Sample records for quaternary alluvial deposits

  1. Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India

    Microsoft Academic Search

    Rachna Raj

    2008-01-01

    This communication reports the occurrence of an ash layer intercalated within the late Quaternary alluvial succession of the\\u000a Madhumati River, a tributary of the lower Narmada River. Petrographic, morphological and chemical details of glass shards\\u000a and pumice fragments have formed the basis of this study. The ash has been correlated with the Youngest Toba Tuff. The finding\\u000a of ash layer

  2. Evolution of a coastal alluvial deposit in response to the last Quaternary marine transgression, Bahía Blanca estuary, Argentina

    NASA Astrophysics Data System (ADS)

    Giagante, Darío Andrés; Aliotta, Salvador; Ginsberg, Silvia Susana; Vecchi, Laura Gabriela; Spagnuolo, Jorge Osvaldo

    2011-05-01

    The purpose of this research is to analyze the seismostratigraphic and paleoenvironmental features of an ancient fluvial deposit characterized by the presence of paleochannels and sedimentary structures in Bahía Blanca estuary, Argentina. To this end, high-resolution seismic methods were used. Paleochannels exhibiting v-shaped cuts were found at different topographic positions at the base of this deposit. It was observed that channel silting is indicative of the relative change of river base level and the consequent migration of fluvial tributaries. This alluvial deposit is composed of low compacted fine sand and its middle-upper facies is characterized by the presence of horizontal and discontinuous wavy reflectors. The upper boundary of this deposit is an erosive discontinuity resulting from Holocene sea-level rise during which the mouth of old fluvial courses underwent changes. The deposit was subsequently buried by sandy and clayey silt sediments. The paleodrainage at subbottom indicates that this deposit is associated with an ancient river mouth. Based on the seismostratigraphic and lithological characteristics and the paleochannel structures found in the study area, it can be concluded that the deposit analyzed is an alluvial sequence formed in the period from the Middle-Late Pleistocene to Holocene marine transgression.

  3. In situ crystal chemical study of solid diamond inclusions from Quaternary alluvial deposit in the Siberian craton

    NASA Astrophysics Data System (ADS)

    Dera, P. K.; Manghnani, M. H.; Hushur, A.; Sobolev, N. V.; Logvinova, A. M.; Newville, M.; Lanzirotti, A.

    2013-12-01

    Kimberlites belong to rare rock type available only within the Earth's cratonic areas and have been a subject of detailed studies because of the great depth of their origin in the mantle. Kimberlitic diamonds often contain pristine inclusions derived from significant depths with different histories of their origins. Many of kimberlitic diamonds were formed in ultramafic (peridotitic) and mafic (eclogitic) environments of the upper mantle. Thus far only a handful of comprehensive in situ studies including single-crystal X-ray diffraction characterization of pristine diamond solid inclusions have been reported (e.g. Kunz et al. 2001, Nestola et al. 2011). In this study five single-crystal solid inclusions from diamonds found in the Quaternary alluvial deposit in NW of the Siberian craton have been investigated using a combination of in situ single-crystal X-ray diffraction, Raman spectroscopy, synchrotron X-ray microfluorescence and X-ray Absorption Near Edge Spectroscopy (XANES). The grains were identified to be a suite of major upper mantle minerals including olivine, enstatite orthopyroxene (opx), C2/c omphacite clinopyroxene (cpx) and majoritic garnet (two grains), indicating eclogitic origin. All five inclusions are chemically homogeneous, do not show compositional zoning, and exhibit very similar major element chemistry, with significant amounts of Mn2+, Ni2+ and Cr3+ incorporated into the crystal structures, suggesting common geologic origin. All samples were studied in situ, while still embedded in the diamond crystals. High quality single-crystal X-ray diffraction data was collected at the Advanced Photon Source, Argonne National Laboratory to reveal details of the crystal structures and provide crystal chemical information. Some of the structural characteristics of the solid inclusions were found to be fairly uncommon, e.g. the orthoenstatite exhibits an unusually high Ca2+ content (Carlson et al. 1988), and omphacite occurs as the less common C2/c polymorph (Banno, 1970), both of which are considered signatures of eclogitic high-temperature facies. Fe Ka-edge XANES was used to investigate the oxidation state of iron in the solid inclusions. All of the inclusions show predominantly Fe2+, indicating reducing conditions of formation. The combined results of our spectroscopic and diffraction experiments will be interpreted in the context of the conditions and mechanism of formation (syngenesis vs. protogenesis) and possible retrograde transformation the inclusions may have experienced when transported to the surface. References Carlson, W.D. J.S. Swinnea, D.E. Miser (1988) 'Stability of orthoenstatite at high temperature and low pressure' Amer. Mineral. 73: 1255-1263. Banno, S. (1970) 'Classification of eclogites in terms of physical condition of their origin' Phys. Earth. Planet. Interiors 3: 405-421. Kunz, M., P. Gillet, et al. (2002). "Combined in situ X-ray diffraction and Raman spectroscopy on majoritic garnet inclusions in diamonds." Earth and Planet. Sci. Lett. 198: 485-493. Nestola, F., P. Nimis, et al. (2011). "First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth's mantle." Earth and Planet. Sci. Lett. 305: 249-255.

  4. SEDIMENTOLOGY AND GEOMORPHOLOGY OF QUATERNARY ALLUVIAL FANS WITH IMPLICATIONS TO GROWTH STRATA, LOST RIVER RANGE,

    E-print Network

    Lawrence, Rick L.

    SEDIMENTOLOGY AND GEOMORPHOLOGY OF QUATERNARY ALLUVIAL FANS WITH IMPLICATIONS TO GROWTH STRATA......................................................................................14 5. UPPER CEDAR CREEK ALLUVIAL FAN.............................................. 19 Surface 6. JONES CREEK ALLUVIAL FAN......................................................... 67 Surface

  5. Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, southeastern Utah

    USGS Publications Warehouse

    Reheis, M.C.; Reynolds, R.L.; Goldstein, H.; Roberts, H.M.; Yount, J.C.; Axford, Y.; Cummings, L.S.; Shearin, N.

    2005-01-01

    In upland areas of Canyonlands National Park, Utah, thin deposits and paleosols show late Quaternary episodes of eolian sedimentation, pedogenesis, and climate change. Interpretation of the stratigraphy and optically stimulated luminescence ages of eolian and nearby alluvial deposits, their pollen, and intercalated paleosols yields the following history: (1) Eolian deposition at ca. 46 ka, followed by several episodes of alluviation from some time before ca. 40 ka until after 16 ka (calibrated). (2) Eolian deposition from ca. 17 ka to 12 ka, interrupted by periods of pedogenesis, coinciding with late Pleistocene alluviation as local climate became warmer and wetter. (3) A wetter period from 12 to 8.5 ka corresponding to the peak of summer monsoon influence, during which soils formed relatively quickly by infiltration of eolian silt and clay, and trees and grasses were more abundant. (4) A drier period between ca. 8.5 and 6 ka during which sheetwash deposits accumulated and more desertlike vegetation was dominant; some dunes were reactivated at ca. 8 ka. (5) Episodic eolian and fluvial deposition during a wetter, cooler period that began at ca. 6 ka and ended by ca. 3-2 ka, followed by a shift to drier modern conditions; localized mobilization of dune sand has persisted to the present. These interpretations are similar to those of studies at the Chaco dune field, New Mexico, and the Tusayan dune field, Arizona, and are consistent with paleoclimate interpretations of pollen and packrat middens in the region. A period of rapid deposition and infiltration of eolian dust derived from distant igneous source terranes occurred between ca. 12 and 8 ka. Before ca. 17 ka, and apparently back to at least 45 ka, paleosols contain little or no such infiltrated dust. After ca. 8 ka, either the supply of dust was reduced or the more arid climate inhibited translocation of dust into the soils. ?? 2005 Geological Society of America.

  6. Late Quaternary Alluvial Fans of Southern Baja California, Mexico: Relation to Eastern Pacific Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Antinao, J.; McDonald, E.

    2009-12-01

    In the arid, non-glaciated regions of the Southwestern USA and Northwestern Mexico, aggradation in alluvial fan systems has been traditionally linked to cold and humid periods (e.g., Last Glacial Maximum) or to the transition to warm periods (e.g., the Pleistocene-Holocene transition, PHT). However, major intervals of sediment transport and aggradation have also occurred during climatically warm periods in these regions. These periods have also been identified as portraying enhanced humidity or “monsoonal’ conditions. Investigations on the weather systems able to perform geomorphic work during predominantly warm periods, i.e. the North American Monsoon (NAM) and Eastern Pacific (EP) Tropical Cyclones (TCs), have concentrated mainly in the USA. To understand the relative contribution of these systems to sediment transport over millennial timescales, we have mapped and characterized preliminarily the alluvial fans in four different areas of the Southern Baja California peninsula, Mexico. This region is dominated by EPTC precipitation, which in turn is driving the sediment transport along alluvial channels. Detailed geomorphologic mapping shows that a distinct Late Quaternary chronostratigraphy of alluvial fan units can be developed using geochronological and pedological tools. Specifically, a soil chronosequence can be compared to sequences in the SW USA, allowing a correlation to Late Pleistocene - Holocene events in the region. At least five alluvial units can be identified. Older units have well defined gravel pediments, Av and B horizons and pervasive pedogenic carbonate morphology, with alluvial terraces that rise tens of meters above the present channel. Intermediate age units have developed B horizons and carbonate morphology at different stages. The younger units have thin soil horizons, no carbonate morphology in the soil profile, and some of them are subject to episodic flooding during TC activity. The chronosequence developed is the first step towards establishing a linkage of the alluvial fan deposition in the area to the Late Pleistocene-Holocene changes in EPTC activity, which in turn is tied to changes in large scale climate systems like El Niño-Southern Oscillation (ENSO), or the Pacific Decadal Oscillation (PDO). Investigation of these linkages will provide insight into EPTC climatology, which is currently restricted due to a short record of direct observations.

  7. Late Quaternary alluvial fans at the eastern end of the San Bernardino Mountains, Southern California

    NASA Astrophysics Data System (ADS)

    Owen, Lewis A.; Clemmens, Samuel J.; Finkel, Robert C.; Gray, Harrison

    2014-03-01

    Alluvial fans at the eastern end of the San Bernardino Mountains in Southern California provide a record of climate modulated sediment transfer and erosion, and are deformed and displaced in places by active faults. Alluvial fans within two study areas, the Mission Creek and the Whitewater River drainages, were examined using geomorphic, sedimentological, and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure methods to define the timing of alluvial fan formation and erosion, and to examine the role of climatic, tectonic and autocyclic processes. These alluvial fan complexes were studied because they are amongst the best-preserved successions of alluvial fans in southern California and they are located at the mouths of two of the largest drainages, Whitewater River and Mission Creek, in the San Bernardino Mountains and traverse major faults, the Mission Creek and Banning. The alluvial fans comprise bouldery debris deposits that represent deposition dominated by flash flood and debris flow events. TCN surface exposure dating indicates that abandonment/incision of alluvial fan surfaces date to early in the Last Glacial or more likely the penultimate glacial cycle, to marine isotope stage (MIS) 4, and to the Holocene. The lack of alluvial fan ages during the latter part of the Last Glacial (MIS 2 and 3) suggests that there has been little alluvial fan lobe deposition/incision during that time. This is similar to findings for many other alluvial fans throughout the American Southwest, and supports the view that there is a strong climatic control on alluvial fan formation throughout this region. Furthermore, the oldest alluvial fan surfaces in the Mission Creek region are beheaded by the Whitewater River drainage, showing that the oldest alluvial fans in the Mission Creek region underwent significant capture by the Whitewater River drainage. This shows the autocyclic controls are also important on alluvial fan evolution in this region; but the importance of these processes to alluvial fan development in other regions of the American Southwest needs to be more fully assessed. The alluvial fans in the Mission Creek area traverse the Mission Creek fault, but are not deformed by it, which suggests that there may have been little if any movement along this fault since at least MIS 4. In contrast, alluvial fans in the Whitewater River study are displaced by active faults highlighting the influence of tectonism on alluvial fan development in this region. In addition to illustrating the importance of climatic controls on the development of alluvial fans in the American Southwest, a classic region for alluvial fan studies, this study illustrates the complex mixture of autocyclic and allocyclic factors that force alluvial fan development in tectonically active settings.

  8. Climatic, geomorphic, and archaeological implications of a late Quaternary alluvial chronology for the lower Salt River, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Huckleberry, Gary; Onken, Jill; Graves, William M.; Wegener, Robert

    2013-03-01

    Recent archaeological excavations along the lower Salt River, Arizona resulted in the unexpected discovery of buried late Pleistocene soils and cultural features dating 5800-7100 cal YBP (Early Archaic), the latter representing the earliest evidence of human activity in the lower Salt River floodplain thus far identified. Because the lower Salt River floodplain has been heavily impacted by recent agriculture and urbanization and contains few stratigraphic exposures, our understanding of the river's geological history is limited. Here we present a late Quaternary alluvial chronology for a segment of the lower Salt River based on 19 accelerator mass spectrometry 14C and four optically stimulated luminescence ages obtained during two previous geoarchaeological investigations. Deposits are organized into allostratigraphic units and reveal a buried late Pleistocene terrace inset into middle-to-late Pleistocene terrace deposits. Holocene terrace fill deposits unconformably cap the late Pleistocene terrace tread in the site area, and the lower portion of this fill contains the Early Archaic archaeological features. Channel entrenchment and widening ~ 900 cal YBP eroded much of the older terrace deposits, leaving only a remnant of fill containing the buried latest Pleistocene and middle-to-late Holocene deposits preserved in the site area. Subsequent overbank deposition and channel filling associated with a braided channel system resulted in the burial of the site by a thin layer of flood sediments. Our study confirms that the lower Salt River is a complex mosaic of late Quaternary alluvium formed through vertical and lateral accretion, with isolated patches of buried soils preserved through channel avulsion. Although channel avulsion is linked to changes in sediment load and discharge and may have climatic linkages, intrinsic geomorphic and local base level controls limit direct correlations of lower Salt River stratigraphy to other large rivers in the North American Southwest.

  9. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  10. Geochemical proxies for weathering and provenance of Late Quaternary alluvial core-sediments from NW India

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Amir, Mohd; Paul, Debajyoti; Sinha, Rajiv

    2014-05-01

    The Indo-Gangetic alluvial plains are formed by sediment deposition in the foreland basin as a result of upliftment and subsequent erosion of the Himalaya. Earlier study (Sinha et al., 2013) has shown the subsurface existence of buried channel bodies beneath the Ghaggar plains in NW Indo-Gangetic plains. The mapped sand bodies follow trace of a paleochannel that begins at the mountain front near the exit of river Sutlej and extends to the northern margin of the Thar desert, suggesting existence of a large Himalayan-sourced river (Singh et al., 2011) in the past. The buried sand bodies hold potential records of erosion history over the Himalaya that could be used to assess climate-controlled erosion over the Himalaya. Geochemical variations in the sediments from two (~45m long) cores drilled below the trace of the paleochannel (upstream) near Sirhind, Punjab and two cores (GS-10 & 11) from downstream near Kalibangan, Rajasthan, are used in this study to understand the erosional pattern over the Himalaya during Late Quaternary. Down-core variations in chemical index of alteration (CIA=51-79) along with K2O/Na2O and Al2O3/(CaO+Na2O) ratios are consistent with the trends of SW summer monsoonal fluctuations during the Glacial-Interglacial periods indicating climate controlled weathering at the source; higher values during Interglacial and lower during Glacial periods with maximum value during the Holocene. Sr-Nd isotopic compositions of drill-cores sediments, 87Sr/86Sr (0.7314-0.7946), ?Nd (-23.2 to -14) are within the range of silicate rocks from the Higher and Lesser Himalaya. Significant down-core variations in 87Sr/86Sr and ?Nd are observed that reflect the mixing of varying proportions of the Higher and Lesser Himalayan sediments, the two dominant sources to the core sites. Sediments deposited during MIS-2 and MIS-4, cold and dry Glacial periods, show high 87Sr/86Sr and low ?Nd suggesting an enhanced contribution from the Lesser Himalayan rocks that are characterized by more radiogenic Sr and less radiogenic Nd. Whereas those deposited during MIS-1 and MIS-3, warm and humid Interglacial periods, are distinctly less radiogenic in Sr and more radiogenic in Nd (Higher Himalayan signature) suggesting increased contribution from the Higher Himalayan rocks. These variations can be attributed to decreased contribution from the Higher Himalaya during Glacial periods due to increased glacial cover over the Higher Himalaya which in turn are caused by lower solar insolation and vice versa. The findings of this study, consistent with those from the Ganga-Yamuna interfluve sediments (Rahaman et al., 2009), indicate a dominant control of climate on sediment provenance and source weathering. References: Sinha et al. (2013), Quaternary International, 308-309, 66-75. Singh et al. (2011), AGU Fall Meeting 5-9 December 2011. Rahaman et al. (2009), Geology, 37, 559-526.

  11. Late Quaternary activity of the Ecemi? Fault Zone, Turkey; implications from cosmogenic 36Cl dating of offset alluvial fans

    NASA Astrophysics Data System (ADS)

    Akif Sar?kaya, Mehmet; Y?ld?r?m, Cengiz; Çiner, Attila

    2014-05-01

    The Ecemi? Fault Zone is the southernmost segment of the Central Anatolian Fault Zone. The tectonic trough of the fault zone defines the boundary between the Central and Eastern Taurides Ranges. The presence of faulted alluvial fans and colluvium within this trough provide favorable conditions to unravel the Late Quaternary slip-rate of the fault zone by cosmogenic surface exposure dating. In this context, we focused on the main strand of the fault zone and also on the Cevizlik Fault that delimits the mountain front of the Alada?lar, Eastern Taurides. Geomorphic mapping and topographic surveying indicate four different alluvial fan levels deposited along the main strand. Our topographic survey reveals 60±5 m horizontal and 18±2 m vertical displacement of the oldest fan surface (AF1) associated with the main strand of the fault zone. We dated the surface of the AF1 with 13 cosmogenic 36Cl samples. Our results indicate that the AF1 surface was abandoned maximum 105.3±1.5 ka ago. Accordingly, we propose 0.57±0.05 mm/yr horizontal and 0.17±0.02 mm/yr vertical mean slip-rates since 100 ka for the main strand. On the other hand, we measured 20±2 m vertical displacement on the colluvium along the Cevizlik Fault. The surface exposure age of the colluvium yielded 21.9±0.3 ka that translates to 0.91±0.09 mm/yr vertical slip-rate for the Cevizlik Fault. Our results reveal significant Quaternary deformation, and low strain rates might indicate very long earthquake recurrence intervals along the fault zone.

  12. Characterizing avulsion stratigraphy in ancient alluvial deposits

    NASA Astrophysics Data System (ADS)

    Jones, H. L.; Hajek, E. A.

    2007-11-01

    Guidelines for identifying ancient avulsion deposits were set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268], building on the study by Smith et al. [Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36, 1-23] of the modern Saskatchewan River system (Cumberland Marshes, central Canada), and serve to characterize avulsion depositional sequences in the ancient Willwood and Fort Union Formations (Paleogene, Bighorn Basin, NW Wyoming, USA). We recognize, however, that the model is not universally applicable to avulsion-dominated successions, specifically systems which lack defining "heterolithic avulsion deposits", set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268]. Observations in several fluvial intervals suggest that the avulsion stratigraphy outlined by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268] represents one category of avulsion stratigraphy found in the rock record, but does not capture the nature of avulsion deposits everywhere. Based on observations (using measured sections, outcrop photo-panels, and aerial photographs) in the Willwood Formation (Eocene, Wyoming) and Ferris Formation (Cretaceous/Paleogene, Wyoming), we present two end-member categories of avulsion stratigraphy in ancient deposits; stratigraphically abrupt, when a main paleochannel is stratigraphically juxtaposed directly atop floodplain/overbank deposits, and stratigraphically transitional, where crevasse splays and other non-floodplain/-overbank deposits stratigraphically precede a main paleochannel. This characterization provides a broader, more inclusive way to recognize and describe avulsion stratigraphy in ancient deposits and may be an important factor to consider when modeling connectivity in fluvial reservoirs. Furthermore, our observations show that one type of avulsion channel stratigraphy may prevail over another within an ancient basin, suggesting that system-wide factors such as splay-proneness or avulsion style (i.e. aggradational, incisional, etc.; [Slingerland, R., Smith, N.D., 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences 32, 257-285]) may be primary controls on the type of avulsion stratigraphy deposited and preserved in ancient basin-fills.

  13. Development and lithogenesis of the palustrine and calcrete deposits of the Dibdibba Alluvial Fan, Kuwait

    NASA Astrophysics Data System (ADS)

    AlShuaibi, Arafat A.; Khalaf, Fikry I.

    2011-08-01

    A model is proposed for the development of the Quaternary palustrine carbonate-calcrete association, which occurs as hard crust capping low hills at a distal flood plain of Al Dibdibba alluvial fan located at southwestern Kuwait. Field occurrence, detailed petrographic investigation and geochemical analysis revealed that a single cycle of groundwater calcrete with vertical gradational maturity pattern was developed. This represents a continuous sedimentological cycle during which flood sheet conditions prevailed with intermittent periods of humid and arid conditions. Subsequently, calcitic micrite was continuously precipitated from small, shallow, local, isolated and short lived ponds fringed by freshwater marshes with abundant charophyte meadows. The latter were developed as a result of flooding scattered depressions by groundwater supersaturated with respect to calcite due to rise of groundwater table. The deposition of two facies of carbonate muds, namely; biomicrite and pelintraclasts skeletal micrites was followed by a drought phase which witnessed desiccation of the fresh water ponds and significant drop in groundwater level. A sequence of pedogenic and diagenetic processes acted on the deposited carbonate muds are manifested by: (a) desiccation cracks, (b) micrite neomorphism, (c) infilling of root burrows and some cracks by aeolian siliciclastics, (d) karstification, (e) marmorization, (f) calcretization of root burrow infill and development of pseudo-rhizocrete, (g) calcite cementation and mineral authigenesis, and (h) silcretization. These processes are responsible for the development of hard palustrine carbonate crust. At the advent of aridity, the whole system of Al Dibdibba alluvial fan was subjected to deflation. This resulted in reversing the paleotopography of the hard crusted palustrine depressions into carbonate capped domal hills.

  14. Late Quaternary alluvial fans of Emli Valley in the Ecemi? Fault Zone, south central Turkey: Insights from cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Akif Sar?kaya, M.; Y?ld?r?m, Cengiz; Çiner, Attila

    2015-01-01

    Alluvial fans within the paraglacial Ecemi? River drainages on the Alada?lar Mountains in south central Turkey were studied using geomorphological, sedimentological, and chlorine-36 terrestrial cosmogenic nuclide (TCN) surface exposure dating methods to examine the timing of alluvial fan abandonment/incision, and to understand the role of climatic and tectonic processes in the region. These alluvial fan complexes are among the best-preserved succession of alluvial fans in Turkey and they were offset by the major strike-slip Ecemi? Fault of the Central Anatolian Fault Zone. The alluvial fans are mostly composed of well-lithified limestone cobbles (5 to 25 cm in size), and comprise crudely stratified thick beds with a total thickness reaching up to about 80 m. TCN surface exposure dating indicates that the oldest alluvial fan surface (Yalak Fan) was likely formed and subsequently abandoned latest by 136.0 ± 23.4 ka ago, largely on the transition of the Penultimate Glaciation (Marine Isotope Stage 6, MIS 6) to the Last Interglacial (MIS 5) (i.e. Termination II). The second set of alluvial fan (Emli Fan) was possibly developed during the Last Interglacial (MIS 5), and incised twice by between roughly 97.0 ± 13.8 and 81.2 ± 13.2 ka ago. A younger alluvial fan deposit placed on relatively older erosional terraces of the Emli Fan suggests that it may have been produced during the Last Glacial Cycle (MIS 2). These events are similar to findings from other fluvial and lacustrine deposits throughout central Anatolia. The incision times of the Ecemi? alluvial fan surfaces largely coincide with major climatic shifts from the cooler glacial periods to warmer interglacial/interstadial conditions. This indicates that alluvial fans were produced by outwash sediments of paleoglaciers during cooler conditions, and, later, when glaciers started to retreat due to a major warming event, the excess water released from the glaciers incised the pre-existing fan surfaces. An alluvial fan in the study area was also cut by the Ecemi? Fault, highlighting the influence of tectonics on fan development. It was offset vertically 35 ± 3 m since at least 97.0 ± 13.8 ka, which suggests a 0.36 ± 0.06 mm a- 1 vertical slip-rate of the fault.

  15. Alluvial evidence for major climate and flow regime changes during the middle and late Quaternary in eastern central Australia

    NASA Astrophysics Data System (ADS)

    Nanson, Gerald C.; Price, David M.; Jones, Brian G.; Maroulis, Jerry C.; Coleman, Maria; Bowman, Hugo; Cohen, Timothy J.; Pietsch, Timothy J.; Larsen, Joshua R.

    2008-10-01

    As a low-gradient arid region spanning the tropics to the temperate zone, the Lake Eyre basin has undergone gentle late Cenozoic crustal warping leading to substantial alluvial deposition, thereby forming repositories of evidence for palaeoclimatic and palaeohydrological changes from the Late Tertiary to the Holocene. Auger holes and bank exposures at five locations along the lower 500 km of Cooper Creek, a major contributor to Lake Eyre in the eastern part of the basin, yielded 85 luminescence dates (TL and OSL) that, combined wit a further 142 luminescence dates from northeastern Australia, have established a chronology of multiple episodes of enhanced flow regime from about 750 ka to the Holocene. Mean bankfull discharges on Cooper Creek upstream of the Innamincka Dome at 250-230 ka or oxygen isotope stages (OIS) 7-6 are estimated to have been 5 to 7 times larger than those of today, however, substantially less reworking has occurred during and after OIS 5 than before. Lower Cooper Creek appears to have similarly declined. In the Tirari Desert adjacent to Lake Eyre there is evidence of widespread alluvial activity, perhaps during but certainly before the Middle Pleistocene, yet the river became laterally restricted in OIS 7 to 5. While the Quaternary has been characterised by a dramatically oscillating wet-dry climate, since oxygen isotope stage OIS 7 or 6 there has been a general decline in the magnitude of the episodes of wetness to which the eastern part of central Australia has periodically returned. During the last full glacial cycle, Cooper Creek's periods of greatest runoff and sand transport were not during the last interglacial maximum of OIS 5e (132-122 ka) but later in OIS 5 when sea levels and global temperatures were substantially below those of 5e or today. Fluvial activity returned in OIS 4 and 3, but not to the extent of mid and late OIS 5; strongly seasonal but still powerful flows transported sand and fed source-bordering dunes in OIS 5 and 3. This chronology of fluvial activity in the late Quaternary broadly coincides with that for rivers of southeastern Australia and suggests that the wet phases in eastern central Australia have not been governed as much by the northern monsoon as by conditions in the western Pacific close to the east coast both north and south. Flow confinement within the Innamincka Dome has locally amplified Cooper Creek's energy, and here evidence exists for short but high-magnitude episodes of flow during the Last Glacial Maximum and in the early to middle Holocene, conditions that were capable of forming large palaeochannels but that were not long-lived enough to rework the river's extensive floodplains elsewhere along its length.

  16. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation

    USGS Publications Warehouse

    Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L.

    2006-01-01

    The Qaidam Basin in Northern Tibet is one of the largest hyper-arid intermontane basins on Earth. Alluvial fans, pediment surfaces, shorelines and a thick succession of sediments within the basin, coupled with moraines and associated landforms in the adjacent high mountain catchments of the Kunlun Mountains, record a complex history of Late Quaternary paleoenvironmental change and landscape evolution. The region provides an ideal natural laboratory to examine the interaction between tectonics and climate within a continent-continent collision zone, and to quantify rates of landscape evolution as controlled by climate and the associated glacial and hydrological changes in hyper-arid and adjacent high-altitude environments. Geomorphic mapping, analysis of landforms and sediments, and terrestrial cosmogenic radionuclide surface exposure and optically stimulated luminescence dating serve to define the timing of formation of Late Quaternary landforms along the southern and northwestern margins of the Qaidam Basin, and in the Burhan Budai Shan of the Kunlun Mountains adjacent to the basin on the south. These dates provide a framework that suggests links between climatic amelioration, deglaciation, lake desiccation and alluvial fan evolution. At least three glacial advances are defined in the Burham Budai Shan of the Kunlun Mountains. On the northern side of this range these occurred in the penultimate glacial cycle or early in the last glacial cycle, during the Last Glacial Maximum (LGM)/Lateglacial and during the Holocene. On the south side of the range, advances occurred during the penultimate glacial cycle, MIS-3, and possibly the LGM, Lateglacial or Holocene. Several distinct phases of alluvial fan sedimentation are likewise defined. Alluvial fans formed on the southern side of the Kunlun Mountains prior to 200 ka. Ice-contact alluvial fans formed during the penultimate glacial and during MIS-3. Extensive incised alluvial fans that form the main valley fills north of the Burham Budai and extend into the Qaidam Basin are dated to ???30 ka. These ages suggest that there was a period of alluvial fan aggradation and valley filling that persisted until desiccation of the large lakes in the Qaidam Basin post ???30 ka led to base level lowering and active incision of streams into the valley fills. The continued Lateglacial and Holocene desiccation likely led to further degradation of the valley fills. Ice wedge casts in the Qaidam Basin date to ???15 ka, indicating significant Lateglacial climatic amelioration, while Holocene loess deposits north of the Burham Bdudai suggest that aridity has increased in the region since the early Holocene. From these observations, we infer that the major landscape changes within high glaciated mountains and their adjacent hyper-arid intermontane basins, such as the Kunlun Mountains and Qaidam Basin, occur rapidly over millennial timescales during periods of climatic instability. ?? 2006 Elsevier Ltd and INQUA.

  17. Depositional facies and Hohokam settlement patterns of Holocene alluvial fans, N. Tucson Basin, Arizona

    SciTech Connect

    Field, J.J.

    1985-01-01

    The distribution of depositional facies on eight Holocene alluvial fans of varying dimensions is used to evaluate prehistoric Hohokam agricultural settlement patterns. Two facies are recognized: channel gravelly sand facies and overbank silty sand facies. No debris flow deposits occur. The channel facies is characterized by relatively well sorted stratified sands and gravels with common heavy mineral laminations. Overbank facies deposits are massive and very poorly sorted due to heavy bioturbation. Lithostratigraphic profiles from backhoe trenches and sediment size analysis document headward migration of depositional facies which results in fining upward sequences. Each sequence is a channel fan lobe with an underlying coarse grained channel sand which fines to overbank silty sands. Lateral and vertical variations in facies distributions show that depositional processes are affected by drainage basin area (fan size) and distance from fan head. Gravelly channel sands dominate at the headward portions of the fan and are more pervasive on large fans; overbank silty sands are ubiquitous at fan toes and approach closer to the fan head of smaller alluvial fans. When depositional facies are considered as records of water flow over an alluvial surface, the farming potential of each fan can be analyzed. Depositional models of alluvial fan sedimentation provide the basis for understanding Hohokam settlement patterns on active alluvial surfaces.

  18. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    SciTech Connect

    Arvidson, R.; Becker, R.; Shanabrook, A.; Luo, W.; Sultan, M. [Washington Univ., St. Louis, MO (United States)] [Washington Univ., St. Louis, MO (United States); Sturchio, N. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States); Lotfy, Z.; Mahmood, A.M. [Ain Shams Univ., Cairo (Egypt)] [Ain Shams Univ., Cairo (Egypt); El Alfy, Z. [Egyptian Geological Survey and Mining Authority, Cairo (Egypt)] [Egyptian Geological Survey and Mining Authority, Cairo (Egypt)

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.

  19. Alluvial deposits and plant distribution in an Amazonian lowland megafan

    NASA Astrophysics Data System (ADS)

    Zani, H.; Rossetti, D.; Cremon; Cohen, M.; Pessenda, L. C.

    2012-12-01

    A large volume of sandy alluvial deposits (> 1000 km2) characterizes a flat wetland in northern Amazonia. These have been recently described as the sedimentary record of a megafan system, which have a distinct triangular shape produced by highly migratory distributary rivers. The vegetation map suggests that this megafan is dominated by open vegetation in sharp contact with the surround rainforest. Understanding the relationship between geomorphological processes and vegetation distribution is crucial to decipher and conserve the biodiversity in this Amazonian ecosystem. In this study we interpret plant dynamics over time, and investigate its potential control by sedimentary processes during landscape evolution. The study area is located in the Viruá National Park. Two field campaigns were undertaken in the dry seasons of 2010 and 2011 and the sampling sites were selected by combining accessibility and representativeness. Vegetation contrasts were recorded along a transect in the medial section of the Viruá megafan. Due to the absence of outcrops, samples were extracted using a core device, which allowed sampling up to a depth of 7.5 m. All cores were opened and described in the field, with 5 cm3 samples collected at 20 cm intervals. The ?13C of organic matter was used as a proxy to distinguish between C3 and C4 plant communities. The chronology was established based on radiocarbon dating. The results suggest that the cores from forested areas show the most depleted values of ?13C, ranging from -32.16 to -27.28‰. The ?13C curve in these areas displays typical C3 land plant values for the entire record, which covers most of the Holocene. This finding indicates that either the vegetation remained stable over time or the sites were dominated by aquatic environments with freshwater plants before forest establishment. The cores from the open vegetation areas show a progressive upward enrichment in ?13C values, which range from -28.50 to -19.59‰. This trend is more pronounced after de mid-Holocene, suggesting that the open vegetation, represented mostly by C4 land plants, evolved only more recently. Based on our isotope data, a model is proposed taking into account the influence of sedimentary dynamics on the modern pattern of plan distribution. The establishment of open vegetation occurred at different times depending on location over the megafan area, varying from around 3,000 to 6,400 cal yrs BP. As sedimentation took place, areas located far from the surrounding rainforest were prone to inputs of organic matter derived from open vegetation, whereas the contribution of organic matter derived from arboreous vegetation increases toward the areas located closer to the rainforest. In general, open vegetation is constrained to depositional sites that remained active until relatively recent Holocene times, while surrounding areas with a relatively older geological history are covered by dense forest. The results presented here consist in a striking example of the influence of sedimentary processes during the Late Pleistocene-Holocene on the development of modern plants of this Amazonian lowland.

  20. Late Quaternary Upper Mississippi River alluvial episodes and their significance to the Lower Mississippi River system

    Microsoft Academic Search

    James C. Knox

    1996-01-01

    The period in the Upper Mississippi Valley (UMV) from about 25 000 years B.P. until the time of strong human influence on the landscape beginning about 150–200 years ago can be characterized by three distinctly different alluvial episodes. The first episode is dominated by the direct and indirect effects of Late Wisconsin glacial ice in the basin headwaters. This period,

  1. Atomic layer deposition of quaternary chalcogenides

    SciTech Connect

    Thimsen, Elijah J; Riha, Shannon C; Martinson, Alex B.F.; Elam, Jeffrey W; Pellin, Michael J

    2014-06-03

    Methods and systems are provided for synthesis and deposition of chalcogenides (including Cu.sub.2ZnSnS.sub.4). Binary compounds, such as metal sulfides, can be deposited by alternating exposures of the substrate to a metal cation precursor and a chalcogen anion precursor with purge steps between.

  2. Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion

    NASA Astrophysics Data System (ADS)

    Hsu, Leslie; Pelletier, Jon D.

    2004-06-01

    Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, ?t (m 2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The ?t values determined using ground-surveyed profiles are more consistent than those determined using photo-derived ?t values. However, the mean ?t values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The ?t values for each surface are determined to approximately 30-50% accuracy.

  3. Tuffaceous ephemeral lake deposits on an alluvial plain, Middle Tertiary of central California

    USGS Publications Warehouse

    Bartow, J.A.

    1994-01-01

    The Oligocene and Miocene Valley Springs Formation represents a large fluvial depositional system that extended westward from sediment-filled palaeovalleys in the high Sierra Nevada to a piedmont alluvial plain under the present Central Valley. The Valley Springs Formation consists largely of tuffaceous mudrocks, tuffaceous sandstone, polymict conglomerate and rhyodacitic tuff. The tuffaceous mudrock lithofacies probably represents a complex of ephemeral lake and marsh environments on a low gradient alluvial plain. The inferred abundance of shallow lakes, ponds and marshes implies a climate that was wetter than the semi-arid climate of the region today. -from Author

  4. Hydrogeologic features of the alluvial deposits in the Owl Creek Valley, Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Cooley, M.E.; Head, W.J.

    1982-01-01

    The alluvial acquifer principally of the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits and consists subordinately of alluvial-fan deposits. Thickness of the alluvial aquifer is generally 20 to 40 feet. Dissolved-solids concentration of water in the alluvial aquifer ranges from about 500 to more than 3,000 milligrams per liter. The most favorable areas for groundwater development are the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits; however, in much of these units, the water contains more than 2,000 milligrams per liter of dissolved solids. Measurements of specific conductance of the flow of Owl Creek indicate a progressive increase in the down stream direction and range between 15 and 355 micromhos per centimeter at 25C per mile. The increases are due to return flow of irrigation water, inflow from tributaries, and inflow from groundwater. Conspicuous terraces in Owl Creek Valley included an unnamed terrace at 500 feet above Owl Creek, the Embar Ranch terrace 160 to 120 feet above the creek, and the Arapahoe Ranch terrace 50 to 20 feet above the creek. (USGS)

  5. Geotechnical mapping for alluvial fan deposits controlled by active faults: a case study in the Erzurum, NE Turkey

    NASA Astrophysics Data System (ADS)

    Yarbasi, Necmi; Kalkan, Ekrem

    2009-08-01

    Erzurum, the biggest city of Eastern Anatolia Region in the Turkey, is located in Karasu Plain. Karasu Plain, located on the central segment of the Erzurum Fault Zone, is an intermountain sedimentary basin with a Miocene-Quaternary volcanic basement, andesitic-basaltic lava flows and fissure eruptions of basaltic lava. It was filled in the early Quaternary by lacustrine fan-delta deposits. The basin is characterized by NNE-SSW trending sinistral wrench faults on its eastern margin and ENE-WSW trending reverse faults on its southern margin. Both systems of active faults intersect very near to Erzurum, which is considered to be the most likely site for the epicenter of a probable future large earthquake. Historical records of destructive earthquakes, morphotectonic features formed by paleo-seismic events and instrument seismic data of region indicate to a very high regional seismicity. The residential areas of Erzurum are located on thick alluvial fan deposits forming under the control of faults on the central segment of the Erzurum Fault Zone, which is one of the most active fault belts of the East Anatolian Region. Over time, the housing estates of city such as Yenisehir and Yildizkent have been expanded toward to the west and southwest part of Erzurum as a consequence of rapid and massive construction during the last 30 years. Geotechnical investigation has therefore been undertaken the residential areas of city in order to characterize geotechnical properties over the varied lithologies examine the potential for geotechnical mapping and assess the foundation conditions of the present and future settlement areas. The geological field observations and operations have been performed to make the soil sampling and characterize the lateral and vertical changes in thickness of the alluvial deposits in trenches, excavations and deep holes with 6-12 m sections. The soil samples have been subjected to a series of tests under laboratory conditions to obtain physical and mechanical properties. Furthermore, the standard penetration tests have been applied to the soils under field conditions. The geological field observations, geotechnical data and distribution of bearing capacity have been considered for the geotechnical mapping. Based on the geotechnical map, there are five geotechnical zones distinguished in the study area.

  6. Sedimentary facies of alluvial fan deposits, Death Valley, California

    SciTech Connect

    Middleton, G.V. (McMaster Univ., Hamilton, Ontario (Canada))

    1992-01-01

    Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River. The most remarkable features of the fan deposits are the very weak segregation of sand and gravel, and the complete absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and even large wash surfaces is steep enough to produce upper flow regimes. There are also very few trends in facies abundance down fans: most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). The facies characteristics of a given fan vary little from proximal to distal regions, but may differ strongly from the facies seen in adjacent fans. Ancient deposits that show clear segregation of gravel from cross-bedded sand beds, or strong proximal to distal facies transitions, must have been deposited in environments quite different from Death Valley.

  7. Quaternary tilt of Death Valley determined from landform modelling of alluvial fans

    SciTech Connect

    West, R.B.; Wilson, D.S. (Univ. of California, Santa Barbara, CA (United States). Dept. of Geology)

    1993-04-01

    Alluvial fans along the east side of central Death Valley are being actively back-tilted along the Death Valley fault zone. Initial modelling of the Copper Canyon and Furnace Creek fans led to recognition of distinct segments. Field reconnaissance and aerial photo mapping were conducted to check model results and improve segment discrimination. Surface roughness, relative position, vegetation distribution, and drainage patterns provided independent evidence for segment discrimination. Subsequent modelling of individual segments produced a range of tilt values from 0.275[degree] to 0.559[degree] down to the northeast. Continued analysis of these fan segments is concentrated on: (1) assigning confidence and error values to the tilt values; and (2) dating individual segments. Further work will compare the tilt rates of east-side fans with those from the west. The mean squared error (MSE) is currently being used as a first order assessment of the quality of the model's fit to data digitized from 1:24,000 scale USGS topographic maps. MSE values of 1 m or less can be expected for relatively young or actively aggrading segments. Previous fan models have found the expected range of misfits to be between 2 m and 5 m. This seven parameter least squares model has produced fits with less than 2 m total range in misfits. Previous models have not accounted for tilt or have relied on simplifying assumptions to fix apex position.

  8. Three-dimensional sedimentary architecture of Quaternary deposits; a case study of environmental sedimentology (Bam, Iran)

    NASA Astrophysics Data System (ADS)

    Rezaei, K.; Guest, B.; Friedrich, A.; Fayazi, F.; Nakhaei, M.; Bakhtiari, H.; Nouri, L.

    2009-04-01

    Detailed 3-D analysis of the sedimentary structure and stratigraphy of these deposits allows for an accurate understand of sedimentary model of basin. This paper presents a case study in Bam (SE Iran) reconstructing the 3-D distribution of fluvial sediments based on a high resolution, process-orientated sedimentary facies classification and lithostratigraphy. We investigated the mean grain size with vertical and horizontal change of it, clay mineralogy, sediment texture, sedimentary structures, petrology and petrography and determination of paleo-environments and finally, we prepared two cross sections in S-N and W-E directions and a 3D block diagram for the situation of changes in subsurface sediments and compare them with the destruction rate map of earthquake in Bam city. Quaternary alluvial sediments are characterized by lithofacies deposited by braided river channels, debris flows and hyperconcentrated flows. The channel flow deposits constitute relatively well sorted, well imbricated and clast-supported gravels with coarse to medium sand matrix. Mostly poorly sorted, weakly imbricated to disorganized matrix supported pebble to boulder gravels with silty sand represent debris flow deposits. Hyperconcentrated flow deposits consist of clast-supported, poorly developed sorted polymodal gravel facies with poorly developed imbricated fabric, and generally occupy the lower parts of the terrace and fan sequences. The alternation from hyperconcentrated flow to channel flow deposits is predominant in the sequence, and is possibly the response to different climate modes. The high discharge and supply of sediments as well as the dispersal and deposition of these materials in the trunk stream is attributed to climatic perturbations during the Quaternary. These models allow quantifying the thickness and volume distribution of sandy gravel and clay deposits. We correlate these sedimentary units on the basis of lithofacies similarities, stratigraphic position. These relationships suggest that deformation had occured upward into the basin during time. According to our observations, a great number of recently constructed buildings were also damaged in city areas far from the faulted zones. These are areas where silty and clayey soils dominate, exhibiting very low electric resistivity and low wave velocity, together with high thickness, plasticity and compressibility. Rock samples are from volcanism stages in Eocene magmatism. The clay minerals have resulted from weathering of continental environments in upstream. Key Words: Bam, Sediment, facies, 3D sedimentary model, Earthquake.

  9. Reconstruction of the Palaeo-environment of the Alluvial Deposits in the Eastern Free State, South Africa

    NASA Astrophysics Data System (ADS)

    Evans, M. Y.

    2009-04-01

    Small alluvial fan systems have formed off the hillslopes of the remnant Karoo koppies at Heelbo in the Eastern Free State, South Africa. The landform geometry is a result of complex relationships between climate, lithology, structure and vegetation. This research area, which includes a large mammal mass death site, potentially contains a wealth of palaeo-environmental and specifically palaeoclimatic information. Palaeo-environmental information and proxy records on past climates in southern Africa has traditionally been obtained from a variety of techniques including stable isotope analysis of speleothems, pollen , faunal analyses at archeological sites, animal remains and crater-lake sediments (see references below). However, little information exists in the scientific literature on the use of palaeosols for defining the depositional palaeoenvironments in southern Africa. The aim of this research is to attempt to address the lack of palaeo-environmental information by extracting palaeoclimatic information from the sedimentary processes and the palaeosols at the Heelbo farm that have been extensively exposed through gullying. The sedimentary fans in the area have experienced climatically controlled histories of erosion, sedimentation and pedogenesis. Extreme sedimentation is assumed to have occurred during relatively arid climatic intervals, when decreased vegetation cover provided little surface protection. In contrast pedogenesis occurs during humid intervals when vegetation cover is restored, the land stabilizes and the uppermost gravely sands weather to form soils. A combined approach of both radiocarbon- and luminescence -dating may provide a detailed chronology of these successive hillslope events in order to relate hillslope instability to climatic forcing factors. Preliminary results indicate that at least 3 depositional events are recorded within the large mammal mass death site, which have been confirmed by the radiocarbon dates of 3,610 ±110 in the top section and 4,610 ±30 at the bottom section. References: Klein, R.G., Cruz-Uribe, K., Beaumont, P.B., 1991. Environmental, ecological, and paleoanthropological implications of the Late Pleistocene mammalian fauna from Equus Cave, northern Cape Province, South Africa. Quaternary Research. 36, 94 119. Lee-Thorp, J.A., Beaumont. PB., 1995. Vegetation and seasonality shift during the late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South Africa. Quaternary Research. 43, 426 432. Partridge, T.C., Demenocal, P.B., Lorentz, S.A., Paiker, M.J., Vogel, J.C., 1997: Orbital forcing of climate over South Africa: A 200,000-year rainfall record from Pretoria Saltpan, Quaternary Science Reviews, 16, 1125-1133. Partridge, T.C., Kerr, S.J., Metcalfe, S.E., Scott, L., Vogel, J.C., 1993: The Pretoria Saltpan: A 200,000 year South African lacustrine sequence. Palaeogeography, Palaeoclimatology, Palaeoecology, 101, 317-337. Scott, L. and Thackeray, J.F., 1987: Multivariate analysis of late Pleistocene and Holocene pollen spectra from Wonderkrater, Transvaal, South Africa. South African Journal of Science, 83, 93- 98. Talma, A.S. and Vogel, J.C., 1992: Late Quaternary palaeotemperatures derived from a speleotherm from Cango Caves, Cape Province, South Africa, Quaternary Research, 37, 203-213. Vogel, J.C., 1983. Isotopic evidence for past climates and vegetation of southern Africa. Bothalia 14, 391-394.

  10. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

    PubMed

    Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K

    2008-07-29

    This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions. PMID:18502538

  11. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    NASA Astrophysics Data System (ADS)

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkel, Robert C.; Mahan, Shannon A.

    2014-12-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/-1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  12. The subfossil tree deposits from the Garonne Valley and their implications on Holocene alluvial plain dynamics

    NASA Astrophysics Data System (ADS)

    Carozza, Jean-Michel; Carozza, Laurent; Valette, Philippe; Llubes, Muriel; Py, Vanessa; Galop, Didier; Danu, Mihaela; Ferdinand, Laurie; David, Mélodie; Sévègnes, Laurent; Bruxelles, Laurent; Jarry, Marc; Duranthon, Francis

    2014-01-01

    Subfossil tree trunks deposits are common in large rivers, but their status as a source for dating alluvial sequences and palaeoenvironmental studies is still discussed. Particularly their origin and the process(es) of deposition as well as a possible remobilization were pointed as a limit to their use to document river alluvial changes. In this work we report the discovery of the largest subfossil trunks deposits in the Garonne valley. These new data are compared to the previous ones. A set of 17 tree trunks and more than 300 smaller wood fragments were collected. The xylologic study shows the prevalence of Quercus and a single occurrence of Ulmus. These two hardwood species are commonly associated with riparian forest. The 14C dating carried out on seven trunks and a single branch of Quercus on the outermost identified growth rings, indicates age ranging from 8400-8000 cal. BP for the oldest fragment (bough) to 4300-4000 cal. BP for the most recent tree trunk. Radiocarbon ages of the trunks are aggregated into two main periods: 5300-5600 cal. BP (four trunks) and 4300-4000 cal. BP (three trunks). The radiocarbon (charcoal) dating of the top of the alluvial sequence overlaying the trunks gives an age between 1965-1820 and 1570-1810 cal. BP, i.e. between the 2nd and the 5th c. AD. In addition, the discovery of two unpublished subfossil tree trunks deposits in Finhan are reported (six trunks). At the light of these results, we discuss previously proposed models for the Garonne floodplain building.

  13. Field Demonstrations of Five Geophysical Methods that Could Be Used to Characterize Deposits of Alluvial Aggregate

    USGS Publications Warehouse

    Ellefsen, K.J.; Burton, B.L.; Lucius, J.E.; Haines, S.S.; Fitterman, D.V.; Witty, J.A.; Carlson, D.; Milburn, B.; Langer, W.H.

    2007-01-01

    Personnel from the U.S. Geological Survey and Martin Marietta Aggregates, Inc., conducted field demonstrations of five different geophysical methods to show how these methods could be used to characterize deposits of alluvial aggregate. The methods were time-domain electromagnetic sounding, electrical resistivity profiling, S-wave reflection profiling, S-wave refraction profiling, and P-wave refraction profiling. All demonstrations were conducted at one site within a river valley in central Indiana, where the stratigraphy consisted of 1 to 2 meters of clay-rich soil, 20 to 35 meters of alluvial sand and gravel, 1 to 6 meters of clay, and multiple layers of limestone and dolomite bedrock. All geophysical methods, except time-domain electromagnetic sounding, provided information about the alluvial aggregate that was consistent with the known geology. Although time-domain electromagnetic sounding did not work well at this site, it has worked well at other sites with different geology. All of these geophysical methods complement traditional methods of geologic characterization such as drilling.

  14. Local recharge processes in glacial and alluvial deposits of a temperate catchment

    NASA Astrophysics Data System (ADS)

    Fragalà, Federico A.; Parkin, Geoff

    2010-07-01

    SummaryThis study demonstrates that the composition and structure of Quaternary deposits and topography significantly influence rates of recharge and distribution of diffuse agricultural pollution at the hillslope scale. Analyses were made of vertical profiles of naturally-occurring chloride and nitrate, and artificially introduced bromide, in unsaturated and saturated sections of borehole cores of glacial till and alluvium under different land uses in the Upper Eden valley (UK). Estimates of local potential recharge were made based on chloride mass balance and nitrate peak methods. Persistent chloride bulges below the root zone were observed, and are interpreted to result from filtration processes at lithological boundaries. Changes in the shape of chloride profiles downslope, corroborated by nitrate profiles, indicate the roles of surface or near-surface runoff and runon, and the existence of lateral subsurface flows at depth. These findings have implications for estimation of recharge rates through unsaturated zones in Quaternary deposits, and the interpretation of potential 'hot-spots' of diffuse agrochemicals, particularly nitrates, moving through Quaternary deposits into groundwater.

  15. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    NASA Astrophysics Data System (ADS)

    Stinchcomb, Gary; Peppe, Daniel

    2014-08-01

    Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka) corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka) corresponds with a transitional wet/dry phase and a previously documented incision event.......

  16. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia

    E-print Network

    Eaton, L. Scott

    into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest Science B.V. All rights reserved. Keywords: Landscape evolution; Blue Ridge Mountains; Terraces; DebrisQuaternary deposits and landscape evolution of the central Blue Ridge of Virginia L. Scott Eatona

  17. Three-dimensional, geological representation of Quaternary deposits, Goettingen, Germany

    NASA Astrophysics Data System (ADS)

    Thomas, Katrin; Wagner, Bianca

    2010-05-01

    The Quaternary unconsolidated rock in north-eastern Goettingen was newly interpreted according to current scientific expertise. Especially the deposits of the Lutter River, a tributary to the Leine River, were examined using 253 drillings previously undertaken to create 24 two-dimensional cross-sections and a three-dimensional model of the geologic underground in the study area. The interpretation of the included data (drillings, previous studies, two-dimensional cross-sections) resulted in a stratigraphic sequence with 17 Quaternary model units, which was depicted three-dimensionally. During the investigation period, open pits were limited in the entire working area. Natural outcrops of Quaternary subsurfaces are absent. For the creation of a two-dimensional and three-dimensional representation of the geologic structure, it was necessary to fall back on available information of drillings. The spatial distribution of the drilling information in the scope of work is very heterogeneous. In addition, numerous engineer-geologic surveys were used for the interpretation and interpolation within areas where no other information could be obtained by drilling within this study. The production of a three-dimensional illustration of the unconsolidated rock first required an exact investigation and homogenisation of all available information. The choice of the drillings used in the scope of work were chosen with priority according to their depth with the aid of ArcMap. Two-dimensional cross-sections of the profiles of these drillings were produced with the help of the computer program GeoDin. Using the two-dimensional cross sections, the drillings were correlated with each other and compared and discussed extensively. The sequence of the geologic unities thereby presented itself more clearly and more exactly than in linear consideration. A geologic unity could be assigned to every examined layer of each drilling. Additionally, a top and a base were assigned to each geologic layer as a limitation of the layers, which were documented in Access-Database. The base of a younger layer corresponds directly to the top of the following older layer beneath. The creation of the three-dimensional underground model was undertaken using the licensed software goCad® ("Geological Objects computer Aided Design"). The provided markers of the geologic layer borders were saved in the ASCII-format intersystem within the MS Access data base and were imported in the programme goCad®. Using this information, 17 geologic layers were constructed three-dimensionally. The geologic sequence of the investigation area includes glacial deposits. The loess clays (three sequences) and the three fluvial debris series were emphasised in the results. After detailed examination, the fluvial debris could be divided into Elster, Saale and Weichsel Gilbert-type delta deposits of a glacial lake of the Leine River, respectively. The loess clays are interglacial deposits following the named glacial periods.

