findings unveiled the hitherto unknown neuroprotective effects of therapeutic AChE inhibitors and provided valuable insights into its neuroprotective mechanisms. They may very likely form the basis for a novel treatment strategy against Alzheimer's disease. PMID:16880719

  19. Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion.

    PubMed

    Shelukhina, Irina; Paddenberg, Renate; Kummer, Wolfgang; Tsetlin, Victor

    2015-07-01

    In recent pain studies on animal models, α7 nicotinic acetylcholine receptor (nAChR) agonists demonstrated analgesic, anti-hyperalgesic and anti-inflammatory effects, apparently acting through some peripheral receptors. Assuming possible involvement of α7 nAChRs on nociceptive sensory neurons, we investigated the morphological and neurochemical features of the α7 nAChR-expressing subpopulation of dorsal root ganglion (DRG) neurons and their ability to transport α7 nAChR axonally. In addition, α7 receptor activity and its putative role in pain signal neurotransmitter release were studied. Medium-sized α7 nAChR-expressing neurons prevailed, although the range covered all cell sizes. These cells accounted for one-fifth of total medium and large DRG neurons and <5% of small ones. 83.2% of α7 nAChR-expressing DRG neurons were peptidergic nociceptors (CGRP-immunopositive), one half of which had non-myelinated C-fibers and the other half had myelinated Aδ- and likely Aα/β-fibers, whereas 15.2% were non-peptidergic C-fiber nociceptors binding isolectin B4. All non-peptidergic and a third of peptidergic α7 nAChR-bearing nociceptors expressed TRPV1, a capsaicin-sensitive noxious stimulus transducer. Nerve crush experiments demonstrated that CGRPergic DRG nociceptors axonally transported α7 nAChRs both to the spinal cord and periphery. α7 nAChRs in DRG neurons were functional as their specific agonist PNU282987 evoked calcium rise enhanced by α7-selective positive allosteric modulator PNU120596. However, α7 nAChRs do not modulate neurotransmitter CGRP and glutamate release from DRG neurons since nicotinic ligands affected neither their basal nor provoked levels, showing the necessity of further studies to elucidate the true role of α7 nAChRs in those neurons. PMID:24706047

  20. Voltage-dependent interaction between the muscarinic ACh receptor and proteins of the exocytic machinery.

    PubMed Central

    Linial, M; Ilouz, N; Parnas, H

    1997-01-01

    1. Release of neurotransmitter into the synaptic cleft is the last step in the chain of molecular events following the arrival of an action potential at the nerve terminal. The neurotransmitter exerts negative feedback on its own release. This inhibition would be most effective if exerted on the first step in this chain of events, i.e. a step that is mediated by membrane depolarization. Indeed, in numerous studies feedback inhibition was found to be voltage dependent. 2. The purpose of this study is to investigate whether the mechanism underlying feedback inhibition of transmitter release resides in interaction between the presynaptic autoreceptors and the exocytic apparatus, specifically the soluble NSF-attachment protein receptor (SNARE) complex. 3. Using rat synaptosomes we show that the muscarinic ACh autoreceptor (mAChR) is an integral component of the exocytic machinery. It interacts with syntaxin, synaptosomal-associated protein of 25 kDa (SNAP-25), vesicle-associated membrane protein (VAMP) and synaptotagmin as shown using both cross-linking and immunoprecipitation. 4. The interaction between mAChRs and both syntaxin and SNAP-25 is modulated by depolarization levels; binding is maximal at resting potential and disassembly occurs at higher depolarization. 5. This voltage-dependent interaction of mAChRs with the secretory core complex appears suitable for controlling the rapid, synchronous neurotransmitter release at nerve terminals. Images Figure 2 Figure 3 PMID:9365901

  1. Salbutamol and ephedrine in the treatment of severe AChR deficiency syndromes

    PubMed Central

    Rodríguez Cruz, Pedro M.; Palace, Jacqueline; Ramjattan, Hayley; Jayawant, Sandeep; Robb, Stephanie A.

    2015-01-01

    Objective: To evaluate the response to salbutamol and ephedrine in the treatment of congenital myasthenic syndromes due to CHRNE mutations causing severe acetylcholine receptor (AChR) deficiency. Methods: A cohort study of 6 patients with severe AChR deficiency, symptomatic despite optimal therapy with anticholinesterase and 3,4-diaminopyridine, were analyzed for their response to the addition of salbutamol or ephedrine to their medication. Baseline quantitative myasthenia gravis (QMG) (severity) scores were worse than 15 of 39. Patients were assessed in clinic with QMG and mobility scores. Pretreatment and 6- to 8-month follow-up scores were evaluated. Results: All 6 patients tolerated treatment well and reported no side effects. There was a strong positive response to treatment over the 6- to 8-month assessment period with significant improvement in QMG (p = 0.027) and mobility scores. The analysis of subcomponents of the QMG score revealed marked improvement in upper (p = 0.028) and lower (p = 0.028) limb raise times. All patients reported enhanced activities of daily living at 6 to 8 months. Conclusions: Oral salbutamol and ephedrine appear to be effective treatments in severe cases of AChR deficiency on pyridostigmine. They are well tolerated and improvement in strength can be dramatic. Classification of evidence: This study provides Class IV evidence that salbutamol or ephedrine improves muscle strength in patients with congenital myasthenia from severe AChR deficiency. PMID:26296515

  2. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8.

    PubMed

    Ye, Jun; Ren, Chong; Shan, Xiexie; Zeng, Runying

    2016-01-01

    Halomonas axialensisACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  3. Helium permeation through a-C:H films deposited on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Bellachioma, M. C.; Lozzi, L.; Santucci, S.; Kenny, J. M.

    2002-09-01

    The influence of amorphous hydrogenated carbon a-C:H coatings on gas permeation through polymer films was investigated. Hydrogenated amorphous carbon (a-C:H) films were deposited, at room temperature, from a CH4/Ar plasma produced by a radio frequency glow discharge system at 13.56 MHz. Polyether-etherketone (PEEK) and polyetherimide foils with different thicknesses were used as substrates. The permeation of He was measured and the reduction of the permeability coefficient is correlated here to the composition and density of the a-C:H films. The density and film structure of the layers were analyzed using x-ray reflectivity and Raman spectroscopy of films deposited onto silicon reference samples. A less pronounced reduction of the permeability coefficients for hard, dense diamond-like layers is reported with respect to those obtained for soft, polymer-like layers on PEEK substrates. Surprisingly, the barrier efficacy of the coating decreases with an increase in a-C:H film density. This unexpected result is attributed to intrinsic stress and the corresponding formation of microcracks. The effect of nitrogen incorporation, which reduces film permeability, is investigated in terms of the stress relaxation mechanism promoted. copyright 2002 American Vacuum Society.

  4. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505

    PubMed Central

    Feldhahn, L.; Buscot, F.; Wubet, T.

    2015-01-01

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation. PMID:25838498

  5. The open duration of fetal ACh receptor-channel changes during mouse muscle development

    PubMed Central

    Grassi, Francesca; Epifano, Olga; Mileo, Anna Maria; Barabino, Benedetta; Eusebi, Fabrizio

    1998-01-01

    We performed an RNase protection assay on cultured C2C12 mouse myotubes, demonstrating that the γ subunit of the fetal muscle acetylcholine receptor (AChR) exists as two splice variants, which differ in the presence of the amino terminal exon 5. We studied unitary ACh-evoked events in fibres acutely dissociated from the hindlimb flexor digitorum brevis muscle of BALB/C mice aged between embryonic day 16 (E16) and postnatal day 6 (P6). At all ages, the channel conductance was about 30 pS, typical of the fetal form of the AChR. The mean open time increased significantly from 6 ms at E16 to 9 ms at E19, then decreased to about 5 ms during the first postnatal week. The lengthening of the open time was considerably delayed in hypothyroid mice. Data were recorded at 24-26 °C. On the basis of previously reported experiments in heterologous expression systems, we suggest that the modulation of channel open time is related to the expression of the AChR incorporating the γs subunit. These events might be coupled to the crucial modifications in muscle innervation that take place during the same developmental period. PMID:9508804

  6. Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8

    PubMed Central

    Ye, Jun; Ren, Chong; Shan, Xiexie

    2016-01-01

    Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145

  7. Cotinine Exposure Increases Fallopian Tube PROKR1 Expression via Nicotinic AChRα-7

    PubMed Central

    Shaw, Julie L.V.; Oliver, Elizabeth; Lee, Kai-Fai; Entrican, Gary; Jabbour, Henry N.; Critchley, Hilary O.D.; Horne, Andrew W.

    2010-01-01

    Tubal ectopic pregnancy (EP) is the most common cause of maternal mortality in the first trimester of pregnancy; however, its etiology is uncertain. In EP, embryo retention within the Fallopian tube (FT) is thought to be due to impaired smooth muscle contractility (SMC) and alterations in the tubal microenvironment. Smoking is a major risk factor for EP. FTs from women with EP exhibit altered prokineticin receptor-1 (PROKR1) expression, the receptor for prokineticins (PROK). PROK1 is angiogenic, regulates SMC, and is involved in intrauterine implantation. We hypothesized that smoking predisposes women to EP by altering tubal PROKR1 expression. Sera/FT were collected at hysterectomy (n = 21). Serum levels of the smoking metabolite, cotinine, were measured by enzyme-linked immunosorbent assay. FTs were analyzed by q-RT-PCR, immunohistochemistry, and Western blotting for expression of PROKR1 and the predicted cotinine receptor, nicotinic acetylcholine receptor α-7 (AChRα−7). FT explants (n = 4) and oviductal epithelial cells (cell line OE-E6/E7) were treated with cotinine and an nAChRα−7 antagonist. PROKR1 transcription was higher in FTs from smokers (P < 0.01). nAChRα−7 expression was demonstrated in FT epithelium. Cotinine treatment of FT explants and OE-E6/E7 cells increased PROKR1 expression (P < 0.05), which was negated by cotreatment with nAChRα−7 antagonist. Smoking targets human FTs via nAChRα−7 to increase tubal PROKR1, leading to alterations in the tubal microenvironment that could predispose to EP. PMID:20864676

  8. Exploration of a Library of 3,4-(Methylenedioxy)aniline-Derived Semicarbazones as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase: Design, Synthesis, and Evaluation.

    PubMed

    Tripathi, Rati K P; Rai, Gopal K; Ayyannan, Senthil R

    2016-06-01

    A library of 3,4-(methylenedioxy)aniline-derived semicarbazones was designed, synthesized, and evaluated as monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors for the treatment of neurodegenerative diseases. Most of the new compounds selectively inhibited MAO-B and AChE, with IC50 values in the micro- or nanomolar ranges. Compound 16, 1-(2,6-dichlorobenzylidene)-4-(benzo[1,3]dioxol-5-yl)semicarbazide presented a balanced multifunctional profile of MAO-A (IC50 =4.52±0.032 μm), MAO-B (IC50 =0.059±0.002 μm), and AChE (IC50 =0.0087±0.0002 μm) inhibition without neurotoxicity. Kinetic studies revealed that compound 16 exhibits competitive and reversible inhibition against MAO-A and MAO-B, and mixed-type inhibition against AChE. Molecular docking studies further revealed insight into the possible interactions within the enzyme-inhibitor complexes. The most active compounds were found to interact with the enzymes through hydrogen bonding and hydrophobic interactions. Additionally, in silico molecular properties and ADME properties of the synthesized compounds were calculated to explore their drug-like characteristics. PMID:27135466

  9. Design, Synthesis and Structure-Activity Relationship (SAR) Studies of 2,4-Disubstituted Pyrimidine Derivatives: Dual Activity as Cholinesterase and Aβ-Aggregation Inhibitors

    PubMed Central

    Mohamed, Tarek; Zhao, Xiaobei; Habib, Lila K.; Yang, Jerry; Rao, Praveen P. N.

    2011-01-01

    A novel class of 2,4-disubstituted pyrimidines (7a–u, 8a–f, 9a–e) that possess substituents with varying steric and electronic properties at the C-2 and C-4 positions, were designed, synthesized and evaluated as dual cholinesterase and amyloid-β (Aβ)-aggregation inhibitors. In vitro screening identified N-(naphth-1-ylmethyl)-2-(pyrrolidin-1-yl)pyrimidin-4-amine (9a) as the most potent AChE inhibitor (IC50 = 5.5 μM). Among this class of compounds, 2-(4-methylpiperidin-1-yl)-N-(naphth-1-ylmethyl)pyrimidin-4-amine (9e) was identified as the most potent and selective BuChE inhibitor (IC50 = 2.2 μM, Selectivity Index = 11.7) and was about 5.7-fold more potent compared to the commercial, approved reference drug galanthamine (BuChE IC50 = 12.6 μM). In addition, the selective AChE inhibitor N-benzyl-2-(4-methylpiperazin-1-yl)pyrimidin-4-amine (7d), exhibited good inhibition of hAChE-induced aggregation of Aβ1–40 fibrils (59% inhibition). Furthermore, molecular modeling studies indicate that a central pyrimidine ring serves as a suitable template to develop dual inhibitors of cholinesterase and AChE-induced Aβ aggregation thereby targeting multiple pathological routes in AD. PMID:21429752

  10. Treatment of Visual Hallucinations in Schizophrenia by Acetylcholinesterase Inhibitors: a case report

    PubMed Central

    Abad, Nazir Hashemi; Doulatabad, Najafi Shala; Mohammadi, Ali

    2011-01-01

    Schizophrenia and various neurological disorders have some signs and symptoms. Visual hallucinations are one of such disorders. The related studies in some diseases for example Parkinson Disease and Lewy Body Dementia indicate that Acetylcholine (Ach) plays a significant role in neuropsychiatric manifestation and its association with visual hallucination; therefore, visual hallucinations occur due to the depletion of Ach. Drug therapies such as Cholinesterase inhibitors (ChEIs) for increasing Ach level may be beneficial in treating visual hallucination. AchEI's have been used in the treatment of visual hallucinations in Dementia and Parkinson's Disease. We thought that a similar Ach depletion may cause visual hallucinations in patients with schizophrenia and may provide a target for drug treatment. We had a patient with schizophrenia whose psychotic symptoms responded to the treatment plan, but her visual hallucination did not. However, the patient's visual hallucination successfully responded to Rivastigmine (AchEI). This case illustrates the use of an AchEI in the treatment of refractory visual hallucinations in a patient with schizophrenia. PMID:22952543

  11. Synthesis and structure-activity relationship study of benzofuran-based chalconoids bearing benzylpyridinium moiety as potent acetylcholinesterase inhibitors.

    PubMed

    Mostofi, Manizheh; Mohammadi Ziarani, Ghodsi; Mahdavi, Mohammad; Moradi, Alireza; Nadri, Hamid; Emami, Saeed; Alinezhad, Heshmatollah; Foroumadi, Alireza; Shafiee, Abbas

    2015-10-20

    A series of benzofuran-based chalconoids 6a-v were designed and synthesized as new potential AChE inhibitors. The in vitro assay of synthesized compounds 6a-v showed that most compounds had significant anti-AChE activity at micromolar or sub-micromolar levels. Among the tested compounds, 3-pyridinium derivative 6m bearing N-(2-bromobenzyl) moiety and 7-methoxy substituent on the benzofuran ring exhibited superior activity. This compound with IC₅₀ value of 0.027 μM was as potent as standard drug donepezil. PMID:26363872

  12. Synthesis of novel triazoles and a tetrazole of escitalopram as cholinesterase inhibitors.

    PubMed

    Mehr-un-Nisa; Munawar, Munawar A; Chattha, Fauzia A; Kousar, Samina; Munir, Jawaria; Ismail, Tayaba; Ashraf, Muhammad; Khan, Misbahul A

    2015-09-01

    A novel serie of escitalopram triazoles (60-88) and a tetrazole (89) have been synthesized and subjected to a study to establish the inhibitory potential of these compounds toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Some selectivity in inhibition has been observed. The 4-chlorophenyl- (75, IC50, 6.71 ± 0.25 μM) and 2-methylphenyl- (70, IC50, 9.52 ± 0.23 μM) escitalopram triazole derivatives depicted high AChE inhibition, while 2-fluorophenyl- (76, IC50 = 4.52 ± 0.17 μM) and 4-fluorophenyl- (78, IC50 = 5.31 ± 0.43 μM) have found to be excellent BChE inhibitors. It has also been observed that ortho, meta and para substituted electron donating groups increase the inhibition, while electron withdrawing groups reduce the inhibition. Docking analyses of inhibitors with AChE have depicted the binding energies for 70 and 75 as ΔG(bind) -6.42 and -6.93 kcal/mol, respectively, while ligands 76 and 78 have shown the binding affinity ΔG(bind) -9.04 and -8.51 kcal/mol, respectively, for BChE. PMID:26189031

  13. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... trialkylamine halides. 721.4095 Section 721.4095 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  14. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  15. (-)-Epicatechin derivate from Orostachys japonicus as potential inhibitor of the human butyrylcholinesterase.

    PubMed

    Kim, Jang Hoon; Lee, Sang-Hyun; Lee, Hyun Woo; Sun, Ya Nan; Jang, Won-Hee; Yang, Seo-Young; Jang, Hae-Dong; Kim, Young Ho

    2016-10-01

    Cholinesterase inhibitors block the bioconversion of neurotransmitters by cholinesterase in the nervous system. Epicatechin derivatives (1, 3 and 5), polyphenols (6 and 7) from Orostachys japonicus, and catechin derivatives (2 and 4) from our in-house library were evaluated for their inhibitory activity on cholinesterase. Compound 5 exhibited IC50 values of 58.3±2.4 and 17.8±3.8μg/mL on AChE and BuChE, respectively. Compound 5 inhibited BuChE more strongly than AChE through a competitive behavior. In silico binding positions of 5 in the active site were predicted using Autodock 4.2 and processed in a 10000-ps molecular dynamics simulation to assess the stability of compound 5 binding. PMID:27341781

  16. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocenters

    PubMed Central

    Quasdorf, Kyle W.; Overman, Larry E.

    2015-01-01

    Preface Quaternary carbon stereocenters–carbon atoms to which four distinct carbon substituents are attached–are common features of molecules found in nature. However, prior to recent advances in chemical catalysis, there were few methods available for constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for synthesizing organic molecules containing such carbon atoms. This progress now makes it possible to selectively incorporate quaternary stereocenters in many high-value organic molecules for use in medicine, agriculture, and other areas. PMID:25503231

  17. Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice.

    PubMed

    Zhao, Xia; Ye, Jia; Sun, Qi; Xiong, Yulan; Li, Runtao; Jiang, Yimin

    2011-01-01

    The aim of this study was to evaluate the antinociceptive effects and potential mechanisms of the spirocyclopiperazinium compound LXM-15. We found that LXM-15 produced significant antinociceptive effects in a dose- and time-dependent manner in mice. The maximum inhibition ratio was 70% in the acetic acid writhing test; the effect started at 1.0 h, peaked at 2.0 h with the MPEs of 61%, and persisted 3.5 h in the hot-plate test; LXM-15 reduced the time spent licking or biting the injected paw remarkably with inhibitions of 53% in formalin test. LXM-15 did not affect motor coordination, spontaneous activity, body temperature, heart rate, or liver enzyme activity, the LD(50) values was 616.26 μmol/kg. The antinociceptive effect of LXM-15 was blocked by mecamylamine, hexamethonium, atropine or atropine methylnitrate, and was also blocked by MLA, tropicamide. In contrast, the effect was not blocked by naloxone. Meanwhile, competition receptor binding assays showed LXM-15 can bind to α7 nAChR or M4 mAChR. Our studies show that LXM-15 may be via activating peripheral α7 nicotnic and M4 muscarinic receptors, resulted in antinociceptive effects. PMID:21035471

  18. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis.

    PubMed

    Vandeput, Marie; Parsajoo, Cobra; Vanheuverzwijn, Jérôme; Patris, Stéphanie; Yardim, Yavuz; le Jeune, Alexandre; Sarakbi, Ahmad; Mertens, Dominique; Kauffmann, Jean-Michel

    2015-01-01

    A commercially available thin-layer flow-through amperometric detector, with the sensing block customized in an original design, was applied to the screening of drug compounds known as acetylcholinesterase (AChE) inhibitors. AChE from electric eel was covalently immobilized onto a cysteamine modified gold disk adjacent to a silver disk working electrode. On-line studies were performed by flow injection analysis (FIA) in PBS buffer pH 7.4. Seven commercially available AChE inhibitors used in the medical field, namely neostigmine, eserine, tacrine, donepezil, rivastigmine, pyridostigmine and galantamine as well as two natural compounds, quercetin and berberine, were investigated. The same trend of inhibitory potency as described in the literature was observed. Of particular interest and in addition to the determination of the IC50 values, this flow-through system allowed the study of both, the stability of the enzyme-inhibitor complex and the kinetic of the enzyme activity recovery. PMID:25459923

  19. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII&D

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-06-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII&D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys. 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  20. 40 CFR 721.10569 - Tricyclic quaternary amine salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tricyclic quaternary amine salt... Specific Chemical Substances § 721.10569 Tricyclic quaternary amine salt (generic). (a) Chemical substance... tricyclic quaternary amine salt (PMN P-08-471) is subject to reporting under this section for...

  1. 40 CFR 721.10569 - Tricyclic quaternary amine salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tricyclic quaternary amine salt... Specific Chemical Substances § 721.10569 Tricyclic quaternary amine salt (generic). (a) Chemical substance... tricyclic quaternary amine salt (PMN P-08-471) is subject to reporting under this section for...

  2. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors. PMID:26832327

  3. Isoflurane-Induced Spatial Memory Impairment in Mice is Prevented by the Acetylcholinesterase Inhibitor Donepezil

    PubMed Central

    Wang, Beilei; Xu, Huan; Li, Wen; Chen, Jie; Wang, Xiangrui

    2011-01-01

    Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA) for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg) or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2%) for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE), choline acetylase (ChAT) and α7 nicotinic receptor (α7-nAChR) were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane. PMID:22114680

  4. Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil.

    PubMed

    Su, Diansan; Zhao, Yanxing; Wang, Beilei; Xu, Huan; Li, Wen; Chen, Jie; Wang, Xiangrui

    2011-01-01

    Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA) for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg) or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2%) for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE), choline acetylase (ChAT) and α7 nicotinic receptor (α7-nAChR) were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane. PMID:22114680

  5. Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Švarcová, Markéta; Vinšová, Jarmila

    2016-01-01

    Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization. PMID:26875979

  6. Muscle aches

    MedlinePlus

    ... be done include: Complete blood count (CBC) Other blood tests to look at muscle enzymes (creatine kinase) and possibly a test for Lyme disease or a connective tissue disorder Physical therapy may be helpful.

  7. Enantioselective construction of remote quaternary stereocentres

    NASA Astrophysics Data System (ADS)

    Mei, Tian-Sheng; Patel, Harshkumar H.; Sigman, Matthew S.

    2014-04-01

    Small molecules that contain all-carbon quaternary stereocentres--carbon atoms bonded to four distinct carbon substituents--are found in many secondary metabolites and some pharmaceutical agents. The construction of such compounds in an enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In particular, methods for synthesizing quaternary stereocentres that are remote from other functional groups are underdeveloped. Here we report a catalytic and enantioselective intermolecular Heck-type reaction of trisubstituted-alkenyl alcohols with aryl boronic acids. This method provides direct access to quaternary all-carbon-substituted β-, γ-, δ-, ɛ- or ζ-aryl carbonyl compounds, because the unsaturation of the alkene is relayed to the alcohol, resulting in the formation of a carbonyl group. The scope of the process also includes incorporation of pre-existing stereocentres along the alkyl chain, which links the alkene and the alcohol, in which the stereocentre is preserved. The method described allows access to diverse molecular building blocks containing an enantiomerically enriched quaternary centre.

  8. Extensive Quaternary glaciations in eastern Turkey

    NASA Astrophysics Data System (ADS)

    Yeşilyurt, Serdar; Akçar, Naki; Doǧan, Uǧur; Yavuz, Vural; Ivy-Ochs, Susan; Vockenhuber, Christof; Schlunegger, Fritz; Schlüchter, Christian

    2016-04-01

    During cold periods in the Quaternary, global ice volume increased and as a result valley glaciers advanced and the vice versa occurred during the warm periods. Quaternary glacier fluctuations had been also recorded in the Turkish mountains. Recently, the chronology of Late Quaternary advances in the northern and western Turkish mountains was reconstructed by surface exposure dating. However, these advances in the eastern Turkey are not dated yet. In this study, we investigated paleoglaciations in Kavuşşahap Mountains, which is located to the south of Lake Van in eastern Turkey. These mountains are one of the extensively glaciated areas in Turkey. Glacial activity is evidenced by more than 20 U-shaped valleys. For instance, one of the prominent and well-preserved glacial landscapes of Turkey is situated in the Narlıca valley system. Lateral and terminal moraines in the valley system indicate more than 10 glacial advances. To build their chronology, 39 erratic carbonaceous boulders were sampled for surface exposure dating with cosmogenic 36Cl. We also reconstructed the ice margin reconstruction of the Narlıca paleoglacier using the accumulation area ratio and area-altitude balance ratio approaches. We estimated an equilibrium line altitude (ELA) of ca. 2900 m above sea level based on the maximum ice extend, which implied ca. 800 m decrease in the ELA during the Late Quaternary in comparison to the lower bound of the modern ELA estimate. The first results of the surface exposure dating will be presented.

  9. Deposition of a-C:H films on UHMWPE substrate and its wear-resistance

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Liu, Hengjun; Deng, Xingrui; Leng, Y. X.; Huang, Nan

    2009-10-01

    In prosthetic hip replacements, ultrahigh molecular weight polyethylene (UHMWPE) wear debris is identified as the main factor limiting the lifetime of the artificial joints. Especially UHMWPE debris from the joint can induce tissue reactions and bone resorption that may lead to the joint loosening. The diamond like carbon (DLC) film has attracted a great deal of interest in recent years mainly because of its excellent tribological property, biocompatibility and chemically inert property. In order to improve the wear-resistance of UHMWPE, a-C:H films were deposited on UHMWPE substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-PECVD) technology. During deposition, the working gases were argon and acetylene, the microwave power was set to 800 W, the biased pulsed voltage was set to -200 V (frequency 15 kHz, duty ratio 20%), the pressure in vacuum chamber was set to 0.5 Pa, and the process time was 60 min. The films were analysed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, nano-indentation, anti-scratch and wear test. The results showed that a typical amorphous hydrogenated carbon (a-C:H) film was successfully deposited on UHMWPE with thickness up to 2 μm. The nano-hardness of the UHMWPE coated with a-C:H films, measured at an applied load of 200 μN, was increased from 10 MPa (untreated UHMWPE) to 139 MPa. The wear test was carried out using a ball (Ø 6 mm, SiC) on disk tribometer with an applied load of 1 N for 10000 cycles, and the results showed a reduction of worn cross-sectional area from 193 μm 2 of untreated UHMWPE to 26 μm 2 of DLC coated sample. In addition the influence of argon/acetylene gas flow ratio on the growth of a-C:H films was studied.

  10. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  11. The stabilization of Au NP-AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor.

    PubMed

    Buiculescu, Raluca; Chaniotakis, Nikos A

    2012-08-01

    We report on the construction of an amperometric biosensor based on the immobilization of the enzyme acetylcholinesterase (AChE) onto gold nanoparticles (Au NPs). The active enzyme is covalently bound directly onto the surface of the Au NPs via a thiol bond. This immobilization provides increased stability and high electron-transfer between the colloidal Au NPs, the catalyst and the transducer surface. To further increase the biosensor stability by protecting the enzyme from denaturation and protease attack, a layer of biosilica was grown around the Au NP enzyme nanocomposite. All steps, i.e., the conjugation of the enzyme to the gold nanoparticles and the encapsulation into biosilica, are monitored and confirmed by ATR-FT-IR spectroscopy. The stabilizing effect of the entrapment was evaluated amperometrically, while the operation of the biosensor was monitored over a period of 4 months. The initial sensitivity of the biosensor was calculated to be 27.58 nA mM(-1) with a linear response to the concentration of the substrate in the range from 0.04 to 0.4 mM. It is thus shown that the biosilica nanocomposites doped with Au NPs-AChE conjugates create a system that provides both signal mediation and significant enzyme stabilization over the existing AChE biosensor. The biosensor had retained all its activity at the end of the 4 months, compared with the normal AChE biosensor whose activity reached 50% after only 42 days of operation. PMID:22421347

  12. Difluoromethyl ketones: Potent inhibitors of wild type and carbamate-insensitive G119S mutant Anopheles gambiae acetylcholinesterase.

    PubMed

    Camerino, Eugene; Wong, Dawn M; Tong, Fan; Körber, Florian; Gross, Aaron D; Islam, Rafique; Viayna, Elisabet; Mutunga, James M; Li, Jianyong; Totrov, Maxim M; Bloomquist, Jeffrey R; Carlier, Paul R

    2015-10-15

    Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE. Fluoromethyl ketones 10c-i exhibited submicromolar to micromolar inhibition of WT AgAChE, but again only weakly inhibited G119S AgAChE. Interestingly, difluoromethyl ketone inhibitors 9c and 9g had single digit nanomolar inhibition of WT AgAChE, and 9g had excellent potency against G119S AgAChE. Approach to steady-state inhibition was quite slow, but after 23 h incubation an IC50 value of 25.1 ± 1.2 nM was measured. We attribute the slow, tight-binding G119S AgAChE inhibition of 9g to a balance of steric size and electrophilicity. However, toxicities of 5g, 9g, and 10g to adult A. gambiae in tarsal contact, fumigation, and injection assays were lower than expected based on WT AgAChE inhibition potency and volatility. Potential toxicity-limiting factors are discussed. PMID:26386602

  13. Cross-talk between α7 nAchR and NMDAR revealed by protein profiling.

    PubMed

    Zhang, Hailong; Li, Tao; Li, Shupeng; Liu, Fang

    2016-01-10

    Functional regulation of NMDA receptor (NMDAR) by the activation of α7 nicotinic acetylcholine receptor (α7nAChR) has been reported, although the molecular signaling pathway underlying this process remains largely unknown. We employed a label-free quantitative proteomics approach to identify potential intracellular molecules and pathways that might be involved in the functional cross-talk between NMDAR and α7nAChR. 43 proteins showed significantly expression changes after choline treatment in which 35 out of 43 proteins was significantly altered by co-treatment with NMDA. Western blot analysis verified proteins expression determined by LC-MS. Furthermore, protein expression in vivo in neurons from fetal rats were visualized and quantified by Confocal microscopy,which showed consistency of relative changes of AHA-1 expressionmeasured by LC-MS and Western blot. Biological network analysis of differently expressed proteins found 21 kind of biological pathways involved. Of those pathways, 6 pathways were directly involved in regulation of neurotransmitters. Lastly, the levels of neurotransmitters (dopamine, glutamate, GABA and 5-HT) were measured by HPLC-ECD. Co-treatment choline/NMDA significantly enhances the release of dopamine, glutamate and GABA and dramatically decrease 5-HT to only 65% of control level, which is consist with this protein interaction network analysis, providing an additional evidence for the cross-talk between NMDAR and α7nAChR. PMID:26498070

  14. Does Your Patient’s Urine Turns Dark? Alkaptonuria and Low Back Ache: A Literature Review

    PubMed Central

    Kanniyan, Kalaivanan; Pathak, Aditya C; Dhammi, Ish Kumar; Jain, Anil Kumar

    2014-01-01

    Introduction: Alkaptonuria is a very rare inborn error of amino acid metabolism due to deficient homogentisic acid (HGA) oxidase enzyme leading to accumulation of HGA in plasma, cartilage, other tissues of human body and its excretion in urine. It has both systemic and peripheral signs and symptoms. Though low back is a common symptom of alkaptonuria but, in the absence of ochronosis it is rare. Alkaptonuria itself is very rare occurrence with no specific treatment option available to reverse the effect as yet. Case Report: A 38-year-old male, embroidery worker presented with chronic low back ache with history of staining of clothes in infancy. Later on laboratory and the radiological investigation patient was diagnosed to have alkaptonuria without ochronosis. No other systemic manifestation was present. Patient was treated conservatively and responded well. Conclusion: Though alkaptonuria is a very rare disease, and the occurrence of low back-ache in absence of ochronosis is much rarer. One must be aware of this inborn error of metabolism. Early diagnosis though being “diagnosis of exclusion” for low back-ache, high index of suspicion is advantageous as symptomatic treatment of the alkaptonuria can be initiated and evaluation of other systemic organs can be done in early stages itself. PMID:27298997

  15. Expression of human AChR extracellular domain mutants with improved characteristics.

    PubMed

    Lazaridis, Konstantinos; Zisimopoulou, Paraskevi; Giastas, Petros; Bitzopoulou, Kalliopi; Evangelakou, Panagiota; Sideri, Anastasia; Tzartos, Socrates J

    2014-02-01

    The muscle nicotinic acetylcholine receptor (AChR) has a central role in neuromuscular transmission, and is the major target in the autoimmune disease myasthenia gravis (MG). We created mutants of the extracellular domains (ECDs) of the human α1, β1, δ and ε AChR subunits, whereby their Cys-loop was exchanged for that of the acetylcholine binding protein. The mutants were expressed in Pichia pastoris and had improved solubility resulting in 2- to 43-fold higher expression yields compared to the wild type. An additional mutant was created for the α1 ECD restoring its glycosylation site within the Cys-loop and its α-bungarotoxin binding ability. Furthermore, we constructed dimeric and pentameric concatamers of the mutant ECDs. All concatamers were successfully expressed as soluble secreted proteins, although the pentamers had about 10-fold lower expression than the dimers and were more susceptible to fragmentation. Initial crystallizations with the mutant ECDs were promising, and we reproducibly obtained crystals of the β1 ECD, diffracting at ~12 Å. Further optimization is underway to obtain crystals suitable for high resolution crystallography. The proteins described herein are useful tools in structural studies of the human muscle AChR and can be used in applications requiring high yields such as therapeutic adsorbents for MG autoantibodies. PMID:24246999

  16. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    PubMed Central

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer. PMID:26264026

  17. The α3β4* nicotinic ACh receptor subtype mediates physical dependence to morphine: mouse and human studies

    PubMed Central

    Muldoon, P P; Jackson, K J; Perez, E; Harenza, J L; Molas, S; Rais, B; Anwar, H; Zaveri, N T; Maldonado, R; Maskos, U; McIntosh, J M; Dierssen, M; Miles, M F; Chen, X; De Biasi, M; Damaj, M I

    2014-01-01

    BACKGROUND AND PURPOSE Recent data have indicated that α3β4* neuronal nicotinic (n) ACh receptors may play a role in morphine dependence. Here we investigated if nACh receptors modulate morphine physical withdrawal. EXPERIMENTAL APPROACHES To assess the role of α3β4* nACh receptors in morphine withdrawal, we used a genetic correlation approach using publically available datasets within the GeneNetwork web resource, genetic knockout and pharmacological tools. Male and female European-American (n = 2772) and African-American (n = 1309) subjects from the Study of Addiction: Genetics and Environment dataset were assessed for possible associations of polymorphisms in the 15q25 gene cluster and opioid dependence. KEY RESULTS BXD recombinant mouse lines demonstrated an increased expression of α3, β4 and α5 nACh receptor mRNA in the forebrain and midbrain, which significantly correlated with increased defecation in mice undergoing morphine withdrawal. Mice overexpressing the gene cluster CHRNA5/A3/B4 exhibited increased somatic signs of withdrawal. Furthermore, α5 and β4 nACh receptor knockout mice expressed decreased somatic withdrawal signs compared with their wild-type counterparts. Moreover, selective α3β4* nACh receptor antagonists, α-conotoxin AuIB and AT-1001, attenuated somatic signs of morphine withdrawal in a dose-related manner. In addition, two human datasets revealed a protective role for variants in the CHRNA3 gene, which codes for the α3 nACh receptor subunit, in opioid dependence and withdrawal. In contrast, we found that the α4β2* nACh receptor subtype is not involved in morphine somatic withdrawal signs. CONCLUSION AND IMPLICATIONS Overall, our findings suggest an important role for the α3β4* nACh receptor subtype in morphine physical dependence. PMID:24750073

  18. Immune responses to HTLV-I(ACH) during acute infection of pig-tailed macaques.

    PubMed

    McGinn, Therese M; Wei, Qing; Stallworth, Jackie; Fultz, Patricia N

    2004-04-01

    Human T cell lymphotropic virus type 1 (HTLV-I) is causally linked to adult T cell leukemia/lymphoma (ATL) and a chronic progressive neurological disease, HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A nonhuman primate model that reproduces disease symptoms seen in HTLV-I-infected humans might facilitate identification of initial immune responses to the virus and an understanding of pathogenic mechanisms in HTLV-I-related disease. Previously, we showed that infection of pig-tailed macaques with HTLV-I(ACH) is associated with multiple signs of disease characteristic of both HAM/TSP and ATL. We report here that within the first few weeks after HTLV-I(ACH) infection of pig-tailed macaques, serum concentrations of interferon (IFN)-alpha increased and interleukin-12 decreased transiently, levels of nitric oxide were elevated, and activation of CD4(+) and CD8(+) lymphocytes and CD16(+) natural killer cells in peripheral blood were observed. HTLV-I(ACH) infection elicited virus-specific antibodies in all four animals within 4 to 6 weeks; however, Tax-specific lymphoproliferative responses were not detected until 25-29 weeks after infection in all four macaques. IFN-gamma production by peripheral blood cells stimulated with a Tax or Gag peptide was detected to varying degrees in all four animals by ELISPOT assay. Peripheral blood lymphocytes from one animal that developed only a marginal antigen-specific cellular response were unresponsive to mitogen stimulation during the last few weeks preceding its death from a rapidly progressive disease syndrome associated with HTLV-I(ACH) infection of pig-tailed macaques. The results show that during the first few months after HTLV-I(ACH) infection, activation of both innate and adaptive immunity, limited virus-specific cellular responses, sustained immune system activation, and, in some cases, immunodeficiency were evident. Thus, this animal model might be valuable for understanding early stages of infection

  19. Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells.

    PubMed Central

    Gandía, L.; Villarroya, M.; Lara, B.; Olmos, V.; Gilabert, J. A.; López, M. G.; Martínez-Sierra, R.; Borges, R.; García, A. G.

    1996-01-01

    1. Otilonium, a clinically useful spasmolytic, behaves as a potent blocker of neuronal nicotinic acetylcholine receptors (AChR) as well as a mild wide-spectrum Ca2+ channel blocker in bovine adrenal chromaffin cells. 2. 45Ca2+ uptake into chromaffin cells stimulated with high K+ (70 mM, 1 min) was blocked by otilonium with an IC50 of 7.6 microM. The drug inhibited the 45Ca2+ uptake stimulated by the nicotinic AChR agonist, dimethylphenylpiperazinium (DMPP) with a 79 fold higher potency (IC50 = 0.096 microM). 3. Whole-cell Ba2+ currents (IBa) through Ca2+ channels of voltage-clamped chromaffin cells were blocked by otilonium with an IC50 of 6.4 microM, very close to that of K(+)-evoked 45Ca2+ uptake. Blockade developed in 10-20 s, almost as a single step and was rapidly and almost fully reversible. 4. Whole-cell nicotinic AChR-mediated currents (250 ms pulses of 100 microM DMPP) applied at 30 s intervals were blocked by otilonium in a concentration-dependent manner, showing an IC50 of 0.36 microM. Blockade was induced in a step-wise manner. Wash out of otilonium allowed a slow recovery of the current, also in discrete steps. 5. In experiments with recordings in the same cells of whole-cell IDMPP, Na+ currents (INa) and Ca2+ currents (ICa), 1 microM otilonium blocked 87% IDMPP, 7% INa and 13% ICa. 6. Otilonium inhibited the K(+)-evoked catecholamine secretory response of superfused bovine chromaffin cells with an IC50 of 10 microM, very close to the IC50 for blockade of K(+)-induced 45Ca2+ uptake and IBa. 7. Otilonium inhibited the secretory responses induced by 10 s pulses of 50 microM DMPP with an IC50 of 7.4 nM. Hexamethonium blocked the DMPP-evoked responses with an IC50 of 29.8 microM, 4,000 fold higher than that of otilonium. 8. In conclusion, otilonium is a potent blocker of nicotinic AChR-mediated responses. The drugs also blocked various subtypes of neuronal voltage-dependent Ca2+ channels at a considerably lower potency. Na+ channels were unaffected by

  20. Docking studies of benzylidene anabaseine interactions with α7 nicotinic acetylcholine receptor (nAChR) and acetylcholine binding proteins (AChBPs): Application to the design of related α7 selective ligands

    PubMed Central

    Kombo, David C.; Mazurov, Anatoly; Tallapragada, Kartik; Hammond, Philip S.; Chewning, Joseph; Hauser, Terry A.; Vasquez-Valdivieso, Montserrat; Yohannes, Daniel; Talley, Todd T.; Taylor, Palmer; Caldwell, William S.

    2016-01-01

    AChBPs isolated from Lymnaea stagnalis (Ls), Aplysia californica (Ac) and Bulinus truncatus (Bt) have been extensively used as structural prototypes to understand the molecular mechanisms that underlie ligand-interactions with nAChRs [1]. Here, we describe docking studies on interactions of benzylidene anabaseine analogs with AChBPs and α7 nAChR. Results reveal that docking of these compounds using Glide software accurately reproduces experimentally-observed binding modes of DMXBA and of its active metabolite, in the binding pocket of Ac. In addition to the well-known nicotinic pharmacophore (positive charge, hydrogen-bond acceptor, and hydrophobic aromatic groups), a hydrogen-bond donor feature contributes to binding of these compounds to Ac, Bt, and the α7 nAChR. This is consistent with benzylidene anabaseine analogs with OH and NH2 functional groups showing the highest binding affinity of these congeners, and the position of the ligand shown in previous X-ray crystallographic studies of ligand-Ac complexes. In the predicted ligand-Ls complex, by contrast, the ligand OH group acts as hydrogen-bond acceptor. We have applied our structural findings to optimizing the design of novel spirodiazepine and spiroimidazoline quinuclidine series. Binding and functional studies revealed that these hydrogen-bond donor containing compounds exhibit improved affinity and selectivity for the α7 nAChR subtype and demonstrate partial agonism. The gain in affinity is also due to conformational restriction, tighter hydrophobic enclosures, and stronger cation-π interactions. The use of AChBPs structure as a surrogate to predict binding affinity to α7 nAChR has also been investigated. On the whole, we found that molecular docking into Ls binding site generally scores better than when a α7 homology model, Bt or Ac crystal structure is used. PMID:21986237

  1. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    PubMed

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. PMID:24927388

  2. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  3. Spacetime Non-Commutativity Corrections to the Cardy-Verlinde Formula of Achúcarro-Ortiz Black Hole

    NASA Astrophysics Data System (ADS)

    Setare, M. R.

    2007-02-01

    In this letter we compute the corrections to the Cardy-Verlinde formula of Achúcarro-Ortiz black hole, which is the most general two-dimensional black hole derived from the three-dimensional rotating Banados-Teitelboim-Zanelli black hole. These corrections stem from the space non-commutativity. We show that in non-commutative case, non-rotating Achúcarro-Ortiz black hole in contrast with commutative case has two horizons.

  4. Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients

    PubMed Central

    Kordas, Gregory; Lagoumintzis, George; Sideris, Sotirios; Poulas, Konstantinos; Tzartos, Socrates J.

    2014-01-01

    Several studies have suggested that the autoantibodies (autoAbs) against muscle acetylcholine receptor (AChR) of myasthenia gravis (MG) patients are the main pathogenic factor in MG; however, this belief has not yet been confirmed with direct observations. Although animals immunized with AChR or injected with anti-AChR monoclonal Abs, or with crude human MG Ig fractions exhibit MG symptoms, the pathogenic role of isolated anti-AChR autoAbs, and, more importantly, the absence of pathogenic factor(s) in the autoAb-depleted MG sera has not yet been shown by in vivo studies. Using recombinant extracellular domains of the human AChR α and β subunits, we have isolated autoAbs from the sera of four MG patients. The ability of these isolated anti-subunit Abs and of the Ab-depleted sera to passively transfer experimental autoimmune MG in Lewis rats was investigated. We found that the isolated anti-subunit Abs were at least as efficient as the corresponding whole sera or whole Ig in causing experimental MG. Abs to both α- and β-subunit were pathogenic although the anti-α-subunit were much more efficient than the anti-β-subunit ones. Interestingly, the autoAb-depleted sera were free of pathogenic activity. The later suggests that the myasthenogenic potency of the studied anti-AChR MG sera is totally due to their anti-AChR autoAbs, and therefore selective elimination of the anti-AChR autoAbs from MG patients may be an efficient therapy for MG. PMID:25259739

  5. Biological evaluation of synthetic α,β-unsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation.

    PubMed

    Zha, Gao-Feng; Zhang, Cheng-Pan; Qin, Hua-Li; Jantan, Ibrahim; Sher, Muhammad; Amjad, Muhammad Wahab; Hussain, Muhammad Ajaz; Hussain, Zahid; Bukhari, Syed Nasir Abbas

    2016-05-15

    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases. PMID:27083471

  6. RNA quaternary structure and global symmetry.

    PubMed

    Jones, Christopher P; Ferré-D'Amaré, Adrian R

    2015-04-01

    Many proteins associate into symmetric multisubunit complexes. Structural analyses suggested that, by contrast, virtually all RNAs with complex 3D structures function as asymmetric monomers. Recent crystal structures revealed that several biological RNAs exhibit global symmetry at the level of their tertiary and quaternary structures. Here we survey known examples of global RNA symmetry, including the true quaternary symmetry of the bacteriophage ϕ29 prohead RNA (pRNA) and the internal pseudosymmetry of the single-chain flavin mononucleotide (FMN), glycine, and cyclic di-AMP (c-di-AMP) riboswitches. For these RNAs, global symmetry stabilizes the RNA fold, coordinates ligand-RNA interactions, and facilitates association with symmetric binding partners. PMID:25778613

  7. RNA quaternary structure and global symmetry

    PubMed Central

    Jones, Christopher P.; Ferré-D'Amaré, Adrian R.

    2015-01-01

    Many proteins associate into symmetric multisubunit complexes. Structural analyses suggested that, in contrast, virtually all RNAs with complex three-dimensional structures function as asymmetric monomers. Recent crystal structures revealed that several biological RNAs exhibit global symmetry at the level of their tertiary and quaternary structures. Here, we survey known examples of global RNA symmetry, including the true quaternary symmetry of the bacteriophage ϕ29 prohead RNA (pRNA), and the internal pseudosymmetry of the single-chain flavin mononucleotide (FMN), glycine, and cyclic diadenosine monophosphate (c-di-AMP) riboswitches. For these RNAs, global symmetry stabilizes the RNA fold, coordinates ligand-RNA interactions, and facilitates association with symmetric binding partners. PMID:25778613

  8. Quaternary Tipping Points in Tropical Northern Australia

    NASA Astrophysics Data System (ADS)

    Moss, Patrick; Dunbar, Gavin; Croke, Jacky; Katunar, Rosie

    2016-04-01

    Tropical northern Queensland, particularly the volcanic Atherton Tableland, contains some of the most detailed and longest terrestrial palaeoenvironmental archives in Australia and when combined with adjacent marine sediment records provides key insight into potential environmental 'tipping points' for the entire Quaternary period and beyond. This presentation will provide an overview of some of the key tipping points (i.e. significant landscape transformation) that have occurred within the tropical northern Australian region over the Quaternary, as well as discussing potential causes and subsequent impacts of these transformation episodes. These events include the development of the Great Barrier Reef, transition from obliquity to eccentricity dominated glacial-interglacial cycles, the Mid-Brunhes event, the Oxygen Isotope Stage 6 episode, the arrival of people into the region, Last Glacial-Interglacial Transition and European settlement.

  9. [Quaternary prevention: containment as an ethical necessity].

    PubMed

    Martínez González, C; Riaño Galán, I; Sánchez Jacob, M; González de Dios, J

    2014-12-01

    The growing capacity of medicine to generate more iatrogenic events than ever, and the risk of unsustainability of health systems have led to new prevention concept: quaternary prevention aimed at restraining medicalization. Quaternary prevention is essential in the phenomenon called disease mongering, which could be translated as commercialization of disease. Encouraging this sort of prevention and halting the consequences of disease mongering requires the development of all the institutional potential for prevention, as well as all the personal willingness for restraint; it involves separating us from the unnecessary auspices of industry, being critical of our work, not being maleficent, respecting the principle of justice as managers of the limited public resources and making ourselves feel responsible for the social cost resulting from medical decisions. From this point of view, this work analyses neonatal screening, developments in the area of neonatology and primary health care. PMID:24907862

  10. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection.

    PubMed

    Egea, Javier; Buendia, Izaskun; Parada, Esther; Navarro, Elisa; León, Rafael; Lopez, Manuela G

    2015-10-15

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system, being expressed in neurons and non-neuronal cells, where they participate in a variety of physiological responses like memory, learning, locomotion, attention, among others. We will focus on the α7 nAChR subtype, which has been implicated in neuroprotection, synaptic plasticity and neuronal survival, and is considered as a potential therapeutic target for several neurological diseases. Oxidative stress and neuroinflammation are currently considered as two of the most important pathological mechanisms common in neurodegenerative diseases such as Alzheimer, Parkinson or Huntington diseases. In this review, we will first analysed the distribution and expression of nAChR in mammalian brain. Then, we focused on the function of the α7 nAChR subtype in neuronal and non-neuronal cells and its role in immune responses (cholinergic anti-inflammatory pathway). Finally, we will revise the anti-inflammatory pathway promoted via α7 nAChR activation that is related to recruitment and activation of Jak2/STAT3 pathway, which on the one hand inhibits NF-κB nuclear translocation, and on the other hand, activates the master regulator of oxidative stress Nrf2/HO-1. This review provides a profound insight into the role of the α7 nAChR subtype in microglia and point out to microglial α7/HO-1 pathway as an anti-inflammatory therapeutic target. PMID:26232730

  11. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria.

    PubMed

    Schrey, Silvia D; Schellhammer, Michael; Ecke, Margret; Hampp, Rüdiger; Tarkka, Mika T

    2005-10-01

    The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric (Amanita muscaria) and spruce (Picea abies) was investigated. The effects of both bacteria on the mycelial growth of different ectomycorrhizal fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture with AcH 505 were determined. The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances. PMID:16159334

  12. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    PubMed

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-01

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine. PMID:27070402

  13. Attenuating Aβ1-42-induced toxicity by a novel acetylcholinesterase inhibitor.

    PubMed

    Mishra, N; Sasmal, D; Singh, K K

    2013-10-10

    We explored the attenuating effects of NP-9 on β-amyloid (Aβ) aggregation and amyloid-induced toxicity. NP-9 is a recently reported monoamine oxidase B (MAO-B), and acetylcholinesterase (AChE) inhibitor. In the present study, we found that NP-9 inhibited AChE activity in a dose-dependent manner with a maximal inhibition dose of 8 mg/kg, i.p. It inhibited Aβ aggregation, observed through thioflavin-T assay (IC50=60 μM) and scanning electron microscopy (S.E.M.) (no fibril formation). NP-9 has shown marked protection against scopolamine and Aβ1-42-induced memory impairments. It also minimized neuronal loss and amyloid plaque deposition in the brains of Aβ1-42-induced mice model. Therefore, NP-9 could be a promising lead molecule for AD, with effects against MAO-B, AChE, Aβ aggregation, and Aβ1-42 induced toxicity. PMID:23872389

  14. Development and testing of a low toxicity acid corrosion inhibitor for industrial cleaning applications

    SciTech Connect

    Frenier, W.W.

    1997-02-01

    A low toxicity corrosion inhibitor used in hydrochloric acid cleaning formulations has been developed. This formulation does not contain formaldehyde. It contains cinnamaldehyde, quaternary nitrogen salts, and a nonionic surfactant, none of which are currently known or suspected to be carcinogens. In laboratory tests, corrosion protection values were equivalent to those provided by current commercial acid inhibitors. Field tests using the low toxicity inhibitor were conducted.

  15. Quaternary glaciations in the Northern Hemisphere

    SciTech Connect

    Sibrava, V.; Bowen, D.Q.; Richmond, G.M.

    1987-01-01

    This volume presents the final report of Project 24 of the International Geological Correlation Programme. The publication is drawn from the contributions of leading individual scientist as well as from scientific research teams. It reflects the present state of knowledge of the Quaternary Glaciations in the Northern Hemisphere and their correlation in space and time, as well as providing a unique summary of climatic change.

  16. Aleksis Dreimanis: a legacy in Quaternary science

    NASA Astrophysics Data System (ADS)

    Hicock, Stephen R.; Menzies, John

    2000-12-01

    Aleksis Dreimanis was born and raised in Latvia. His interest in Quaternary and glacial geology began early and developed into a career that has spanned 7 decades. At age 20 he published his first paper in glacial geology and soon after began teaching at the University of Latvia. Teaching and research were interrupted by World War II but resumed at the Baltic University (Pinneberg, Germany), then at the University of Western Ontario where he has been ever since. Throughout his career, Dreimanis has successfully balanced the twin disciplines of Quaternary history and glacial geology. He was among the first to study quantitatively the relationship between till lithology and till formation and to study how glacial transport and dynamics affect till texture and deformation. With co-workers he developed the well-known stratigraphic scheme of the last glaciation in the Great Lakes region of North America. Aleksis became world-renowned through his committee work, especially as President of the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits. His diplomacy, enthusiasm, and passion for his subject have inspired students and colleagues around the globe and resulted in remarkable international dialogue, cooperation, and consensus. Professor Aleksis Dreimanis is an honest scientist, a gentleman, and a true scholar who has left a rich legacy for future Quaternarists.

  17. Late quaternary sequence stratigraphy, South Florida margin

    SciTech Connect

    Locker, S.D.; Hine, A.C.

    1995-12-01

    Late Quaternary sea-level change and the Florida Current have combined to produce a progradational shelf-slope margin along the western portion of the south Florida Platform facing the Straits of Florida. Analysis of high resolution seismic reflection profiles suggest at least eight 5th order late Quaternary sequences downlap onto the Pourtales Terrace at 250 m water depth. Along most of the south Florida margin, this Late Quaternary section is very thin, and only where significant accumulations occur can the stratigraphic patterns produced by sea-level change be clearly observed. Recognition of systems tracts and their boundaries from high-resolution seismic data is important for prediction of sedimentary facies and stratigraphic development of margins. Many south Florida seismic boundaries can be fit to the Exxon sequence stratigraphy model. Others appear to reflect the added effect of bottom-current erosion that complicates the signal produced by sea-level change. Overall, the sea-level signal appears to dominate the stratigraphic record, especially from the 2-dimensional perspective of dip-oriented seismic profiles. However, the 3-dimensional geometry of deposits are strongly influenced by along slope accumulation patterns controlled by the Florida Current. This study provides new insight on the importance of both geostrophic boundary currents and sea-level change in controlling stratigraphic development of a carbonate platform margin. Similar anomalously thick slope deposits in ancient sequences may indicate similar controls on accumulation and could lend to predictions of related paleo-platform configurations.

  18. Quaternary geology of the Amazonian Lowland

    NASA Astrophysics Data System (ADS)

    Irion, Georg; Müller, Jens; Nunes de Mello, Jose; Junk, Wolfgang J.

    1995-09-01

    The Quaternary history of the Amazon lowlands is characterized by deposition of sediments of Andean provenance and by the influences of changing sea levels. Areas well above the present water tables were not reached by Pleistocene high-water stages. These areas have been intensively weathered since the Tertiary, forming hard lateritic weathering horizons. These weathering horizons are best explained by the relatively constant, humid tropical climate throughout the Quaternary. In the western Amazonian Lowland, flood plains corresponding to the different Pleistocene sea-level heights were formed. During low sea level, erosion in the drainage areas increased and the water levels of the central Amazon River system were lowered. Valleys drowned and lakes formed in the lower reaches of rivers and creeks during high sea-level stages. These lakes (ria lakes) remained in the valleys with rivers having a low sediment load. Seismic profiling (3.5 kHz) in some of these lakes clearly showed deposits of the three last periods of Quaternary high sea-level stages.

  19. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  20. Resistance of Pseudomonas to Quaternary Ammonium Compounds

    PubMed Central

    Adair, Frank W.; Geftic, Sam G.; Gelzer, Justus

    1971-01-01

    Tube dilution experiments showed that benzalkonium chloride (BC)-resistant mutants of Pseudomonas aeruginosa grown in the presence of 1,000 μg of BC per ml were at least 20 times more sensitive to polymyxin B and colistin sulfate than the BC-sensitive (BCS) parent strain. BCS cells selected for resistance to 500 μg of polymyxin B per ml remained sensitive to BC. There was little difference in the amount of carbenicillin, gentamicin sulfate, or rifampin needed to prevent growth of either the BCS or BC-resistant (BCR) strains. Growth of BCR cells was inhibited by ethylenediaminetetraacetate at a concentration of 400 μg/ml or less, whereas the BCS strain grew at ethylenediaminetetraacetate levels of 10,000 μg/ml. Phenylmercuric acetate and thimerosal inhibited growth of BCR and BCS cells at concentrations of 10 μg/ml or less. BCR cells were cross-resistant to >1,000 μg/ml concentrations of five other quaternary ammonium compounds, including three with C16 alkyls and two with alkyl groups of shorter length. The BCS strain was also resistant to >1,000 μg/ml concentrations of the three quaternary ammonium compounds with C16 alkyl groups but, in addition to BC, was inhibited by 200 μg/ml levels or less of the two quaternary ammonium compounds containing alkyl groups of less than 16 carbon atoms. PMID:4998348

  1. On ACH, or how reliable is regional teleseismic delay time tomography?

    NASA Astrophysics Data System (ADS)

    Masson, F.; Trampert, J.

    1997-06-01

    ACH (named after Aki et al., 1976, Bull. Seismol. Soc. Am., 66: 501-524; Aki et al., 1977, J. Geophys. Res., 82: 277-296) is a standard, widely used, method for three-dimensional seismic imaging of the Earth. The fundamental hypothesis which underlies the method is that the time residuals generated outside the given target volume (from the seismic source to the bottom of the modelled zone) are approximately constant across the seismic array. The main purpose of this study is to check this assumption. We computed travel times for a given station and event distribution using a three-dimensional global Earth model taken from seismic tomography. We found that the relative residuals generated outside the target volume are not negligible and that the fundamental hypothesis underlying ACH is thus not verified. These deviations are generated in the lower and/or upper mantle and the corresponding proportions are entirely dependent on the raypaths. The bias in the inverted model is statistically similar to the input model outside the target volume. We thus recommend caution in any interpretations involving ACH-generated models. A secondary, somewhat independent, outcome of this study is that Fermat's principle, used to linearise the inverse problem in ray theory based tomography, seems to be valid without any restrictions (given our input model is representative for the true Earth) for rays with turning points in the lower mantle. For rays with turning points in the upper mantle, the constant raypath approximation is probably not true. This applies to global tomography as well.

  2. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF.

    PubMed

    Wang, Xuemei; Loutzenhiser, Rodger

    2002-01-01

    The renal microvascular actions of ACh were investigated using the in vitro perfused hydronephrotic rat kidney. ACh reversed ANG II-induced vasoconstriction in the afferent and efferent arteriole by 106 +/- 2 and 75 +/- 5%, respectively. Inhibition of nitric oxide synthase [NOS; 100 micromol/l N(G)-nitro-L-arginine methyl ester (L-NAME)] and cyclooxygenase (COX; 10 micromol/l ibuprofen) prevented the sustained response of the afferent arteriole but did not reduce the magnitude of the initial dilation (97 +/- 7%). However, NOS/COX inhibition abolished the response of the efferent arteriole. The underlying mechanisms mediating this endothelium-derived hyperpolarizing factor (EDHF)-like response were characterized using K channel blockers. Ba (100 micromol/l), tetraethylammonium (1 mmol/l), and ouabain (3 mmol/l) had no effect, arguing against a role of an inward rectifier K channel, large-conductance Ca-activated K channel, or Na,K-ATPase. Charybdotoxin (10 nmol/l) and apamin (1.0micromol/l) attenuated the response when administered alone (63 +/- 7% and 37 +/- 5%, respectively) and abolished the response when coadministered (0.1 +/- 1.0%). These findings indicate that, as in other vascular beds, the renal EDHF-like response to ACh involves K channels that are sensitive to a combination of apamin and charybdotoxin. Our finding that EDHF modulates preglomerular, but not postglomerular, tone is consistent with the evolving concept that vasomotor mechanisms in cortical efferent arterioles do not involve voltage-gated Ca entry. PMID:11739120

  3. [Throat ache ans swelling of the neck: first symptoms of Lemierre's syndrome].

    PubMed

    Ybema, A; de Lange, J; Baas, E M

    2014-03-01

    Lemierre's syndrome, a thrombophlebitis of the internal jugular vein, is a rare disorder, usually caused by the microorganism Fusobacterium necrophorum. Throat ache and swelling of the neck are often the first symptoms. Without adequate treatment, Lemierre's syndrome may result in thrombosis of the internal jugular vein and metastatic lung abscesses, with a mortality rate of 18%. On the basis of 2 cases, Lemierre's syndrome is described here. In cases where Lemierre's syndrome is suspected, hospitalization often follows, with the administration of intravenous antibiotics and drainage of the abscesses. One should be on the alert for Lemierre's syndrome when a patient is presented with swelling in the neck following an oropharyngeal infection. PMID:24684132

  4. Isolation and characterisation of acetylcholinesterase inhibitors from Aquilaria subintegra for the treatment of Alzheimer's disease (AD).

    PubMed

    Bahrani, Hirbod; Mohamad, Jamaludin; Paydar, Mohammad Javad; Rothan, Hussin A

    2014-02-01

    Aquilaria subintegra, locally known as "Gaharu", belongs to the Thymelaeceae family. This plant's leaves have been claimed to be effective for the treatment of Alzheimer's disease (AD) by Malay traditional practitioner in Malaysia. In this research, the chloroform extracts of the leaves and stem of A. subintegra were tested for acetylcholinesterase (AChE) inhibitory activity. The Thin Layer Chromatography (TLC) results indicated the presence of phenols, flavonoids, terpenoids, and alkaloids compounds in the extracts. Analysis of the stem chloroform extracts with LCMS/MS displayed that it contains kaempferol 3,4,7-trimethyl ether. The AChE inhibitory activity of leaves and stem chloroform extracts and kaempferol were 80%, 93% and 85.8%, respectively. The Brine Shrimp Lethality Assay (BSLA) exhibited low to moderate toxicity of the chloroform extract from leaves (LC50=531.18 ± 49.53 μg/ml), the stem chloroform extract (LC50=407.34 ± 68.05 μg/ml) and kaempferol (LC50=762.41 ± 45.09 μg/ml). The extracts and kaempferol were not cytotoxic to human umbilical vein endothelial cells (HUVEC), human normal gastric epithelial cell line (GES-1) and human normal hepatic cell line (WRL-68). The effect of leaf and stem chloroform extracts and kaempferol were determined in the Radial Arm Maze (RAM) after administration by oral gavage to ICR male and female mice with valium-impaired memory. Administration of kaempferol to the mice significantly reduced the number of repeated entries into the arms of maze in males and females. In conclusion, the inhibition of AChE by leaf and stem chloroform extracts of A. subintegra could be due to the presence of kaempferol. This extract is safe for use as a natural AChE inhibitor as an alternative to berberine for the treatment of AD. PMID:24479629

  5. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction

    PubMed Central

    Ghazanfari, Nazanin; Morsch, Marco; Reddel, Stephen W; Liang, Simon X; Phillips, William D

    2014-01-01

    Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold. PMID:24860174

  6. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Mazzoni, Annalisa; Carvalho, Ricardo M.; Carrilho, Marcela; Tersariol, Ivarne L.; Nascimento, Fabio D.; Imazato, Satoshi; Tjäderhane, Leo; Breschi, Lorenzo; Tay, Franklin R; Pashley, David H.

    2014-01-01

    Objective Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. Methods Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24 h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. Results Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15 wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5–10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. Significance CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation. PMID:25467953

  7. Simvastatin prevents β-amyloid(25-35)-impaired neurogenesis in hippocampal dentate gyrus through α7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate.

    PubMed

    Wang, Conghui; Chen, Tingting; Li, Guoxi; Zhou, Libin; Sha, Sha; Chen, Ling

    2015-10-01

    Simvastatin (SV) is reported to improve cognition and slow progression of Alzheimer's disease (AD), however underlying mechanism still remains unclear. In hippocampal dentate gyrus (DG), β-amyloid (Aβ) selectively impairs survival and neurite growth of newborn neurons in the 2(nd) week after birth. The aim of this study was to examine the effects of SV on the impairment of neurogenesis and the spatial cognitive deficits in Aβ25-35 (3 nmol)-injected (i.c.v.) mice (Aβ25-35-mice). Herein, we reported that the SV-treatment (20 mg/kg) on days 2-14 after BrdU-injection could dose-dependently protect the survival and neurite growth of newborn neurons, which was blocked by the α7nAChR antagonist MLA or the farnesol (FOH) that can convert to farnesyl pyrophosphate (FPP), but not the α4β2nAChR antagonist DHβE. The SV-treatment in Aβ25-35-mice rescued the decline of Akt phosphorylation and increased the ERK1/2 phosphorylation in hippocampus, which was sensitive to MLA and FOH. The PI3K inhibitor LY294002 could abolish the SV-protected neurogenesis in Aβ25-35-mice, but the MEK inhibitor U0126 had no effects. The SV-treatment could correct the decline of hippocampal BDNF concentration in Aβ25-35-mice, which was blocked by MLA and FOH. Using Morris water maze and Y-maze tasks, we further observed that the SV-treatment in Aβ25-35-mice could improve their spatial cognitive deficits, which was sensitive to the application of FOH. The results indicate that the SV-treatment in Aβ25-35-mice via reduction of FPP can protect neurogenesis through α7nAChR-cascading PI3K-Akt and increasing BDNF, which may improve spatial cognitive function. PMID:26051402

  8. The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries

    PubMed Central

    Huynh, NN; Harris, EE; Chin-Dusting, JFP; Andrews, KL

    2009-01-01

    Background and purpose Arginase and nitric oxide (NO) synthase share the common substrate L-arginine, and arginase inhibition is proposed to increase NO production by increasing intracellular levels of L-arginine. Many different inhibitors are used, and here we have examined the effects of these inhibitors on vascular tissue. Experimental approach Each arginase inhibitor was assessed by its effects on isolated rings of aorta and mesenteric arteries from rats by: (i) their ability to preserve the tolerance to repeated applications of the endothelium-dependent agonist acetylcholine (ACh); and (ii) their direct vasorelaxant effect. Key results In both vessel types, tolerance (defined as a reduced response upon second application) to ACh was reversed with addition of L-arginine, (S)-(2-boronethyl)-L-cysteine HCl (BEC) or NG-Hydroxy-L-arginine (L-NOHA). On the other hand, Nω-hydroxy-nor-L-arginine (nor-NOHA) significantly augmented the response to ACh, an effect that was partially reversed with L-arginine. No effect on tolerance to ACh was observed with L-valine, nor-valine or D,L, α-difluoromethylornithine (DFMO). BEC, L-NOHA and nor-NOHA elicited endothelium-independent vasorelaxation in both endothelium intact and denuded aorta while L-valine, DFMO and nor-valine did not. Conclusions and implications BEC and L-NOHA, but not nor-NOHA, L-valine, DFMO or nor-valine, significantly reversed tolerance to ACh possibly conserving L-arginine levels and therefore increasing NO bioavailability. However, both BEC and L-NOHA caused endothelium-independent vasorelaxation in rat aorta, suggesting that these inhibitors have a role beyond arginase inhibition alone. Our data thus questions the interpretation of many studies using these antagonists as specific arginase inhibitors in the vasculature, without verification with other methods. PMID:19133993

  9. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  10. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance.

    PubMed

    Nishizaki, Tomoyuki

    2003-06-10

    The present study investigated the effects of N-glycosylation sites on Torpedo acetylcholine (ACh) receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents and single-channel currents from excised patches. Receptors with the mutant subunit at the asparagine residue on the conserved N-glycosylation site (mbetaN141D, mgammaN141D, or mdeltaN143D) or the serine/threonine residue (mbetaT143A, mgammaS143A, or mdeltaS145A) delayed the rate of current decay as compared with wild-type receptors, and the most striking effect was found with receptors with mbetaT143A or mgammaS143A. For wild-type receptors, the lectin concanavalin A, that binds to glycosylated membrane proteins with high affinity, mimicked this effect. Receptors with mbetaN141D or mdeltaN143D exhibited lower single-channel conductance, but those with mbetaT143A, mgammaS143A, or mdeltaS145A otherwise revealed higher conductance than wild-type receptors. Mean opening time of single-channel currents was little affected by the mutation. N-glycosylation sites, thus, appear to play a role in the regulation of ACh receptor desensitization and ion permeability. PMID:12829329

  11. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  12. Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice.