  18. Static and dynamic characterization of alluvial deposits in the Tiber River Valley: New data for assessing potential ground motion in the City of Rome

    Microsoft Academic Search

    F. Bozzano; A. Caserta; A. Govoni; F. Marra; S. Martino

    2008-01-01

    The paper presents the results of a case study conducted on the Holocene alluvial deposits of the Tiber River valley, in the city of Rome. The main test site selected for the study, Valco S. Paolo, is located about 2 km South of Rome's historical centre. The alluvial deposits were dynamically characterized in a comprehensive way via site investigations and

  19. Upper Fort Union coals in western Powder River Basin, Wyoming: alluvial-plain deposits

    SciTech Connect

    Flores, R.M.; Hardie, J.K.; Coss, J.M.; Weaver, J.N.; Van Gosen, B.S.

    1984-04-01

    Stratigraphic distribution of coals and associated lithofacies in the upper Fort Union Formation (Paleocene) was investigated in outcrop and subsurface from southeast of Sussex to south of Buffalo, Wyoming. In this area, Ayers and Kaiser in 1982 proposed that upper Fort Union coals accumulated in deltas and interdeltas, and pinched out into a lake. Our study does not support these interpretations. The upper 1000 ft (300 m) of the Fort Union Formation in the western Powder River basin comprises interbedded conglomerates, conglomeratic sandstones, sandstones, siltstones, mudstones, carbonaceous shales, and coals. The conglomerates, consisting of pebbles and cobbles reworked from Mesozoic and Paleozoic rocks, are in scour-based bodies as thick as 25 ft (8 m). A 300-ft (90 m) thick, 12-mi (19 km) long conglomeratic channel-sandstone complex is in the lower part of the interval. In the upper part of the interval, conglomeratic single- and multistory channel sandstones reach thickness of 100 ft (30 m) and widths of 4000 ft (1200 m). These channel sandstones grade into overbank-floodplain sediments, which are interbedded with backswamp deposits of coals and carbonaceous shales. The conglomeratic channel sandstones are interbedded with coal beds as thick as 20 ft (6 m). These coal beds probably are laterally equivalent to the 178-ft (54 m) thick Sussex coal deposit to the east. Lithofacies associated with the coals in the western Powder River basin suggest an alluvial-plain paleoenvironment. The alluvial plain consisted of braided and meandering streams flanked by well-drained and poorly drained backswamps. These streams probably are northeasterly flowing tributaries of trunk streams.

  20. Origin and depositional model of Wadi Al-Batin and its associated alluvial fan, Saudi Arabia and Kuwait

    Microsoft Academic Search

    Jawad S. Al-Sulaimi; A. F. Pitty

    1995-01-01

    Wadi Al-Batin alluvial fan, which extends northeastward from Hafar Al-Batin in Saudi Arabia to cover parts of Kuwait and southwestern Iraq, represents the largest of several other non-active fans in central and south Arabia. Evidence put forward suggests that, like other comparable deposits of varying age in the Arabian Peninsula, the Al-Batin fan was deposited following downdip breaching of a

  1. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Schmidt, J.C.; Graf, J.B.

    1988-01-01

    High discharges occurring between 1983-1985 resulted in redistribution of sand stored in zones of recirculating current in the Colorado River in Grand Canyon National Park. Redistribution resulted in net loss in the number of reattachment deposits in narrow reaches and aggradation of some separation deposits. Separation deposits were more stable than other types of deposits. Alluvial sand deposits that are large enough and of sufficient size for use as campsites were more stable than smaller lower-elevation deposits. Fluctuating flows between October 1985 and January 1986 caused erosion throughout the Grand Canyon, and caused erosion of some deposits created by the high flows of 1983-1985. Data collected for this study included measurements of flow velocity, scour-and-fill of sand deposits, topographic and bathymetric surveys, mapping of surface-flow patterns, water-surface slope surveys, sedimentological analysis, and replication of photographs. A classification system of alluvial sand deposits was developed on the basis of morphometric characteristics and the location of these deposits in relation to parts of recirculation zones. (Author 's abstract)

  2. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Schmidt, John C.; Graf, Julia B.

    1990-01-01

    Alluvial sand deposits along the Colorado River in Grand Canyon National Park are used as campsites and are substrate for vegetation. The largest and most numerous of these deposits are formed in zones of recirculating current that are created downstream from where the channel is constricted by debris fans at tributary mouths. Alluvial sand deposits are classified by location and form. Separation and reattachment deposits are downstream from constrictions within recirculation zones. Separation deposits are near the point of flow separation and typically mantle large debris fans. Reattachment deposits are near the point of flow reattachment and project upstream beneath much of the zone of recirculating current. Upper-pool deposits are upstream from a constriction and are associated with backwaters. Channel-margin deposits line the channel and have the form of terraces. Some are created in small recirculation zones. Reattachment and channel-margin deposits are largest and most numerous in wide reaches, although small channel-margin deposits are used as campsites in the narrow Muav Gorge. Separation deposits are more uniformly distributed throughout Grand Canyon National Park than are other types of deposits. In some narrow reaches where the number of alluvial sand deposits used as campsites is small, separation deposits are a high percentage of the total. During high flows, both separation and reattachment deposits are initially scoured but are subsequently redeposited during flow recession. Sand is also exchanged between the main channel and recirculation zones. The rate of recession of high flows can affect the elevation of alluvial deposits that are left exposed after a flood has passed. Fluctuating flows that follow a period of steady discharge cause initial erosion of separation and reattachment deposits. A part of this eroded sand is transported to the main channel. Therefore, sand is exchanged between the main channel and recirculation zones and redistributed within recirculation zones over a broad range of discharges. Comparison of aerial photographs and reinterpretation of published data concerning changes of alluvial sand deposits following recession of high flows in 1983 and 1984 indicate that sand was eroded from recirculation zones in narrow reaches. In wide reaches, however, aggradation in recirculation zones may have occurred. In narrow reaches, the decrease of reattachment deposits was greater than that of separation deposits. In all reaches, the percentage of separation deposits that maintained a constant area was greater than for other deposits. Separation deposits, therefore, appear to be the most stable of the deposit types. Fluctuating flows between October 1985 and January 1986, which followed the higher and steadier flows of 1983 to 1985, caused erosion throughout the park. For separation deposits, erosion was greatest at those sites where deposition from the 1983 high flows had been greatest. The existing pattern of low campsite availability in narrow reaches and high campsite availability in wide reaches was thus accentuated by the sequence of flows between 1983 and 1985.

  3. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    Microsoft Academic Search

    M. F. Sohn; S. A. Mahan; J. R. Knott; D. D. Bowman

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded

  4. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma. Ground water in 830 square miles of the Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of poorly sorted, fine to coarse, unconsolidated quartz sand with minor amounts of clay, silt, and basal gravel. The hydraulically connected alluvial and terrace deposits unconformably overlie the Tertiary-age Ogallala Formation and Permian-age formations. Most of the lines in the aquifer boundary and recharge data sets and some of the lines in the hydraulic conductivity data set were extracted from a published digital surficial geology data set based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. The data sets are provided in both nonproprietary and ARC/INFO export file formats. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  5. Testing a model of alluvial deposition in the Middle Son Valley, Madhya Pradesh, India — IRSL dating of terraced alluvial sediments and implications for archaeological surveys and palaeoclimatic reconstructions

    NASA Astrophysics Data System (ADS)

    Neudorf, C. M.; Roberts, R. G.; Jacobs, Z.

    2014-04-01

    Over the past three decades, the Middle Son Valley, Madhya Pradesh, India has been the focus of archaeological, geological, and palaeoenvironmental investigations that aim to reconstruct regional climate changes in the Late Pleistocene and to understand the effects of the ˜74 ka Toba super-eruption on ecosystems and human populations in northern India. The most recently published model of alluvial deposition for the Middle Son Valley subdivides its alluvium into five stratigraphic formations, each associated with a specific artefact assemblage. In this study, new cross-valley topographic profiles, field observations and infrared stimulated luminescence (IRSL) age estimates are used to refine this model south of the Rehi-Son River confluence. These data not only provide insights into the fluvial history of the Son River and its response to changes in palaeoclimate, but will also inform future archaeological surveys by constraining the geomorphic context of surficial and excavated artefacts in the area.

  6. Resolving structural influences on water-retention properties of alluvial deposits

    USGS Publications Warehouse

    Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.

    2006-01-01

    With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.

  7. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona; executive summary

    USGS Publications Warehouse

    Schmidt, J.C.; Graf, J.B.

    1988-01-01

    High discharges that occurred in 1983-85 resulted in redistribution of sand stored in zones of recirculating current in the Colorado River in Grand Canyon National Park. Redistribution resulted in net loss in the number of reattachment deposits in narrow reaches and aggradation of some separation deposits. Separation deposits were more stable than other types of deposits. Alluvial sand deposits that are large enough and of sufficient areal extent for use as campsites were more stable than smaller lower-elevation deposits. Fluctuating flows between October 1985 and January 1986 caused erosion throughout the Grand Canyon and caused erosion of some deposits created by the high flows of 1983-85. (Author 's abstract)

  8. Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel

    Microsoft Academic Search

    K. S. Richards; J. H. Chandler

    1996-01-01

    Research on dynamic alluvial channels has recognised the influence on river channel change of both discharge and sediment supply, although it has proved difficult to measure the latter. This paper presents the first accurate data from a dynamic alluvial channel that describe the interrelated effect on channel morphological change of both discharge and sediment supply variations over different timescales. Reliable

  9. Ground water in the alluvial deposits of Cottonwood Creek Basin, Oklahoma

    USGS Publications Warehouse

    Stacy, B.L.

    1960-01-01

    Cottonwood Creek basin is a 377 square mile area in central Oklahoma. The rim of the basin has altitudes as high as 1,300 feet, and the mouth is at an altitude of 910. Deposits of Quaternary age consist of alluvium along the stream courses and high terrace deposits along the southern rim of the basin. The alluvium contains a high percentage of clay and silt, ranges in thickness from a few inches to 40 feet, and underlies about 36 square miles of the basin. Sandstone, siltstone, and shale of Permian age, which form the bedrock, consist of the Garber sandstone along the eastern edge, the Hennessey shale through the central part, and Flowerpot shale along the western edge. Replenishment of water in the alluvium is from precipitation, lateral seepage and runoff from adjoining areas, and infiltration from the stream channels during high flows. The major use of ground water in the alluvium is transpiration by cottonwood and willow trees. Virtually no water is withdrawn from the alluvium by wells. (available as photostat copy only)

  10. Arsenic Levels in Groundwater from Quaternary Alluvium in the Ganga Plain and the Bengal Basin, Indian Subcontinent: Insights into Influence of Stratigraphy

    Microsoft Academic Search

    S. K. Acharyya

    2005-01-01

    Late Quaternary stratigraphy and sedimentation in the Ganga Alluvial Plain and the Bengal Basin have influenced arsenic contamination of groundwater. Arsenic contaminated aquifers are pervasive within lowland organic rich, clayey deltaic sediments in the Bengal Basin and locally within similar facies in narrow, entrenched river valleys within the Ganga Alluvial Plain. These were mainly deposited during early-mid Holocene sea level

  11. Stratigraphy and chronology of late Quaternary andesitic tephra deposits, Tongariro Volcanic Centre, New Zealand

    Microsoft Academic Search

    S. L. Donoghue; V. E. Neall; A. S. Palmer

    1995-01-01

    A stratigraphy and chronology of andesitic tephras erupted from Mt Ruapehu, and other volcanoes of Tongariro Volcanic Centre, is constructed from the tephra record preserved on the southeastern Mt Ruapehu ring plain. Here, tephras of late Quaternary age (c. 22,500 years B.P. to present) are found interbedded with local laharic and fluvial deposits, and with distal rhyolitic tephras from Taupo

  12. Late Quaternary deposition and facies model for karstic Lake Estanya (North-eastern Spain)

    E-print Network

    Gilli, Adrian

    Late Quaternary deposition and facies model for karstic Lake Estanya (North-eastern Spain) MARIO-50059 Zaragoza, Spain (E-mail: mariomm@ipe.csic.es) EAWAG, Swiss Federal Institute of Aquatic Research Ca´diz, Poli´gono Ri´o San Pedro s/n, 11510 Puerto Real (Ca´diz), Spain Associate Editor: Stephen

  13. Tectonic and climatic influences on the deposition and preservation of Quaternary units along the range-front of the Manastash Anticline, Yakima Fold Belt, Washington

    NASA Astrophysics Data System (ADS)

    Ladinsky, T. C.; Kelsey, H. M.; Sherrod, B. L.; Mahan, S.; Pratt, T. L.; Blakely, R. J.

    2012-12-01

    Based on multiple independent data sets, we infer episodic base-level lowering of the Kittitas Valley relative to tributaries flowing northward off the Manastash Ridge range-front and within the neighboring Lower Yakima River Canyon of central Washington. Manastash Ridge is a southeast-striking anticline within the Yakima fold and thrust belt, which deforms the extensive Miocene Columbia River Basalt flows that cover the region. Understanding the roles of climate aggradation and degradation cycles in concurrence with tectonic faulting along Manastash Ridge suggests both have contributed to the landscape evolution of the southern Kittitas Valley and Manastash range-front. Previously described proglacial outwash terraces within the northern Kittitas Valley and Upper Yakima River Canyon document periods of aggradation followed by fluvial degradation and entrenchment due to alteration in hillslope sediment production and transport capacity related to glacial and interglacial conditions. Luminescence age determinations and tephrochronology for Manastash range-front Quaternary units yield preliminary timing for aggradation of alluvial units, which we correlate to the late Pleistocene (MIS Stage V) glacial-interglacial climate transition. Seismic-reflection imagery, LiDAR, aeromagnetic surveys, and field mapping of Quaternary deposits reveal fault scarp lineaments within the Manastash range-front, west of the canyon entrance. We suggest these scarps are related to a series of north-verging thrust faults accommodating growth of the Manastash anticline. These faults isolate and uplift fan complexes, each complex generated during climate conditions favorable to fan aggradation. Entrenched alluvial fan deposits along the rangefront, strath terrace sequences, coincident knickpoints within tributary longitudinal profiles, and fault scarp lineaments suggest uplift rates of 0.02 to 0.2 m/1000yrs.

  14. Stratigraphy and Subaerial Exposure of Late Quaternary Tidal Deposits in Haenam Bay, Korea (South-eastern Yellow Sea)

    Microsoft Academic Search

    Y. A. Park; D. I. Lim; B. K. Khim; J. Y. Choi; S. J. Doh

    1998-01-01

    Late Quaternary stratigraphy of the coastal deposits in Haenam Bay, south-western coast of Korea (south-eastern Yellow Sea) consists of two depositional units: a Holocene intertidal deposit (Unit I), and an underlying Late Pleistocene tidal deposit (Unit II), both of which are distinguished by distinct unconformity. The yellowish colour and more consolidated and oxidized nature are characteristics of the sediments in

  15. Stratigraphic nomenclature of late quaternary pyroclastic deposits in New Zealand

    Microsoft Academic Search

    D. R. Gregg

    1961-01-01

    Stratigraphic nomenclature of unconsolidated pyroclastic deposits (tephra) should conform to the established procedures for other sedimentary rocks. Members should not be established before the formations of which they are part. The geographic part of new rock unit names should preferably not be that of a volcano, except in the case of deposits of historic eruptions. A formation or a member

  16. Elevated Mercury Concentrations in Alluvial Deposits of the Humid Tropics of South America: Natural vs. Anthropogenic Sources

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Lechler, P. J.

    2001-12-01

    Mercury (Hg) amalgamation is extensively used throughout the humid tropics of South America for the extraction of fine-gold particles from secondary ore deposits. Early studies of water, sediments and fish generally concluded that these gold mining operations have extensively contaminated the aquatic environment. However, investigations along a 900-km reach of the Maderia River, Brazil suggest that while Hg values in sediments and water are above global averages, the high mercury levels are largely due to natural sources. Of primary significance is the inability to distinguish between Hg concentrations in upland soils (oxisols) and modern channel and floodplain deposits. Spatial trends in the data suggest that the impact of anthropogenically released Hg from mine sites is relatively localized. This conclusion is supported by other, independent studies in the Rio Negro basin where elevated Hg values were found in terrace deposits in spite of the fact that no modern mining activities are known to occur within the watershed. Moreover, Roulet and his colleagues have demonstrated using mass balance calculations that within the Tapajos River basin as much as 97 percent of Hg in the alluvial deposits is derived from Hg enriched oxisols eroded during deforestation. In a regional examination of Hg levels within alluvial deposits of Essequibo and Mazaruni Rivers of Guyana, we again found that Hg levels were above both regional background values (10 to 80 ppb) and global averages. However, deforestation within these watersheds is limited, reducing the influx of Hg from eroded upland soils. In addition, the spatial trends in Hg concentrations suggest a closer link between mining activities and Hg values than is found in Maderia River of Brazil. It is unclear at this time, however, whether the primary Hg source in Guyana is the direct input of Hg to the river during amalgamation, or to the influx of Hg enriched soils eroded during the dredging of channel bed sediments and hydraulic mining of floodplain materials.

  17. Subsurface geology of upper Tertiary and Quaternary deposits, coastal Louisiana and adjacent Continental Shelf

    SciTech Connect

    McFarlan, E. Jr.; Leroy, D.O.

    1988-09-01

    Upper Tertiary and Quaternary deposits thicken seaward from a feather edge on the outcrop in the uplands of southern Louisiana to more than 7000 ft (2134 m) beneath the middle continental shelf. Through a study of cores and cuttings from 100 control wells and electric-log pattern correlations from 350 water and petroleum industry wells with seismic corroboration in the offshore area, these deposits have been divided into six major time-stratigraphic units, four of which correlate to outcropping terraces. This investigation presents a regional stratigraphic framework of the major upper Tertiary and Quaternary units from their updip pinch-outs in and beneath the terraced uplands, into the subsurface, across the coastal plain to the Louisiana offshore area.

  18. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions. PMID:18976857

  19. A silicified bird from Quaternary hot spring deposits

    Microsoft Academic Search

    Alan Channing; Mary Higby Schweitzer; John R. Horner; Terry McEneaney

    2005-01-01

    The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is

  20. Late Quaternary depositional history of Alaskan Beaufort Shelf

    Microsoft Academic Search

    Dinter

    1985-01-01

    Diverse nonmarine and shallow marine deposits blanketing the coastal plain and continental shelf of northern Alaska are known collectively as the Gubik Formation. In the Beaufort coastal region between Barrow and Prudhoe Bay and along the Chukchi coastline southwest of Barrow, five distinct marine subunits have been recognized with the Gubik, ranging in age from middle Pliocene to late Pleistocene.

  1. A silicified bird from Quaternary hot spring deposits

    PubMed Central

    Channing, Alan; Schweitzer, Mary Higby; Horner, John R; McEneaney, Terry

    2005-01-01

    The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met. PMID:16024344

  2. A silicified bird from Quaternary hot spring deposits.

    PubMed

    Channing, Alan; Schweitzer, Mary Higby; Horner, John R; McEneaney, Terry

    2005-05-01

    The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met. PMID:16024344

  3. Saline-water contamination in Quaternary deposits and the Poplar River, East Poplar Oil Field, northeastern Montana

    USGS Publications Warehouse

    Thamke, J.N.; Craigg, S.D.

    1997-01-01

    The extent of saline-water contamination in Quaternary deposits in and near the East Poplar oil field may be as much as 12.4 square miles and appears to be present throughout the entire saturated zone. The saline-water contamination affects 9-60 billion gallons of ground water. Saline- contaminated water moves westward through Quaternary glacial deposits and merges with southward-flowing water in Quaternary alluvium in the Poplar River valley. Saline ground water discharges into the Poplar River, and increases the dissolved-solids and chloride concentrations of the river. The probable source of saline-water contamination in the Quaternary deposits is brine that is a byproduct of the production of crude oil in the East Poplar oil field study area.

  4. A refined characterization of the alluvial geology of yucca flat and its effect on bulk hydraulic conductivity

    USGS Publications Warehouse

    Phelps, G.A.; Halford, K.J.

    2011-01-01

    In Yucca Flat, on the Nevada National Security Site in southern Nevada, the migration of radionuclides from tests located in the alluvial deposits into the Paleozoic carbonate aquifer involves passage through a thick, heterogeneous section of late Tertiary and Quaternary alluvial sediments. An understanding of the lateral and vertical changes in the material properties of the alluvial sediments will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating groundwater flow in the Yucca Flat area. Previously published geologic models for the alluvial sediments within Yucca Flat are based on extensive examination and categorization of drill-hole data, combined with a simple, data-driven interpolation scheme. The U.S. Geological Survey, in collaboration with Stanford University, is researching improvements to the modeling of the alluvial section, incorporating prior knowledge of geologic structure into the interpolation method and estimating the uncertainty of the modeled hydrogeologic units.

  5. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  6. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  7. Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Pacifico, Annamaria; Rossi, Veronica; Ruberti, Daniela

    2012-12-01

    Extensive illustration of depositional facies, ostracod and foraminiferal assemblages, and Late Quaternary stratigraphic architecture is offered for the first time from beneath the modern coastal plain of Volturno River, the longest river in southern Italy. Proximity to an active volcanic district, including quiescent Vesuvius Volcano, provides an easily identifiable stratigraphic marker (Campania Grey Tuff or CGT), up to 55 m thick, emplaced 39 ky cal BP by a large-volume explosive pyroclastic eruption. Identification of top CGT to a maximum depth of 30 m allows tracing out the shape of a 15-20 km wide Late Quaternary palaeovalley incised by Volturno River into the thick ignimbritic unit immediately after its deposition. A terraced palaeotopography of the valley flanks is reconstructed on the basis of core data. Above the basal fluvial deposits, the early Holocene transgressive facies consist of a suite of estuarine (freshwater to brackish) deposits. These are separated from overlying transgressive barrier sands by a distinctive wave ravinement surface. Upwards, a distinctive shallowing-upward succession of middle-late Holocene age is interpreted to reflect initiation and subsequent progradation of a wave-dominated delta system, with flanking strandplains, in response to reduced rate of sea-level rise. The turnaround from transgressive to highstand conditions is identified on the basis of subtle changes in the meiofauna. These enable tracking of the maximum flooding surface into its updip (lagoonal/estuarine) counterpart, thus highlighting the role of refined palaeontological criteria as a powerful tool for high-resolution sequence-stratigraphic studies.

  8. Quaternary silicic pyroclastic deposits of Atitla??n Caldera, Guatemala

    USGS Publications Warehouse

    Rose, W.I.; Newhall, C.G.; Bornhorst, T.J.; Self, S.

    1987-01-01

    Atitla??n caldera has been the site of several silicic eruptions within the last 150,000 years, following a period of basalt/andesite volcanism. The silicic volcanism began with 5-10 km3 of rhyodacites, erupted as plinian fall and pyroclastic flows, about 126,000 yr. B.P. At 85,000 yr. B.P. 270-280 km3 of compositionally distinct rhyolite was erupted in the Los Chocoyos event which produced widely dispersed, plinian fall deposits and widespread, mobile pyroclastic flows. In the latter parts of this eruption rhyodacite and minor dacite were erupted which compositionally resembled the earliest silicic magmas of the Atitla??n center. As a result of this major eruption, the modern Atitla??n (III) caldera formed. Following this event, rhyodacites were again erupted in smaller (5-13 km3) volumes, partly through the lake, and mafic volcanism resumed, forming three composite volcanoes within the caldera. The bimodal mafic/silicic Atitla??n volcanism is similar to that which has occurred elsewhere in the Guatemalan Highlands, but is significantly more voluminous. Mafic lavas are thought to originate in the mantle, but rise, intrude and underplate the lower crust and partly escape to the surface. Eventually, silicic melts form in the crust, possibly partly derived from underplated basaltic material, rise, crystallize and erupt. The renewed mafic volcanism could reflect either regional magmato-tectonic adjustment after the large silicic eruption or the onset of a new cycle. ?? 1987.

  9. Rock varnish microlamination dating of late Quaternary geomorphic features in the drylands of western USA

    E-print Network

    Ahmad, Sajjad

    of fan deposition may be linked to short periods of relatively wet climate. VML dating of alluvial desert in deserts. In this study, we establish a generalized late Quaternary (i.e., 0­300 ka) varnish layering record. We then use this climatically correlated varnish layering sequence as a correlative dating tool

  10. Comparison of high-resolution P- and SH-wave reflection seismic data in alluvial and pyroclastic deposits in Indonesia

    NASA Astrophysics Data System (ADS)

    Wiyono, Wiyono; Polom, Ulrich; Krawczyk, Charlotte M.

    2013-04-01

    Seismic reflection is one of the stable methods to investigate subsurface conditions. However, there are still many unresolved issues, especially for areas with specific and complex geological environments. Here, each location has an own characteristic due to material compounds and the geological structure. We acquired high-resolution, P-and SH-wave seismic reflection profiles at two different locations in Indonesia. The first location was in Semarang (Central Java) and the second one was in Tiris (East Java). The first region is located on an alluvial plain with thick alluvial deposits of more than 100 m estimated thickness, and the second location was located on pyroclastic deposit material. The seismic measurements for both locations were carried out using a 48-channel recording system (14-Hz P-wave, 10-Hz SH-wave geophones) with geophone intervals of 5 m (P-waves) and 1 m (SH-waves), respectively. The seismic source for the P-wave was a ca. 4 kg sledge hammer which generated a seismic signal by by hitting on an aluminum plate of 30x30 cm, whereas the SH-wave source was a mini-vibrator ELVIS (Electrodynamic Vibrator System), version 3. Thirteen seismic profiles at Semarang and eighth profiles at Tiris were acquired. The results of seismic data in Semarang show fair to good seismic records for both P-and SH-waves. The raw data contain high signal-to-noise-ratio. Many clear reflectors can be detected. The P-wave data shows reflectors down to 250 ms two-way time while the SH-wave records show seismic events up to 600 ms two-way time. This result is in strong contrast to the seismic data result from the Tiris region. The P-wave data show very low signal to noise ratio, there is no reflection signal visible, only the surface waves and the ambient noise from the surrounding area are visible. The SH-waves give a fair to good result which enables reflector detection down to 300 ms two-way time. The results from the two seismic campaigns show that SH-wave reflection seismic seems to be the suitable method, which could be applied in Indonesia mainly in both alluvial and pyroclastic regions. In contrast, P-wave energy in the pyroclastic area is strongly attenuated and scattered within the uppermost layer. This prevented that the P-wave seismic signal reaches deeper reflectors, and therefore seismic P-wave records contain only noise from surface waves and ambient noise from the surrounding area, without any reflection signal.

  11. Quaternary geology and sapphire deposits from the BO PHLOI gem field, Kanchanaburi Province, Western Thailand

    NASA Astrophysics Data System (ADS)

    Choowong, Montri

    2002-01-01

    One of the most famous blue sapphire deposits in Thailand and SE Asia is from the Bo Phloi District, Kanchanaburi Province, Western Thailand. This paper presents the results of our gemstone investigation as well as establishing the Bo Phloi depositional sequence as one of the Quaternary Type Sections in the region. Relationships among the sedimentology, depositional sequences and geomorphology were investigated in order to understand the gemstone depositional features. Sedimentary structures and textures of the sequences show that the deposition of gemstones is related genetically to fluvial processes. Gemstones are recognized in floodplain and low terrace deposits where gemstone paystreaks concentrate mostly inside layers of gravel beds and foreset-bedded gravels lithofacies. C-14 dating of wood and peat within gemstone-bearing layers indicated that the deposit formed during the middle to late Pleistocene. The gemstone-bearing gravel bed defines a north-south trend along the incised palaeo-channel of an ancient braided river system in the middle part of the basin.

  12. Seismogenic structures in Quaternary lacustrine deposits of Lake Van (eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Üner, Serkan

    2014-07-01

    Soft-sediment deformation structures formed by liquefaction and/or fluidisation of unconsolidated sediments due to seismic shocks are frequent in the Quaternary sandy, silty and clayey deposits of Lake Van. They are present in both marginal and deep lacustrine facies. Their morphology and interpreted genesis imply that they should be considered as fluid-escape structures (dish and pillar structures, flame structures and sand volcanoes), contorted structures (simple and complex convolutions and ball-and-pillow structures) and other structures (disturbed layers and slump structures). The most recently formed structures are related to the October 23rd, 2011 Van-Tabanli (M 7.2) earthquake. The existence of seismites at various stratigraphic levels in the lacustrine deposits is indicative of tectonic activity that frequently triggered earthquakes with magnitudes of 5 or more, affecting the Lake Van Basin.

  13. Debris-flow deposits in an alluvial-plain succession: The upper Triassic Callide coal measures of Queensland, Australia

    SciTech Connect

    Jorgensen, P.J.; Fielding, C.R. [Univ. of Queensland, Brisbane (Australia). Dept. of Earth Sciences

    1999-09-01

    The Carnian-Rhaetian Callide Coal Measures are preserved in a small (22.5 km by 8 km), partially fault-bounded basin remnant in east-central Queensland, Australia. The <150 m thick coal-measure succession is interpreted to have accumulated during a phase of mild crustal extension that formed a series of discrete, intermontane basins in eastern Australia. The succession fines upward from a conglomerate-rich lower part into a finer-grained and coal-bearing upper section (including coal seams <34 m thick), and is interpreted as the deposits of an alluvial-plain environment. Anomalous, matrix-rich diamictites, breccias, and conglomerates have been recognized within the succession at several localities, in many cases interbedded with coals. These are interpreted as the product of debris flows. Two debris-flow lithofacies are recognized: (1) mixtures of fine carbonaceous material, clay, silt, sand, gravel, and volcaniclastic debris, and (2) breccias consisting principally of coal clasts in a coaly matrix with minor clastic and volcaniclastic debris. The distribution of debris flows in the Callide Coal Measures shows a coincidence with mapped faults and interpreted structural lineaments. The debris flows may have been triggered by fault movements, which formed rupture topography on the flat alluvial plain, and caused destabilization of water-saturated clastic and organic sediments. Some debris-flow bodies may have been mounded, such that subsequent peat formation was restricted until those bodies were buried. The preservation of debris-flow units at different stratigraphic levels along mapped structures suggests multiple paleoseismic events or multiple debris-flow units at different stratigraphic levels along mapped structures suggests multiple paleoseismic events or multiple debris-flow events along those structures. The mixing of volcaniclastic debris into debris-flow facies suggests that seismic events were coincident with (or perhaps caused by) nearby, explosive volcanic activity. The close relationship between debris-flow deposits and thick coal bodies on the inferred downthrown sides of faults at Callide further suggests that periodic, tectonic subsidence may have facilitated thick coal accumulation.

  14. Extensive Quaternary aeolian deposits in the Drakensberg foothills, Rooiberge, South Africa

    NASA Astrophysics Data System (ADS)

    Telfer, M. W.; Mills, S. C.; Mather, A. E.

    2014-08-01

    Deposits of aeolian sand are known to have accumulated in periglacial environments during the cold phases of the late Quaternary. In many instances, however, they form low-relief topographic units which may not be readily identified without detailed field survey. This study aims to use a multidisciplinary approach, combining remotely sensed data analysis and field survey, to investigate the extent and palaeoenvironmental significance of sand ramps in the Drakensberg/Rooiberge foothills of South Africa. Analysis of Google Earth™ imagery has demonstrated that gully systems are a common component of the landscape, and heterogeneously distributed across the landscape. Field investigation confirmed the hypothesis that the gullies are mainly eroding into sand ramps of fine sands and very coarse silts which mantle many of the lower hillslopes of the region. These sand units include palaeosols and occasional gravel lags, but are otherwise remarkable for their homogenous composition, cross-bedding and the complete absence of clasts. Much of the sediment is thus interpreted as aeolian in origin. The deposits are sufficiently similar in many respects to the Masotcheni Formation, a late Quaternary colluvium which outcrops abundantly in the Drakensberg, to propose an assignation to this unit. However, an aeolian component in the Masotcheni has not previously been described. The distribution of aeolian accumulation in the region is consistent with southward transport during late Quaternary cold phases from a source on the Highveld to the north of the study area. The low relief and complex fluvial network in this region would concentrate sediment eroded from the Drakensberg/Rooiberge, which would subsequently be available for deflation when the balance between fluvial flow regime, seasonally frozen ground and north-westerly trade winds were optimal for aeolian entrainment. Deposition is primarily topographically controlled, and is in places sufficiently extensive that it may be better described as a discontinuous coversand. This study suggests that aeolian deposits may be overlooked in other environments subject to past periglacial landscape development, and develops a potential methodology by which this problem may be overcome.

  15. Bank accretion and the development of vegetated depositional surfaces along modified alluvial channels

    USGS Publications Warehouse

    Hupp, C.R.; Simon, A.

    1991-01-01

    This paper describes the recovery of stable bank form and development of vegetated depositional surfaces along the banks of channelized West Tennessee streams. Most perennial streams in West Tennessee were straightened and dredged since the turn of the century. Patterns of fluvial ecological responses to channelization have previously been described by a six-stage model. Dendrogeomorphic (tree-ring) techniques allowed the determination of location, timing, amount, and rate of bank-sediment deposition. Channel cross sections and ecological analyses made at 101 locations along 12 streams, encompassing bends and straight reaches, show that channel and bank processes initially react vertically to channelization through downcutting. A depositional surface forms on banks once bed-degradation and heightened bank mass wasting processes have eased or slowed. The formation of this depositional surface marks the beginning of bank recovery from channelization. Dominating lateral processes, characteristic of stable or natural channels, return during the formation and expansion of the depositional surface, suggesting a relation with thalweg deflection, point-bar development, and meanderloop extension. Characteristic woody riparian vegetation begins to grow as this depositional surface develops and becomes part of the process and form of restabilizing banks. The depositional surface initially forms low on the bank and tends to maintain a slope of about 24??. Mean accretion rates ranges from 5.9 cm/yr on inside bends to 0 cm/yr on most outside bends; straight reaches have a mean-accretion rate of 4.2 cm/yr. The relatively stable, convex upward, depositional surface expands and ultimately attaches to the flood plain. The time required for the recovery process to reach equilibrium averaged about 50 years. Indicative pioneer speccies of woody riparian vegetation include black willow, river birch, silver maple, and boxelder. Stem densities generally decrease with time after and initial flush of about 160 stems per 100 m2. Together bank accretion and vegetative regrowth appear to be the most important environmental processes involved in channel bank recovery from channelization or rejuvenation. ?? 1991.

  16. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia

    NASA Astrophysics Data System (ADS)

    Scott Eaton, L.; Morgan, Benjamin A.; Craig Kochel, R.; Howard, Alan D.

    2003-11-01

    A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene-late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. Radiocarbon dating indicates that debris flow activity since 25,000 YBP has recurred, on average, at least every 2500 years. The presence of stratified slope deposits, emplaced from 27,410 through 15,800 YBP, indicates hillslope stripping and reduced vegetation cover on upland slopes during the Wisconsinan glacial maximum. Regolith generated from mechanical weathering during the Pleistocene collected in low-order stream channels and was episodically delivered to the valley floor by debris flows. Debris fans prograded onto flood plains during the late Pleistocene but have been incised by Holocene stream entrenchment. The fan incision allows Holocene debris flows to largely bypass many of the higher elevation debris fan surfaces and deposit onto the topographically lower surfaces. These episodic, high-magnitude storm events are responsible for transporting approximately half of the sediment from high gradient, low-order drainage basins to debris fans and flood plains.

  17. A methodological toolkit for field assessments of artisanally mined alluvial diamond deposits

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.

    2014-01-01

    This toolkit provides a standardized checklist of critical issues relevant to artisanal mining-related field research. An integrated sociophysical geographic approach to collecting data at artisanal mine sites is outlined. The implementation and results of a multistakeholder approach to data collection, carried out in the assessment of Guinea’s artisanally mined diamond deposits, also are summarized. This toolkit, based on recent and successful field campaigns in West Africa, has been developed as a reference document to assist other government agencies or organizations in collecting the data necessary for artisanal diamond mining or similar natural resource assessments.

  18. Depositional character of a dry-climate alluvial fan system from Palaeoproterozoic rift setting using facies architecture and palaeohydraulics: Example from the Par Formation, Gwalior Group, central India

    NASA Astrophysics Data System (ADS)

    Chakraborty, Partha Pratim; Paul, Pritam

    2014-09-01

    The ?20 m thick coarse-grained clastic succession in the basal part of Palaeoproterozoic Par Formation, Gwalior Group has been investigated using process-based sedimentology and deductive palaeohydraulics. Bounded between granitic basement at its base and shallow marine succession at the top, the studied stratigraphic interval represents products of an alluvial fan and its strike-wise co-existent braided river system that possibly acted as a tributary for the fan. Detailed facies, facies association analysis allowed identification of two anatomical parts for the fan system viz. proximal and mid fan. While thin proximal fan is represented by products of rock avalanche and hyperconcentrated flows with widely varying rheology, the mid fan is represented by products of sheet floods and flows within streamlets. The interpretation found support from palaeoslope estimation carried out on the fluvial part of the mid fan that plot dominantly within the alluvial fan field demarcated by Blair and McPherson (1994). Dry climatic condition suggested from dominance of stream flow over mass flow deposition within the Par alluvial fan. Strike-wise, the fan is discontinuous and juxtaposed with a braid plain system. In contrast to the fluvial part of fan system, the palaeoslope data from the braid plain system dominantly plot within the ‘natural depositional gap' defined by Blair and McPherson. A raised palaeoslope for the river systems, as suggested from Proterozoic braid plain deposits around the Globe, is found valid for the Par braid plain system as well. From preponderance of granular and sandy sediments within the alluvial fan and braid plain systems and a pervasive north-westward palaeocurrent pattern within the fluvial systems the present study infers a gently sloping bevelled source area in the south-southeast of the basin with occurrence of steep cliffs only locally.

  19. Preliminary description of quaternary and late pliocene surficial deposits at Yucca Mountain and vicinity, Nye County, Nevada

    SciTech Connect

    Hoover, D.L.

    1989-11-01

    The Yucca Mountain area, in the south-central part of the Great Basin, is in the drainage basin of the Amargosa River. The mountain consists of several fault blocks of volcanic rocks that are typical of the Basin and Range province. Yucca Mountain is dissected by steep-sided valleys of consequent drainage systems that are tributary on the east side to Fortymile Wash and on the west side to an unnamed wash that drains Crater Flat. Most of the major washes near Yucca Mountain are not integrated with the Amargosa River, but have distributary channels on the piedmont above the river. Landforms in the Yucca Mountain area include rock pediments, ballenas, alluvial pediments, alluvial fans, stream terraces, and playas. Early Holocene and older alluvial fan deposits have been smoothed by pedimentation. The semiconical shape of alluvial fans is apparent at the junction of tributaries with major washes and where washes cross fault and terrace scarps. Playas are present in the eastern and southern ends of the Amargosa Desert. 39 refs., 9 figs., 1 tab.

  20. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    PubMed

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation. PMID:22905536

  1. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    USGS Publications Warehouse

    Pigati, Jeff S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur, III

    2013-01-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ?12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ?40 ka should be viewed with caution as they may reflect trace amounts of contamination. In sum, our results show that small terrestrial gastropod shells, especially from the Succineidae family, provide reliable ages for late Quaternary loess deposits in North America.

  2. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    NASA Astrophysics Data System (ADS)

    Pigati, Jeffrey S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur

    2013-09-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ˜12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ˜40 ka should be viewed with caution as they may reflect trace amounts of contamination. In sum, our results show that small terrestrial gastropod shells, especially from the Succineidae family, provide reliable ages for late Quaternary loess deposits in North America.

  3. Alluvial chronologies and archaeology of the Gila River drainage basin, Arizona

    NASA Astrophysics Data System (ADS)

    Waters, Michael R.

    2008-10-01

    Late Quaternary alluvial chronologies are established for five streams (Gila River, Salt River, Tonto Creek, Santa Cruz River, and San Pedro River) in the Gila basin of southern Arizona. Each streams has a complex history of deposition, erosion, and landscape stability that structured and fragmented the archaeological record over the last 15,000 years. The limitations that geologic processes imposed on the archaeological record of these alluvial environments must be recognized before meaningful interpretations of prehistory can be made. These stratigraphic sequences also provide the basis for reconstructing changes to the alluvial landscape of each valley over time. All five streams were intensively utilized during the Late Prehistoric period (A.D. 300-1450) by the Hohokam. The Hohokam were irrigation agriculturalists who were dependent upon these streams for survival. Thus, the regional stability and instability of the floodplain environments of southern Arizona influenced the expansion, contraction, reorganization, and collapse of the Hohokam.

  4. Quaternary investigation

    SciTech Connect

    Stieve, A.

    1991-05-15

    The primary purpose of the Quaternary investigation is to provide information on the location and age of Quaternary deposits for use in evaluating the presence or absence of neotectonic deformation or paleoliquefaction features within the Savannah River Site (SRS) region. The investigation will provide a basis for evaluating the potential for capable faults and associated deformation in the SRS vicinity. Particular attention will be paid to the Pen Branch fault.

  5. Chronology of Quaternary coastal aeolianite deposition and the drowned shorelines of southwestern Western Australia - a reappraisal

    NASA Astrophysics Data System (ADS)

    Brooke, B. P.; Olley, J. M.; Pietsch, T.; Playford, P. E.; Haines, P. W.; Murray-Wallace, C. V.; Woodroffe, C. D.

    2014-06-01

    Aeolianite successions of low-gradient continental margins commonly show complex records of coastal dune deposition linked to a wide range of sea-level positions and climatic periods of the middle and late Pleistocene, recording both regional and broader-scale drivers of sediment production, coastal dune development and landform preservation. To better characterise the general pattern of sedimentation that occurs over Quaternary glacial-interglacial cycles on low-gradient, temperate carbonate continental shelves we examine the morphology, stratigraphy and age of aeolianite deposits in the Perth region, Western Australia. This includes an analysis of well-defined drowned coastal landforms preserved on the adjacent shelf. New and previously published optical ages provide a preliminary timeframe for the deposition of aeolianite in the Perth region and on Rottnest Island, 17 km offshore. An extensive aeolianite ridge near Perth, representing a former barrier, has Optically Stimulated Luminesence (OSL) ages that range from 120 ± 12 to 103 ± 10 ka (MIS 5e-5a in the context of associated age uncertainties). OSL ages for an exposure in the same ridge 2.5 km inland, record the onlap of much older aeolianite, OSL age 415 ± 70 ka, by shell-rich estuarine beds, OSL age 290 ± 30 ka. A further 5.5 km inland from the coast, two thick aeolianite units, separated by a well-developed palaeosol, have stratigraphically consistent OSL ages of 310 ± 30 and 155 ± 20 ka. In contrast, aeolianite units that form the northern coast of Rottnest Island have OSL ages of 77 ± 12 ka and 27 ± 5 ka. The new OSL ages and previously reported TL and U/Th ages indicate that the bulk of the island comprises dunes deposited around the end of the Last Interglacial sensu lato (MIS 5a-4) and during the Last Glacial (MIS 4-2), accumulating over a Last Interglacial coral reef and basal calcarenite. Drowned barrier and dune landforms preserved on the adjacent continental shelf reveal that barriers were formed during periods of intermediate sea level (e.g. MIS 3) and significant dune mobility occurred when the shelf was subaerially exposed. The pattern of shelf sedimentation discernible in the Perth region - large-scale coastal carbonate dune deposition during periods of high and intermediate sea level and reactivation during glacial lowstands - is largely consistent with published stratigraphic and age data for large-scale aeolianite deposits on other low-gradient carbonate shelves. Based on these data, a general model is proposed for the cycle of Quaternary sedimentation and landform evolution that occurs on these shelves, which are dynamic sedimentary environments with coastal landforms and sedimentary successions that are very sensitive to erosion and sediment reworking.

  6. Static and dynamic characterization of alluvial deposits in the Tiber River Valley: New data for assessing potential ground motion in the City of Rome

    NASA Astrophysics Data System (ADS)

    Bozzano, F.; Caserta, A.; Govoni, A.; Marra, F.; Martino, S.

    2008-01-01

    The paper presents the results of a case study conducted on the Holocene alluvial deposits of the Tiber River valley, in the city of Rome. The main test site selected for the study, Valco S. Paolo, is located about 2 km South of Rome's historical centre. The alluvial deposits were dynamically characterized in a comprehensive way via site investigations and geotechnical laboratory tests. Normalized shear modulus decay and damping curves (G/G0 and D/D0 vs ?) were obtained for the dominantly fine-grained levels. The curves demonstrate that these levels have a more marked shear stiffness decay if compared with the underlying Pliocene bedrock. Decay curves from laboratory tests for the Tiber alluvia correlated well with the trend of the function proposed by Hardin and Drnevich, making it possible to derive their specific interpolation function coefficients. Use was made of the extrapolation of the findings from the Valco S. Paolo test site to a large part of Rome's historical centre by means of two other test sites, supported by an engineering-geology model of the complex spatial distribution of the Tiber alluvia. The experimental Valco S. Paolo Vs profile was extrapolated to the other test sites on the basis of a stratigraphic criterion; the analysis of seismic noise measurements, obtained for the three test sites, validated the engineering-geology based extrapolation and showed that the main rigidity contrast occurs inside the alluvial body (at the contact with the underlying basal gravel-level G) and not between the alluvia and the Plio-Pleistocene bedrock, composed of highly consistent clay (Marne Vaticane). The 1D modeling of local seismic response to the maximum expected earthquakes in the city of Rome confirms that the deposits have one principal mode of vibration at about 1 Hz. However, the simulation also evidenced that the silty-clay deposits (level C), making up the most part of the Tiber alluvial body, play a key role in characterizing the soil column deformation profile since it can be affected by non linear effects induced by the maximum expected earthquake when some stratigraphic conditions are satisfied.

  7. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Kuzmina, Svetlana; Andreev, Andrei A.; Kienast, Frank; Meyer, Hanno; Schirrmeister, Lutz; Kuznetsova, Tatyana; Sierralta, Melanie

    2008-08-01

    Late Quaternary palaeoenvironments of the Siberian Arctic were reconstructed by combining data from several fossil bioindicators (pollen, plant macro-fossils, ostracods, insects, and mammal bones) with sedimentological and cryolithological data from permafrost deposits. The record mirrors the environmental history of Beringia and covers glacial/interglacial and stadial/interstadial climate variations with a focus on the Middle Weichselian interstadial (50-32 kyr BP). The late Pleistocene to Holocene sequence on Kurungnakh Island reflects the development of periglacial landscapes under changing sedimentation regimes which were meandering fluvial during the Early Weichselian, colluvial or proluvial on gently inclined plaines during the Middle and Late Weichselian, and thermokarst-affected during the Holocene. Palaeoecological records indicate the existence of tundra-steppe vegetation under cold continental climate conditions during the Middle Weichselian interstadial. Due to sedimentation gaps in the sequence between 32 and 17 kyr BP and 17 and 8 kyr BP, the Late Weichselian stadial is incompletely represented in the studied outcrops. Nevertheless, by several palaeoecological indications arctic tundra-steppe vegetation under extremely cold-arid conditions prevailed during the late Pleistocene. The tundra-steppe disappeared completely due to lasting paludification during the Holocene. Initially subarctic shrub tundra formed, which later retreated in course of the late Holocene cooling.

  8. Erosion and deposition on the eastern margin of the Bermuda Rise in the late Quaternary

    NASA Astrophysics Data System (ADS)

    McCave, I. N.; Hollister, C. D.; Laine, E. P.; Lonsdale, P. F.; Richardson, M. J.

    1982-05-01

    A near-bottom survey has been made on the Eastward Scarp (32°50'N, 57°30'W) of the Bermuda Rise, which rises 1150 m above the 5500-m deep Sohm Abyssal Plain in the western North Atlantic. The survey reveals evidence of erosion and deposition at present and in the late Quaternary by the deeper levels of the westward flowing Gulf Stream Return Flow. Four distinct regions of increasing bed gradient show increasing sediment smoothing and scour in the transition from plateau to abyssal plain. Bedforms observed are current crescents, crag and tail, triangular ripples, elongate mounds, transverse mud ripples, lineations, and furrows ranging from 10 to 1 m or less in depth, decreasing generally with bed gradient. Measured near-bottom current speeds are up to 20 cm s -1. Temperature structure on the lower, steep, slopes suggests that detachment of bottom mixed layers may occur there. Extensive net erosion appears to be confined to the lower steep slopes of the scarp. Reflection profiles (4 kHz) show that there has been erosion in areas thinly draped with recent sediments and in areas that show development of small scarps. The distribution of subsurface acoustic characteristics of the region corresponds broadly to the areas characterized by bed gradient and distinct sedimentation conditions. Subsurface hyperbolae, possibly caused by buried furrows, show furrow persistence through several tens of metres of deposition. Erosion occurs up to the top of the scarp during episodes of presumed stronger currents, which may correspond with intensified circulation during glacials.

  9. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  10. The organic and mineral matter contents in deposits infilling floodplain basins: Holocene alluviation record from the K?odnica and Osob?oga river valleys, southern Poland

    NASA Astrophysics Data System (ADS)

    Wójcicki, K. J.; Marynowski, L.

    2012-07-01

    The work examines the timing and environmental conditions of floodplain sedimentation in the valleys of the upland K?odnica and piedmont Osob?oga rivers in the Upper Odra River basin. A distribution of 52 14C-ages shows relatively high floodplain sedimentation at the Late Glacial-Holocene transition, more stable floodplain environments since the Early (in the K?odnica Valley) and Middle Holocene (in the Osob?oga Valley) and a gradual increase in floodplain deposition in the Late Holocene (since < 3.4 kyr BP). Organic matter [OM] and mineral matter [MM] fluctuations were correlated with variables responsible for the activation of erosion (i.e. vegetation changes, human impact and hydrological events) as well as factors affecting the local record of sedimentation (i.e. valley morphology, hydrologic conditions and episodes of local erosion). A clear relationship is shown between an increase in alluviation and climate- or human-induced extension of unforested areas. The deposition of mineral-rich sediments increases rapidly during periods characterized by non-arboreal pollen values exceeding approximately 8% in pollen diagrams. On the other hand, the results obtained do not confirm significant interactions between Holocene changes in forest composition and alluviation. Despite the settlement of agrarian groups, the sedimentary record of human activity in the Osob?oga catchment is very poor during the Neolithic and early Bronze Age. A large-scale alluviation of the Osob?oga and K?odnica valleys was initiated during the settlement of people of the Lusatian culture from the middle Bronze Age and escalated in the early Middle Ages and Modern Times. The deposition of products of soil erosion was limited to between ca. 1.9-1.2 kyr BP, probably due to demographic regression during the Migration Period. Comparison of OM/MM fluctuations with phases of increased fluvial activity does not show a relationship between Holocene wetter phases and catchment sediment yield. Sedimentary episodes in the Upper Odra basin also show a low degree of correlation with the probability density curve of the 14C-ages. The results obtained in the K?odnica and Osob?oga valleys indicate a strong to moderate correlation between the spatial distribution of the study sites and the origin of MM-rich deposits, but a weak correlation between the spatial distribution of the study sites and TOC content. Such a pattern suggests that OM/MM fluctuations relate predominantly to the changes in sediment yield, although morphological conditions have a significant impact on the capture potential of sedimentary basins during phases of alluviation. Additionally, high OM content is not a simple function of an increase in wetness of the sedimentary environment. On the other hand, hydrologically-conditioned hiatuses as well as erosion episodes impoverish the sedimentary record, complicating the consideration on the geochronology of deposits and making it difficult to calculate reliable accumulation rates. However, they do not reduce the value of OM/MM fluctuations as an indicator of alluviation events for a preserved series of sediments.

  11. Composition and provenance of Late Pleistocene-Holocene alluvial sediments of the eastern Andean piedmont between 33 and 34° S (Mendoza Province, Argentina)

    NASA Astrophysics Data System (ADS)

    Mehl, A.; Blasi, A.; Zárate, M.

    2012-12-01

    The Andean cordillera, and its piedmont in the central western Argentina, has been long considered as one of the main source areas of detritus for the Chaco-Pampean plain sand dune fields and loess/loess-like deposits of central Argentina. The main goal of this study is to evaluate the composition of the late Pleistocene-Holocene alluvial deposits of the Andes cordillera piedmont, from 33° to 34° S. The results are interpreted in the context of the regional geology, tectonic setting of the study area and its implications in the continent-wide perspective of modern alluvial sands proposed by Potter (1994). Sampling was conducted at the alluvial stratigraphic sequences of four study sites along three Andean piedmont arroyos; modal mineralogy in the very fine sand fraction (3 phi to 4 phi) was determined using standard petrographic microscope methods. Q:F:LF average compositions indicate that the Late Pleistocene-Holocene very fine-grained alluvial sands of the Cordillera Frontal piedmont reflects the modern lithic arenites of the Argentine Association reported by Potter (1994). The results show two geologically distinct sources in the catchment areas, volcaniclastic and metamorphic rocks. High concentrations of mica and volcanic glass are likely related to particle morphologies and to the deposition sedimentary environment recorded in the alluvial sequences—floodplains. The overabundance of micas over the volcanic glass in the mid-late Holocene alluvial sequence indicates the drainage of a metamorphic area at the expense of other lithological sources. Source areas are located mainly in the Frontal cordillera, and to a lesser extent, in the piedmont Tertiary deposits, another likely source for the analyzed Quaternary alluvial sediments. The mineralogical signature of the late Pleistocene and Holocene alluvial sequences is in agreement with the composition of the southern Pampean sand mantles, loess and loess-like deposits mainly formed by a volcanic mineral assemblage with source areas placed at the headwaters of the main Andean rivers.

  12. The Quaternary deposits and landforms of Scotland and the neighbouring shelves: A review

    NASA Astrophysics Data System (ADS)

    Sutherland, Donald G.

    A thick sequence of Quaternary sediments (up to 1000 m) has been deposited in the North Sea Basin and perhaps five major glacial episodes, the first occurring prior to ca. 1.8-2.1 Ma BP and the last during the Late Devensian, can be recognised. Between the glacial events periods of low salinity arctic marine or glacio-marine sedimentation have been dominant although episodes of ameliorated climate when North Atlantic Drift waters had access to the North Sea have been identified. A number of horizons in separate boreholes have been correlated with the last interglacial (oxygen isotope stage 5e) and a sequence of water mass movements around the Scottish coasts can be reconstructed for the last ca. 125 ka. On land, sequences of Quaternary deposits relating to several glacial and non-glacial (terrestrial and marine) events occur in different areas but due to poor dating correlation between these sequences cannot yet be achieved. In particular, North-East Scotland has a complex glacial history with evidence for ice sheet glaciation on at least four occasions. Evidence from the Outer Hebrides, North-East Scotland and the North Sea Basin indicates that the Late Devensian Scottish ice sheet had a rather restricted extent, only reaching a short distance offshore along much of the east and west coasts. At this time ice free areas existed in North-East Scotland, on the Isle of Lewis and, probably, in Caithness and Orkney, whilst part of the outer shelf around St Kilda was dry land. A marine embayment extended down the east coast of Scotland between the Scottish and Scandinavian ice sheets and independent ice caps existed on the Outer Hebrides and probably on Shetland. Deglaciation of the greater part of the country took place prior to ca. 13 ka BP whilst the climate was still very cold. The ice retreat appears to have been orderly with stagnant ice masses being trapped only in topographically suitable locations. A number of retreat stages or minor readvances occurred during the general deglaciation. The Firth of Clyde was one of the last areas outside the Highlands to be deglaciated and this occurred in a rapid, possibly catastrophic, fashion shortly prior to ca. 13 ka BP. Despite the mild climate at the start of the Lateglacial Interstadial it is not known if there was complete deglaciation prior to the Loch Lomond Readvance. The Readvance glaciers, however, may have started to advance during the latter part of the Interstadial when declining terrestrial temperatures coincided with a period of mild marine conditions. The Loch Lomond Readvance maximum can only be dated to some time after ca. 10.9 ka BP and it is likely that final ice free conditions were not achieved until the earliest Holocene.

  13. Late Quaternary paleodune deposits in Abu Dhabi Emirate, UAF: Paleoclimatic implications

    SciTech Connect

    Brouwers, E.M.; Bown, T.M. (Geological Survey, Denver, CO (United States)); Hadley, D.G. (Geological Survey, Reston, VA (United States))

    1993-04-01

    Remnants of late Quaternary paleodunes are exposed near the coast of the Arabian Gulf and in large inland playas and interdunal areas in central and western Abu Dhabi Emirate over a distance of >45 km normal to the coast. Paleodunes occur south of Madinat Zayed (lat. 23[degree]35 N), which marks the northern limit of a modern dune field that grades into the mega-dune sand sea of the ar Rub al Khali, Saudi Arabia. Coastal paleodunes are composed of weakly cemented millolid foraminifers, ooids, and rounded biogenic grains, whereas inland and southward the paleodunes show a progressive increase in the proportion of eolian quartz sand. The paleodunes exhibit large-scale trough foresets in remnant exposures 0.5 to 10 m thick, indicating paleowind directions from 65[degree] to 184[degree] (dominantly southeast transport). Scattered paleoplaya remnants provide paleodune scale. Paleoplaya deposits form buttes 30--50 m high. If coeval with the Paleodunes, large-scale paleodune fields are implied (100+ m high), comparable to star dunes and sand mountains at the northwestern edge of the ar Rub al Khali. Based on U-Th isotopic analyses, the carbonate paleodune sands are >160ka and probably >250ka. The carbonate source was a shallow, nearly dry Arabian Gulf at a time when large areas were exposed during a low sea-level stand. Paleowind direction indicates that Pleistocene prevailing winds were northwesterly, the direction of the dominant (winter shamal) wind today. The geographic extend and implied magnitude of the paleodunes suggest large-scale eolian transport of carbonate sand during the Pleistocene disiccation, and admixed quartz sand identifies a youthful stage of contemporaneous evolution of the ar Rub al Khali. Wave-eroded paleodunes probably floor much of the present-day Gulf and extend beneath the modern dunes and sand mountains.

  14. Mapping quaternary landforms and deposits in the Midwest and Great Plains by means of ERTS-1 multispectral imagery

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1973-01-01

    ERTS-1 multispectral images are proving effective for differentiating many kinds of Quaternary surficial deposits and landforms units in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Examples of features that have been distinguished are: (1) the more prominent end moraines of the last glaciation; (2) certain possible palimpsests of older moraines mantled by younger deposits; (3) various abandoned river valleys, including suspected ones deeply filled by deposits; (4) river terraces; and (5) some known faults and a few previously unmapped lineaments that may be faults. The ERTS images are being used for systematic mapping of Quaternary landforms and deposits in about 20 potential study areas. Some study areas, already well mapped, provide checks on the reliability of mapping from the images. For other study areas, previously mapped only partly or not at all, our maps will be the first comprehensive, synoptic ones, and should be useful for regional land-use planning and ground-water, engineering-geology, and other environmental applications.

  15. Recurring deposition of eolian sand during the Late Quaternary in northeastern Colorado

    SciTech Connect

    Madole, R.F. (U.S. Geological Survey, Denver, CO (United States))

    1992-01-01

    Three superposed units of late Quaternary eolian sand separated by buried soils and (or) clayey pond sediment are present along the southeast side of the South Platte River valley in northeastern Colorado. The oldest unit consists of at least 1.5 m of pale-brown sheet sand in which an A/Bw/C soil profile is developed; the solum is typically 45-55 cm thick. At Sterling, the oldest unit is overlain by organic-rich pond sediment that yielded a radiocarbon age of 9,010[+-]100 B.P. The middle unit consists of at least 0.4-2 m of pale-brown, massive to horizontally stratified sand. An A/C soil profile, with a light brownish-gray A horizon 13-25 cm thick, marks the upper limit of the unit. Radiocarbon ages from the Sterling site indicate that the middle unit was deposited between 9,010[+-]100 B.P., the age of underlying pond sediment, and 2,860[+-]60 B.P., the age of organic matter from the horizon at the top of the unit. The youngest unit consists of 0.5-8 m of pale-brown dune sand in which a faint A horizon (Valent series), typically 3-10 cm thick, has developed. Data from the cutbanks near Brush indicate that this unit was deposited about 1 ka or later. Organic matter from a buried A horizon beneath the youngest unit yielded a radiocarbon age of 1,380[+-]90 B.P. More importantly, however, the dated paleosol contained Plains Woodland ceramics, and Upper Republican ceramics were present just above the paleosol. The Plains Woodland culture was present in eastern Colorado between about 1.9 and 1 ka, and the Upper Republican culture between about 1 and 0.7 ka. The dune topography and soil development in the youngest unit near Brush are characteristic of large tracts of dune sand in northeastern Colorado, which suggests that the most recent episode of eolian activity may be younger than 1 ka.

  16. Late Quaternary stratigraphy of an alluvial valley along an active convergence front: Interactions of fluvial processes, tectonic channel steering, and sea level in the eastern Ganges-Brahmaputra-Meghna River delta

    NASA Astrophysics Data System (ADS)

    Williams, L.; Goodbred, S. L.; Steckler, M. S.; Seeber, L.; Spiess, V.; Schwenk, T.; Palamenghi, L.; Akhter, S. H.; Mondal, D.; Hossain, S.

    2012-12-01

    Insights into how tectonics, alluvial channels, and sediment interact to build the stratigraphy in a tectonically active depositional basin can be discovered by studying the sediment record and the current geomorphology of a system. Tectonics is an influence on basins that often gets overlooked due to overriding controls such as sea level, climate, and sediment load. The area for this study is in the Ganges Brahmaputra Meghna Delta (GBMD) in close proximity to an active convergent thrust front. To investigate the stratigraphy, we drilled 48 cores along two approximately longitudinal transects, 25-60 km apart, each spanning ~100 km. The boreholes were drilled every 3-4 km to a maximum depth of 100 m. The transects are situated across an alluvial valley and are bounded to the west by a Pleistocene terrace (Madhupur Terrace) and to the east by a fold belt (Indo-Burman Fold Belt) that continues to deform due to active tectonics at the thrust front. A seismic cruise using a mini-GI gun was conducted in conjunction with this study along the current river channel and has shown evidence of folded sediment at depth, and field studies in the area have found outcropping anticlines thus aiding in the determination of transect location. Through analysis of aerial imagery and digital elevation models (DEMs) of the transects, abandoned channels once occupied by the alluvial channel are evidence of migration and avulsion occurring recently enough to be recorded on the land surface. Initial analysis of the sediment cores shows a dramatic contrast in the stratigraphy between the two transects despite lying along the same morphological reach of the GBMD. The northern transect is dominated by fine to medium sands throughout indicating a strong fluvial influence, while the southern transect is dominated by muds and finer sands at depth indicating a tidal estuarine influence. The stratigraphy and land surface are a consequence of the controls on the system and reflect channel behavior over time. The establishment of channel behavior, including avulsions, migration, and overbank processes, is the key to investigating how rivers and tectonics interact to shape the landscape and build stratigraphy, which will be discussed in detail based on these transect and seismic datasets.

  17. Alluvial-fan and lacustrine fan-delta sedimentation in west-central California during the Middle Tertiary transition from subduction to transform tectonics

    SciTech Connect

    Cole, R.B. (Univ. of Rochester, NY (United States). Dept. of Geological Science); Stanley, R.G. (Geological Survey, Menlo Park, CA (United States))

    1992-01-01

    The Plush Ranch (PR) Formation was deposited in one of several sedimentary basins in west-central California. The PR consists of more than 1,800 m of nonmarine sedimentary rocks and interbedded basaltic volcanic rocks that together record a complicated history of synsedimentary faulting, volcanism, and deposition in alluvial-fan, fan-delta, and lacustrine depositional settings. The sedimentological analysis indicates that both the northern and southern margins of the PR basin apparently were controlled ENE-trending normal faults, but that the two margins are characterized from each other by distinctive depositional facies, provenance, and sediment transport directions. The northern basin margin is recorded by sandstone-dominated braidplain deposits, with interbedded lenses of boulder-rich breccia derived by landsliding from a nearby granitic provenance. The southern basin margin is represented by matrix- and clast-supported boulder- to pebble-conglomerate with interbedded trough-crossbedded sandstones; these represent debris-flow and stream-flow alluvial-fan deposits. The alluvial-fan deposits grade northward into lacustrine fan-delta facies and provide an excellent detailed record of interfingering between alluvial-fan and lacustrine fan-delta deposits on a bed-by-bed scale. Basalt are interbedded with turbidite sandstones and evaporite/carbonate-rich intervals, but not with alluvial-fan deposits. The analysis of the sedimentary record of the PR Formation permits documentation of detailed facies relations that are useful in understanding alluvial-fan and fan-delta transitions in fault-bounded lacustrine basins. In addition, results support the conclusion of earlier workers that the Big Pine fault was a down-to-the-north, normal-slip fault along the southern margin of the PR basin during late Oligocene-early Miocene time, and then became a predominantly left-slip fault during the Quaternary.

  18. Epiguruk: a late Quaternary environmental record from northwestern Alaska

    USGS Publications Warehouse

    Hamilton, T.D.; Ashley, G.M.

    1993-01-01

    Epiguruk, a prominent bluff along the Kobuk River in northwestern Alaska, exposes a rich depositional record of Quaternary eolian and fluvial sand, with associated loess, paleosols, and periglacial features. Three major complexes of alluvial and eolian deposits are separated by two conspicuous organic-rich paleosols which formed during cool-moist interstadial intervals. Sediments between the two paleosols include eolian, channel, and floodplain deposits that formed during alluviation of the Kobuk River to a height of about 12m above the present level. The youngest depositional complex, which overlies the upper paleosol, is divisible into late Wisconsinan and Holocene components and into fluvial-channel, flood-plain, eolian-dune, sand-sheet, loess, and pond facies. Eolian sand from the active Kobuk sand sea overloaded the river during late Wisconsinan time, causing it to alluviate to about 13m above its modern level. The Holocene record reflects erosion and deposition by a small southern Tributary to the Kobuk River, downcutting by the Kobuk River toward its modern level, and subsequent erosion across a meander belt nearly 8km wide. 66 radiocarbon ages, many from rooted shrubs, provide a firm chronology for the past 35 k.y. at Epiguruk. -from Authors

  19. Fault-scarp morphology and amount of surface offset on late-Quaternary surficial deposits, eastern escarpment of the central Sierra Nevada, CA

    SciTech Connect

    Berry, M.E. (Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology)

    1992-01-01

    Faults scarps, formed on glacial deposits and an alluvial fan near the east-central Sierra Nevada mountain front by late-Quaternary movement on the Hilton Creek (HCF), Wheeler Crest (WCFZ) and Coyote Warp (CWFZ) fault zones, were profiled to determine the amount and to estimate the recency of fault offset. Areas studied include McGee (N--near Lake Crowley), Pine, Mount Tom, Basin Mountain, McGee (S--near Bishop), and Bishop Creek drainages. The profile data indicate that movement of the range-front faults (HCF and WCFZ), which is characterized by normal slip, has offset Tioga-age deposits 6.5-26 m. Offset of Tahoe-age moraines cannot be measured directly because the landforms are buried at the mountain-front by moraines from later glaciations. However, the amount of offset is estimated at 52--130 m, based on crest-height differences between Tahoe and Tioga moraines. The rates of slip are highest on the northern end of the HCF, at McGee (N) Creek; the higher slip rates in this latter area may be related to its close proximity to the Long Valley caldera, where tectonic processes are complex and considered closely related to ongoing magmatic activity. The preservation of bevels on the fault scarps in both HCF and WCFZ, combined with the amounts of surface offset on the late-Pleistocene moraines, and AMS C-14 dates for charcoal found in fault-scarp colluvium, indicate that large ground-rupturing events have occurred on these faults during the Holocene. In contrast to the mountain-front faults, faults in the CWFZ, on a broad warp that separates the WCFZ from range-front faults to the south of Bishop, do not cross Tioga moraines, implying that surface rupture has not occurred in the CWFZ for at least 15,000-25,000 years. The degraded morphology of the fault scarps on adjacent Tahoe and pre-Tahoe moraines, which have been offset between 10.5 and 30 m, attests to the lack of late-Pleistocene and Holocene fault activity in this latter area.

  20. A New Genus and Species of Buteonine Hawk from Quaternary Deposits in Bermuda (Aves: Accipitridae)

    Microsoft Academic Search

    Storrs L. Olson

    2008-01-01

    Bermuteo avivorus, new genus and species, is described from rare Quaternary fossils from the island of Bermuda. Although clearly referable to the Buteoninae, its relationships within that group are difficult to assess. Considerable size variation may be attributable to sexual dimorphism associated with bird-catching behavior. It is uncertain if the species survived into the historic period. Factors contributing to the

  1. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (principal investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for 20-odd potential study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Among the more distinct features are the major moraines and outwash channels of the last (Wisconsin) glaciation. Analysis of dissection/drainage patterns from the synoptic imagery is proving useful for detecting anomalies that may be caused by stream diversions and moraines of pre-Wisconsin glaciations, by variable loess deposition, by tectonism, and other factors. Numerous abandoned river valleys have been mapped. Trend-lines of several known pre-Wisconsin moraine systems have been identified in Iowa, Nebraska, and Kansas, and also several similar trend-lines, that may indicate previously unknown moraine systems of middle and possibly early Pleistocene age, have been found in Iowa and Missouri. The area inundated by a major flood in southwestern Iowa also has been delineated from ERTS-1 imagery.

  2. thin films deposited on different preferred oriented Mo back contact by RF sputtering from a quaternary target

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Peng, Lianqin; Chen, Jinwei; Wang, Gang; Wang, Xueqin; Kang, Hong; Wang, Ruilin

    2014-09-01

    The Cu(In, Ga)Se2 (CIGS) thin films were deposited on bare glass and DC sputtered preferential oriented Mo-coated glass by RF sputtering from a single quaternary target. The structural and morphological properties of the films were characterized by X-ray diffraction (XRD), Raman spectroscope, energy dispersive X-ray spectrometer (EDS) and atomic force microscope (AFM). Preferred orientation of the Mo back contact was tuned between (110) and (211) plane by controlling the thickness. All the deposited CIGS thin films show (112) preferred oriented chalcopyrite structures. The films prepared on Mo-coated glass show higher quality crystallinity, better stoichiometry composition and more smooth surface morphology. Especially, the film on (211) oriented Mo-coated glass with the best integrated performance is expected to be a candidate absorber for high-efficiency CIGS solar cell device.

  3. Quaternary depositional history of Providenciales and West Caicos, Turks and Caicos Islands, British West Indies

    Microsoft Academic Search

    B. W. Fouke; B. F. Glenister; P. F. Ressmeyer; D. R. Prezbindowski

    1985-01-01

    The Turks and Caicos Islands represent the SE limit of emergent portions of the Bahamian Platform. Providenciales and West Caicos are low-lying islands, composed of Quaternary marine and eolian carbonates, that lie near the NW margin of the Caicos Bank. Highest elevations of marine skeletal-peletal grainstones on Providenciales are 6m above present s.l.; reefs associated with marine grainstones on West

  4. Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data

    Microsoft Academic Search

    Dennis M. Staley; Thad A. Wasklewicz; Jacek S. Blaszczynski

    2006-01-01

    Debris flows are a common event in mountainous environments. They often possess the greatest potential for destruction of property and loss of lives in these regions. Delimiting the spatial extent of potential damage from debris flows relies on detailed studies of the location of depositional zones. Current research indicates debris flow fans have two distinct depositional zones. However, the two

  5. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (principal investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps at 1:1 million scale are given of two of the study areas, the Peoria and Decatur, Illinois, 1 deg x 2 quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from ERTS-1 images alone, without input of additional data. These maps shown that commonly the boundaries of geologic-terrain units can be identified more accurately on ERTS-1 images than on topographic maps of 1:250,000 scale. From analysis of drainage patterns, stream-divide relations, and tone and textural variations on the ERTS-1 images, the trends of numerous moraines of Wisconsinan and possibly some of Illinoian age were mapped. In the Peoria study area the trend of a buried valley of the Mississippi River is revealed.

  6. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (principal investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be determined primarily by information on landforms and soils (obtained by analysis of stream dissection and drainage and stream-divide patterns, land use patterns, etc.). Maps showing the Quaternary geologic-terrain units that can be distinguished on the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps of 1:1,000,000 scale are included for three of the study areas: the Grand Island and Fremont, Nebraska, and the Davenport, Iowa-Illinois, 1 deg x 2 deg quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from the ERTS-1 images alone, with no additional information. These maps show that commonly the boundaries of geologic-terrain units can be delineated more accurately on ERTS-1 images than on topographic maps at 1:250,000 scale.

  7. Using the Messinian and Plio-Quaternary deposits as markers of the vertical motions in the tectonically inverted Algerian margin

    NASA Astrophysics Data System (ADS)

    Strzerzynski, P.; Lofi, J.; Sage-Khadir, F.; Gaullier, V.; Cattaneo, A.; Déverchère, J.

    2009-12-01

    The Algerian margin represents one of the rare examples of tectonically inverted margins worldwide. The inversion is characterized by blind reverse thrust faults dipping landwards the below the continental slope, and by uplift of the coastal domain. The inversion process is active as evidenced by the offshore seismicity of Algeria (2003 Boumerdes earthquake, Mw 6.9); however the onset of inversion is poorly constrained. The morphology of the Algerian margin results from the interplay between tectonic and sedimentation together with periodic sea level changes during Quaternary. A major sea level fall at the end of Miocene marks the onset of the Messinian Salinity Crisis (MSC). In this study, we focus on a part of the Algerian margin located west of Algiers: the Khair al Din Bank (KADB). The KADB is a major structure interpreted as a tilted block originated during the opening of the Algerian basin in early Miocene. Because of its weak (low) slope, the sedimentary record all along the continental slope is better preserved than in the rest of the Algerian margin. The aim of this study is to constrain deformation and vertical motion of several sedimentary units in order to quantify the amount of uplift and the timing of inversion. We selected for uplift calculations 6 sedimentary units as follows. Sedimentary units onshore are: the highest marine terrace, the marine-continental transition and the MIS 5.5 uplifted beach. Sedimentary units offshore are: the boundary of the upper Unit of the MSC, and the erosion surfaces of the MIS 6 and MIS 2 sea level lowstand. The age of these units ranges between 5.6 Ma and 20 ka BP and permits to estimate the uplift and uplift rates all along the Plio-Quaternary time. Our interpretation is based on geophysical data acquired in 2003 (Maradja 1 cruise). We describe the main characteristics of the MSC erosion surface, i.e. the initial stage, and the sedimentary evolution during the Plio-Quaternary time. During the MSC sea level lowstand, the KADB area formed a deeply incised subaerial area continued in the marine domain by detrital chaotic deposits and evaporitic series. The subaerial domain exhibits a peculiar shape related to the inherited morphology of the passive margin as the river valley flows to the ENE and turns abruptly to the WNW on the mid-slope. In the inner shelf, the sedimentary evolution during Plio-Quaternary time is mostly characterized by the deposition of foresets and the absence of sediment aggradation, suggesting that the sedimentary evolution is dominated by a long term tectonic uplift of the KADB. Plio-Quaternary anticlines are present both onshore and offshore. As these structures do not correspond with crests and valleys of the MCS drainage network, we suggest that folding occurred after the MSC. We estimate maximum uplift values of 400 m for the oldest sedimentary marker suggesting that the inversion of the margin started at least 3.5 Ma ago.

  8. Erosion and deposition on the Pajarito Plateau, New Mexico, and implications for geomorphic responses to late Quaternary climatic changes

    SciTech Connect

    Reneau, S.L.; McDonald, E.V.; Gardner, J.N.; Longmire, P.A. [Los Alamos National Lab., NM (United States); Kolbe, T.R. [Woodward-Clyde Federal Services, Oakland, CA (United States); Carney, J.S. [Kent State Univ., OH (United States). Dept. of Geology; Watt, P.M. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences

    1996-04-01

    The Pajarito Plateau of northern New Mexico contains a rich and diverse record of late Quaternary landscape changes in a variety of geomorphic settings that include gently-sloping mesa tops, steep canyon walls, and canyon bottoms. A broad range of investigations during the past decade, motivated by environmental and seismic hazard concerns, have resulted in examination of the characteristics, stratigraphy, and age of sediments and soils at numerous locations throughout the Plateau. Geochronologic control is provided by >140 radiocarbon dates supplemented by soil characterization and tephrochronology. In this paper we first summarize some of the results of recent and ongoing work on late Quaternary deposits on the Pajarito Plateau, illustrating both the complexity of the geomorphic record and some common elements that have been observed in multiple locations. We then use these observations, in combination with other work in the Southwest, to make some inferences about the local geomorphic response to regional climatic changes. Because the geomorphic and paleoclimatic records are fragmentary, and because the relations between large scale climate changes and local variations in precipitation, vegetation, and geomorphic processes are not fully understood, many uncertainties exist concerning the response of the local landscape to past climatic fluctuations. In addition, variations in local landscape sensitivity related to prior erosional history and spatial variations in vegetation, and the localized nature of many storms, probably contribute to the complexity of the geomorphic record. Nevertheless, the work discussed in this paper suggests a strong relation between regional climatic changes and local geomorphic history, and provides a framework for considering relations between modem processes, the record of past landscape changes, and future erosion and deposition on the Plateau and in surrounding areas.

  9. Late Quaternary environmental changes in the Taklamakan Desert, western China, inferred from OSL-dated lacustrine and aeolian deposits

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Preusser, Frank; Radtke, Ulrich

    2006-05-01

    Sediment records from the Tarim Basin of western China are of great importance for understanding Late Quaternary climatic variability in Central Asia. A chronology of aeolian and lacustrine deposits from the centre and southern margin of the Taklamakan Desert, central Tarim Basin, has been established using optical dating methods. Distinct variations in humidity during the last 40,000 a in this extremely arid inland basin have been identified. Lacustrine sediments were deposited in the centre of the Taklamakan during two periods of wetter than present day conditions at around 2000 and 30,000 a ago. Another humid period is recorded between 40,000 and 30,000 a ago. Aeolian processes, the development of large migrating dune fields dominated during periods of more arid conditions. Sand wedges at the southern margin of the Taklamakan are dated at ca 40,000 a and ca 18,000 a, and imply a significant temperature decrease in that area. Sedimentological evidence for a late Holocene humid period are consistent with records in ancient Chinese literature. Wetter environmental conditions in the past within the Taklamakan, as indicated by the presence of lacustrine deposits, are also supported by data from adjacent regions. It is assumed that changes of global westerlies and of the mobile polar high triggered the fluctuations of precipitation in the study area. However, variations in temperature in the Taklamakan Desert are presumed to be mainly controlled by the intensity of the winter monsoon.

  10. Stratigraphy of late Quaternary estuarine deposits and amino acid stereochemistry of oyster shells beneath San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    Atwater, Brian F.; Ross, Bruce E.; Wehmiller, John F.

    1981-09-01

    The sequence of Quaternary deposits beneath the floor of San Francisco Bay includes four to seven noncontemporaneous estuarine units intercalated with alluvium and dune sand. Units L (0-10,000 B.P.), M (>40,000 B.P., probably ca. 80,000-140,000 B.P.), and N (older than unit M) are distinctly superposed. The dominant molluscan fossil in each of these three units is Ostrea lurida Carpenter, the native oyster along much of the pacific Coast of North America. Despite a lamellar structure that suggests vulnerability to contamination, O. lurida shells generally yield amino acid enantiomeric ratios that are analytically reproducible and stratigraphically consistent. The kinetics of racemization in O. lurida conceivably resembles that of Protothaca and Saxidomus, other bivalves whose kinetics of racemization are relatively well understood. Assuming such a resemblance, enantiomeric ratios in O. lurida imply that (1) unit M is the same approximate age as estuarine terrace deposits bordering San Pablo Bay and Carquinez Strait, providing that the terrace deposits have been at diagenetic temperatures 1°-2°C warmer than unit M; and (2) the age of unit N is about four times greater than that of unit M, providing that both units have been at the same approximate diagenetic temperature.

  11. Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

    NASA Astrophysics Data System (ADS)

    Rufer, Daniel; Preusser, Frank; Schreurs, Guido; Gnos, Edwin; Berger, Alfons

    2014-05-01

    The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe-Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

  12. A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho

    USGS Publications Warehouse

    Desborough, G.A.; Foord, E.E.

    1992-01-01

    A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

  13. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan.

    PubMed

    Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane

    2014-10-01

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center. PMID:25004850

  14. Episode(s) of intense alluvial deposition during an era of drought on Mars: Evidence from fans at Saheki (and Gale?)

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Beyer, R. A.

    2012-12-01

    The martian alluvial fans of the Hesperian-Amazonian period [1,2] may represent a portion of the last widespread episode of large-scale fluvial modification on the red planet's surface. We undertook a detailed study of the fans in the western Terra Tyrrhena region, including geomorphic mapping, calculations of surface ages derived from crater density statistics, estimations of hydrology based on the morphologic parameters of the observed channels, and landform evolution modeling. Understanding the processes and prevalent climatic conditions during fan formation provides key insights into Mars' fluvial history, which continues to remain the premier focus of martian geologic study. The fans feature channel morphologies which indicate that they formed fluvially (as opposed to being debris flows), including the presence of scroll bars and meander bends. These are observed on the fan surface, meaning that the final flows responsible for forming the fan were fluvial. The lack of boulders greater than 0.5m (at which size they would be observed in HiRISE images), the presence of washed out portions of channels, and aeolian inversion of channel topography lead us to conclude that the channel beds are primarily made up of fine grained (sand to granule) sediment. Crater age statistics were computed using [3] software, using the chronology function of [4] and the production function of [5]. All of the fans in the area date to the Hesperian and in some cases as late as the early Amazonian, epochs that otherwise are generally characterized by a cool, dry Mars. This is at around same time period at which the alluvial deposits in Gale Crater may have formed. Natural levees observed on the fan were used to estimate paleochannel width. Channel depth is calculated from an assumed grain size and measured slope. Slopes were obtained from Digital Elevation Models (DEMs) that we have constructed from CTX and HiRISE stereo pairs. We use Manning and Darcy-Weisbach equations to obtain discharge estimates ranging from 2-6 m3/s, comparable with obtained values for similarly sized fans in the Atacama Desert [6]. In order to constrain climatic and geomorphic factors during the epoch of fan formation model we have been developing a numerical landform evolution model to simulate the aggradation of an alluvial fan. Output is statistically compared with our DEMs of the study area. References: [1]Moore, J.M., and A.D. Howard (2005), JGR, 110, E04005, doi:10.1029 / 2004JE002352 [2] Grant, J. A., Wilson, S.A. (2011) GRL, 38, L08201, doi:10.1029/2011- GL046844 [3]Michael G.G., Neukum G. (2010) Earth and Planetary Science Letters. doi: 10.1016/j.epsl.- 2009.12.041 [4]Hartmann, W.K., Neukum, G. (2001) Space Sci. Rev., v96, p. 165-194, doi: 10.1023/A:1011945222010 [5] Ivanov, B.A. (2001) Space Science Reviews 96, p. 87-104 [6] Haug, E.W., Kraal, E.R., Sewall, J.O., Van Dijk, M., Diaz, G.C. (2010) Geomorphology 121, 184-196, doi: 10.1016/j.geomorph.2010.04.005

  15. ELEVATED FOSSIL CORAL DEPOSITS IN THE HAWAIIAN ISLANDS: A MEASURE OF ISLAND UPLIFT IN THE QUATERNARY

    E-print Network

    Luther, Douglas S.

    ELEVATED FOSSIL CORAL DEPOSITS IN THE HAWAIIAN ISLANDS: A MEASURE OF ISLAND UPLIFT Gary McMurtry Johanna Resig #12;ABSTRACT The origin of emerged marine fossils in the Hawaiian Islands waves swept up to 326 m on Lanai and neighboring islands depositing marine fossils 105 ka; (3

  16. Processes of late Quaternary turbidity current flow and deposition on the Var deep sea fan, northwest Mediterranean sea

    SciTech Connect

    Piper, D. (Atlantic Geoscience Centre, Dartmouth, Nova Scotia (Canada)); Savoye, B. (IFREMER, Plouzane (France))

    1993-09-01

    Late Quaternary sedimentation patterns on the Var deep-sea fan are known from high-resolution seismic boomer profiles (vertical resolution < 1 m), piston cores, SAR side-scan sonargraphs, and submersible dives. Foram biostratigraphy and radiocarbon dating provide chronologic control that is seismically correlated across the fan. Regional erosional events correspond to the isotopic state 2 and 6 glacial maxima. A widespread surface sand layer was deposited from the 1979 turbidity current, which broke two submarine cables. Numerical modeling constrains its character. A small slide on the upper prodelta developed into an accelerating turbidity current, which eroded sand from the Var canyon. The current was 30 m thick in the upper valley, expanding downflow to >120 m, where it spilled over the eastern Var sedimentary ridge at a velocity of 2.5 ms[sup [minus]1]. Other Holocene turbidity currents (with a 103-yr recurrence interval) were muddier and thicker, but also deposited sand on middle fan-valley levees and are inferred to have had a similar slide-related origin. Late Pleistocene turbidity currents deposited on the high Var sedimentary ridge. The presence of sediment waves and the cross-flow slope inferred from levee asymmetry indicate that some flow were hundreds of meters thick, with velocities of 0.35 ms[sup [minus]1]. Estimated times for deposition of thick levee mud beds are many days or weeks. Late Pleistocene flows therefore are interpreted to result from hyperpycnal flow of glacial outwash in the Var River. Variation in late Pleistocene-Holocene turbidite sedimentation thus is controlled more by changes in sediment supply than by sea level.

  17. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    NASA Astrophysics Data System (ADS)

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In addition, two units of the latter (i.e., PB1 and PB2) previously mapped in the field were promptly separated based on Th concentration. A regression analysis indicated that the relationship between geophysical and geochemical values obtained for the PB1, PB2 and Barreiras Formation is significant (R-squared = 0.91; p-value <0.05). Map validation presented a high overall accuracy of 84%, with a coefficient of quantity disagreement of 12% and a coefficient of allocation disagreement of 8%. These results indicate that the methodology applied in the central onshore Paraíba Basin can be successfully used for mapping the Barreiras Formation and Post-Barreiras Sediments in other areas of the Brazilian coast. The ability to rapidly and precisely map these units using such methodology could reveal their geographic distribution along the northeastern coast of Brazil.

  18. The Effect of Shallow Quaternary Deposits on the Shape of the H/V Spectral Ratio

    NASA Astrophysics Data System (ADS)

    Macau, A.; Benjumea, B.; Gabàs, A.; Figueras, S.; Vilà, M.

    2015-01-01

    In the last two decades, the horizontal-to-vertical (H/V) spectral ratio of seismic noise technique has been widely used for site-effect estimation and geophysical exploration through the soil fundamental frequency. Usually, only one peak is observed in the H/V spectral ratio, but in some cases, a second peak can also be obtained. Nevertheless, to date, the peaks at higher frequencies are rarely studied in detail. Geological and geophysical data are especially needed to better explain the presence of this second peak, which normally is neglected. An extensive survey of H/V measurements was conducted in the Llobregat river delta, located to the south of Barcelona. At most sites, two clear peaks were identified: one at low frequencies (<1 Hz) and the other at higher frequencies (>1 Hz). To understand this behaviour, a seismic noise array and active surface wave measurements have been conducted to obtain a shear-wave velocity profile ( V s) up to the bedrock. Two impedance contrasts have been detected: the first one at a shallow depth and the second one between the soft sedimentary cover and the bedrock. During the modelling process, the theoretical H/V computed from the obtained V s models fits well with the experimental H/V peaks. The results from this study show that the structure of shallow quaternary layers can clearly change the shape of the H/V ratio, producing two clear peaks in some situations. In this case, the contact between the low-velocity clay layer and the gravels with a high seismic wave velocity produces a shallow impedance contrast related to the second peak observed in the H/V ratio. Comprehension of these secondary peaks could avoid a misreading of the soil fundamental frequency that could produce errors in a site-effect evaluation or in the calculation of the bedrock depth. Finally, we show that passive seismic techniques provide the quaternary overburden and bedrock geometry in urban areas and allow for the limitations of other geophysical techniques in these environments to be overcome.

  19. The Effect of Shallow Quaternary Deposits on the Shape of the H/V Spectral Ratio

    NASA Astrophysics Data System (ADS)

    Macau, A.; Benjumea, B.; Gabàs, A.; Figueras, S.; Vilà, M.

    2014-09-01

    In the last two decades, the horizontal-to-vertical (H/V) spectral ratio of seismic noise technique has been widely used for site-effect estimation and geophysical exploration through the soil fundamental frequency. Usually, only one peak is observed in the H/V spectral ratio, but in some cases, a second peak can also be obtained. Nevertheless, to date, the peaks at higher frequencies are rarely studied in detail. Geological and geophysical data are especially needed to better explain the presence of this second peak, which normally is neglected. An extensive survey of H/V measurements was conducted in the Llobregat river delta, located to the south of Barcelona. At most sites, two clear peaks were identified: one at low frequencies (<1 Hz) and the other at higher frequencies (>1 Hz). To understand this behaviour, a seismic noise array and active surface wave measurements have been conducted to obtain a shear-wave velocity profile (V s) up to the bedrock. Two impedance contrasts have been detected: the first one at a shallow depth and the second one between the soft sedimentary cover and the bedrock. During the modelling process, the theoretical H/V computed from the obtained V s models fits well with the experimental H/V peaks. The results from this study show that the structure of shallow quaternary layers can clearly change the shape of the H/V ratio, producing two clear peaks in some situations. In this case, the contact between the low-velocity clay layer and the gravels with a high seismic wave velocity produces a shallow impedance contrast related to the second peak observed in the H/V ratio. Comprehension of these secondary peaks could avoid a misreading of the soil fundamental frequency that could produce errors in a site-effect evaluation or in the calculation of the bedrock depth. Finally, we show that passive seismic techniques provide the quaternary overburden and bedrock geometry in urban areas and allow for the limitations of other geophysical techniques in these environments to be overcome.

  20. Late Quaternary eolian dust in surficial deposits of a Colorado Plateau grassland: Controls on distribution and ecologic effects

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.C.; Neff, J.C.; Goldstein, H.; Yount, J.

    2006-01-01

    In a semi-arid, upland setting on the Colorado Plateau that is underlain by nutrient-poor Paleozoic eolian sandstone, alternating episodes of dune activity and soil formation during the late Pleistocene and Holocene have produced dominantly sandy deposits that support grass and shrub communities. These deposits also contain eolian dust, especially in paleosols. Eolian dust in these deposits is indicated by several mineralogic and chemical disparities with local bedrock, but it is most readily shown by the abundance of titaniferous magnetite in the sandy deposits that is absent in local bedrock. Magnetite and some potential plant nutrients (especially, P, K, Na, Mn, and Zn) covary positively with depth (3-4 m) in dune-crest and dune-swale settings. Magnetite abundance also correlates strongly and positively with abundances of other elements (e.g., Ti, Li, As, Th, La, and Sc) that are geochemically stable in these environments. Soil-property variations with depth can be ascribed to three primary factors: (1) shifts in local geomorphic setting; (2) accumulation of relatively high amounts of atmospheric mineral dust inputs during periods of land-surface stability; and (3) variations in dust flux and composition that are likely related to changes in dust-source regions. Shifts in geomorphic setting are revealed by large variations in soil texture and are also expressed by changes in soil chemical and magnetic properties. Variable dust inputs are indicated by both changes in dust flux and changes in relations among magnetic, chemical, and textural properties. The largest of these changes is found in sediment that spans late Pleistocene to early Holocene time. Increased dust inputs to the central Colorado Plateau during this period may have been related to desiccation and shrinkage of large lakes from about 12 to 8 ka in western North America that exposed vast surfaces capable of emitting dust. Soil properties that result from variable dust accumulation and redistribution in these surficial deposits during the late Quaternary are important to modern ecosystem dynamics because some plants today utilize nutrients deposited as long ago as about 12-15 ky and because variations in fine-grained (silt) sediment, including eolian dust, influence soil-moisture capacity.

  1. Quaternary depositional history of Providenciales and West Caicos, Turks and Caicos Islands, British West Indies

    SciTech Connect

    Fouke, B.W.; Glenister, B.F.; Ressmeyer, P.F.; Prezbindowski, D.R.

    1985-01-01

    The Turks and Caicos Islands represent the SE limit of emergent portions of the Bahamian Platform. Providenciales and West Caicos are low-lying islands, composed of Quaternary marine and eolian carbonates, that lie near the NW margin of the Caicos Bank. Highest elevations of marine skeletal-peletal grainstones on Providenciales are 6m above present s.l.; reefs associated with marine grainstones on West Caicos are 3-4m above s.l., and allowing for growth in several meters water depth support interpretation of maximum s.l. as +6m. Marine sediments are dated as approximately 50,000 C14 Years B.P. This suggests correlation with the mid-Wisconsin s.l. maximum and implies tectonic instability. Eolian dunes achieve an elevation of 48 m on Providenciales, where they are differentiated into five systems based on geomorphology and grain composition. Oolites, now generated exclusively in the narrow swash-zone, predominate on the Bank side whereas coated pellets and skeletal grains characterize calcarenites formed in the seaward reef tract. Fall in s.l. to the late Wisconsin minimum (17,000 years, perhaps -120m) generated successively lower arcs of dunes as carbonate productivity decreased, and resulted in subaerial diagenesis as the entire Bank emerged. Spectacular karst formation during the late Wisconsin as well as earlier s.l. lows provided conduits that allow restricted marine faunas to flourish in inland lakes and sink holes.

  2. Extreme Flood-Driven Dynamics of a mixed bedrock-alluvial Influenced Semi-Arid River

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Tooth, S.; Milan, D. J.

    2013-12-01

    Many of the large rivers draining southern Africa are characterised by incised bedrock ';macrochannels' cut 10-20 m into ancient planation surfaces but with variable amounts of unconsolidated sediment infill. Variations in lithology, structure, flow regime, sediment supply, and vegetation assemblages have created morphologically diverse river systems, many of which have been characterised by extended periods of alluviation on an historic timescale, thereby leading to the development of an increasingly alluviated set of channel types that commonly mask the underlying bedrock. However, cyclone-driven extreme flows are known to cause extensive erosion along these systems and may exert the primary control over their morphologic development. This paper reports on two significant cyclone events (2000 and 2012) that have impacted on the rivers of the Kruger National Park, with floods on the Sabie and Olifants estimated as among the largest documented Holocene floods for any South African river. Prior to the floods, both rivers displayed a diverse but well-ordered set of channel types (e.g. braided, anastomosed), with considerable lengths of both systems exhibiting fully alluvial conditions. Evaluation of post-flood aerial imagery has shown that the extreme flows have stripped this sediment, exposing and eroding the underlying weathered bedrock, particularly along the Olifants. This response suggests that although alluviation occurs over short timescales, the systems remain highly susceptible to alluvial and bedrock erosion during extreme floods. This is demonstrated by the results of a 2D hydraulic modelling study of the rivers. Simulation of the peak flood flow conditions shows that extreme shear stresses capable of eroding cohesive, well-vegetated sediments were predicted extensively within the macrochannels. Where remnant deposits remained from the 2000 floods, these areas were seen to be particularly vulnerable to erosion in the 2012 floods, due principally to their increased exposure to fluid forces. The ephemeral nature of the sediment infill is also supported by OSL dating, with preliminary ages from remnant bars, islands and floodplains suggesting that no deposits older than around 500 years can be found along the rivers. Together, the results imply that although periods of extensive alluviation may have been witnessed historically, on a longer (late Quaternary) timescale the alluvial morphologies are frequently reworked, with the geological setting and extreme climatic influence creating conditions conducive to the continuing erosion and development of the bedrock macrochannel template.

  3. Geophysical and Hydrological Characterization of Alluvial Fans in the Valle El Sauz Encinillas, Chihuahua, México.

    NASA Astrophysics Data System (ADS)

    Villalobos-Aragón, A.; Chávez-Aguirre, R.; Osuna-Vizcarra, A.; Espejel-García, V. V.

    2007-05-01

    The Valle El Sauz Encinillas (VESE) is located 92 km north of Chihuahua City, México. Despite being the principal aquifer feeding Chihuahua City, and being flanked by two well studied geological features (Bloque Calera-Del Nido to the West, and the Sierra Peña Blanca to the East), a lack of available hydrogeological data prevails in the valley. The goals of this study are two: 1) geomorphometrical analysis of the sub-basins and alluvial fans, and 2) determination of the alluvial fan geoelectrical units via electrical-resistivity soundings. The Basin and Range system forms a closed sub-basin with a lacustrine basin system in extinction process. The aquifer is located in alluvial Quaternary sediments, with varying granulometry, reaching a thickness of 600 meters at the center of the valley. The biggest alluvial fan in the VESE is located at the Cañón de Santa Clara, and intersects the playa-lake deposits of the Laguna de Encinillas. This fan has a surface of 73.2 km2 and an average slope of 0.437°. The geomorphometrical analysis included the sub-basins, currents, and the fans in the area. These analyses allow a comparison between alluvial fans in the VESE and those in Death Valley, California, USA. The alluvial fans in both areas show a similar behavior in all plots. Twenty electrical resistivity soundings (Schlumberger array, AB/2 distance of 400 m) were performed in the alluvial fan. The basement and four other geoelectrical units were identified in the fan. The geophysical data, granulometric determinations, plus geochemical information of twelve wells in the area were analyzed. These data show how the decrease in granulometry, both frontally and laterally in the fan, results in a rise of the hydraulic conductivity and transmisivity values (water wells in Los Sauces and El Faro). However, both the permeability and the water quality in its distal portion, are affected by the playa lake deposits, the raising ratio of clay-size sediments (and evaporites) in the center of the valley, near to Laguna de Encinillas.

  4. Overview of some Colombian gold deposits and their development potential

    NASA Astrophysics Data System (ADS)

    Rodriguez, C.; Warden, A. J.

    1993-01-01

    Source rock gold deposits in Colombia include Proterozoic unconformity-related paleoplacers, Palaeozoic stratabound Au/Ag-Cu-Pb-V-U red bed-type ores, and Mesozoic/Tertiary hydrothermal vein systems of Cordilleran magmatic arcs. The younger metallogenic episode occurred some 8 Ma ago in the Western Cordillera. Epithermal deposits are generally small (> 10,000 1 Mt grading 5 10 g/t Au) and the precious-base metal (Cu, Zn, Fe) association was probably deposited within the temperature range 180 300 °C. Widespread palaeoplacers in Quaternary terraces with enrichment in old channels, as well as extensively dredged alluvial deposits in presently active sediments, are connected with ongoing Andean uplift and erosion. Palaeochannel and alluvial gold concentrations represent the most promising targets for future exploration. An additional output could also derive from the clastic-hosted, stratiform deposits of the shield and E Cordillera.

  5. Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California

    USGS Publications Warehouse

    Wells, S.G.; McFadden, L.D.; Dohrenwend, J.C.

    1987-01-01

    Radiocarbon dating of late Quaternary deposits and shorelines of Lake Mojave and cation-ratio numerical age dating of stone pavements (Dorn, 1984) on the adjacent Soda Mountains piedmont provide age constraints for alluvial and eolian deposits. These deposits are associated with climatically controlled stands of Lake Mojave during the past 15,000 yr. Six alluvial fan units and three eolian stratigraphic units were assigned ages based on field relations with dated shorelines and piedmont surfaces, as well as on soil-geomorphic data. All but one of these stratigraphic units were deposited in response to time-transgressive climatic changes beginning approximately 10,000 yr ago. Increased eolian flux rates occurred in response to the lowering of Lake Mojave and a consequent increase in fine-sediment availability. Increased rates of deposition of eolian fines and associated salts influenced pedogenesis, stone-pavement development, and runoff-infiltration relations by (1) enhancing mechanical weathering of fan surfaces and hillslopes and (2) forming clay- and silt-rich surface horizons which decrease infiltration. Changes in alluvial-fan source areas from hillslopes to piedmonts during the Holocene reflect runoff reduction on hillslopes caused by colluvial mantle development and runoff enhancement on piedmonts caused by the development of less-permeable soils. Inferred increased in early to middle Holocene monsoonal activity resulted in high-magnitude paleo-sheetflood events on older fan pavements; this runoff triggered piedmont dissection which, in turn, caused increased sediment availability along channel walls. Thus, runoff-infiltration changes during the late Quaternary have occurred in response to eolian deposition of fines, pedogenesis, increased sheetflood activity in the Holocene, and vegetational changes which are related to many complicated linkages among climatic change, lake fluctuations, and eolian, hillslope, and alluvial-fan processes. ?? 1987.

  6. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia

    Microsoft Academic Search

    L. Scott Eaton; Benjamin A. Morgan; R. Craig Kochel; Alan D. Howard

    2003-01-01

    A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen

  7. 75 FR 62137 - Notice of Public Meeting; Proposed Alluvial Valley Floor Coal Exchange Public Interest Factors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ...Public Meeting; Proposed Alluvial Valley Floor Coal Exchange Public Interest Factors; Montana...to consider a proposal to exchange Federal coal deposits for Alluvial Valley Floor (AVF) fee coal pursuant to the Federal Land Policy and...

  8. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  9. Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska

    Microsoft Academic Search

    Christian S. de Fontaine; Darrell S. Kaufman; R. Scott Anderson; A. Werner; Christopher F. Waythomas; Thomas A. Brown

    2007-01-01

    Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1–5 mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the

  10. Uranium-series dating of carbonate (tufa) deposits associated with quaternary fluctuations of Pyramid Lake, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Bush, C.A.; Benson, L.V.

    1996-01-01

    Uranium-series dating of dense tufa deposited in a small cave, at former lake margins, and in large tufa mounds clarifies the timing of lake-level variation during the past 400,000 yr in the Pyramid Lake basin. A moderate-sized lake occasionally overflowed the Emerson Pass sill at elevation of ???1207 m between ca. 400,000 and 170,000 and from ca. 60,000 to 20,000 yr B.P., as shown by 230Th/234U ages of the cave samples, 230Th-excess ages of tubular tufas, and average isochron-plot ages of shoreline-deposited tufas. (By comparison, modern Pyramid Lake is ???50 m below this sill). There is a lack of tufa record during the intervening period from ca. 170,000 to 60,000 yr B.P. After ca. 20,000 yr, Pyramid Lake underwent abrupt changes in level and, based on previous 14C ages, reached its highest elevation (ca 1335 m) at ca. 14,000 yr B.P. The youngest uranium-series ages are comparable with previously reported 14C ages. ?? 1996 University of Washington.

  11. Lithology, mineralogy, and paleontology of Quaternary lake deposits in Long Valley Caldera, California

    USGS Publications Warehouse

    Fournier, R.B.

    1989-01-01

    Drill cores and cuttings from two drill holes, about 3 km apart, in Long Valley caldera, Mono County, California, were studied using x-ray diffraction and optical methods. A thick sequence of tuffs and lake sediments was encountered in LVCH-1 (1,000 ft deep) and Republic well 66-29 (6,920 ft deep), drilled in the southeast part of the Long Valley caldera. Ostracods, diatoms, and isotopic data indicate that the sediments and tuffs were deposited in a shallow caldera lake which changed in salinity over time. Conditions ranged from very saline in the older lake to fresh in the youngest. The sequence of secondary minerals from top to bottom is: clinoptilolite, mordenite, analcime, K-feldspar (and albite). In some geothermal systems, this sequence of secondary minerals is a function of temperature; however, the paleontological and isotopic data indicate that the change in secondary minerals with increasing depth is due to the older strata being deposited in a more saline environment. No mineralogical evidence of hydrothermal alteration is present, although the high lithium content of some clays and feldspars and the isotopic composition of some sulfate (gypsum) seems to require a hydrothermal source. (Lantz-PTT)

  12. Cosmogenic 3He age estimates of Plio-Pleistocene alluvial-fan surfaces in the Lower Colorado River Corridor, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Fenton, Cassandra R.; Pelletier, Jon D.

    2013-01-01

    Plio-Pleistocene deposits of the Lower Colorado River (LCR) and tributary alluvial fans emanating from the Black Mountains near Golden Shores, Arizona record six cycles of Late Cenozoic aggradation and incision of the LCR and its adjacent alluvial fans. Cosmogenic 3He (3Hec) ages of basalt boulders on fan terraces yield age ranges of: 3.3-2.2 Ma, 2.2-1.1 Ma, 1.1 Ma to 110 ka, < 350 ka, < 150 ka, and < 63 ka. T1 and Q1 fans are especially significant, because they overlie Bullhead Alluvium, i.e. the first alluvial deposit of the LCR since its inception ca. 4.2 Ma. 3Hec data suggest that the LCR began downcutting into the Bullhead Alluvium as early as 3.3 Ma and as late as 2.2 Ma. Younger Q2a to Q4 fans very broadly correlate in number and age with alluvial terraces elsewhere in the southwestern USA. Large uncertainties in 3Hec ages preclude a temporal link between the genesis of the Black Mountain fans and specific climate transitions. Fan-terrace morphology and the absence of significant Plio-Quaternary faulting in the area, however, indicate regional, episodic increases in sediment supply, and that climate change has possibly played a role in Late Cenozoic piedmont and valley-floor aggradation in the LCR valley.

  13. Stratigraphy and U-series geochronology of Late Quaternary megatsunami deposits in Hawaii

    NASA Astrophysics Data System (ADS)

    McMurtry, G. M.; Fryer, G. J.; Tappin, D. R.; Fietzke, J.

    2008-12-01

    Our previous work on Kohala, Hawaii, established that the elevated marine basalt boulder conglomerates found there represent at least one, and probably two megatsunami events in the late Pleistocene. Together with the evidence for giant submarine landslides off western Hawaii island from contemporaneous flank failures of Mauna Loa volcano and identical sequences of submarine terraces off the NW coasts of the islands of Hawaii and Lanai, our hydrodynamic modeling indicates that all islands in the Hawaiian chain must have been affected by these giant waves. We present new dating of these deposits on Hawaii, Lanai and Maui islands together with stratigraphic interpretations of their impacts and origins. We used uranium-series dating of in situ coral clasts to constrain the age of the marine conglomerates, using multiple ion counting- inductively coupled plasma-mass spectrometry techniques, and used 87Sr/86Sr ratios of carbonates to help delineate their origins where marine fossils were absent. Southern Lanai records at least four megatsunami events: at 110 ka, 135 ka, 200 ka, and 240 ka, that likely correspond to the Alika phase 2, Alika phase 1, and two stages of the older South Kona giant submarine landslides. These event dates also correspond to O- isotopic stages 5d, 5e, 7a and 7b, and are in agreement with a changing-climate trigger mechanism for volcanic flank collapse proposed in previous work by ourselves and others. On southern Lanai, there is evidence for two megatsunami deposits in stratigraphic succession in the vicinity of Manele Bay, as well as higher-elevation deposits there containing reworked coral-bearing debris from two older megatsunami events. Coral clasts have been dated from all four events within the high-elevation gullies within Kaluakapo Crater on southern Lanai in this study and Moore and Moore (1988), indicating enormous runups to more than 626 m and wave heights of more than 240 m there that are in agreement with the latest hydrodynamic modeling. There is presently evidence for the 110 ka event on Hawaii, Lanai and West Maui, and for the 200 ka and 240 ka events on the islands of Lanai, Molokai and probably Hawaii. The 135 ka event has so far only been recorded on southern Lanai, but will likely turn up in future work elsewhere.