    PubMed

    Csernansky, John G; Martin, Maureen; Shah, Renu; Bertchume, Amy; Colvin, Jenny; Dong, Hongxin

    2005-12-01

    Enhancing cholinergic function has been suggested as a possible strategy for ameliorating the cognitive deficits of schizophrenia. The purpose of this study was to examine the effects of acetylcholinesterase (AChE) inhibitors in mice treated with the noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, which has been suggested as an animal model of the cognitive deficits of schizophrenia. Three separate experiments were conducted to test the effects of physostigmine, donepezil, or galantamine on deficits in learning and memory induced by MK-801. In each experiment, MK-801 (0.05 or 0.10 mg/kg) or saline was administered i.p. 20 min prior to behavioral testing over a total of 12 days. At 30 min prior to administration of MK-801 or saline, one of three doses of the AChE inhibitor (ie physostigmine-0.03, 0.10, or 0.30 mg/kg; donepezil-0.10, 0.30, or 1.00 mg/kg; or galantamine-0.25, 0.50, or 1.00 mg/kg) or saline was administered s.c. Behavioral testing was performed in all experimental animals using the following sequence: (1) spatial reversal learning, (2) locomotion, (3) fear conditioning, and (4) shock sensitivity. Both doses of MK-801 produced impairments in spatial reversal learning and in contextual and cued memory, as well as hyperlocomotion. Physostigmine and donepezil, but not galantamine, ameliorated MK-801-induced deficits in spatial reversal learning and in contextual and cued memory in a dose-dependent manner. Also, physostigmine, but not donepezil or galantamine, reversed MK-801-induced hyperlocomotion. Galantamine, but not physostigmine or donepezil, altered shock sensitivity. These results suggest that AChE inhibitors may differ in their capacity to ameliorate learning and memory deficits produced by MK-801 in mice, which may have relevance for the cognitive effects of cholinomimetic drugs in patients with schizophrenia. PMID:15956997

  13. Toluidine blue O is a potent inhibitor of human cholinesterases.

    PubMed

    Biberoglu, Kevser; Tek, Melike Yuksel; Ghasemi, Seyhan Turk; Tacal, Ozden

    2016-08-15

    In this study, the inhibitory effects of three phenothiazines [toluidine blue O (TBO), thionine (TH) and methylene violet (MV)] were tested on human plasma butyrylcholinesterase (BChE) and their inhibitory mechanisms were studied in detail. MV acted as a linear mixed type inhibitor of human BChE with Ki = 0.66 ± 0.06 μM and α = 13.6 ± 3.5. TBO and TH caused nonlinear inhibition of human BChE, compatible to double occupancy. Ki values estimated by nonlinear regression analysis for TBO and TH were 0.008 ± 0.003 μM and 2.1 ± 0.42 μM, respectively. The inhibitory potential of TBO was also tested on human erythrocyte AChE. TBO acted as a linear mixed type inhibitor of human AChE with Ki = 0.041 ± 0.005 μM and α = 1.6 ± 0.007. Using four site-directed BChE mutants, the role of peripheral anionic site residues of human BChE was also investigated in the binding of TBO to BChE. The peripheral anionic site mutants of BChE caused 16-69-fold increase in Ki value of TBO, compared to recombinant wild-type, suggesting that peripheral anionic site residues are involved in the binding of TBO to human BChE. In conclusion, TBO which is a potent inhibitor of human cholinesterases, may be a potential drug candidate for the treatment of Alzheimer's disease. PMID:27296777

  14. Acetylcholinesterase capillary enzyme reactor for screening and characterization of selective inhibitors.

    PubMed

    da Silva, Joyce Izidoro; de Moraes, Marcela Cristina; Vieira, Lucas Campos Curcino; Corrêa, Arlene Gonçalves; Cass, Quezia Bezerra; Cardoso, Carmen Lucia

    2013-01-25

    The aim of the present work is to report on the optimized preparation of capillary enzyme reactors (ICERs) based on acetylcholinesterase (AChE, EC 3.1.1.7), for the screening of selective inhibitors. The AChE-ICERs were prepared by using the homobifunctional linker glutaraldehyde through Schiff base linkage. The enzyme was anchored onto a modified fused silica capillary and employed as an LC biochromatography column for online studies, with UV-vis detection. Not only did the tailored AChE-ICER result in maintenance of the activity of the immobilized enzyme, but it also significantly improved the stability of the enzyme in the presence of organic solvents. In addition, the kinetic studies demonstrated that the enzyme retained its activity with high stability, preserving its initial activity over 10months. The absence of non-specific matrix interactions, immediate recovery of the enzymatic activity, and short analysis time were the main advantages of this AChE-ICER. The use of AChE-ICER in the ligands recognition assay was validated by evaluation of four known reversible inhibitors (galanthamine, tacrine, propidium, and rivastigmine), and the same order of inhibitory potencies described in the literature was found. The immobilized enzyme was utilized in the screening of 21 coumarin derivatives. In this library, two new potent inhibitors were identified: coumarins 20 (IC(50) 17.14±3.50μM) and 21 (IC(50) 6.35±1.20μM), which were compared to the standard galanthamine (IC(50) 12.68±2.40μM). Considering the high inhibitory activities of these compounds, with respect to the AChE-ICER, the mechanism of action was investigated. Both coumarins 20 and 21 exhibited a competitive mechanism of action, furnishing K(i) values of 8.04±0.18 and 2.67±0.18μM, respectively. The results revealed that the AChE-ICER developed herein represents a useful tool for the biological screening of inhibitor candidates and evaluation of action mechanism. PMID:22391555

  15. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes.

    PubMed

    Holden-Dye, Lindy; Joyner, Michelle; O'Connor, Vincent; Walker, Robert J

    2013-12-01

    Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes. PMID:23500392

  16. A Case Report of Congenital Fiber Type Disproportion with an Increased Level of Anti-ACh Receptor Antibodies.

    PubMed

    Kimura, Shigemi; Ozasa, Shiro; Nomura, Keiko; Kosuge, Hirofumi; Yoshioka, Kowasi

    2013-01-01

    Congenital fiber type disproportion (CFTD) is a form of congenital myopathy, which is defined by type 1 myofibers that are 12% smaller than type 2 myofibers, as well as a general predominance of type 1 myofibers. Conversely, myasthenia gravis (MG) is an acquired immune-mediated disease, in which the acetylcholine receptor (AChR) of the neuromuscular junction is blocked by antibodies. Thus, the anti-AChR antibody is nearly specific to MG. Herein, we report on a case of CFTD with increased anti-AChR antibody levels. A 23-month-old boy exhibited muscle hypotonia and weakness. Although he could walk by himself, he easily fell down and could not control his head for a long time. His blood test was positive for the anti-AChR antibody, while a muscle biopsy revealed characteristics of CFTD. We could not explain the relationship between MG and CFTD. However, we considered different diagnoses aside from MG, even when the patient's blood is positive for the anti-AChR antibody. PMID:23762716

  17. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    PubMed Central

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; D’Souza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  18. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders.

    PubMed

    Kalkman, Hans O; Feuerbach, Dominik

    2016-07-01

    The clinical development of selective alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists has hitherto been focused on disorders characterized by cognitive deficits (e.g., Alzheimer's disease, schizophrenia). However, α7 nAChRs are also widely expressed by cells of the immune system and by cells with a secondary role in pathogen defense. Activation of α7 nAChRs leads to an anti-inflammatory effect. Since sterile inflammation is a frequently observed phenomenon in both psychiatric disorders (e.g., schizophrenia, melancholic and bipolar depression) and neurological disorders (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis), α7 nAChR agonists might show beneficial effects in these central nervous system disorders. In the current review, we summarize information on receptor expression, the intracellular signaling pathways they modulate and reasons for receptor dysfunction. Information from tobacco smoking, vagus nerve stimulation, and cholinesterase inhibition is used to evaluate the therapeutic potential of selective α7 nAChR agonists in these inflammation-related disorders. PMID:26979166

  19. Shifting Sediment Sources in the Quaternary Nile

    NASA Astrophysics Data System (ADS)

    Woodward, Jamie; Macklin, Mark; Fielding, Laura; Millar, Ian; Williams, Martin

    2016-04-01

    Invited Paper The Nile basin contains the longest river channel system in the world and drains about one tenth of the African continent. A dominant characteristic of the modern Nile is the marked spatial and temporal variability in the flux of water and sediment. Because the major headwater basins of the Nile are linked to key elements of the global climate system, the sedimentary records in the basin have attracted good deal of attention from the Quaternary palaeoclimate and palaeohydrology communities. Various approaches (from heavy minerals to strontium isotopes) have been employed to examine present and past patterns of sediment yield in the basin. A good deal of work has been carried out on the long sediment records in the delta and offshore which provide high resolution archives of hydrological changes in the upstream basin as well fluctuations in the input of dust from the desert. The sediment load of the modern desert Nile (downstream of Khartoum) is dominated by sediment inputs from the Blue Nile (61 +/- 5%) and Atbara (35 +/- 4%), whilst the White Nile contribution is meagre (3 +/- 2%) (Padoan et al. 2011). Recent work has shown that these values were very different during humid phases of the Quaternary when stronger Northern Hemisphere summer insolation produced wetter conditions across North Africa. In the early Holocene, for example, the Nile floodplain in Northern Sudan shows a tributary wadi input of 40-50%. This paper will review three decades of work on the sediment delivery dynamics of the Quaternary Nile and explore their palaeoclimatic implications. Padoan, M., Garzanti, E., Harlavan, Y., Villa, I.M. (2011) Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim. Cosmochim. Acta 75 (12), 3627-3644.

  20. Development of 3D-QSAR Model for Acetylcholinesterase Inhibitors Using a Combination of Fingerprint, Molecular Docking, and Structure-Based Pharmacophore Approaches.

    PubMed

    Lee, Sehan; Barron, Mace G

    2015-11-01

    Acetylcholinesterase (AChE), a serine hydrolase vital for regulating the neurotransmitter acetylcholine in animals, has been used as a target for drugs and pesticides. With the increasing availability of AChE crystal structures, with or without ligands bound, structure-based approaches have been successfully applied to AChE inhibitors (AChEIs). The major limitation of these approaches has been the small applicability domain due to the lack of structural diversity in the training set. In this study, we developed a 3 dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitory activity of 89 reversible and irreversible AChEIs including drugs and insecticides. A 3D-fingerprint descriptor encoding protein-ligand interactions was developed using molecular docking and structure-based pharmacophore to rationalize the structural requirements responsible for the activity of these compounds. The obtained 3D-QSAR model exhibited high correlation value (R(2) = 0.93) and low mean absolute error (MAE = 0.32 log units) for the training set (n = 63). The model was predictive across a range of structures as shown by the leave-one-out cross-validated correlation coefficient (Q(2) = 0.89) and external validation results (n = 26, R(2) = 0.89, and MAE = 0.38 log units). The model revealed that the compounds with high inhibition potency had proper conformation in the active site gorge and interacted with key amino acid residues, in particular Trp84 and Phe330 at the catalytic anionic site, Trp279 at the peripheral anionic site, and Gly118, Gly119, and Ala201 at the oxyanion hole. The resulting universal 3D-QSAR model provides insight into the multiple molecular interactions determining AChEI potency that may guide future chemical design and regulation of toxic AChEIs. PMID:26202430

  1. Geological Mapping of the Ac-H-10 Rongo and Ac-H-15 Zadeni quadrangles of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Nathues, Andreas; Sizemore, Hanna; Ruesch, Ottaviano; Hoffmann, Martin; Schaefer, Michael; Crown, David; Mest, Scott; Aileen Yingst, R.; Williams, David; Buczkowski, Debra; Hughson, Kynan; Kneissl, Thomas; Schmedemann, Nico; Schorghofer, Norbert; Nass, Andrea; Preusker, Frank; Russell, Christopher

    2016-04-01

    On March 6, 2015 NASA's Dawn spacecraft arrived at (1) Ceres, the largest object in the main asteroid belt. Dawn is studying the dwarf planet more than one year through successively lower orbits at increasing resolution. Main orbital phases include Survey Orbit, High Altitude Mapping Orbit (HAMO), and Low Altitude Mapping Orbit (LAMO) where Framing Camera (FC) [1] resolution increased from c.400 m/px to c.140 m/px and c.35 m/px, respectively. The Dawn Science Team is conducting geological mapping campaigns for Ceres (as done before for Vesta [2,3]) and includes the production of a Survey/HAMO-based global geological map and a series of 15 LAMO-based geological quadrangle maps. This abstract presents HAMO-based geological maps of Ac-H-10 Rongo (22°N-22°S, 288-360°E) and Ac-H-15 Zadeni (65°-90°S, 0°-360°E) quadrangles. The Rongo Quadrangle is located at the equatorial region and comprises the unique isolated mountain Ahuna Mons (10.5°S/316.0°E; formerly known as the pyramid), abundant impact craters spanning a range in diameters and states of preservation - from fresh to highly degraded - , and a number of tholi, which may represent surface expressions of sub-surface diapir intrusions. The SW portion of the quandrangle is characterised by Yalode (D=260 km) sourced ejecta. The Zadeni Quadrangle is dominated by the 122-km-diameter crater Zadeni located at 70.2°S/37.4°E) and a suite of mid-sized craters whose morphologies range from fresh to highly degraded. Portions of the quadrangle are covered by Urvara [4] and Yalode [5] ejecta materials. The South Polar Region is poorly illuminated and the South Pole itself is likely located within a larger impact structure. Future work of this mapping campaign includes revision of HAMO-based line work (e.g., contacts) with higher resolution LAMO data. Final interpretations regarding the geological histories of these two quadrangles will also be based on FC colour and stereo-derived topography data, VIR spectra as well

  2. Quaternary vertebrates from Greenland: A review

    NASA Astrophysics Data System (ADS)

    Bennike, Ole

    Remains of fishes, birds and mammals are rarely reported from Quaternary deposits in Greenland. The oldest remains come from Late Pliocene and Early Pleistocene deposits and comprise Atlantic cod, hare, rabbit and ringed seal. Interglacial and interstadial deposits have yielded remains of cod, little auk, collared lemming, ringed seal, reindeer and bowhead whale. Early and Mid-Holocene finds include capelin, polar cod, red fish, sculpin, three-spined stickleback, Lapland longspur, Arctic hare, collared lemming, wolf, walrus, ringed seal, reindeer and bowhead whale. It is considered unlikely that vertebrates could survive in Greenland during the peak of the last glaciation, but many species had probably already immigrated in the Early Holocene.

  3. Geologic Mapping of the Ac-H-1 quadrangle of Ceres from NASA's Dawn mission

    NASA Astrophysics Data System (ADS)

    Rüsch, Ottaviano; McFadden, Lucy A.; Hiesinger, Harald; Scully, Jennifer; Kneissl, Thomas; Hughson, Kynan; Williams, David A.; Roatsch, Thomas; Platz, Thomas; Preusker, Frank; Schmedemann, Nico; Marchi, Simone; Jaumann, Ralf; Nathues, Andreas; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta (1, 2), including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract, we present the geologic map and geologic evolution of the Ac-H-1 Asari Quadrangle. At the time of writing, LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and HAMO and Survey (400 m/pixel) digital terrain models (for topographic information) (3). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. Ac-H-1 quadrangle covers the North Pole area: 65°N-90°N. Key characteristics of the study area are: (i) a high density of impact craters and (ii) only moderate topographic variations across the quadrangle. We measured a crater density of 9.8E-04 km-2 for crater diameters >10 km, the highest on Ceres measured so far. Topographic lows, reaching -4 km, correspond to the floors of impact craters with diameters up to 64 km. A few isolated topographic highs (plateaus), reaching ~5 km in altitude relative to the ellipsoid are present. Their irregular shape is often sculpted by impacts. A peculiar topographic rise is represented by Ysolo Mons: a ~5 km high and ~20 km wide mountain. No downslope striations are preserved on the Mons flanks, indicating an older surface relative to Ahuna Mons, a similar but morphologically fresh appearing mountain at the equator (quadrangle Ac-H-10, (4)). Several impact craters show central peaks and/or mass wasting deposits on their floor. Crater rims often display terraces. These morphologies show varying degrees of degradation. Uncommon crater morphologies are a smooth crater floor (crater located at 79°N-170°E) and a large mass wasting landform inside

  4. CFTR Inhibitors

    PubMed Central

    Verkman, Alan S.; Synder, David; Tradtrantip, Lukmanee; Thiagarajah, Jay R.; Anderson, Marc O.

    2014-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl− channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease. PMID:23331030

  5. Evidence for a role for α6(∗) nAChRs in l-dopa-induced dyskinesias using Parkinsonian α6(∗) nAChR gain-of-function mice.

    PubMed

    Bordia, T; McGregor, M; McIntosh, J M; Drenan, R M; Quik, M

    2015-06-01

    l-Dopa-induced dyskinesias (LIDs) are a serious side effect of dopamine replacement therapy for Parkinson's disease. The mechanisms that underlie LIDs are currently unclear. However, preclinical studies indicate that nicotinic acetylcholine receptors (nAChRs) play a role, suggesting that drugs targeting these receptors may be of therapeutic benefit. To further understand the involvement of α6β2(∗) nAChRs in LIDs, we used gain-of-function α6(∗) nAChR (α6L9S) mice that exhibit a 20-fold enhanced sensitivity to nAChR agonists. Wildtype (WT) and α6L9S mice were lesioned by unilateral injection of 6-hydroxydopamine (6-OHDA, 3μg/ml) into the medial forebrain bundle. Three to 4wk later, they were administered l-dopa (3mg/kg) plus benserazide (15mg/kg) until stably dyskinetic. l-dopa-induced abnormal involuntary movements (AIMs) were similar in α6L9S and WT mice. WT mice were then given nicotine in the drinking water in gradually increasing doses to a final 300μg/ml, which resulted in a 40% decline AIMs. By contrast, there was no decrease in AIMs in α6L9S mice at a maximally tolerated nicotine dose of 20μg/ml. However, the nAChR antagonist mecamylamine (1mg/kg ip 30min before l-dopa) reduced l-dopa-induced AIMs in both α6L9S and WT mice. Thus, both a nAChR agonist and antagonist decreased AIMs in WT mice, but only the antagonist was effective in α6L9S mice. Since nicotine appears to reduce LIDs via desensitization, hypersensitive α6β2(∗) nAChRs may desensitize less readily. The present data show that α6β2(∗) nAChRs are key regulators of LIDs, and may be useful therapeutic targets for their management in Parkinson's disease. PMID:25813704

  6. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  7. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  8. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  9. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  10. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  11. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances § 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  12. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances § 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  13. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances § 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  14. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances § 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  15. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  16. Direct measurement of ACh release from exposed frog nerve terminals: constraints on interpretation of non-quantal release.

    PubMed Central

    Grinnell, A D; Gundersen, C B; Meriney, S D; Young, S H

    1989-01-01

    1. Acetylcholine (ACh) release from enzymatically exposed frog motor nerve terminals has been measured directly with closely apposed outside-out clamped patches of Xenopus myocyte membrane, rich in ACh receptor channels. When placed close to the synaptic surface of the terminal, such a membrane patch detects both nerve-evoked patch currents (EPCs) and spontaneous quantal 'miniature' patch currents (MPCs), from a few micrometres length of the terminal, in response to ACh release from the nearest three to five active zones. 2. Chemical measurements of ACh efflux from whole preparations revealed a spontaneous release rate of 4.1 pmol (2 h)-1, and no significant difference in resting efflux between enzyme-treated and control preparations. The ratio of enzyme-treated to contralateral control muscle efflux averaged 1.17, indicating that enzyme treatment did not affect spontaneous ACh release. Vesamicol (1.7 microM), which blocks the ACh transporter in synaptic vesicles, decreased the spontaneous release of ACh to 67% of control. 3. In the absence of nerve stimulation, the frequency of single-channel openings recorded by outside-out patch probes adjacent to nerve terminals was very low (1-2 min-1), and little different at a distance of hundreds of micrometres, suggesting that if ACh was continually leaking from the terminal in a non-quantal fashion, the amount being released near active zone regions on the terminal was below the limit of detection with the patches. 4. Direct measurements of the sensitivity of the patches, coupled with calculated ACh flux rates, lead to the conclusion that the amount of ACh released non-quantally from the synaptic surface of the frog nerve terminal is less than one-tenth the amount expected if all non-quantal release is from this region of the terminal membrane. 5. Following a series of single nerve shocks or a 50 Hz train of nerve stimuli, the frequency of asynchronous single-channel openings increased for several seconds. This transient

  17. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-03-01

    The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR) rich membrane solubilized with long chain (16 saturated carbons) lysophospholipid with glycerol headgroup (LFG-16). The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP) was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP) and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique. PMID:26870753

  18. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  19. Erosion of a-C:H in the afterglow of ammonia plasma

    NASA Astrophysics Data System (ADS)

    Drenik, Aleksander; Mourkas, Angelos; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Panjan, Peter; Alegre, Daniel; Tabarés, Francisco L.

    2016-07-01

    Amorphous hydrogenated carbon (a-C:H) deposits were eroded in the afterglow of a NH3 plasma, created with an inductively coupled RF generator in pure NH3 at the gas pressure of 50 Pa. The plasma system was characterised by optical emission spectroscopy and mass spectrometry, and the erosion process was monitored in-situ with a laser interferometry system. Based on the mass spectrometry measurements, the degree of dissociation of the NH3 molecules was estimated at 90% at the highest generator forward power in the discharge region, however the densities of N and H atoms were significantly smaller at the location of the sample holder. The erosion rates were found to increase with surface temperature and forward generator power. In the high dissociation regime, the composition of the afterglow and the reaction products highlight the role of N atoms in the erosion process.

  20. Late Quaternary climate change shapes island biodiversity.

    PubMed

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics. PMID:27027291

  1. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs

    PubMed Central

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R.; McIntosh, J. Michael; Brunzell, Darlene H.; Cannon, Jason R.; Drenan, Ryan M.

    2014-01-01

    α6β2* nAChRs in the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9’S mice) that are hypersensitive to nicotine and endogenous acetylcholine (ACh). Evoked extracellular dopamine (DA) levels were enhanced in α6L9’S NAc slices compared to control, non-transgenic (nonTg) slices. Extracellular DA levels in both nonTg and α6L9’S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by ACh plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9’S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9’S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) compared to nonTg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine (NE) were unchanged in α6L9’S compared to nonTg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9’S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. PMID:24266758

  2. Deposition of a-C:H films on inner surface of high-aspect-ratio microchannel

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2016-08-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared on inner surface of 100-μm-width microchannel by using a bipolar-type plasma based ion implantation and deposition. The microchannel was fabricated using a silicon plate, and two kinds of microchannels were prepared, namely, with a bottom layer (open at one end) and without a bottom layer (open at both ends). The distribution of thickness and hardness of films was evaluated by SEM and nanoindentation measurements, respectively, and the microstructures of films were evaluated by Raman spectroscopy. Furthermore, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision and Direct Simulation Monte Carlo to investigate the coating mechanism for the microchannel. It was found that the film thickness decreased as the depth of the coating position increased in the microchannels where it is open at one end. The uniformity of the film thickness improved by increasing the negative pulse voltage because ions can arrive at the deeper part of the microchannel. In addition, the hardness increased as the depth of the coating position increased. This is because the radicals do not arrive at the deeper part of the microchannel, and the incident proportion of ions relative to that of radicals increases, resulting in a high hardness due to the amorphization of the film. The opening area of the microchannel where the aspect ratio is very small, radicals dominate the incident flux, whereas ions prevail over radicals above an aspect ratio of about 7.5. On the other hand, in the microchannels that are open at both ends, there were great improvements in uniformity of the film thickness, hardness, and the film structure. The a-C:H films were successfully deposited on the entire inner surface of a microchannel with an aspect ratio of 20.

  3. Association between Anti-Ganglionic Nicotinic Acetylcholine Receptor (gAChR) Antibodies and HLA-DRB1 Alleles in the Japanese Population

    PubMed Central

    Maeda, Yasuhiro; Migita, Kiyoshi; Higuchi, Osamu; Mukaino, Akihiro; Furukawa, Hiroshi; Komori, Atsumasa; Nakamura, Minoru; Hashimoto, Satoru; Nagaoka, Shinya; Abiru, Seigo; Yatsuhashi, Hiroshi; Matsuo, Hidenori; Kawakami, Atsushi; Yasunami, Michio; Nakane, Shunya

    2016-01-01

    Background/Aims Anti-ganglionic nicotinic acetylcholine receptor (gAChR) antibodies are observed in autoimmune diseases, as well as in patients with autoimmune autonomic ganglionopathy. However, the genetic background of anti-gAChR antibodies is unclear. Here, we investigated HLA alleles in autoimmune hepatitis (AIH) patients with or without anti-gAChR antibodies. Methodology/Principal Findings Genomic DNA from 260 patients with type-1 autoimmune hepatitis (AIH) were genotyped for HLA-A, B, DRB1, and DQB1 loci. Anti-gAChR antibodies in the sera form AIH patients were measured using the luciferase immunoprecipitation system, and examined allelic association in patients with or without anti-gAChR antibodies. Methodology/ Methods We detected anti-α3 or -β4 gAChR antibodies in 11.5% (30/260) of patients with AIH. Among AIH patients there was no significant association between HLA-A, B DQB1 alleles and the positivity for anti-gAChR antibodies. Whereas the HLA-DRB1*0403 allele showed a significantly increased frequency in AIH patients with anti-gAChR antibodies compared with those without anti-gAChR antibodies. Conclusions/Significance The frequency of the HLA-DRB1*0403 allele differed among Japanese patients with AIH according to the presence or absence of anti-gAChR antibodies. Our findings suggest that particular HLA class II molecules might control the development of anti-gAChR antibodies in the autoimmune response to gAChR. PMID:26807576

  4. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK

    PubMed Central

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Durmus, Hacer; Poulas, Kostas; Yentur, Sibel P.; Gulsen-Parman, Yesim; Tzartos, Socrates; Marx, Alexander; Tuzun, Erdem; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-01-01

    Neuromuscular transmission failure in myasthenia gravis (MG) is most commonly elicited by autoantibodies (ab) to the acetylcholine receptor or the muscle-specific kinase, constituting AChR-MG and MuSK-MG. It is controversial whether these MG subtypes arise through different T helper (Th) 1, Th2 or Th17 polarized immune reactions and how these reactions are blunted by immunosuppression. To address these questions, plasma levels of cytokines related to various Th subtypes were determined in patients with AChR-MG, MuSK-MG and healthy controls (CON). Peripheral blood mononuclear cells (PBMC) were activated in vitro by anti-CD3, and cytokines were quantified in supernatants. In purified blood CD4+ T cells, RNA of various cytokines, Th subtype specific transcription factors and the co-stimulatory molecule, CD40L, were quantified by qRT-PCR. Plasma levels of Th1, Th2 and Th17 related cytokines were overall not significantly different between MG subtypes and CON. By contrast, in vitro stimulated PBMC from MuSK-MG but not AChR-MG patients showed significantly increased secretion of the Th1, Th17 and T follicular helper cell related cytokines, IFN-γ, IL-17A and IL-21. Stimulated expression of IL-4, IL-6, IL-10 and IL-13 was not significantly different. At the RNA level, expression of CD40L by CD4+ T cells was reduced in both AChR-MG and MuSK-MG patients while expression of Th subset related cytokines and transcription factors were normal. Immunosuppression treatment had two effects: First, it reduced levels of IL12p40 in the plasma of AChR-MG and MuSK-MG patients, leaving other cytokine levels unchanged; second, it reduced spontaneous secretion of IFN-γ and increased secretion of IL-6 and IL-10 by cultured PBMC from AChR-MG, but not MuSK-MG patients. We conclude that Th1 and Th17 immune reactions play a role in MuSK-MG. Immunosuppression attenuates the Th1 response in AChR-MG and MuSK-MG, but otherwise modulates immune responses in AChR-MG and MuSK-MG patients

  5. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK.

    PubMed

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Durmus, Hacer; Poulas, Kostas; Yentur, Sibel P; Gulsen-Parman, Yesim; Tzartos, Socrates; Marx, Alexander; Tuzun, Erdem; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-01-01

    Neuromuscular transmission failure in myasthenia gravis (MG) is most commonly elicited by autoantibodies (ab) to the acetylcholine receptor or the muscle-specific kinase, constituting AChR-MG and MuSK-MG. It is controversial whether these MG subtypes arise through different T helper (Th) 1, Th2 or Th17 polarized immune reactions and how these reactions are blunted by immunosuppression. To address these questions, plasma levels of cytokines related to various Th subtypes were determined in patients with AChR-MG, MuSK-MG and healthy controls (CON). Peripheral blood mononuclear cells (PBMC) were activated in vitro by anti-CD3, and cytokines were quantified in supernatants. In purified blood CD4+ T cells, RNA of various cytokines, Th subtype specific transcription factors and the co-stimulatory molecule, CD40L, were quantified by qRT-PCR. Plasma levels of Th1, Th2 and Th17 related cytokines were overall not significantly different between MG subtypes and CON. By contrast, in vitro stimulated PBMC from MuSK-MG but not AChR-MG patients showed significantly increased secretion of the Th1, Th17 and T follicular helper cell related cytokines, IFN-γ, IL-17A and IL-21. Stimulated expression of IL-4, IL-6, IL-10 and IL-13 was not significantly different. At the RNA level, expression of CD40L by CD4+ T cells was reduced in both AChR-MG and MuSK-MG patients while expression of Th subset related cytokines and transcription factors were normal. Immunosuppression treatment had two effects: First, it reduced levels of IL12p40 in the plasma of AChR-MG and MuSK-MG patients, leaving other cytokine levels unchanged; second, it reduced spontaneous secretion of IFN-γ and increased secretion of IL-6 and IL-10 by cultured PBMC from AChR-MG, but not MuSK-MG patients. We conclude that Th1 and Th17 immune reactions play a role in MuSK-MG. Immunosuppression attenuates the Th1 response in AChR-MG and MuSK-MG, but otherwise modulates immune responses in AChR-MG and MuSK-MG patients

  6. On the selectivity of neuronal NOS inhibitors

    PubMed Central

    Pigott, B; Bartus, K; Garthwaite, J

    2013-01-01

    Background and Purpose Isoform-selective inhibitors of NOS enzymes are desirable as research tools and for potential therapeutic purposes. Vinyl-l-N-5-(1-imino-3-butenyl)-l-ornithine (l-VNIO) and Nω-propyl-l-arginine (NPA) purportedly have good selectivity for neuronal over endothelial NOS under cell-free conditions, as does N-[(3-aminomethyl)benzyl]acetamidine (1400W), which is primarily an inducible NOS inhibitor. Although used in numerous investigations in vitro and in vivo, there have been surprisingly few tests of the potency and selectivity of these compounds in cells. This study addresses this deficiency and evaluates the activity of new and potentially better pyrrolidine-based compounds. Experimental Approach The inhibitors were evaluated by measuring their effect on NMDA-evoked cGMP accumulation in rodent hippocampal slices, a response dependent on neuronal NOS, and ACh-evoked cGMP synthesis in aortic rings of the same animals, an endothelial NOS-dependent phenomenon. Key Results l-VNIO, NPA and 1400W inhibited responses in both tissues but all showed less than fivefold higher potency in the hippocampus than in the aorta, implying useless selectivity for neuronal over endothelial NOS at the tissue level. In addition, the inhibitors had a 25-fold lower potency in the hippocampus than reported previously, the IC50 values being approximately 1 μM for l-VNIO and NPA, and 150 μM for 1400W. Pyrrolidine-based inhibitors were similarly weak and nonselective. Conclusion and Implications The results suggest that l-VNIO, NPA and 1400W, as well as the newer pyrrolidine-type inhibitors, cannot be used as neuronal NOS inhibitors in cells without stringent verification. The identification of inhibitors with useable selectivity in cells and tissues remains an important goal. PMID:23072468

  7. IL-4 in vitro production is upregulated in Alzheimer's disease patients treated with acetylcholinesterase inhibitors.

    PubMed

    Lugaresi, Alessandra; Di Iorio, Angelo; Iarlori, Carla; Reale, Marcella; De Luca, Giovanna; Sparvieri, Eleonora; Michetti, Alessia; Conti, Pio; Gambi, Domenico; Abate, Giuseppe; Paganelli, Roberto

    2004-04-01

    Cytokines appear to be involved in the pathogenesis of Alzheimer's Disease (AD). Their modulation by treatment has been investigated only in a few studies. The aim of our study was to evaluate the effect of acetylcholinesterase inhibitors (AChEI) on Interleukin-4 (IL-4) production in AD patients. IL-4 levels were measured by ELISA on peripheral blood mononuclear cell cultures in the presence or absence of Concanavalin A or Phytohaemagglutinin. Linear regression analysis shows that patients who have been treated, have higher levels of IL-4 independently from age, gender and comorbidity. The increased production of IL-4 in AChEI treated patients might represent an additional mechanism through which AChEI act on AD progression. PMID:15050302

  8. Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors.

    PubMed

    Si, Weijie; Zhang, Tao; Zhang, Lanxiang; Mei, Xiangdong; Dong, Mengya; Zhang, Kaixin; Ning, Jun

    2016-05-01

    A series of novel phthalimide derivatives related to benzylpiperazine were synthesized and evaluated as cholinesterase inhibitors. The results showed that all compounds were able to inhibit acetylcholinesterase (AChE), with two of them dramatically inhibiting butyrylcholinesterase (BuChE). Most compounds exhibited potent anti-AChE activity in the range of nM concentrations. In particular, compounds 7aIII and 10a showed the most potent activity with the IC50 values of 18.44nM and 13.58nM, respectively. To understand the excellent activity of these compounds, the structure-activity relationship was further examined. The protein-ligand docking study demonstrated that the target compounds have special binding modes and these results are in agreement with the kinetic study. PMID:27017111

  9. Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors.