  14. Isopachs of Quaternary deposits, Fremont 1- by 2- degree Quadrangle and part of Omaha Quadrangle, Nebraska, digitized from a published 1:250,000-scale geologic map

    USGS Publications Warehouse

    Zelt, R.B.; Patton, E.J.

    1995-01-01

    A geologic map showing the isopachs of Quaternary deposits in the Fremont and part of the Omaha, Nebraska, 1- by 2-degree quadrangles was published at a scale of 1:250,000 in 1975 (Burchett and others, 1975). This report describes the conversion of Quaternary thickness data into a digital geographic data set. A film separation of the published isopachs was scan-digitized and processed to produce digital geographic data. Geographic feature attributes and data-set documentation also are included in the digital data set. The digital data set are formatted for distribution with accordance with the Spatial Data Transfer Standard approved by the U.S. National Institute of Standards and Technology.

  15. Geophysical Characterization of the Quaternary-Cretaceous Contact Using Surface Resistivity Methods in Franklin and Webster Counties, South-Central Nebraska

    USGS Publications Warehouse

    Teeple, Andrew P.; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.

    2009-01-01

    To help manage and understand the Platte River system in Nebraska, the Platte River Cooperative Hydrology Study (COHYST), a group of state and local governmental agencies, developed a regional ground-water model. The southern boundary of this model lies along the Republican River, where an area with insufficient geologic data immediately north of the Republican River led to problems in the conceptualization of the simulated flow system and to potential problems with calibration of the simulation. Geologic descriptions from a group of test holes drilled in south-central Nebraska during 2001 and 2002 indicated a possible hydrologic disconnection between the Quaternary-age alluvial deposits in the uplands and those in the Republican River lowland. This disconnection was observed near a topographic high in the Cretaceous-age Niobrara Formation, which is the local bedrock. In 2003, the U.S. Geological Survey, in cooperation with the COHYST, collected surface geophysical data near these test holes to better define this discontinuity. Two-dimensional imaging methods for direct-current resistivity and capacitively coupled resistivity were used to define the subsurface distribution of resistivity along several county roads near Riverton and Inavale, Nebraska. The relation between the subsurface distribution of resistivity and geology was defined by comparing existing geologic descriptions of test holes to surface-geophysical resistivity data along two profiles and using the information gained from these comparisons to interpret the remaining four profiles. In all of the resistivity profile sections, there was generally a three-layer subsurface interpretation, with a resistor located between two conductors. Further comparison of geologic data with the geophysical data and with surficial features was used to identify a topographic high in the Niobrara Formation near the Franklin Canal which was coincident with a resistivity high. Electrical properties of the Niobrara Formation made accurate interpretation of the resistivity profile sections difficult and less confident because of similar resistivity of this formation and that of the coarser-grained sediment of the Quaternary-age deposits. However, distinct conductive features were identified within the resistivity profile sections that aided in delineating the contact between the resistive Quaternary-age deposits and the resistive Niobrara Formation. Using this information, an interpretive boundary was drawn on the resistivity profile sections to represent the contact between the Quaternary-age alluvial deposits and the Cretaceous-age Niobrara Formation. A digital elevation model (DEM) of the top of the Niobrara Formation was constructed using the altitudes from the interpreted contact lines. This DEM showed that the general trend of top of the Niobrara Formation dips to the southeast. At the north edge of the study site, the Niobrara Formation topographic high trends east-west with an altitude range of 559 meters in the west to 543 meters in the east. Based on the land-surface elevation and the Niobrara Formation DEM, the estimated thickness of the Quaternary-age alluvial deposits throughout the study area was mapped and showed a thinning of the Quaternary-age alluvial deposits to the north, approximately where the topographic high of the Niobrara Formation is located. This topographic high in the Niobrara Formation has the potential to act as a barrier to ground-water flow from the uplands alluvial aquifer to the Republican River alluvial aquifer as shown in the resistivity profile sections. The Quaternary-age alluvial deposits in the uplands and those in the Republican River Valley are not fully represented as disconnected because it is possible that there are ground-water flow paths that were not mapped during this study.

  16. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    SciTech Connect

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  17. Integrative geomorphological mapping approach for reconstructing meso-scale alluvial fan palaeoenvironments at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Majid Padashi, Seyed; Baumhauer, Roland

    2013-04-01

    Alluvial fans and aprons are common depositional features in general Iranian geomorphology. The countries major cities as well as settlements and surrounding area have often been developed and been built up on this Quaternary sediment covers. Hence they periodically face the effects of varying fluvial and slope-fluvial activity occurring as part of this geosystem. The Geological Survey of Iran therefore supports considerable efforts in Quaternary studies yielding to a selection of detailed mapped Quaternary landscapes. The studied geomorphologic structures which are settled up around an endorheic basin in Semnan Province represent a typical type of landform configuration in the area. A 12-km-transect was laid across this basin and range formation. It is oriented in north-south direction from the southern saltpan, called "Kavir-e-Haj Aligholi"/"Chah-e-Jam" ("Damghan Kavir"), across a vast sandy braided river plain, which is entering from the north east direction of the city of Shahroud. At its northern rim it covers alluvial sediment bodies, which are mainly constituted by broad alluvial aprons, fed by watersheds in Alborz Mountains and having their genetic origins in Mio-/Pliocene times. During this study a fully analytical mapping system was used for developing a geodatabase capable of integrating geomorphological analyses. Therefore the system must provide proper differentiation of form, material and process elements as well as geometric separation. Hence the German GMK25 system was set up and slightly modified to fit to the specific project demands. Due to its structure it offers most sophisticated standards and scale independent hierarchies, which fit very well to the software-determinated possibilities of advanced geodatabase applications. One of the main aspects of mapping Quaternary sediments and structures is to acquire a proper description and systematic correlation and categorization of the belonging mapping-objects. Therefore the team from GSI and University of Würzburg performs additional geochronologic and stratigraphic studies of different alluvial surfaces in the investigation area. Relative and absolute dating methods are applied, as well as non-invasive and invasive methods for studying subsurface sedimentation and layering. The ongoing mapping work has revealed a progradational sequence of at least five more or less dissected surfaces of alluvial deposits. These can be distinguished by optically taken morphometric and spectrometric parameters and material reflectance using remote sensing imagery data. An important role for geomorphometric measurements and landform identification was occupied by DEM data. In the field these parameters could be correlated with differently developed covers of desert pavement, and changes in curvature, roughness and levels of sediment surfaces. The studied alluvium has been formed by several phases of debris flow activity and braided river dynamics over a distance of more than 3.5 km and is reworked recently. Gradual differences in structure and form may be linked to changes in depositional process and quaternary environmental development as well as neotectonic activity. Future correlation between alluvium and sediment cores from the playa is targeting on better understanding of depositional milieus during activity phases.

  18. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    NASA Astrophysics Data System (ADS)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are the two main vectors of schistosomiasis in northeast Africa, suggests that this parasitic disease could become endemic across the valley. Any future plans to manage the Juba River need to take proper account of alluvial history and geomorphic processes.

  19. Late Quaternary sediment deposition of core MA01 in the Mendeleev Ridge, the western Arctic Ocean: Preliminary results

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyu; Kim, Sunghan; Khim, Boo-Keun; Xiao, Wenshen; Wang, Rujian

    2014-05-01

    Late Quaternary deep marine sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers (Poore et al., 1999; Polyak et al., 2004). Previous studies reported that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~450 ka) of core MA01 was tentatively estimated by correlation of brown layers with an adjacent core HLY0503-8JPC (Adler et al., 2009). A total of 22 brown layers characterized by low L* and b*, high Mn concentration, and abundant foraminifera were identified. Corresponding gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which occurred with the coarse-grained (>0.063 mm) fractions (i.e., IRD) both in brown and gray layers. IRDs are transported presumably by sea ice for the deposition of brown layers and by iceberg for the deposition of gray layers (Polyak et al., 2004). A strong correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, which suggests that the fine-grained particles in the Mendeleev Ridge are transported from the north coast Alaska and Canada where Mesozoic and Cenozoic strata are widely distributed. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that the TOC and CaCO3 peaks are obviously distinct in the upper part of core MA01, whereas these peaks are reduced in the lower part of the core. More study on these contrasting features is in progress. References Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E.T., Xuan, C., Grottoli, A.G., Sellén, E., and Crawford, K.A., 2009. Global and Planetary Change 68(1-2), 18-29. Polyak, L., Curry, W.B., Darby, D.A., Bischof, J., and Cronin, T.M., 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 73-93. Poore, R., Osterman, L., Curry, W., and Phillips, R., 1999. Geology 27, 759-762.

  20. Increased storminess during MIS3 altered the late Quaternary basin-scale weathering, erosion, and deposition in Nahal Yael, hyperarid Negev, Israel

    NASA Astrophysics Data System (ADS)

    Enzel, Y.; Amit, R.; Grodek, T.; Ayalon, A.; Lekach, J.; Porat, N.; Bierman, P. R.; Blum, J. D.; Erel, Y.

    2012-12-01

    A conceptual model for geomorphic response to Pleistocene to Holocene climate change (Bull and Schick, 1979, Quat. Res. 11: 153-171) was probably based on earlier observations in the southwestern US, but first applied to the hyperarid (<30 mm yr-1) Nahal Yael watershed, southern Negev desert. This influential model includes a chain of events following a climate change from semiarid late Pleistocene to hyperarid Holocene: reduced vegetation cover, increased yield of sediments from slopes, and accelerated aggradation of terraces and export of sediment from the basin to deposit an alluvial fan. The model is now >30 years old and during this time chronologic, paleoenvironmental and hydrogeomorphic research have all advanced but the discussions are still within the framework put forward then. The model is revaluated here by using data acquired in Nahal Yael over the 30 years since the original model was proposed. Recent studies indicate late Pleistocene climate was hyperarid and the transition from semiarid to hyperarid climates did not occur. The revised chronology reveals a 35-20 ka episode (probably already beginning at ~50 ka with lower rates) of accelerated weathering and sediment production and distinct talus accretion on slopes. Coeval with accretion on slopes, sediments were also transported and aggraded in fluvial terraces and alluvial fans, without noticeable lag time or a chain of discernable events. This intensified sediment production and delivery phase is unrelated to the Pleistocene-Holocene transition. The depositional landforms were rapidly incised during 20-18 ka; since this approximately LGM incision, sediment yield is from the storage in these depositional landforms and is not produced from bedrock in significant quantities. We propose that in such hyperarid environment, the main operators are individual extreme storms, and in this case specifically an episode of frequent storms and floods is the driver of change regardless the mean climatic conditions. It created a pulse of intense weathering due to numerous cycles of wetting and drying on slopes and sediment transport to fluvial terraces and alluvial fans; its impact continues all the way to the present. We suggest that even if aspects of the original conceptual model of Bull and Schick (1979) are correct, it has been applied too frequently, too generally, across very diverse arid climates and settings, and for too long in lieu of collecting new data at a full basin scale and testing the model.

  1. Holocene flood plain soil formation in the lower Mississippi River Valley: Implications for the interpretation of alluvial paleosols

    SciTech Connect

    Aslan, A. (Univ. of Colorado, Boulder, CO (United States). Dept. of Geological Sciences); Autin, W.J. (Louisiana Geological Survey, Baton Rouge, LA (United States))

    1992-01-01

    Holocene Mississippi River flood soils representing different depositional environments and ages were sampled along three east-west transects between Vicksburg, MS and Baton Rouge, LA. Flood plain soil development is primarily controlled by episodic flood plain sedimentation and ground water table fluctuations as evidenced by relatively thick cumulative soil profiles with abundant mottles, nodules, and slickensides. Within flood plain deposits of similar age, profile, development is best expressed in moderately-drained silty and sandy soils in natural levee and point bar ridge environmental that occur within and adjacent to meander belts. Soils in natural levee and point bar ridge environments greater than 3 ka generally are acidic and have better-developed Bt horizons and brighter mottles than their younger counterparts. In addition to being acidic and brightly mottled, older back swamp soils have larger and more abundant slickensides and iron nodules. This study suggests that alluvial paleosols formed in aggradational settings may be better suited for interpreting flood plain depositional histories and paleohydrology than climate. Parameters such as solum thickness and clay and carbonate accumulations, routinely used to estimate relative time and climatic effects on soil development in Quaternary studies of stable geomorphic surfaces, may not be applicable to ancient alluvial deposits that reflect continuous sediment aggradation.

  2. Flood series data for the later Holocene: Available approaches, potential and limitations from UK alluvial sediments

    Microsoft Academic Search

    A. F. Jones; J. Lewin; M. G. Macklin

    2010-01-01

    Flood sediments characterise the alluvial record, though the series of floods these deposits record is a complex one because of variable deposition in different alluvial subenvironments. To date, flood sequences in the UK have been analysed using upland boulder berms, vertically accreting fills in contracting channels, cutoff fills and flood basin deposits. These cover different timespans ranging from c. 100—300

  3. Chronostratigraphic and paleoclimatic data for Quaternary loessial and fluvial deposits in the Mississippi River Valley of Arkansas and Tennessee

    Microsoft Academic Search

    H. W. Markewich; H. T. Jr. Millard; M. J. Pavich; D. T. Rodbell; F. J. Rich; E. M. Rutledge; L. Ward; S. Van Valkenberg; D. Wysocki

    1992-01-01

    Ongoing investigations into Quaternary paleoclimates of the Mississippi River Valley in eastern Arkansas and western Tennessee include age estimations using [sup 14]C, [sup 10]Be, thermoluminescent (TL), and optically stimulated luminescent (OSL) analyses; compositional studies using petrographic and diffractometer analyses; pedological analyses with complete characterization studies; and magnetic susceptibility measurements with laboratory analyses to investigate the source of the magnetism. Preliminary

  4. Erosion and deposition on the Pajarito Plateau, New Mexico, and implications for geomorphic responses to late Quaternary climatic changes

    Microsoft Academic Search

    S. L. Reneau; E. V. McDonald; J. N. Gardner; P. A. Longmire; T. R. Kolbe; J. S. Carney; P. M. Watt

    1996-01-01

    The Pajarito Plateau of northern New Mexico contains a rich and diverse record of late Quaternary landscape changes in a variety of geomorphic settings that include gently-sloping mesa tops, steep canyon walls, and canyon bottoms. A broad range of investigations during the past decade, motivated by environmental and seismic hazard concerns, have resulted in examination of the characteristics, stratigraphy, and

  5. Fluvial response to late Quaternary climatic fluctuations, central Kobuk Valley, northwestern Alaska

    SciTech Connect

    Ashley, G.M. (Rutgers Univ., New Brunswick, NJ (United States). Dept. of Geological Sciences); Hamilton, T.D. (U.S. Geological Survey, Anchorage, AK (United States))

    1993-09-01

    Much of northwestern Alaska remained unglaciated during the Pleistocene and thus offers a favorable setting for examining long-term records of high-latitude geological and biological change. Epiguruk, a large cut bank 3.5 km long and up to 36 m high on the Kobuk River south of the Brooks Range in eastern Beringia, exposes complex sedimentary successions representing cycles of upper quaternary alluviation and eolian sedimentation, downcutting, and soil formation. A rich record of plants and mammals is also preserved in the section. Deposits of fluvial channels and flood plains, eolian dunes, sand sheets, loess, and ponds, as well as organic soils (Histosols) are represented. Parallel-bedded fine sand and coarse silt couplets that commonly contain root structures, ripple cross-lamination, silt drapes are flood-plain sediments apparently deposited at the interface of fluvial and eolian environments. Multiple fluvial-to-eolian depositional sequences were caused by influx of eolian sediment to the river from intermittently active dune fields south of the Kobuk River. Alluviation in the Kobuk Valley was coeval with glaciation in the Brooks Range, whereas downcutting occurred during interstadials when dune stabilization limited sediment supply. The depositional model developed at Epiguruk may be useful in interpreting some of the widespread subhorizontally stratified late-glacial deposits of Europe and North America.

  6. New identification and interpreted correlation, deposition, and significance of widespread Quaternary volcanic ash in the Sacramento-San Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gatti, E.; Wan, E.; Ponti, D. J.; Tinsley, J. C.; Starratt, S. W.; Hillhouse, J.; Pagenkopp, M.; Olson, H. A.; Burtt, D.; Rosa, C. M.; Holzer, T. L.

    2013-12-01

    We recently identified and correlated volcanic ash deposits buried in the Sacramento-San Joaquin Delta, California, with widespread ash in the Pacific Northwest. The Sacramento-San Joaquin Delta (herein, the Delta) contains stratigraphic records of climate change, sea level variability, and tectonic processes. It drains the interior of central and northern California, covers ~1400 km2, and is underlain by Quaternary deposits that are difficult to correlate and date. Tephrochronology provides maximal depositional ages and regional sequence stratigraphic correlations. Using Electron Microprobe analysis, we identified the Loleta (0.390 Ma), the Rockland (~0.575 Ma), and an unnamed volcanic ash (>0.78-<1.45 Ma) in ten samples from eight boreholes in the Delta drilled by the California Department of Water Resources. These tephra correlate chemostratigraphically with widespread volcanic ash found in California, Nevada, and the Pacific Northwest. Major and minor element compositions of glass shards from each tephra sample also indicate that these deposits derive from Cascade Range volcanic sources. The Rockland ash erupted from the southern Cascades near Lassen Peak, California. The Loleta ash is the distal equivalent of the Bend pumice tuff that probably originated from the Three Sisters volcanoes, Oregon. The unnamed, but chemically distinctive, ash bed also resembles Cascade -type tephra. The ash layers are identified in 27 boreholes in the northern to central Delta that we correlate using facies. Grain-size distributions and sedimentary structures are inconsistent within the tephra units and indicate variations in concentrations, deposition rates, and depositional environments. Much of the Delta tephra was transported and deposited in fluvial settings. The tephra deposits occur as three facies: 1) volcanic ash, in thick deposits containing silt- to sand-size glass shards; 2) pumice, in thick deposits of bedded and variably current-structured coarse-sand to pebble-size grains; and 3) volcanic ash, in thin deposits or mixed with non-volcanic sediments. The Rockland ash occurs as facies 1 and 2 in the Delta and indicates changing conditions during a large flood following eruption. The Loleta ash in the Delta occurs as facies 3 and represents lower energy depositional environments than facies 1 and 2. Ash is distinguished from non-volcanic silt with diatoms that can provide paleoenvironmental indicators. Both the Rockland and Loleta ash layers were deposited during sea-level lowstands. The Loleta ash is found at deeper depths in the central Delta than depths in the northern Delta where the older Rockland ash occurs owing to thickening of deposits in the central Delta, where organic-rich units may record sea level highstands. Rockland and Loleta ash layers in the subsurface Delta provide extensive new examples of these tephra and help to constrain depositional responses to Quaternary climate, sea level, and tectonic activity.

  7. Laboratory alluvial fans in one dimension.

    PubMed

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported. PMID:25215729

  8. Laboratory alluvial fans in one dimension

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Métivier, F.; Devauchelle, O.; Lajeunesse, E.; Barrier, L.

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported.

  9. VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    SciTech Connect

    C. Harrington; R. Kelly; K.T. Ebert

    2005-08-26

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic system that primarily responds to the incising of the channels into the upper fan surface, and the development of protecting desert pavements with time.

  10. Giant landslide deposits in northwest Argentina

    SciTech Connect

    Fauque, L.; Strecker, M.R.; Bloom, A.L.

    1985-01-01

    Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 m higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.

  11. Single-phase quaternary MgxZn1-xO1-ySy alloy thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    He, Yunbin; Cheng, Hailing; Tai, Jiali; Li, Lei; Zhang, Lei; Li, Mingkai; Lu, Yinmei; Zhang, Wei; Meyer, Bruno K.

    2015-02-01

    Quaternary-alloy MgxZn1-xO1-ySy thin films were grown quasi-epitaxially on c-plane sapphire substrates by pulsed laser deposition. Single-phase wurtzite MgxZn1-xO1-ySy films with compositions of 0.07 < x < 0.21 and y ? 0.8 were achieved using various ceramic targets. The S contents in the quaternary alloy films were far beyond the reported solid solubility limits of S in single-phase ternary alloy ZnO1-ySy films. The bandgap of MgxZn1-xO1-ySy, inferred from optical transmission measurements, was narrower than the bandgap of MgxZn1-xO while broadened compared with that of ZnO1-ySy. The broadening effect was enhanced with the increase of Mg content. The simultaneous substitution of cation (Zn2+) and anion (O2-) by isoelectronic elements (Mg2+ and S2-) offers further flexibility for the band-gap engineering and potentially facilitates the p-type doping of ZnO.

  12. Hydrogeologic Framework and Ground-Water Flow in Quaternary Deposits at the U.S. Army Atterbury Joint Maneuver Training Center near Edinburgh, Indiana, 2002-2003

    USGS Publications Warehouse

    Robinson, Bret A.; Risch, Martin R.

    2006-01-01

    A hydrogeologic framework was developed for unconsolidated Quaternary deposits at the U.S. Army Atterbury Joint Maneuver Training Center. The framework describes the potential for the occurrence of ground water on the basis of physiography and the distribution of geologic materials within the study area. Four geologic units-the Jessup, Trafalgar, Atherton, and Martinsville Formations-were identified, and their distribution was mapped as four hydrogeologic regions. The Jessup and Trafalgar Formations are fine-grained, poorly sorted tills. At least two facies of the Atherton Formation, the lacustrine and outwash facies, are in the study area. The Martinsville Formation includes materials deposited or reworked since the glacial period. With the exception of the Atherton Formation outwash facies, the Quaternary deposits are primarily fine-grained, silt- and clay-rich sediments that function as confining layers or aquitards. The Atherton Formation out-wash facies includes sand and gravel deposits that constitute the primary aquifers in the study area. The four hydrogeologic regions mapped in this investigation are designated as the Bedrock, Jessup Till, Trafalgar Till, and Atherton Outwash Regions. Each region represents an area with a distinctive physiographic expression and vertical sequence of Quaternary deposits. The Bedrock Region in the western and southwestern part of the study area commonly is underlain by 0 to 15 feet of Martinsville Formation resting directly on bedrock. Potential ground-water yields are limited. The Jessup Till Region in the southeastern part of the study area includes the uplands on either side of the stream valleys. Sediments commonly range from 30 to 90 feet in thickness. This region includes clay-rich till of the Jessup Formation and sand and gravel deposits of the Atherton Formation outwash facies; the Atherton Formation outwash facies tends to be thin, and ground-water yields will be moderate. The Trafalgar Till Region in the north and northwest-central part of the study area commonly is underlain by 10 to 30 feet of Trafalgar till or Trafalgar till over 25 to 50 feet of Jessup till. Within, separating, and beneath these tills are deposits of the Atherton Formation outwash facies-the sand and gravel deposits with the best potential to support a water-supply well. Generally, the outwash facies in this region are thin sand and gravel lenses, except in a few locations that are in excess of 30 feet thick. The Atherton Outwash Region is the lowland area associated with the major valleys in all but the far southwestern part of the study area. This region has the greatest thickness of outwash facies sands and gravels (often in excess of 20 feet), which are the primary aquifers. In the Atterbury Joint Maneuver Training Center, the combined Atherton Outwash Region and the Trafalgar Till Region have the greatest potential as infiltration areas because of low topographic relief and(or) sandy soils. From water-level data collected in July and August 2003, horizontal ground-water flow was determined generally to be toward the Atherton Outwash Region and the valley of the Drift-wood River to the east. Vertical hydraulic gradients were documented at nested well pairs. At two sites, upwardly directed gradients are reflected by flowing wells. Ground-water discharge to surface water is likely in some eastern reaches of the valleys of Nineveh and Lick Creeks. In the valley of Nineveh Creek, potential for ground-water discharge is indicated by the presence of a flowing well, upwardly directed vertical hydraulic gradients, and ground-water heads that were higher than surface-water elevations. In the valley of Lick Creek, ground-water discharge also is indicated by the presence of flowing wells and ground-water heads that were higher than surface-water elevations.

  13. Quaternary Studies

    NSDL National Science Digital Library

    First, the Irish Quaternary Association (IQUA) website publicizes its aim "to promote Quaternary studies in Ireland through its publications, and the organization of field meetings and conferences" (1). Visitors can learn about the importance of quaternary studies as well as find out the latest news and upcoming meetings. At the second website, the University of Wisconsin-Madison describes the current and recent studies dealing with "basic and applied problems in glacial geology, surficial geology, palynology, sedimentology, geologic mapping, hydrogeology, soils, and environmental geology "(2). The website offers abstracts of publications of members of the Department of Geology and Geophysics and the Wisconsin Geological and Natural History Survey along with descriptions of the lab, a shaded relief map of the Wisconsin area, and amusing glacial songs. Next, the Godwin Institute of Quaternary Research (GIQR) presents the University of Cambridge's history in quaternary research and the seven current research groups and four recent research projects (3 ). The website furnishes news from the research groups, a gallery of historical images of the East Anglia excursion, and summaries of the Institute's reference collections. Fourth, the International Union for Quaternary Research (INQUA) discusses quaternary scientists' investigations "to interpret the changing world of the glacial ages and their impact on our planet's surface environments" (4). Researchers can find out about INQUA-funded projects, meetings, and scientific commissions. Next, the Quaternary Research Association explains that it "exists to promote understanding of the Quaternary Period by publishing field guides, technical guides, and an international journal as well as holding field meetings and speaker meetings" (5). Students and researchers can discover employment, research, grant, meetings, and educational opportunities. Sixth, the University of Wales presents its investigations in the Remote Sensing Laboratory, Palaeoecology Laboratory, and the Luminescence Laboratory (6 ). Users can find concise descriptions of individual researchers' successes, abstracts of published papers, and links to conference information. The seventh website illustrates the Alaska Quaternary Center's commitment "to the promotion of interdisciplinary research and the enhancement of interdisciplinary instruction in Quaternary sciences" (7). Users can view images of the field work and learn how to obtain quaternary data from the Geographic Information Network of Alaska (GINA). Lastly, Rutgers University promotes its Graduate Certificate in Quaternary Studies where students take part in geology, geography, meteorology, and other disciplines interested in the last couple of million years of Earth's history (8). Students and educators can find information on the researchers involved with the program and the necessary course work.

  14. Pollen preservation and Quaternary environmental history in the southeastern United States

    SciTech Connect

    Delcourt, P.A.; Delcourt, H.R.

    1980-01-01

    Reconstructions of Quaternary environmental history based upon modern pollen/vegetation/climate calibrations are more tenable if the factors responsible for variation in pollen assemblages are evaluated. Examination of the state of preservation of Quaternary palynomorphs provides quantitative data concerning the degree of information loss due to alteration of pollen assemblages by syndepositional and post-depositional deterioration. The percentage, concentration, and influx values for total indeterminable pollen are useful criteria in providing an objective and quantitative basis for evaluating the comparability of pollen spectra within and between sites. Supporting data concerning sediment particle-size distribution, organic matter content, and concentration, influx, and taxonomic composition of both determinable pollen and plant macrofossils aid in reconstructing past depositional environments. The potential is high for deterioration of pollen in sediments from the southeastern United States, although considerable variation is found in both kind and degree of deterioration between lacustrine and alluvial sites of different ages and in different latitudes. Modern analogs are a basis for late Quaternary environmental reconstructions when pollen deterioration has not significantly biased the information content of fossil pollen assemblages.

  15. Provenance of the heavy mineral-enriched alluvial deposits at the west coast of the Red Sea. Implications for evolution of Arabian-Nubian crust

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Ibrahim, Tarek M. M.; Goodell, Philip C.

    2014-12-01

    Here we present the LA-ICP-MS U-Pb ages and Hf isotopic record of detrital zircons from the active alluvial fans at the west coast of the Red Sea. The Ras Manazal alluvial fan (primarily composed of zircon, magnetite with some rutile, ilmenite and monazite) yielded a relatively restricted age population ranges from 765 to 666 Ma. These ages and present-day drainage pattern is consistent that the sediments are primarily derived from erosion of nearby subduction related granitoids in the immediate west (i.e., not more than 50 km from the Red Sea coast) of the fan. In contrast, approximately 160 km south, at the Egypt-Sudan border, the Wadi Diit fan is relatively more enriched in ilmenite and REE-bearing phases (e.g., thorite, monazite, xenotime, garnet, etc.) and yielded five zircon age populations of (1) 824-733 Ma, (2) 730-705 Ma, (3) 646-608 Ma, (4) 516-500 Ma, and (5) 134-114 Ma. The age populations 1-3 if coupled with the present-day drainage pattern can be related to the earlier subduction related and later post collision granitoids in the southern part of the South Eastern Desert and Gebeit terrane of northern Sudan. Sparse Early Cretaceous zircons (134-114 Ma) are derived from the Mesozoic volcanic suits in the source region. However, the age group 516-500 Ma is enigmatic. Wadi Diit zircons are primarily derived from granitoids in the broad S-N directed Hamisana Shear Zone and its subordinate SW to NE directed Onib-Sol-Hamed Suture Zone. These shear zones provided pathways for the present-day drainage system for sediment transportation to the Wadi Diit and adjacent coastal region. We infer that the ca. 500 Ma late-stage magmatic zircons represent a hitherto unknown magmatic event, possibly related to the shear heating associated with the crustal scale shear zones. This implies that the shear zones in the South Eastern Desert and northern Sudan remained thermally active as late as ?500 Ma. The time resolved hafnium composition (?Hf (t)) of both fans varies from +3.5 to +13.5. Our new U-Pb ages and Hf isotopic composition suggests that the detrital zircons were derived from the Neoproterozoic juvenile crust. This is consistent with the Neoproterozoic juvenile igneous and metamorphic rocks in the Eastern Desert and northern Sudan.

  16. Shallow subsurface stratigraphy and alluvial architecture of the Kosi and Gandak megafans in the Himalayan foreland basin, India

    NASA Astrophysics Data System (ADS)

    Sinha, Rajiv; Ahmad, Jawed; Gaurav, Kumar; Morin, Guillaume

    2014-03-01

    The Kosi and the Gandak are two major Himalayan tributaries of the Ganga River in the north Bihar plains India. With a large hinterland in the Nepal Himalaya, both these rivers have generated megafans in the plains over the Quaternary time scale. Both these rivers are known to be highly dynamic and sediment-charged. A few conceptual models and limited field data suggested that these megafans have produced thick sand sheets over Late Quaternary period but these ideas have remained speculative and there is no data on the size and dimension of these sand bodies. This paper attempts to reconstruct the subsurface stratigraphy and alluvial architecture for the upper ~ 100 m of the megafans based on electrical resistivity soundings, borehole data and drill cores. Alluvial architecture of the Kosi megafan shows significant variability from proximal to medial parts of the fan in terms of sediment grain size and layer thicknesses. While the medial part shows ~ 20-30 m thick medium to coarse sand sheets which are laterally stacked, the proximal part of the fan has a dominantly gravel unit below ~ 15 m depth that is underlain and overlain by medium to coarse sand units. Further, the medial fan also shows significant vertical and lateral variability in alluvial stratigraphy. The near-surface (< 20 m depth) deposits from the Kosi megafan have pockets of clay and silt within large amalgamated sand bodies whereas the shallow sub-surface (50-100 m depth) sediments are largely sandy and devoid of clay and silt pockets. Alluvial architecture of the Gandak megafan shows two major lithounits; the upper fan succession has a higher stacking density of smaller sand bodies perhaps reflecting the migratory behavior of the river whereas the lower succession shows narrow but thick sand fills reflecting incised channels. The western part of the Gandak megafan has more abundant sand bodies compared to the eastern side of the river along both transects. There are no significant differences between proximal and medial transects across the Gandak megafan. The absence of gravel deposits in the shallow subsurface of the Gandak megafan may be attributed to the presence of a prominent intermontane valley in the hinterland of the Gandak river which has acted as a 'sediment filter' thereby trapping most of the coarser fraction. On the other hand, the Kosi river exits directly through the mountain front, and therefore, has been able to transport gravels into the plains in pre-historic times. Our study thus suggests significant variability in subsurface stratigraphy of the Kosi and the Gandak megafans even though they are located in similar geographic region. Such differences are attributed to the geomorphic diversity of the mountain exits of these megafans and their sediment transport history.

  17. Volcaniclastic alluvial fan sedimentation, northern Rio Grande rift

    Microsoft Academic Search

    J. G. McPherson; D. B. Waresback; S. Self

    1986-01-01

    The Pliocene Puye Formation is a well-exposed, volcanogenic, alluvial fan sequence 150+ m thick, representing a range of volcaniclastic deposits (proximal, medial, and distal) that may be generated in response to long-lived, multicompositional (basaltic to rhyolitic) volcanism in a rift setting. The deposits are a composite of eruptives (effusives and pyroclastics) and epiclastics (reworked primary volcanics). An almost complete record

  18. Cyclostratigraphy and rock-magnetic investigation of the NRM signal in late Miocene palustrine-alluvial deposits of the Librilla section (SE Spain)

    NASA Astrophysics Data System (ADS)

    Kruiver, Pauline P.; Krijgsman, Wout; Langereis, Cor G.; Dekkers, Mark J.

    2002-12-01

    We constructed a high-resolution time frame for the cyclic continental palustrine-alluvial section of Librilla (SE Spain) which covers the onset of the Messinian salinity crisis in the marine realm. The section was dated earlier by [1998], using magnetostratigraphy. We resampled part of the section that contained a reversed overprint in detail to refine the magnetostratigraphy and to investigate the behavior of the natural remanent magnetization (NRM) signal. The detailed sampling yielded a better constrained position of the upper reversal of Chron C3An.1n. By counting the number of cycles in C3An.1n and taking into account the duration of this Chron, we were able to show that the basic sedimentary cycles in Librilla reflect climatic precession. Subsequently, the sedimentary pattern was tuned to the summer insolation curve, providing a high-resolution time. Two intervals of complex NRM behavior were identified, showing normal and reversed overprints. The reversed overprints seemed to be restricted mainly to gray palustrine layers. The analysis of coercivity components revealed no difference between samples with overprints or real NRM directions. We performed fuzzy c-means cluster analysis on a geochemical data set to link magnetic behavior to geochemical proxies, resulting in a three-cluster model that roughly describes lithology. Remarkably, all the samples with a normal overprint belong to one particular cluster. The reversed overprints, however, do not show any relation to the cluster partition. We favor the explanation of [1998] that the reversed overprint would be related to the Messinian salinity crisis.

  19. Maps showing altitude of the potentiometric surface and changes in water levels of the alluvial aquifer in eastern Arkansas, Spring 1983

    USGS Publications Warehouse

    Edds, Joe; Fitzpatrick, Daniel J.

    1984-01-01

    The Mississippi River Alluvial Aquifer is a major source of water supply for irrigation in much of eastern Arkansas. Hydrologic maps of the potentiometric surface, water-level changes and depths to water in the aquifer, based on Spring 1983 measurements, are presented. The Mississippi River Alluvial Aquifer is comprised of Quaternary alluvial flood-plain and terrace deposits. The aquifer generally is partially-confined. Recharge to the aquifer is principally through precipitation and surface-water bodies. The potentiometric surface map indicates two cones of depression occurring in the aquifer beneath Arkansas, Poinsett, and Cross Counties as a result of heavy pumpage within these areas. A comparison of water-level data from 1982 and 1983 shows water levels in the aquifer generally decreasing in the area within the cones of depression. Water levels generally increased in the remainder of the area south and west of the White River, and along the Mississippi River. A map showing the depth to water below land surface indicates that water levels are generally shallowest near the Mississippi River and the Fall Line and deepest within the cone of depression. (USGS)

  20. Neogene to Quaternary ash deposits in the Coastal Cordillera in northern Chile: Distal ashes from supereruptions in the Central Andes

    NASA Astrophysics Data System (ADS)

    Breitkreuz, Christoph; de Silva, Shanaka L.; Wilke, Hans G.; Pfänder, Jörg A.; Renno, Axel D.

    2014-01-01

    Silicic volcanic ash deposits investigated at 14 localities between 22° and 25°S in the Chilean Coastal Cordillera are found to be the distal ash fall from supereruptions in the Central Andean cordillera several hundreds of kilometers to the east. Depositional textures, modal composition and granulometry of the ashes and tuffs (the latter lithified by halite and gypsum under ultra-arid conditions) allow for a distinction between primary fallout/aeolian deposits (mean 4-5 ?, sorting 1.5-2 ?) and secondary deposits that formed by down wash from hill slopes during local rain fall. Primary volcanic components comprise two types of glass shards (with small stretched vesicles and coarse-walled with rounded to elliptic vesicles), and biotite.

  1. Neogene-Quaternary depositional history of the eastern US continental rise seaward of the Washington-Norfolk Canyon systems

    SciTech Connect

    Locker, S.D.; Laine, E.P.

    1985-01-01

    High quality, digitally recorded and processed, water gun and air gun seismic reflection data collected seaward of the present position of the Washington-Norfolk canyon systems reveals new information on the development of the continental rise. This includes insight into the depositional history of the Washington-Norfolk fan system and the relative importance of gravity flow depositional processes versus abyssal bottom current reworking during rise development. Three major post-Horizon A/sup u/ accretionary sequences describe major changes in depositional processes and history within the region. Accretionary sequence I (early to middle Miocene) is characterized by the initial development of a depositional bulge seaward of the Washington-Norfolk canyon systems which is modified by bottom currents on the lower-most rise to form a proto-Hatteras Outer Ridge. The predominance of chaotic and hummocky seismic facies suggests widespread reworking by abyssal bottom currents. Accretionary sequence II (middle Miocene to late Pliocene) in this area is characterized by sediment waves (lower rise) and smooth, southward dipping, parallel reflectors associated with a thick central rise drift(.) deposit off the Hudson system to the North. Washington-Norfolk fan development appears less important during this time. Bottom currents are active, but more depositional in nature than during accretionary sequence I. Accretionary sequence III (late Pliocene to Present) is marked by gravity flow processes and distinct development of the Washington-Norfolk fan on the central rise.

  2. Soil genesis on the island of Bermuda in the Quaternary: the importance of African dust transport and deposition

    USGS Publications Warehouse

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-01-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (N/YbN, GdN/YbN that can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past –500 ka.

  3. Late Quaternary extraglacial cold-climate deposits in low and mid-altitude Tasmania and their climatic implications

    NASA Astrophysics Data System (ADS)

    McIntosh, P. D.; Eberhard, R.; Slee, A.; Moss, P.; Price, D. M.; Donaldson, P.; Doyle, R.; Martins, J.

    2012-12-01

    Many Tasmanian deposits previously described as 'periglacial' have been described in more detail, re-interpreted and dated. We suggest that 'periglacial' has little meaning when applied locally and the term 'relict cold-climate deposits' is more appropriate. In this paper we examine the origin and age of relict cold-climate slope deposits, fan alluvium and aeolian sediments in Tasmania, and infer the conditions under which they accumulated. Fan alluvium dating from the penultimate Glacial (OIS 6) and capped by a prominent palaeosol deduced to date to the Last Interglacial (OIS 5e) is present at Woodstock, south of Hobart. Many fan deposits formed before 40 ka or in a period c. 30-23 ka; only a few deposits date to the Last Glacial Maximum in Tasmania, which is defined as spanning the period 23.5-17.5 ka. Slope deposits indicate widespread instability down to present-day sea level throughout the Last Glacial, probably as a result of freeze-thaw in a sparsely vegetated landscape. Layered fine gravel and coarse sand colluvial deposits resembling grèzes litées, produced both by dry deposition and by the action of water, are locally common where jointed siltstone bedrock outcrops. These deposits occur from altitudes of 500 m to near sea level and also in caves and must have formed under sparse vegetation cover, probably by freeze-thaw in extremely dry conditions. They have been radiocarbon dated from 35 to 17.5 cal. ka. Relict dunes and sandsheets are widespread at the margin of the Bassian Plain that once provided a land bridge between Tasmania and the mainland. They are also found in western Tasmania and in areas of inland southern Tasmania that now support wet eucalypt forest and rainforest and receive mean annual rainfall > 1500 mm. In the south they have been dated > 87.5-19 ka and attest to a long period of semi-arid climate in an area extending well to the west and south of the present semiarid zone. We deduce that during most of the Last Glacial anticyclones dominated Tasmania's climate and rain-bearing depressions generally passed south of the land mass. However in the east prominent palaeosols in aeolian deposits, dated between 26.4 ka and 16 ka at different locations, and palaeosols with morphology indicating formation under humid conditions, indicate periods of wetter climate in eastern Tasmania during or close to the LGM, deduced to be the result of easterlies associated with near-coastal depressions in the western Tasman Sea. Such easterlies may also be responsible for short Last Glacial wet periods noted at mainland coastal sites. A plot of ages of all dated deposits reveals an increase of erosion and deposition between 35 and 20 ka, and greater prevalence of aeolian deposits in the 35-15 ka period than earlier in the Last Glacial. There are two possible explanations for this pattern: (1) that aeolian activity increased as the result of climatic effects (e.g. increased windiness); or (2) that shrubland biomass increased after the megafauna were hunted to extinction following human arrival c. 40 ka, causing increased fire frequency, and in the cold dry climate of the late Last Glacial such fires caused increased erosion and increased aeolian accumulation.

  4. A debris flow deposit in alluvial, coal-bearing facies, Bighorn Basin, Wyoming, USA: Evidence for catastrophic termination of a mire

    USGS Publications Warehouse

    Roberts, S.B.; Stanton, R.W.; Flores, R.M.

    1994-01-01

    Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.

  5. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary fault, Eastern Yucca Mountain

    SciTech Connect

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W. [Geological Survey, Denver, CO (United States); Widmann, B. [Science Applications International Corp., Golden, CO (United States); Wesling, J.R. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1994-12-31

    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain.

  6. Soil genesis on the island of Bermuda in the Quaternary: The importance of African dust transport and deposition

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-09-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (<20?m) component of distal loess from the lower Mississippi River Valley, and LRT dust from Africa. These parent materials can be characterized geochemically using trace elements that are immobile in the soil-forming environment. Results indicate that local volcanic bedrock on Bermuda has Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbNthat can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past ˜500 ka.

  7. Quaternary Science Reviews 20 (2001) 705}713 The timing of coversand deposition in northwest Norfolk, UK

    E-print Network

    Clarke, Michèle

    and Technology, College of West Anglia, Tennyson Avenue, King's Lynn, Norfolk PE30 2QW, UK Abstract Coversand of involutions within the coversand at Leziate signi"es the occurrence of post-depositional periglacial activity to form in intense periglacial environments (Koster, 1988), in cold, semi-arid conditions in which niveo

  8. Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran

    NASA Astrophysics Data System (ADS)

    Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Dolati, A.; Smit, J.; Kubik, P. W.

    2013-12-01

    The geomorphic evolution of the Makran Range of SE-Iran and SW-Pakistan has been controlled by the prevailing SW-Asian monsoon and Mediterranean winter rainfall climate and the surface uplift processes resulting from the Arabia-Eurasia collision. The impact of climate on Quaternary fluvial and alluvial sequence formation and their regional correlation has been little investigated due to limited age control of these sequences. Using 10Be cosmogenic nuclide exposure ages we established a Middle to Late Pleistocene terrace chronology. Our record tentatively indicates that terrace levels were abandoned towards the transition to or during warmer/pluvial periods (interglacials and/or interstadials) back to Marine Isotope Stage (MIS) 7, but abandoned ages show a large spread. It is hypothesized that pluvial phases correspond with times of enhanced SW-monsoons and a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, orbital periodicities can be deduced on frequencies related to obliquity and precession cycles. Overall, caution has to be placed in sampling and interpreting alluvial deposits, which may have complex inheritance patterns and spatially and temporarily variable catchment erosion histories and terrace-channel dynamics. Beside the dominant climate control on terrace formation, elevated channel steepness indices around major thrusts and numerous knickpoints indicate an additionally tectonic influence on terrace formation. Local incision rates (mean ~ 0.6-0.8 mm·a- 1) are variable in space and time but are similar to uplift rates obtained from coastal terraces and thus suggest a regional surface uplift.

  9. Late Quaternary tectonics in the inner Northern Apennines (Siena Basin, southern Tuscany, Italy) and their seismotectonic implication

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Capezzuoli, Enrico; Martini, Ivan; Picozzi, Matteo; Sandrelli, Fabio

    2014-05-01

    Defining the most recent Quaternary tectonics represents a challenging task for neotectonic, palaeoseismological and seismotectonic studies. This paper focuses on an integrated approach to reconstructing the latest Quaternary deformation affecting the northern part of the Siena Basin (inner Northern Apennines, i.e., southern Tuscany, Italy) near the town of Siena, and to discuss the seismological implications. Field work and structural and stratigraphic analyses, coupled with the interpretation of reflection seismic lines, have been combined to define the geometry, kinematics and age of mesoscopic to map-scale faults which have affected the mainly Quaternary continental and Pliocene marine deposits. The resulting dataset describes a tectonic setting characterized by coeval SW- and NW-trending transtensional and normal faults, respectively, dissecting alluvial sediments younger than 23.9 ± 0.23 ka. Seismic interpretation sheds light on the geometrical setting of the faults at deeper levels, down to 1-2 km, and provides support for the presence of a wide brittle shear zone defined by conjugated fault segments, locally giving rise to an asymmetrical negative flower-like structure. Faults and their damage zones have controlled (and still control) the discharge of gas vents (mainly CO2 and H2S) and hydrothermal circulation (which deposits travertine) since at least 23.216 ± 0.124 ka. The resulting complete data set provides support for our description of the Neogene-Quaternary tectonics which were active until the late Quaternary, providing additional information about the seismotectonic framework of an area characterized by low seismicity and generally low-magnitude earthquakes (M < 4), but having experienced significant seismic events over the last few centuries.

  10. Interpreting alluvial archives: sedimentological factors in the British Holocene fluvial record

    Microsoft Academic Search

    J. Lewin; M. G. Macklin; E. Johnstone

    2005-01-01

    A Holocene alluvial archive of 506 dated units for Great Britain is analysed in terms of the sedimentation styles involved. The database is classified by sedimentation unit (channel sediments, palaeochannel fills, floodplain surface sediments, floodbasins and colluvial deposits) and alluvial ensemble (fans and cones, upland gullies and streams, braided systems and active\\/inactive meandering and anastomosing systems).Floodplain, palaeochannel and floodbasin sediments

  11. High Resolution Particle Size Analyses Applied to Late Quaternary Loess Deposits at Orkutsay, Uzbekistan, Western Tien-Shan

    NASA Astrophysics Data System (ADS)

    Mavlyanova, N. G.; Machalett, B.; Rakhmatullaev, H.

    2011-12-01

    The loess deposits in the proximity of Tashkent (Uzbekistan) are one of the most promising widespread terrestrial climate and environmental archives of the Pleistocene in Central Asia, in addition to the loess of southern Tajikistan and the loess in the region of Almaty (Kazakhstan). In this paper we present high resolution particle-size data from the upper part of the long-studied loess record at Orkutsay (Uzbekistan). During the fieldwork samples for grain size and magnetic susceptibility were taken at 2 cm and 5 cm intervals from the loess. Particle size measurements of all samples were made on a Beckman Coulter LS 13320 PIDS laser sizer with auto-prep station to provide a dynamic range that spans from 0.04 to 2000 ?m and ensure accuracy and reproducibility. The granulometric results show a maximum in the fine and middle silt fraction and allow a clear distinction between cold and dry, and warm cycles. They show an important coherence between the type of dust sedimentation and the prevailing climate. Loess layers, which are associated with cold climate conditions, are dominated by the deposition of coarser dust particles. In contrast, finer airborne material has been deposited within the pedocomplexes that represent temperate interstadial or interglacial environments. Our results demonstrate the potential of the aeolian dust record at Orkutsay to decipher impacts of past climatic changes on terrestrial ecosystems and to understand climate feedback processes in continental interiors such as Central Asia.

  12. Geochronology, geochemistry, and tectonic characterization of Quaternary large-volume travertine deposits in the southwestern United States and their implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Priewisch, Alexandra

    Travertines are freshwater carbonates that precipitate from carbonic groundwater due to the degassing of CO2. Travertine deposits are often situated along faults that serve as conduits for CO2-charged groundwater and their geochemistry often records mixing of deeply-derived fluids and volatiles with shallow meteoric water. Travertines are surface expressions of dynamic mantle processes related to the tectonic setting. This dissertation includes four chapters that focus on different aspects of travertine formation and their scientific value. They are excellent, although underestimated, diagnostic tools for climatology, hydrology, tectonics, geochemistry, geomicrobiology, and they can inform carbon sequestration models. Quaternary large-volume travertine deposits in New Mexico and Arizona occur in an extensional tectonic stress regime on the southeastern Colorado Plateau and along the Rio Grande rift. They accumulated above fault systems during episodes of high hydraulic head in confined aquifers, increased regional volcanic activity, and high input of mantle-derived volatiles such as CO 2 and He. Stable isotope and trace element geochemistry of travertines is controlled by groundwater geochemistry as well as the degassing of CO 2. The geochemical composition allows for distinguishing different travertine facies and evaluating past groundwater flow. The travertine deposits in New Mexico are interpreted to be extinct CO2 fields due to the large volumes that accumulated and in analogy to the travertine deposits in Arizona that are associated with an active CO2-gas field. Travertines are natural analogues for CO2 leakage along fault systems that bypassed regional cap rocks and they provide important insight into the migration of CO2 from a reservoir to the surface. The volume of travertine can be used to infer the integrated CO2 leakage along a fault system over geologic time. This leakage is estimated as: (1) CO2 that becomes fixed in CaCO3/travertine (tons of carbon converted into tons of carbonate), (2) the amount of CO2 that degassed into the atmosphere (twice the amount of (1), based on reaction stoichiometry), (3) dissolved CO 2 that is carried away with the water discharging from a spring (based on modern spring discharge and dissolved carbon content), and (4) CO 2 that escapes through the soil (based on modern soil flux measurements). Better understanding of integrated CO2 leakage and fault-related seal bypass is needed to design CO2 sequestration sites to effectively store anthropogenic CO2 in the subsurface.

  13. Controls on alluvial fan long-profiles

    USGS Publications Warehouse

    Stock, J.D.; Schmidt, K.M.; Miller, D.M.

    2008-01-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans where water transport of gravel predominates, channel slopes tend to decrease downfan from ???0.10-0.04 to ???0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects grain-size fining downfan such that higher threshold slopes are required just to entrain coarser particles in the waters of the upper fan, whereas lower slopes are required to entrain finer grains downfan (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses for alluvial fan long-profiles using detailed hydraulic and particle-size data in sediment transport models. On four alluvial fans in the western U.S., we find that channel hydraulic radiiare largely 0.5-0.9 m at fan heads, decreasing to 0.1-0.2 m at distal margins. We find that median gravel diameter does not change systematically along the upper 60%-80% of active fan channels as slope declines, so downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, channel-bed sand cover increases systematically downfan from areal fractions of <20% above fan heads to distal fan values in excess of 70%. As a result, entrainment thresholds for bed material might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off-channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off channel every -0.20-1.4 km downfan. This leads us to hypothesize that some alluvial fan long-proffies are statements about the rate of overbank deposition of coarse particles downfan, a process for which there is currently no mechanistic theory. ?? 2007 Geological Society of America.

  14. The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat

    PubMed Central

    Ortuño, Vicente M.; Gilgado, José D.; Jiménez-Valverde, Alberto; Sendra, Alberto; Pérez-Suárez, Gonzalo; Herrero-Borgoñón, Juan J.

    2013-01-01

    In this paper we describe a new type of subterranean habitat associated with dry watercourses in the Eastern Iberian Peninsula, the “Alluvial Mesovoid Shallow Substratum” (alluvial MSS). Historical observations and data from field sampling specially designed to study MSS fauna in the streambeds of temporary watercourses support the description of this new habitat. To conduct the sampling, 16 subterranean sampling devices were placed in a region of Eastern Spain. The traps were operated for 12 months and temperature and relative humidity data were recorded to characterise the habitat. A large number of species was captured, many of which belonged to the arthropod group, with marked hygrophilous, geophilic, lucifugous and mesothermal habits. In addition, there was also a substantial number of species showing markedly ripicolous traits. The results confirm that the network of spaces which forms in alluvial deposits of temporary watercourses merits the category of habitat, and here we propose the name of “alluvial MSS”. The “alluvial MSS” may be covered or not by a layer of soil, is extremely damp, provides a buffer against above ground temperatures and is aphotic. In addition, compared to other types of MSS, it is a very unstable habitat. It is possible that the “alluvial MSS” may be found in other areas of the world with strongly seasonal climatic regimes, and could play an important role as a biogeographic corridor and as a refuge from climatic changes. PMID:24124544

  15. Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain

    NASA Astrophysics Data System (ADS)

    Viseras, César; Calvache, María. L.; Soria, Jesús M.; Fernández, Juan

    2003-02-01

    The creation of accommodation space in subaerial sedimentary environments is closely linked to uplift the source area (along basin-margin faults) or to a rise in base level. Depending (amongst others) on the relative importance of these two factors, the margins of terrestrial sedimentary basins (where alluvial fans develop) produce aggradational, progradational or retrogradational stratigraphic architecture. We studied a total of 43 Quaternary alluvial fans in the Granada and Bajo Segura basins (Betic Cordillera, Spain). The analysis of their stratigraphic architecture and sedimentary facies has revealed the existence of three groups characterised by distinct stratal stacking patterns, which is the result of differences in eustasy and tectonics. The qualitative and quantitative analysis of these alluvial fans and their drainage basins has allowed us to define certain characteristic geomorphological patterns related, in each case, to the main mechanism operative in the creation of accommodation space. These patterns are described as follows. (1) Alluvial aggradation is the main result of high tectonic subsidence with the development of quite open, but small fans with a constant steep slope lacking incised channels and headward-eroding gullies. (2) In contrast, when the principal mechanism in creating accommodation space is low tectonic subsidence, progradation occurs and the fans are narrower and larger. Moreover, the slopes of such fans are less steep in relation to the drainage area than in the above case, being constant or even concave in longitudinal profile. They also have short, deep incised channels, culminating downfan in a depositional lobe. In inactive zones, long, deep headward-eroding gullies develop. (3) Areas of extremely low tectonic subsidence and base level rise produce very open fans in the sedimentary basin, although with a pronounced mountain embayment, which gives them a characteristic "mushroom" shape in plan view. In the latter case, retrogradation is the typical stratigraphic stacking pattern and the fans are quite extensive with respect to their drainage areas, usually showing a segmented longitudinal profile with a low gradient. The feeder channels do not surpass stream order 3, and various extremely long and shallow incised channels can appear. (4) Contrary to the case of fans developing under a regime of subsidence, when the accommodation is due to base level rise, the fan slopes bear no relation to the extent of the catchment basins. In such a case, the overall fan slope is strongly influenced by the extent of the mountain embayment because it determines the distributions of debris and sheet-flows over the alluvial surface.