    PubMed

    Pejchal, Vladimír; Štěpánková, Šárka; Pejchalová, Marcela; Královec, Karel; Havelek, Radim; Růžičková, Zdeňka; Ajani, Haresh; Lo, Rabindranath; Lepšík, Martin

    2016-04-01

    In the current study, sixteen novel derivatives of (R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethanamine were synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. Chemical structures together with purity of the synthesized compounds were substantiated by IR, (1)H, (13)C, (19)F NMR, high resolution mass spectrometry and elemental analysis. The optical activities were confirmed by optical rotation measurements. The synthesized compounds were evaluated for their AChE and BChE inhibitory activities. In addition, the cytotoxicity of the most active compounds was investigated against human cell lines employing XTT tetrazolium salt reduction assay and xCELLigence system allowing a label-free assessment of the cells proliferation. Our results demonstrated that the inhibitory mechanism was confirmed to be pseudo-irreversible, in line with previous studies on carbamates. Compounds indicated as 3b, 3d, 3l and 3n showed the best AChE inhibitory activity of all the evaluated compounds and were up to tenfold more potent than standard drug rivastigmine. The binding mode was determined using state-of-the-art covalent docking and scoring methodology. The obtained data clearly demonstrated that 3b, 3d, 3l and 3n benzothiazole carbamates possess high inhibitory activity against AChE and BChE and concurrently negligible cytotoxicity. In conclusion, our results indicate, that these derivatives could be promising in an effective therapeutic intervention for Alzheimer's disease. PMID:26947959

  10. Acetylcholinesterase inhibitors used in treatment of Alzheimer's disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade.

    PubMed

    Takada-Takatori, Yuki; Kume, Toshiaki; Sugimoto, Mitsuhiro; Katsuki, Hiroshi; Sugimoto, Hachiro; Akaike, Akinori

    2006-09-01

    We show here that donepezil, galanathamine and tacrine, therapeutic acetylcholinesterase inhibitors currently being used for treatment of Alzheimer's disease, protect neuronal cells in a time- and concentration-dependent manner from glutamate neurotoxicity that involves apoptosis. The neuroprotective effects were antagonized by mecamylamine, an inhibitor of nicotinic acetylcholine receptors (nAChRs). Dihydro-beta-erythroidine and methyllycaconitine, antagonists for alpha4-nAChR and alpha7-nAChR, respectively, antagonized the protective effect of donepezil and galanthamine, but not that of tacrine. Previous reports suggest the involvement of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway in the nicotine-induced neuroprotection. Inhibitors for a non-receptor type tyrosine kinase, Fyn, and janus-activated kinase 2, suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. Furthermore, LY294002, a PI3K inhibitor, also suppressed the neuroprotective effect of donepezil and galanthamine, but not that of tacrine. The phosphorylation of Akt, an effector of PI3K, and the expression level of Bcl-2, an anti-apoptotic protein, increased with donepezil and galanthamine treatment, but not with tacrine treatment. These results suggest that donepezil and galanthamine prevent glutamate neurotoxicity through alpha4- and alpha7-nAChRs, followed by the PI3K-Akt pathway, and that tacrine protects neuronal cells through a different pathway. PMID:16762377

  11. A congenital myasthenic syndrome refractory to acetylcholinesterase inhibitors.

    PubMed

    Triggs, W J; Beric, A; Butler, I J; Roongta, S M

    1992-03-01

    We studied 4 siblings (3 men and 1 woman), ages 22 to 43 years, with congenital ptosis, external ophthalmoplegia, proximal muscle weakness and fatigability unresponsive to acetylcholinesterase (AChE) inhibitors. Repetitive nerve stimulation showed a significant compound muscle action potential (CMAP) area decrement at 2 or 3 Hz. Nerve conduction studies and concentric needle electromyography were normal, and repetitive CMAPs to single nerve stimulation were not observed. Voluntary single fiber electromyography (SFEMG) showed increased jitter and blocking. Assessment of individual end-plates using SFEMG with intramuscular axonal microstimulation showed no uniform relationship between jitter and the rate of stimulation, consistent with a postsynaptic defect of neuromuscular transmission. Edrophonium eliminated the decremental response to repetitive nerve stimulation, but caused no significant clinical improvement, suggesting an additional mechanism for weakness in these patients. PMID:1313543

  12. Converting maslinic acid into an effective inhibitor of acylcholinesterases.

    PubMed

    Schwarz, Stefan; Loesche, Anne; Lucas, Susana Dias; Sommerwerk, Sven; Serbian, Immo; Siewert, Bianka; Pianowski, Elke; Csuk, René

    2015-10-20

    During the last decade, maslinic acid has been evaluated for many biological properties, e.g. as an anti-tumor or an anti-viral agent but also as a nutraceutical. The potential of maslinic acid and related derivatives to act as inhibitors of acetyl- or butyryl-cholinesterase was examined in this communication in more detail. Cholinesterases do still represent an interesting group of target enzymes with respect to the investigation and treatment of the Alzheimer's disease and other dementia illnesses as well. Although other triterpenoic acids have successfully been tested for their ability to act as inhibitors of cholinesterases, up to now maslinic acid has not been part of such studies. For this reason, three series of maslinic acid derivatives possessing modifications at different centers were synthesized and subjected to Ellman's assay to determine their inhibitory strength and type of inhibitory action. While parent compound maslinic acid was no inhibitor in these assays, some of the compounds exhibited an inhibition of acetylcholinesterase in the single-digit micro-molar range. Two compounds were identified as inhibitors of butyrylcholinesterase showing inhibition constants comparable to those of galantamine, a drug often used in the treatment of Alzheimer's disease. Furthermore, additional selectivity as well as cytotoxicity studies were performed underlining the potential of several derivatives and qualifying them for further investigations. Docking studies revealed that the different kinetic behavior within the same compound series may be explained by the ability of the compounds to enter the active site gorge of AChE. PMID:26383128

  13. Association between acetylcholinesterase inhibitors and risk of stroke in patients with dementia

    PubMed Central

    Lin, Yi-Ting; Wu, Ping-Hsun; Chen, Cheng-Sheng; Yang, Yi-Hsin; Yang, Yuan-Han

    2016-01-01

    Patients with dementia are at increased risk of stroke. Acetylcholinesterase inhibitors (AChEIs) have endothelial function protection effects and anti-inflammatory properties. We investigated the ischemic stroke risk in AChEIs use in dementia patients without stroke history. Using Taiwan National Health Insurance Database from 1999 to 2008, 37,352 dementia patients over 50 years old without stroke history were eligible. The results were analyzed by propensity score–matched Cox proportional hazard models with competing risk adjustment. AChEIs users had lower incidence of ischemic stroke (160.3/10,000 person-years), compared to the propensity score–matched reference (240.8/10,000 person-years). The adjusted hazard ratio for ischemic stroke based on propensity score–matched Cox proportional hazard model was 0.508 (95% confidence interval, 0.434–0.594; P < 0.001). There was no significant difference in all-cause mortality between AChEIs users and nonusers. In conclusion, among dementia patients without previous ischemic stroke history, AChEIs treatment was associated with a decreased risk of ischemic stroke but not greater survival. PMID:27377212

  14. Association between acetylcholinesterase inhibitors and risk of stroke in patients with dementia.

    PubMed

    Lin, Yi-Ting; Wu, Ping-Hsun; Chen, Cheng-Sheng; Yang, Yi-Hsin; Yang, Yuan-Han

    2016-01-01

    Patients with dementia are at increased risk of stroke. Acetylcholinesterase inhibitors (AChEIs) have endothelial function protection effects and anti-inflammatory properties. We investigated the ischemic stroke risk in AChEIs use in dementia patients without stroke history. Using Taiwan National Health Insurance Database from 1999 to 2008, 37,352 dementia patients over 50 years old without stroke history were eligible. The results were analyzed by propensity score-matched Cox proportional hazard models with competing risk adjustment. AChEIs users had lower incidence of ischemic stroke (160.3/10,000 person-years), compared to the propensity score-matched reference (240.8/10,000 person-years). The adjusted hazard ratio for ischemic stroke based on propensity score-matched Cox proportional hazard model was 0.508 (95% confidence interval, 0.434-0.594; P < 0.001). There was no significant difference in all-cause mortality between AChEIs users and nonusers. In conclusion, among dementia patients without previous ischemic stroke history, AChEIs treatment was associated with a decreased risk of ischemic stroke but not greater survival. PMID:27377212

  15. Structural and Functional Characterization of a Novel α-Conotoxin Mr1.7 from Conus marmoreus Targeting Neuronal nAChR α3β2, α9α10 and α6/α3β2β3 Subtypes

    PubMed Central

    Wang, Shuo; Zhao, Cong; Liu, Zhuguo; Wang, Xuesong; Liu, Na; Du, Weihong; Dai, Qiuyun

    2015-01-01

    In the present study, we synthesized and, structurally and functionally characterized a novel α4/7-conotoxin Mr1.7 (PECCTHPACHVSHPELC-NH2), which was previously identified by cDNA libraries from Conus marmoreus in our lab. The NMR solution structure showed that Mr1.7 contained a 310-helix from residues Pro7 to His10 and a type I β-turn from residues Pro14 to Cys17. Electrophysiological results showed that Mr1.7 selectively inhibited the α3β2, α9α10 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors (nAChRs) with an IC50 of 53.1 nM, 185.7 nM and 284.2 nM, respectively, but showed no inhibitory activity on other nAChR subtypes. Further structure-activity studies of Mr1.7 demonstrated that the PE residues at the N-terminal sequence of Mr1.7 were important for modulating its selectivity, and the replacement of Glu2 by Ala resulted in a significant increase in potency and selectivity to the α3β2 nAChR. Furthermore, the substitution of Ser12 with Asn in the loop2 significantly increased the binding of Mr1.7 to α3β2, α3β4, α2β4 and α7 nAChR subtypes. Taken together, this work expanded our knowledge of selectivity and provided a new way to improve the potency and selectivity of inhibitors for nAChR subtypes. PMID:26023835

  16. Quaternary coral reef refugia preserved fish diversity.

    PubMed

    Pellissier, Loïc; Leprieur, Fabien; Parravicini, Valeriano; Cowman, Peter F; Kulbicki, Michel; Litsios, Glenn; Olsen, Steffen M; Wisz, Mary S; Bellwood, David R; Mouillot, David

    2014-05-30

    The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity. PMID:24876495

  17. On Quaternary glaciations, observations and theories

    NASA Astrophysics Data System (ADS)

    Paillard, D.

    2015-07-01

    In a recent paper, Paillard (2015) presents a rapid overview of both major theoretical and empirical studies of Pleistocene glaciations. In particular, it is explained how, over the last 150 years, astronomical theories were confronted to observational constraints and why the "100-kyr problem" is still the major unsolved issue of Quaternary ice ages. This paper also discusses the main alternative theory, which involves changes in atmospheric carbon dioxide concentration. It is then argued that a synthesis of both theories would better account for empirical evidences, as well as for our current knowledge of climate physics. Indeed, if there is no doubt that ice ages are "paced" by the astronomy as evidenced in Hays et al. (1976), the cause of terminations, and therefore the dynamics of the 100-kyr cycles, appears to be closely linked to Southern Ocean climate and atmospheric pCO2.

  18. Quaternary geology of Avery Island, Louisiana

    SciTech Connect

    Autin, W.J.; McCulloh, R.P.; Davison, A.T.

    1986-09-01

    Avery Island, one of the Five Islands salt domes of south-central Louisiana, is a piercement-type dome that has been uplifted from several kilometers' depth. It is nearly circular in plan with a maximum elevation approximately 50 m above the surrounding coastal marsh. Dissection has produced a terrain of gullies and steep slopes. The features identified indicate a complex geologic history for Avery Island. Deposition of late Pleistocene sediments in a low-relief alluvial plain and subsequent soil development predate domal uplift. The stratigraphy of loess and colluvial silts indicates the island was emergent during loess depositions. The degree of dissection, distribution of colluvium, and shearing of Quaternary sediments reflects continual uplift after loess deposition.

  19. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    PubMed

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  20. Myopathic changes detected by quantitative electromyography in patients with MuSK and AChR positive myasthenia gravis.

    PubMed

    Nikolic, Ana; Basta, Ivana; Stojanovic, Vidosava Rakocevic; Stevic, Zorica; Peric, Stojan; Lavrnic, Dragana

    2016-05-01

    Myopathic changes are frequent a electrophysiological finding in patients with muscle specific tyrosine kinase (MuSK) positive myasthenia gravis (MG). The aim of this study was to explore the importance of quantitative electromyography (EMG) in the detection of myopathic changes in MuSK MG patients. Classical and quantitative EMG were performed in 31 MuSK and 28 acetylcholine receptor (AChR) positive MG patients, matched by sex, age, disease duration and severity. Classical EMG revealed the presence of myopathic changes more frequently in MuSK MG compared to AChR MG patients, especially in the facial muscles. Quantitative EMG registered myopathic lesions more frequently than classical EMG, but the frequency was similar between MuSK and AChR MG patients. Quantitative EMG revealed myopathic changes in the majority of both MuSK and AChR positive MG patients. This examination is sensitive, but it cannot be used to differentiate between MG patients belonging to the different disease groups. It should not be used in isolation. Rather, it should complement classical EMG in the detection of myopathic changes. PMID:26778359

  1. R86Q, a mutation in BmAChE3 yielding a Rhipicephalus microplus organophosphate-insensitive acetylcholinesterase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations were identified in the sequence encoding the acetylcholinesterase, BmAChE3, in strains of Rhipicephalus (Boophilus) microplus (Canestrini) resistant or susceptible to orgaonphosphorus acaricide. The mutation which appeared most frequently in the organophosphorus-resistant San Román strain...

  2. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

    PubMed Central

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-sang J.; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Guyenet, Patrice G.

    2016-01-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  3. Investigation of the structure and properties of a-C:H coatings with metal and silicon containing interlayers

    NASA Astrophysics Data System (ADS)

    Nöthe, M.; Breuer, U.; Koch, F.; Penkalla, H. J.; Rehbach, W. P.; Bolt, H.

    2001-07-01

    The structure of the interface of a-C:H coatings deposited with metal and Si-containing interlayers has been studied. Carbide forming metals (Al, Ti, Cr) can improve the chemical bonding compared with a substrate material which does not form carbides extensively by itself. In addition, a graded transition zone enlarges the interface between the carbon layer and the interlayer metal. In the present work the metal atoms were evaporated and ionized into a dense Ar plasma and deposited onto Si (100) substrates. A graded interface between the metal interlayer and the a-C:H coating was produced by introducing C 2H 2 with increasing amount into the Ar/He plasma during the PAPVD metal deposition process. The PACVD a-C:H deposition process was continued after the termination of metal evaporation to produce the pure a-C:H top layer. Further to Al-, Cr-, Ti- and Cu-interlayers, Si-containing interlayers were investigated. The Si-containing interlayers were deposited by a PACVD process using tetraethoxysilane Si(OC 2H 5) 4 (TEOS) and tetramethylsilane Si(CH 3) 4 (TMS). The characterization of the deposited layer systems was performed by SIMS, SNMS and XPS analyses as well as SEM and analytical TEM methods.

  4. New insights on the molecular recognition of imidacloprid with Aplysia californica AChBP: a computational study.

    PubMed

    Cerón-Carrasco, José P; Jacquemin, Denis; Graton, Jérôme; Thany, Steeve; Le Questel, Jean-Yves

    2013-04-18

    The binding of imidacloprid (IMI), the forerunner of neonicotinoid insecticides, with the acetylcholine binding protein (AChBP) from Aplysia californica, the established model for the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a two-layer ONIOM partition approach (M06-2X/6-311G(d):PM6). Our calculations allow delineating the contributions of the key residues of AChBP for IMI binding. In particular, the importance of Trp147 and Cys190-191, through weak CH···π interactions and both van der Waals and hydrogen-bond (H-bond) interactions, respectively, are highlighted. Furthermore, H-bonds between hydroxyl groups of both Ser189 and Tyr55 and the IMI nitro group are pointed out. The participation of Ile118, whose main chain NH and carbonyl group are hydrogen-bonded with the IMI pyridinic nitrogen through a water molecule, is characterized. Our simulations also indicate the presence of a significant contribution of this residue through van der Waals interactions. The various trends obtained by the calculations of the pairwise interaction energies are confirmed through a complementary noncovalent interaction (NCI) analysis of selected IMI-AChBP amino acid pairs. Indeed, the contribution of a halogen-bond interaction between IMI and AChBP, recently proposed in the literature, is corroborated by our NCI analysis. PMID:23521537

  5. Effect of nicotinic acetylcholine receptor alpha 1 (nAChRα1) peptides on rabies virus infection in neuronal cells.

    PubMed

    Sajjanar, Basavaraj; Saxena, Shikha; Bisht, Deepika; Singh, Arvind Kumar; Manjunatha Reddy, G B; Singh, Rajendra; Singh, R P; Kumar, Satish

    2016-06-01

    Rabies virus (RABV) is neurotropic and causes acute progressive encephalitis. Herein, we report the interaction of nAChRα1-subunit peptides with RABV and the effect of these peptides on RABV infection in cultured neuronal cells. Peptide sequences derived from torpedo, bovine, human and rats were synthesized and studied for their interactions with RABV using virus capture ELISA and peptide immunofluorescence. The results showed specific binding of the nAChRα1-subunit peptides to the RABV. In the virus adsorption assay, these peptides were found to inhibit the attachment of the RABV to the neuronal cells. The nAChRα1-subunit peptides inhibited the RABV infection and reduced viral gene expression in the cultured neuroblastoma (N2A) cells. Torpedo peptide sequence (T-32) had highest antiviral effect (IC50=14±3.01μM) compared to the other peptides studied. The results of the study indicated that nAChRα1-subunit peptides may act as receptor decoy molecules and inhibit the binding of virus to the native host cell receptors and hence may reduce viral infection. PMID:26656837

  6. Geological Mapping of the Ac-H-9 Occator Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra; Williams, David; Scully, Jennifer; Mest, Scott; Crown, David; Aileen Yingst, R.; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Marchi, Simone; De Sanctis, M. Cristina; Raymond, Carol; Russell, Chris

    2016-04-01

    As was done at Vesta [1], the Dawn Science Team is conducting a geological mapping cam-paign at Ceres during the nominal mission, including iterative mapping using data obtained dur-ing each orbital phase. We are using geological mapping as a method to identify the geologic processes that have modified the surface of dwarf planet Ceres. We here present the geology of the Ac-H-9 Occator quadrangle, located between 22°S-22°N and 216-288°E. The Ac-H-9 map area is completely within the topographically high region on Ceres named Erntedank Planum. It is one of two longitudinally distinct regions where ESA Herschel space telescope data suggested a release of water vapor [2]. The quadrangle includes several other notable features, including those discussed below. Occator is the 92 km diameter crater that hosts the "Bright Spot 5" that was identified in Hubble Space Telescope data [3], which is actually comprised of multiple bright spots on the crater floor. The floor of Occator is cut by linear fractures, while circumferential fractures are found in the ejecta and on the crater walls. The bright spots are noticeably associated with the floor fractures, although the brightest spot is associated with a central pit [4]. Multiple lobate flows are observed on the crater floor; these appear to be sourced from the center of the crater. The crater has a scalloped rim that is cut by regional linear structures, displaying a cross-section of one structure in the crater wall. Color data show that the Occator ejecta have multiple colors, generally related to changes in morphology. Azacca is a 50 km diameter crater that has a central peak and bright spots on its floor and within its ejecta. Like Occator, Azacca has both floor fractures and circumferential fractures in its ejecta and crater walls. Also like Occator, the Azacca ejecta is multi-colored with variable morphology. Linear structures - including grooves, pit crater chains, fractures and troughs - cross much of the eastern

  7. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts

    PubMed Central

    Xue, Yan; Xiao, Huining; Zhang, Yi

    2015-01-01

    Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the art of antimicrobial polymers with quaternary ammonium/phosphonium salts. In particular, it discusses the structure and synthesis method, mechanisms of antimicrobial action, and the comparison of antimicrobial performance between these two kinds of polymers. PMID:25667977

  8. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    SciTech Connect

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  9. Inactivation of M2 AChR/NF-κB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC)

    PubMed Central

    Gu, Xiajing; Chen, Hongzhuan; Xu, Lu

    2015-01-01

    Non-neuronal cholinergic system is involved in lung physiology and lung cancer. However, the biochemical events downstream acetylcholine (ACh) receptor activation leading to carcinogenesis and tumor progression are not fully understood. Our previous work has shown that non-neuronal ACh acts as an autoparacrine growth factor to stimulate cell proliferation and promote epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) via activation of M2 muscarinic receptor (M2R). The aim of the present study was to delineate the underlying mechanisms linking M2R and lung tumor progression, which may provide potential therapeutic targets to delay lung cancer progression. Inhibition of M2R by antagonist or siRNA suppresses NSCLC cell migratory and invasive capacities, reverses EMT and simultaneously inactivates PI3K/Akt, MAPK ERK and NF-κB p65. On the other hand, M2R activation stimulates NSCLC migration and invasion and promotes EMT via NF-κB p65 activation. Moreover, NF-κB p65 activation induced by M2R activation was partially inhibited by either Akt or ERK inhibitor. Taken together, these results demonstrated for the first time that NF-κB p65 activation is essential in NSCLC progression associated with non-neuronal cholinergic system. Our data suggest that M2R/ERK/Akt/NF-κB axis could be a potential target for NSCLC treatment. PMID:26336823

  10. Heterocyclic derivatives of 3-substituted-1,1,1-trifluoro-2-propanones as inhibitors of esterolytic enzymes.

    PubMed

    Székács, A; Halarnkar, P P; Olmstead, M M; Prag, K A; Hammock, B D

    1990-01-01

    A series of (alkylthio)trifluoropropanones containing a heterocyclic moiety was synthesized. The compounds were tested for in vitro inhibition of four hydrolytic enzymes including insect juvenile hormone esterase (JHE), eel acetylcholinesterase (AChE), yeast lipase (LP), and bovine alpha-chymotrypsin. The I50 values ranged from 10(-3) to 10(-7) M. 3-(2-Pyridylthio)-1,1,1-trifluoro-2-propanone was found to be the most potent inhibitor as compared to the other tested heterocyclic analogues with an I50 value of 98 nM against JHE from the fifth-instar larvae of Trichoplusia ni. Results from X-ray crystallography showed that the compound exists in a tetrahedral gem-diol form stabilized by an intramolecular hydrogen bond in the solid state. X-ray crystallography of a less potent inhibitor, 3-(4-pyridylthio)-1,1,1-trifluoro-2- propanone, showed that it also exists in the hydrated form, but it lacks an intramolecular hydrogen bond. These results provide indirect support that trifluoromethyl ketones are transition-state mimic inhibitors of esterases, and the bearing of the results on the transition-state mimic theory is discussed. The I50 values against AChE were in the micromolar range. Compounds containing a imidazolyl, triazolyl, and pyrimidyl moiety showed the highest inhibition of this enzyme. Differential selectivity of inhibition was associated with the bond distances between the nitrogen and the carbonyl group as in the natural substrate, when measured in the molecules in their minimal energy conformations. Inhibition of LP was moderate to weak, when compared to JHE and AChE. None of the tested compounds showed significant inhibition of alpha-chymotrypsin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2133080

  11. Continuing Education in the Era of Quantum Change. 2003 ACHE Proceedings. (65th Annual Meeting, Charlottesville, VA, November 8-12, 2003)

    ERIC Educational Resources Information Center

    Barrineau, Irene T., Ed.

    2003-01-01

    This document presents the proceedings of the 2003 annual meeting of the Association for Continuing Higher Education (ACHE). These proceedings record the 65th Annual Meeting of ACHE held in Charlottesville, Virginia. President Allen Varner's theme for this annual meeting was, "Continuing Education in the Era of Quantum Change." The theme was…

  12. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound α2 homopentamer.

    PubMed

    Kouvatsos, Nikolaos; Giastas, Petros; Chroni-Tzartou, Dafni; Poulopoulou, Cornelia; Tzartos, Socrates J

    2016-08-23

    In this study we report the X-ray crystal structure of the extracellular domain (ECD) of the human neuronal α2 nicotinic acetylcholine receptor (nAChR) subunit in complex with the agonist epibatidine at 3.2 Å. Interestingly, α2 was crystallized as a pentamer, revealing the intersubunit interactions in a wild type neuronal nAChR ECD and the full ligand binding pocket conferred by two adjacent α subunits. The pentameric assembly presents the conserved structural scaffold observed in homologous proteins, as well as distinctive features, providing unique structural information of the binding site between principal and complementary faces. Structure-guided mutagenesis and electrophysiological data confirmed the presence of the α2(+)/α2(-) binding site on the heteromeric low sensitivity α2β2 nAChR and validated the functional importance of specific residues in α2 and β2 nAChR subunits. Given the pathological importance of the α2 nAChR subunit and the high sequence identity with α4 (78%) and other neuronal nAChR subunits, our findings offer valuable information for modeling several nAChRs and ultimately for structure-based design of subtype specific drugs against the nAChR associated diseases. PMID:27493220

  13. Comparison of GPS and Quaternary slip rates: Insights from a new Quaternary fault database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd; Bendick, Rebecca; Mutz, Sebastian

    2016-04-01

    Previous studies related to the kinematics of deformation within the India-Asia collision zone have relied on slip rate data for major active faults to test kinematic models that explain the deformation of the region. The slip rate data, however, are generally disputed for many of the first-order faults in the region (e.g., Altyn Tagh and Karakorum faults). Several studies have also challenged the common assumption that geodetic slip rates are representative of Quaternary slip rates. What has received little attention is the degree to which geodetic slip rates relate to Quaternary slip rates for active faults in the India-Asia collision zone. In this study, we utilize slip rate data from a new Quaternary fault database for Central Asia to determine the overall relationship between Quaternary and GPS-derived slip rates for 18 faults. The preliminary analysis investigating this relationship uses weighted least squares and a re-sampling analysis to test the sensitivity of this relationship to different data point attributes (e.g., faults associated with data points and dating methods used for estimating Quaternary slip rates). The resulting sample subsets of data points yield a maximum possible Pearson correlation coefficient of ~0.6, suggesting moderate correlation between Quaternary and GPS-derived slip rates for some faults (e.g., Kunlun and Longmen Shan faults). Faults with poorly correlated Quaternary and GPS-derived slip rates were identified and dating methods used for the Quaternary slip rates were examined. Results indicate that a poor correlation between Quaternary and GPS-derived slip rates exist for the Karakorum and Chaman faults. Large differences between Quaternary and GPS slip rates for these faults appear to be connected to qualitative dating of landforms used in the estimation of the Quaternary slip rates and errors in the geomorphic and structural reconstruction of offset landforms (e.g., offset terrace riser reconstructions for Altyn Tagh fault

  14. Rinodina sophodes (Ach.) Massal.: a bioaccumulator of polycyclic aromatic hydrocarbons (PAHs) in Kanpur City, India.

    PubMed

    Satya; Upreti, Dalip K; Patel, D K

    2012-01-01

    The aim of this study is to determine the possibility of using Rinodina sophodes (Ach.) Massal., a crustose lichen as polycyclic aromatic hydrocarbons (PAHs) bioaccumulator for evaluation of atmospheric pollution in tropical areas of India, where few species of lichens are able to grow. PAHs were identified, quantified and compared to evaluate the potential utility of R. sophodes. The limit of detection for different PAHs was found to be 0.008-0.050 μg g( - 1). The total PAHs in different sites were ranged between 0.189 ± 0.029 and 0.494 ± 0.105 μg g( - 1). The major sources of PAHs were combustion of organic materials, traffic and vehicular exhaust (diesel and gasoline engine). Significantly higher concentration of acenaphthylene and phenanthrene indicates road traffic as major source of PAH pollution in the city. Two-way ANOVA also confirms that all PAHs content showed significant differences between all sampling sites (P 1%). This study establishes the utility of R. sophodes in monitoring the PAHs accumulation potentiality for development of effective tool and explores the most potential traits resistant to the hazardous environmental conditions in the tropical regions of north India, where no such other effective way of biomonitoring is known so far. PMID:21465135

  15. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  16. Adsorption of alcohols and fatty acids onto hydrogenated (a-C:H) DLC coatings

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.; Kovač, J.; Jakša, G.

    2016-02-01

    Information about the interactions between lubricants and DLC coatings is scarce, despite there having been many studies over the years. In this investigation we used ToF-SIMS, XPS and contact-angle analyses to examine the adsorption ability and mechanisms with respect to two oiliness additives, i.e., hexadecanol and hexadecanoic acid, on an a-C:H coating. In addition, we analyzed the resistance of the adsorbed films to external influences like solvent cleaning. The results show that both molecules adsorb onto surface oxides and hydroxides present on the initial DLC surface and shield these structures with their hydrocarbon tails. This makes the surfaces less polar, which is manifested in a smaller polar component of the surface energy. We also showed that ultrasonic cleaning in heptane has no significant effect on the quantity of adsorbed molecules or on their chemical state. This not only shows the relatively strong adsorption of these molecules, but also provides useful information for future experimental work. Of the two examined molecules, the acid showed a greater adsorption ability than the alcohol, which explains some of the previously reported better tribological properties in the case of the acid with respect to the alcohol.

  17. Diverse clinical compounds alter the quaternary structure and inhibit the activity of an essential enzyme

    PubMed Central

    Lawrence, Sarah H.; Selwood, Trevor; Jaffe, Eileen K.

    2011-01-01

    An in vitro evaluation of the Johns Hopkins Clinical Compound Library demonstrates that certain drugs can alter the quaternary structure of an essential human protein. Human porphobilinogen synthase (HsPBGS) is an essential enzyme involved in heme biosynthesis; it exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. Reduced HsPBGS activity is implicated in toxicities associated with lead poisoning and ALAD porphyria, the latter of which involves hexamer-favoring HsPBGS variants. A medium-throughput native PAGE mobility shift screen, coupled with evaluation of hits as HsPBGS inhibitors, revealed twelve drugs that stabilize the HsPBGS hexamer and inhibit HsPBGS activity in vitro. A detailed characterization of these effects is presented. Drug inhibition of HsPBGS in vivo by inducing hexamer formation would constitute an unprecedented mechanism for side effects. We suggest that small molecule perturbation of quaternary structure equilibria be considered as a general mechanism for drug action and side effects. PMID:21506274

  18. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  19. [Proteasome inhibitor].

    PubMed

    Yagi, Hideo

    2014-06-01

    The ubiquitin-proteasome system plays an essential role in degradation of eukaryotic intracellular protein, including cell cycle regulation, cell growth and proliferation, and survival. Cancer cells generally have higher level of proteasome activity compared with normal cells, suggesting proteasome inhibition could be therapeutic target in oncology. Bortezomib, the first proteasome inhibitor introduced into the clinic, is approved for the treatment of patients with multiple myeloma (MM). Although it was approved as single agent in the relapsed setting, bortezomib is now predominantly used in combination with conventional and novel targeted agents because bortezomib has demonstrated additive and synergistic activity in preclinical studies. Recently, several second-generation proteasome inhibitors, such as carfilzomib and MLN9708, have been developed and entered into clinical trials. These agents were investigated in frontline MM in combination with lenalidomide and low-dose dexamethasone. These studies demonstrated positive efficacy and safety, and it is expected that they will be approved in near future. PMID:25016815

  20. Pharmacotherapies for Alzheimer's disease: beyond cholinesterase inhibitors.

    PubMed

    Tayeb, Haythum O; Yang, Hyun Duk; Price, Bruce H; Tarazi, Frank I

    2012-04-01

    Alzheimer's disease (AD) is the most common cause of memory impairment and dementia in the elderly. AD is pathologically characterized by extracellular deposits of beta-amyloid (Aβ) peptide, neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau, neuronal loss, and neurotransmitter dysfunction. Clinically, AD is characterized by progressive cognitive decline that usually starts with memory impairment and progresses to cause a more generalized cognitive dysfunction, behavioral dysregulation, and neuropsychiatric symptoms. These symptoms collectively lead to a progressive and relentless decline in the ability to perform functions of daily living, eventually leading to total incapacitation. The incidence and prevalence of AD are expected to exponentially increase with the aging of the population. Currently approved treatments, including the acetylcholinesterase inhibitors (AChEIs) donepezil, galantamine and rivastigmine, and the N-methyl-D-aspartate (NMDA) antagonist memantine, do not halt the progression of the disease, and have provided marginal therapeutic benefits. Accordingly, there is an urgent need to develop novel and effective medications for AD that go beyond AChEIs and NMDA antagonists. Modern research has focused on discovering effective disease-modifying therapies, which specifically target the pathophysiologic cascade, hoping to delay the onset of the disease and slow its progression. In this review, different pharmacological drugs and therapeutic approaches will be discussed, with an emphasis on novel therapies that are currently being investigated in clinical trials. PMID:22198801

  1. Known and suggested quaternary faulting in the midcontinent United States

    USGS Publications Warehouse

    Wheeler, R.L.; Crone, A.J.

    2001-01-01

    The midcontinent United States between the Appalachian and Rocky Mountains contains 40 known faults or other potentially tectonic features for which published geologic information shows or suggests Quaternary tectonic faulting. We report results of a systematic evaluation of published and other publicly available geologic evidence of Quaternary faulting. These results benefit seismic-hazard assessments by (1) providing some constraints on the recurrence intervals and magnitudes of large, prehistoric earthquakes, and (2) identifying features that warrant additional study. For some features, suggested Quaternary tectonic faulting has been disproved, whereas, for others, the suggested faulting remains questionable. Of the 40 features, nine have clear geologic evidence of Quaternary tectonic faulting associated with prehistoric earthquakes, and another six features have evidence of nontectonic origins. An additional 12 faults, uplifts, or historical seismic zones lack reported paleoseismological evidence of large. Quaternary earthquakes. The remaining 13 features require further paleoseismological study to determine if they have had Quaternary earthquakes that were larger than any known from local historical records; seven of these 13 features are in or near urbanized areas where their study could affect urban hazard estimates. These seven are: (1) the belt of normal faults that rings the Gulf of Mexico from Florida to Texas. (2) the Northeast Ohio seismic zone, (3) the Valmont and (4) Goodpasture faults of Colorado. (5) the Champlain lowlands normal faults of New York State and Vermont, and (6) the Lexington and (7) Kentucky River fault systems of eastern Kentucky. Published by Elsevier Science B.V.

  2. Experimental investigation into Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Kuhn, Nikolaus; Yair, Aaron; Bryan, Rorke; Schwanghart, Wolfgang

    2010-05-01

    Badland morphology is commonly linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. In this study, the precipitation characteristics that are critical for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel are investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Currently, the geomorphic development in the Dinosaur badlands is characterized by weathering/supply limited conditions, leading to slope retreat independent of lithology. In the Negev, transport limited conditions cause frequent runoff discontinuity, creating a pattern of areas dominated by erosion or deposition. The results of the weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring and summer rainfall and erosion determine the rate of slope retreat in the Dinosaur Badlands. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a sediment sink. The experiments illustrate that the badland slopes experienced an auto-stabilization during the Quaternary in the Zin Valley. In the Dinosaur Badlands Holocene climatic variations have not caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. In their current state, both badland slope systems appear to be fairly stable against climate change in the range of those occurring during the Holocene. However, the stability is achieved in different ways. In the Dinosaur Badlands, weathering rates are low compared to erosion capacity, maintaining continuous evacuation of sediment from slopes

  3. Quaternary Tectonics of The Vitosha Mountain (bulgaria)

    NASA Astrophysics Data System (ADS)

    Angelova, Dora

    The Vitosha Mt. is a Cretaceous paleovolcano of the central type with complex ge- ological evolution. From a contemporary point of view it has a marked orographic homogeneity, which is connected with its specific evolution during the Neogene and the Quaternary. At the background of intensive vault formation, graben systems from the Maritsa and Strouma fault zones originated in a sharp discordance along its pe- riphery. The vault formation process caused the accumulation of tectonic stresses in different parts of the Vitosha Mt. in the course of time and space. The tectonic stresses provoked the formation of concentric normal faults. Their surface display predeter- mined not only the block disintegration of the structure but also its primary relief. The active mountain formation of Vitosha was controlled by the Pernik and Vladaya fault zones, and by the Vitosha, Zheleznitsa, Matnitsa and Chuipetlovo fault beams during the Quaternary. The Pliocene-Pleistocene boundary was accompanied by active ver- tical tectonic deformations. As a result of pulse tectonic movements and subsequent deformations along the above mentioned structures, a global re-arrangement of the Vladaiska and Strouma River basins took place in the region of the Vladaya village and to the south of the Chuipetlovo village. The age of these events is 0.73 Ma. The pa- leoseismic dislocation in the region of the Dragalevtsi quarter was probably formed at the same time. The paleoseismic deformations during the Middle Pleistocene were es- tablished along the radial faults. They had caused rock-falls in the Douhlata cave, pyra- teries and bifurcations of the underground aquatic system and of the Klisuritsa River. The Holocene stage was characterised by intensified vertical movements along all fault structures together with the climatic changes under post-glacial circumstances. The Vitosha paleovolcano was mightily raised due to the vertical compression and new river system originated while the old one was

  4. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2015-08-01

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation

  5. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    SciTech Connect

    Hirata, Yuki; Choi, Junho

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  6. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  7. Role of L- and N-type Ca2+ channels in muscarinic receptor-mediated facilitation of ACh and noradrenaline release in the rat urinary bladder.

    PubMed Central

    Somogyi, G T; Zernova, G V; Tanowitz, M; de Groat, W C

    1997-01-01

    1. 3H-Noradrenaline (NA) and 14C-acetylcholine (ACh) released by electrical field stimulation were measured simultaneously in strips from the body of rat urinary bladder. 2. omega-Conotoxin GVIA (omega-CgTX; 20-100 nM) suppressed the non-facilitated transmitter release evoked by intermittent stimulation (IS), whereas nifedipine (1 microM) did not affect release. 3. Continuous electrical stimulation (CS) facilitated NA and ACh release via an atropine-sensitive mechanism. omega-CgTX reduced the facilitated release of NA (44% depression) but did not affect ACh release. Nifedipine depressed ACh release (43%) but not NA release. Combined administration of nifedipine and omega-CgTX (20 nM) produced a greater suppression of NA and ACh release (86 and 91%, respectively). 4. Maximal muscarinic facilitation of NA (5-fold) and ACh (17-fold) release occurred following administration of eserine, an anticholinesterase agent. Release of both NA and ACh was depressed by nifedipine (70 and 83%, respectively) but not by omega-CgTX. Combined application of omega-CgTX and nifedipine elicited a further depression of NA (95%) but not ACh release. 5. When NA and ACh release was facilitated with phorbol dibutyrate (0.5 microM), nifedipine inhibited ACh (67%) but not NA release, whereas omega-CgTX inhibited NA (73%) but not ACh release. Combined administration of both Ca2+ channel blockers did not elicit greater inhibition. 6. Bay K 8644, the L-type Ca2+ channel activator, increased ACh release in a dose-dependent manner (up to 5-fold) but did not significantly change NA release. 7. Both omega-CgTX (20-100 nM) and nifedipine (100 nM-1 microM) significantly decreased (50-80%) the neurally evoked contractions of the bladder strips. 8. It is concluded that L-type Ca2+ channels play a major role in muscarinic facilitation of NA and ACh release in the urinary bladder but are not essential for non-facilitated release. Other types of Ca2+ channels, including N-type, are involved to varying

  8. Quaternary ammonium biocides: efficacy in application.

    PubMed

    Gerba, Charles P

    2015-01-01

    Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance. PMID:25362069

  9. Late Quaternary history of the Atacama Desert

    USGS Publications Warehouse

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  10. A Quaternary fault database for central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  11. A Quaternary Fault Database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, S.; Ehlers, T. A.; Bendick, R.; Stübner, K.; Strube, T.

    2015-09-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for Central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for Central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic and structural characteristics, short descriptions, narrative comments and references to peer-reviewed publications. The interactive map displays 1196 fault segments and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 122 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. This work has implications for seismic hazard studies in Central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  12. (Model) Peatlands in late Quaternary interglacials

    NASA Astrophysics Data System (ADS)

    Kleinen, Thomas; Brovkin, Victor

    2016-04-01

    Peatlands have accumulated a substantial amount of carbon, roughly 600 PgC, during the Holocene. Prior to the Holocene, there is relatively little direct evidence of peatlands, though coal deposits bear witness to a long history of peat-forming ecosystems going back to the Carboniferous. We therefore need to rely on models to investigate peatlands in times prior to the Holocene. We have developed a dynamical model of wetland extent and peat accumulation, integrated in the coupled climate carbon cycle model of intermediate complexity CLIMBER2-LPJ, in order to mechanistically model interglacial carbon cycle dynamics. This model consists of the climate model of intermediate complexity CLIMBER2 and the dynamic global vegetation model LPJ, which we have extended with modules to determine peatland extent and carbon accumulation. The model compares reasonably well to Holocene peat data. We have used this model to investigate the dynamics of atmospheric CO2 in the Holocene and two other late Quaternary interglacials, namely the Eemian, which is interesting due to its warmth, and Marine Isotope Stage 11 (MIS11), which is the longest interglacial during the last 500ka. We will also present model results of peatland extent and carbon accumulation for these interglacials. We will discuss model shortcomings and knowledge gaps currently preventing an application of the model to full glacial-interglacial cycles.

  13. Quaternary Ammonium Biocides: Efficacy in Application

    PubMed Central

    2014-01-01

    Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance. PMID:25362069

  14. Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact

  15. Isosorbide-2-benzyl carbamate-5-salicylate, a peripheral anionic site binding subnanomolar selective butyrylcholinesterase inhibitor.

    PubMed

    Carolan, Ciaran G; Dillon, Gerald P; Khan, Denise; Ryder, Sheila A; Gaynor, Joanne M; Reidy, Sean; Marquez, Juan F; Jones, Mike; Holland, Valerie; Gilmer, John F

    2010-02-11

    Isosorbide-2-benzyl carbamate-5-benzoate is a highly potent and selective BuChE inhibitor. Meanwhile, isosorbide-2-aspirinate-5-salicylate is a highly effective aspirin prodrug that relies on the salicylate portion to interact productively with human BuChE. By integrating the salicylate group into the carbamate design, we have produced isosorbide-2-benzyl carbamate-5-salicylate, an inhibitor of high potency (150 pM) and selectivity for human BuChE over AChE (666000) and CES2 (23000). Modeling and mutant studies indicate that it achieves its exceptional potency because of an interaction with the polar D70/Y332 cluster in the PAS of BuChE in addition to pseudosubstrate interactions with the active site. PMID:20067290

  16. 2-Phenylbenzofuran derivatives as butyrylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling.

    PubMed

    Delogu, Giovanna L; Matos, Maria J; Fanti, Maura; Era, Benedetta; Medda, Rosaria; Pieroni, Enrico; Fais, Antonella; Kumar, Amit; Pintus, Francesca

    2016-05-01

    A series of 2-phenylbenzofurans compounds was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. Among these benzofuran derivatives, compound 16 exhibited the highest BChE inhibition with an IC50 value of 30.3μM. This compound was found to be a mixed-type inhibitor as determined by kinetic analysis. Moreover, molecular dynamics simulations revealed that compound 16 binds to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE and it displayed the best interaction energy value, in agreement with our experimental data. PMID:26995529

  17. Heritability and Fitness Correlates of Personality in the Ache, a Natural-Fertility Population in Paraguay

    PubMed Central

    Bailey, Drew H.; Walker, Robert S.; Blomquist, Gregory E.; Hill, Kim R.; Hurtado, A. Magdalena; Geary, David C.

    2013-01-01

    The current study assessed the heritability of personality in a traditional natural-fertility population, the Ache of eastern Paraguay. Self-reports (n = 110) and other-reports (n = 66) on the commonly used Big Five Personality Inventory (i.e., extraversion, agreeableness, conscientiousness, neuroticism, openness) were collected. Self-reports did not support the Five Factor Model developed with Western samples, and did not correlate with other-reports for three of the five measured personality factors. Heritability was assessed using factors that were consistent across self- and other-reports and factors assessed using other-reports that showed reliabilities similar to those found in Western samples. Analyses of these items in combination with a multi-generation pedigree (n = 2,132) revealed heritability estimates similar to those found in most Western samples, although we were not able to separately estimate the influence of the common environment on these traits. We also assessed relations between personality and reproductive success (RS), allowing for a test of several mechanisms that might be maintaining heritable variation in personality. Phenotypic analyses, based largely on other-reports, revealed that extraverted men had higher RS than other men, but no other dimensions of personality predicted RS in either sex. Mothers with more agreeable children had more children, and parents mated assortatively on personality. Of the evolutionary processes proposed to maintain variation in personality, assortative mating, selective neutrality, and temporal variation in selection pressures received the most support. However, the current study does not rule out other processes affecting the evolution and maintenance of individual differences in human personality. PMID:23527163

  18. Toxicity and mAChRs binding activity of Cassiopea xamachana venom from Puerto Rican coasts.

    PubMed

    Radwan, Faisal F Y; Román, Laura G; Baksi, Krishna; Burnett, Joseph W

    2005-01-01

    A separation of toxic components from the upside down jellyfish Cassiopea xamachana (Cx) was carried out to study their cytotoxic effects and examine whether these effects are combined with a binding activity to cell membrane receptors. Nematocysts containing toxins were isolated from the autolysed tentacles, ruptured by sonication, and the crude venom (CxTX) was separated from the pellets by ultracentrifugation. For identifying its bioactive components, CxTX was fractionated by gel filtration chromatography into six fractions (named fraction I-VI). The toxicity of CxTX and fractions was tested on mice; however, the hemolytic activity was tested on saline washed human erythrocytes. The LD50 of CxTX was 0.75 microg/g of mouse body and for fraction III, IV and VI were 0.28, 0.25 and 0.12 microg/g, respectively. Fractions I, II and V were not lethal at doses equivalent to LD50 1 microg/g. The hemolytic and phospholipase A2 (PLA2) activities of most fractions were well correlated with their mice toxicity. However, fraction VI, which contains the low molecular mass protein components (< or =10 kDa), has shown no PLA2 activity but highest toxicity to mice, highest hemolytic activity, and bound significantly to the acetylcholine muscarinic receptors (mAChRs) isolated from rat brain. The results suggested that fraction VI contains proteinaceous components contributing to most of cytolysis as well as membrane binding events. Meanwhile, fraction IV has shown high PLA2 that may contribute to the venom lethality and paralytic effects. PMID:15581689

  19. Inactivity–Induced Increase in nAChRs Up–Regulates Shal K+ Channels to Stabilize Synaptic Potentials

    PubMed Central

    Ping, Yong; Tsunoda, Susan

    2011-01-01

    Long–term synaptic changes, which are essential for learning and memory, are dependent on homeostatic mechanisms that stabilize neural activity. Homeostatic responses have also been implicated in pathological conditions, including nicotine addiction. Although multiple homeostatic pathways have been described, little is known about how compensatory responses are tuned to prevent them from overshooting their optimal range of activity. We show that prolonged inhibition of nicotinic acetylcholine receptors (nAChRs), the major excitatory receptor in the Drosophila CNS, results in a homeostatic increase in the Dα7 nAChR. This response then induces an increase in the transient A–type K+ current carried by Shal/Kv4 channels. While increasing Dα7 boosts mEPSCs, the ensuing increase in Shal channels serves to stabilize postsynaptic potentials. This identifies a novel mechanism to fine–tune the homeostatic response. PMID:22081160

  20. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Yang, P.; Kwok, S. C. H.; Chu, P. K.; Leng, Y. X.; Chen, J. Y.; Wang, J.; Huang, N.

    2003-05-01

    Diamond-like-carbon has attracted much attention recently as a potential biomaterial in blood contacting biomedical devices. However, previous reports in this area have not adequately addressed the biocompatibility and acceptability of the materials in blood contacting applications. In this study, hydrogenated amorphous carbon (a-C:H) films were fabricated on silicon wafers (1 0 0) using plasma immersion ion implantation-deposition. A series of a-C:H films with different structures and chemical bonds were fabricated under different substrate voltages. The results indicate that film graphitization is promoted at higher substrate bias. The film deposited at a lower substrate bias of -75 V possesses better blood compatibility than the films at higher bias and stainless steel. Our results suggest two possible paths to improve the blood compatibility, suppression of the endogenic clotting system and reduction of platelet activation.

  1. Erosion of a-C:H films deposited on W, Mo, and stainless steel under interaction with air glow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2011-08-01

    An air direct current glow discharge with a hollow cathode was used as source of chemically active oxygen for selective removal of amorphous hydrogenated (a-C:H) films deposited on W, Mo, and stainless steel. The films were removed both directly in the discharge and afterglow region. The film erosion rates depend on the sample position relatively to plasma and decrease in the order: hollow cathode, positive column, afterglow region. It was shown that primary (1-3 nm) continuous amorphous and secondary (1-30 nm) island-like oxide films were formed on the metal surfaces after removal of the a-C:H films. Polycrystalline island-like oxide films were generated due to recrystallization of the primary films. Material oxidation suppression was caused by reactions of oxygen ion neutralization and atomic oxygen recombination on metals.

  2. Impaired, spared, and enhanced ACh efflux across the hippocampus and striatum in diencephalic amnesia is dependent on task demands.

    PubMed

    Vetreno, Ryan P; Anzalone, Steven J; Savage, Lisa M

    2008-07-01

    Diencephalic amnesia manifests itself through a host of neurological and memory impairments. A commonly employed animal model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), results in brain lesions and impairments similar in nature and distribution to those observed in humans with Wernicke-Korsakoff syndrome (WKS). In the current investigation, 2 separate experiments were conducted in which acetylcholine (ACh) efflux was assessed in the hippocampus and striatum of PTD-treated and pair-fed (PF) control male Sprague-Dawley rats. The goal was to determine under what behavioral conditions and in which brain structures ACh efflux was spared, impaired, or adaptively enhanced. In Experiment 1, rats were assessed on a spontaneous alternation task; in Experiment 2, rats were tested on a T-maze discrimination task that could be learned via a hippocampal- or striatal-based strategy. In Experiment 1, PTD-treated rats were impaired on the spontaneous alternation task and ACh efflux in the hippocampus during testing was significantly reduced, but spared in the striatum. In Experiment 2, PTD- and PF-treated rats did not differ in the number of trials to criterion, but PTD-treated rats demonstrated greater reliance upon egocentric cues to solve the task. Furthermore, ACh efflux in the striatum was greater during maze learning in the PTD-treated animals when compared to the PF animals. These results suggest that there is behavioral and systems level plasticity that can facilitate the use of alternative strategies to solve a task following diencephalic damage and WKS. PMID:18472286

  3. Development of M1 mAChR Allosteric and Bitopic Ligands: Prospective Therapeutics for the Treatment of Cognitive Deficits

    PubMed Central

    2013-01-01

    Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer’s disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations. A promising target for which there are presently no approved therapies is the M1 muscarinic acetylcholine receptor (M1 mAChR). Despite avid investigation, development of agents that selectively activate this receptor via the orthosteric site has been hampered by the high sequence homology of the binding site between the five muscarinic receptor subtypes and the wide distribution of this receptor family in both the central nervous system (CNS) and the periphery. Hence, a plethora of ligands targeting less structurally conserved allosteric sites of the M1 mAChR have been investigated. This Review aims to explain the rationale behind allosterically targeting the M1 mAChR, comprehensively summarize and critically evaluate the M1 mAChR allosteric ligand literature to date, highlight the challenges inherent in allosteric ligand investigation that are impeding their clinical advancement, and discuss potential methods for resolving these issues. PMID:23659787

  4. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. PMID:24266758

  5. Coumarins as cholinesterase inhibitors: A review.

    PubMed

    de Souza, Luana G; Rennã, Magdalena N; Figueroa-Villar, Jose D

    2016-07-25

    The first report in literature of the isolation of coumarin was in the year 1820. After this report, other papers were published demonstrating the isolation and synthesis of coumarin and analogues. These compounds have been studying along the years for several different pathologies. One of these pathologies was Alzheimer's disease (AD), being the main cause of dementia in the contemporary world. There are two hypotheses to explain the pathogenesis mechanism and disease symptoms, then having the "amyloid hypothesis" and the "cholinergic hypothesis". Some drugs for AD are based on the theory of "cholinergic hypothesis", which objective is to increase the concentration of ACh in the synaptic cleft by the inhibition of cholinesterases. Over the last twenty years, many studies with coumarins compounds were reported as cholinesterases inhibitors. The aim of the present review is to discuss the studies and development of new compounds for AD treatment. PMID:27174134

  6. Enantiopure Cyclopropane-Bearing Pyridyldiazabicyclo[3.3.0]octanes as Selective α4β2-nAChR Ligands.

    PubMed

    Onajole, Oluseye K; Eaton, J Brek; Lukas, Ronald J; Brunner, Dani; Thiede, Lucinda; Caldarone, Barbara J; Kozikowski, Alan P

    2014-11-13

    We report the synthesis and characterization of a series of enantiopure 5-cyclopropane-bearing pyridyldiazabicyclo[3.3.0]octanes that display low nanomolar binding affinities and act as functional agonists at α4β2-nicotinic acetylcholine receptor (nAChR) subtype. Structure-activity relationship studies revealed that incorporation of a cyclopropane-containing side chain at the 5-position of the pyridine ring provides ligands with improved subtype selectivity for nAChR β2 subunit-containing nAChR subtypes (β2*-nAChRs) over β4*-nAChRs compared to the parent compound 4. Compound 15 exhibited subnanomolar binding affinity for α4β2- and α4β2*-nAChRs with negligible interaction. Functional assays confirm selectivity for α4β2-nAChRs. Furthermore, using the SmartCube assay system, this ligand showed antidepressant, anxiolytic, and antipsychotic features, while mouse forced-swim assay further confirm the antidepressant-like property of 15. PMID:25408831

  7. Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2.

    PubMed

    Thany, Steeve H; Courjaret, Raphael; Lapied, Bruno

    2008-06-27

    Two distinct native alpha-bungarotoxin (alpha-Bgt)-insensitive nicotinic acetylcholine receptors (nAChRs), named nAChR1 and nAChR2, were identified in the cockroach Periplaneta americana dorsal unpaired median (DUM) neurons. They differed in their electrophysiological, pharmacological properties and intracellular regulation pathways. nAChR2 being an atypical nicotinic receptor closed upon agonist application and its current-voltage relationship resulted from a reduction in potassium conductance. In this study, using whole-cell patch-clamp technique, we demonstrated that calcium modulated nAChR2-mediated nicotine response. Under 0.5 microM alpha-Bgt and 20 mM d-tubocurarine, the nicotine-induced inward current amplitude was strongly reduced in the presence of intracellularly applied BAPTA or bath application of calcium-free solution. In addition, using cadmium chloride, we showed that nicotine response was modulated by extracellular calcium through plasma membrane calcium channels. Moreover, extracellular application of caffeine and thapsigargin reduced nAChR2-mediated response. Together these experiments revealed a complex calcium-dependent regulation of nAChR2. PMID:18485593

  8. Synthesis and Biological Evaluation of Novel Carbon-11 Labeled Pyridyl Ethers: Candidate Ligands for In Vivo Imaging of α4β2 Nicotinic Acetylcholine Receptors (α4β2-nAChRs) in the brain with Positron Emission Tomography

    PubMed Central

    Gao, Yongjun; Ravert, Hayden T.; Kuwabara, Hiroto; Xiao, Yingxian; Endres, Christopher J.; Hilton, John; Holt, Daniel P.; Kumar, Anil; Alexander, Mohab; Wong, Dean F.; Dannals, Robert F.; Horti, Andrew G.

    2009-01-01

    The most abundant subtype of cerebral nicotinic acetylcholine receptors (nAChR), α4β2, plays a critical role in various brain functions and pathological states. Imaging agents suitable for visualization and quantification of α4β2 nAChRs by positron emission tomography (PET) would present unique opportunities to define the function and pharmacology of the nAChRs in the living human brain. In this study, we report the synthesis, nAChR binding affinity, and pharmacological properties of several novel 3-pyridyl ether compounds. Most of these derivatives displayed a high affinity to the nAChR and a high subtype selectivity for α4β2-nAChR. Three of these novel nAChR ligands were radiolabeled with the positron-emitting isotope 11C and evaluated in animal studies as potential PET radiotracers for imaging of cerebral nAChRs with improved brain kinetics. PMID:19481945

  9. Raman Spectroscopy of a-C:H Films Deposited Using Ar + H2 + C7H8 Plasma CVD

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Koga, Kazunori; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Setsuhara, Yuichi; Sekine, Makoto; Hori, Masaru

    2015-09-01

    We investigated the effects of ion energy on Raman spectra of a-C:H films prepared by Ar + H2 + C7H8 plasma CVD. Raman spectra were measured with a laser Raman spectrometer (JASCO NRS-3100). Both the D-peak position and G-peak position shift toward higher wavenumbers as ion energy increases. The intensity ratio of the D-peak and G-peak, ID/IG increases with increasing the ion energy, indicating that the amount of ring-like sp2 clusters increases. The H content in a-C:H derived from photoluminescence (PL) background decreases with increasing the ion energy. The full width at half maximum of the G-peak, FWHMG related to the C-C sp3 content and H content increases with increasing the ion energy to 100 eV, whereas it decreases with increasing further the ion energy to 105 eV. The variation of FWHMG is consistent with that of mass density. There results indicate that the structure of a-C:H films transforms from polymer-like carbon to diamond-like one with increasing the ion energy above the threshold value of ~ 100 eV.

  10. Efficient Expression of Functional (α6β2)2β3 AChRs in Xenopus Oocytes from Free Subunits Using Slightly Modified α6 Subunits

    PubMed Central

    Ley, Carson Kai-Kwong; Kuryatov, Alexander; Wang, Jingyi; Lindstrom, Jon Martin

    2014-01-01

    Human (α6β2)(α4β2)β3 nicotinic acetylcholine receptors (AChRs) are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6β2)2β3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with β2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing β3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6β2)2β3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells. PMID:25068303

  11. Patient autoantibodies deplete postsynaptic muscle-specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice.

    PubMed

    Cole, R N; Ghazanfari, N; Ngo, S T; Gervásio, O L; Reddel, S W; Phillips, W D

    2010-09-01

    The postsynaptic muscle-specific kinase (MuSK) coordinates formation of the neuromuscular junction (NMJ) during embryonic development. Here we have studied the effects of MuSK autoantibodies upon the NMJ in adult mice. Daily injections of IgG from four MuSK autoantibody-positive myasthenia gravis patients (MuSK IgG; 45 mg day(1)i.p. for 14 days) caused reductions in postsynaptic ACh receptor (AChR) packing as assessed by fluorescence resonance energy transfer (FRET). IgG from the patients with the highest titres of MuSK autoantibodies caused large (51-73%) reductions in postsynaptic MuSK staining (cf. control mice; P < 0.01) and muscle weakness. Among mice injected for 14 days with control and MuSK patient IgGs, the residual level of MuSK correlated with the degree of impairment of postsynaptic AChR packing. However, the loss of postsynaptic MuSK preceded this impairment of postsynaptic AChR. When added to cultured C2 muscle cells the MuSK autoantibodies caused tyrosine phosphorylation of MuSK and the AChR beta-subunit, and internalization of MuSK from the plasma membrane. The results suggest a pathogenic mechanism in which MuSK autoantibodies rapidly deplete MuSK from the postsynaptic membrane leading to progressive dispersal of postsynaptic AChRs. Moreover, maintenance of postsynaptic AChR packing at the adult NMJ would appear to depend upon physical engagement of MuSK with the AChR scaffold, notwithstanding activation of the MuSK-rapsyn system of AChR clustering. PMID:20603331

  12. Redefining the role of the quaternary shift in Bacillus stearothermophilus phosphofructokinase.

    PubMed

    Mosser, Rockann; Reddy, Manchi C M; Bruning, John B; Sacchettini, James C; Reinhart, Gregory D

    2013-08-13

    Bacillus stearothermophilus phosphofructokinase (BsPFK) is a homotetramer that is allosterically inhibited by phosphoenolpyruvate (PEP), which binds along one dimer-dimer interface. The substrate, fructose 6-phosphate (Fru-6-P), binds along the other dimer-dimer interface. Evans et al. observed that the structure with inhibitor (phosphoglycolate) bound, compared to the structure of wild-type BsPFK with substrate and activator bound, exhibits a 7° rotation about the substrate-binding interface, termed the quaternary shift [Schirmer, T., and Evans, P. R. (1990) Nature 343, 140-145]. We report that the variant D12A BsPFK exhibits a 100-fold increase in its binding affinity for PEP, a 50-fold decrease in its binding affinity for Fru-6-P, but an inhibitory coupling comparable to that of the wild type. Crystal structures of the apo and PEP-bound forms of D12A BsPFK have been determined (Protein Data Bank entries 4I36 and 4I7E , respectively), and both indicate a shifted structure similar to the inhibitor-bound structure of the wild type. D12 does not directly bind to either substrate or inhibitor and is located along the substrate-binding interface. A conserved hydrogen bond between D12 and T156 forms across the substrate-binding subunit-subunit interface in the substrate-bound form of BsPFK. The variant T156A BsPFK, when compared to the wild type, shows a 30-fold increase in PEP binding affinity, a 17-fold decrease in Fru-6-P binding affinity, and an estimated coupling that is also approximately equal to that of the wild type. In addition, the T156A BsPFK crystal structure bound to PEP is reported (Protein Data Bank entry 4I4I ), and it exhibits a shifted structure similar to that of D12A BsPFK and the inhibitor-bound structure of the wild type. The results suggest that the main role of the quaternary shift may be to influence ligand binding and not to cause the heterotropic allosteric inhibition per se. PMID:23859543

  13. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model.

    PubMed

    Komla-Ebri, Davide; Dambroise, Emilie; Kramer, Ina; Benoist-Lasselin, Catherine; Kaci, Nabil; Le Gall, Cindy; Martin, Ludovic; Busca, Patricia; Barbault, Florent; Graus-Porta, Diana; Munnich, Arnold; Kneissel, Michaela; Di Rocco, Federico; Biosse-Duplan, Martin; Legeai-Mallet, Laurence

    2016-05-01

    Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3-encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH. PMID:27064282

  14. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model

    PubMed Central

    Dambroise, Emilie; Kramer, Ina; Benoist-Lasselin, Catherine; Kaci, Nabil; Le Gall, Cindy; Martin, Ludovic; Busca, Patricia; Barbault, Florent; Graus-Porta, Diana; Munnich, Arnold; Kneissel, Michaela; Di Rocco, Federico; Biosse-Duplan, Martin

    2016-01-01

    Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3–encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH. PMID:27064282

  15. Quaternary Magmatism in the Cascades - Geologic Perspectives

    USGS Publications Warehouse

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  16. Quaternary Evolution of Karliova Triple Junction

    NASA Astrophysics Data System (ADS)

    Sançar, Taylan; Zabcı, Cengiz; Akyüz, H. Serdar

    2013-04-01

    The arguments to explain Quaternary evolution of Karlıova Triple Junction (KTJ) depends upon two different analogue models. The compressional type of Prandtl Cell Model (PCM) and 60 km wide shear zone with concomitant counter clockwise block rotation used to modelled for west and east of the KTJ respectively. The data for the model of west of the KTJ acquired by extensive field studies, and quantified geomorphic features. Compressional PCM put forward that behavior of slip lines controlled by boundary faults. But the model is not enough to explain slip distribution, age relation of them. At west of the KTJ boundary faults presented by eastern most segments of the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ). Slip lines, however, presented by Bahçeli and Toklular faults. Both field studies and morphometric analyses undisputedly set forth that there are two different fault types between the NAFZ and EAFZ. The most strain loaded fault type, which are positioned near the NAFZ, start as a strike-slip fault and when it turn to SE its sense of motion change to oblique normal due to changing orientation of principal stress axes. The new orientation of stress axes exposed in the field as a special kind of caprock -cuesta-. The younger slip lines formed very close to junction point and accommodate less slip. Even though slip trajectories started from the boundary faults in compressional PCM, at the west of KTJ, right lateral trajectories more clearly formed close the NAFZ and left lateral trajectories, relatively less strain loaded fault type, are poorly formed close the EAFZ . We think that, this differences between KTJ and compressional PCM result from the distinction of velocity of boundary faults. East of the KTJ governed by completely different mechanism. The region controlled two main fault systems. The Varto Fault Zone (VFZ), the eastern branch of the KTJ, and Murat Fault (MF) delimited the region from north and south respectively. The

  17. Landward-advancing Quaternary eolianites of Bermuda

    NASA Astrophysics Data System (ADS)

    Rowe, Mark P.; Bristow, Charlie S.

    2015-12-01

    The landscape of Bermuda is dominated by Quaternary carbonate cemented dunes, or "eolianites", which form the islands' topography. Sections through the dunes are revealed in extensive natural and man-made rock faces, which expose the dune stratigraphy as well as the preserved morphology. An analysis of 3751 foreset measurements confirms the conclusion reached by earlier researchers that Bermuda's dunes advanced sub-perpendicularly to the coast in a landward direction away from source beaches. Dune orientation, being multi-directional, is not consistent with northeast net sand transportation predicted by a drift potential analysis of modern wind data. The putative predisposition of Bermuda's carbonate dunes to rapid cementation is supposed to have curtailed their landward advance such that younger dunes developed as static ridges at the seaward margin of their lithified predecessors. Geological mapping has revealed, however, that in many cases young dunes did advance inland onto interior terrain, overstepping older dune ridges. Molds of large trees, preserved within the dunes, and a sharp contact of steep slip-face dune foresets on palaeosols evoke the encroachment of landward-advancing precipitation ridges into a forested landscape. The internal structure of the dunes, featuring thick sets of slip-face foresets truncated by sub-horizontal planar bounding surfaces, uphold the ascendancy of sand transportation processes over those of sand retention and vertical accretion. Although meteoric cementation was responsible for the ultimate preservation of eolianite ridges which dominate Bermuda's landscape, it took effect too slowly to influence the behaviour of the carbonate dunes at the time of their emplacement.

  18. Novel Complement Inhibitor Limits Severity of Experimentally Myasthenia Gravis

    PubMed Central

    Soltys, Jindrich; Kusner, Linda L.; Young, Andrew; Richmonds, Chelliah; Hatala, Denise; Gong, Bendi; Shanmugavel, Vaithesh; Kaminski, Henry J.

    2011-01-01

    Objective Complement mediated injury of the neuromuscular junction is considered a primary disease mechanism in human myasthenia gravis and animal models of experimentally acquired myasthenia gravis (EAMG). We utilized active and passive models of EAMG to investigate the efficacy of a novel C5 complement inhibitor rEV576, recombinantly produced protein derived from tick saliva, in moderating disease severity. Methods Standardized disease severity assessment, serum complement hemolytic activity, serum cytotoxicity, acetylcholine receptor (AChR) antibody concentration, IgG subclassification, and C9 deposition at the neuromuscular junction were used to assess the effect of complement inhibition on EAMG induced by administration of AChR antibody or immunization with purified AChR. Results Administration of rEV576 in passive transfer EAMG limited disease severity as evidenced by 100% survival rate and a low disease severity score. In active EAMG, rats with severe and mild EAMG were protected from worsening of disease and had limited weight loss. Serum complement activity (CH50) in severe and mild EAMG was reduced to undetectable levels during treatment, and C9 deposition at the neuromuscular junction was reduced. Treatment with rEV576 resulted in reduction of toxicity of serum from severe and mild EAMG rats. Levels of total AChR IgG, and IgG2a antibodies were similar, but unexpectedly, the concentration of complement fixing IgG1 antibodies was lower in a group of rEV576-treated animals, suggesting an effect of rEV576 on cellular immunity. Interpretation Inhibition of complement significantly reduced weakness in two models of EAMG. C5 inhibition could prove to be of significant therapeutic value in human myasthenia gravis. PMID:19194881

  19. Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles.