  16. Late Quaternary geomorphology and soils in Crater Flat, Yucca mountain area, southern Nevada

    SciTech Connect

    Peterson, F.F.; Bell, J.W.; Ramelli, A.R. [Univ. of Nevada, Reno, NV (United States)] [Univ. of Nevada, Reno, NV (United States); Dorn, R.I. [Arizona State Univ., Tempe, AZ (United States)] [Arizona State Univ., Tempe, AZ (United States); Ku, T.L. [Univ. of Southern California, Los Angeles, CA (United States)] [Univ. of Southern California, Los Angeles, CA (United States)

    1995-04-01

    Crater Flat is an alluvium-filled structural basin on the west side of Yucca Mountain, Nevada, which is under consideration for a high-level nuclear waste repository. North-trending, late Quaternary faults offset alluvium in Crater Flat both along the canyons of the western flanks of Yucca Mountain and out on the piedmont slope. We believe the initial lack of young offsets at Yucca Mountain was in part due to unrecognized late Quaternary stratigraphy. We hypothesize that alluviation in the Yucca Mountain region was more active during the late Quaternary than previously thought. Several techniques were tried to test this hypothesis. Results are compared with previous soils and surface-exposure dating studies, and correlated to stratigraphy of other late Quaternary units in the southern Nevada, Death Valley, and Mojave Desert areas, and provide new stratigraphic data relevant to understanding climatic-alluvial processes in the Basin and Range Province during the late Quaternary. 76 refs., 7 figs., 6 tabs.

  17. Comparison of planform multi-channel network characteristics of alluvial and bedrock constrained large rivers

    NASA Astrophysics Data System (ADS)

    Carling, P. A.; Meshkova, L.; Robinson, R. A.

    2011-12-01

    The Mekong River in northern Cambodia is an multi-channel mixed bedrock-alluvial river but it was poorly researched until present. Preliminary study of the Mekong geomorphology was conducted by gathering existing knowledge of its geological and tectonic settings, specific riparian vegetation and ancient alluvial terraces in which the river has incised since the Holocene. Altogether this process has allowed a geomorphological portrait of the river to be composed within the Quaternary context. Following this outline, the planform characteristics of the Mekong River network are compared, using analysis of channel network and islands configurations, with the fluvial patterns of the Orange River (South Africa), Upper Columbia River (Canada) and the Ganga River (India, Bangladesh). These rivers are selected as examples of multi-channel mixed bedrock alluvial, anastomosed alluvial and braided alluvial rivers respectively. Network parameters such as channel bifurcation angles asymmetry, sinuosity, braid intensity and island morphometric shape metrics are compared and contrasted between bedrock and alluvial systems. In addition, regional and local topographic trend surfaces produced for each river planform help explain the local changes in river direction and the degree of anastomosis, and distinguish the bedrock-alluvial rivers from the alluvial rivers. Variations between planform characteristics are to be explained by channel forming processes and in the case of mixed bedrock-alluvial rivers mediated by structural control. Channel metrics (derived at the reach-scale) provide some discrimination between different multi-channel patterns but are not always robust when considered singly. In contrast, island shape metrics (obtained at subreach-scale) allow robust discrimination between alluvial and bedrock systems.

  18. Quaternary history of the northeastern Bighorn Basin based on a climatically-controlled process-response model

    SciTech Connect

    Birdseye, R.U.

    1985-01-01

    The highest surfaces and oldest Pleistocene sediments in the northeastern Bighorn Basin are associated with the 600 kya North Kane Ash. Subsequent climatically-induced periods of aggradation and incision produced the remaining geomorphic elements. Processes associated with a typical interglacial-glacial cycle include: (1) interglacial stability with Bighorn River alluviation, pedimentation, and eolian deposition; (2) late-interglacial to early-glacial incision; (3) alluvial fan extension and increased landslide development during glacial intervals; and (4) an early-interglacial return to more stable conditions. Frequent stream captures during interglacial times were caused by the out-of-phase relationships between the Bighorn River and its tributaries. Quaternary climates of a given type have not been of equal magnitude or duration in the northeastern Bighorn Basin. The most intense glacial climates from which sediments are preserved are believed to have occurred ca. 600 kya, 440 kya an d140 kya. An abnormally dry climate existed between 400 kya and 275 kya, while extremely wet interglacial conditions prevailed about 100 kya. The last complete climatic cycle was the Bull Lake. The subsequent Holocene interglacial has been unusually dry. Thus not all Pleistocene climates have been capable of generating terraces of extensive alluvial fans.

  19. A Geoarchaeological Assessment of Alluvial Valleys at Camp Pendleton With an Overview of the Important Natural Site Formation Processes

    Microsoft Academic Search

    Frederic B. Pearl; Michael R. Waters

    1999-01-01

    Alluvial environments are the principle locations at Camp Pendleton where deposition has occurred during the Holocene, and hence, are of considerable interest to archaeologists. However, alluvial deposition, erosion, and stability are intricately linked to other factors, including sea level change, tectonic activity, climate change, vegetation, and human impact. Recent geoarchaeological projects at Camp Pendleton have begun to examine these factors.

  20. Quantities and associations of lead, zinc, cadmium, manganese, chromium, nickel, vanadium, and copper in fresh Mississippi delta alluvium and New Orleans alluvial soils

    Microsoft Academic Search

    H. W. Mielke; C. R. Gonzales; M. K. Smith; P. W. Mielke

    2000-01-01

    The topic of this study is the effect of anthropogenic metals on the geochemical quality of urban soils. This is accomplished by comparing the metal contents and associations between two alluvial soils of the lower Mississippi River Delta, freshly deposited alluvial parent materials and alluvial soils collected from a nearby urban environment. Fresh alluvium samples (n=97) were collected from the

  1. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history

    NASA Astrophysics Data System (ADS)

    Lai, ZhongPing; Kaiser, Knut; Brückner, Helmut

    2009-11-01

    Aeolian deposits are widely distributed in the interior of the Tibetan Plateau, and their chronology is poorly known. It is not yet clear whether they accumulated only after the last deglaciation, or over a longer time. We applied quartz OSL dating to aeolian samples from the Lhasa area with OSL ages ranging from 2.9 ± 0.2 to at least 118 ± 11 ka. The probability density frequency (PDF) distribution of 24 ages reveals age clusters at about 3, 8, 16-21, 33, and 79-83 ka, indicating enhanced sediment accumulation then. The results show that aeolian deposition occurred throughout most of the last 100 ka. This implies that: 1) an ice sheet covering the whole Tibetan Plateau during the last glacial maximum (LGM) could not have existed; and 2) erosion during the last deglaciation was not as strong as previously proposed, such that not all pre-Holocene loess was removed. The age distribution shown in the PDF indicates that aeolian accumulation is episodic. Sand-formation events revealed by age clusters at 3, 8, and 16-21 ka imply roughly synchronous environmental responses to corresponding global-scale arid events.

  2. Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history

    NASA Astrophysics Data System (ADS)

    Lai, Z.

    2009-12-01

    Aeolian deposits are widely distributed in the interior of the Tibetan Plateau, and their chronology is poorly known. It is not yet clear whether they accumulated only after the last deglaciation, or over a longer time. We applied quartz OSL dating to aeolian samples from the Lhasa area with OSL ages ranging from 2.9 ± 0.2 to at least 118 ± 11 ka. The probability density frequency (PDF) distribution of 24 ages reveals age clusters at about 3, 8, 16-21, 33, and 79-83 ka, indicating enhanced sediment accumulation then. The results show that aeolian deposition occurred throughout most of the last 100 ka. This implies that: 1) an ice sheet covering the whole Tibetan Plateau during the last glacial maximum (LGM) could not have existed; and 2) erosion during the last deglaciation was not as strong as previously proposed, such that not all pre-Holocene loess was removed. The age distribution shown in the PDF indicates that aeolian accumulation is episodic. Sand-formation events revealed by age clusters at 3, 8, and 16-21 ka imply roughly synchronous environmental responses to corresponding global-scale arid events.

  3. Quaternary Glaciers of New Zealand

    Microsoft Academic Search

    D. J. A. Barrell

    2011-01-01

    Located in the southwestern Pacific Ocean, New Zealand's record of Quaternary glaciations, preserved in landforms and near-surface deposits, begins at the margins of modern glaciers and extends outwards geographically and backwards in time, to the last glaciation and beyond. The record becomes increasingly fragmentary into the Middle and Early Pleistocene.

  4. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan H.; Munack, Henry; Korup, Oliver; Fülling, Alexander; Garzanti, Eduardo; Resentini, Alberto; Kubik, Peter W.

    2014-06-01

    The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr-1. Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic 10Be, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before ˜200 ka and ˜50-20 ka, judging from terrace treads stranded >150 m and ˜30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a late- or post-glacial sediment pulse seems a more likely source of this widespread sedimentation that has partly buried the dissected bedrock topography. Overall, the long residence times of fluvial, alluvial and lacustrine deposits in the region (>500 ka) support previous studies, but remain striking given the dominantly steep slopes and deeply carved valleys that characterise this high-altitude mountain desert. Recalculated late Quaternary rates of fluvial bedrock incision in the Indus and Zanskar of 1.5 ± 0.2 mm yr-1 are at odds with the longevity of juxtaposed valley-fill deposits, unless a lack of decisive lateral fluvial erosion helps to preserve these late Pleistocene sedimentary archives. We conclude that alternating, ˜104-yr long, phases of massive infilling and incision have dominated the late Quaternary history of the Indus valley below the western Tibetan Plateau margin.

  5. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  6. Stable isotope variations in the Quaternary epithermal calcite-fluorite deposit at Monte delle Fate near Cerveteri (Latium, central Italy)

    USGS Publications Warehouse

    Masi, U.; O'Neil, J.R.

    1980-01-01

    Carbon, oxygen and hydrogen isotope variations have been measured in samples from the epithermal fluorite vein deposit at Monte delle Fate, Latium. The ranges in ?? 13C and ??18O of calcite are -1.3 to 3.4 and 9.5 to 17.3, respectively. ??D values of water extracted from fluid inclusions are -49 to -39 for calcite and -41 to -34 for fluorite. Fluid inclusion filling temperatures (225??-240??C) and salinites (3.75) are nearly the same for both fluorite and sparry calcite. An elongated form of calcite, of minor abundance, precipitated at lower temperatures. The data indicate that (1) the CO2 involved in the mineralization was provided by the local marine limestones, (2) the waters were meteoric in origin and underwent an 18O shift of ??? 10 permil by exchange with marine country rocks, and (3) all geochemical features can be explained by the action of two hydrothermal fluids. Hot brines recently discovered in the Cesano geothermal area, 30 km to the east, have temperatures and some chemical characteristics similar to the hydrothermal fluids at Monte delle Fate. ?? 1980 Springer-Verlag.

  7. Alluvial-river response to neotectonic deformation in louisiana and Mississippi.

    PubMed

    Burnett, A W; Schumm, S A

    1983-10-01

    Repeat geodetic surveys show uplift of the Monroe and Wiggins anticlines in Louisiana and Mississippi. There are deformed Quaternary terraces, which indicate long-term deformation in the valleys of the alluvial rivers that cross these structures, and there are floodplain and channel convexities that provide evidence of modern deformation. In addition, the channels show significant variations of morphology (sinuosity, gradient, and depth) and behavior appropriate to reaches of increased and decreased valley slope. These alluvial rivers are adjusting to modern deformation and their adjustment confirms two geodetic leveling anomalies. PMID:17810088

  8. Quaternary geologic map of the Havre 1° x 2° quadrangle

    USGS Publications Warehouse

    Compilations by Fullerton, David S.; Colton, Roger B.; Digital edition by Bush, Charles A.

    2012-01-01

    The Havre quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S./Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes parts of the Bearpaw Mountains, the Little Rocky Mountains, and the Boundary Plateau. The primary river is the Milk River. The ancestral Missouri River was diverted south of the Bearpaw Mountains by a Laurentide ice sheet. The fill in the buried ancestral valley at and southwest of Havre contains a complex stratigraphy of fluvial, glaciofluvial, ice-contact, glacial, lacustrine, and eolian deposits. The old valley east of Havre now is occupied by the Milk River. The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (e.g., ground-moraine deposits, end-moraine deposits, stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 24 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. On the glaciated plains and on the Boundary Plateau the surficial deposits are glacial, ice-contact, glaciofluvial, catastrophic flood, alluvial, lacustrine, eolian, and colluvial deposits. In the Bearpaw Mountains and Little Rocky Mountains beyond the limit of Quaternary glaciation they are fluvial, colluvial, and mass-wasting deposits and residual materials. Tills of late Wisconsin and Illinoian ages are represented by map units. Tills of two pre-Illinoian glaciations are not mapped but are widespread in the subsurface and are identified in stratigraphic sections. Thirteen stratigraphic sections document a complex glacial and interglacial history in the quadrangle. Pliocene continental glaciation possibly is represented by erratic blocks of garnet gneiss and pegmatite from the Canadian Shield, perched high on drainage divides in the western Bearpaw Mountains. Glacial striations on bedrock, two boulder trains, and linear ice-molded landforms (primarily drumlins) indicate the possible presence of an east-southeast flowing ice stream in the Havre glacial lobe during late Wisconsin glaciation.

  9. Geology and mineral deposits of Churchill County, Nevada

    USGS Publications Warehouse

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  10. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.

  11. The Alaska Quaternary Center

    NSDL National Science Digital Library

    This website illustrates the Alaska Quaternary Center's (at the University of Alaska, Fairbanks) commitment "to the promotion of interdisciplinary research and the enhancement of interdisciplinary instruction in Quaternary sciences." Users can view images of the field work and learn how to obtain quaternary data from the AQC Quaternary Research Geodatabase.

  12. Irish Quaternary Association (IQUA)

    NSDL National Science Digital Library

    The Irish Quaternary Association (IQUA) website publicizes its aim "to promote Quaternary studies in Ireland through its publications, and the organization of field meetings and conferences." Visitors can learn about the importance of quaternary studies, find out the latest news and upcoming meetings, and find links to Quaternary studies journals.

  13. Rates of late Quaternary normal faulting in central Tibet from U-series dating of pedogenic carbonate in displaced fluvial gravel deposits

    NASA Astrophysics Data System (ADS)

    Blisniuk, Peter M.; Sharp, Warren D.

    2003-10-01

    Along the main boundary fault of the central Tibetan Shuang Hu graben, two well-preserved fluvial terrace surfaces are vertically offset by ˜1.3 m (terrace I) and ˜14.8 m (terrace II). Using thermal ionization mass spectrometry (TIMS), we have determined 48 230Th- 234U- 238U ages of small (10-40 mg) samples from pedogenic carbonate rinds on clasts in the terrace deposits. Based on textural, microstratigraphic and geochemical criteria, we conclude that the U-series ages of innermost-rind samples provide reliable ages of 16.4±1.9 ka for terrace I, and 233.1±9.3 ka for terrace II. This constrains the average rate of vertical displacement along the normal fault to be 0.079±0.011 mm/yr during the past ˜16 kyr, and 0.064±0.007 mm/yr during the past ˜233 kyr. Combining these results with slip-rate estimates for other normal faults along the graben margins indicates that the cumulative vertical displacement on all normal faults did not exceed ˜0.3 mm/yr during the late Quaternary. This new rate from central Tibet is distinctly lower than the rate of 1.9±0.6 mm/yr inferred for normal faults bounding the Yadong-Gulu graben system in southern Tibet, consistent with more pronounced and common graben development in southern Tibet. We therefore suggest that normal faulting in southern Tibet is largely controlled by local processes, and that the age of its initiation is not a valid proxy for uplift of the Tibetan plateau, as has been widely assumed. Our data also place chronologic constraints on the termination of periglacial conditions in central Tibet during the last three interglaciations. Rind formation appears to have been relatively continuous on clasts in terrace I from ˜16 ka. Clast rinds from terrace II, in contrast, are characterized by three main episodes of rind growth that are widely separated in time. The earliest and least well-preserved episode started at 233.1±9.3 ka, a second episode occurred at 131.8±7.8 ka, and a third episode was approximately coeval with rind formation in terrace I after 16.4±1.9 ka. In each case, the age of onset of carbonate rind accumulation coincides with independently estimated ages of global deglaciation. Accordingly, we conclude that periglacial conditions in the central Tibetan plateau terminated synchronously with early stages of global warming following the last three glacial maxima, and that fluvial aggradation, terrace formation, and pedogenic carbonate accumulation in terrace soils ensued rapidly.

  14. Investigation of Quaternary slip rates along the Banning strand of the southern San Andreas Fault near San Gorgonio Pass

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2013-12-01

    Present-day Pacific-North American relative plate motion in southern California is shared primarily between the San Jacinto and San Andreas faults. At the north end of the Coachella Valley, the San Andreas fault splits into the Banning and Mission Creek strands, which are sub-parallel to each other within the Indio Hills. Northwest of the Indio Hills, the Mission Creek fault diverges from the Banning and continues northwest toward the southeastern San Bernardino Mountains, but loses surface expression beneath Quaternary alluvial deposits in Morongo Wash. The Banning fault, upon exiting the Indio Hills, is deflected toward the west and transitions into a structurally complex fault zone at San Gorgonio Pass, where it is delineated by thrust scarps in Holocene alluvium. The slip rates of the Banning and Mission Creek fault strands northwest of the Indio Hills and southeast of San Gorgonio Pass are presently unconstrained, but understanding how slip is partitioned between these two strands is critical to southern California earthquake forecasting efforts. Here we present preliminary slip rate data for the Banning fault ~2 km southeast of San Gorgonio Pass at Devers Hill. Using the B4 LiDAR as a base, we have mapped the extents of three truncated and offset alluvial fan deposits, which we have differentiated based on both field and remote (LiDAR- and air photo-based) observations of texture: in particular, the distribution of different clast sizes, pavement and soil development, and color and appearance. To confirm across-fault correlation of the displaced deposits, we have measured 26 cosmogenic Be-10 ages from boulders and cobble samples taken from each of the three fan surfaces on both sides of the fault. One debris flow deposit (Q2a) has been dated to ~80 ka, and appears to be offset 1.6-2.2 km, though confirming this reconstruction will depend on future excavations and uranium-series dating of soil carbonate. A second debris flow deposit (Q2b), for which ages are pending, has been displaced 1-1.6 km. Together, these measurements suggest a late Quaternary slip rate for the Banning strand of the San Andreas fault of about 12-24 mm/yr. Our preliminary slip rate measurement for the Banning strand just southeast of San Gorgonio Pass is consistent with the slip rate of the San Bernardino section of the San Andreas fault to the northwest, and suggests that averaged over late Quaternary timescales (~80 ka), displacement along the San Andreas south of San Gorgonio Pass may be more focused on the Banning strand than the Mission Creek strand.

  15. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    SciTech Connect

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples that may be useful for future studies.

  16. Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Villani, F.; Pierdominici, S.; Cinti, F. R.

    2009-12-01

    The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ?6.5 earthquakes.

  17. The use of O, H and Sr isotopes and carbamazepine to identify the origin of water bodies supplying a shallow alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Sassine, Lara; Le Gal La Salle, Corinne; Lancelot, Joël; Verdoux, Patrick

    2014-05-01

    Alluvial aquifers are of great socio-economic importance in France since they supply 82% of drinking water production, though they reveal to be very vulnerable to pesticides and emerging organic contaminants. The aim of this work is to identify the origin of water bodies which contribute to the recharge of an alluvial aquifer for a better understanding of its hydrochemistry and transfer of contaminants therein. The study is based on an isotopic and geochemical tracers approach, including major elements, trace elements (Br, Sr),and isotopes (?18O, ?2H, 87Sr/86Sr), as well as organic molecules. Indeed, organic molecules such as pharmaceutical compounds, more precisely carbamazepine and caffeine, have shown their use as indicators of surface water in groundwater. The study area is a partially-confined shallow alluvial aquifer, the so-called Vistrenque aquifer, located at 15 km from the Mediterranean Sea, in the Quaternary alluviums deposited by an ancient arm of the Rhône River, in Southern France. This aquifer constitutes a shallow alluvial layer in a NE-SW graben structure. It is situated between a karst aquifer in lower Cretaceous limestones, on the NW border, and the Costières Plateau, on the SE border, having a similar geology as the Vistrenque. The alluvial plain is crossed by a surface water network with the Vistre as the main stream, and a canal used for irrigation essentially, the BRL canal, which is fed by the Rhône River. ?18O and ?2H allowed to differentiate the BRL canal water, depleted in heavy isotopes (?2H = -71.5o vs V-SMOW), and the more enriched local rainwater (?2H = -35.5o vs V-SMOW). In the Vistre surface water a binary mixing were evidenced with the BRL canal water and the rainwater, as end members. Then, in the Vistrenque groundwater both the BRL and the Vistre contributions could be identified, as they still show contrasting signature with local recharge. This allows to highlight the surface water contribution to a heavily exploited alluvial aquifer. These mixing processes are confirmed by comparing O and H isotopes to major elements composition. Furthermore, organic compound concentrations such as carbamazepine which show relatively high concentrations in surface waters, was also detected in groundwater especially in those influenced by the BRL canal water, and hence may be used as a tracer of surface water contribution. On the other hand, 87Sr/86Sr allowed highlighting this time a mixing process between groundwater bodies contributing to the recharge of the alluvial aquifer. The 87Sr/86Sr vs 1/Sr plot showed a locale influence on the Vistrenque groundwater by the karst limestone aquifer (87Sr/86Sr ?0.7076; [Sr] =1540 ?g/L), and the Costières Plateau water (87Sr/86Sr ?0.7090; [Sr] =320 ?g/L). In conclusion, 18O and 2H isotopes allowed to highlight the influence of surface waters on the quality of a shallow vulnerable alluvial aquifer, by determining the relationship between the two water bodies. While 87Sr/86Sr were useful to identify mixing processes between groundwater bodies from aquifers of different geology, the limestone karst and alluvial sediments. A multi-isotope approach proved useful to understand the origin of water bodies and contaminants.

  18. Paleovalley systems: Insights from Quaternary analogs and experiments

    NASA Astrophysics Data System (ADS)

    Blum, M.; Martin, J.; Milliken, K.; Garvin, M.

    2013-01-01

    Ancient fluvial valley systems are long recognized as important features in the stratigraphic record, but emerged as a specific focus of attention with publication of first-generation sequence-stratigraphic concepts. This paper reviews current understanding of paleovalley systems from the perspective of Quaternary analogs and experimental studies. Paleovalley systems can include distinct mixed bedrock-alluvial, coastal-plain, and cross-shelf segments. Mixed bedrock-alluvial segments are long-lived, cut across bedrock of significantly older age, and have an overall degradational architecture. By contrast, coastal-plain and cross-shelf segments are non-equilibrium responses to high-frequency cycles of relative sea-level change: most coastal-plain and cross-shelf segments form as a geometric response to relative sea-level fall, as river systems cut through coastal-plain and inner shelf clinothems, and extend basinward to track the shoreline. After incision and cross-shelf extension, lateral channel migration and contemporaneous channel-belt deposition creates a valley-scale feature. Coastal-plain and cross-shelf paleovalley widths are set by the number of channel-belt sandbodies deposited during this time. Paleovalley systems play a key role in source-to-sink sediment routing. Early views included the model of incision and complete sediment bypass in response to relative sea-level fall. However, this model does not stand up to empirical, theoretical, or experimental scrutiny. Instead, there is a complex dynamic between incision, deposition, and sediment export from an evolving valley: periods of incision correspond with sediment export minima, whereas periods of lateral migration and channel-belt construction result in increased flux to the river mouth. Sediment export from evolving valleys, and merging of drainages during cross-shelf transit, play key roles in sediment transfer to the shelf-margin and genetically-linked slope to basin-floor systems. Connection between the river mouth and the shelf margin likely occurs for different periods of time depending on gradient of the river and shelf, as well as amplitude of high-frequency sea-level changes. Late Quaternary analogs and experimental studies provide an alternative sequence-stratigraphic interpretation for paleovalley systems. In coastal-plain paleovalleys, basal valley-fill surfaces meet criteria for an unconformity and a classically-defined sequence boundary: however, this surface is mostly everywhere of the same age as overlying fluvial deposits, and does not correspond to a long period of incision and sediment bypass. In cross-shelf paleovalleys, the basal contact between fluvial and deltaic or shoreface deposits is commonly interpreted as a sequence boundary, but is not an unconformity characterized by incision and sediment bypass. Instead, this surface is a facies contact that separates genetically-related fluvial and deltaic strata: the surface that correlates to the basal valley-fill surface within the coastal-plain paleovalley dips below cross-shelf prograding deltaic and/or shoreface strata, which are fed by deposition within the evolving valley itself, and should be the downlap surface. Many issues deserve attention in the future. We have stressed understanding the inherent scales and physical processes that operate during the formation and evolution of paleovalley systems. We also suggest the relative roles of allogenic forcing vs. autogenic dynamics, and the potential significance of high-frequency isostatic adjustments should be topics for future discussion.

  19. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of the valley immediately north of the international border.

  20. Ancient and modern sites of natural CO2 leakage: Geochemistry and geochronology of Quaternary and modern travertine deposits on the Colorado Plateau, USA, and implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Priewisch, A.; Crossey, L. J.; Karlstrom, K. E.; McPherson, B. J.; Mozley, P.

    2013-12-01

    Travertine-precipitating springs and travertine deposits of the Colorado Plateau serve as natural analogues for evaluating potential leakage associated with geologic sequestration of carbon dioxide (CO2). Extensive Quaternary and modern travertine deposits occur along the Jemez lineament and Rio Grande rift in New Mexico and Arizona, and in the Paradox Basin in Utah, along the Little Grand Wash Fault and the Salt Wash Graben. These groundwater discharge deposits are interpreted to be sites of persistent and significant CO2 degassing along faults and above magmatic systems. Analysis of the geochemical and isotopic composition of U-series dated travertine deposits and modern travertine-precipitating waters allows evaluation of the flow paths of CO2-charged waters. Initial results from New Mexico and Arizona travertine deposits show characteristic rare earth element (REE) signatures for individual travertine deposits and yet generally overlap in concentrations of other trace elements such as Al, As, B, Ba, K, and Si. We report stable oxygen and carbon isotopes of the travertines in New Mexico, Arizona, and Utah. Different travertine deposits have different carbon-oxygen isotope variation patterns suggesting that these stable isotopes are tracers that have the ability to identify distinctive groundwater sources within and between spring groups based on the travertine record. Stable isotope analyses of travertine deposits in New Mexico and Arizona overlap substantially between deposits and cluster around -10‰ to -6‰ for ?18O and around 3.5‰ to 6.5‰ for ?13C. Travertine deposits in Utah show a distinctly different range of stable isotope values: ?18O values cluster around -14‰ to -10.5‰ and ?13C around 4.5‰ to 6.5‰. U-series dating of travertine deposits shows episodic travertine formation in New Mexico and Arizona over the last 700,000 years, and travertine accumulation over the last 400,000 years in Utah. We use U-series dating and volumetric analysis of the travertine deposits to estimate the minimum CO2 flux that was necessary to form the deposits and compare it to modern flux measurements in order to assess the extent of former and modern CO2 leakage. In addition, the thickness of dated travertine sections provides information about the longevity of travertine mound or spring systems that may be controlled by, e. g., sealing of faults, alternating wet/ dry paleohydrologic conditions, and/or rates of magmatic CO2 supply to springs. Understanding travertine deposition is important for the assessment of the long-term performance of a potential CO2 sequestration site because travertine deposits give insight into the complexities of CO2 pathways and leakage rates over timescales necessary for CO2 sequestration.

  1. Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain)

    USGS Publications Warehouse

    Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, V. H.; Pérez-López, R.; Giner-Robles, J.L.; Israde-Alcántara, I.; Calvo, J.P.; Williams, Ross W.

    2009-01-01

    The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.

  2. Variation in sedimentology and architecture of Eocene alluvial strata, Wind River and Washakie basins, Wyoming

    SciTech Connect

    Patterson, P.E.; Larson, E.E. (Univ. of Colorado, Boulder (United States))

    1991-03-01

    Eocene continental, alluvial strata of the Wind River Formation (Wind River Basin) and the Cathedral Bluffs Member of the Wasatch Formation (Washakie basin) provide two examples of Laramide intermontane basin aggradation. These alluvial sediments primarily represent overbank flood deposits marginal to channel complexes. Their sedimentology and architecture, although grossly similar, appear to vary somewhat with proximity to Laramide uplifts. In both cases, repetitive sedimentation on the floodplain produced a succession of depositional couplets, each composed of a light-gray sand overlain by a red clay-rich silt or sand. The lower sands are tabular bodies that, near their distal margins, taper discernibly. They commonly display planar and ripple-drift laminations. Upper clay-rich layers, which are laminated, are also generally tabular. Those floodplain strata depositional proximal to Laramide uplifts show little evidence of scouring prior to deposition of the next, overlying couplet. Most of these sedimentary layers, therefore, are laterally continuous (up to 2 km). This alluvial architecture results in relatively uniform porosity laterally within depositional units but variable porosity stratigraphically through the sequence. In contrast, alluvial sediments deposited farther from the Laramide uplifts have undergone sporadic incision (either during rising flood stage or subsequently) followed by aggradation. As a result, many of these floodplain couplets are discontinuous laterally and, hence, exhibit large-scale lateral variability in porosity. Both alluvial sequences have undergone similar types and extents of burial diagenesis.

  3. Integration of channel and floodplain suites. I. Developmental sequence and lateral relations of alluvial paleosols.

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1987-01-01

    The lower Eocene Willwood Formation of the Bighorn Basin, northwest Wyoming, consists of about 770 m of alluvial rocks that exhibit extensive mechanical and geochemical modifications resulting from Eocene pedogenesis. Five arbitrary stages are proposed to distinguish these soils of different maturities in the Willwood Formation. An inverse relationship exists between soil maturity and short-term sediment accumulation rate. Illustrates several important principles of soil-sediment interrelationships in aggrading alluvial systems that have broad application to other deposits.-from Authors

  4. The Holocene Alluvial Delta Relief Complex and Hydrological Regime of the Lena River Delta

    Microsoft Academic Search

    Elena Yu; Marina V. Dorozhkina

    Summary: This study presents the geological-geomorphologic characreristics of the Holocene alluvial-delta relief complex of the Lena River delta and deposits comprising it. A complex of the Holocene alluvial-delta relief is represented by a set of channel forrns ancl a low floodplain of modern age, a high floodplain fonning from the end of the Early-Late Holocene and the first above- the

  5. Alluvial Fans and Megafans Along the Southern Side of the Alps

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Mozzi, P.

    2011-12-01

    The Po Plain extents for about 40.000 km2 and fills an area representing the foreland of the Alps and the foredeep of the Apennines. Towards East, the Po plain continues in the Venetian-Friulian Plain, which has an area of 10.000 km2. Along the Alpine piedmont sector the alluvial deposition has been related to the major Alpine rivers, that drain a total mountain catchement of about 50.000 km2, with a maximum elevation between 2800-4810 m. A major depositional phase occurred in the area during LGM (24-17 ka BP), when the fronts of the glaciers hosted in the main Alpine valleys reached the plain and fed the related fluvioglacial and fluvial systems. These experienced a large and widespread aggradation and led to the formation of several megafans (i.e. Isonzo, Tagliamento, Piave, Brenta, Chiese, Oglio, Adda, Ticino) and fans (e.g. Cellina, Astico, Serio, Lambro). The LGM megafans have an extent between 1000-3000 km2 and are characterized by a piedmont sector (10-25 km from the apex) of amalgamated gravels related to unconfined braided channels; the distal sector is fine-dominated and channels are sandy braided, whereas the meandering typology started from the terminal portion (40-60 km from apex). The thickness of LGM alluvial sedimentation spans between 30-20 m in the plain and thins to 10 m in the Adriatic seabed. Soon after the ice decay (since 17 ka BP), the sedimentary delivery from Alpine catchments to the plain stopped, mainly due to the formation of intramontane lakes trapping the bedload. Thus, an erosive phase affected the whole pede-Alpine sector, leading the Alpine rivers to entrench for tens of meters in the apical gravelly portions of their fans or megafans. In the Venetian-Friulian Plain a single incision characterize the apical portion, whereas 2-5 fluvial incisions developed in the distal sector, up to the present coastal area, where they have a depth of 15-30 m and a width of 600-2000 m. The incised-valley fills (IVF) have been recognized in the Isonzo, Tagliamento, Piave and Brenta systems and they display a similar internal architecture, characterized by coarse gravel deposits at bottom and a general fining-upward trend. Radiocarbon datings demonstrate that fluvial entrenchment and coarse-gravel transport mainly occurred during Lateglacial and early Holocene and almost stopped around 8.0-7.0 ka cal. BP. In the Venetian-Friulian Plain, directly connected with Adriatic Sea, some abandoned incisions were drowned by marine transgression since 7.0 ka cal. BP, allowing the formation of 15-km long tidal inlets and to the deposition of lagoonal and estuarine sediments inside the incisions. Late Holocene fluvial activity has been characterized by the formation of fluvial ridges along the last 30 km of Alpine rivers, which largely contributed to silt-up completely the Lateglacial incisions. In the central and western Po Plain, due to its more internal position from the coast, the incisions are still present along the Alpine tributaries of Po River, up to their junction with this course. A very different late Quaternary evolution characterize the southern sector of Po Plain, where the alluvial systems are fed by the Apennines and LGM glacial activity was very limited.

  6. GENERALIZED SEDIMENT TRANSPORT MODELS FOR ALLUVIAL RIVERS AND RESERVOIRS

    Microsoft Academic Search

    Chih Ted Yang; Francisco J. M. Simões; Jianchun Huang; Blair Greimann

    The U.S. Bureau of Reclamation has developed a series of computer models (GSTAR) for the simulation and prediction of sediment transport, scour, and deposition processes in alluvial rivers and reservoirs. GSTARS, GSTARS 2.0\\/2.1 and GSTARS3 are based on the stream tube concept using one-dimensional approach along stream tubes to obtain a semi-two-dimensional variation of the hydraulic conditions in rivers and

  7. Active erosion-deposition cycles in the hyperarid Atacama Desert of Northern Chile

    NASA Astrophysics Data System (ADS)

    Jungers, Matthew C.; Heimsath, Arjun M.; Amundson, Ronald; Balco, Greg; Shuster, David; Chong, Guillermo

    2013-06-01

    There is significant debate over the rates and types of fluvial activity at the Plio-Pleistocene boundary in the hyperarid Atacama Desert of Chile. To quantify fluvial processes and help resolve this debate, we measure terrestrial cosmogenic nuclide (TCN) (10Be and 21Ne) concentration depth profiles in three settings representing a chronosequence: (1) a late Pliocene alluvial fan representative of major regional deposits, (2) a modern, active channel and (3) an adjacent low terrace inset into the Pliocene alluvium. Late Pliocene deposits that are widely preserved in the region contain TCN profiles consistent with relatively rapid stripping of upland sediment at the Plio-Pleistocene boundary. Deposits inset into these Late Pliocene features record cut and fill cycles that rework sediment throughout the Quaternary. The TCN profile in the modern channel is best explained by sediment aggradation at 2.1 m Myr-1 during the last 250,000 yr. Similarly, the adjacent low terrace sediments contain TCN concentration profiles consistent with aggradation of 2.0 m Myr-1 over a period of 250,000-750,000 yr prior to the last 250,000 yr of stability. In summary, depth profiles of two TCNs provide constraints on the rates of sediment deposition, sources of sediment and transport history, as well as the subsequent exposure conditions of the sediment following deposition. Our results are consistent with early Quaternary initiation of hyperaridity for the region. During the Quaternary, winter precipitation events experienced at our sites' latitude (24°S) drive active erosion-deposition cycles. The northward migration of the subtropical front during Quaternary glacial cycles may have enhanced precipitation at 24°S, leading to more active fluvial processes during cooler periods.

  8. Loess sedimentation in Tibet: provenance, processes, and link with Quaternary glaciations

    USGS Publications Warehouse

    Sun, J.; Li, S.-H.; Muhs, D.R.; Li, B.

    2007-01-01

    Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13-11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a "glacial" origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial-interglacial cycle of the Quaternary. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Morphodynamic equilibrium of alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Tambroni, Nicoletta; Bolla Pittaluga, Michele; Canestrelli, Alberto; Lanzoni, Stefano; Seminara, Giovanni

    2014-05-01

    The evolution of the longitudinal bed profile of an estuary, with given plan-form configuration, subject to given tidal forcing at the mouth and prescribed values of water and sediment supply from the river is investigated numerically. Our main goal is to ascertain whether, starting from some initial condition, the bed evolution tends to reach a unique equilibrium configuration asymptotically in time. Also, we investigate the morphological response of an alluvial estuary to changes in the tidal range and hydrologic forcing (flow and sediment supply). Finally, the solution helps characterizing the transition between the fluvially dominated region and the tidally dominated region of the estuary. All these issues play an important role also in interpreting how the facies changes along the estuary, thus helping to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions (Dalrymple and Choi, 2007). Results show that the model is able to describe a wide class of settings ranging from tidally dominated estuaries to fluvially dominated estuaries. In the latter case, the solution is found to compare satisfactory with the analytical asymptotic solution recently derived by Seminara et al. (2012), under the hypothesis of fairly 'small' tidal oscillations. Simulations indicate that the system always moves toward an equilibrium configuration in which the net sediment flux in a tidal cycle is constant throughout the estuary and equal to the constant sediment flux discharged from the river. For constant width, the bed equilibrium profile of the estuarine channel is characterized by two distinct regions: a steeper reach seaward, dominated by the tide, and a less steep upstream reach, dominated by the river and characterized by the undisturbed bed slope. Although the latter reach, at equilibrium, is not directly affected by the tidal wave, however starting from an initial uniform stream with the constant 'fluvial' slope, the final equilibrium state is reached through an erosional wave, which leads to bed degradation of the upstream 'fluvial reach'. For a given river discharge, the length of the tidal reach increases quite rapidly with tidal amplitude, up to some threshold value of the tidal amplitude above which the length of the estuary becomes comparable with the length of the tidal wave. When the channel plan-form is convergent, deposition of sediments of fluvial origin in the funnel-shaped region drastically changes the equilibrium configuration. The effect of an increasing channel convergence is thus to induce bed aggradation close to the inlet. Nevertheless, tidal forcing only slightly changes the non-tidal profile. The effect of increasing tidal oscillations again leads to an increase of the bed slope at the inlet and to a general bed degradation upstream. The effects of varying sediment supply, flow discharge and river width in the upstream reach have also been investigated and play an important role. Further geomorphological implications of these results will be discussed at the meeting. References Dalrymple, R. W., and K. Choi (2007), Morphologic and facies trends through the fluvialmarine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation, Earth-Science Reviews, 81(3-4), 135-174, doi:10.1016/j.earscirev.2006.10.002. Seminara, G., M. Bolla Pittaluga, and N. Tambroni (2012), Morphodynamic equilibrium of tidal channels, Environmental Fluid Mechanics: Memorial Volume in Honour of Prof. Gerhard H. Jirka, 153-174

  10. Stream response to Quaternary climate change: evidence from the Shoalhaven River catchment, southeastern highlands, temperate Australia

    Microsoft Academic Search

    Jonathan Nott; David Price; Gerald Nanson

    2002-01-01

    Luminescence ages from a flight of four paired alluvial terraces in the upper catchment of the Shoalhaven River, southeast highlands, Australia, provide a record of stream behaviour throughout the late Quaternary. Ages ranging from 7ka in the modern floodplain to nearly 500ka for the uppermost dated terrace allow comparisons to be made of the response of streams throughout southeastern Australian

  11. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"…

  12. Regional response of alluvial fans to the Pleistocene-Holocene climatic transition, Mojave Desert, California

    Microsoft Academic Search

    Eric V. McDonald; Leslie D. McFadden; Stephen G. Wells

    Alluvial fan deposits along the Providence Mountains piedmont in the eastern Mojave Desert that (1) are derived from diverse rock types, (2) are dated with lumines- cence techniques and soil-stratigraphic correlations to other relatively well dated fan, eolian, and lacustrine deposits, and (3) have some of the highest peaks in the Mojave Des- ert, provide a unique opportunity to study

  13. Alluvial architecture of the human-influenced river Rhine, The Netherlands

    Microsoft Academic Search

    Annika W. Hesselink; Henk J. T. Weerts; Henk J. A. Berendsen

    2003-01-01

    The alluvial architecture of the embanked Rhine distributaries in The Netherlands is largely controlled by human interference with fluvial processes. Embankment, straightening, and stabilization of the rivers have influenced both in-channel and overbank sedimentation. Embanked river floodplain deposits are lithologically and sedimentologically different from natural (not human-influenced) floodplain deposits. After the embankments between 1050 and 1350 AD, the dominant process

  14. A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania

    USGS Publications Warehouse

    Ridge, J.C.; Evenson, E.B.; Sevon, W.D.

    1992-01-01

    In the Delaware Valley of New Jersey and eastern Pennsylvania the late Quaternary history of colluviation, fluvial adjustment, and soil formation is based on the ages of pre-Wisconsinan soils and glacial deposits which are indicated by feld relationships and inferred from mid-latitude climate changes indicated by marine oxygen-isotope records. The area is divided into four terranes characterized by sandstone, gneiss, slate and carbonate rocks. Since the last pre-Wisconsinan glaciation (> 130 ka, inferred to be late Illinoian), each terrane responded differently to chemical and mechanical weathering. During the Sangamon interglacial stage (??? 130-75 ka) in situ weathering is inferred to have occurred at rates greater than transportation of material which resulted in the formation of deep, highly weathered soil and saprolite, and dissolution of carbonate rocks. Cold climatic conditions during the Wisconsinan, on the other hand, induced erosion of the landscape at rates faster than soil development. Upland erosion during the Wisconsinan removed pre-Wisconsinan soil and glacial sediment and bedrock to produce muddy to blocky colluvium, gre??zes lite??es, and alluvial fans on footslopes. Fluvial gravel and overlying colluvium in the Delaware Valley, both buried by late Wisconsinan outwash, are inferred to represent episodes of early and middle Wisconsinan (??? 75-25 ka) upland erosion and river aggradiation followed by river degradation and colluvium deposition. Early-middle Wisconsinan colluvium is more voluminous than later colluvium despite colder, possibly permafrost conditions during the late Wisconsinan ??? 25-10 ka). Extensive colluviation during the early and middle Wisconsinan resulted from a longer (50 kyr), generally cold interval of erosion with a greater availability of easily eroded pre-Wisconsinan surficial materials on uplands than during the late Wisconsinan. After recession of late Wisconsinan ice from its terminal position, soil formation and landscape stability were delayed until the Holocene by a lingering cold climate, slope erosion, colluvium and alluvial fan deposition, and eolian sedimentation. Late Quaternary erosion in the Delaware Valley was dominated by glacial and periglacial processes during glacial stages. During the warm interglacial stages, soils developed on a more stable landscape. These souls were easily colluviated by periglacial erosion during periods of intermittent cold climate. ?? 1992.

  15. Resistivity imaging of Pleistocene alluvial aquifers in a contractional tectonic setting: A case history from the Po plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Mele, M.; Bersezio, R.; Giudici, M.; Inzoli, S.; Cavalli, E.; Zaja, A.

    2013-06-01

    In this work we present the hydrogeophysical imaging of a key sector of the Quaternary Po foreland basin (northern Italy), focussing on the reconstruction of clastic aquifers and aquitards in a complex tectono-sedimentary subsurface architecture. The study area includes the relic reliefs of Casalpusterlengo and Zorlesco, two smooth morphological features involving uplifted and gently folded Pleistocene marine to alluvial sediments, plausibly linked to the buried Northern Apennines thrust and fold belt. The geophysical data include 35 Direct Current Vertical Electrical Soundings collected over a 37 km2 wide area, acquired with Schlumberger array and maximum half-spacing of 500 m. 1-D resistivity-depth profiles were computed for each VES. An integrated hydrostratigraphic approach was applied, to constrain the interpretation of the geophysical data along several cross-sections, including the comparison of resistivity soundings to stratigraphic logs, borehole electric logs and the pore-water properties. The resistivity interfaces, traceable with the same laterally continuous vertical polarity, were used to develop an electrostratigraphic model in order to portray the stacking of electrostratigraphic units down to 200 m below ground surface. Their vertical associations show a general upward increase of electrical resistivity. This assemblage mimics the regional coarsening upwards depositional trend, from the conductive units of the Plio-Pleistocene marine-to-transitional depositional systems to the resistive units of the Middle-Late Pleistocene fluvial and alluvial plain depositional systems. Middle Pleistocene depositional systems host an alternation of North-dipping, high-to-intermediate permeability aquifer systems (70-180 ?m, thickness of 5-70 m) separated by low permeability aquitards (20-50 ?m, thickness up to 40 m). These units pinch out against the Casalpusterlengo and Zorlesco relic reliefs, where they cover the uplifted and folded regional aquitard (20-50 ?m) formed by Pliocene-Lower Pleistocene clays to sandy silts with gravel lenses in agreement with borehole data. In the deepest part of the local stratigraphy, a broad low-resistivity anomaly (< 10 ?m) was clearly mapped through the study area. By comparison with electrical borehole logs in deep oil-wells, it could be interpreted as the fresh-saltwater interface due to the presence of connate waters and brines hosted by the marine-to-transitional shales.

  16. Early Cretaceous stratigraphy, paleontology, and sedimentary tectonics in Paris overthrust foredeep (western Wyoming and southeastern Idaho) compared with Quaternary features of indo-gangetic plain

    SciTech Connect

    Dorr, J.A. Jr.

    1983-08-01

    Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formation - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.

  17. First record of Eremotherium laurillardi (Lund, 1842) (Mammalia, Xenarthra, Megatheriidae) in the Quaternary of Uberaba, Triângulo Mineiro (Minas Gerais State), Brazil

    NASA Astrophysics Data System (ADS)

    Martinelli, Agustín G.; Ferraz, Patrícia Fonseca; Cunha, Gabriel Cardoso; Cunha, Isabella Cardoso; de Souza Carvalho, Ismar; Borges Ribeiro, Luiz Carlos; Neto, Francisco Macedo; Cavellani, Camila Lourencini; de Paula Antunes Teixeira, Vicente; da Fonseca Ferraz, Mara Lúcia

    2012-08-01

    Although the occurrence of Pleistocene mammals is abundant in many localities of Minas Gerais State (e.g., Lagoa Santa, Janaúba, Bambuí, Cordisburgo, Patos de Minas, Araxá), there are no references at present of Quaternary megafauna in Uberaba, Triângulo Mineiro, southeastern Brazil. This region is traditionally recognized for its taxonomically diverse fauna of the Late Cretaceous Bauru Group. In 2006, fossil material attributed to giant ground sloth Eremotherium laurillardi (Xenarthra, Megatheriidae), a typical taxon of the Brazilian Pleistocene, was discovered in the Uberaba City (Minas Gerais State). The specimen (CPP 1122) which is here described consists of several cranial and postcranial bones of a single individual. The material was confined to a small alluvial deposit, yielding in the Córrego da Saudade stream, which due its restricted area distribution it is not represented in geological maps.

  18. Radiocarbon dates and late-Quaternary stratigraphy from Mamontova Gora, unglaciated central Yakutia, Siberia, U.S.S.R.

    USGS Publications Warehouse

    Pewe, T.L.; Journaux, A.; Stuckenrath, R.

    1977-01-01

    A fine exposure of perennially frozen ice-rich silt and associated flora and vertebrate fauna of late-Quaternary age exists at Mamontova Gora along the Aldan River in central Yakutia, Siberia, U.S.S.R. The silt deposit caps a 50-m-high terrace and consists of three units. An upper layer 1-2 m thick overlies a 10-15-m-thick brownish to black silt layer. The lower silt layer is greenish to gray and about 15 m thick. All the silt is well sorted with 60% of the particles falling between 0.005 and 0.5 mm in diameter and is generally chemically and mineralogically homogeneous. The middle unit contains may extinct vertebrate mammal remains and ice wedges. The lower unit contains little vegetation and no ice wedges. The silt is widespread and exists as a loamy blanket on terraces at various elevations on both sides of the lower Aldan River. The origin of the silt blanket of late-Quaternary age in central Yakutia has long been controversial. Various hypotheses have been suggested, including lacustrine and alluvial, as well as frost-action origins. It is sometimes referred to as loess-like loam. Pe??we?? believes the silt at Mamontova Gora is loess, some of which has been retransported very short distances by water. The silt probably was blown from wide, braided, unvegetated flood plains of rivers draining nearby glaciers. The silt deposits are late Quaternary in age and probably associated with the Maximum glaciation (Samarov) and Sartan and Syryan glaciations of Wisconsinan age. On the basis of biostratigraphy, 10 radiocarbon dates, and their relation to the nearby glacial record, it is felt that the upper unit at Mamontova Gora is Holocene and the middle unit is Wisconsinan. The youngest date available from the middle unit at this particular location is 26,000 years. Dates greater than 56,000 years were obtained in the lower part of the middle unit. The lower unit is definitely beyond the range of radiocarbon dating and probably is older than the last interglacial. The sediment, fauna, ice wedges, stratigraphy, and age of perennially frozen slit deposits in central Alaska are remarkably similar to those of the deposits exposed in central Yakutia. Both areas consist of unglaciated rolling lowlands and river terraces surrounded by high mountains that were extensively glaciated in Pleistocene time. The glaciers extended from the high mountains to the edges of the ranges. In both regions, extensively braided, silt-charged rivers drained the mountains and flowed through the lowlands on their way to the sea. It follows that there should be a similar late-Quaternary history. ?? 1977.

  19. Climatic controls on late Pleistocene alluvial fans, Cyprus

    NASA Astrophysics Data System (ADS)

    Waters, J. V.; Jones, S. J.; Armstrong, H. A.

    2010-03-01

    Alluvial fans are commonly associated with tectonically active mountain ranges and tectonism is frequently held responsible for abrupt coarsening and cyclical sedimentation of alluvial fan sequences. Whilst it is accepted that tectonism provides the opportunity for alluvial fan development through the creation of topography, increasing gradients of fluvial systems supplying sediments, and creating accommodation for the storage of sediment flux, the role of climate in fan development is frequently neglected. The hypothesis that climatically controlled events can produce recognisable sedimentary signatures in alluvial fan deposits is tested in the active supra-subduction zone setting of the late Pleistocene of southern Cyprus. This study demonstrates through architectural analysis and the reconstruction of palaeoflood hydrology a recorded pattern of increasing and decreasing palaeoflow dynamics, with switches from a wetter to drier mode, clearly exhibited by changes in the sedimentology of the fan. At the present day Cyprus has a semi-arid climate and is influenced by a strongly seasonal rainfall pattern, largely restricted to the winter months (plus rare occurrences of summer cyclones). However at precession minima increased activity of western Mediterranean depressions produces wetter summers. Using inference we propose that longer-term increases in rainfall increased river discharge as recorded in the fan palaeoflood hydrology and occurred at minima in the precession. These periods correlate with the deposition of conglomeratic channels and open framework gravels. Drier periods are exhibited by sandier braided fluvial deposits. Shorter term or seasonal change is recorded in the form of 2nd and 3rd low order bounding surfaces. This increased activity of Mediterranean summer depressions increased precipitation to the wider Levantine area and was coincident with increased intensity of the north African and Indian Ocean (SW) monsoons. The resultant increase in river discharges at precession minima from both the Nile (and the wider Levant) resulted in the formation of sapropels in the eastern Mediterranean and is recorded as wet periods in speleothem deposits in the Soreq and Peqiin Caves of Israel. The predominant control of sedimentation on the late Pleistocene alluvial fans of southern Cyprus was climate.

  20. Quaternary geology and geomorphology of the Sacramento-San Joaquin Delta, California: evolution and processes

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Maier, K. L.; Holzer, T. L.; Knudsen, K. L.; Olson, H.; Pagenknopp, M.; Ponti, D. J.; Rosa, C.; Tinsley, J. C.; Wan, E.