    PubMed

    Zhao, Dan; Chen, Chuanxia; Sun, Jian; Yang, Xiurong

    2016-06-01

    In this work, we proposed an original and versatile dual-readout (colorimetric and fluorometric) protocol by means of silver nanoparticles (AgNPs) and fluorescent carbon dots (CDs), which was amenable to rapid, ultrasensitive assay of acetylcholinesterase (AChE) activity and its inhibitors. The sensing mechanism was based on the non-fluorescence state of CDs resulting from the inner filter effect (IFE) of AgNPs and the specific AChE-catalyzed hydrolysis of acetylthiocholine (ATCh) into thiocholine (TCh). Herein, the generated positively-charged and thiol-bearing TCh at trace concentration levels could trigger the aggregation of AgNPs through the well-known electrostatic and Ag-SH interactions, thereby turning the sensing solutions grey and recovering the IFE-quenched fluorescence simultaneously. Furthermore, the existence of IFE mechanism was conceivably confirmed by combining the zeta potentials, fluorescence spectra, UV-vis spectra, fluorescence lifetime and TEM measurements. As far as we know, the present study has reported the first dual-mode proposal for assessing AChE activity by using a CDs-based IFE sensing strategy, where the detection limit was as low as 0.021 mU mL(-1) and 0.016 mU mL(-1) by colorimetric and fluorometric measurements, respectively. On the other hand, the proposed assay was feasible to screen AChE inhibitors such as tacrine and carbaryl. Meanwhile, this rationally designed dual-mode sensing platform featured simplicity, rapidity, flexibility and diversity, which was demonstrated by the quantitative detection of spiked carbaryl in apple juice samples with satisfactory results. PMID:27099097

  20. Geological Mapping of the Ac-H-11 Sintana Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Schulzeck, Franziska; Krohn, Katrin; Jaumann, Ralf; Williams, David A.; Buczkowski, Debra L.; Mest, Scott C.; Scully, Jennifer E. C.; Gathen, Isabel v. d.; Kersten, Elke; Matz, Klaus-Dieter; Naß, Andrea; Otto, Katharina; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; De Sanctis, Maria C.; Schenk, Paul; Schröder, Stefanus; Stephan, Katrin; Wagner, Roland

    2016-04-01

    In December 2015, the Dawn spacecraft delivered the first images of the Low Altitude Mapping Orbit (LAMO) of the dwarf planet Ceres at a resolution of 35 m/pixel. This data will be used to finish the geological mapping of Ceres' surface in order to identify composition and surface forming processes. Mapping was already done using Survey Orbit and High Altitude Mapping Orbit (HAMO) data. With the new images, an updated map will be presented. To this point, the data material consists of a HAMO clear-filter mosaic (140 m/pixel) [1], a digital elevation model (DTM) [2] derived from Survey orbit (415 m/pixel) data, color-filter ratios and photometrically corrected images. Ceres' surface has been divided into 15 mapping quadrangles. The Ac-H-11 Sintana quadrangle is located in the southern hemisphere of Ceres between 21 66°S and 0 90°E. Geological units identified so far are cratered terrain, which covers most of the area, and a younger unit of relatively smooth material. The latter is characterized by a low crater density. Material of the same unit was found in adjacent quadrangles as well. Interest is taken in the diversity of crater shapes. Many craters show different forms of asymmetries. One and the same crater for instance displays different stages of rim degradation and some crater walls are partly terraced and their slopes' steepness is varying alongside the crater rim. Several mass wasting features, which partly cause the observed asymmetries, have been identified. Next to the multiple collapsed rims, landslides due to later cratering on the primary crater rim are observed. Whereas collapse structures are mostly blocky, single landslides are characterized by lobate margins. Occurrence and type of mass wasting feature might hint to subsurface differences. Further, there is a diversity of inner crater structures, like relaxed crater floors, ridges, central peaks, mounds and smooth plains. Processes like mass wasting and relaxation have modified many craters

  1. Geological Mapping of the Ac-H-13 Urvara Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Sizemore, Hanna; Williams, David; Platz, Thomas; Mest, Scott; Yingst, Aileen; Crown, David; O'Brien, David; Buczkowski, Debra; Schenk, Paul; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; De Sanctis, Maria Cristina; Russell, Christopher; Raymond, Carol

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-13 Urvara Quadrangle. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital ter-rain models (for topographic information). Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images. The Urvara Quadrangle is dominated by the 170-km diameter impact basin Urvara (46.4°S, 248.6°E) and includes cratered terrain to the west. Named features include the impact craters Meanderi (40.9°S, 193.7°E, 103 km diameter), Sekhet (66.4°S, 254.9°E, 41 km diameter), and Fluusa (31.5°S, 277.9°E), as well as the crater chains Gerber Catena (38.1°S, 214.8°E) and Sam-hain Catena (19.6°S, 210.3°E). Based on preliminary geologic mapping [3,4], we interpret the two prominent catenae as pit craters associated with large scale tectonism rather than secondary impacts. We interpret two large curvilinear depressions near the eastern quadrangle boundary as secondary crater chains resulting from the Urvara impact. Textural and morphological asymme-tries in crater materials within the quadrangle indicate heterogeneities in subsurface composition and volatile content. Features on the Urvara basin floor are consistent with impact fluidization of target materials; post impact extrusion of volatile rich material may have also played a minor role. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23. [3] Sizemore et al. (2015) GSA Abstracts with Program

  2. Geological Mapping of the Ac-H-2 Coniraya Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Hendrik Pasckert, Jan; Hiesinger, Harald; Williams, David; Crown, David; Mest, Scott; Buczkowski, Debra; Scully, Jennifer; Schmedemann, Nico; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Naß, Andrea; Nathues, Andreas; Hoffmann, Martin; Schäfer, Michael; De Sanctis, Maria Cristina; Raymond, Carol; Russell, Christopher

    2016-04-01

    Dwarf planet Ceres (˜950 km) is located at ˜2.8 AU in the main asteroid belt [1], and is currently orbited by NASA's Dawn spacecraft. Similar to Vesta [2], the 15 quadrangles of Ceres will be mapped on the basis of Framing Camera mosaics from Low Altitude Mapping Orbits (LAMO) with a spatial resolution of ˜35 m/px. Here we report on our preliminary geological map of the Ac-H-2 Coniraya Quadrangle (located between 21-66 ° N and 0-90 ° E) based on High Altitude Mapping Orbit (HAMO) data (˜120 m/px), as LAMO images are just becoming available. The Coniraya Quadrangle is dominated by craters of different sizes and degradation stages. Most of the craters are highly degraded and no ejecta blankets are visible (e.g., Coniraya: 136 km; 65.8° E/40.5° N). Only some craters like Gaue and Ikapati seem to be relatively fresh, and still have ejecta blankets. Such fresher impact craters could already be mapped in detail on HAMO data, and subdivided into crater ejecta, crater wall, crater floor, and crater central peak materials. At the crater floor and around Ikapati crater we also identified smooth materials that fill local depressions. The formation of the smooth material seems to be related to the formation of the impact crater, as crater densities of the smooth materials and the ejecta blanket are similar, as are their absolute model ages (AMAs), derived from crater size-frequency distribution (CSFD) measurements. Using the lunar derived chronology, CSFD measurements of Ikapati's ejecta blanket and the smooth materials located in and around the crater show AMAs of 300 to 390 Ma. CSFD measurements of Gaue crater show AMAs of 910-980 Ma. Both craters show background AMAs of 3.1 to 3.5 Ga, which might be related to old large craters (e.g., Coniraya or Kerwan). Apart from crater related units, we identified one dome-like structure (˜65 km wide; ˜3 km high) at the crater floor of a large degraded crater at the western edge of this quadrangle. This might be an indication

  3. When the Earth has a Belly-Ache: Young Seismologists at School

    NASA Astrophysics Data System (ADS)

    Burrato, P.; Nostro, C.; Tertulliani, A.; Winkler, A.; Casale, P.; Marsili, A.; Castellano, C.; Cultrera, G.; Scarlato, P.; Alfonsi, L.; Ciaccio, M.; Frepoli, A.

    2004-12-01

    The INGV cohoperates with schools of different grades to promote Earth science programs and geophysical knowledge. This is particularly important in areas prone to seismic and volcanic hazards, like Italy. The E&O Group organizes every year school visits to the scientific laboratories of the INGV center of Rome, during which more than 4,000 students interact with scientists and learn about the dynamic Earth. Besides that the E&O Group brings on the road educational activities, carring out projects with schools and partecipating to science festivals. In March 2000 a small size earthquake hit the towns of Subiaco and Agosta, near Rome. This event was strongly felt by teachers and students of the local primary schools, and sprang the idea of a project focused on earthquakes. The aim of the project was to gain knowledge of what causes earthquakes and to familiarize with a phenomenon considered random and unforeseeable. Another goal was to train students and teachers to behave properly during the occurrence of an earthquake. The project was developed starting from the personal experience of the students, with theoretical lessons and practical experiments. The INGV researchers partecipated giving talks and producing educational materials. During the talks they showed that earthquakes are not phenomena so rare and random as thought by most people. They also showed the instruments used to register seismicity, and encouraged kids to produce their own earthquakes jumping close to a portable seismometer. In a second phase the students were divided in groups that investigated different topics of the seismic event, giving a talk to their school mates at the end of the research. The teachers used a cooperative learning approach to stimulate the ability of the kids to team up and work in cooperation. At the end of the project the kids published a book (When the Earth has a belly-ache) and a calendar, that tell about earthquakes using the kid's original drawings. The book

  4. Geological Mapping of the Ac-H-7 Kerwan Quadrangle of Ceres from NASA Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Williams, David; Mest, Scott; Kneissl, Thomas; Hendrik Pasckert, Jan; Hiesinger, Harald; Neesemann, Adrian; Schmedemann, Nico; Buczkowski, Debra; Scully, Jennifer; Marchi, Simone; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Schaefer, Michael; Hoffmann, Martin; Raymond, Carol; Russell, Christopher

    2016-04-01

    NASA's Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. Ac-H-7 Kerwan Quadrangle is located between 22°S-22°N and 72-144°E, and hosts several primary features and terrains: 1) The 280 km diameter impact basin Kerwan occur in the center and SE corner of the quad-rangle. Kerwan's rim is very degraded and there is no obvious ejecta field, indicating it is one of the oldest visible large impact basins on Ceres. Kerwan's interior is filled with a 'smooth terrain' that also extends beyond the rim to the east and west. This smooth terrain hosts a significantly lower impact crater density than most of the rest of Ceres' surface. Preliminary crater counts of the Kerwan smooth terrain derive cratering model ages of ~3 Ga using the lunar-derived chronology and ~600-800 Ma using the asteroid flux-derived chronology (H. Hiesinger, pers. comm., 2016). Our working interpretation is that the Kerwan impact occurred when Ceres' crust had a greater proportion of ice than at present, and that impact heating melted crustal material resulting in resurfacing of the Kerwan region by an icy impact melt, or possibly initiated cryovolcanic flows. There are hints of possible flow margins on the Kerwan floor in HAMO images, that have to be confirmed or denied by study of LAMO images. 2) Part of the 126 km diameter crater Dantu and its ejecta field covers the NE corner of the quadrangle. FC color data show both bright and dark materials in the ejecta field, suggesting ex-cavation of terrains of different compositions. Alternatively, because Dantu is one of two longitudes on Ceres where water vapor release has been detected [3], another interpretation is that the bright and/or dark deposits in the Dantu region could result from explosive cryovolcanism. Further study of LAMO data is required to investigate these hypotheses. 3) Other features include the

  5. The inhibitive effect of some quaternary ammonium salts towards corrosion of aluminium in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-M. K.; Al-Nadjm, A.; Fouda, A.-A. S.

    1998-10-01

    The inhibitive action of some quaternary ammonium salts towards the corrosion of aluminium in hydrochloric acid was tested by thermometric, mass loss and polarization measurements. Parallelism between the different methods was established. It is suggested that the tested compounds act as cathodic inhibitors. The inhibitors appear to function through adsorption, following the Temkin adsorption isotherm. The values of free energy of adsorption have been calculated and discussed. The inhibitor character of the additives depends upon the concentration as well as the composition of the inhibitor. Within the given homolegous series the contribution of the functional group to adsorption increases with the length of the chain. The aim of this article is to throw some light on the mechanism of inhibition of these bulky molecules on the corrosion of aluminium in hydrochloric acid. L'action inhibitrice de certains sels d'ammonium quaternaires vis-à-vis de la corrosion de l'aluminium dans l'acide chlorhydrique en solution a été testée par des mesures thermiques de perte de matière et de polarisation. Il est suggéré que les composés testés agissent comme des inhibiteurs cathodiques, fonctionnant par adsorption suivant l'isotherme de Temkin. Les énergies libres d'adsorption ont été calculées et discutées. Le caractère inhibiteur des additifs dépend aussi bien de leur concentration que de leur composition. Pour une série d'inhibiteurs homologues, la contribution à l'adsorption du groupe fonctionnel augmente avec la longueur de la chaîne. Le but de cet article est de mieux comprendre le mécanisme d'inhibition de ces grosses molécules sur la corrosion de l'aluminium dans l'acide chlorhydrique.

  6. Autophagy inhibitors.

    PubMed

    Pasquier, Benoit

    2016-03-01

    Autophagy is a lysosome-dependent mechanism of intracellular degradation. The cellular and molecular mechanisms underlying this process are highly complex and involve multiple proteins, including the kinases ULK1 and Vps34. The main function of autophagy is the maintenance of cell survival when modifications occur in the cellular environment. During the past decade, extensive studies have greatly improved our knowledge and autophagy has exploded as a research field. This process is now widely implicated in pathophysiological processes such as cancer, metabolic, and neurodegenerative disorders, making it an attractive target for drug discovery. In this review, we will summarize the different types of inhibitors that affect the autophagy machinery and provide some potential therapeutic perspectives. PMID:26658914

  7. Radon in Quaternary aquifers related to underlying bedrock geology

    SciTech Connect

    Morland, G.; Skarphagen, H.; Strand, T.; Furuhaug, L.; Banks, D.

    1998-01-01

    A survey of radon concentrations in water abstracted from 31 of Norway`s largest waterworks, using ground water from Quaternary fluvial and glaciofluvial sediments, returned values of between 0.4 Bq/L and 83 Bq/L, with a median of 23 Bq/L. Significantly higher Rn concentrations were present in ground water from Quaternary aquifers underlain by gneissic and granitic lithologies compared with those underlain by metasandstones, phyllites and mica schists. Compared to the recommended national action level of 500 Bq/L and concentrations of up to 19,900 Bq/L, which have been detected in boreholes in Norwegian granite aquifers, the concentrations measured in Quaternary aquifers are regarded as unproblematic for consumers, although a more detailed assessment may be required for workers spending a lot of time in wellhead areas.

  8. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  9. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  10. Ternary and quaternary antimonide devices for thermophotovoltaic applications

    SciTech Connect

    Hitchcock, C.W.; Gutmann, R.J.; Ehsani, H.; Bhat, I.B.; Wang, C.A.; Freeman, M.J.; Charache, G.W.

    1998-06-01

    Thermophotovoltaic (TPV) devices have been fabricated using epitaxial ternary and quaternary layers grown on GaSb substrates. GaInSb ternary devices were grown by metalorganic vapor phase epitaxy (MOVPE) with buffer layers to accommodate the lattice mismatch, and GaInAsSb lattice-matched quaternaries were grown by MOVPE and by liquid phase epitaxy (LPE). Improved devices are obtained when optical absorption occurs in the p-layer due to the longer minority carrier diffusion length. Thick emitter p/n devices are limited by surface recombination, with highest quantum efficiency and lowest dark current being achieved with epitaxially grown surface passivation layers on lattice-matched MOVPE quaternaries. Thin emitter/thick base n/p devices are very promising, but require improved shallow high-quality n-type ohmic contacts.

  11. Characterization of Quaternary and suspected Quaternary faults, Amargosa area, Nevada and California

    SciTech Connect

    Anderson, R.E.; Crone, A.J.; Machette, M.N.; Bradley, L.A.; Diehl, S.F.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies by S. Pezzopane (written commun., 1995) that resulted in the identification of 51 relevant and potentially relevant (see appendix A for definitions) individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. These structures were divided into local and regional categories by Pezzopane (1995); this report deals with selected regional structures. In this introduction, the authors outline the scope and strategy of the studies and the tectonic environment of the studied structures.

  12. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-01-01

    In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex

  13. Genotyping mutation in BmAChE3: A survey of laboratory and Mexican strains of Rhipicephalus (Boophilus) microplus that are resistant or susceptible to coumaphos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BmAChE3 mutations I48L, I54V, R86Q, V137I, I492M, and T548A were previously identified in the organophosphate (OP) acaricide-resistant San Román strain of Rhipicephalus (Boophilus) microplus. Recombinant BmAChE3 acetylcholinesterase containing the R86Q mutation was shown to exhibit nearly 20-fold r...

  14. Milestones and Lacunae in Quaternary Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bradley, R. S.

    2008-12-01

    It has been just over 40 years since Nick Shackleton submitted his PhD thesis on, 'The Measurement of Palaeotemperatures in the Quaternary Era'. Only a few years earlier, Libby was awarded the Nobel Prize for his work on radiocarbon dating. Looking back, we recognize that these were seminal events which provided essential insight and tools for generations of future researchers, opening the window to our interpretation of the earth's recent history. Research in paleoclimatology and paleoceanography has made enormous advances since these early steps were taken, and our understanding of how climates have changed, and why, has exploded. Hardly a week goes by without a new and interesting record or model simulation being published. Yet gaps remain, and new questions continue to emerge. New analytical techniques provide higher and higher resolution data sets, yet chronology remains a challenge in many records. This is especially important in deciphering times of abrupt change in earth history, when the synchronism of geographically dispersed events (or lack thereof) is of critical importance. The role of abrupt climate change in driving societal change is also controversial. Certainly there is evidence from many regions for abrupt, unprecedented and persistent climate anomalies for which we commonly have no explanation, and such episodes appear to have had significant effects of societies in the past. Deciphering the causes of such episodes, and how they affected societies has important implications for our understanding of the past and the future. Understanding the role of forcing and feedbacks is also essential. For example, many questions remain about the role of solar forcing. If small changes in solar irradiance have driven climate changes (as many have argued) large feedbacks must be involved. Modelling may help in resolving such questions. Many new proxies have been developed, though often our understanding of how these relate to climate is rudimentary at best. In

  15. A PKG inhibitor increases Ca(2+)-regulated exocytosis in guinea pig antral mucous cells: cAMP accumulation via PDE2A inhibition.

    PubMed

    Tanaka, Saori; Tanaka, Rina; Harada, Saeko; Kohda, Yuka; Matsumura, Hitoshi; Shimamoto, Chikao; Sawabe, Yukinori; Marunaka, Yoshinori; Kuwabara, Hiroko; Takahashi, Yuko; Ito, Shigenori; Nakahari, Takashi

    2013-05-01

    In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of an initial peak that declines rapidly (initial transient phase) followed by a second slower decline (late phase) lasting during ACh stimulation. The addition of 8-bromo-cGMP (8-BrcGMP) enhanced the initial phase, which was inhibited by the protein kinase G (PKG) inhibitor guanosine 3',5'-cyclic monophosphorothoiate, β-phenyl-1,N(2)-etheno-8-bromo, Rp-isomer, sodium salt (Rp-8-BrPETcGMPS, 100 nM). However, Rp-8-BrPETcGMPS produced a delayed, but transient, increase in the exocytotic frequency during the late phase that was abolished by a protein kinase A (PKA) inhibitor (PKI-amide), suggesting that Rp-8-BrPETcGMPS accumulates cAMP. The cGMP-dependent phosphodiesterase 2 (PDE2), which degrades cAMP, may exist in antral mucous cells. The PDE2 inhibitor BAY-60-7550 (250 nM) mimicked the effect of Rp-8-BrPETcGMPS on ACh-stimulated exocytosis. Measurement of the cGMP and cAMP contents in antral mucosae revealed that ACh stimulates the accumulation of cGMP and that BAY-60-7550 accumulates cAMP similarly to Rp-8-BrPETcGMPS during ACh stimulation. Analyses of Western blot and immunohistochemistry demonstrated that PDE2A exists in antral mucous cells. In conclusion, Rp-8-BrPETcGMPS accumulates cAMP by inhibiting PDE2 in ACh-stimulated antral mucous cells, leading to the delayed, but transient, increase in the frequency of Ca(2+)-regulated exocytosis. PDE2 may prevent antral mucous cells from excessive mucin secretion caused by the cAMP accumulation. PMID:23449671

  16. Ice Age Earth: Late Quaternary geology and climate

    SciTech Connect

    Dawson, A.G.

    1992-01-01

    This book is a concise and readable account of the most important geologic records of the late Quaternary. It provides a synopsis of the major environmental changes that took place from approximately 13,000 to 7,000 years ago, highlighting the complexity and rapidity of past climate changes and the environmental responses they produced. The text is well illustrated, though some figures are rough and need more explanation. Also needed is a critical appraisal of the geochronology which places the paleoenvironmental records into the temporal domain. However, as a whole the book reaches its objective of summarizing the most important scientific findings about the nature of the late Quaternary climate changes.

  17. Quaternary Structure Analyses of an Essential Oligomeric Enzyme.

    PubMed

    Soares da Costa, Tatiana P; Christensen, Janni B; Desbois, Sebastien; Gordon, Shane E; Gupta, Ruchi; Hogan, Campbell J; Nelson, Tao G; Downton, Matthew T; Gardhi, Chamodi K; Abbott, Belinda M; Wagner, John; Panjikar, Santosh; Perugini, Matthew A

    2015-01-01

    Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure. PMID:26412653

  18. Optimization of level spacing in quaternary optical communication systems

    NASA Astrophysics Data System (ADS)

    Rebola, Joao L.; Cartaxo, Adolfo V. T.

    2000-12-01

    In this work, the optimization of level spacing in terms of the extinction ratio variation in quaternary optical communication systems is investigated, for signal-dependent noise dominance. It is shown that the performance of optically preamplified quaternary communication systems can be optimized in terms of levels spacing using very simple formulas, also derived in this work. For the null extinction ratio, sensitivity improvements of about 6 dB can be achieved by proper location of signal levels in comparison with the sensitivity of equally spaced levels. At high extinction ratio, this improvement is not so significant.

  19. Chronic ethanol (EtOH) feeding increases muscarinic receptor (mAChR) density in esophagus without parallel change in dose response (D-R) to cholinergic agonists

    SciTech Connect

    Keshavarzian, A.; Gordon, J.H.; Urban, G.; Fields, J.Z. VA Hospital, Hines, IL )

    1991-03-11

    The mAChR/effector pathway for signal transduction is important in the physiology of esophagus and mAChR alterations are involved in EtOH induced changes in several organs. To see if EtOH-induced increases in lower esophageal sphincter pressure (LESP) are due to upregulation of mAChR, the authors evaluated mAChR binding and D-R curves for bethanechol (IV) induced increases in LESP, and compared these values to changes in LESP after acute and chronic EtOH. EtOH was given to cats acutely or chronically. The number of mAChR sites (Bmax) in esophagus was lowered by acute EtOH, withdrawal from chronic EtOH raised Bmax. Acute injection of EtOH to cats in withdrawal reversed this increase in mAChR density. These changes correlated with the earlier data on EtOH-induced changes in LESP. In contrast, the D-R curve for bethanechol shifted to the right. Thus, the withdrawal-associated increase in Bmax is more likely to be a compensatory response to deficits distal to the receptor recognition site than to proximal deficits and doesn't cause LESP hyperactivity. Also, receptor binding changes do not necessarily translate into physiological changes.

  20. 2-Benzoyl-6-benzylidenecyclohexanone analogs as potent dual inhibitors of acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Leong, Sze Wei; Abas, Faridah; Lam, Kok Wai; Shaari, Khozirah; Lajis, Nordin H

    2016-08-15

    In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6μM and 0.6μM, respectively. Further structure-activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes' inhibition. The Lineweaver-Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer. PMID:27328658

  1. Human serum albumin reduces the potency of acetylcholinesterase inhibitor based drugs for Alzheimer's disease.

    PubMed

    Islam, Mullah Muhaiminul; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-04-01

    Human serum albumin (HSA) induced modulation of acetylcholinesterase (AChE) inhibition activity of four well-known cholinergic inhibitors like tacrine hydrochloride (TAC), donepezil hydrochloride monohydrate (DON), (-) Huperzine A (HuPA), eserine (ESE) was monitored quantitatively by Ellman's method. Kinetic analysis of enzyme hydrolysis reaction revealed that while the mechanism of inhibition does not change significantly, the inhibition efficiency changes drastically in presence of HSA, particularly for DON and TAC. However, interestingly, no notable difference was observed in the cases of HuPA and/or ESE. For example, the IC50 value of AChE inhibition increases by almost 135% in presence of ∼250 μM HSA (IC50 = 159 ± 8 nM) while comparing with aqueous buffer solution of pH 8.0 (IC50 = 68 ± 4 nM) in DON. On the other hand, the change is almost insignificant (<10%) in case of HuPA under the similar condition. The experimentally observed difference in the extent of modulatory effect was correlated with the sequestration ability of HSA towards different drugs predicted from molecular docking calculations. The result in this study demonstrates the importance to consider the plasma protein binding tendency of a newly synthesized AD drug before claiming its potency over the existing one. Further, development of new and intelligent delivery medium that shields the administered drugs from serum adsorption may reduce the optimal drug dose requirement. PMID:26902639

  2. Potent acetylcholinesterase inhibitors: Synthesis, biological assay and docking study of nitro acridone derivatives.

    PubMed

    Parveen, Mehtab; Aslam, Afroz; Nami, Shahab A A; Malla, Ali Mohammed; Alam, Mahboob; Lee, Dong-Ung; Rehman, Sumbul; Silva, P S Pereira; Silva, M Ramos

    2016-08-01

    The reaction of o-halobenzoic acid with aniline derivatives and their subsequent cyclization reaction yielded the acridone derivatives. The series of nitro acridone derivatives were prepared by Ullmann condensation in presence of copper as catalyst and were characterized by FTIR, (1)H, (13)C NMR and mass spectra. The structure of 5-nitro-(2-phenyl amino) benzoic acid (4) was confirmed by X-ray crystallography and was found to crystallize in P21/c space group. The in vitro efficacy of the compounds for their acetylcholinesterase (AChE) and antimicrobial inhibitory activities have been evaluated against the standard drugs Ampicillin and Gentamicin against Gram positive and Gram negative bacteria. 1,7-Dinitroacridone was found to be the most potent AChE inhibitor (IC50=0.22μM). Moreover, the compounds have been screened for their antioxidant activity using the DPPH assay. Also, docking study results were found to be in good agreement with the results obtained through in vitro experiments. The docking study further predicted possible binding conformation. PMID:27295412

  3. Exploitation of HIV protease inhibitor Indinavir as a memory restorative agent in experimental dementia.

    PubMed

    Sharma, Bhupesh; Singh, Nirmal; Singh, Manjeet; Jaggi, Amteshwar Singh

    2008-06-01

    The present study was undertaken to investigate the beneficial effect of HIV protease inhibitor Indinavir on memory deficits associated with experimental dementia of Alzheimer disease's (AD) type. Dementia was induced in Swiss albino mice by administration of Celecoxib (100 mg kg(-1) orally, daily for 9 days) or Streptozotocin (3 mg kg(-1) administered intracerebroventricularly on 1st and 3rd day) and the cognitive behaviors of Swiss albino mice were assessed using Morris water maze test. Brain acetyl cholinesterase (AChE) activity was measured by Ell Mann's method. Brain thiobarbituric acid reactive species (TBARS) levels and reduced glutathione (GSH) levels were measured by Ohokawa's and Beutler's method respectively to assess total oxidative stress. Donepezil (0.1 mg kg(-1) i.p.) served as positive control in the present investigation. Celecoxib as well as Streptozotocin (STZ) produced a significant loss of learning and memory. Indinavir (100 and 200 mg kg(-1) orally) successfully attenuated Celecoxib as well as STZ induced cognitive deficits. Higher levels of brain AChE activity, TBARS and lower levels of GSH were observed in Celecoxib as well as STZ treated animals, which were significantly attenuated by Donepezil and Indinavir. Study highlights the potential of Indinavir in memory dysfunctions associated with dementia of AD. PMID:18343489

  4. Synthesis and characterization of potent bivalent amyloidosis inhibitors that bind prior to transthyretin tetramerization.

    PubMed

    Green, Nora S; Palaninathan, Satheesh K; Sacchettini, James C; Kelly, Jeffery W

    2003-11-01

    The misfolding of transthyretin (TTR), including rate-limiting tetramer dissociation and partial monomer denaturation, is sufficient for TTR misassembly into amyloid and other abnormal quaternary structures associated with senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. Monovalent small molecules that bind to one or both of the unoccupied thyroid hormone binding sites at the TTR quaternary structure interface stabilize the native state, raising the kinetic barrier for tetramer dissociation sufficiently that the rate of dissociation, and therefore amyloidosis, becomes slow. Bivalent amyloid inhibitors that bind to both binding sites simultaneously are reported herein. The candidate bivalent inhibitors are generally unable to bind to the native TTR tetramer and typically do not engage in monovalent binding owing to a strong inhibitor orientation preference. However, the TTR quaternary structure can assemble around several of the bivalent inhibitors if the inhibitor intercepts the protein before assembly occurs. Some of the wild-type TTR.bivalent inhibitor complexes prepared in this fashion retain a tetrameric structure when subjected to substantial denaturation stresses (8 M urea, 120 h). The best bivalent inhibitor reduced acid-mediated TTR (3.6 microM) amyloid fibril formation to 6% of that exhibited by TTR in the absence of inhibitor, a significant improvement over the approximately 30% observed for the best monovalent inhibitors (3.6 microM, 72 h). The apparent dissociation rate of the best bivalent inhibitor is effectively zero, consistent with the idea that TTR tetramer dissociation and inhibitor dissociation are linked-as a result of the inhibitor-templating tetramer assembly. X-ray cocrystal structures of two of the complexes demonstrate that the bivalent inhibitors simultaneously occupy both sites in TTR, consistent with the 1:1 binding stoichiometry derived from HPLC analysis. The purpose of this study was

  5. Geological Mapping of the Ac-H-14 Yalode Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Crown, David; Yingst, Aileen; Mest, Scott; Platz, Thomas; Sizemore, Hanna; Berman, Daniel; Williams, David; Roatsch, Thomas; Preusker, Frank; Nathues, Andreas; Hoffman, Martin; Schäfer, Michael; Raymond, Carol; Russell, Christopher

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres that includes production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-14 Yalode Quadrangle (21-66°S, 270-360°E). The current geologic map was produced using ArcGIS software based on HAMO images (140 m/pixel) for surface morphology and stratigraphic relationships, Survey (400 m/pixel) digital terrain models for topographic information, and Dawn Framing Camera (FC) color images as context for map unit identification. The map will be updated through analysis of LAMO images (35 m/pixel) that are just becoming available. The Yalode Quadrangle is dominated by the 260-km diameter impact basin Yalode (42.3°S, 293.6°E) and includes rugged and smooth terrains to the east. Preliminary geologic mapping defined two regional units (cratered terrain and smooth material), which dominate the quadrangle, as well as a series of impact crater material units. Mapped geologic features include crater rims, graben, ridges, troughs, scarp, lineaments, and impact crater chains. Geologic contacts are typically not distinct in Survey and HAMO images. Impact craters in Yalode Quadrangle display a range of preservation states. Degraded features, including Yalode basin and numerous smaller craters, exhibit subdued rims, lack discrete ejecta deposits, and have infilled interiors. More pristine features (including Mondamin, Besua, Lono and craters on the Yalode basin floor) have well-defined, quasi-circular forms with prominent rims and in some cases discernible ejecta. Some of these craters have bowl-shaped interiors, and others contain hills or mounds on their floors that are interpreted as central peaks. Yalode basin has a variably preserved rim, which is continuous and sharply defined to the north/northwest and is irregular or degraded

  6. Geological Mapping of the Ac-H-3 Dantu Quadrangle of Ceres from NASA's Dawn Mission.

    NASA Astrophysics Data System (ADS)

    Kneissl, Thomas; Schmedemann, Nico; Neesemann, Adrian; Williams, David A.; Crown, David A.; Mest, Scott C.; Buczkowski, Debra L.; Scully, Jennifer E. C.; Frigeri, Allessandro; Ruesch, Ottaviano; Hiesinger, Harald; Walter, Sebastian H. G.; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Kersten, Elke; Naß, Andrea; Nathues, Andreas; Platz, Thomas; Russell, Chistopher T.

    2016-04-01

    The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the geologic evolution of the Ac-H-3 Dantu Quadrangle. The current map is based on a Framing Camera (FC) clear-filter image mosaic from HAMO data (~140 m/px) as well as a digital terrain model (DTM) derived from imagery of the Survey phase [3]. Albedo variations were identified and mapped using a mosaic of photometrically corrected HAMO images provided by DLR. FC color images provided further context for map unit identification. LAMO images (35m/pixel), which have just become available at the time of writing, will be used to update the map to be presented as a poster. The quadrangle is located between 21-66°N and 90-180°E in a large-scale depression north of the impact basin Kerwan. The northern and southeastern parts of the quadrangle are characterized by cratered terrain while the south and southwest are dominated by the partially smooth ejecta blankets of craters Dantu and Gaue. East-west oriented pit/crater chains in the southern half of the quadrangle might be related to tectonic processes [4,5]. Dantu crater (d=~126 km) is a complex impact crater showing slump terraces and a partially smooth crater floor with concentric and radial fractures. Furthermore, Dantu shows a central pit structure with pitted terrain on its floor as well as several bright spots in the interior and exterior of the crater. High-resolution measurements of crater size-frequency distributions (CSFDs) superposed on Dantu indicate a formation/modification age of ~200 - 700 Ma. Most of the ejecta appear to be relatively bright and correspond to parts of the #2 high albedo region observed with the Hubble Space Telescope [6]. However, the southwestern portion of the ejecta blanket is

  7. Geological Mapping of the Ac-H-5 Fejokoo Quadrangle of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Hughson, Kynan; Russell, Christopher; Williams, David; Buczkowski, Debra; Mest, Scott; Scully, Jennifer; Kneissl, Thomas; Ruesch, Ottaviano; Frigeri, Alessandro; Combe, Jean-Philippe; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Park, Ryan; Marchi, Simone; Raymond, Carol

    2016-04-01

    NASA's Dawn spacecraft arrived at Ceres on March 6, 2015, and has been studying the dwarf planet through a series of successively lower orbits, obtaining morphological & topographical image, mineralogical, elemental abundance, and gravity data. Ceres is the largest object in the asteroid belt with a mean diameter of ~950 km. The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for the asteroid Vesta [1, 2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map, and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we present the LAMO-based geologic map of the Ac-H-5 Fejokoo quadrangle (21-66 °N and 270-360 °E) and discuss its geologic evolution. At the time of this writing LAMO images (35 m/pixel) are just becoming available. Thus, our geologic maps are based on HAMO images (~140 m/pixel) and Survey (~400 m/pixel) digital terrain models (for topographic information) [3, 4]. Dawn Framing Camera (FC) color images are also used to provide context for map unit identification. The maps to be presented as posters will be updated from analyses of LAMO images (~35 m/pixel). The Fejokoo quadrangle hosts six primary geologic features: (1) the centrally located, ~80 km diameter, distinctly hexagonal impact crater Fejokoo; (2) Victa crater with its large exterior dark lobate flow feature, and interior lobate and furrowed deposits; (3) Abellio crater, which exhibits a well formed ejecta blanket and has an arcuately textured infilled floor whose morphology is similar to those of homologously sized craters on some of the icy Saturnian satellites [5]; (4) Cozobi crater, whose floor is filled with an unusually bulbous and smooth deposit, thin sheeted multi-lobed flow-like features that are reminiscent of fluidized ejecta as seen on Mars are also observed to be emanating outwards from the N and S rims of this crater [6]; (5) the peculiar Oxo crater on the eastern

  8. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  9. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  10. 40 CFR 721.10479 - Quaternary ammonium compounds, tris(hydrogenated tallow alkyl)methyl, chlorides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, tris... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10479 Quaternary ammonium compounds... subject to reporting. (1) The chemical substance identified as quaternary ammonium compounds,...