    2013-12-01

    The Sacramento-San Joaquin Delta (~1,400 km2) is a combination of tidal marsh, islands and agricultural lands at the confluence of the Sacramento and the San Joaquin Rivers, in northern California. Most of the Delta islands are now 3 to 8 m below sea-level and must be protected by levees from inundation. Because of the Delta's crucial role in conveying fresh water to the State, levee failures can cause substantial economic loss by disrupting this supply. Understanding the evolution of the Delta is fundamental to assess the vulnerability of the Delta islands to seismically-induced levee failure. The modern Delta is a young geological feature that began forming during the middle Holocene. Preceding versions of the Delta hosted a variety of depositional environments as sea level fluctuated, responding to climatically-controlled changes. The rising sea reached the Delta about 8,000 years ago, and modern deltaic evolution continued into Holocene time until present. More accurate stratigraphic studies incorporating depositional ages are required to i) better understand the late Quaternary evolution of the Delta, ii) trace the base of Holocene deposits, iii) identify potentially active faults, and iv) evaluate liquefaction hazard for the Delta . This study uses the large amount of data available on the Delta (collected by the California Department of Water Resources and others during the past 30 years) and merges them into a unified dataset. We have produced a database that includes historic and surficial maps, aerial photographs, boreholes, and CPT data, for the purpose of clarifying the nature of the Quaternary deposits and the evolution of the Late Quaternary Delta. Additionally, we have identified recently discovered Pleistocene tephra as the Rockland ash, ~0.575 Ma, and the Loleta ash, ~0.40-0.37 Ma, which have improved stratigraphic correlations and assessment of subsidence rates. Delta sediments include sequences of glacial and interglacial deposits. Borehole logs reveal sequences of incision and backfilling corresponding to major climatic fluctuations: incised channels, sand-filling channels, gravel alluvial fans and eolian dunes during glacial periods, and fine-grained alluvial floodplains, mud flats deposits, marshes and peat during warmer interglacials. The evolution of the Delta is likely the result of three processes: subsidence (based on tephra ages, between ~0.004 cm/yr and 0.007 cm/yr in the Northern Delta, ~0.01 cm/yr in the central Delta, ~0.06 cm/yr in the Eastern Delta), compaction due to organic soil oxidation (3.6-6.1 cm/yr), and tectonic control. The thickness of the organic soils (>20 m) suggests that the Holocene sea-level rise was the major factor controlling the Delta's morphology before agricultural drainage began in the 1850's. Because the patterns suggest that sea-level rise was the major cause of changes in the Delta, it is likely that once the organic soil is all oxidized by anthropogenic processes within a few centuries, the major controlling factor will become anthropogenic sea-level rise.

  1. Quaternary geology of the Amazonian Lowland

    Microsoft Academic Search

    Georg Irion; Jens Müller; Jose Nunes de Mello; Wolfgang J. Junk

    1995-01-01

    The Quaternary history of the Amazon lowlands is characterized by deposition of sediments of Andean provenance and by the influences of changing sea levels. Areas well above the present water tables were not reached by Pleistocene high-water stages. These areas have been intensively weathered since the Tertiary, forming hard lateritic weathering horizons. These weathering horizons are best explained by the

  2. Geochemistry of carbonate cements in surficial alluvial conglomerates and their paleoclimatic implications, Sultanate of Oman

    SciTech Connect

    Burns, S.J.; Matter, A. [Univ. Bern (Switzerland). Geologisches Inst.

    1995-01-02

    Early diagenetic carbonate cements are a common feature of Quaternary alluvial conglomerates in Oman. Cements are formed in the vadose and, more commonly, phreatic zones from near-surface groundwaters. In drainage areas underlain by the Semail Ophiolite, groundwaters have Mg{sup 2+}/Ca{sup 2+} ratios greater than two, and cements are often dolomite or high-magnesium calcite in addition to low-magnesium calcite. In drainage areas underlain by limestone, groundwaters have Mg{sup 2+}/Ca{sup 2+} ratios of around one or less and cement mineralogy is nearly always low-magnesium calcite. The oxygen and carbon stable isotopic ratios of the cements vary widely, from {minus}10.6{per_thousand} to +3.0{per_thousand} PDB and from {minus}10.0{per_thousand} to +0.7{per_thousand} PDB, respectively. Cement {delta}{sup 18}O values principally reflect variation in rainfall {delta}{sup 18}O over a time scale of several thousand years. Rainfall and cement {delta}{sup 18}O values probably are inversely correlated with the amount of rainfall, which is related to the frequency and intensity of the Indian Ocean monsoon. Thus, cement {delta}{sup 18}O is potentially a proxy indicator of relative rainfall and monsoon activity. For each of three sampling areas, {delta}{sup 13}C is positively correlated to {delta}{sup 18}O. Cement {delta}{sup 13}C values are also related to rainfall amount because rainfall controls the plant population. Greater plant respiration of isotopically depleted CO{sub 2} to shallow groundwaters and burial of organic material in conglomerate deposits results in lower cement {delta}{sup 13}C values compared to periods of lesser plant activity.

  3. Report from working group on alluvial pedogenesis

    USGS Publications Warehouse

    Autin, W.J.; Aslan, A.; Bettis, E.A.; Walthall, P.M.

    1998-01-01

    These uses illustrate the complexity of alluvial pedogenesis as it relates to the analysis and interpretation of paleosols. Difficulties with interpretations of alluvial paleosols are probably greatest when applied to the preserved sedimentary record, where direct evidence of paleolandscape variability is scanty or lacking.

  4. The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia).

    PubMed

    Benito-Calvo, Alfonso; Barfod, Dan N; McHenry, Lindsay J; de la Torre, Ignacio

    2014-11-01

    This paper presents the Quaternary sequence of the Mieso area of Central-East Ethiopia, located in the piedmont between the SE Ethiopian Escarpment and the Main Ethiopian Rift-Afar Rift transition sector.In this region, a piedmont alluvial plain is terraced at þ25 m above the two main fluvial courses, the Mieso and Yabdo Rivers. The piedmont sedimentary sequence is divided into three stratigraphic units separated by unconformities. Mieso Units I and II contain late Acheulean assemblages and a weakly consolidated alluvial sequence, consisting mainly of fine sediments with buried soils and, to a lesser degree, conglomerates. Palaeo-wetland areas were common in the alluvial plain, represented by patches of tufas, stromatolites and clays. At present, the piedmont alluvial surface is preserved mainly on a dark brown soil formed at the top of Unit II. Unit III corresponds to a fluvial deposit overlying Unit II, and is defined by sands, silty clays and gravels, including several Later Stone Age (LSA) occurrences. Three fine-grained tephra levels are interbedded in Unit I (tuffs TBI and TA) and II (tuff CB), and are usually spatially-constrained and reworked. Argon/argon (40Ar/39Ar) dating from tuff TA, an ash deposit preserved in a palustrine environment, yielded an age of 0.212 ± 0.016 Ma (millions of years ago). This date places thetop of Unit I in the late Middle Pleistocene, with Acheulean sites below and above tuff TA. Regional correlations tentatively place the base of Unit I around the Early-Middle Pleistocene boundary, Unit II inthe late Middle Pleistocene and within the Late Pleistocene, and the LSA occurrences of Unit III in the LatePleistoceneeHolocene. PMID:25440135

  5. Quaternary Research Association

    NSDL National Science Digital Library

    The Quaternary Research Association explains that it "exists to promote understanding of the Quaternary Period by publishing field guides, technical guides, and an international journal as well as holding field meetings and speaker meetings." Students and researchers can discover employment, research, grant, meetings, and educational opportunities.

  6. Contrasting lithofacies architecture in ring-plain deposits related to edifice construction and destruction, the Quaternary Stratford and Opunake Formations, Egmont Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Palmer, Beth A.; Neall, Vincent E.

    1991-11-01

    The early constructional and destructional history of ancestral Egmont Volcano is recorded by variations in lithofacies assemblages and architecture in volcaniclastic deposits making up the southern ring plain. Eruptive periods and edifice construction are recorded by aggradational sequences of debris-flow deposits on the ring plain and numerous tephra deposits preserved on the lower flanks of the volcano. The aggradational sequences represent fairly long-term periods of accumulation when a succession of lahars delivered coarse-grained sediment to the ring plain. Edifice destruction is recorded on the ring plain by deposits of debris-avalanches and associated debris flows. Individual deposits represent rapid (as much as 2.6 km 3), but episodic, sedimentation over large areas (up to 500 km 2) of the ring plain. Sedimentation following these events was slow, with reworked tephra and lignite accumulating over most of the ring plain. Episodes of edifice destruction usually marked the beginning of long-term quiescent intervals or periods of low-frequency eruptive activity. Tephra deposits on the flanks of the volcano are not as abundant as in stratigraphic intervals representing periods of edifice construction.

  7. Climatically driven changes in erosion rates recorded in alluvial fan sediments, Providence Mountains, eastern Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.; Miller, D. M.; Reheis, M. C.; Mahan, S. A.; Stock, J. D.; Schmidt, K. M.

    2010-12-01

    The erosional response of semi-arid landscapes to climate change, specifically the mode of precipitation, is poorly understood. Some have argued that hillslope erosion and sediment transport rates are greater when precipitation is dominated by long-duration, low-intensity events, due to higher rates of sediment production on hillslopes and sustained stream discharge. Others have suggested that hillslope erosion rates are greater when precipitation is dominated by short-duration, high-intensity events that generate intense overland flow, especially on low-vegetation hillslopes. These models suggest that hillslope erosion rates will vary as a function of the relative balance of low-intensity, long-duration (e.g. winter frontal storms) to high-intensity, short-duration (e.g. monsoon) style precipitation. Variations in hillslope erosion rates would affect sediment supply to alluvial fan heads, and so the timing and magnitude of fan head depositional events may provide a record of changes in the mode of precipitation. We present new soil chronosequence, OSL ages, and cosmogenic 10Be erosion and paleoerosion rate data from an alluvial fan head in the semi-arid Providence Mountains, eastern Mojave Desert, CA, in order to test this hypothesis. The Providence Mountains expose Proterozoic gneisses and Mesozoic granites and show no evidence of Quaternary faulting, indicating that Pleistocene fan complexes exposed at the mountain front are primarily climatically driven. We selected a 6.2 m thick alluvial terrace at the head of Globe fan. Soil stratigraphic observations include a ~70 cm thick stage IV calcic horizon that is cross cut by a ~1.75 m thick paleochannel, which contains at least 3 three separate buried soils. The paleochannel is overlain by a laterally continuous deposit possessing a 54-cm-thick Bt horizon, a capping Av, and moderately developed pavement that, based on microlamination stratigraphy, is at least 56 ky old. These observations, combined with preliminary OSL ages, indicate that the top of the older alluvial sediment sequence, immediately beneath the stage IV calcic horizon, is at least 300 to 800 ka. Given this age range, and using a range of surface erosion rates, concentrations of 10Be in sediment collected from just below the calcic horizon indicate paleoerosion rates between ~730 and 1690 mm/ky. These paleoerosion rates are an order of magnitude higher than rates derived from 10Be concentrations in active wash sediment, which are between 33 and 63 mm/ky. Although the lack of tighter age control does not allow us to establish whether faster paleoerosion rates are the result of periods of dominantly more or less intense precipitation, our results do demonstrate that erosion rates have varied by an order of magnitude through time, likely due to climatic fluctuations.

  8. Bedload transport in alluvial channels

    USGS Publications Warehouse

    Bravo-Espinosa, M.; Osterkamp, W.R.; Lopes, V.L.

    2003-01-01

    Hydraulic, sediment, land-use, and rock-erosivity data of 22 alluvial streams were used to evaluate conditions of bedload transport and the performance of selected bedload-transport equations. Transport categories of transport-limited (TL), partially transport-limited (PTL), and supply-limited (SL) were identified by a semiquantitative approach that considers hydraulic constraints on sediment movement and the processes that control sediment availability at the basin scale. Equations by Parker et al. in 1982, Schoklitsch in 1962, and Meyer-Peter and Muller in 1948 adequately predicted sediment transport in channels with TL condition, whereas the equations of Bagnold in 1980, and Schoklitsch, in 1962, performed well for PTL and SL conditions. Overall, the equation of Schoklitsch predicted well the measured bedload data for eight of 22 streams, and the Bagnold equation predicted the measured data in seven streams.

  9. Quaternary dust sources on the Chinese Loess Plateau: a view from single zircon grains, heavy minerals and quartz luminescence

    NASA Astrophysics Data System (ADS)

    Stevens, T.; Carter, A.; Vermeesch, P.; Bird, A.; Rittner, M.; Lu, H.; Andò, S.; Garzanti, E.; Nie, J.; Adamiec, G.; Zeng, L.; Zhang, H.; Xu, Z.

    2013-12-01

    The origin of loess deposits on the Chinese Loess Plateau (CLP), one of the most valuable Cenozoic climate archives on land, is the subject of considerable debate. A large number of sources have been proposed for the vast quantity of dust that forms the up to 400 m thick loess sequences that cover the c. 640,000 km2 the CLP, including deserts, alluvial fans and mountain regions. There is also debate over whether sources shift across the CLP, within loess units, between units and across the Quaternary/Pliocene boundary. Furthermore, the role of river systems in sediment supply to the CLP has not previously been substantively addressed. Geochemical analysis of bulk sediment from loess is limited by mixing of different source influences and so here we apply a variety of techniques to Quaternary sequences on the CLP. We use single-grain based techniques on zircons and heavy mineral analyses in an attempt to discriminate between potential multiple sources and to test the influence of proximal deserts and major rivers on CLP dust. In addition, we utilise information from detailed optically stimulated luminescence dating of quartz from loess to identify rapid shifts in source region on the CLP. Provenance signatures from samples from the eastern Mu Us and the Tengger deserts can be explained by local sources and recycling of the underlying Cretaceous rock. However, the western Mu Us desert as well as Quaternary loess shows different zircon U-Pb age spectra and heavy mineral distributions, indicative of strong influence from northeastern Tibet. Further, samples from the Yellow River are close to identical to these western Mu Us samples and crucially, also to Quaternary samples from the Loess Plateau. This suggests that the Tibetan-derived sediments are unlikely to have been transported from Tibet by wind, but rather may have been delivered by the Yellow River. This provides the first evidence of a possible genetic link between the Yellow River and the CLP. However, there is also an abrupt shift to an apparently more local aeolian source during the last glacial period at one site on the CLP, potentially indicating activation of proximal aeolian dust sources. The Quaternary source signatures appear to contrast to those of the underlying Pliocene/Miocene red clay, which suggest more western, distal sources.

  10. Are North Slope surface alluvial fans pre-Holocene relicts?

    USGS Publications Warehouse

    Reimnitz, Erk; Wolf, Stephen C.

    1998-01-01

    The surface morphology of the northern slope of the Brooks Range (North Slope) from the Canning River, Alaska, eastward is dominated by a series of large alluvial fans and braided streams floored by coarse alluvium. On the basis of our studies, we conclude that the fans are not prograding now nor have they been prograding at any time during the Holocene. During the latest transgression and the following sea-level highstand, the North Slope depositional environment and climate probably differed greatly from the present ones.

  11. Quaternary Faults and Basin-fill Sediments of the Las Vegas Basin, Southern Nevada

    NASA Astrophysics Data System (ADS)

    Taylor, W. J.; Fossett, E.; Luke, B.; Snelson, C.; Rasmussen, T.; McCallen, D.; Rodgers, A.; Louie, J.

    2003-12-01

    The N-S elongated extensional Las Vegas basin, southern Nevada, contains 100's of meters of Cenozoic basin-fill sediments that are cut by several Quaternary (Q) faults. These faults define or influence the basin geometry. The basin is generally an asymmetrical half graben defined by the W-dipping, Q Frenchman Mountain fault (FMF) along its E side and a series of smaller offset E-dipping faults to the W. The N terminus of the basin is controlled by the Las Vegas Valley shear zone, along which the majority of the offset occurred prior to the Q. Here, we asses the influence of the Q faults on the distribution of the sedimentary units. Well, exposure, seismic reflection and seismic refraction data show that sedimentary units of different grain sizes or seismic velocity dominate different parts of the basin. Sections dominated by coarse clastic deposits occupy a narrow area along the E side of the basin. Coarse clastic sediments are mixed with finer grained sediments in a broader area along the W side of the basin. Based on provenance and alluvial fan distribution, the coarse deposits along the E side of the basin appear to be trapped in close proximity to the W-dipping FMF. The coarse-grained deposits along the opposite, W side of the basin, are sourced from the nearby Spring Mountains. Because of the structural asymmetry of the basin, these sediments traveled farther from their source area than those on the E side. Some of these E-dipping faults influence the depth to Paleozoic bedrock and some faults form small sub-basins filled with finer grained sediments. Along a WNW trend near the center of the basin and near the present-day Las Vegas Wash, a change in the grain size distribution occurs up stratgraphic section: continuous clay layers are less common and coarse-grained deposits are more common. This difference may reflect a change from internal drainage early in the basin history to external drainage through the Las Vegas Wash in the latter history of the basin-fill sedimentation. This interpretation implies that the FMF was breached by a wash connected to the Colorado River drainage system during basin development. The basin fill deposits suggest an early history of alluvial fan dominated deposits showing internal drainage. That depositional system was followed by E- and W-sloping alluvial fans cut by a NW-trending external drainage system that probably flowed to the Colorado River. The greatest structural influence on sediment distribution was from the Q FMF on the E side of the basin and the dominantly Miocene Las Vegas Valley shear zone on the north, but the structural influence is reduced as Colorado River system and base level imposes on the basin up section.

  12. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  13. Late Quaternary slip rate of the Owl Lake fault and maximum age of the latest event on the easternmost Garlock fault, S. California

    SciTech Connect

    McGill, S.F. (California State Univ., San Bernardino, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    The Owl Lake fault is an active, left-lateral oblique-slip fault in the southwestern Basin and Range province. It intersects the left-lateral Garlock fault in the Quail Mountains and extends about 19 km northeastern toward southern Death Valley. The eastern wall of a channel incised into Late Tertiary or Quaternary fanglomerate north of the fault and into Late Quaternary alluvial fan deposits south of the fault has been offset at least 43 meters left-laterally. This slip estimate is a minimum because of possible erosion of the channel wall upstream from (north of) the fault. If the upstream channel prior to offset was of comparable width to the modern channel, the offset is no more than about 80 m. Organic matter entombed beneath rock varnish on two boulders on the alluvial fan surface into which the channel incised has conventional radiocarbon ages of 29,470 [+-] 270 and 30,820 [+-] 280 years B.P. Abandonment of the fan surface was probably caused by incision of the offset channel, so the channel wall probably has a similar age. This suggests a preliminary left-lateral slip rate of about 1--3 mm/yr for the Owl Lake fault. Fault scarp heights suggest relative uplift of the northwestern side of the fault by at least 1--2 meters and possibly more since deposition of the Late Quaternary fan. At a site in the Avawatz Mountains, within 2 km of the eastern end of the Garlock fault (Leach Lake strand), a terrace riser has been offset 2.7 [+-] 0.6 m left-laterally and 0.2 m south-side-up. This offset probably occurred during the most recent large earthquake on this part of the fault. Organic matter beneath varnish on two cobbles on the upper terrace has conventional radiocarbon ages of 1,583 [+-] 90 and 1,656 [+-] 88 years B.P. This suggests the most recent slip event occurred after a date of A.D. 150--590. This is significantly older than the maximum age (AD 1490) of the most recent slip event on the central Garlock fault in Searles Valley.

  14. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet

    Microsoft Academic Search

    Gilles Peltzer; Paul Tapponnier; Rolando Armijo

    1989-01-01

    Images taken by the earth observation satellite SPOT of the Quaternary morphology at 18 sites on the 2000-kilometer-long Altyn Tagh fault at the north edge of Tibet demonstrate that it is outstandingly active. Long-term, left-lateral strike-slip offsets of stream channels, alluvial terrace edges, and glacial moraines along the fault cluster between 100 and 400 meters. The high elevation of the

  15. Stratigraphy of Quaternary inner-shelf sediments in Tai O Bay, Hong Kong, based on ground-truthed seismic profiles

    NASA Astrophysics Data System (ADS)

    Bahr, A.; Wong, H. K.; Yim, W. W.-S.; Huang, G.; Lüdmann, T.; Chan, L. S.; Ridley Thomas, W. N.

    2005-02-01

    High-resolution boomer profiles from Tai O Bay, Hong Kong SAR, were ground-truthed using ten discontinuously sampled boreholes penetrating bedrock with a maximum length of 82.1 m. The relationship between depth below seabed and seismic profiles was established through the measurement of two borehole compressional-wave velocity profiles. In departure from previous interpretations, nine Quaternary seismic units were identified, which can be divided into eight systems tracts formed by cycles of fourth-order sea-level fluctuations dating back at least to marine isotope stage (MIS) 7 (ca. 190 245 ka). These consist of two lowstand systems tracts, two transgressive systems tracts, and four highstand systems tracts. Secondary unconformities within the highstand deposits are interpreted to document fifth-order sea-level fluctuations. Lowstand deposits are less common because, as soon as the sea level drops by a few metres, Tai O Bay becomes sub-aerially exposed, leading to widespread non-deposition or erosion. At the same time, extensive fluvial erosion and channel incision take place. Filling of the fluvial channels occurs during rising sea level. Lowstand sediments (if present) are generally landslide deposits laid down on a basal alluvial plain. Uncorrected accelerator mass spectrometry (AMS) radiocarbon dates of mollusc shells show that the depositional environment was marine since 6.2 ka, becoming gradually more brackish as a result of progradation of the Pearl River delta. The computed average sedimentation rate for the period 6.2 4.1 ka is 4.4 m/1,000 year, and approximately 1 m/1,000 year since 4.1 ka.

  16. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    USGS Publications Warehouse

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could potentially be inundated during high-flow events. Sampling began in 2009 and was completed in 2010. A total of 74 geochemical samples were collected from fluvial deposits at reference sites, and 473 samples were collected from potentially contaminated sites. Sediment samples collected were analyzed for 23 metals, including arsenic and mercury. Sequential replicate, split duplicate, and field quality-control samples were analyzed for quality assurance of data-collection methods. The metal concentrations in sediment samples and location information are presented in this report in electronic format (Microsoft Excel), along with non-parametric summary statistics of those data. Cross-sectional topography is graphed with arsenic and mercury concentrations on transects at the potentially contaminated sites. The mean arsenic concentration in reference sediment samples was 8 milligrams per kilogram (mg/kg), compared to 250, 650, and 76 mg/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively. The mean mercury concentration in reference sediment samples was 16 micrograms per kilogram (?g/kg), compared to 130, 370, and 71 ?g/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively.

  17. A Neogene-Quaternary magnetic-biostratigraphic reference section in the south of Western Siberia

    Microsoft Academic Search

    G. A. Pospelova; Z. N. Gnibidenko; O. M. Adamenko

    1977-01-01

    As a result of examining a large amount of information on stratotype sections of Neogene-Quaternary deposits of the south of Western Siberia, we have compiled a sequence through these deposits in which boundaries between geomagnetic subdivisions are linked with Pliocene-Quaternary biozones.The Brunhes zone Includes deposits with mammal remains of the Upper Paleolithic, Khazara, and Tiraspol' assemblages. The Gauss-Matuyama inversion has

  18. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  19. Preliminary results of chronostratigraphic field work, OSL-dating and morphogenetic reconstruction of an alluvial apron at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Fuchs, Markus; Majid Padashi, Seyed; Baumhauer, Roland

    2014-05-01

    Here we present preliminary results of a chronostratigraphic study of an alluvial fan in the Damghan Basin, northern Iran. The basin sediments date back to the Mio- and Pliocene and therefore represent the starting point of alluvial fan aggradation. Today, the still active alluvial fans prograde from the Albors Mountain ranges and sit on the older sediment bodies. In this study, our focus is on the late Pleistocene to Holocene alluvial fan sedimentation history. The upper stratigraphy of the alluvial fans and intercalated lake deposits is characterized by six individual layers of gravels and fines, representing six different stratigraphic units. These units are described and classified by detailed geomorphological and stratigraphic mapping. To establish an alluvial fan chronology, six profiles were sampled for OSL dating. As expected, due to the high-energy transport system of alluvial fan aggradation in semi-desert environments, OSL dating of these sediments is challenging due to the problem of insufficient bleaching. Consequently, most of the samples are interpreted as maximum ages. However, the measurements show a consistent internal age structure and the overall OSL-based chronology is in agreement with the age model derived from our geomorphological analysis. As a first interpretation, based on surveyed geomorphological features and chronological analysis, we could identify seven morphodynamic phases, leading to a genetic model of alluvial fan aggradation. The oldest Pleistocene age estimate is derived from a former lake terrace. The following ages represent ongoing lake sediment deposition and the development of a proximal and mid-fan gravel cover. After the youngest lake deposits were accumulated within the Holocene, the lake starts to retreat and small alluvial fans are filling up the former lake bottom. This last sedimentation phase can be divided in at least two sub-phases, probably coupled to a lateral shifting of the active depositional lobe and to the abandonment and shallow incision of mid fan surfaces.

  20. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and environmental conditions, which influence seasonal farming.

  1. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  2. Tertiary and quaternary research with remote sensing methods

    NASA Astrophysics Data System (ADS)

    Conel, J. E.

    1985-08-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  3. Late Quaternary deformation and slip rates in the northern San Andreas fault zone at Olema Valley, Marin County, California

    NASA Astrophysics Data System (ADS)

    Grove, Karen; Niemi, Tina M.

    2005-06-01

    Quaternary sedimentary deposits along the structural depression of the San Andreas fault (SAF) zone north of San Francisco in Marin County provide an excellent record of rates and styles of neotectonic deformation in a location near where the greatest amount of horizontal offset was measured after the great 1906 San Francisco earthquake. A high-resolution gravity survey in the Olema Valley was used to determine the depth to bedrock and the thickness of sediment fill along and across the SAF valley. In the gravity profile across the SAF zone, Quaternary deposits are offset across the 1906 fault trace and truncated by the Western and Eastern Boundary faults, whose youthful activity was previously unknown. The gravity profile parallel to the fault valley shows a basement surface that slopes northward toward an area of present-day subsidence near the head of Tomales Bay. Surface and subsurface investigations of the late Pleistocene Olema Creek Formation (Qoc) indicate that this area of subsidence was located further south during deposition of the Qoc and that it has migrated northward since then. Localized subsidence has been replaced by localized contraction that has produced folding and uplift of the Qoc. This apparent alternation between transtension and transpression may be the result of a northward-diverging fault geometry of fault strands that includes the valley-bounding faults as well as the 1906 SAF trace. The Vedanta marsh is a smaller example of localized subsidence in the fault zone, between the 1906 SAF trace and the Western Boundary fault. Analyses of Holocene marsh sediments in cores and a paleoseismic trench indicate thickening, and probably tilting, toward the 1906 trace, consistent with coseismic deformation observed at the site following the 1906 earthquake. New age data and offset sedimentary and geomorphic features were used to calculate four late Quaternary slip rate estimates for the SAF at this latitude. Luminescence dates of 112-186 ka for the middle part of the Olema Creek Formation (Qoc), the oldest Quaternary deposit in this part of the valley, suggest a late Pleistocene slip rate of 17-35 mm/year, which replaces the unit to a position adjacent to its sediment source area. A younger alluvial fan deposit (Qqf; basal age ˜30 ka) is exposed in a quarry along the medial ridge of the fault valley. This fan deposit has been truncated on its western side by dextral SAF movement, and west-side-down vertical movement that has created the Vedanta marsh. Paleocurrent measurements, clast compositions, sediment facies distributions, and soil characteristics show that the Bear Valley Creek drainage, now located northwest of the site, supplied sediment to the fan, which is now being eroded. Restoration of the drainage to its previous location provides an estimated slip rate of 25 mm/year. Furthermore, the Bear Valley Creek drainage probably created a water gap located north of the Qqf deposit during the last glacial maximum ˜18 ka. The amount of offset between the drainage and the water gap yields an average slip rate of 21-30 mm/year. Finally, displacement of a 1000-year-old debris lobe approximately 20 m from its hillside hollow along the medial ridge indicates a minimum late Holocene slip rate of 21-25 mm/year. Similarity of the late Pleistocene rates to the Holocene slip rate, and to previous rates obtained in paleoseismic trenches in the area, indicates that the rates may not have changed over the past 30 ka, and perhaps the past 200-400 ka. Stratigraphic and structural observations also indicate that valley-bounding faults were active in the late Pleistocene and suggest the need for further study to evaluate their continued seismic potential.

  4. Late Miocene to Plio-Pleistocene fluvio-lacustrine system in the Karacasu Basin (SW Anatolia, Turkey): Depositional, paleogeographic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Alçiçek, Hülya; Jiménez-Moreno, Gonzalo

    2013-06-01

    The sedimentary record of the late Cenozoic Karacasu Basin, a long-lived continental half-graben from southwestern Turkey, is characterized by siliciclastic and carbonate deposits. Sedimentation was controlled by an active NW-SE trending major normal fault along the basin's southern margin and by climatically-induced lake-level changes. Detailed facies analysis subdivides the entire Neogene-Quaternary basin-fill into three distinct litostratigraphic units representing paleogeographic changes and sedimentation patterns throughout the basin evolution. Sedimentation commenced in the late Miocene with the deposition of proximal-medial alluvial fan and fluvial facies (Damdere Formation; FA1). At this stage, alluvial fans developed in elevated areas to the south, prograding towards the basin center. At the beginning of the Pliocene, fresh to slightly alkaline, shallow lake deposits (FA2a) of the Karacaören Formation formed. The lake became open and meromictic conditions developed (FA2b). Pollen data from the FA2b facies show that climate was arid to humid. Climate probably changed cyclically through time producing alternation of Artemisia steppe (cold and dry periods) and more forested vegetation (warm and wet). The open lake facies passes upwards into lake margin facies (FA2c), but it was still dominated by alkaline to slightly saline lake conditions. Sedimentation was almost continuous from the late Miocene to Pleistocene. In the early Quaternary, the basin was dissected by the re-activation of basin bounding faults. The unconformable base of the overlying Quaternary deposits (Karacasu Formation; FA3) reflected the basin's transformation from a half-graben into a full-graben system. Oxygen isotope data from carbonates show an alternation of humid climatic periods, when freshwater settings predominated, and semiarid/arid periods in which the basin hosted alkaline and saline water lakes. Neotectonic activity has rejuvenated many of the basin-bounding faults, causing development of talus aprons and local alluvial fans. The basin was progressively incised by modern rivers that have largely smoothed out the topographic relief of the graben margins. id="ab0010" The study highlights to the paleo-geography/-climatology in the east Mediterranean.

  5. Alluvial diamond resource potential and production capacity assessment of Guinea

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Van Bockstael, Mark; Diaby, Mamadou; Cissé, Kabinet; Diallo, Thierno Amadou; Sano, Mahmoud

    2012-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that export shipments of rough diamonds were free of conflict concerns. Outcomes of the meeting were formally supported later in December of 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. The goal of this study was to estimate the alluvial diamond resource endowment and the current production capacity of the alluvial diamond mining sector of Guinea. A modified volume and grade methodology was used to estimate the remaining diamond reserves within Guinea's diamondiferous regions, while the diamond-production capacity of these zones was estimated by inputting the number of artisanal miners, the number of days artisans work per year, and the average grade of the deposits into a formulaic expression. Guinea's resource potential was estimated to be approximately 40 million carats, while the production capacity was estimated to lie within a range of 480,000 to 720,000 carats per year. While preliminary results have been produced by integrating historical documents, five fieldwork campaigns, and remote sensing and GIS analysis, significant data gaps remain. The artisanal mining sector is dynamic and is affected by a variety of internal and external factors. Estimates of the number of artisans and deposit variables, such as grade, vary from site to site and from zone to zone. This report has been developed on the basis of the most detailed information available at this time. However, continued fieldwork and evaluation of artisanally mined deposits would increase the accuracy of the results.

  6. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Beer, Christopher J.; Bolton, Clara T.; Friedrich, Oliver; Newsam, Cherry; Spencer, Megan R.; Gutjahr, Marcus; Foster, Gavin L.; Cooper, Matthew J.; Milton, J. Andrew

    2014-06-01

    We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (?13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (?3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high CO2 conditions of the Early Pliocene but contrast with most model predictions for the response of the hydrological cycle to anthropogenic warming over the coming 50 years (poleward expansion of the subtropical dry zones).

  7. Late quaternary sequence stratigraphy, South Florida margin

    SciTech Connect

    Locker, S.D.; Hine, A.C. [Univ. of South Florida, St. Petersburg, FL (United States). Dept. of Marine Science

    1995-12-01

    Late Quaternary sea-level change and the Florida Current have combined to produce a progradational shelf-slope margin along the western portion of the south Florida Platform facing the Straits of Florida. Analysis of high resolution seismic reflection profiles suggest at least eight 5th order late Quaternary sequences downlap onto the Pourtales Terrace at 250 m water depth. Along most of the south Florida margin, this Late Quaternary section is very thin, and only where significant accumulations occur can the stratigraphic patterns produced by sea-level change be clearly observed. Recognition of systems tracts and their boundaries from high-resolution seismic data is important for prediction of sedimentary facies and stratigraphic development of margins. Many south Florida seismic boundaries can be fit to the Exxon sequence stratigraphy model. Others appear to reflect the added effect of bottom-current erosion that complicates the signal produced by sea-level change. Overall, the sea-level signal appears to dominate the stratigraphic record, especially from the 2-dimensional perspective of dip-oriented seismic profiles. However, the 3-dimensional geometry of deposits are strongly influenced by along slope accumulation patterns controlled by the Florida Current. This study provides new insight on the importance of both geostrophic boundary currents and sea-level change in controlling stratigraphic development of a carbonate platform margin. Similar anomalously thick slope deposits in ancient sequences may indicate similar controls on accumulation and could lend to predictions of related paleo-platform configurations.

  8. Late Quaternary Deformation along the North Wuitaishan Fault of the Shanxi Graben System: Active Intracontinental Rifting in North China

    NASA Astrophysics Data System (ADS)

    Corley, J.; Cochran, W. J.; Hinrichs, N.; Ding, R.; Zhang, S.; Gomez, F.

    2012-12-01

    The Shanxi rift system in north China is an intracontinental rift zone which has been active since the late Tertiary. and has produced many destructive earthquakes in recorded history. This area is of particular interest for earthquake research because of the high seismicity levels in an intraplate setting. The Shanxi rift system is composed of NNE-oriented en-echelon half-graben basins controlled by normal faults. This study focuses on the north Wutaishan fault, which bounds the Wutai Mountains and the Xingding basin, located in the northern part of the Shanxi rift system. Quaternary tectonism is investigated using remotely-sensed imagery for mapping of large tectonically-influenced landforms, field investigations for ground truth, and structural analyses. Initial neotectonic mapping utilized stereoscopic Corona satellite imagery to differentiate between fluvial and agricultural terraces; Cartosat-based DEMs were used to correct altitude measurements of terrace heights and to analyze streams and other landforms for morphometric analysis. Fluvial terraces are used to reconstruct paleo-stream profiles of the Yangyan River and nearby tributaries to determine mountain uplift rates inferred from fluvial incision, basin extension rates, and possible warping of the footwall basin block. Field work provided ground truth for fluvial terrace altitude, type of terrace, and thicknesses of alluvial and loess deposits. Another aspect of the study involves development of structural cross-section to relate fault slip to regional tectonic strain. Fault kinematic analysis of micro-fault features found in bedrock were used to assess the Quaternary stress field. Results of this study have implications in the understanding of earthquake recurrence intervals and basin evolution in the Shanxi rift system and more generally, can improve the understanding of spatial and temporal variations of seismic events in intraplate settings.

  9. Characterization and modeling of spatial variability in a complex alluvial aquifer: Implications on solute transport

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Ritzi, Robert W.; Sims, Darrell W.

    2008-04-01

    Field investigations of stratified alluvial deposits suggest that they can give rise to a hierarchy of permeability modes across scales, corresponding to a hierarchy of sedimentary unit types and thus may lead to enhanced plume spread in such media. In this work, we model the sedimentary architecture of the alluvium deposits in Fortymile Wash, Nevada, using a hierarchical transition probability geostatistical approach. The alluvial aquifer comprises a segment of the groundwater flow pathway from the potential high-level nuclear waste repository at Yucca Mountain, Nevada to the downstream accessible environment and may be a natural barrier to radionuclide migration. Thus our main goal is to quantify the impact of spatial variability in the alluvium on solute transport. The alluvial aquifer is a gravel-dominated braid-belt deposit, having lower-permeability paleosols interstratified with higher-permeability gravel-bar deposits. A three-dimensional hierarchical hydrofacies model is developed through fusion of multiple geologic data types and sources. Markov chain models of transition probabilities are employed to represent complex patterns of spatial variability at each hierarchical level in a geostatistical fashion and to impose realistic constraints to such variations through conditioning on existing data. The link between the alluvium spatial variability and solute dispersion at different spatiotemporal scales is demonstrated using the stochastic-Lagrangian transport theory. We show that the longitudinal macrodispersivity can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value until after 1,000 years of traveltime.

  10. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median of 5,100 feet squared per day. Water in storage in the alluvium was estimated to be approximately 200,000 acre-feet. The amount of water annually recharging the aquifer was estimated to be approximately 4,800 acre-feet. Specific conductance for all water samples ranged from 161 to 6,650 microsiemens per centimeter. Median specific conductance for the alluvium was 683 microsiemens per centimeter and for the terrace deposits was 263 microsiemens per centimeter. Dissolved-solids concentrations, estimated from specific conductance, for water samples from the aquifer ranged from 88 to 3,658 milligrams per liter. Estimated median dissolved- solids concentration for the alluvium was 376 milligrams per liter and for the terrace deposits was 145 milligrams per liter. More than half of the samples from the Quaternary aquifer were estimated to contain less than 500 milligrams per liter dissolved solids. Field-screened nitrate concentrations for the sampling in December 2001-August 2002 ranged from 0 to 15 milligrams per liter. The field-screened nitrate concentrations for the second sampling in September 2002 were less than corresponding laboratory reported values.

  11. Large alluvial fans on Mars Jeffrey M. Moore

    E-print Network

    Howard, Alan D.

    Large alluvial fans on Mars Jeffrey M. Moore Space Sciences Division, NASA Ames Research Center; published 7 April 2005. [1] Several dozen distinct alluvial fans, 10 to $40 km long downslope, have been observed in highlands craters. Within a search region between 0° and 30°S, alluvial fan-containing craters

  12. Quaternary Faunal Environments

    NSDL National Science Digital Library

    Christopher Hill

    Students collect information the environments associated with a list of presently living mammals. Students use FAUNMAP to explore the spatial patterns associated with these living mammals during the late Quaternary. They compare these distributions for living mammals to the distribution patterns for a set of extinct mammals. Students answer a set of questions that provide a basis for a summary report.

  13. Simulating Fine grained Alluvial Fan Sedimentation on Mars

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Beyer, R. A.

    2013-12-01

    The alluvial fans on Mars date to as late as the Hesperian Period and may be representative of the last major episode of widespread fluvial modification to the red planet's surface. These fans lie within enclosed crater basins, and are characterized by their large size (tens of km in length) and gentle gradient (less than 1-3°). The fans generally feature a network of channel distributaries floored with coarser sediment and what we have interpreted to be fine grained overbank deposits that comprise the bulk of the fan material [1]. We have developed a landform evolution model based on the approach of [2] to simulate the growth of these fans in order to answer several questions about their formation, including: (1) what are the characteristics of water discharge (flow magnitude and duration) and sediment supply (quantity and grain size); and (2) what are the associated implications for the responsible climatic environment (e.g. amount and frequency of precipitation sourcing the fans). The model combines discharge and sediment deposition with channel avulsion and abandonment, allowing for an analysis of both the micro and macro scale processes concerning fan formation. Water and sediment is routed through a distributary network that can branch, recombine, and avulse. The model simulates deposition of both coarse-grained bedload and a fine-grained suspended load material that can be deposited overbank during flood events. The model records the stratigraphy of the deposited material in terms of the relative proportions of coarse and fine-grained sediment. Using measures such as channel width, relative proportions of channel versus overbank deposited sediment, and frequency of channel branching, output is statistically compared with digital elevation models that have been produced from high-resolution CTX and HiRISE stereo pairs. Initial results suggest fans formed from hundreds of flow events over many thousands of years. Fan formation processes appear to be similar to those active in terrestrial fans in northern Chile's Atacama Desert. Additional model runs will simulate fan development under different patterns of precipitation (uniform over the fan versus an orographic pattern of greater precipitation on upper crater walls) and variations in sediment size distribution. References: [1] Morgan, A. M., Howard, A. D., Hobley, D. E. J., Moore, J. M., Dietrich, W. E., Williams, R. M. E., Burr, D. M., Grant, J. A., Wilson, S. A., and Matsubara, Y. (in review) Sedimentology and Climatic Environment of Alluvial Fans in the Martian Saheki Crater and a Comparison with Terrestrial Fans in the Atacama Desert [2] Sun, T., C. Paola, G. Parker, and P. Meakin (2002), Water Resour. Res., 38, no.8, 10.

  14. Arsenate adsorption by unsaturated alluvial sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenate adsorption as a function of solution arsenic concentration and solution pH was investigated on five alluvial sediments from the Antelope Valley, Western Mojave Desert, California. Arsenate adsorption increased with increasing solution pH, exhibited a maximum around pH 4 to 5, and then decr...

  15. Alluvial Fan, Rocky Mountain National Park

    USGS Multimedia Gallery

    The Alluvial Fan is a fan-shaped area of disturbance in Rocky Mountain National Park. It was created on July 15, 1982, when the earthen Lawn Lake Dam above the area gave way, flooding the Park and nearby town of Estes Park with more than 200 million gallons of water. Enormous boulders were displaced...

  16. INTRODUCTION River courses, alluvial fans, shorelines, and

    E-print Network

    Lacassin, Robin

    of the eastern Himalayan syntaxis. In the Golden Triangle region, these rivers (Mekong and Salween RiversINTRODUCTION River courses, alluvial fans, shorelines, and glacial valleys are geomorphological markers that can record offset along active strike-slip faults. Of these markers, rivers are the most

  17. Simplified process modeling of river avulsion and alluvial architecture: Connecting models and field data

    NASA Astrophysics Data System (ADS)

    Hajek, Elizabeth A.; Wolinsky, Matthew A.

    2012-06-01

    Modeling is an invaluable tool for studying sedimentary basin filling and for understanding depositional processes with long recurrence intervals, including channel avulsion. Simplified modeling approaches, such as cellular models and process-analogue experiments, are particularly useful for efficiently exploring alternative hypotheses and evaluating first-order controls on river avulsion and alluvial architecture. Here we review the history and current state of the art in simplified avulsion and alluvial architecture models, with a particular focus on how results and insights from these models can be incorporated into field and subsurface studies, and vice versa. Simplified avulsion and alluvial architecture models have proliferated in the past decade, providing a wide variety of models to serve as a basis for future coupled field-modeling studies. We compare features of leading models and discuss avenues for effectively pairing model capabilities with hypotheses and field data. Outstanding questions highlighted by recent modeling efforts include 1) What thresholds control avulsion initiation in different systems? 2) How do floodplain processes and topography influence avulsion dynamics and alluvial architecture? 3) What factors determine where avulsion channels stabilize? Answering these questions will require targeted modeling efforts coupled to data from ancient systems. Hence our model comparison emphasizes features that can be used to choose or design fit-for-purpose models, and we outline how quantitative data useful for model selection and validation can be obtained from modern systems and ancient deposits. Matching model goals with targeted questions, and model parameters and predictions with quantitative field data, will help tighten communication between field- and model-oriented sedimentary geologists, facilitating advances in our understanding of river avulsion and alluvial architecture.

  18. Alluvial cycles, climate, and puebloan settlement shifts near Zuni Salt Lake, New Mexico, USA

    Microsoft Academic Search

    Gary Huckleberry; Andrew I. Duff

    2008-01-01

    Twenty-seven 14 C dates from alluvial deposits and soils exposed in modern arroyos near Zuni Salt Lake, New Mexico, provide evidence for past episodes of piedmont and valley entrench- ment by low-order ephemeral streams. We recognize two episodes of entrenchment at A.D. 900-1050 and A.D. 1300-1400 that correlate to other arroyo-cutting events in the region. Episodes of piedmont and valley

  19. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes.

  20. Late Quaternary Blind Thrust Faults along the Southern Margin of the Cul-de-Sac Plain, Haiti: A Newly Recognized Seismic Source?

    NASA Astrophysics Data System (ADS)

    Briggs, R. W.; Prentice, C. S.; Crone, A. J.; Gold, R. D.; Hudnut, K. W.; Narcisse, R.

    2012-12-01

    Joint inversion of geologic, geodetic, and seismologic data showed that most of the moment release associated with the 2010 M 7.0 Haiti earthquake occurred on a blind thrust fault, the Léogâne fault, adjacent to the transpressional plate-bounding Enriquillo-Plantain Garden fault (EPGF). Preliminary geomorphic and stratigraphic analysis of folded alluvial-fan deposits north of the EPGF and beneath and directly east of Port-au-Prince suggests that they have a similar style and orientation to the structure or structures associated with the 2010 earthquake. A series of east-southeast-trending, unnamed, low hills extend across the southern Cul-de-Sac Plain adjacent to a right bend in the EPGF. The hills are the surface expression of doubly-plunging folds that trend approximately 285°, or 15-25° more northwesterly than the neighboring EPGF. We used optical imagery and LiDAR topographic data to identify two main fold belts: a western belt that spans at least 12 km of southern Port-au-Prince and Petionville and an eastern belt that extends more than 20 km from Fond Parisien to Croix-des-Bouquets. Our field reconnaissance along the eastern belt shows that these hills are cored by steeply folded to overturned alluvial-fan deposits of probable Quaternary age. Active folding has sequentially deflected north-flowing drainages, and wind gaps indicate that the folding was sufficiently active to defeat drainages and deform river channels. When folding defeated the drainages, lacustrine sediment locally ponded against the south flank of the folds. In an unnamed drainage about 2 km west of Ganthier, charcoal from a 10-m-thick section of interbedded fluvial and ponded lacustrine sediments yielded a calibrated radiocarbon age of 4978 ± 158 cal. yr B.P. We speculate that the base of each fine-grained lacustrine section may be an event horizon corresponding with an earthquake that rejuvenated the fold; however, more detailed mapping of these sediments is needed to test this hypothesis. In summary, the overall geomorphic expression of the folds in the broad, gently north-sloping Cul-de-Sac Plain is suggestive of late Quaternary activity. Because the folds are similar in orientation and style to the Léogâne fault and are located in similar positions north of the EPGF, they are likely underlain by blind thrust faults, and thus may represent additional earthquake sources that should be considered in seismic-hazard assessments for Port-au-Prince.

  1. Evidence for Quaternary Slip on a Low Angle Normal Fault: Searles Valley, CA

    NASA Astrophysics Data System (ADS)

    Numelin, T.; Kirby, E.

    2004-12-01

    Low angle normal faults have been documented in extensional terranes worldwide, however conventional models of fault mechanics preclude slip on planes dipping less than 30 degrees. The global catalogue of earthquake focal mechanisms reveals very few occurrences of seismicity (active slip) on low angle structures, lending support to mechanical arguments against active slip on shallowly dipping planes. Recent field studies of low-angle normal faults in the Baja California and Death Valley regions of western North America, however, suggest that active slip on these structures may be more common than typically thought. Here we investigate the relationship between high angle alluvial scarps in Searles Valley and a low-angle detachment fault in order to determine if displacement on the detachment is active. The network of young and recent fault scarps along the eastern margin Searles Valley can be broadly separated into two primary segments with overlapping fault tips that form a range-scale relay zone in the vicinity of Sand Canyon. South of this relay, the active trace of the fault is marked by a series of graben developed within Late Pleistocene - Holocene alluvial fans. Within the bedrock of the Slate Range, and immediately along-strike of the graben system, is a west dipping, low-angle fault system (Sand Canyon `thrust' - Smith et al., 1968). This fault is continuous within the range for some 20 km and links with a west-dipping normal fault near Manly Pass, and is thus thought to have accommodated west directed normal-sense displacement during Plio-Quaternary time (Andrew and Walker, 2002). Mapping and structural observations at the intersection of the active fault system and the Sand Canyon fault reveals that high-angle scarps cutting Pleistocene alluvium root into a low-angle (10-15°), west-dipping gouge zone. Faults do not significantly displace the detachment surface, and thus, scarp-forming displacement must have been accommodated by slip on the detachment itself. We combine high-precision differential GPS surveys of fault displacement with existing chronology gleaned from a range of Late Pleistocene - Holocene lacustrine deposits related to Searles Lake to develop estimates of fault slip rate along the length of the fault system. Slip rates provide insight into both the local question of how slip is partitioned across the Sand Canyon relay zone, as well as the more regional question of how deformation within the Eastern California Shear Zone is accommodated.

  2. Quaternary megafans, large rivers and other avulsive systems: a potential "who is who" in the geological record

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.

    2012-12-01

    A fascinating discussion has been recently calling the attention of sedimentologists and geomorphologists regarding to the dominant fluvial styles preserved in the geological record. While some authors postulate that distributary (or distributive) patterns are the most important systems likely to dominate the alluvial rock record (Weissmann et al.2010, among others) others suggest that a variety of fluvial styles are remarkably preserved in the geological record, rejecting the importance of the distributary systems (such as megafans and other like fans coastal systems) (Fielding et al, 2012 among others). However, the Quaternary record of the largest depositional tracks on Earth has been not assessed in a comparative and detailed way. Here I present results from some of the most important Quaternary areas of sedimentation of the world such as the alluvial belts of the largest rivers, the largest megafans and other impressive fluvial dominated wetlands in active tectonic basins. My study is based on field work I carried out in many of the analyzed areas, a literature review and remote sensing products. Specific examples are discussed from several rivers of the Amazon basin, the Parana River, the Mississippi River, among others. Large depositional tracks in forelands, platforms and intracratonic basins such as the Chaco, the Orinoco Llanos, the Bananal and Pantanal basin, the Ucamara depression, and the Indo-Gangetic plain, which contain a variety of complex avulsive systems and megafans, are discussed. A main conclusion is that megafans and similar distributary systems, avulsive systems with a variety of channel patterns and linear fluvial belts of major rivers, have the potential for preservation in the geological record. The scarcity of purely braided systems in large rivers is noticeable and they are mainly constrained to small-medium size channels, short length piedmont courses or related to relatively small alluvial fans. Meandering and anabranching systems are dominant in large rivers while anabranching systems are characteristic of megarivers. Despite the findings above, a remarkable challenge remains to identify characteristic facies assemblages for reconstructing large rivers, as they are not clearly identified in the geological record. The scale-size limitation of the architectural characteristics of fluvial landforms and the floodplain complexity of large systems are some of the challenges that need additional research when looking for analogs in the sedimentary record. References: Fielding, Christopher R., Ashworth, Philip J., Best, James L., Prokocki, EricW., Smith, Gregory H. Sambrook, (2012). Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record?, Sedimentary Geology doi: 10.1016/j.sedgeo.2012.03.004 Weissmann, G.S., Hartley, A.J., Nichols, G.J., Scuderi, L.A., Olson, M., Buehler, H., Banteah, R., 2010. Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology 38, 39-42

  3. Late Quaternary history of southern Chesapeake Bay

    SciTech Connect

    Colman, S.M.; Hobbs, C.H. III; Halka, J.P.

    1985-01-01

    More than 700 km of high-resolution, seismic-reflection profiles and sidescan-sonar images provide new information about the late Quaternary history of southern Chesapeake Bay. Sidescan-sonar images show that, excluding the nearshore zone, most of the bay bottom has a monotonously smooth surface, except that sand waves, ripples, and other bedforms occur in local areas affected by tidal currents. Seismic-reflection data show that the Quaternary stratigraphy of the southern part of the Bay is related primarily to the last cycle of sea-level change. The Quaternary section overlies an erosion surface cut deeply into gently seaward-dipping marine beds of Neogene age. Fluvial paleochannels, related to the last major low sea-level stand, are characterized by as much as 55 m of incision and by thin, irregular, terrace and channel-bottom deposits. Marine and estuarine deposits related to the Holocene transgression partially or fully bury the fluvial valleys and overlie the interfluves. A prominent feature of the Bay-mouth area is a wedge of sediment that has prograded into the Bay from the inner shelf. The common assumption--that the Chesapeake Bay is the drowned valley of the Pleistocene Susquehanna River--is only partially valid for the southern part of the Bay. The Bay mouth area, in general, is relatively young. The axial channel of the Bay is a modern tidal channel that is actively eroding Tertiary deposits and migrating toward the south and west; it is unrelated to older fluvial channels. Also, the positions of the modern axial channel and the last two fluvial paleochannels indicate long-term southward migration of the Bay mouth.

  4. Aleksis Dreimanis: a legacy in Quaternary science

    NASA Astrophysics Data System (ADS)

    Hicock, Stephen R.; Menzies, John

    2000-12-01

    Aleksis Dreimanis was born and raised in Latvia. His interest in Quaternary and glacial geology began early and developed into a career that has spanned 7 decades. At age 20 he published his first paper in glacial geology and soon after began teaching at the University of Latvia. Teaching and research were interrupted by World War II but resumed at the Baltic University (Pinneberg, Germany), then at the University of Western Ontario where he has been ever since. Throughout his career, Dreimanis has successfully balanced the twin disciplines of Quaternary history and glacial geology. He was among the first to study quantitatively the relationship between till lithology and till formation and to study how glacial transport and dynamics affect till texture and deformation. With co-workers he developed the well-known stratigraphic scheme of the last glaciation in the Great Lakes region of North America. Aleksis became world-renowned through his committee work, especially as President of the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits. His diplomacy, enthusiasm, and passion for his subject have inspired students and colleagues around the globe and resulted in remarkable international dialogue, cooperation, and consensus. Professor Aleksis Dreimanis is an honest scientist, a gentleman, and a true scholar who has left a rich legacy for future Quaternarists.

  5. Fire, Holocene Climate Change, and Geomorphic Response Recorded in Alluvial Fan Sediments

    NASA Astrophysics Data System (ADS)

    Pierce, J. L.; Meyer, G. A.