  11. 40 CFR 721.10479 - Quaternary ammonium compounds, tris(hydrogenated tallow alkyl)methyl, chlorides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, tris... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10479 Quaternary ammonium compounds... subject to reporting. (1) The chemical substance identified as quaternary ammonium compounds,...

  12. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances § 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  13. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances § 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  14. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances § 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  15. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  16. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  17. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  18. Nicotinic acetylcholine receptors (nAChRs) at zebrafish red and white muscle show different properties during development.

    PubMed

    Ahmed, Kazi T; Ali, Declan W

    2016-08-01

    Nicotinic acetylcholine receptors (nAChRs) are highly expressed at the vertebrate neuromuscular junction (NMJ) where they are required for muscle activation. Understanding the factors that underlie NMJ development is critical for a full understanding of muscle function. In this study we performed whole cell and outside-out patch clamp recordings, and single-cell RT-qPCR from zebrafish red and white muscle to examine the properties of nAChRs during the first 5 days of development. In red fibers miniature endplate currents (mEPCs) exhibit single exponential time courses at 1.5 days postfertilization (dpf) and double exponential time courses from 2 dpf onwards. In white fibers, mEPCs decay relatively slowly, with a single exponential component at 1.5 dpf. By 2 and 3 dpf, mEPC kinetics speed up, and decay with a double exponential component, and by 4 dpf the exponential decay reverts back to a single component. Single channel recordings confirm the presence of two main conductance classes of nAChRs (∼45 pS and ∼65 pS) in red fibers with multiple time courses. Two main conductance classes are also present in white fibers (∼55 pS and ∼73 pS), but they exhibit shorter mean open times by 5 dpf compared with red muscle. RT-qPCR of mRNA for nicotinic receptor subunits supports a switch from γ to ε subunits in white fibers but not in red. Our findings provide a developmental profile of mEPC properties from red and white fibers in embryonic and larval zebrafish, and reveal previously unknown differences between the NMJs of these muscle fibers.© 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 916-936, 2016. PMID:26585318

  19. Topographic Characterization of Cu-Ni NPs @ a-C:H Films by AFM and Multifractal Analysis.

    PubMed

    Ţălu, Ştefan; Stach, Sebastian; Ghodselahi, Tayebeh; Ghaderi, Atefeh; Solaymani, Shahram; Boochani, Arash; Garczyk, Żaneta

    2015-04-30

    In the present work three-dimensional (3-D) surface topography of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with constant thickness of Cu and three thicknesses of Ni prepared by RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) system were investigated. The thin films of Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni deposited by radio frequency (RF)-sputtering and RF-PECVD systems, were characterized. To determine the mass thickness and atomic structure of the films, the Rutherford backscattering spectroscopy (RBS) spectra was applied. The absorption spectra were applied to study localized surface plasmon resonance (LSPR) peaks of Cu-Ni NPs (observed around 608 nm in visible spectra), which is widened and shifted to lower wavelengths as the thickness of Ni over layer increases, and their changes are also evaluated by the 3-D surface topography. These nanostructures were investigated over square areas of 1 μm × 1 μm using atomic force microscopy (AFM) and multifractal analysis. Topographic characterization of surface samples (in amplitude, spatial distribution, and pattern of surface characteristics) highlighted 3-D surfaces with multifractal features which can be quantitatively estimated by the multifractal measures. The 3-D surface topography Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni prepared by RF-PECVD system can be characterized using the multifractal geometry in correlation with the surface statistical parameters. PMID:25839675

  20. Aging of oxygen and hydrogen plasma discharge treated a-C:H and ta-C coatings

    NASA Astrophysics Data System (ADS)

    Bachmann, Svenja; Schulze, Marcus; Morasch, Jan; Hesse, Sabine; Hussein, Laith; Krell, Lisa; Schnagl, Johann; Stark, Robert W.; Narayan, Suman

    2016-05-01

    Surface modification with gas plasma is an efficient and easy way to improve the surface energy and the tribological behavior of diamond-like carbon (DLC) coatings, e.g., in biomedical implants or as protective coatings. However, the long-term performance of the plasma treated DLC coatings is not fully clear. We thus studied the long-term stability of two kinds of DLC coatings, namely (a) hydrogenated amorphous carbon (a-C:H) and (b) tetrahedral amorphous carbon (ta-C) treated at different radio frequency (RF) power and time of oxygen (O2) and hydrogen (H2) plasma. Their surface properties, e.g. surface wettability, structure and tribological behavior, were studied at regular intervals for a period of two months using contact angle goniometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), lateral force microscopy (LFM) and ball on disc apparatus. The surface energy of both the coatings decreased upon aging. The higher the RF power and time of treatment, the higher was the hydrophobicity upon aging. XPS analysis showed that the increase in hydrophobicity could be due to adsorption of unavoidable volatile organic components in the atmosphere. The H2 plasma treated ta-C was capable of rearranging its structural bonds upon aging. The nano-friction measurements by LFM showed that the coefficient of friction of plasma treated a-C:H and ta-C decreased upon aging. The results indicate that the surface properties of plasma treated a-C:H and ta-C are not stable on long-term and are influenced by the environmental conditions.

  1. A geometricla error in some Computer Programs based on the Aki-Christofferson-Husebye (ACH) Method of Teleseismic Tomography

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.; Pritchard, M.J.; Foulger, G.R.

    2000-01-01

    Some computer programs based on the Aki-Christofferson-Husebye (ACH) method of teleseismic tomography contain an error caused by identifying local grid directions with azimuths on the spherical Earth. This error, which is most severe in high latitudes, introduces systematic errors into computed ray paths and distorts inferred Earth models. It is best dealt with by explicity correcting for the difference between true and grid directions. Methods for computing these directions are presented in this article and are likely to be useful in many other kinds of regional geophysical studies that use Cartesian coordinates and flat-earth approximations.

  2. Improved resolution of single channel dwell times reveals mechanisms of binding, priming, and gating in muscle AChR.

    PubMed

    Mukhtasimova, Nuriya; daCosta, Corrie J B; Sine, Steven M

    2016-07-01

    The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist-receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate

  3. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity.

    PubMed

    Noh, Min-Young; Koh, Seong H; Kim, Sung-Min; Maurice, Tangui; Ku, Sae-Kwang; Kim, Seung H

    2013-11-01

    The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional

  4. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea.

    PubMed

    Roux, Isabelle; Wu, Jingjing Sherry; McIntosh, J Michael; Glowatzki, Elisabeth

    2016-08-01

    Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the "muscle-type" nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870-5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651-2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (-)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs. PMID:27098031

  5. [18F]ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor (α7-nAChR) with positron emission tomography (PET)

    PubMed Central

    Horti, Andrew G.; Gao, Yongjun; Kuwabara, Hiroto; Wang, Yuchuan; Abazyan, Sofya; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Sahibzada, Niaz; Holt, Daniel P.; Kellar, Kenneth J.; Pletnikov, Mikhail V.; Pomper, Martin G.; Wong, Dean F.; Dannals, Robert F.

    2014-01-01

    The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly due to insufficient specific binding. The goal of this study was to evaluate the potential of [18F]ASEM ([18F]JHU82132) as an α7-nAChR radioligand for PET. Methods Inhibition binding assay and receptor functional properties of ASEM were assessed in vitro. The brain regional distribution of [18F]ASEM in baseline and blockade were evaluated in DISC1 mice (dissection) and baboons (PET). Results ASEM is an antagonist for the α7-nAChR with high binding affinity (Ki = 0.3 nM). [18F]ASEM readily entered the baboon brain and specifically labeled α7-nAChR. The in vivo specific binding of [18F]ASEM in the brain regions enriched with α7-nAChRs was 80–90%. SSR180711, an α7-nAChR selective partial agonist, blocked [18F]ASEM binding in the baboon brain in a dose-dependent manner, suggesting that the binding of [18F]ASEM was mediated by α7-nAChRs and the radioligand was suitable for drug evaluation studies. In the baboon baseline studies, the brain regional volume of distribution (VT) values for [18F]ASEM were 23 (thalamus), 22 (insula), 18 (hippocampus) and 14 (cerebellum), whereas in the binding selectivity (blockade) scan, all regional VT values were reduced to less than 4. The range of regional binding potential (BPND) values in the baboon brain was from 3.9 to 6.6. In vivo cerebral binding of [18F]ASEM and α7-nAChR expression in mutant DISC1 mice, a rodent model of schizophrenia, was significantly lower than in control animals, which is in agreement with previous post-mortem human data. Conclusion [18F]ASEM holds promise as a radiotracer with suitable imaging properties for quantification of α7-nAChR in the human brain. PMID:24556591

  6. Quaternary Ammonium Disinfectant Issues Encountered in an Environmental Services Department.

    PubMed

    Boyce, John M; Sullivan, Linda; Booker, Arica; Baker, James

    2016-03-01

    We identified several factors affecting the use of quaternary ammonium-based (Quat) disinfectant in our facility. Microfiber wipers, cotton towels, and 1 of 2 types of disposable wipes soaked in a Quat disinfectant revealed significant binding of the disinfectant. Concentrations of Quat delivered by automated disinfectant dispensers varied widely. PMID:26821275

  7. Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters.

    PubMed

    Zeng, Xing-Ping; Cao, Zhong-Yan; Wang, Yu-Hui; Zhou, Feng; Zhou, Jian

    2016-06-22

    This Review summarizes the advances in the construction of all-carbon quaternary stereocenters via catalytic enantioselective desymmetrization of prochiral and meso-compounds, highlights the power and potential of this strategy in the total synthesis of natural products and biologically active compounds, and outlines the synthetic opportunities still available. PMID:27251100

  8. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    NASA Astrophysics Data System (ADS)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  9. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  10. Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter.

    PubMed

    Vila, Carlos; Amr, Fares Ibrahim; Blay, Gonzalo; Muñoz, M Carmen; Pedro, José R

    2016-05-20

    An efficient one-pot asymmetric synthesis of pyrazoles bearing a chiral quaternary stereocenter has been developed. Quinine-derived thiourea catalyzed the enantioselective addition of pyrazolones to isatin-derived ketimines, providing the corresponding acetylated pyrazoles after in situ treatment with Ac2 O/Et3 N. The corresponding pyrazoles were afforded in high yields and excellent enantioselectivities. PMID:27038062

  11. Ternary and Quaternary Composition Diagrams: An Overview of the Subject.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1983-01-01

    Reviews graphical methods for representing ternary and quaternary systems, focusing on use of triangular composition diagrams. Examines some of the relevant geometry of triangles in general, showing that right isosceles triangles possess some very advantageous features for representing ternary systems. (JN)

  12. Application of Analytic Geometry to Ternary and Quaternary Diagrams.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1986-01-01

    Advantages of representing ternary and quaternary composition diagrams by means of rectangular coordinates were pointed out in a previous paper (EJ 288 693). A further advantage of that approach is that analytic geometry, based on rectangular coordinates, is directly applicable as demonstrated by the examples presented. (JN)

  13. Impact of Quaternary Structure Dynamics on Allosteric Drug Discovery

    PubMed Central

    Jaffe, Eileen K.

    2013-01-01

    The morpheein model of allosteric regulation draws attention to proteins that can exist as an equilibrium of functionally distinct assemblies where: one subunit conformation assembles into one multimer; a different subunit conformation assembles into a different multimer; and the various multimers are in a dynamic equilibrium whose position can be modulated by ligands that bind to a multimer-specific ligand binding site. The case study of porphobilinogen synthase (PBGS) illustrates how such an equilibrium holds lessons for disease mechanisms, drug discovery, understanding drug side effects, and identifying proteins wherein drug discovery efforts might focus on quaternary structure dynamics. The morpheein model of allostery has been proposed as applicable for a wide assortment of disease-associated proteins (Selwood, T., Jaffe, E., (2012) Arch. Bioch. Biophys, 519:131–143). Herein we discuss quaternary structure dynamics aspects to drug discovery for the disease-associated putative morpheeins phenylalanine hydroxylase, HIV integrase, pyruvate kinase, and tumor necrosis factor α. Also highlighted is the quaternary structure equilibrium of transthyretin and successful drug discovery efforts focused on controlling its quaternary structure dynamics. PMID:23409765

  14. Biosorption of Au (III) and Cu (II) from aqueous solution by a non-living Cetraria islandica (L.) Ach.

    PubMed

    Ekinci Dogan, Canan; Turhan, Kadir; Akcin, Göksel; Aslan, Ali

    2006-01-01

    Biosorption of Au(III) and Cu(II) from dilute aqueous solutions was investigated by biomass of the non-living Cetraria islandica (L.) Ach. The removal and recovery of gold and copper were studied by applying batch technique. The experimental parameters such as the pH of the solution, contact time, the amount of Cetraria islandica (L.) Ach. (dried lichen), the concentration of metals on retention and eluents kind and amount have been investigated. Au(III) and Cu(II) were adsorbed on the dried lichen at pH 3 and pH 8, respectively. Quantitative retention (> or = 90%) was obtained within 60 minutes for metals. Maximum capacity of 1.0 g of dried lichen for biosorption of Au(III) and Cu(II) were found as 7.4 mg of Au(III) and 19.2 mg of Cu(II). It was seen that the adsorption equilibrium data conformed well to the Langmuir model and Freundlich equation for Au(III) and only Freundlich equation for Cu(II). The method proposed in this study was applied to spiked mineral water analysis and metals adsorbed on the lichens were quantitatively (> or = 90%) recovered from mineral water samples by using 0.5 mol L(-1) HCl. PMID:16836256

  15. Targeting the Nicotinic Acetylcholine Receptors (nAChRs) in Astrocytes as a Potential Therapeutic Target in Parkinson's Disease.

    PubMed

    Jurado-Coronel, Juan Camilo; Avila-Rodriguez, Marco; Capani, Francisco; Gonzalez, Janneth; Moran, Valentina Echeverria; Barreto, George E

    2016-01-01

    Parkinson's disease (PD) is a relatively common disorder of the Central Nervous System (CNS), whose etiology is characterized by a selective and progressive degeneration of dopaminergic neurons, and the presence of Lewy bodies in the pars compacta of the substantia nigra, and gaping dopamine depletion in the striatum. Patients with this disease suffer from tremors, slowness of movements, gait instability, and rigidity. These patients may also present functional disability, reduced quality of life, and rapid cognitive decline. It has been shown that nicotine exerts beneficial effects in patients with PD and in in-vitro and in-vivo models of this disease. Astrocytes are an important component in the immune response associated with PD, and that nicotine might be able to inhibit the inflammation-related apoptosis of these cells, being this a potential strategy for PD treatment. This action of nicotine could be due mainly to activation of α7 nicotinic acetylcholine receptors (α7-nAChRs) expressed in glial cells. However, nicotine administration can protect dopaminergic neurons against degeneration by inhibiting astrocytes activation in the substantia nigra pars compacta (SNpc) and therefore reduce inflammation. Owing to the toxicity and capacity of nicotine to induce addiction, analogues of this substance have been designed and tested in various experimental paradigms, and targeting α7-nAChRs expressed in glial cells may be a novel therapeutic strategy for PD treatment. PMID:26972289

  16. Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes.

    PubMed

    David, Reinhard; Ciuraszkiewicz, Anna; Simeone, Xenia; Orr-Urtreger, Avi; Papke, Roger L; McIntosh, J M; Huck, Sigismund; Scholze, Petra

    2010-03-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in ganglia of the autonomic nervous system. Here, we determined the subunit composition of hetero-pentameric nAChRs in the mouse superior cervical ganglion (SCG), the function of distinct receptors (obtained by deletions of nAChR subunit genes) and mechanisms at the level of nAChRs that might compensate for the loss of subunits. As shown by immunoprecipitation and Western blots, wild-type (WT) mice expressed: alpha 3 beta 4 (55%), alpha 3 beta 4 alpha 5 (24%) and alpha 3 beta 4 beta 2 (21%) nAChRs. nAChRs in beta 4 knockout (KO) mice were reduced to < 15% of controls and no longer contained the alpha 5 subunit. Compound action potentials, recorded from the postganglionic (internal carotid) nerve and induced by preganglionic nerve stimulation, did not differ between alpha 5 beta 4 KO and WT mice, suggesting that the reduced number of receptors in the KO mice did not impair transganglionic transmission. Deletions of alpha 5 or beta2 did not affect the overall number of receptors and we found no evidence that the two subunits substitute for each other. In addition, dual KOs allowed us to study the functional properties of distinct alpha 3 beta4 and alpha 3 beta 2 receptors that have previously only been investigated in heterologous expression systems. The two receptors strikingly differed in the decay of macroscopic currents, the efficacy of cytisine, and their responses to the alpha-conotoxins AuIB and MII. Our data, based on biochemical and functional experiments and several mouse KO models, clarify and significantly extend previous observations on the function of nAChRs in heterologous systems and the SCG. PMID:20377613

  17. Identification and Characterization of ML352: A Novel, Noncompetitive Inhibitor of the Presynaptic Choline Transporter

    PubMed Central

    2015-01-01

    The high-affinity choline transporter (CHT) is the rate-limiting determinant of acetylcholine (ACh) synthesis, yet the transporter remains a largely undeveloped target for the detection and manipulation of synaptic cholinergic signaling. To expand CHT pharmacology, we pursued a high-throughput screen for novel CHT-targeted small molecules based on the electrogenic properties of transporter-mediated choline transport. In this effort, we identified five novel, structural classes of CHT-specific inhibitors. Chemical diversification and functional analysis of one of these classes identified ML352 as a high-affinity (Ki = 92 nM) and selective CHT inhibitor. At concentrations that fully antagonized CHT in transfected cells and nerve terminal preparations, ML352 exhibited no inhibition of acetylcholinesterase (AChE) or cholineacetyltransferase (ChAT) and also lacked activity at dopamine, serotonin, and norepinephrine transporters, as well as many receptors and ion channels. ML352 exhibited noncompetitive choline uptake inhibition in intact cells and synaptosomes and reduced the apparent density of hemicholinium-3 (HC-3) binding sites in membrane assays, suggesting allosteric transporter interactions. Pharmacokinetic studies revealed limited in vitro metabolism and significant CNS penetration, with features predicting rapid clearance. ML352 represents a novel, potent, and specific tool for the manipulation of CHT, providing a possible platform for the development of cholinergic imaging and therapeutic agents. PMID:25560927

  18. Characterization of Quaternary and suspected Quaternary faults, regional studies, Nevada and California

    SciTech Connect

    Anderson, R.E.; Bucknam, R.C.; Crone, A.J.; Haller, K.M.; Machette, M.N.; Personius, S.F.; Barnhard, T.P.; Cecil, M.J.; Dart, R.L.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies that resulted in the identification of 51 relevant and potentially relevant individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. Geologic data used to characterize the regional faults and fault zones as relevant or potentially relevant seismic sources includes age and displacement information, maximum fault lengths, and minimum distances between the fault and the Yucca Mountain site. For many of the regional faults, no paleoseismic field studies have previously been conducted, and age and displacement data are sparse to nonexistent. In November 1994, the Branch of Earthquake and Landslide Hazards entered into two Memoranda of Agreement with the Yucca Mountain Project Branch to conduct field reconnaissance, analysis, and interpretation of six relevant and six potentially relevant regional faults. This report describes the results of study of those faults exclusive of those in the Pahrump-Stewart Valley-Ash Meadows-Amargosa Valley areas. We also include results of a cursory study of faults on the west flank of the Specter Range and in the northern part of the Last Chance Range. A four-phase strategy was implemented for the field study.

  19. Effects of neuromuscular blocking agents and acetylcholinesterase inhibitors on the response of pectoral fin muscle of the sculpin (Enophrys bison) to indirect stimulation.

    PubMed

    Gant, D B; Weber, L J; Smith, J R

    1984-10-01

    The neuromuscular junction of the buffalo sculpin (Enophrys bison) was characterized in situ by examining the effects of various neuromuscular blocking agents and acetylcholinesterase inhibitors (ACHE-I) on pectoral muscle response to indirect stimulation. The injection of either d-tubocurarine (350 micrograms/kg) or alpha-bungarotoxin (alpha-Butx) (1 mg/kg) resulted in a flaccid paralysis. The depolarizing agents, succinylcholine (11 micrograms/kg) and decamethonium (42 micrograms/kg), produced a spontaneous contraction. The administration of the ACHE-I, diisopropyl fluorophosphate (DFP), and eserine resulted in responses which were contrary to those expected based on similar experiments using mammalian skeletal muscle. Twitch potentiation did not occur and the ability to maintain a tetanic response was not abolished even after the administration of clearly lethal concentrations of ACHE-I. PMID:6473351

  20. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.

    PubMed

    Sudha, Govindarajan; Srinivasan, Narayanaswamy

    2016-09-01

    A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc. PMID:27177429

  1. Further proof of the existence of a non-neuronal cholinergic system in the human Achilles tendon: Presence of the AChRα7 receptor in tendon cells and cells in the peritendinous tissue.

    PubMed

    Forsgren, Sture; Alfredson, Håkan; Andersson, Gustav

    2015-11-01

    Human tendon cells have the capacity for acetylcholine (ACh) production. It is not known if the tendon cells also have the potential for ACh breakdown, nor if they show expression of the nicotinic acetylcholine receptor AChRα7 (α7nAChR). Therefore, tendon tissue specimens from patients with midportion Achilles tendinopathy/tendinosis and from normal midportion Achilles tendons were examined. Reaction for the degradative enzyme acetylcholinesterase (AChE) was found in some tenocytes in only a few tendinopathy tendons, and was never found in those of control tendons. Tenocytes displayed more regularly α7nAChR immunoreactivity. However, there was a marked heterogeneity in the degree of this reaction within and between the specimens. α7nAChR immunoreactivity was especially pronounced for tenocytes showing an oval/widened appearance. There was a tendency that the magnitude of α7nAChR immunoreactivity was higher in tendinopathy tendons as compared to control tendons. A stronger α7nAChR immunoreactivity than seen for tenocytes was observed for the cells in the peritendinous tissue. It is likely that the α7nAChR may be an important part of an auto-and paracrine loop of non-neuronal ACh that is released from the tendon cells. The effects may be related to proliferative and blood vessel regulatory functions as well as features related to collagen deposition. ACh can furthermore be of importance in leading to anti-inflammatory effects in the peritendinous tissue, a tissue nowadays considered to be of great relevance for the tendinopathy process. Overall, the findings show that tendon tissue, a tissue known to be devoid of cholinergic innervation, is a tissue in which there is a marked non-neuronal cholinergic system. PMID:25981114

  2. PACAP induces plasticity at autonomic synapses by nAChR-dependent NOS1 activation and AKAP-mediated PKA targeting.

    PubMed

    Jayakar, Selwyn S; Pugh, Phyllis C; Dale, Zack; Starr, Eric R; Cole, Samantha; Margiotta, Joseph F

    2014-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such

  3. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer's disease.

    PubMed

    Parsons, Chris G; Danysz, Wojciech; Dekundy, Andrzej; Pulte, Irena

    2013-10-01

    This review describes the preclinical mechanisms that may underlie the increased therapeutic benefit of combination therapy-with the N-methyl-D-aspartate receptor antagonist, memantine, and an acetylcholinesterase inhibitor (AChEI)-for the treatment of Alzheimer's disease (AD). Memantine, and the AChEIs target two different aspects of AD pathology. Both drug types have shown significant efficacy as monotherapies for the treatment of AD. Furthermore, clinical observations indicate that their complementary mechanisms offer superior benefit as combination therapy. Based on the available literature, the authors have considered the preclinical mechanisms that could underlie such a combined approach. Memantine addresses dysfunction in glutamatergic transmission, while the AChEIs serve to increase pathologically lowered levels of the neurotransmitter acetylcholine. In addition, preclinical studies have shown that memantine has neuroprotective effects, acting to prevent glutamatergic over-stimulation and the resulting neurotoxicity. Interrelations between the glutamatergic and cholinergic pathways in regions of the brain that control learning and memory mean that combination treatment has the potential for a complex influence on disease pathology. Moreover, studies in animal models have shown that the combined use of memantine and the AChEIs can produce greater improvements in measures of memory than either treatment alone. As an effective approach in the clinical setting, combination therapy with memantine and an AChEI has been a welcome advance for the treatment of patients with AD. Preclinical data have shown how these drugs act via two different, but interconnected, pathological pathways, and that their complementary activity may produce greater effects than either drug individually. PMID:23657927

  4. Amyloid-β peptide increases cell surface localization of α7 ACh receptor to protect neurons from amyloid β-induced damage.

    PubMed

    Jin, Yu; Tsuchiya, Ayako; Kanno, Takeshi; Nishizaki, Tomoyuki

    Amyloid-β peptide 1-42 (Aβ1-42) reduced PC-12 cell viability in a concentration (1-10 μM)- and treatment time (48-72 h)-dependent manner. Nicotine prevented Aβ1-42-induced PC-12 cell death, but conversely, the α7 ACh receptor antagonist α-bungarotoxin enhanced Aβ1-42-induced cell toxicity. Extracellularly applied Aβ1-42 significantly increased cell surface localization of α7 ACh receptor in PC-12 cells as compared with that for non-treated control cells. Cell surface localization of α7 ACh receptor in the brain of 5xFAD mouse, an animal model of Alzheimer's disease (AD), apparently increased in an age (1-12 months)-dependent manner in association with increased accumulation of Aβ1-42 in the plasma membrane component. Taken together, these results indicate that Aβ1-42 promotes translocation of α7 ACh receptor towards the cell surface and that α7 ACh receptor rescues neuronal cells from Aβ1-42-induced damage. PMID:26522221

  5. Acetylcholinesterase of Schistosoma mansoni--functional correlates. Contributed in honor of Professor Hans Neurath's 90th birthday.

    PubMed

    Arnon, R; Silman, I; Tarrab-Hazdai, R

    1999-12-01

    Acetylcholinesterase (AChE) is an enzyme broadly distributed in many species, including parasites. It occurs in multiple molecular forms that differ in their quaternary structure and mode of anchoring to the cell surface. This review summarizes biochemical and immunological investigations carried out in our laboratories on AChE of the helmint, Schistosoma mansoni. AChE appears in S. mansoni in two principal molecular forms, both globular, with sedimentation coefficients of approximately 6.5 and 8 S. On the basis of their substrate specificity and sensitivity to inhibitors, both are "true" acetylcholinesterases. Approximately half of the AChE activity of S. mansoni is located on the outer surface of the parasite, attached to the tegumental membrane via a covalently attached glycosylphosphatidylinositol anchor. The remainder is located within the parasite, mainly associated with muscle tissue. Whereas the internal enzyme is most likely involved in termination of neurotransmission at cholinergic synapses, the role of the surface enzyme remains to be established; there are, however, indications that it is involved in signal transduction. The two forms of AChE differ in their heparin-binding properties, only the internal 8 S form of the AChE being retained on a heparin column. The two forms differ also in their immunological specificity, since they are selectively recognized by different monoclonal antibodies. Polyclonal antibodies raised against S. mansoni AChE purified by affinity chromatography are specific for the parasite AChE, reacting with both molecular forms, but do not recognize AChE from other species. They interact with the surface-localized enzyme on the intact organism, and produce almost total complement-dependent killing of the parasite. S. mansoni AChE is thus demonstrated to be a functional protein, involved in multifaceted activities, which can serve as a suitable candidate for diagnostic purposes, vaccine development, and drug design. PMID:10631970

  6. Esterase detoxication of acetylcholinesterase inhibitors using human liver samples in vitro.

    PubMed

    Moser, Virginia C; Padilla, Stephanie

    2016-04-15

    Organophosphorus (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxication can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are considered factors underlying age-related sensitivity differences. We used an in vitro system to measure detoxication of AChE-inhibiting pesticides mediated via these esterases. Recombinant human AChE was used as a bioassay of inhibitor concentration following incubation with detoxifying tissue: liver plus Ca(+2) (to stimulate PON1s, measuring activity of both esterases) or EGTA (to inhibit PON1s, thereby measuring CaE activity). AChE inhibitory concentrations of aldicarb, chlorpyrifos oxon, malaoxon, methamidophos, oxamyl, paraoxon, and methylparaoxon were incubated with liver homogenates from adult male rat or one of 20 commercially provided human (11-83 years of age) liver samples. Detoxication was defined as the difference in inhibition produced by the pesticide alone and inhibition measured in combination with liver plus Ca(+2) or liver plus EGTA. Generally, rat liver produced more detoxication than did the human samples. There were large detoxication differences across human samples for some pesticides (especially malaoxon, chlorpyrifos oxon) but not for others (e.g., aldicarb, methamidophos); for the most part these differences did not correlate with age or sex. Chlorpyrifos oxon was fully detoxified only in the presence of Ca(+2) in both rat and human livers. Detoxication of paraoxon and methylparaoxon in rat liver was greater with Ca(+2), but humans showed less differentiation than rats between Ca(+2) and EGTA conditions. This suggests the importance of PON1 detoxication for these three OPs in the rat, but mostly only for chlorpyrifos oxon in human samples. Malaoxon was detoxified similarly with Ca(+2) or EGTA, and the differences across humans correlated with metabolism of p

  7. Mapping a buried Quaternary valley and pre-Quaternary faults through seismic methods in Copenhagen, Denmark.

    NASA Astrophysics Data System (ADS)

    Martinez, Kerim; Alfredo Mendoza, Jose; Henrik, Olsen

    2010-05-01

    Limited knowledge of the subsurface geology motivates the use of geophysical techniques before large engineering projects are conducted. These applications are normally restricted to satisfy the project aims, like mapping the near surface sediments, unconsolidated rocks and/or geological structures that may affect the construction locally. However, the applications can also contribute to the general knowledge of the regional geology around the location of interest. This report highlights the mapping of a buried Quaternary valley and identification of regional faults by a reflection and refraction seismic survey performed in Copenhagen. A 13.9 Km seismic survey was carried out at Copenhagen city along six crooked lines in order to determine the velocity fields in the near subsurface segment of a planned metro line and reflection patterns in deeper levels. The aim of the survey was to collect information needed for designing the underground metro. In particular it was sought to map the interface between Quaternary sedimentary layers of clay, till and sand, and the underlying layers of Palaeogene limestone found between 7 and 40 m below the ground surface. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 5 m spacing following a roll along technique to complete the survey spreads. The urban environment demanded extensive survey planning including traffic control, notifications to residents and a fluent coordination with municipal authorities in order to minimize disturbances and ensure data acquisition. The reflection data was processed under a conventional scheme and the refraction data was interpreted using a non-linear traveltime tomography algorithm. The reflection results indicate the presence of faults oriented NW-SE to NNW-SSE affecting the limestone sequences. The faults may be associated to the Sorgenfrei-Tornquist Zone at the transition between the Danish Basin and the Baltic

  8. Aches, pains and headache: an unusual combination of hypothyroidism, vitamin D deficiency, cervical radiculopathy and cortical vein sinus thrombosis.

    PubMed

    Ittyachen, Abraham M; Vijayan, Anuroopa; Kottam, Pratheep; Jose, Appu

    2015-01-01

    A young obese woman was admitted with vague aches and pains, including a headache. At first a provisional diagnosis of depression/myofacial pain syndrome was considered. Later, on evaluation, she was diagnosed to have hypothyroidism and vitamin D deficiency. One week into treatment, her neck pain and headache got worse. Examination of the fundus showed tortuous vessels, papilloedema and intraretinal haemorrhages. MR venogram of the brain was performed, which revealed the presence of thrombosis in the left transverse sinus, left sigmoid sinus and left internal jugular vein. This report is an unusual presentation of neuropsychiatric symptoms in a patient where overlapping diagnoses confound the clinical picture and test the clinical acumen of the physician. A careful history followed by a focused clinical examination and evaluation will help to delineate potential confounders. The report further highlights the importance of clinical medicine even in this era of 'investigative medicine'. PMID:26156835

  9. Association between HLA-DR4 haplotypes and tuberculin skin test response in the Aché population.

    PubMed

    Lindenau, J D; Guimarães, L S P; Hurtado, A M; Hill, K R; Tsuneto, L T; Salzano, F M; Petzl-Erler, M L; Hutz, M H

    2014-11-01

    The human leukocyte antigen (HLA) system has a major role in the regulation of the immune response as it is involved in the defense against pathogens. Evidence for association with tuberculosis (TB) is more consistent for class II than for class I HLA genes. TB is important among indigenous peoples in South America, not only because of its historical role in regional depopulation, but also because it is still widespread. The aim of this study was to evaluate the association of HLA class II alleles, haplotypes and genotypes and tuberculin skin test response (TST) in 76 individuals of the Aché population. Poisson Regression was employed to assess risk genotypes. DRB1*04, DQA1*03 and DQB1*03:02 were associated with TST response in this population. PMID:25329634

  10. Community ecology in a changing environment: Perspectives from the Quaternary

    NASA Astrophysics Data System (ADS)

    Jackson, Stephen T.; Blois, Jessica L.

    2015-04-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  11. Active tectonics of the Oran (Algeria) Quaternary plain

    NASA Astrophysics Data System (ADS)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  12. Community ecology in a changing environment: Perspectives from the Quaternary.

    PubMed

    Jackson, Stephen T; Blois, Jessica L

    2015-04-21

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit. PMID:25901314

  13. New quantum codes constructed from quaternary BCH codes

    NASA Astrophysics Data System (ADS)

    Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena

    2016-07-01

    In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.