    2004-12-01

    Alluvial fan stratigraphic sequences record fire history in charcoal-rich deposits and buried burned soil surfaces. Deposit characteristics provide information about the magnitude of fire-related sedimentation events and severity of associated fires, and radiocarbon-dating of charcoal establishes the timing of fires. Unlike lakes, alluvial fans are ubiquitous in mountain environments. Although alluvial-fan fire records lack the annual resolution of tree-ring records, compilation of data from many alluvial fan sites provides a statistical sample of fire timing and approximate severity that can be related to climate variations over centennial to millennial timescales. We examine alluvial fan records from xeric Pinus ponderosa-dominated forests of central Idaho, and compare them with similar records from cooler, high-elevation Pinus contorta-dominated forests of Yellowstone National Park. Identification of charcoal macrofossils from Idaho fan deposits limits inbuilt age errors in radiocarbon dating, and shows that similar forest compositions have existed over the last ca. 4000 years in the fan drainage basins. Limited data from ca. 4000-7000 yr ago suggest that Pinus ponderosa was either sparse or absent in the 4 basins represented. Large fire-related debris flows in both Idaho and Yellowstone indicate severe fires during the ca. 1050-750 cal yr BP Medieval Climatic Anomaly (MCA), which included widespread and severe western US droughts. Another such episode 2700-1600 cal yr BP is less prominent in the Idaho record. Numerous small, fire-induced sedimentation events in Idaho ca. 350-500 (Little Ice Age), 1200-1400, and 2800-3000 cal yr BP likely indicate frequent low- to mixed-severity fires, and coincide with indicators of generally cool, moist conditions in the western USA and North Atlantic, and with minimal fire activity in Yellowstone. We infer that these effectively wetter periods allow greater grass growth, fueling frequent surface fires in ponderosa forests, but limiting fires in general in the effectively wetter forests of Yellowstone. Maxima in dated small events may relate to significant droughts within these intervals, e.g. in the late AD 1500s, but widespread severe fires are not indicated. Alluvial-fan records add to data from other charcoal-based proxy records of fire that indicate the importance of centennial- to millennial-scale climate change in modulating fire activity and geomorphic response in conifer forests over the Holocene.

  6. Interaction of fine sediment with alluvial streambeds

    USGS Publications Warehouse

    Jobson, H.E.; Carey, W.P.

    1989-01-01

    An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. -from Authors

  7. Long-term interactions between man and the fluvial environment - case of the Diyala alluvial fan, Iraq

    NASA Astrophysics Data System (ADS)

    Heyvaert, Vanessa M. A.; Walstra, Jan; Mortier, Clément

    2014-05-01

    The Mesopotamian alluvial plain is dominated by large aggradading river systems (the Euphrates, Tigris and their tributaries), which are prone to avulsions. An avulsion can be defined as the diversion of flow from an existing channel onto the floodplain, eventually resulting in a new channel belt. Early civilizations depended on the position of rivers for their economic survival and hence the impact of channel shifts could be devastating (Wilkinson 2003; Morozova 2005; Heyvaert & Baeteman 2008). Research in the Iranian deltaic part of the Mesopotamian plain has demonstrated that deliberate human action (such as the construction of irrigation canals and dams) triggered or obstructed the alluvial processes leading to an avulsion on fluvial megafans (during preconditioning, triggering and post-triggering stages) (Walstra et al. 2010; Heyvaert et al. 2012, Heyvaert et al.2013). Thus, there is ample evidence that the present-day alluvial landscapes in the region are the result of complex interactions between natural and anthropogenic processes. Here we present a reconstruction of the Late Holocene evolution of the Diyala alluvial fan (one of the main tributaries of the Tigris in Iraq), with particular attention to the relations between alluvial fan development, changes in channel pattern, the construction of irrigation networks and the rise and collapse of societies through historic times. The work largely draws on the use of remote sensing and GIS techniques for geomorphological mapping, and previously published archaeological field data (Adams 1965). By linking archaeological sites of known age with traces of ancient irrigation networks we were able to establish a chronological framework of alluvial activity of the Diyala alluvial fan. Our results demonstrate that centralized and technologically advanced societies were able to maintain a rapidly aggradading distibutary channel system, supplying water and sediment across the entire alluvial fan. As a consequence, during these periods (Parthian, Sasanian and again in modern times), significant human modification of the landscape took place. Periods of societal decline are associated with reduced human impact and the development of a single-threaded incising river system. Adams, R.M. (1965). Land behind Baghdad: A history of settlement on the Diyala plains. University of Chicago Press, Chicago, Illinois. Heyvaert, V.M.A. & Baeteman, C. (2008). A Middle to Late Holocene avulsion history of the Euphrates river: a case study from Tell ed-D-er, Iraq, Lower Mesopotamia. Quaternary Science Reviews, 27, 2401-2410. Heyvaert, V. M. A., Walstra, J., Verkinderen, P., Weerts, H. J. T. & Ooghe, B. (2012). The role of human interference on the channel shifting of the river Karkheh in the Lower Khuzestan plain (Mesopotamia, SW Iran). Quaternary International, 251, 52-63. Heyvaert, V.M.A., Walstra, J., Weerts, H.J.T. (2013). Human impact on avulsion and fan development in a semi-arid region: examples from SW Iran. Abstractbook of the 10th International Fluvial Sedimentology Conference, July 2013,Leeds, United Kingdom. Morozova, G.S. (2005). A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology, 20, 401-423. Walstra, J., Heyvaert, V. M. A. & Verkinderen, P. (2010). Assessing human impact on alluvial fan development: a multidisciplinary case-study from Lower Khuzestan (SW Iran). Geodinamica Acta, 23, 267-285. Wilkinson, T.J. (2003). Archaeological Landscapes of the Near East. The University of Arizona Press, Tucson, Arizona.

  8. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas.

    PubMed

    Amalfitano, S; Del Bon, A; Zoppini, A; Ghergo, S; Fazi, S; Parrone, D; Casella, P; Stano, F; Preziosi, E

    2014-11-15

    Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies. PMID:25165005

  9. Turkana Grits - a Cretaceous braided alluvial system in northern Kenya

    SciTech Connect

    Handford, C.R.

    1987-05-01

    Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record a major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.

  10. Alluvial-fan deposits of Eldorado and Piute Valleys Alluvial-fan deposits are mapped as allostratigraphic units

    E-print Network

    Tingley, Joseph V.

    . Geomorphic character and weak degree of soil development indicate that the unit is early to mid- Holocene the younger alluvium; the distinctive red Bt soil horizon commonly crops out in shallow cuts and along road

  11. Possible Late Quaternary faulting in the Benton Hills, southeastern Missouri

    SciTech Connect

    Palmer, J.R.; Hoffman, D. (Missouri Geological Survey Program, Rolla, MO (United States). Dept. of Natural Resources)

    1993-03-01

    Geologic mapping in the 1930's by Dan Stewart and Lyle McManamy identified numerous faults in the Thebes Gap area of the Benton Hills, including two post-late Quaternary faults (max. of 10 m displacement) along the southeastern escarpment. Recent geologic mapping (Richard Harrison, pers. comm.) suggests dextral strike-slip displacement on most of these faults; some deformation post-dates the Pliocene-Pleistocene Mounds gravel. Small historical earthquake epicenters have been recorded in the Benton Hills area. Review of these data and analysis of the geologic and structural relationships to small- and large-scale drainage and alluvial features suggest tectonic control of the southeastern escarpment of the Benton Hills. The authors propose the coincidence of geologic structures and landforms resembles tectonically active alluvial basin margins, with the Benton Hills southeastern margin representing a fault block uplift escarpment. Future seismic reflection, drilling and trenching studies are planned to determine if the escarpment is fault controlled and of recent origin.

  12. Southern Dobrogea coastal potable water sources and Upper Quaternary Black Sea level changes

    NASA Astrophysics Data System (ADS)

    Caraivan, Glicherie; Stefanescu, Diana

    2013-04-01

    Southern Dobrogea is a typical geologic platform unit, placed in the south-eastern part of Romania, with a Pre-Cambrian crystalline basement and a Paleozoic - Quaternary sedimentary cover. It is bordered to the north by the Capidava - Ovidiu fault and by the Black Sea to the east. A regional WNW - ESE and NNE - SSW fault system divides the Southern Dobrogea structure in several tectonic blocks. Four drinking water sources have been identified: surface water, phreatic water, medium depth Sarmatian aquifer, and deep Upper Jurassic - Lower Cretaceous aquifer. Surface water sources are represented by several springs emerged from the base of the loess cliff, and a few small rivers, barred by coastal beaches. The phreatic aquifer develops at the base of the loess deposits, on the impervious red clay, overlapping the Sarmatian limestones. The medium depth aquifer is located in the altered and karstified Sarmatian limestones, and discharges into the Black Sea. The Sarmatian aquifer is unconfined where covered by silty loess deposits, and locally confined, where capped by clayey loess deposits. The aquifer is supplied from the Pre-Balkan Plateau. The Deep Upper Jurassic - Lower Cretaceous aquifer, located in the limestone and dolomite deposits, is generally confined and affected by the regional WNW - ESE and NNE - SSW fault system. In the south-eastern Dobrogea, the deep aquifer complex is separated from the Sarmatian aquifer by a Senonian aquitard (chalk and marls). The natural boundary of the Upper Jurassic - Lower Cretaceous aquifer is the Capidava - Ovidiu Fault. The piezometric heads show that the Upper Jurassic - Lower Cretaceous aquifer is supplied from the Bulgarian territory, where the Upper Jurassic deposits crop out. The aquifer discharges into the Black Sea to the east and into Lake Siutghiol to the northeast. The cyclic Upper Quaternary climate changes induced drastic remodeling of the Black Sea level and the corresponding shorelines. During the Last Glacial Maximum (MIS 2), the shoreline retreats eastwards, reaching the 100-120 m isobaths. In these conditions, the surface drainage base level was very low. Phreatic nape closely followed the river valleys dynamics. Mean depth aquifer discharged on the inner shelf , where Sarmatian limestones outcrop. The deep aquifer discharge was restricted by the Capidava- Ovidiu Fault to the north-east and by a presumed seawards longitudinal Fault. This process enabled the migration of the prehistoric human communities, from Asia to Europe, who established settlements on the newly created alluvial plain on the western Black Sea shelf. The Holocene Transgression (MIS 1) determined a sea level rise up to the modern one, and probably higher. Under the pressure of these environmental changes, the Neolithic settlements slowly retreated upstream. During the Greek colonization, the rising sea level caused the salinisation of the previous drinking water phreatic sources. In these conditions, in the Roman Age, a new hydraulic infrastructure had to be developed, using aqueducts for available inland water delivery.

  13. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia.

    PubMed

    Markovi?, Tamara; Brki?, Željka; Larva, Ozren

    2013-08-01

    The Zagreb alluvial aquifer system is located in the southwest of the Pannonian Basin in the Sava Valley in Croatia. It is composed of Quaternary unconsolidated deposits and is highly utilised, primarily as a water supply for the more than one million inhabitants of the capital city of Croatia. To determine the origin and dynamics of the groundwater and to enhance the knowledge of groundwater flow and the interactions between the groundwater and surface water, extensive hydrogeological and hydrochemical investigations have been completed. The groundwater levels monitored in nested observation wells and the lithological profile indicate that the aquifer is a single hydrogeologic unit, but the geochemical characteristics of the aquifer indicate stratification. The weathering of carbonate and silicate minerals has an important role in groundwater chemistry, especially in the area where old meanders of the Sava River existed. Groundwater quality was observed to be better in the deeper parts of the aquifer than in the shallower parts. Furthermore, deterioration of the groundwater quality was observed in the area under the influence of the landfill. The stable isotopic composition of all sampled waters indicates meteoric origin. NETPATH-WIN was used to calculate the mixing proportions between initial waters (water from the Sava River and groundwater from "regional" flow) in the final water (groundwater sampled from observation wells). According to the results, the mixing proportions of "regional" flow and the river water depend on hydrological conditions, the duration of certain hydrological conditions and the vicinity of the Sava River. Moreover, although the aquifer system behaves as a single hydrogeologic unit from a hydraulic point of view, it still clearly demonstrates geochemical stratification, which could be a decisive factor in future utilisation strategies for the aquifer system. PMID:23707721

  14. CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.

    USGS Publications Warehouse

    Simon, Andrew; Hupp, Cliff R.

    1987-01-01

    This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).

  15. Macro-roughness model of bedrock-alluvial river morphodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Stark, C. P.; Inoue, T.; Viparelli, E.; Fu, X.; Izumi, N.

    2014-05-01

    The 1-D saltation-abrasion model of channel bedrock incision of Sklar and Dietrich, in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation which specifically tracks the spatiotemporal variation of both bedload transport and alluvial thickness. It does so by relating the cover fraction not to a ratio of bedload supply rate to capacity bedload transport, but rather to the ratio of alluvium thickness to a macro-roughness characterizing the bedrock surface. The new formulation predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection-diffusion of a sediment pulse over an alluvial bed. A solution for alluvial-incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, so blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial-bedrock reach downstream migrates upstream in the form of a "hidden knickpoint". A solution for the case of a zone of rock subsidence (graben) bounded upstream and downstream by zones of rock uplift (horsts) yields a steady-state solution that is unattainable with the original saltation-abrasion model. A solution for the case of bedrock-alluvial coevolution upstream of an alluviated river mouth illustrates how the bedrock surface can be progressive buried not far below the alluvium. Because the model tracks the spatiotemporal variation of both bedload transport and alluvial thickness, it is applicable to the study of the incisional response of a river subject to temporally varying sediment supply. It thus has the potential to capture the response of an alluvial-bedrock river to massive impulsive sediment inputs associated with landslides or debris flows.

  16. Macro-roughness model of bedrock-alluvial river morphodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Stark, C. P.; Inoue, T.; Viparelli, E.; Fu, X.; Izumi, N.

    2015-02-01

    The 1-D saltation-abrasion model of channel bedrock incision of Sklar and Dietrich (2004), in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise to unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation that specifically tracks the spatiotemporal variation in both bedload transport and alluvial thickness. It does so by relating the bedrock cover fraction to the ratio of alluvium thickness to bedrock macro-roughness, rather than to the ratio of bedload supply rate to capacity bedload transport. The new formulation (MRSAA) predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances, and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection-diffusion of a sediment pulse over an alluvial bed. A solution for alluvial-incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, thus blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial-bedrock reach downstream migrates upstream in the form of a "hidden knickpoint". A tectonically more complex case of rock uplift subject to a localized zone of subsidence (graben) yields a steady-state solution that is not attainable with the original saltation-abrasion model. A solution for the case of bedrock-alluvial coevolution upstream of an alluviated river mouth illustrates how the bedrock surface can be progressively buried not far below the alluvium. Because the model tracks the spatiotemporal variation in both bedload transport and alluvial thickness, it is applicable to the study of the incisional response of a river subject to temporally varying sediment supply. It thus has the potential to capture the response of an alluvial-bedrock river to massive impulsive sediment inputs associated with landslides or debris flows.

  17. Evidence for Quaternary liquefaction-induced features in the epicentral area of the 21 May 2003 Zemmouri earthquake (Algeria, M w = 6.8)

    NASA Astrophysics Data System (ADS)

    Bouhadad, Y.; Benhamouche, A.; Maouche, S.; Belhai, D.

    2009-01-01

    Evidence of ancient liquefaction-in duced features is presented in the area of the 2003 Zemmouri earthquake ( M w 6.8). This earthquake was related to an offshore unknown 50-km long fault. A 0.55-m coseismic coastal uplift was generated and extensive liquefaction has been induced in the most susceptible area which correspond to the seaside and along the hydrographic network, mainly the Sebaou and Isser valley rivers. Field investigations allowed us to identify past liquefaction traces in the Quaternary deposits. The observed features are represented by sand dikes, sills, and sand vents as well as well-preserved sand boiled volcanoes. In this work, we also describe the alluvial environment, the hosted localized stratigraphic layer, the morphology and the geometry of the observed features, as well as the observed deformation (settlement) of the hosted layers that are among characteristics of the seismically induced features as described in worldwide examples. Our observations represent a step towards paleoseismological studies in the region knowing that the May 21st 2003 Zemmouri earthquake is produced by an offshore fault where a direct study of the seismogenic fault is inaccessible.

  18. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the unconformity during a phase of tectonic quiescence, and show a fining-upward depositional trend. This trend was generated by a progressive decrease in sediment supply stemming out from upstream migration of the knickpoints developed during the embanking of the axial system.

  19. Quaternary GIS Laboratory

    NSDL National Science Digital Library

    This is the home page of the Quaternary Geographic Information System (GIS) Laboratory at the Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado. The laboratory supports quantitative spatial analysis of glacier, climate, coastal, and other environmental relationships at high latitudes. Users can access a collection of climate animations for the State of Alaska which show seasonal variation in monthly temperature and precipitation. There is also a set of high-resolution imagery and terrain models for Barrow, Alaska, an animation of the land bridge between Asia and North America, an atlas of paleoglaciation for the state, and links to a variety of other projects involving climatology, paleoclimatology, and glacial geomorphology in the Sate of Alaska.

  20. ERODIBILITY OF URBAN BEDROCK AND ALLUVIAL CHANNELS, NORTH TEXAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major erosion of urban stream channels is found in smaller basins in the North Texas study area with contributing drainage areas of less than ten square miles. Within these basins, four basic channel types are identified based on bed and bank lithologies: alluvial banks and bottoms, alluvial banks ...

  1. Morphology and stratigraphy of the late Quaternary lower Brazos valley: Implications for paleo-climate, discharge and sediment delivery

    Microsoft Academic Search

    Dennis A. Sylvia; William E. Galloway

    2006-01-01

    A shallow coring and geophysical logging program has recorded the sedimentary fill of the Brazos River valley in the Texas Gulf Coastal Plain. Thermoluminescence dates together with new and recalibrated published radiocarbon dates show the valley fill to include extensive, sandy, buried falling stage and lowstand Oxygen Isotope Stage (OIS) 3 and 2 deposits. These alluvial deposits are punctuated by

  2. Historical Ground-Water Development in the Salinas Alluvial Fan Area, Salinas, Puerto Rico, 1900-2005

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2008-01-01

    The Salinas alluvial fan area has historically been one of the most intensively used agricultural areas in the South Coastal Plain of Puerto Rico. Changes in agricultural practices and land use in the Salinas alluvial fan have also caused changes in the geographic distribution of ground-water withdrawals from the alluvial aquifer. As a result, the ground-water balance and ground-water flow pattern have changed throughout the years and may explain the presence of saline ground water along parts of the coast at present. By providing a reconstruction of historical ground-water development in the Salinas alluvial fan area, from the initial years of aquifer development at about 1900 to the most recent conditions existing in 2005, water resources managers and planners can use the results of the analysis for a more complete understanding of aquifer conditions especially pertaining to water quality. This study effort was conducted by the U.S. Geological Survey in cooperation with the Puerto Rico Department of Natural and Environmental Resources as a contribution in the management of the Jobos Bay National Estuarine Research Reserve. The study area encompasses about 20 mi2 (square miles) of the extensive South Coastal Plain alluvial aquifer system (fig. 1). The study area is bounded to the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, and to the east and west by the Rio Nigua de Salinas and the Quebrada Aguas Verdes, respectively. Fan-delta and alluvial deposits contain the principal aquifers in the study area.

  3. Differentiating tectonic from climatic factors in the evolution of alluvial fans

    SciTech Connect

    Wilson, D.S.; West, R.B. (Univ. of California, Santa Barbara, CA (United States). Dept. of Geology)

    1993-04-01

    Alluvial fans are integral parts of landscapes of arid and semi-arid regions and are most commonly found along the flanks of tectonically active mountain ranges. Alluvial fans are sensitive indicators of tectonic and climatic activity through time. Three dimensional fan modelling has the potential to discriminate between these two forces and provide quantitative estimates of deformation of fan surfaces due to tilting, faulting, or folding. The model has tremendous potential for seismic hazard evaluation at both the reconnaissance and detailed level of investigation. The ability to recognize deformation of alluvial fans alleviates the need for postulation of complex interactions between climate and internal variables in the depositional system leading to present fan morphology. The greatest problems associated with fan modelling come from failure to identify individual segments. Inclusion of more than one segment can lead to poor model performance or, more likely, inaccurate results. The long term tectonic influence on a fan's evolution can be assessed from the differences in deformation of different segments. Reliable correlations of segments from different fans along the same mountain front can provide a means to asses regional deformation. Once tectonic effects are taken into account, then climatic effects can be evaluated. Previous fan models have failed to recognize areal limitations, failed to account for deformation, or assumed deformation geometry.

  4. Large Well-exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A.D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early- Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters = 70 km in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 deg S and 30 deg S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  5. Large Well-Exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early-Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters greater than or equal to 70 kilometers in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 degrees S and 30 degrees S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  6. Ion-probe U-Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium

    NASA Astrophysics Data System (ADS)

    Neymark, L. A.; Paces, J. B.

    2013-01-01

    Knowing depositional ages of alluvial fans is essential for many tectonic, paleoclimatic, and geomorphic studies in arid environments. The use of U-Pb dating on secondary silica to establish the age of Neogene-Quaternary clastic sediments was tested on samples of authigenic and detrital opal and chalcedony from depths of ˜25 to 53 m in boreholes at Midway Valley, Nevada. Dating of authigenic opal present as rinds on rock clasts and in calcite/silica cements establishes minimum ages of alluvium deposition; dating of detrital opal or chalcedony derived from the source volcanic rocks gives the maximum age of sediment deposition. Materials analyzed included 12 samples of authigenic opal, one sample of fracture-coating opal from bedrock, one sample of detrital opal, and two samples of detrital chalcedony. Uranium-lead isotope data were obtained by both thermal ionization mass spectrometry and ion-microprobe. Uranium concentrations ranged from tens to hundreds of ?g/g. Relatively large U/Pb allowed calculation of 206Pb/238U ages that ranged from 1.64±0.36 (2?) to 6.16±0.50 Ma for authigenic opal and from 8.34±0.28 to 11.2±1.3 Ma for detrital opal/chalcedony. Three samples with the most radiogenic Pb isotope compositions also allowed calculation of 207Pb/235U ages, which were concordant with 206Pb/238U ages from the same samples. These results indicate that basin development at Midway Valley was initiated between about 8 and 6 Ma, and that the basin was filled at long-term average deposition rates of less than 1 cm/ka. Because alluvium in Midway Valley was derived from adjacent highlands at Yucca Mountain, the low rates of deposition determined in this study may imply a slow rate of erosion of Yucca Mountain. Volcanic strata underlying the basin are offset by a number of buried faults to a greater degree than the relatively smooth-sloping bedrock/alluvium contact. These geologic relations indicate that movement on most faults ceased prior to erosional planation and burial. Therefore, ages of the authigenic opal from basal alluvium indicate that the last movement on buried faults was older than about 6 Ma.

  7. Estimation of hydraulic conductivity in an alluvial system using temperatures

    USGS Publications Warehouse

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  8. Characterization of dust emission from alluvial sediments using aircraft observations and modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, K.; Flamant, C.; Chaboureau, J.; Kocha, C.; Banks, J.; Brindley, H. E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P.

    2013-12-01

    Recent studies using satellite observations show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions such as over North Africa. Alluvial sediments deposited on the valley bottoms and flood plains are very prone to wind erosion and frequently serve as dust source. High surface wind speeds related to the break-down of the nocturnal low-level jet (LLJ) during the morning hours are identified as a frequent driving mechanism for dust uplift. We investigate dust emission from alluvial dust sources located within the upland region in northern Mauritania and discuss the impact of valleys with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, MSG SEVIR dust AOD fields and MesoNH model simulations, and analyzed in order to provide complementary information on dust source activation and local dust transport at different horizontal scales. Vertical distribution of atmospheric mineral dust was obtained from the LNG backscatter lidar system flying aboard the French Falcon-20 aircraft. Lidar extinction coefficients were compared to topography, aerial photographs, and dust AOD fields to confirm the relevance of alluvial sediments at the valley bottoms as dust source. The observed dust emission event was further evaluated using the regional model MesoNH. A sensitivity study on the impact of the horizontal grid spacing highlights the importance of the spatial resolution on simulated dust loadings. The results further illustrate the importance of an explicit representation of alluvial dust sources in such models to better capture the spatial-temporal distribution of airborne dust concentrations.

  9. Fire, climate, and alluvial system dynamics: A Holocene record from Yellowstone National Park

    SciTech Connect

    Meyer, G.A. (Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology); Wells, S.G. (Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences); Jull, A.J. (Univ. of Arizona, Tucson, AZ (United States). NSF-Arizona Accelerator Facility For Isotope Dating)

    1992-01-01

    Many large debris-flow, hyperconcentrated-flow, and flood-streamflow sediment transport events have been produced in steep basins that were burned in the 1988 fires in northeaster Yellowstone National Park. The charcoal- and fines-rich character of fire-related debris-flow deposits and the abundance of similar facies in Holocene fan sections have allowed them to construct a [sup 14]C-dated chronology of fire-related sedimentation in the Soda Butte and Slough Creek drainages for the last 3500 years. Major periods of fire-related alluvial fan aggradation are interpreted as drought-dominated with the support of local paleoenvironmental data and statistical analyses of historical climate-fire relations; however, some fire-related events may occur due to high climatic variability and severe short-term drought within generally moist intervals. The last major episode of fire-related debris-flow activity encompasses the Medieval Warm Period of 900--1300 AD and peaks ca. 1150 AD; a prior episode culminates ca. 350--100 BC. Wetter periods contain minimal fire-related fan sedimentation; however, floodplain broadening and aggradation occurs along axial streams. Higher average snowmelt runoff discharges are probably involved, such that the dominant alluvial activity shifts to removal of sediment from alluvial fan storage and transport to downstream floodplains. The Little Ice Age (ca. 1300--1900 AD) contains minimal fire-related debris0flow activity and is associated with floodplain aggradation of the T4 terrace, and independent evidence suggests substantially wetter conditions during T3 aggradation ca. 350--650 AD. Thus, small-scale climate changes of the late Holocene effectively control the dominant mode of alluvial activity.

  10. Late Pleistocene coastal loess deposits of the central west coast of North America: Terrestrial facies indicators for marine low-stand intervals

    NASA Astrophysics Data System (ADS)

    Peterson, Curt D.; Grathoff, Georg H.; Reckendorf, Frank; Percy, David; Price, David M.

    2014-03-01

    Coastal loess deposits measured in sea cliffs, bay cliffs, road cuts and boreholes (62 sites) are compiled for the states of Washington, Oregon, and California in the central west coast of North America (1700 km in length). The loess-enriched deposits are recognized by (1) substantial abundances of silt (30-90% by weight) and (2) depositional settings in uplifted marine terraces or dune fields that are situated well above alluvial floodplains at the coast. Total loess thickness above the MIS5a marine terrace, or 80 ± 20 ka basal TL age, ranges from 0.1 to 8.0 m in 46 dated sites. Loess deposits reach maximum thickness (5-8 m) in the vicinities of glacial outwash plains in the highest latitudes. Loess thickness in the middle and lower latitudes increases with proximity to 1) large river mouths (>3 × 106 mt yr-1 modern suspended sediment discharge) and 2) broad shelf widths (>10 km distance from 0 to -100 m depth). Coastal loess deposits dated by TL or radiocarbon (37 samples) range from ˜250 to 11 ka in age, but generally fall into the MIS4-2 marine low-stand intervals (32 dates between 77-15 ka). The coastal loess facies represent marine low-stand intervals in coastal Quaternary sequences from the central west coast of North America.

  11. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    PubMed

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the ?(18)OH2O and ?(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns. PMID:25249478

  12. Regional water quality patterns in an alluvial aquifer: Direct and indirect influences of rivers

    NASA Astrophysics Data System (ADS)

    Baillieux, A.; Campisi, D.; Jammet, N.; Bucher, S.; Hunkeler, D.

    2014-11-01

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50 km2) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the ?18OH2O and ?2HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52 mg/L, and the nitrate concentration of infiltrating river at approximately 6 mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns.

  13. Downstream hydraulic geometry of alluvial rivers

    NASA Astrophysics Data System (ADS)

    Julien, P. Y.

    2015-03-01

    This article presents a three-level approach to the analysis of downstream hydraulic geometry. First, empirical concepts based on field observations of "poised" conditions in irrigation canals are examined. Second, theoretical developments have been made possible by combining basic relationships for the description of flow and sediment transport in alluvial rivers. Third, a relatively new concept of equivalent channel widths is presented. The assumption of equilibrium may describe a perpetual state of change and adjustments. The new concepts define the trade-offs between some hydraulic geometry parameters such as width and slope. The adjustment of river widths and slope typically follows a decreasing exponential function and recent developments indicate how the adjustment time scale can be quantified. Some examples are also presented to illustrate the new concepts presented and the realm of complex river systems.

  14. Assessing an Alluvial Channel Behavioral Problem

    NASA Astrophysics Data System (ADS)

    Trampush, S.; McElroy, B. J.; Huzurbazar, S. V.

    2012-12-01

    Modern alluvial rivers appear to be highly organized physical systems. Although empirical relations provide much insight into the fundamental organizing principles of rivers across multiple scales, current theory does not fully explain these relations. In particular the bankfull Shields stress and particle Reynolds number characterize mutual adjustments of basal shear stress and median grain size of the sediment load within a channel, and it has been derived that the bankfull Shields stress should scale with the particle Reynolds number to the -2/3 power. However, empirical results do not support this. In order to explore this discrepancy we develop theory and add new data to existing datasets of alluvial bankfull properties. We compiled a dataset of 641 bankfull measurements from previous compilations and new, previously un-compiled studies. Using Bayesian linear regression, we find a relation between the logarithms of bankfull Shields stress and particle Reynolds number with a slope that has a 95% high posterior probability density interval probability of (-0.499, -0.463). Either a parameter is missing or one of the current parameters is incorrectly formulated. We propose that the particle Reynolds number is nondimensionalized in a way that, although is correctly unitless, is not the scaled internally in the most advantageously for this application. Unfortunately, without measured variability of kinematic viscosity, fluid density, or sediment density, the data is confounded and a new, more correct formulation of the particle Reynolds number cannot be proposed. A future work could resolve this issue with variation of any one of these parameters. Results from that dataset will have application to a wide range of modern and ancient planetary environments.

  15. Alluvial Bars of the Obed Wild and Scenic River, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Fitch, K.C.; Ladd, D.E.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) and the National Park Service (NPS) initiated a reconnaissance study of alluvial bars along the Obed Wild and Scenic River (Obed WSR), in Cumberland and Morgan Counties, Tennessee. The study was partly driven by concern that trapping of sand by upstream impoundments might threaten rare, threatened, or endangered plant habitat by reducing the supply of sediment to the alluvial bars. The objectives of the study were to: (1) develop a preliminary understanding of the distribution, morphology, composition, stability, and vegetation structure of alluvial bars along the Obed WSR, and (2) determine whether evidence of human alteration of sediment dynamics in the Obed WSR warrants further, more detailed examination. This report presents the results of the reconnaissance study of alluvial bars along the Obed River, Clear Creek, and Daddys Creek in the Obed WSR. The report is based on: (1) field-reconnaissance visits by boat to 56 alluvial bars along selected reaches of the Obed River and Clear Creek; (2) analysis of aerial photographs, topographic and geologic maps, and other geographic data to assess the distribution of alluvial bars in the Obed WSR; (3) surveys of topography, surface particle size, vegetation structure, and ground cover on three selected alluvial bars; and (4) analysis of hydrologic records.

  16. Quaternary strain rates distribution and crust-mantle structure of the southern Northeast Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Sato, Hiroshi; Kato, Naoko; Imaizumi, Toshifumi; Matsubara, Makoto; Takeda, Tetsuya

    2013-04-01

    Driving mechanisms of intracontinental deformation at subduction margins have been a interesting research target to understand dynamic interaction between subducting oceanic slabs, overriding continental crust and mantle structures. Driven by this motivation, we estimated spatial distributions of intraplate permanent strain rates accommodated by active faults and fault-related folds in southern Northeast Japan during the late Cenozoic time, based on combinations of recently obtained deep to shallow seismic re?ection data, and rates of fault slip determined by offsets of geomorphic features or stratigraphic horizons identified of drilled shallow boreholes across fault and/or fold scarps. Tectonic setting of the northeastern Japan in late Cenozoic times, underlain by westward subducting old and cold Pacific plate, is characterized by north to northeast trending active thrust sheets that deform Neogene deposits. Although previous studies indicated that active reverse faults are predominant in this region, revised active fault mapping after the 2011 Tohoku-oki earthquake (M9.0) and its normal-fault aftershock sequence indicate that active normal faults are widely distributed on the southeastern flank of the coastal mountains along the Pacific coast and continental shelf off the southern Northeast Japan. Estimated strain rates accommodated by active faults and folds are an order of 10-8/yr for each structures, that are in general 10 to 100 times higher than previous estimates only from surficial Quaternary active fault data and historical seismicity. Contrastingly, geodetic strain rates observed the 2011 Tohoku-oki earthquake shows 10 times higher than those estimates in this study. Most of these active thrusts are reactivated normal faults originally formed during Miocene in extensional stress regimes. Trench-normal, spatial distributions of the longer-term permanent strain rates is characterized by a distinctive trend that strain rates in back-arc are apparently 10 times higher than in fore-arc region, quite similar to those estimated based on late Cenozoic folded/faulted strata. Most of these active thrusts are reactivated normal faults originally formed during Miocene in extensional stress regimes. Longer-wavelength, late Quaternary uplift and subsidence overprinting these short wavelength strains, estimated by fluvial incision rates based on terhrostratigraphy, and borehole stratigraphy in alluvial plains, indicate relatively uniform, moderate uplift rates in fore-arc and west of the volcanic front, and very fast subsidence rates in back-arc. Late Cenozoic major tectonic records in southern Northeastern Japan after Miocene Japan Sea opening are, in summary, mainly characterized by Quaternary strong compression and coeval fast subsidence in back-arc region. Crust-mantle structures of the southern Northeast Japan based on seismic tomography, seismic reflection and refraction profiles indicates crustal thickening beneath the Ou backbone Range probably due to magmatic underplating. In addition, back-arc subsidence is underlain by low Vp in the upper mantle, suggesting that downwelling of the mantle lithosphere may be driving present-day surface fast subsidence.

  17. Evolution Of Quaternary Stream Fan Deposits At The Confluences Of Turung Khola And Bembung Khola Of Middle Teesta Basin In Sikkim-Darjeeling Himalaya,India: A Tectonic - Climate Response

    NASA Astrophysics Data System (ADS)

    Lukram, I. M.

    2007-12-01

    Tributary fan deposits are well preserved on either side of the Teesta river in the non-glaciated middle part of the Himalayan valley lying in a tectonic region bounded by the MCT and MBT. The lithofacies characteristics and assemblage patterns of these deposits bear testimony to the effects of tectonic and climatic activities on the sedimentation process in the basin. Two tributary streams, with small catchments namely Turung Khola and Bembung Khola are important in this context. Three major fan lobes (F2, F1, and F0) are preserved at Turung Khola. In contrast, two fan lobes (F1,F0) are preserved at the confluence of the Bembung Khola. Terraces, floodplains, channel bars, chute bars are associated geomorphic features in this part of the Teesta basin. Landslides cover an area of 7% and 15% in the catchment of Turung Khola and Bembung Khola, respectively. Dense forest covers 24% and 12%; open forest covers 30% and 29 %; and scrubby vegetation covers 39% and 49% of the Turung Khola and Bembung Khola, respectively. The landslides mainly occur along the margins of the dense forest where they are active in every rainy season. Tributary longitudinal profiles and Hack profiles indicate a relationship between the knick points and high SL-Index values, where fault /thrust intersections are present. Active landslides and scarps are close to the major fault/thrust planes. Sediment characteristics of these fan deposits suggest that four types of depositional flows viz. debris flows, hyperconcentrated flows, sheet flows and channel flows laid down these sequences. The channel flow deposits are dominant (32%-54 %) in the fan sequence of the Turung Khola followed by sheet flow deposits (28.5%), hyperconcentrated flow deposits (26%) and debris flow deposits (12%), respectively. Hyperconcentrated flow deposits are dominant (44%) in the F1 sequence, whereas the active channel fanlobe is dominant (80%) in the channel flow deposits. The rest of the active channel sequence is composed of sheet flow deposits (20%). On the other hand, the major part (52%) of the F1 fanlobe of Bembung Khola is built up of debris flow deposits and F0 fanlobe is composed of channel flow deposits and flood sediment. From the above analysis, an evolutionary model of the deposition and incision at the tributary stream fan confluence is proposed. The insetting of the younger fan lobes into older fan lobe surfaces is an evidence of tectonic uplift in the region. The landform and their depositional pattern are a responds to link tectonic- climatic process systems; some depositional lithofacies assemblages are responses to climatic events.

  18. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California

    Microsoft Academic Search

    T. C. Blair

    2000-01-01

    The Hell's Gate alluvial fan of northern Death Valley has an area of 49.5km2, a radius of 11.8km, and a smooth 5–3° sloping surface interrupted by shallow (<0.5m), radially aligned gullies 1–4m wide. Facies analysis of 1–14m high exposures at 45 sites reveals that the fan is built almost entirely by water-flow processes. Two facies deposited by sheetflooding dominate the

  19. Distribution and Orientation of Alluvial Fans in Martian Craters

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. I.

    2005-01-01

    We present the results of the complete survey of Martian alluvial fans from 0-30 S, initiated by Moore and Howard. Nineteen impact craters contain alluvial fans. They are regionally grouped into three distinct areas. We present our initial results regarding their distribution and orientation in order to understand what controls their formation. Since alluvial fans are formed by water transport of sediment, these features record wetter episodes of Martian climate. In addition, their enigmatic distribution (in regional groups and in some craters, but not similar adjacent ones) needs to be understood, to see how regional geology, topographic characteristics, and/or climate influence their formation and distribution.

  20. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400–1880), Paria River basin and southern Colorado Plateau, United States

    Microsoft Academic Search

    Richard Hereford

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tribu- taries of the Paria River and is largely co- incident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a map- pable stratigraphic unit in many of the larger alluvial valleys of the southern Col- orado Plateau.

  1. Laramide thrust-generated alluvial-fan sedimentation, Sphinx conglomerate, southwestern Montana

    SciTech Connect

    Decelles, P.G.; Tolson, R.B.; Graham, S.A.; Smith, G.A.; Ingersoll, R.V.; White, J.; Schmidt, C.J.; Rice, R.; Moxon, I.; Lemke, L.; handschy, J.W.; Follo, M.F.; Edwards, D.P.; Cavazza, W.; Caldwell, M.; Bargar, E. (Univ. of Rochester, NY (USA))

    1987-02-01

    The uppermost Cretaceous-lower Tertiary Sphinx Conglomerate crops out over an area of approximately 20 km{sup 2} (8 mi{sup 2}) in the Madison Range of southwestern Montana. The Sphinx consists of more than 1,000 m (3,300 ft) of synorogenic boulder and cobble conglomerate derived from a Late Cretaceous Laramide uplift that was located in the area presently occupied by the Madison River valley. Palynological and radiometric age data indicate that the Sphinx was deposited 75-58 Ma, and that thrusting and folding of the deposit had largely ceased by 56 Ma. Compositions of Sphinx clasts and paleocurrent data indicate that the Sphinx was produced by uplift and unroofing of Mesozoic and Paleozoic rocks located on two thrust sheets to the west and southwest. The lower Sphinx was deposited on the distal portions of an eastward prograding alluvial-fan system. Clast assemblages and lithofacies indicate that deposition of the middle Sphinx was controlled by a combination of progradation in response to ongoing thrusting and an influx of resistant clasts derived from middle Paleozoic carbonates in the source area. Deposition of the upper Sphinx was probably controlled by source lithology, as the influx of very coarse, resistant clasts from middle and lower Paleozoic carbonates overwhelmed the fan system's ability to organize its load of sediment by normal fan processes. A preliminary facies model for thrust-generated alluvial-fan deposits predicts intraformational deformation, cannibalization of proximal synorogenic fan facies, and abrupt compositional breaks in response to episodes of thrusting. 14 figs., 1 tab.

  2. Alluvial diamond resource potential and production capacity assessment of Mali

    USGS Publications Warehouse

    Chirico, Peter G.; Barthelemy, Francis; Kone, Fatiaga

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. Over 70 countries were included as members of the KPCS at the end of 2007. To prevent trade in "conflict diamonds" while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was (1) to assess the naturally occurring endowment of diamonds in Mali (potential resources) based on geological evidence, previous studies, and recent field data and (2) to assess the diamond-production capacity and measure the intensity of mining activity. Several possible methods can be used to estimate the potential diamond resource. However, because there is generally a lack of sufficient and consistent data recording all diamond mining in Mali and because time to conduct fieldwork and accessibility to the diamond mining areas are limited, four different methodologies were used: the cylindrical calculation of the primary kimberlitic deposits, the surface area methodology, the volume and grade approach, and the content per kilometer approach. Approximately 700,000 carats are estimated to be in the alluvial deposits of the Kenieba region, with 540,000 carats calculated to lie within the concentration grade deposits. Additionally, 580,000 carats are estimated to have been released from the primary kimberlites in the region. Therefore, the total estimated diamond resources in the Kenieba region are thought to be nearly 1,300,000 carats. The Bougouni zones are estimated to have 1,000,000 carats with more than half, 630,000 carats, contained in concentrated deposits. When combined, the Kenieba and Bougouni regions of Mali are estimated to be host to 2,300,000 carats of diamonds.

  3. Tributary debris fans and the late Holocene alluvial chronology of the Colorado River, eastern Grand Canyon, Arizona

    USGS Publications Warehouse

    Hereford, R.; Thompson, K.S.; Burke, K.J.; Fairley, H.C.

    1996-01-01

    Bouldery debris fans and sandy alluvial terraces of the Colorado River developed contemporaneously during the late Holocene at the mouths of nine major tributaries in eastern Grand Canyon. The age of the debris fans and alluvial terraces contributes to understanding river hydraulics and to the history of human activity along the river, which has been concentrated on these surfaces for at least two to three millennia. Poorly sorted, coarse-grained debris-flow deposits of several ages are interbedded with, overlie, or are overlapped by three terrace-forming alluviums. The alluvial deposits are of three age groups: the striped alluvium, deposited from before 770 B.C. to about A.D. 300; the alluvium of Pueblo II age deposited from about A.D. 700 to 1200; and the alluvium of the upper mesquite terrace, deposited from about A.D. 1400 to 1880. Two elements define the geomorphology of a typical debris fan: the large, inactive surface of the fan and a smaller, entrenched, active debris-flow channel and fan that is about one-sixth the area of the inactive fan. The inactive fan is segmented into at least three surfaces with distinctive weathering characteristics. These surfaces are conformable with underlying debris-flow deposits that date from before 770 B.C. to around A.D. 660, A.D. 660 to before A.D. 1200, and from A.D. 1200 to slightly before 1890, respectively, based on late-19th-century photographs, radiocarbon and archaeologic dating of the three stratigraphically related alluviums, and radiocarbon dating of fine-grained debris-flow deposits. These debris flows aggraded the fans in at least three stages beginning about 2.8 ka, if not earlier in the late Holocene. Several main-stem floods eroded the margin of the segmented fans, reducing fan symmetry. The entrenched, active debris-flow channels contain deposits <100 yr old, which form debris fans at the mouth of the channel adjacent to the river. Early and middle Holocene debris-flow and alluvial deposits have not been recognized, as they were evidently not preserved adjacent to the river or are buried by younger deposits.

  4. Late Quaternary faulted landforms characteristics on the Tumen-Jiazhu village segment of Luoyunshan piedmont fault

    NASA Astrophysics Data System (ADS)

    Sun, C.; Xie, X.; Xu, J.

    2013-12-01

    Luoyunshan piedmont fault is located west of Linfen basin, controlling the western border of the basin. Based on the fault 1:50000 geological mapping, river and gully terraces and piedmont faulted landforms survey, this paper mainly introduces late Quaternary faulted landforms characteristics on the Tumen-Jiazhu village segment of Luoyunshan piedmont fault. Luoyunshan piedmont alluvial-pluvial fans are divided into three stages, named alluvial-pluvial fans D1, D2 and D3. The gullies on the upthrown plate of Luoyunshan piedmont fault has five terraces: T1~T5. Alluvial-pluvial fans D1 and terraces T1 and T2 formed in the early and middle Holocene. Alluvial-pluvial fans D2 and terraces T3 formed in the middle-late stage of late Pleistocene. Alluvial-pluvial fans D3 and terraces T4 and T5 formed in the middle-late stage of middle Pleistocene. Faulted landforms characteristics on different parts of the middle segment of the Luo Yunshan piedmont fault are different. The dislocation of alluvial-pluvial fans D1 is about 2.9m and 3m respectively in the Xifanggou area and the piedmont of southwest of Yukou village, Jindian town. The dislocation of alluvial-pluvial fans D2 is about 2.5m, 4m, 6m and 7.7m respectively in the southwest of Puzi village, Tumen town, piedmont of west of Yangjiazhuang village, west of Jingcun village and piedmont of southwest of Langquangou, Xiangling town. The faulted landforms on the Tumen-Jiazhu village segment of Luoyunshan piedmont fault are obvious. The latest activity times of the fault is Holocene. The latest activity times of Tumen segment and Longci segment of the fault are early Holocene and middle-late Holocene respectively. Since the Middle-Late Pleistocene an activity rate of the middle segment of Luoyunshan piedmont fault is 0.18~0.54mm/yr, and activity showed an increasing trend from north to south. Since Early-Middle Holocene it is 0.4~0.9mm/yr, and fault activities mainly concentrated on the segment from Xifanggou to Yukou village. An increasing trend of the activity rate of the middle segment of Luoyunshan piedmont fault from the Middle-Late Pleistocene to Holocene, it is in good agreement with an increasing trend of the uplift rate of the terraces on the upthrown plate of the fault from the Middle-Late Pleistocene to Holocene and the sedimentation rate of Linfen basin which also has an increasing trend from the Late Pleistocene to Holocene.

  5. Late Quaternary Vegetation and Climate Changes in Central Texas Based on the Isotopic Composition of Organic Carbon

    NASA Astrophysics Data System (ADS)

    Nordt, Lee C.; Boutton, Thomas W.; Hallmark, Charles T.; Waters, Michael R.

    1994-01-01

    Stable carbon isotope analysis of organic carbon in alluvial deposits and soils of three streams in central Texas reveals significant shifts in the ratio of C 3 to C 4 plant biomass production during the past 15,000 yr. These temporal changes in vegetation appear to be in response to changes in climate. During the late Pleistocene, C 4 plants comprised only about 45 to 50% of the vegetative biomass in this area, suggesting that conditions were cooler and wetter than at any time during the past 15,000 yr. The time between 11,000 and 8000 yr B.P. is interpreted as transitional between late Pleistocene conditions and warmer and drier Holocene conditions based on a slight increase in the abundance of C 4 plant biomass. During the middle Holocene, between approximately 6000 and 5000 yr B.P., mixed C 3/C 4 plant communities were replaced almost completely by C 4-dominated communities, indicating prairie expansion and warmer and drier climatic conditions. By 4000 yr B.P., the abundance of C 4 plant biomass decreased to levels similar to the early Holocene transitional period, suggesting a return to cooler and wetter climatic conditions. No significant shift in the ratio of C 3 to C 4 productivity has occurred during the last 4000 yr, except for a slight increase in the abundance of C 4 plant biomass around 2000 yr B.P. The results of this investigation correlate well with other regional late Quaternary climatic interpretations for central and north Texas, the Southern Plains region, and with other portions of the Great Plains.

  6. The linkage between hillslope vegetation changes and late-Quaternary fluvial-system aggradation in the Mojave Desert revisited

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2014-03-01

    Valley-floor-channel and alluvial-fan deposits and terraces in the southwestern US record multiple episodes of late Quaternary fluvial aggradation and incision. Perhaps the most well constrained of these episodes took place from the latest Pleistocene to the present in the Mojave Desert. One hypothesis for this episode, i.e. the paleo-vegetation change hypothesis (PVCH), posits that a reduction in hillslope vegetation cover associated with the transition from Pleistocene woodlands to Holocene desert scrub generated a pulse of sediment that triggered a primary phase of aggradation downstream, followed by channel incision, terrace abandonment, and initiation of a secondary phase of aggradation further downstream. A second hypothesis, i.e. the extreme-storm hypothesis, attributes episodes of aggradation and incision to changes in the frequency and/or intensity of extreme storms. In the past decade a growing number of studies has advocated the extreme-storm hypothesis and challenged the PVCH on the basis of inconsistencies in both timing and process. Here I show that in eight out of nine sites where the timing of fluvial-system aggradation in the Mojave Desert is reasonably well constrained, measured ages of primary aggradation and/or incision are consistent with the predictions of the PVCH if the time-transgressive nature of paleo-vegetation changes with elevation is fully taken into account. I also present an alternative process model for PVCH that is more consistent with available data and produces sediment pulses primarily via an increase in drainage density (i.e. a transformation of hillslopes into low-order channels) rather than solely via an increase in sediment yield from hillslopes. This paper further documents the likely important role of changes in upland vegetation cover and drainage density in driving fluvial-system response during semiarid-to-arid climatic changes.

  7. Late alluvial fan formation in southern Margaritifer Terra, Mars

    Microsoft Academic Search

    John A. Grant; Sharon A. Wilson

    2011-01-01

    Crater statistics show alluvial fans are much younger than previously thoughtFans formed in the Amazonian to near the Hesperian-Amazonian boundaryFan distribution requires a late period of regional water-driven degradation

  8. The Shape of Trail Canyon Alluvial Fan, Death Valley

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Dohrenwend, John C.

    1993-01-01

    A modified conic equation has been fit to high-resolution digital topographic data for Trail Canyon alluvial fan in Death Valley, California. Fits were accomplished for 3 individual fan units of different age.

  9. Empirical assessment of theory for bankfull characteristics of alluvial channels

    NASA Astrophysics Data System (ADS)

    Trampush, S. M.; Huzurbazar, S.; McElroy, B.

    2014-12-01

    We compiled a data set of 541 bankfull measurements of alluvial rivers (see supporting information) and used Bayesian linear regression to examine empirical and theoretical support for the hypothesis that alluvial channels adjust to a predictable condition of basal shear stress as a function of sediment transport mode. An empirical closure based on channel slope, bankfull channel depth, and median grain size is proposed and results in the scaling of bankfull Shields stress with the inverse square root of particle Reynolds number. The empirical relationship is sufficient for purposes of quantifying paleohydraulic conditions in ancient alluvial channels. However, it is not currently appropriate for application to alluvial channels on extraterrestrial bodies because it depends on constant-valued, Earth-based coefficients.

  10. Age and origin of the Gezira alluvial fan between the Blue and White Nile rivers

    NASA Astrophysics Data System (ADS)

    Williams, martin

    2014-05-01

    The Gezira is a low-angle alluvial fan bounded by the Blue Nile to the east and the White Nile to the west. It is the main agricultural region of Sudan and produces high quality long-staple cotton for export. Dark cracking clays (vertisols) cover much of the Gezira and range in age from 50 kyr to Holocene. The Gezira is traversed by a series of defunct sandy channels that originate between Sennar and Wad Medani on the present-day Blue Nile. With a radius of 300 km and an area of 40,000 km2 the Gezira is a mega-fan. The younger channels range in age from early Holocene to 100 kyr, while near surface channels filled with rolled quartz and carbonate gravels have ages back to >250 kyr. Boreholes in the Gezira reveal coarse alluvial sands and gravels in now buried channels overlain by alluvial clays, forming a repetitive sequence of fining-upwards alluvial units. that probably extend back to Pliocene times. The fan is up to 180 m thick with a volume of ~1,800 km3. The sandy or gravelly bed-load channels coincide with colder drier climates and sparse vegetation in the Ethiopian headwaters of the Blue Nile and the alluvial clays denote widespread flooding during times of stronger summer monsoon. The early stages of such flood events were often accompanied by mass burial of Nile oyster (Etheria elliptica) beds, such as the 45-50 kyr floods that deposited up to 5 m of clay in the northern Gezira. A unique feature of the eastern Gezira is a former Blue Nile channel at least 80 km long running parallel to the present river and entirely filled with volcanic ash. The channel was only 3-4 m deep and 20-30 m wide. Very fine laminations and cross-beds, together with locally abundant phytoliths and sponge spicules, suggest slow-moving water, with flow dispersed across many distributary channels. The ash geochemistry is similar to that in the lower part of the Kibish Formation in the lower Omo valley of southern Ethiopia and points to a minimum age of 100 kyr and a maximum age of 190 kyr. The Ethiopian volcano that provided the ash was located on the interfluve between the upper Omo and the upper Blue Nile. Although the Blue Nile has frequently changed course in the last 250 kyr, it has flowed close to its present channel at least three times in that time.

  11. Radiogenic 3He/4He Estimates and Their Effect on Calculating Plio-Pleistocene Cosmogenic 3He Ages of Alluvial-Fan Terraces in the Lower Colorado River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fenton, C.; Pelletier, J.