  14. Synthesis and Antibacterial Activity of Novel Quaternary Ammonium Pyridoxine Derivatives.

    PubMed

    Shtyrlin, Nikita V; Sapozhnikov, Sergey V; Koshkin, Sergey A; Iksanova, Alfiya G; Sabirov, Arthur H; Kayumov, Airat R; Nureeva, Aliya A; Zeldi, Marina I; Shtyrlin, Yurii G

    2015-01-01

    A series of 26 quaternary ammonium pyridoxine derivatives were synthesized and their cytotoxicity and antibacterial activities against clinically relevant bacterial strains were tested in vitro. The antibacterial activity of mono-ammonium salts increased with the rise of the lipophilicity and compound 3,3,5-trimethyl-8,8-dioctyl-1,7,8,9-tetrahydro-[1,3]dioxino[5,4-d]pyrrolo[3,4-b]pyridin-8-ium chloride (2d) reaches a maximum among them. Bis-ammonium salt of pyridoxine 4 with two dimethyloctylamine groups also demonstrated high antibacterial activity despite lower lipophilicity. The results of MTT assay indicated that HEK 293 cells were more sensitive than HSF to quaternary ammonium pyridoxine derivatives. Compounds 2d and 4 did not induce the damage of the DNA and might be of interest in the development of new antimicrobials. PMID:25938426

  15. Canonical quaternary signed-digit arithmetic using optoelectronics symbolic substitution

    NASA Astrophysics Data System (ADS)

    Cherri, A. K.; Khachab, N. I.

    1996-07-01

    A higher radix based signed-digit number system, such as the quaternary signed-digit (QSD) number system, allows higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. An optoelectronics symbolic substitution scheme to handle the parallel quaternary signed-digit (QSD) arithmetic operations is proposed. A conversion algorithm is employed on the QSD numbers to simplify the addition process and reduce the number of the optical symbolic substitution rules. The optical addition operation of two QSD numbers is performed in one-step. An efficient shared content-addressable memory (SCAM)-based optical implementation of the QSD addition/subtraction operations employs a fixed number of minterms for any operand length. The canonical QSD number addition/subtraction scheme requires a significantly reduced number of minterms when compared with a similar previously reported technique.

  16. Community ecology in a changing environment: Perspectives from the Quaternary

    PubMed Central

    Jackson, Stephen T.; Blois, Jessica L.

    2015-01-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit. PMID:25901314

  17. In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model

    PubMed Central

    Freitas, K; Negus, SS; Carroll, FI; Damaj, MI

    2013-01-01

    Background and Purpose The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. Experimental Approach We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. Key Results We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Conclusions and Implications Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. PMID:23004024

  18. nAChRs Mediate Human Embryonic Stem Cell-Derived Endothelial Cells: Proliferation, Apoptosis, and Angiogenesis

    PubMed Central

    Velotta, Jeffrey B.; Huang, Mei; Li, Zongjin; Lee, Andrew; Robbins, Robert C.; Cooke, John P.; Wu, Joseph C.

    2009-01-01

    Background Many patients with ischemic heart disease have cardiovascular risk factors such as cigarette smoking. We tested the effect of nicotine (a key component of cigarette smoking) on the therapeutic effects of human embryonic stem cell-derived endothelial cells (hESC-ECs). Methods and Results To induce endothelial cell differentiation, undifferentiated hESCs (H9 line) underwent 4-day floating EB formation and 8-day outgrowth differentiation in EGM-2 media. After 12 days, CD31+ cells (13.7±2.5%) were sorted by FACScan and maintained in EGM-2 media for further differentiation. After isolation, these hESC-ECs expressed endothelial specific markers such as vWF (96.3±1.4%), CD31 (97.2±2.5%), and VE-cadherin (93.7±2.8%), form vascular-like channels, and incorporated DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). Afterward, 5×106 hESC-ECs treated for 24 hours with nicotine (10−8 M) or PBS (as control) were injected into the hearts of mice undergoing LAD ligation followed by administration for two weeks of vehicle or nicotine (100 µg/ml) in the drinking water. Surprisingly, bioluminescence imaging (BLI) showed significant improvement in the survival of transplanted hESC-ECs in the nicotine treated group at 6 weeks. Postmortem analysis confirmed increased presence of small capillaries in the infarcted zones. Finally, in vitro mechanistic analysis suggests activation of the MAPK and Akt pathways following activation of nicotinic acetylcholine receptors (nAChRs). Conclusions This study shows for the first time that short-term systemic administrations of low dose nicotine can improve the survival of transplanted hESC-ECs, and enhance their angiogenic effects in vivo. Furthermore, activation of nAChRs has anti-apoptotic, angiogenic, and proliferative effects through MAPK and Akt signaling pathways. PMID:19753305

  19. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia

    PubMed Central

    Tremblay, Marie-Ève; Lecours, Cynthia; Samson, Louis; Sánchez-Zafra, Víctor; Sierra, Amanda

    2015-01-01

    Under the guidance of Ramón y Cajal, a plethora of students flourished and began to apply his silver impregnation methods to study brain cells other than neurons: the neuroglia. In the first decades of the twentieth century, Nicolás Achúcarro was one of the first researchers to visualize the brain cells with phagocytic capacity that we know today as microglia. Later, his pupil Pío del Río-Hortega developed modifications of Achúcarro's methods and was able to specifically observe the fine morphological intricacies of microglia. These findings contradicted Cajal's own views on cells that he thought belonged to the same class as oligodendroglia (the so called “third element” of the nervous system), leading to a long-standing discussion. It was only in 1924 that Río-Hortega's observations prevailed worldwide, thus recognizing microglia as a unique cell type. This late landing in the Neuroscience arena still has repercussions in the twenty first century, as microglia remain one of the least understood cell populations of the healthy brain. For decades, microglia in normal, physiological conditions in the adult brain were considered to be merely “resting,” and their contribution as “activated” cells to the neuroinflammatory response in pathological conditions mostly detrimental. It was not until microglia were imaged in real time in the intact brain using two-photon in vivo imaging that the extreme motility of their fine processes was revealed. These findings led to a conceptual revolution in the field: “resting” microglia are constantly surveying the brain parenchyma in normal physiological conditions. Today, following Cajal's school of thought, structural and functional investigations of microglial morphology, dynamics, and relationships with neurons and other glial cells are experiencing a renaissance and we stand at the brink of discovering new roles for these unique immune cells in the healthy brain, an essential step to understand their

  20. Up-scaling the production of modified a-C:H coatings in the framework of plasma polymerization processes

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Bialuch, I.; Kleinschmidt, M.; Bewilogua, K.

    2009-10-01

    Hydrogenated amorphous carbon (a-C:H) films with silicon and oxygen additions, which exhibit mechanical, tribological and wetting properties adequate for protective coating performance, have been synthesized at room temperature in a small- (0.1 m 3) and a large-scale (1 m 3) coaters by low-pressure Plasma-Activated Chemical Vapour Deposition (PACVD). Hence, a-C:H:Si and a-C:H:Si:O coatings were produced in atmospheres of tetramethylsilane (TMS) and hexamethyldisiloxane (HMDSO), respectively, excited either by radiofrequency (RF - small scale) or by pulsed-DC power (large scale). Argon was employed as a carrier gas to stabilize the glow discharge. Several series of 2-5 μm thick coatings have been prepared at different mass deposition rates, Rm, by varying total gas flow, F, and input power, W. Arrhenius-type plots of Rm/ F vs. ( W/ F) -1 show linear behaviours for both plasma reactors, as expected for plasma polymerization processes at moderated energies. The calculation of apparent activation energy, Ea, in each series permitted us to define the regimes of energy-deficient and monomer-deficient PACVD processes as a function of the key parameter W/ F. Moreover, surface properties of the modified a-C:H coatings, such as contact angle, abrasive wear rate and hardness, appear also correlated to this parameter. This work shows an efficient methodology to scale up PACVD processes from small, lab-scale plasma machines to industrial plants by the unique evaluation of macroscopic parameters of deposition.

  1. Modified quaternary ammonium salts as potential antimalarial agents.

    PubMed

    Basilico, Nicoletta; Migotto, Mara; Ilboudo, Denise Patoinewende; Taramelli, Donatella; Stradi, Riccardo; Pini, Elena

    2015-08-01

    A series of new quaternary ammonium salts containing a polyconjugated moiety has been synthesized and characterized; their biological activity as potential antimalarial agents was investigated, as well. All compounds were screened against chloroquine resistant W-2 (CQ-R) and chloroquine sensitive, D-10 (CQ-S) strains of Plasmodium falciparum showing IC50 in the submicromolar range and low toxicity against human endothelial cells. PMID:26081764

  2. Quaternary fluvial archives: achievements of the Fluvial Archives Group

    NASA Astrophysics Data System (ADS)

    Bridgland, David; Cordier, Stephane; Herget, Juergen; Mather, Ann; Vandenberghe, Jef; Maddy, Darrel

    2013-04-01

    In their geomorphological and sedimentary records, rivers provide valuable archives of environments and environmental change, at local to global scales. In particular, fluvial sediments represent databanks of palaeoenvironment and palaeoclimatic (for example) of fossils (micro- and macro-), sedimentary and post-depositional features and buried soils. Well-dated sequences are of the most value, with dating provided by a wide range of methods, from radiometric (numerical) techniques to included fossils (biostratigraphy) and/or archaeological material. Thus Quaternary fluvial archives can also provide important data for studies of Quaternary biotic evolution and early human occupation. In addition, the physical disposition of fluvial sequences, be it as fragmented terrace remnants or as stacked basin-fills, provides valuable information about geomorphological and crustal evolution. Since rivers are long-term persistent features in the landscape, their sedimentary archives can represent important frameworks for regional Quaternary stratigraphy. Fluvial archives are distributed globally, being represented on all continents and across all climatic zones, with the exception of the frozen polar regions and the driest deserts. In 1999 the Fluvial Archives Group (FLAG) was established, as a working group of the Quaternary Research Association (UK), aimed at bringing together those interested in such archives. This has evolved into an informal organization that has held regular biennial combined conference and field-trip meetings, has co-sponsored other meetings and conference sessions, and has presided over two International Geoscience Programme (IGCP) projects: IGCP 449 (2000-2004) 'Global Correlation of Late Cenozoic Fluvial Deposits' and IGCP 518 (2005-2007) 'Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic'. Through these various activities a sequence of FLAG publications has appeared, including special issues in a variety of

  3. Analysis of Human Dopamine D3 Receptor Quaternary Structure*

    PubMed Central

    Marsango, Sara; Caltabiano, Gianluigi; Pou, Chantevy; Varela Liste, María José; Milligan, Graeme

    2015-01-01

    The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric β1-adrenoreceptor, μ-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a β1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a ”rhombic” tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures. PMID:25931118

  4. The impact of Quaternary Ice Ages on mammalian evolution.

    PubMed Central

    Lister, Adrian M

    2004-01-01

    The Quaternary was a time of extensive evolution among mammals. Most living species arose at this time, and many of them show adaptations to peculiarly Quaternary environments. The latter include continental northern steppe and tundra, and the formation of lakes and offshore islands. Although some species evolved fixed adaptations to specialist habitats, others developed flexible adaptations enabling them to inhabit broad niches and to survive major environmental changes. Adaptation to short-term (migratory and seasonal) habitat change probably played a part in pre-adapting mammal species to the longer-term cyclical changes of the Quaternary. Fossil evidence indicates that environmental changes of the order of thousands of years have been sufficient to produce subspeciation, but speciation has typically required one hundred thousand to a few hundred thousand years, although there are both shorter and longer exceptions. The persistence of taxa in environments imposing strong selective regimes may have been important in forcing major adaptive change. Individual Milankovitch cycles are not necessarily implicated in this process, but nor did they generally inhibit evolutionary change among mammals: many evolutionary divergences built over multiple climatic cycles. Deduction of speciation timing requires input from fossils and modern phenotypic and breeding data, to complement and constrain mitochondrial DNA coalescence dates which appear commonly to overestimate taxic divergence dates and durations of speciation. Migrational and evolutionary responses to climate change are not mutually exclusive but, on the contrary, may be synergistic. Finally, preliminary analysis suggests that faunal turnover, including an important element of speciation, was elevated in the Quaternary compared with the Neogene, at least in some biomes. Macroevolutionary species selection or sorting has apparently resulted in a modern mammalian fauna enriched with fast-reproducing and/or adaptively

  5. The use of α-conotoxin ImI to actualize the targeted delivery of paclitaxel micelles to α7 nAChR-overexpressing breast cancer.

    PubMed

    Mei, Dong; Lin, Zhiqiang; Fu, Jijun; He, Bing; Gao, Wei; Ma, Ling; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Wang, Jiancheng; Zhang, Xuan; Lu, Wanliang; Zhou, Demin; Zhang, Qiang

    2015-02-01

    Alpha7 nicotinic acetylcholine receptor (α7 nAChR), a ligand-gated ion channel, is increasingly emerging as a new tumor target owing to its expression specificity and significancy for cancer. In an attempt to increase the targeted drug delivery to the α7 nAChR-overexpressing tumors, herein, α-conotoxin ImI, a disulfide-rich toxin with highly affinity for α7 nAChR, was modified on the PEG-DSPE micelles (ImI-PMs) for the first time. The DLS, TEM and HPLC detections showed the spherical nanoparticle morphology about 20 nm with negative charge and high drug encapsulation. The ligand modification did not induce significant differences. The immunofluorescence assay confirmed the expression level of α7 nAChR in MCF-7 cells. In vitro and in vivo experiments demonstrated that the α7 nAChR-targeted nanomedicines could deliver more specifically and faster into α7 nAChR-overexpressing MCF-7 cells. Furthermore, fluo-3/AM fluorescence imaging technique indicated that the increased specificity was attributed to the ligand-receptor interaction, and the inducitivity for intracellular Ca(2+) transient by ImI was still remained after modification. Moreover, paclitaxel, a clinical frequently-used anti-tumor drug for breast cancer, was loaded in ImI-modified nanomedicines to evaluate the targeting efficacy. Besides of exhibiting greater cytotoxicity and inducing more cell apoptosis in vitro, paclitaxel-loaded ImI-PMs displayed stronger anti-tumor efficacy in MCF-7 tumor-bearing nu/nu mice. Finally, the active targeting system showed low systemic toxicity and myelosuppression evidenced by less changes in body weight, white blood cells, neutrophilic granulocyte and platelet counts. In conclusion, α7 nAChR is also a promising target for anti-tumor drug delivery and in this case, α-conotoxin ImI-modified nanocarrier is a potential delivery system for targeting α7 nAChR-overexpressing tumors. PMID:25542793

  6. Quaternary laser devices: history and state of the art

    NASA Astrophysics Data System (ADS)

    Eliseev, Petr G.

    1993-05-01

    Quaternary alloys of semiconductor compounds are suitable materials for wide-spectrum optoelectronic applications. The most important property of these efficient luminescent materials is the opportunity to fit the lattice parameter in some range to a given value corresponding to another crystalline material. This leads to the method to construct defect-free and stress-free heterojunctions, which was used for the preparation of a number of laser and LED devices. Quaternaries of InGaAsP, InGaSbAs, InSbAsP, PbSnTeSe, and other alloys were introduced into practical usage particularly in diode laser devices. The alloy InGaAsP appears to be one of the most widely used in optoelectronic applications at present as it covers ranges near 1.3 and 1.55 micrometers wavelengths of fiber-optic communication. For the spectral range near 2 micrometers the alloy InGaSbAs seems to be most attractive, and cw-operating diode lasers at room temperature were demonstrated at 2.0 - 2.4 micrometers . The alloy PbSnTeSe was used to obtain a longest wave of diode laser emission 46 micrometers . Quaternaries played an important role in the development of the semiconductor optoelectronics during the last two decades.

  7. Genetic ages for Quaternary topographic evolution: A new dating tool

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Burridge, Chris; Norris, Richard; Waters, Jon

    2008-01-01

    All eukaryote populations accumulate mutations in their mitochondrialDNA (mtDNA) over time, so reproductively isolated populationsbecome characterized by distinct mtDNA lineages. In addition,the degree of genetic differentiation among distinct populationscan be used to estimate time elapsed since their isolation.We have identified an informative system for calibrating themtDNA "clock" by genetically comparing freshwater galaxiid fishpopulations isolated in different river drainages. Calibrationusing a range of Quaternary geological events in southern NewZealand shows that the mtDNA divergence rate in galaxiid fishesis between 1% and 2%/100 k.y. up to 250 k.y., with the ratedecreasing with increasing age. The estimated divergence rateslows to around 4%/m.y. for the middle Quaternary, althoughcalibration is poor. A calibration curve has been fitted toall data: divergence (%) = -2.2e-9t + 2.5t + 2.2,where t is isolation age (in m.y.). This molecular clock haspotential as a dating tool for glacially related and activetectonic events that have caused river drainage changes in thelate Quaternary in the Southern Hemisphere, where galaxiidsare widespread. An application of this dating tool to an examplein northern South Island uses three different species of freshwater-limitedfish, and all three data sets imply formation of a drainagedivide at 320 ± 110 ka, at about the time of a majorglacial advance though the divide (oxygen isotope stage 8).

  8. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  9. Ecological impacts of the late Quaternary megaherbivore extinctions.

    PubMed

    Gill, Jacquelyn L

    2014-03-01

    As a result of the late Quaternary megafaunal extinctions (50,000-10,000 before present (BP)), most continents today are depauperate of megaherbivores. These extinctions were time-transgressive, size- and taxonomically selective, and were caused by climate change, human hunting, or both. The surviving megaherbivores often act as ecological keystones, which was likely true in the past. In spite of this and extensive research on the causes of the Late Quaternary Extinctions, the long-term ecological consequences of the loss of the Pleistocene megafauna remained unknown until recently, due to difficulties in linking changes in flora and fauna in paleorecords. The quantification of Sporormiella and other dung fungi have recently allowed for explicit tests of the ecological consequences of megafaunal extirpations in the fossil pollen record. In this paper, I review the impacts of the loss of keystone megaherbivores on vegetation in several paleorecords. A growing number of studies support the hypothesis that the loss of the Pleistocene megafauna resulted in cascading effects on plant community composition, vegetation structure and ecosystem function, including increased fire activity, novel communities and shifts in biomes. Holocene biota thus exist outside the broader evolutionary context of the Cenozoic, and the Late Quaternary Extinctions represent a regime shift for surviving plant and animal species. PMID:24649488

  10. U-Pb dating of a speleothem of Quaternary age

    NASA Astrophysics Data System (ADS)

    Richards, David A.; Bottrell, Simon H.; Cliff, Robert A.; Ströhle, Klaus; Rowe, Peter J.

    1998-12-01

    We demonstrate that U-Pb dating is a promising method for secondary carbonate materials of Quaternary age and older by obtaining a 206Pb∗/ 238U age for a speleothem with high U (>10 μg g -1) and very low Pb (<10 ng g -1) that is supported by an independent 230Th age. Thermal ionisation mass-spectrometry was used to determine the U and Pb isotopic ratios and concentrations for subsamples of a stalactite from Winnats Head Cave, Peak District, UK. We obtained 206Pb/ 204Pb ratios up to 50, and determined a 206Pb∗/ 238U age of 248 ± 10 ka, which is within error of the 207Pb∗/ 235U age of 333 ± 79 ka and a-spectrometric U-Th age of ˜255 ka. For samples of Tertiary and Quaternary age, the initial state of U-series disequilibrium is an important consideration and, as with most radiometric dating techniques, the mineral must have remained closed to U, Th, Pb, and all intermediate daughters. We show that dense calcite speleothems are ideal in this respect and that no loss of Rn has occurred. Unlike U-series disequilibrium methods, U-Pb dating has no upper limit and, hence, materials of Quaternary age older than 0.6 Ma can be analysed to investigate landscape development, paleoclimate, hominid evolution or hydrogeochemistry in carbonate terrains.

  11. Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata.

    PubMed

    Ishida, Seiji; Taylor, Derek J

    2007-02-01

    The effects of Quaternary glacial range partitioning on the diversification of Holarctic biota remain unclear. Glacial refugial lineages may form vicariant species, hybrid products, or merge after secondary contact. Here, we assess the effects of Quaternary glaciation on a Holarctic sexual zooplankter, Daphnia galeata, with apparently marked dispersal capacity and a widespread hybrid lineage in the New World. We collected samples of this species from 148 Holarctic lakes, analysed the nuclear and mitochondrial gene sequences, and tested predictions for hypotheses that account for the origin and spread of the New World D. galeata. We detected five nuclear phylogroups and four mitochondrial phylogroups, most of which were restricted to either the New World or the Old World. The oldest mitochondrial phylogroup was restricted to Japan. One major mitochondrial clade was distributed throughout the Holarctic, but only four haplotypes were shared among continents, and analysis of molecular variance indicated significant structure at the continental level. Haplotype sharing among continents could largely be attributed to anthropogenic introductions. Mismatch distributions, haplotype networks, phylogenetic trees, longitudinal haplotype diversity erosion and coalescence analyses are consistent with colonization from an Old World and a New World refugium. Our nuclear and mitochondrial DNA sequence evidence supports the hypothesis that the New World D. galeata underwent introgression with Daphnia dentifera, with dispersal being enhanced by glaciation. We conclude that Quaternary glaciation had a pronounced effect on the diversification of a Holarctic sexual zooplankter. PMID:17257114

  12. Quaternary diversification in European alpine plants: pattern and process.

    PubMed Central

    Kadereit, Joachim W; Griebeler, Eva Maria; Comes, Hans Peter

    2004-01-01

    Molecular clock approaches applied previously to European alpine plants suggest that Primula sect. Auricula, Gentiana sect. Ciminalis and Soldanella diversified at the beginning of the Quaternary or well within this period, whereas Globularia had already started diversifying in the (Late-)Tertiary. In the first part of this paper we present evidence that, in contrast to Globularia and Soldanella, the branching patterns of the molecular internal transcribed spacer phylogenies of both Primula and Gentiana are incompatible with a constant-rates birth-death model. In both of these last two taxa, speciation probably decreased through Quaternary times, perhaps because of some niche-filling process and/or a decrease in specific range size. In the second part, we apply nonlinear regression analyses to the lineage-through-time plots of P. sect. Auricula to test a range of capacity-dependent models of diversification, and the effect of Quaternary climatic oscillations on diversification and extinction. At least for one major clade of sect. Auricula there is firm evidence that both diversification and extinction are a function of temperature. Intriguingly, temperature appears to be correlated positively with extinction, but negatively with diversification. This suggests that diversification did not take place, as previously assumed, in geographical isolation in high-altitude interglacial refugia, but rather at low altitudes in geographically isolated glacial refugia. PMID:15101582

  13. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  14. Molecular docking studies of (X-methylphenyl)-5-nitro-6-amino-3-pyridinecarboxmide (X=2,3,4,5,6) as potential inhibitors for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Asath, R. Mohamed; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    An insilico and density functional theory (DFT) calculations were carried out for (X-methylphenyl)-5-nitro-6-amino-3-pyridinecarboxmide (X-MPNAPC),{X=2,3,4,5,6} to evaluate the potential inhibitors for Alzheimer's disease. The molecular structure of 2-MPNAPC, 3-MPNAPC, 4-MPNAPC, 5-MPNAPC and 6-MPNAPC molecules was optimized by the DFT/B3LYP method with cc-pVTZ basis set using the Gaussian 09 program. The inhibitory nature of the molecules against enzyme acetylcholinesterase (AChE) catalyzes was evaluated by molecular docking studies. The molecular docking parameters such as binding energy, inhibition constant and intermolecular energy were calculated by the AutoDock 4.0 software. The higher binding energy, intermolecular energy and lower inhibition constant values suggested that the 2-MPNAPC molecule has higher inhibitory nature against the AChE catalyzes, which confirm that the 2-MPNAPC molecule is a potential inhibitor for the Alzheimer's disease. The molecular reactivity was also studied by the frontier molecular orbitals analysis.

  15. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    PubMed Central

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  16. The Quaternary adakite distribution of Kyushu Island, Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Yoshikawa, M.; Takemura, K.

    2011-12-01

    The Quaternary volcanoes are widely distributed in Kyusu Island, Japan. Philippine Sea plate is subducting beneath Kyushu. Clear distribution of deep seismic foci is observed below the Quaternary volcanoes in southern area, but not in northern area. Notsu et al. (1990, JVGR) examined the contribution of subduction to the magma source, and emphasized that no slab derived material is observed in northern area from Sr isotopic compositions. Volcanic activity similar to the within-plate type volcanism has been also emphasized for the magma genesis of this area (e.g. Kita et al, 2001, JVGR). However, we found adakitic rocks, which show high Sr/Y ratios and low Y concentrations (e.g. Defant and Drummond, 1990, Nature) from some Quaternary volcanoes in north Kyushu on the basis of published data (Otha et al, 1990, GANKO; Itoh, 1990, GANKO). Therefore, the magma genesis is still controversial. We studied lateral variations of Sr, Nd and Pb isotopic and trace element compositions for Quaternary volcanics from Kyushu to investigate the magma genesis. From the results, a clear variation of Sr/Y ratio, decreasing from north to south, is observed along the volcanic front. Some of the Sr/Y ratio of the most northern part of Kyusu shows the value >100. The all analyzed Pb isotope compositions show a single liner trend in 208Pb/204Pb v.s. 206Pb/204Pb diagram. The liner trend of Pb isotope ratios can be explained by the binary mixing of the Shikoku Basin basalt and tereginious sediment which might be a constituent of the subducting slab. The similar binary mixing relationships are found in Sr and Nd isotopic systematics. The isotopic characteristics of the Quaternary magma in Kyushu can be explained by the magma generation process of island arc, in spite of the lack of deep seismic foci in northern area. It is considered that high and low Sr/Y ratios suggest the contributions of partial melt in the north and aqueous fluid derived from subducting slab in the south, respectively. If

  17. Quaternary tectonic faulting in the Eastern United States

    USGS Publications Warehouse

    Wheeler, R.L.

    2006-01-01

    Paleoseismological study of geologic features thought to result from Quaternary tectonic faulting can characterize the frequencies and sizes of large prehistoric and historical earthquakes, thereby improving the accuracy and precision of seismic-hazard assessments. Greater accuracy and precision can reduce the likelihood of both underprotection and unnecessary design and construction costs. Published studies proposed Quaternary tectonic faulting at 31 faults, folds, seismic zones, and fields of earthquake-induced liquefaction phenomena in the Appalachian Mountains and Coastal Plain. Of the 31 features, seven are of known origin. Four of the seven have nontectonic origins and the other three features are liquefaction fields caused by moderate to large historical and Holocene earthquakes in coastal South Carolina, including Charleston; the Central Virginia Seismic Zone; and the Newbury, Massachusetts, area. However, the causal faults of the three liquefaction fields remain unclear. Charleston has the highest hazard because of large Holocene earthquakes in that area, but the hazard is highly uncertain because the earthquakes are uncertainly located. Of the 31 features, the remaining 24 are of uncertain origin. They require additional work before they can be clearly attributed either to Quaternary tectonic faulting or to nontectonic causes. Of these 24, 14 features, most of them faults, have little or no published geologic evidence of Quaternary tectonic faulting that could indicate the likely occurrence of earthquakes larger than those observed historically. Three more features of the 24 were suggested to have had Quaternary tectonic faulting, but paleoseismological and other studies of them found no evidence of large prehistoric earthquakes. The final seven features of uncertain origin require further examination because all seven are in or near urban areas. They are the Moodus Seismic Zone (Hartford, Connecticut), Dobbs Ferry fault zone and Mosholu fault (New York

  18. Neuraminidase inhibitory activities of quaternary isoquinoline alkaloids from Corydalis turtschaninovii rhizome.

    PubMed

    Kim, Jang Hoon; Ryu, Young Bae; Lee, Woo Song; Kim, Young Ho

    2014-11-01

    Clostridium perfringens is a Gram-positive spore-forming bacterium that causes food poisoning. The neuraminidase (NA) protein of C. perfringens plays a pivotal role in bacterial proliferation and is considered a novel antibacterial drug target. Based on screens for novel NA inhibitors, a 95% EtOH extract of Corydalis turtschaninovii rhizome showed NA inhibitory activity (68% at 30 μg/ml), which resulted in the isolation of 10 isoquinoline alkaloids; namely, palmatine (1), berberine (2), coptisine (3), pseudodehydrocorydaline (4), jatrorrhizine (5), dehydrocorybulbine (6), pseudocoptisine (7), glaucine (8), corydaline (9) and tetrahydrocoptisine (10). Interestingly, seven quaternary isoquinoline alkaloids 1-7 (IC50 = 12.8 ± 1.5 to 65.2 ± 4.5 μM) showed stronger NA inhibitory activity than the tertiary alkaloids 8-10. In addition, highly active compounds 1 and 2 showed reversible non-competitive behavior based on a kinetic study. Molecular docking simulations using the Autodock 4.2 software increased our understanding of receptor-ligand binding of these compounds. In addition, we demonstrated that compounds 1 and 2 suppressed bacterial growth. PMID:25277281

  19. Quaternary ammonium compounds as water channel blockers. Specificity, potency, and site of action.

    PubMed

    Detmers, Frank J M; de Groot, Bert L; Müller, E Matthias; Hinton, Andrew; Konings, Irene B M; Sze, Mozes; Flitsch, Sabine L; Grubmüller, Helmut; Deen, Peter M T

    2006-05-19

    Excessive water uptake through Aquaporins (AQP) can be life-threatening and reversible AQP inhibitors are needed. Here, we determined the specificity, potency, and binding site of tetraethylammonium (TEA) to block Aquaporin water permeability. Using oocytes, externally applied TEA blocked AQP1/AQP2/AQP4 with IC50 values of 1.4, 6.2, and 9.8 microM, respectively. Related tetraammonium compounds yielded some (propyl) or no (methyl, butyl, or pentyl) inhibition. TEA inhibition was lost upon a Tyr to Phe amino acid switch in the external water pore of AQP1/AQP2/AQP4, whereas the water permeability of AQP3 and AQP5, which lack a corresponding Tyr, was not blocked by TEA. Consistent with experimental data, multi-nanosecond molecular dynamics simulations showed one stable binding site for TEA, but not tetramethyl (TMA), in AQP1, resulting in a nearly 50% water permeability inhibition, which was reduced in AQP1-Y186F due to effects on the TEA inhibitory binding region. Moreover, in the simulation TEA interacted with charged residues in the C (Asp128) and E (Asp185) loop, and the A(Tyr37-Asn42-Thr44) loop of the neighboring monomer, but not directly with Tyr186. The loss of TEA inhibition in oocytes expressing properly folded AQP1-N42A or -T44A is in line with the computationally predicted binding mode. Our data reveal that the molecular interaction of TEA with AQP1 differs and is about 1000-fold more effective on AQPs than on potassium channels. Moreover, the observed experimental and simulated similarities open the way for rational design and virtual screening for AQP-specific inhibitors, with quaternary ammonium compounds in general, and TEA in particular as a lead compound. PMID:16551622

  20. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type

  1. Polarization-encoded all-optical quaternary universal inverter and design of multivalued flip-flop

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2010-03-01

    Quaternary inverters are the fundamental building blocks of multivalued flip-flops (MVFFs). A novel all-optical quaternary universal inverter circuit with the help of a semiconductor optical amplifier-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization states of light. A terahertz optical asymmetric multiplexer-based gate plays an important role here. Numerical simulation results confirming the described method are given. An all-optical circuit for a MVFF (quaternary) with the help of our proposed quaternary universal inverter is also designed, and simulation results are presented.

  2. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  3. Sharing the Vision, Leading the Way: Continuing Educators in the New Millennium. ACHE Proceedings (62nd, Myrtle Beach, South Carolina, October 14-17, 2000).

    ERIC Educational Resources Information Center

    Barrineau, Irene T., Ed.

    This document presents the proceedings of the 2000 annual meeting of the Association for Continuing Higher Education (ACHE). Part 1 contains the text of the presidential address, "Building Solid Communities within Higher Education" (Nancy Thomason), as well as summaries of the following addresses: "Riding the Rapids of Change: Survival Tactics for…

  4. Electrical and Optical Properties of Si-Incorporated a-C:H Films via the Radio Frequency Plasma-Enhanced Chemical Vapor Deposition Method.

    PubMed

    Kim, In Jun; Choi, Won Seok; Hong, Byungyou

    2016-05-01

    The optical and electrical properties of silicon-incorporated hydrogenated amorphous carbon (a-C:H:Si) films deposited via the radio frequency (RF) plasma-enhanced chemical vapor deposition (PECVD) method using a mixture of CH4, H2, and SiH4 were observed. The silane gas whose ranged from 0 to 25 vol.% [SiH4/(SiH4 + CH4) was fed into the reactor while the other deposition parameters were kept constant. The basic properties of these films were investigated via Raman spectroscopy, UV-visible spectrometry, I-V measurement, and surface profiling. The experiment results showed that the film thickness increased from 300 nm to 800 nm for the same deposition time as the silane gas increased. The Raman spectrum obtained from the silicon-incorporated a-C:H films suggested that the film property changed from graphitic-like to more diamond-like. As the silane gas increased, the optical gap, E04, slightly increased from 1.98 eV to 2.62 eV. It was shown that the Si atoms incorporated into the a-C:H films reduced the size of the sp2 clusters. As for the I-V characteristics, the Si-incorporated a-C:H films had a lower leakage current than the a-C:H films without Si. PMID:27483937

  5. Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505†

    PubMed Central

    Riedlinger, Julia; Schrey, Silvia D.; Tarkka, Mika T.; Hampp, Rüdiger; Kapur, Manmohan; Fiedler, Hans-Peter

    2006-01-01

    The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigated. Auxofuran and its synthetic analogue 7-dehydroxy-auxofuran were most effective at a concentration of 15 μM, and application of these compounds led to increased lipid metabolism-related gene expression. Cocultivation of strain AcH 505 and A. muscaria stimulated auxofuran production by the streptomycete. The antifungal substances produced by strain AcH 505 were identified as the antibiotics WS-5995 B and C. WS-5995 B completely blocked mycelial growth at a concentration of 60 μM and caused a cell stress-related gene expression response in A. muscaria. Characterization of these compounds provides the foundation for molecular analysis of the fungus-bacterium interaction in the ectomycorrhizal symbiosis between fly agaric and spruce. PMID:16672502

  6. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505.

    PubMed

    Riedlinger, Julia; Schrey, Silvia D; Tarkka, Mika T; Hampp, Rüdiger; Kapur, Manmohan; Fiedler, Hans-Peter

    2006-05-01

    The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigated. Auxofuran and its synthetic analogue 7-dehydroxy-auxofuran were most effective at a concentration of 15 microM, and application of these compounds led to increased lipid metabolism-related gene expression. Cocultivation of strain AcH 505 and A. muscaria stimulated auxofuran production by the streptomycete. The antifungal substances produced by strain AcH 505 were identified as the antibiotics WS-5995 B and C. WS-5995 B completely blocked mycelial growth at a concentration of 60 microM and caused a cell stress-related gene expression response in A. muscaria. Characterization of these compounds provides the foundation for molecular analysis of the fungus-bacterium interaction in the ectomycorrhizal symbiosis between fly agaric and spruce. PMID:16672502