    2005-12-01

    Several alluvial-fan terraces near Topock, AZ were created by successive entrenchment of Pliocene and Pleistocene alluvial-fan gravels shed from the adjacent Black Mountains along the lower Colorado River corridor below Hoover Dam. These fans interfinger with and overlie main-stem Colorado River sands and gravels and grade to terrace levels that correspond with pre-existing elevations of the Colorado River. Absolute dates for the ages of Quaternary deposits on the lower Colorado River are rare and cosmogenic 3He age estimates of these surfaces would help constrain the timing of aggradation and incision in the lower Colorado River corridor. We analyzed individual basalt boulders from several terrace surfaces for total 3He/4He concentrations to calculate cosmogenic 3He ages of each fan terrace; 3He/4He values, expressed as R/Ra where Ra is the 3He/4He of air, range from 0.29 to 590. Black Mountain volcanic rocks have reported K-Ar ages between 15 and 30 Ma and basalt samples from adjacent alluvial fans contain 0.42 to 47× 1012 at/g of 4He, which has likely accumulated due to nuclear processes. The amount of radiogenic 3He/4He can be significant in old rocks with young exposure ages and can complicate determination of cosmogenic 3 He content. Alpha-decay of U, Th, and their daughter isotopes produces large amounts of 4He, whereas significant amounts of radiogenic 3He are only produced through the neutron bombardment of Li and subsequent beta-decay of tritium. We measured Li, U, Th, major and rare-earth element concentrations in whole-rock basalts and mineral separates. These concentrations are used to estimate the ratio of radiogenic helium contributed to the total helium system in our samples. Li concentrations typically range from 6 to 17 ppm, with one outlier of 62 ppm. U contents range from <0.1 to 2.7 ppm and Th contents range from 0.4 to 15.3 ppm. Based on these values, our calculations predict that the average radiogenic helium (R/Ra) contributed to the total helium in Black Mountain basalt samples is 0.011. Other noble gas studies have shown that radiogenic 3He/4He is independent of the U content, nearly independent of the Th content, and strongly influenced by the Li content of a rock; we find the same results. It is assumed that mantle gases are released when the sample is crushed into a fine powder before melting in a furnace under vacuum. To correct for the possible presence of mantle gases in our age-calculations, we crushed two samples under vacuum to measure the R/Ra value (7.9 and 16.03) of mantle helium trapped in fluid inclusions in olivines and pyroxenes. Based on our 3He corrections and calculations, boulders on these alluvial fans range in age from 10 ka to 2.7 Ma.

  12. Geomorphologic flood-hazard assessment of alluvial fans and piedmonts

    USGS Publications Warehouse

    Field, J.J.; Pearthree, P.A.

    1997-01-01

    Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.

  13. Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground for flow models of Quaternary continental glaciers.

    E-print Network

    Merguerian, Charles

    for flow models of Quaternary continental glaciers. The Mesozoic red-bed fills of the Newark (NY for inferring the flow directions of the Quaternary continental glaciers. The most-recent glacier (Woodfordian that this glacier did not reach much of Long Island and thus did not deposit the Harbor Hill Moraine. The next

  14. Accelerated Alluviation, Legacy Sediments the Anthropocene

    NASA Astrophysics Data System (ADS)

    Brown, Tony; Toms, Phillip; Carey, Chris

    2013-04-01

    This paper will present the case that geomorphology must be an integral part of any attempt to define the Anthropocene as a geological period or any particular rank. It is postulated that there is a clear lithostratigraphic boundary which can easily identified in the field and which represents a fundamental change in sediment transfer processes, and rates, caused by human activity and particularly agriculture. Two case studies in England (central & southwest) show how a 6-10 fold increase in floodplain sedimentation resulted from the erosion of arable fields but over very different time periods. This highlights the constrained diachrony of alluviation in Europe as compared to other areas where the conversion of land to large-scale intensive cultivation was more synchronous. There are good reasons to believe that these legacy sediments, and this near-global lithostratigraphic boundary, will persist into the future geological record. Lastly the implications of this for any demarcation of the Anthropocene will be discussed. This paper is a contribution by the British Geomorphological Society Working Group on the Anthropocene.

  15. Paleosol architecture of a late Quaternary basin-margin sequence and its implications for high-resolution, non-marine sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Bruno, Luigi; Rossi, Veronica; Severi, Paolo; Hajdas, Irka

    2014-01-01

    Paleosol stratigraphy, a technique commonly applied in basin-margin settings to depict cyclic alluvial architecture on time scales of 10-100 ky, can be consistent with regional accommodation trends at even higher temporal resolution (1-10 ky), having strong implications for the sequence stratigraphy of late Quaternary, non-marine deposits. Three closely-spaced late Pleistocene paleosols (P1-P3), dating back approximately to 42-39, 35-31, and 29-26 cal kyr BP, respectively, form prominent stratigraphic markers across a lithologically homogeneous interfluve succession in the subsurface of Bologna, close to the Apenninic foothills. These paleosols are weakly developed (Inceptisols) and can be tracked continuously for 6 km across the triangle-shaped interchannel zone between two gravel/sand-filled channel systems (Reno and Savena rivers). In particular, the thickest paleosol (P3) is a distinctive stiff horizon that can be traced into laterally extensive, erosional-based fluvial bodies. We infer the correlation between (P3) soil development (and channel downcutting) and the final stage of the stepwise Late Pleistocene sea-level fall that culminated at the marine isotope stage 3/2 transition around 29 cal kyr BP (low accommodation systems tract). A fourth laterally extensive Inceptisol, encompassing the Pleistocene-Holocene boundary (PH), represents the major phase of soil development since the Last Glacial Maximum and is inferred to be related to channel entrenchment at the onset of the Younger Dryas. With the exception of the Iron Age-Roman paleosol, which reflects a predominantly anthropogenic control, the Holocene paleosols are laterally discontinuous and invariably more immature (Entisols) than their Pleistocene counterparts. This trend of decreasing paleosol development (and correlatability) upsection is interpreted to reflect increasing (transgressive-equivalent) accommodation during sea-level rise, thus confirming the possible extension of models used to interpret the ancient rock record to short-term depositional cycles.

  16. Calculating Quaternary glacial erosion rates in northeast Scotland

    NASA Astrophysics Data System (ADS)

    Glasser, Neil F.; Hall, Adrian M.

    1997-09-01

    Northeast Scotland is an area exhibiting selective erosion by Quaternary ice sheets. In this area both glacial and preglacial landforms exist in close proximity. The depths of erosion which this modification represents are calculated on the assumption of various depths of preglacial weathering. A depth of erosion of between 34 and 62 m per unit area is indicated. Calculated rates of erosion are 0.021 mm a -1 for the entire 2.3 m.y. of the Quaternary, and between 0.1 and 0.5 mm a -1 on the assumption that glacial conditions existed in this area for 500,000 years and 100,000 years, respectively. These figures are compared to the offshore sedimentary record in the adjacent west-central North Sea. The volume of sediment deposited offshore is equivalent to a depth of erosion of 195 m per unit area, yielding an average erosion rate of 0.085 mm a -1 over the entire Quaternary. Rates of erosion were low in the preglacial Pliocene (0.049 mm a -1) and early Quaternary (0.063 mm a -1). The expansion of ice sheets across the area in the middle Quaternary was associated with a sharp increase in the rates of erosion (> 0.13 mm a -1) but the last (late Devensian) ice sheet in the area was less erosive (< 0.095 mm a -1). The estimated rates of erosion represented by the offshore sedimentary record therefore exceed the estimated rates of glacial erosion from the onshore geomorphological reconstruction.

  17. Seasonal Mineralogy and Biogeochemistry of an Arid-lands Hyporheic Corridor Along the Alluvial Rio Grande, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Vinson, D. S.; Pershall, A. D.; Spilde, M. N.; Block, S. E.; Crossey, L. J.; Dahm, C. N.

    2002-05-01

    The Middle Rio Grande in central New Mexico flows through a semiarid, sand-dominated Quaternary rift basin. Flow regulation measures include dams, irrigation diversions, levees, and bank stabilization. These have caused severe eco-hydrologic impairment including 1) incision, lowered water tables, and the end of overbank flooding; 2) disruption of shallow groundwater cycling; 3) sediment depletion; 4) altered seasonal organic carbon dynamics; and 5) declining native riparian biota. Historically bidirectional flowpaths in the shallow alluvial aquifer (hyporheic corridor) are less reversible due to parallel drainage ditches with lower beds than the river. These ditches impose relatively static hydraulic gradients on the alluvial aquifer and isolate the shallowest groundwater from the agricultural floodplain. Groundwater data along flowpaths and depth profiles indicate seasonally variable biogeochemical cycling, especially metal and sulfate reduction and phreatophyte evapoconcentration. Dissolved Fe is highest in summer and low to undetectable in winter. Both Fe and Mn exhibit substantial spatial variability, indicating the importance of solid-phase interactions. Sulfate reduction is another active terminal electron accepting process, made especially significant by the river's high sulfate concentration, a product of regional geology and semiarid climate. Mn exhibits pervasive down-gradient enrichment unlike Fe, whose mobility along flowpaths is mitigated by a temporary reservoir of sulfide minerals. These processes have been explored further by in situ mineral growth incubations. Scanning electron microscopy/energy-dispersive X-ray spectroscopy has confirmed the importance of redox-sensitive minerals to aquifer biogeochemistry. These phases include Fe-oxyhydroxides and sulfides, both amorphous and apparently crystalline; Mn-oxyhydroxides; and occasional solid phase P. Our research has demonstrated 1) the occurrence of seasonal mineral cycling in this alluvial aquifer, 2) the influence of sulfate from an arid landscape, and 3) that water chemistry alone may not provide a full accounting of biogeochemical processes in the hyporheic corridor.

  18. Comparison of different investigation methods to characterise alluvial gravel aquifers

    NASA Astrophysics Data System (ADS)

    Reist, Fabian; Brauchler, Ralf; Jiménez, Santos; Bühler, Lukas; Hu, Linwei; Leuenberger-West, Fanny; Bayer, Peter

    2014-05-01

    For reliable groundwater transport modelling of unconsolidated porous aquifers, high resolution characterisation of spatially heterogeneous hydraulic and transport properties is of great importance. Predictions of first-arrival times and long term behaviour depend strongly on the quality of estimated hydraulic and transport parameters. By neglecting small-scale structures such as sand lenses and sediment intra-channel deposits, predictions are hardly accurate. This paper deals with the comparison of methods to characterize hydraulic parameters governing solute transport in unconsolidated porous aquifer materials. A large number of single-well slug tests, cross-well slug tests, a pumping test and a multi-level tracer test were conducted in a shallow alluvial gravel aquifer. This facilitated describing the spatial variation of hydraulic and transport parameters with high resolution. Multi-level slug tests results show distinct positive correlation with porosity-logs and drill cores and are thus an effective means to identify and characterize subsurface structures at high resolution. Values for hydraulic conductivity gained from pumping tests and cross-well slug tests revealed good accordance but were around one order of magnitude higher than the values derived from multi-level slug tests. This might be due to the fact that the three methods are involving different test-volumes. Hence, the determination of hydraulic conductivity underlies a scale dependency: larger test volumes tend to be characterized by larger K-values. Furthermore, our pumping test results show the importance of a high sampling rate, in our case 50 Hz, in order to determine reliably the hydraulic properties storage and anisotropy of hydraulic conductivity. Although pumping tests typically estimate hydraulic parameters on large-scale, small-scale heterogeneity could also be identified and characterized. This was again possible through the high resolution records of the early time drawdown. Finally, results of multi-level tracer testing supported observations from slug tests and porosity logs.

  19. Estimation of hydraulic conductivity in an alluvial system using temperatures.

    PubMed

    Su, Grace W; Jasperse, James; Seymour, Donald; Constantz, Jim

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers. PMID:15584302

  20. Quaternary uplift of southern Italy

    Microsoft Academic Search

    Rob Westaway

    1993-01-01

    Dramatic coastline changes demonstrate rapid Quaternary uplift of Calabria in southern Italy. Because most of the west (Tyrrhenian Sea) coast is normal fault bounded, previous work has asserted that its uplift is local footwall uplift related to extension. However, the east (Ionian Sea) coast is also uplifting but is not normal fault bounded. This reanalysis, based on original field work

  1. Precambrian alluvial fan and braidplain sedimentation patterns: Example from the Mesoproterozoic Rjukan Rift Basin, southern Norway

    NASA Astrophysics Data System (ADS)

    Köykkä, Juha

    2011-03-01

    An integrated approach of facies analysis, geochemistry and paleohydrology provides new insight into the sedimentology and paleogeography of alluvial sediments in the Precambrian. Here, alluvial fan and braidplain sedimentation patterns are documented in a Mesoproterozoic rift basin, called (known as) the Rjukan Rift Basin in southern Norway. The studied formation (Heddersvatnet Formation) consists of volcanoclastic breccias and conglomerates, cross-bedded sandstones with associated mudstones, and subaerial basaltic lava beds, deposited in a rift basin during the syn-rifting phase. Based on genetically related major lithofacies associations and individual minor lithofacies, the sedimentation is characterized by colluvial and screen apron deposits, subaerial debris flows, hyperconcentrated or sheet flood deposits in the proximal part, representing waning-flood cycles. The distal part contains shallow-water traction current deposits and associated subaerial continental flood basalts that flowed down the rift valleys. The synsedimentary intra-rift faulting formed seasonal or climatically controlled, intrafan ponded-lake with playa lake type cycles and shrinkage cracks. The geochemical composition of the of the studied sandstones and mudstones suggests a passive rifted continental margin with minor to moderate chemical weathering, possible in a semi-arid/arid paleoclimate. Clastic petrofacies of the sandstones indicate a locally uplifted and syn-rift paleotectonic setting during the main sedimentation stage, passing toward a post-rifting stage of the depositional basin. Small-scale structures within the sedimentary basin affected the depositional patterns of the Heddersvatnet Formation by creating local sites of uplift and erosion, controlling the sediment transport, and defining the accommodation space for deposition. The sedimentation of the Heddersvatnet Formation reflects a tectonic base level fall, which resulted in an accumulation of thick alluvial fan or braidplain sediments near uplifted flank(s) of the sedimentary basin. This was combined with intensive erosion of the basement in the pre-vegetation landscape, which resulted in changes in the hydraulic geometry of flow and sediment discharge of stream channels. The following criteria, observed from the Heddersvatnet Formation, are suggestive of an ancient alluvial fan and associated braidplain sedimentation: (1) deposition close to the source area; (2) slightly divergent paleoflows; (3) high-energy flows with waning flood-cycles; (4) abundance of poorly sorted and laterally extensive subaerial debris flows, and related streamflows, possible sheetfloods, hyperconcentrated flows, and their associations; (5) great distribution of grain size and lithofacies changes in proximal vs. distal parts; (6) limited suite of sedimentary structures (cross-stratification, ripple-marks, and desiccanation cracks); (7) fault bounded basin (graben) with hanging wall close to uplifted flank(s); (8) paleoslope estimation indicating at least moderate paleotopographic highs; (9) colluvial and scree apron breccias; (10) lack of any typical braided stream channel fill conglomerates and floodplains; and (11) channelized sediment bodies lacking extensive lateral continuity.

  2. Effects of Alluvial and Debris Flow Fans on Channel Morphology in Idaho, Washington, and Oregon

    NASA Astrophysics Data System (ADS)

    Bigelow, P. E.; Benda, L.; Miller, D.; Andras, K.

    2003-12-01

    Formation of debris flow and alluvial fans at tributary confluences from episodic erosion associated with large storms and fires ("extreme events") are often viewed negatively over short time spans (years). However, when viewed over long periods of time (decades to centuries), fans that form at tributary junctions are often sources of morphological diversity in streams and rivers. To evaluate effects of tributary fans on the morphology of mainstem channels, we surveyed a total of 44 km of streams in the Sawtooth Mountains of Idaho (27 km), Olympic Mountains of Washington (10 km), and Central Coast Range of Oregon (7 km). Rejuvenated alluvial fans resulting from post-fire gully erosion in the Sawtooth Mountains created gradient nick points in 4th to 6th order mainstem channels (30 to 350 km2 drainage area) that increased sediment storage upstream resulting in decreased channel gradients, widened flood plains, side channel construction, and the beginning of terrace formation. Downstream effects included increased channel gradients, often creating rapids. In 3rd and 4th order mainstem channels (< 10 km2 drainage area) in the Olympic Mountains, there was statistically significant association between low-order confluences containing debris flow deposits and gravel abundance, wide channels, and numbers of logs and large pools. Moreover, heterogeneity of mainstem channel morphology increased in proximity to low-order confluences prone to debris flows in the Olympic study sites. In 3rd and 4th order channels in the Oregon Coast Range, density of large wood and boulders in mainstem channels (< 30 km2 drainage area) increased with proximity to all debris flow fans at low-order confluences regardless of fan age, while channel gradients and sediment depth in mainstem channels increased with proximity to recent (< 60 yrs old) debris fans. Consequently, alluvial and debris flow fans can be significant agents of heterogeneity in riverine habitats, similar to other sources of major gradient nick points on mainstem channels (e.g. bedrock, rock falls, canyon constrictions, channel bends, etc.). However, not all channels are prone to tributary fan effects. Steep and confined mountain channels with high stream power may quickly transport deposits from debris flow and alluvial fans, leaving no morphological effects. Overall, these field studies provide a possible physical basis for recent observations of increased habitat use near tributary junctions (e.g. salmon spawning density, aquatic invertebrate density) and underpin emerging stream network theory on the organization of disturbance in creating and maintaining a variety of habitat in aquatic and riparian ecosystems.

  3. Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Elliott, John G.; Parker, R. S.

    2001-10-01

    Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred.An alluvial sequence near the mouth of a tributary draining a 0·82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a millennium-scale geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and tributary fans. Subsequent storm runoff may have produced localized incision and channelization, preventing additional vertical aggradation on the sampled alluvial deposit for several centuries. Two of the millennium-scale aggradational periods at the study site consist of multiple gravel and loam sequences with similar radiocarbon ages. These closely dated sequences may reflect a multidecade-scale geomorphic response to more frequent, but aerially limited and less severe fires, followed by rainstorms of relatively common recurrence. Published in 2001 John Wiley & Sons, Ltd.

  4. Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA

    USGS Publications Warehouse

    Elliott, J.G.; Parker, R.S.

    2001-01-01

    Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred. An alluvial sequence near the mouth of a tributary draining a 0??82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a 'millennium-scale' geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and tributary fans. Subsequent storm runoff may have produced localized incision and channelization, preventing additional vertical aggradation on the sampled alluvial deposit for several centuries. Two of the millennium-scale aggradational periods at the study site consist of multiple gravel and loam sequences with similar radiocarbon ages. These closely dated sequences may reflect a 'multidecade-scale' geomorphic response to more frequent, but aerially limited and less severe fires, followed by rainstorms of relatively common recurrence. Published in 2001 by John Wiley and Sons, Ltd.

  5. An OSL dated Middle and Late Quaternary sedimentary record in the Roer Valley Graben (southeastern Netherlands)

    NASA Astrophysics Data System (ADS)

    Schokker, Jeroen; Cleveringa, Piet; Murray, Andrew S.; Wallinga, Jakob; Westerhoff, Wim E.

    2005-11-01

    Well-dated terrestrial sedimentary sequences are important to evaluate the influence of Quaternary climate change on continental landscape evolution. The Roer Valley Graben (southeastern Netherlands) contains a 35 m thick sedimentary record of Middle and Late Quaternary fluvial, aeolian and organic deposits. Sediment provenance, depositional processes and the continuity and timing of deposition were reconstructed. Sedimentary and geochemical data reveal a change from a fluvial depositional environment to a dominance of aeolian deposits. This change may be related to increased tectonic uplift and the onset of large-scale volcanism in the Ardennes-Eifel region between 800 and 500 ka. The main source of aeolian sediments are Quaternary Rhine deposits that crop out to the northwest of the study area. Sedimentation and preservation in the Roer Valley Graben took place under humid surface conditions. These conditions occurred: (1) in a periglacial climate with permafrost; (2) at the transition from a warm-temperate to a cool climate. Dates from two internally consistent quartz Optically Stimulated Luminescence (OSL) age series in the Roer Valley Graben correspond well with the ages of related terrace deposits in the orbitally tuned Meuse river terrace flight. The OSL dates confirm the presence of organic deposits reflecting Marine Oxygen Isotope Stage (MIS) 9 or 11 and MIS 5e. This long terrestrial sequence thus provides input for the fragmentary Middle Pleistocene record of northwestern Europe and forms a possible link between the glacial history of northern Europe and the long lake and loess records of eastern and southern Europe.

  6. Quaternary fluvial archives: achievements of the Fluvial Archives Group

    NASA Astrophysics Data System (ADS)

    Bridgland, David; Cordier, Stephane; Herget, Juergen; Mather, Ann; Vandenberghe, Jef; Maddy, Darrel

    2013-04-01

    In their geomorphological and sedimentary records, rivers provide valuable archives of environments and environmental change, at local to global scales. In particular, fluvial sediments represent databanks of palaeoenvironment and palaeoclimatic (for example) of fossils (micro- and macro-), sedimentary and post-depositional features and buried soils. Well-dated sequences are of the most value, with dating provided by a wide range of methods, from radiometric (numerical) techniques to included fossils (biostratigraphy) and/or archaeological material. Thus Quaternary fluvial archives can also provide important data for studies of Quaternary biotic evolution and early human occupation. In addition, the physical disposition of fluvial sequences, be it as fragmented terrace remnants or as stacked basin-fills, provides valuable information about geomorphological and crustal evolution. Since rivers are long-term persistent features in the landscape, their sedimentary archives can represent important frameworks for regional Quaternary stratigraphy. Fluvial archives are distributed globally, being represented on all continents and across all climatic zones, with the exception of the frozen polar regions and the driest deserts. In 1999 the Fluvial Archives Group (FLAG) was established, as a working group of the Quaternary Research Association (UK), aimed at bringing together those interested in such archives. This has evolved into an informal organization that has held regular biennial combined conference and field-trip meetings, has co-sponsored other meetings and conference sessions, and has presided over two International Geoscience Programme (IGCP) projects: IGCP 449 (2000-2004) 'Global Correlation of Late Cenozoic Fluvial Deposits' and IGCP 518 (2005-2007) 'Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic'. Through these various activities a sequence of FLAG publications has appeared, including special issues in a variety of journals, amassing a substantial volume of information on fluvial archives worldwide. This presentation will highlight some of these data and will describe important patterns observed and interpretations arising therefrom.

  7. Late-Quaternary morphodynamics of Ejina Basin, Inner Mongolia, China: Quantification of neotectonic subsidence and palaeohydrological implications

    NASA Astrophysics Data System (ADS)

    Hartmann, Kai; Wünnemann, Bernd; Reicherter, Klaus; Rudersdorf, Andreas; Blaauw, Maarten; Diekmann, Bernhard; Bölscher, Judith; Lu, Huayu

    2014-05-01

    From space, the Ejina Basin (Gaxun Nur Basin) - enclosed by the Tibetan Plateau in the south and the Gobi -Tien Shan in the north - appears as the world's second largest inland delta of approx. 28,000 km2. Today, the crescent-shaped series of terminal lakes (Gaxun Nur, Sogo Nur and Juyanze) represent the endorheic erosion base for the Black River (Hei River) drainage system originating in the Qilian Mountains (>5,000 m asl.). The up to 300 m thick Quaternary basin fill of lacustrine and alluvial origin was deposited during the last approx. 250,000 yrs. Gobi gravel plains protecting Late Pleistocene fine sediments against deflation cover most parts of the basin. They are considered to be a unique sequence within the sediment stratigraphy of the entire basin. The slightly convex-shaped surface of the western basin resembles the prograding formation of an alluvial fan with clear evidence of local subsidence to the north and west, as indicated by the concave shaped surface there. However, the recent terminal lake basins at the northern margin of Ejina Basin are structurally related to tectonic pull-apart basins that were active since Late Pleistocene. The rhomb-shaped Gaxun Nur basin is the most distinct pull-apart feature indicating a left-lateral strike-slip movement parallel to the continental Gobi-Tien-Shan Fault in the north. New radiocarbon dates of lacustrine sediments within a fossil cliff at the southern shore support the estimated subsidence rate of >0.8m per kyr (Hartmann et al. 2011) after the Last Glacial Maximum (LGM). The more trapezoid fault system of the Juyanze pull-apart basin exhibits a more manifold set of tectonically induced geomorphological features. Whereas Hartmannn et al. (2011) assumed a W-E-striking fault by comparing dating inversions along yardangs of lacustrince chalks that host seismites. A nearby new railway construction pit revealed a normal fault that affected the lake sediments that are 35±1 kyr BP in age. The most impressive set of features related to young tectonic subsidence in Ejina basin resembles inverted channels south of western Juyanze. Radiocarbon dates of lacustrine sediments below the gravel cover suggest a reversal of surface gradient, conservation and dissection of gravel beds by subsidence that most likely occurred after 13.6 kyr BP. The continuation of the S-N-striking strike-slip-duplex of the Gurinai structure separates Juyanze in two basins by an impressive >20 m emerging cliff formed within remains of an isolated large alluvial fan. This fan should have been active after approx. 18 kyr BP. Hence, a synopsis of at least 65 radiocarbon dates of lacustrine sediments from the margins and centres of the sub-basins suggests four times higher subsidence rates from the north-western (0.8 m/kyr) to the north-eastern (2-3.6 m/kyr) margin of Ejina Basin. Considering the flat and spatially uncertain water divide to the depression of Wentugaole (and its continuation to the northwest), it seems likely that the basin has lost its endorheic character at least once. Hence, the morphology of basin margins of this large intermontane foreland basin shows up with tectonically active margins and sensitive water divides. Reference: Hartmann, K., Wünnemann, B., Hölz, S., Kraetschell, A., Zhang, H. (2011): Neotectonic constraints on the Gaxun Nur inland basin in north-central China, derived from remote sensing, geomorphology and geophysical analyses. - In: Gloaguen, R. & Ratschbacher, L. (eds.): Growth and Collapse of the Tibetan Plateau. - Geological Society of London Special Publications 353: 221-233.

  8. A multiple-point geostatistical method for characterizing uncertainty of subsurface alluvial units and its effects on flow and transport

    USGS Publications Warehouse

    Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.

    2012-01-01

    This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.

  9. Stratigraphic architecture of alluvial-aeolian systems developed on active karst terrains: An Early Pleistocene example from the Ebro Basin (NE Spain)

    NASA Astrophysics Data System (ADS)

    Gil, H.; Luzón, A.; Soriano, M. A.; Casado, I.; Pérez, A.; Yuste, A.; Pueyo, E.; Pocoví, A.

    2013-10-01

    During the Early Pleistocene, fluvial, alluvial and aeolian depositional systems interacted in the central Ebro Basin, Spain, constructing wide alluvial plains over a Neogene evaporite substratum. Fluvial sediments, mainly longitudinal gravel bars and channels, are interdigitated with gravel mass flow and distal mudflat deposits. Aeolian sedimentation is registered as aeolian dunes and sand sheets. Episodes of fluvial deposition alternated with periods of alluvial fan progradation and aeolian deposition. These changes are related to climate-driven water availability. Stratigraphic units and deformation structures show synsedimentary karstification of the evaporite substratum that, although karst was not restricted to any particular climate scenario, was probably favoured during periods of high water availability. Karstification conditioned the development of local sedimentary depocentres which, in turn, influenced the distribution of sedimentary subenvironments as well as the accumulation and preservation of aeolian dunes and lacustrine-palustrine deposits. Stratigraphic architecture shows that thickening of the series due to karst subsidence did not occur homogeneously, but was controlled by diachronous subsidence resulting in numerous angular unconformities. In subsiding karst areas transport capacity was reduced and sediment preservation increased.

  10. Late quaternary geomorphology and geoarchaeology of a segment of the Central Mimbres River Valley, Grant County, New Mexico

    E-print Network

    Fitch, Michael Anthony

    1996-01-01

    Two terraces, a modem floodplain, and alluvial fans were identified along a segment of the central Mimbres River Valley in Grant County, New Mexico. The oldest terrace, T2, is composed of one major depositional unit (1) and is capped by a...

  11. Fluvial sedimentation following Quaternary eruptions of Mount St. Helens, Washington

    SciTech Connect

    Janda, R.J.; Meyer, D.F

    1985-01-01

    Depositional records of convulsive volcanic events at Mount St. Helens are in many places obscured by rapid fluvial erosion and deposition close to the volcano. Some major eruptions are recorded primarily by lahars and alluvium deposited tens of kilometers away. About 35 percent of the distinctive hummocky topography of the 1980 North Fork Toutle debris avalanche deposit now resembles an alluvial fan or a braided glacial outwash plain covered with 10 m or more of alluvium. Deposits of small (20 x 10/sup 6/m/sup 3/) but damaging lahars, such as those generated in the afternoon of 18 May 1980 and on 19 March 1982, have been largely eroded away. Rivers draining rapidly eroding areas surrounding Mount St. Helens presently have sediment yields that are among the highest in the world for nonglaciated streams of comparable size. These sediment loads are capable of causing aggradation-induced flooding in populated areas along the lower Toutle and Cowlitz Rivers. Sediment retention structures and dredging have prevented such flooding. Immediately following prehistoric eruptions, however, coarse-grained volcanic alluvium was deposited in the Cowlitz River to levels more than 1 m above the 1980 mud flow inundation level. Post-1980 rapid landscape modifications and high sediment yields are noteworthy because the eruption-impact area has not yet had a major regional storm and potentially catastrophic breachings of avalanche-impounded lakes have been prevented through engineering measures.

  12. The Lower Cretaceous Way Group of northern Chile: An alluvial fan-fan delta complex

    NASA Astrophysics Data System (ADS)

    Flint, S.; Clemmey, H.; Turner, P.

    1986-01-01

    Alluvial fan sediments of the Lower Cretaceous Coloso Basin in northern Chile were deposited in a half-graben and derived from andesitic volcanics of a former island arc. Transport directions were towards the east, away from the present-day Peru-Chile trench. Grain flow, density modified grain flow and sheetflow processes were responsible for most of the sediment deposition with cohesive debris flows playing only a minor part. An early phase of conglomerate deposition (Coloso Formation) into a restricted basin records the transition from proximal fan facies with abundant grain flows and remobilized screes to mid-fan facies dominated by sheetflows. Stratiform copper mineralization near the top of the lower conglomerates is related to the unroofing of the Jurassic island arc. This mineralization comprises copper sulphide-cemented sands and gravels and formed by the reaction of mineralized detritus with diagenetic and hydrothermal solutions. A later phase of deposition (Lombriz Formation) includes sandstones, siltstones and conglomerates with a source area different from the Coloso Formation. This change in source may be related to strike-slip tectonics as the basin extended. The Lombriz conglomerates pass distally (eastwards) into red sandstones and purple siltstones with thin limestones deposited under marine conditions. This sequence is interpreted as a major fan delta complex. It passes conformably into marine carbonates of the Tableado Formation signifying the complete drowning of the basin in lower Cretaceous times.

  13. Changes in the frequency, scale, and failing areas of latest Quaternary (<29.4 cal. ka B.P.) slope failures along the SW Ulleung Basin, East Sea (Japan Sea), inferred from depositional characters of densely dated turbidite successions

    Microsoft Academic Search

    Sang Hoon Lee; Jang J. Bahk; Han J. Kim; Kyung E. Lee; Hyeong T. Jou; Bong C. Suk

    2010-01-01

    The depositional characters of densely dated turbidite successions originating from the southwestern margin of the Ulleung\\u000a Basin reveal changes in high-resolution frequency, failing areas, and relative volumes of slope failures over the past 29.4\\u000a cal. ka. Between 29.4 and 19.1 cal. ka B.P., various thin- to very thick-bedded turbidites accumulated at an average recurrence\\u000a interval of ca. 605 years. After

  14. 43 CFR 3436.2-2 - Federal coal deposits subject to disposal by exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.2-2 Federal coal deposits subject to...

  15. 43 CFR 3436.1-2 - Federal coal deposits subject to lease by exchange.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.1-2 Federal coal deposits subject to lease...

  16. 43 CFR 3436.1-2 - Federal coal deposits subject to lease by exchange.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.1-2 Federal coal deposits subject to lease...

  17. 43 CFR 3436.2-2 - Federal coal deposits subject to disposal by exchange.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.2-2 Federal coal deposits subject to...

  18. 43 CFR 3436.1-2 - Federal coal deposits subject to lease by exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.1-2 Federal coal deposits subject to lease...

  19. 43 CFR 3436.2-2 - Federal coal deposits subject to disposal by exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.2-2 Federal coal deposits subject to...

  20. 43 CFR 3436.1-2 - Federal coal deposits subject to lease by exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.1-2 Federal coal deposits subject to lease...

  1. 43 CFR 3436.2-2 - Federal coal deposits subject to disposal by exchange.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Coal Lease and Coal Land Exchanges: Alluvial Valley Floors § 3436.2-2 Federal coal deposits subject to...

  2. Depositional Environments Self-Instruction Lab Name _______________________ Geology 100 -Harbor Section

    E-print Network

    Harbor, David

    channel deposits crossbedded, graded sandstone or conglomerate o floodplain bedded mudstone to shale, rooting, plant fragments, burrowing, paleosols · Alluvial Fan arkose, lithic sandstone, conglomerate, imbricated pebbles, debris flow conglomerates (muddy conglomerates) · Eolian(Aeolian) crossbedded sandstone

  3. Depositional Environments Self-Instruction Lab Name _______________________ Geology 100 -Harbor Section

    E-print Network

    Harbor, David

    channel deposits cross-bedded, graded sandstone or conglomerate o floodplain bedded mudstone to shale, rooting, plant fragments, burrowing, paleosols · Alluvial Fan arkose, lithic sandstone, conglomerate, imbricated pebbles, debris flow conglomerates (muddy conglomerates) · Eolian(Aeolian) crossbedded sandstone

  4. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles

    Microsoft Academic Search

    Pinxian Wang; Luejiang Wang; Yunhua Bian; Zhimi Jian

    1995-01-01

    Paleoceanographic information from 34 sediment cores is summarized to investigate the glacial-interglacial variations in sea surface circulation and late Quaternary carbonate cycles in the South China Sea. Judging from the distribution pattern of deposition rates, the enormous terrigenous supply by rivers is responsible for the high rate of hemipelagic sedimentation which was even higher during glacial periods.Paleotemperature maps based on

  5. Quaternary volcanism in the Salton Sea geothermal field, Imperial Valley, California

    Microsoft Academic Search

    PAUL T. ROBINSON; WILFRED A. ELDERS; L. J. P. Muffler

    1976-01-01

    The Salton Sea geothermal field lies in the Salton Trough, the landward extension of the Gulf of California, an area of active crustal spreading. Surface volcanic rocks of the field consist of five small rhyolite domes extruded onto Quaternary sediments of the Colorado River delta. Two domes are linked by subaqueous pyroclastic deposits; the others are single extrusions with or

  6. First Quaternary Fossil Record of Caecilians from a Mexican Archaeological Site

    Microsoft Academic Search

    Thomas A. Wake; Marvalee H. Wake; Richard G. Lesure

    1999-01-01

    A single vertebra from an Early Formative period archaeological site in coastal Chiapas, México, is identified as belonging to the amphibian Dermophis mexicanus (Duméril and Bibron) 1841 (Amphibia: Gymnophiona: Caeciliidae). The vertebra was recovered from deposits dated to approximately 1200–1350 B.C. The specimen represents the first Quaternary fossil record for gymnophiones. Its presence suggests the possible role of the species

  7. Quaternary fossil faunas, overlapping taphonomies, and palaeofaunal reconstruction in North Canterbury, South Island, New Zealand

    Microsoft Academic Search

    T. H. Worthy; R. N. Holdaway

    1996-01-01

    This paper describes the late Quaternary fossil fauna from the area within a 10 km radius of Waikari, North Canterbury, New Zealand. Fossils from a pitfall deposit (Waikari Cave), ten predator sites attributed to laughing owls Sceloglaux albifacies (notably Ardenest, Gowan Hills Owl site, and P. Lamb's Owl site), five swamp sites (notably Pyramid Valley and Glencrieff), and three archaeological

  8. Quaternary ecology: A paleoecological perspective

    SciTech Connect

    Delcourt, H.R.; Delcourt, P.A.

    1991-01-01

    This book considers issues and problems in ecology which may be illuminated, if not solved, by considering paleoecology. The five central chapters include a discussion of application of Quaternary ecology to future global climate change, including global warming. Other areas presented include: population dispersal, invasions, expansions, and migrations; plant successions; ecotones; factors in community structure; ecosystem patterns and processes. Published case studies are numerous. The role played by continuing climatic change in vegetation change is acknowledged but not stressed.

  9. Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan.

    PubMed

    Liu, Chen-Wuing; Wang, Sheng-Wei; Jang, Cheng-Shin; Lin, Kao-Hong

    2006-01-01

    An investigation of shallow ground water quality revealed that high arsenic (As) concentrations were found in both aquifers and aquitards in the southern Choushui River alluvial fan of Taiwan. A total of 655 geological core samples from 13 drilling wells were collected and analyzed. High As contents were found primarily in aquitards, to a maximum of 590 mg/kg. The contents were correlated with the locations of the marine sequences. Additionally, strong correlations among the As concentrations of core samples, the clay, and the geological age of the Holocene transgression were identified. Most of the As in ground water originated from the aquitard of the marine sequence. The high As content in marine formations with high clay contents may be attributable to the bioaccumulation of As in the sea organisms, which accrued and were deposited in the formation. A preliminary geogenic model of the origin of the high As concentration in the shallow sedimentary basin of the Choushui River alluvial fan of Taiwan is proposed. PMID:16391278

  10. 30 CFR 947.822 - Special performance standards-operations on alluvial valley floors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    30 Mineral Resources 3 2011-07-01...standards-operations on alluvial valley floors. 947.822 Section 947.822 Mineral Resources OFFICE OF SURFACE...standards—operations on alluvial valley floors. Part 822 of this...

  11. 30 CFR 903.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    30 Mineral Resources 3 2014-07-01...standards-Operations in alluvial valley floors. 903.822 Section 903.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  12. 30 CFR 903.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    30 Mineral Resources 3 2013-07-01...standards-Operations in alluvial valley floors. 903.822 Section 903.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  13. 30 CFR 905.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    30 Mineral Resources 3 2011-07-01...standards-Operations in alluvial valley floors. 905.822 Section 905.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  14. 30 CFR 903.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    30 Mineral Resources 3 2012-07-01...standards-Operations in alluvial valley floors. 903.822 Section 903.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  15. 30 CFR 941.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    30 Mineral Resources 3 2010-07-01...standards-operations in alluvial valley floors. 941.822 Section 941.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  16. 30 CFR 947.822 - Special performance standards-operations on alluvial valley floors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    30 Mineral Resources 3 2012-07-01...standards-operations on alluvial valley floors. 947.822 Section 947.822 Mineral Resources OFFICE OF SURFACE...standards—operations on alluvial valley floors. Part 822 of this...

  17. 30 CFR 941.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    30 Mineral Resources 3 2011-07-01...standards-operations in alluvial valley floors. 941.822 Section 941.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  18. 30 CFR 941.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    30 Mineral Resources 3 2014-07-01...standards-operations in alluvial valley floors. 941.822 Section 941.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  19. 30 CFR 912.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    30 Mineral Resources 3 2013-07-01...standards-operations in alluvial valley floors. 912.822 Section 912.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  20. 30 CFR 947.822 - Special performance standards-operations on alluvial valley floors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    30 Mineral Resources 3 2014-07-01...standards-operations on alluvial valley floors. 947.822 Section 947.822 Mineral Resources OFFICE OF SURFACE...standards—operations on alluvial valley floors. Part 822 of this...

  1. 30 CFR 903.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    30 Mineral Resources 3 2011-07-01...standards-Operations in alluvial valley floors. 903.822 Section 903.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  2. 30 CFR 905.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    30 Mineral Resources 3 2014-07-01...standards-Operations in alluvial valley floors. 905.822 Section 905.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  3. 30 CFR 912.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    30 Mineral Resources 3 2012-07-01...standards-operations in alluvial valley floors. 912.822 Section 912.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  4. 30 CFR 947.822 - Special performance standards-operations on alluvial valley floors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    30 Mineral Resources 3 2010-07-01...standards-operations on alluvial valley floors. 947.822 Section 947.822 Mineral Resources OFFICE OF SURFACE...standards—operations on alluvial valley floors. Part 822 of this...

  5. 30 CFR 941.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    30 Mineral Resources 3 2012-07-01...standards-operations in alluvial valley floors. 941.822 Section 941.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  6. 30 CFR 912.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    30 Mineral Resources 3 2010-07-01...standards-operations in alluvial valley floors. 912.822 Section 912.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  7. 30 CFR 905.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    30 Mineral Resources 3 2010-07-01...standards-Operations in alluvial valley floors. 905.822 Section 905.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  8. 30 CFR 941.822 - Special performance standards-operations in alluvial valley floors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    30 Mineral Resources 3 2013-07-01...standards-operations in alluvial valley floors. 941.822 Section 941.822 Mineral Resources OFFICE OF SURFACE...standards—operations in alluvial valley floors. Part 822 of this...

  9. 30 CFR 905.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    30 Mineral Resources 3 2012-07-01...standards-Operations in alluvial valley floors. 905.822 Section 905.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  10. 30 CFR 903.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    30 Mineral Resources 3 2010-07-01...standards-Operations in alluvial valley floors. 903.822 Section 903.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  11. 30 CFR 905.822 - Special performance standards-Operations in alluvial valley floors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    30 Mineral Resources 3 2013-07-01...standards-Operations in alluvial valley floors. 905.822 Section 905.822 Mineral Resources OFFICE OF SURFACE...standards—Operations in alluvial valley floors. Part 822 of this...

  12. 30 CFR 947.822 - Special performance standards-operations on alluvial valley floors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    30 Mineral Resources 3 2013-07-01...standards-operations on alluvial valley floors. 947.822 Section 947.822 Mineral Resources OFFICE OF SURFACE...standards—operations on alluvial valley floors. Part 822 of this...

  13. Experimental investigation into Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Kuhn, Nikolaus; Yair, Aaron; Bryan, Rorke; Schwanghart, Wolfgang

    2010-05-01

    Badland morphology is commonly linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. In this study, the precipitation characteristics that are critical for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel are investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Currently, the geomorphic development in the Dinosaur badlands is characterized by weathering/supply limited conditions, leading to slope retreat independent of lithology. In the Negev, transport limited conditions cause frequent runoff discontinuity, creating a pattern of areas dominated by erosion or deposition. The results of the weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring and summer rainfall and erosion determine the rate of slope retreat in the Dinosaur Badlands. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a sediment sink. The experiments illustrate that the badland slopes experienced an auto-stabilization during the Quaternary in the Zin Valley. In the Dinosaur Badlands Holocene climatic variations have not caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. In their current state, both badland slope systems appear to be fairly stable against climate change in the range of those occurring during the Holocene. However, the stability is achieved in different ways. In the Dinosaur Badlands, weathering rates are low compared to erosion capacity, maintaining continuous evacuation of sediment from slopes to the flood planes of the Red Deer River system. Only a very pronounced contrast between winter weathering and drier summers would generate a colluvium and thus change slope hydrology. In the Zin Valley the development of a thick colluvium at the foot of the slopes has increased infiltration capacity, reducing runoff and sediment yield into the floodplain. Here, only an increase in rainfall magnitude would improve runoff continuity and induce the erosion of the colluvium. This would in turn reduce infiltration capacity and thus initiate a positive feedback on runoff and sediment yield into the Zin River. Overall, Holocene climate change appears to be insufficient to change the geomorphic development in both badlands. However, this stability is achieved not despite of climate, but because of the specific history of geomorphic development. In addition, the combination of erosion and weathering experiments with numerical modeling demonstrates the versatility of Experimental Geomorphology in landscape evolution studies.

  14. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2009-04-01 true Quaternary ammonium chloride combination. 172.165 ...Preservatives § 172.165 Quaternary ammonium chloride combination. The food additive, quaternary ammonium chloride combination, may be...

  15. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 false Quaternary ammonium salts (generic). 721.10511 Section 721...Substances § 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance...identified generically as quaternary ammonium salts (PMNs P-07-320,...

  16. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  17. Reworked calcretes: their significance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Gómez-Gras, D.; Alonso-Zarza, A. M.

    2003-05-01

    The Permian and Triassic of Minorca (Balearic Islands) consists of a 670-m-thick, red, alluvial succession that includes in situ calcrete profiles and reworked calcrete material. In the Permian succession, the calcretes vary from laminar forms developed on the Carboniferous basement to weakly developed nodular calcretes in fluvial sediments. The palaeosols in the Triassic are mostly dolomitic, and the profiles reach up to Stage III of soil development (Spec. Pap.-Geol. Surv. Am. 203, (1995) 1). The clasts, formed through reworking of the palaeosol profiles, are about 0.5-10 cm across and include mosaics of calcite/dolomite crystals, brecciated clasts, rhizolith fragments, and aggregates of clay and/or silt. These clasts appear in three different types of deposits. Type 1 corresponds to lenticular bodies that fill small scour surfaces, and consists only of intraformational conglomerates. These deposits are interpreted as ephemeral channels and sheet-floods that represent the interfluvial drainage systems that captured only the precipitation falling on the alluvial plain. Type 2 includes sand dune 3-D bodies with flat bottoms and convex tops. These bodies are about 20 cm high and 2 m wide, and were formed by floodwaters that flowed down the levees of the major streams. Type 3 channel deposits contain reworked calcretes and extrabasinal clasts, which overlie erosive surfaces and are found in layers within cross-bedded sandstones and conglomerates. These are interpreted as channel-floor lag deposits of major channels that entered from distant uplands and drained the alluvial plain. Variations in the aggradation rates of the floodplain resulted in five different infill stages. In the lowstand to early transgressive interval, as in stages I (P1) and IV (B1), the fluvial deposits filled palaeovalleys; calcretes and reworked calcrete deposits were of difficult formation (apart from terraces) and preservation. Accommodation space was at its greatest in the transgressive, stages II (P2) and V (B2). This caused the greatest aggradation of the floodplains, which are formed of thick sequences of fine-grained sediments, isolated meandering channels, weakly developed calcretes (compound) and reworked calcrete deposits, mostly of types 1 and 2. The density of channels notably increased in stage III (P3), highstand interval, because of the reduction of accommodation space, this could favour the formation of composite or even cumulative palaeosols, but of difficult preservation. Reworked calcrete deposits are mostly of type 3, but types 1 and 2 are also recognised. The reworked calcrete deposits are an important part of the Permian and Triassic fluvial sediments and their occurrence and characteristics are important in order to interpret the infill of terrestrial basins and the construction of floodplains.

  18. Charophytes as lacustrine biomarkers during the quaternary in North Africa

    NASA Astrophysics Data System (ADS)

    Soulié-Märsche, I.

    The use of charophytes as biomarkers is discussed with emphasis on the differences in study methods for cosmopolitan and ecotype species. A first extensive inventory of Quaternary deposits of charophytes in Africa north of the equator comprising 18 sites from Senegal to the Sudan is drawn up with data on spatial and temporal distribution. The existence of relatively deep cold lakes in the Holocene is shown by the frequent presence of specimens of cold flora no longer present in Africa today. All the original data show the complementary nature of the study of fossil Charophyta for the multidisciplinary reconstitution of palaeoenvironments.

  19. The diachroneity of alluvial-fan lithostratigraphy? A test case from southeastern Ebro basin magnetostratigraphy

    E-print Network

    Swanson-Hysell, Nicholas

    The diachroneity of alluvial-fan lithostratigraphy? A test case from southeastern Ebro basin: R.W. Carlson Available online 12 July 2007 Abstract Alluvial-fan strata contain valuable proxy data composite alluvial-fan sections assumes the chronostratigraphic significance of lithostratigraphy. We

  20. Channel Dynamics, Sediment Transport, and the Slope of Alluvial Fans: Experimental Study1

    E-print Network

    Channel Dynamics, Sediment Transport, and the Slope of Alluvial Fans: Experimental Study1 Kelin X the results of an experimental study of alluvial fan sedimentation under conditions of constant inflow water a recently formulated model of alluvial fan sedimentation and to emphasize the interactions between

  1. Quaternary coastal evolution of Oman (Arabian Peninsula) - a quantitative approach

    NASA Astrophysics Data System (ADS)

    Hoffmann, G.; Rupprechter, M.; Roepert, A.; Quraishi, K. Al; Balushi, N. Al; Grützner, C.; Reicherter, K.

    2012-04-01

    The paper reviews the Quaternary coastal evolution of Oman. Emphasise is put on quantifying the different forcing factors. The plate tectonic setting, the Quaternary climate evolution, the sea-level history and the impact of natural hazards are identified as key factors of coastal evolution. The Arabian Plate is characterized by a northward movement forming a continent-continent collision zone in the west and the Makran Subduction Zone in the east. As a result differential land movement is observable in Oman. The Quaternary climate evolution is well understood. Besides other proxies notably spelothems and aeolian deposits allow to draw a consistent picture. It is understood that changes in the position of the intertropical convergence zone result in intensity-changes of the summer monsoon. These changes are related to global atmospheric circulation patterns. Data on the sea-level history are sparse; despite general assumptions of a sea-level lowstand, correlating with the last glacial maximum, resulting in terrestrial conditions within the Arabian Gulf. Furthermore, a mid-Holocene sea level highstand in the range of +2m is documented in several locations. The coastlines of Oman are affected by tsunami and hurricanes. However, almost no instrumental or historical data on the impact of such natural hazards are available due to the isolation of the country in the past. Several Quaternary deposits have been investigated in a reconnaissance survey. There is sound geological evidence for a tsunami to have affected the coastline in 1945, with the possibility of older tsunami events being also recorded in the geological record. There is strong evidence of differential land movement along the coastline; locally indicated by marine terraces in elevations of up to 400m (Rupprechter at al. 2012). By quantifying the differential land movement for numerous sites, the sea-level history will be revealed. Ultimately the data will be utilized to form the base of a modeling approach. Furthermore, a sedimentary archive of past precipitation events is documented which will allow reconstructing frequency and intensity of precipitation events and may indicate the impact of past hurricanes. It is concluded that the geological archives are suitable to quantify the forcing factors of Quaternary coastal evolution on different time scales and that the recurrence intervals of natural hazards will be revealed. Proxy data will be gained in subsequent investigations. This allows a scientific based holistic approach for an integrated coastal zone management that helps to formulate adaptation strategies with regard to global warming and expected environmental changes.

  2. The linkages among hillslope-vegetation changes, elevation, and the timing of late-Quaternary fluvial-system aggradation in the Mojave Desert revisited

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2014-08-01

    Valley-floor-channel and alluvial-fan deposits and terraces in the southwestern US record multiple episodes of late-Quaternary fluvial-system aggradation and incision. Perhaps the most well-constrained of these episodes took place from the latest Pleistocene to the present in the Mojave Desert. One hypothesis for this episode - i.e., the paleovegetation-change hypothesis (PVCH) - posits that a reduction in hillslope vegetation cover associated with the transition from Pleistocene woodlands to Holocene desert scrub generated a pulse of sediment that triggered a primary phase of aggradation downstream, followed by channel incision, terrace abandonment, and initiation of a secondary phase of aggradation further downstream. A second hypothesis - i.e., the extreme-storm hypothesis - attributes episodes of aggradation and incision to changes in the frequency and/or intensity of extreme storms. In the past decade a growing number of studies has advocated the extreme-storm hypothesis and challenged the PVCH on the basis of inconsistencies in both timing and process. Here I show that in eight out of nine sites where the timing of fluvial-system aggradation in the Mojave Desert is reasonably well constrained, measured ages of primary aggradation are consistent with the predictions of the PVCH if the time-transgressive nature of paleovegetation changes with elevation is fully taken into account. I also present an alternative process model for PVCH that is more consistent with available data and produces sediment pulses primarily via an increase in drainage density (i.e., a transformation of hillslopes into low-order channels) rather than solely via an increase in sediment yield from hillslopes. This paper further documents the likely important role of changes in upland vegetation cover and drainage density in driving fluvial-system response during semiarid-to-arid climatic changes.

  3. Delineating Alluvial Aquifer Heterogeneity Using Resistivity and GPR Data

    E-print Network

    Sailhac, Pascal

    Delineating Alluvial Aquifer Heterogeneity Using Resistivity and GPR Data by Jerry C. Bowling1- dimensional ground penetrating radar (GPR) and direct current (DC) resistivity data were collected, inferred by other authors to affect flow, was mapped in the MFS with both DC resistivity and GPR data

  4. Fluvial geomorphic features of the Lower Mississippi alluvial valley

    Microsoft Academic Search

    Lawson M. Smith

    1996-01-01

    The Lower Mississippi Valley (LMV) has been one of the most intensively studied alluvial valleys in the world in terms of it's geological and geomorphic framework and history. A brief outline of the history of the major geological and geomorphological investigations of the LMV is provided. The results of these investigations are discussed in terms of the fluvial geomorphic framework

  5. Relief threshold for eolian sand transport on alluvial fans

    Microsoft Academic Search

    Joseph P. Cook; Jon D. Pelletier

    2007-01-01

    Many arid alluvial-fan terraces downwind from eolian sand sources exhibit an abrupt increase in eolian epipedon thickness and sand content below a critical elevation which varies from fan to fan. Above this elevation, sand accumulates locally and is not transported across the fan. Below this elevation eolian sand from nearby playa and channel sources is readily transported across the distal

  6. INTRODUCTION One of the attributes of a natural alluvial river

    E-print Network

    Stella, John C.

    and Descamps 1997). In natural river systems, physical forces such as flooding, erosion, and sediment of the MercedRiver corridor, riparian vegetation conditions, spatial patterns, and successional processes were302 INTRODUCTION One of the attributes of a natural alluvial river system is a self

  7. Bed Material Transport and the Morphology of Alluvial River

    E-print Network

    Venditti, Jeremy G.

    Bed Material Transport and the Morphology of Alluvial River Channels Michael Church DepartmentSimonFraserUniversityon08/10/06.Forpersonaluseonly. #12;Bed material: material that forms the bed and lower banks of the river and chiefly determines the morphology of the channel Wash material: material that, once entrained

  8. Bed Material Transport and the Morphology of Alluvial River

    E-print Network

    Jellinek, Mark

    Bed Material Transport and the Morphology of Alluvial River Channels Michael Church DepartmentUniversityofBritishColumbiaLibraryon12/27/06.Forpersonaluseonly. #12;Bed material: material that forms the bed and lower banks of the river and chiefly determines the morphology of the channel Wash material: material that, once entrained

  9. HYDRAULIC ANALYSIS OF BASEFLOW AND BANK STORAGE IN ALLUVIAL STREAMS

    EPA Science Inventory

    This paper presents analytical solutions, which describe the effect of time-variable net recharge (net accretion to water table) and bank storage in alluvial aquifers on the sustenance of stream flows during storm and inter-storm events. The solutions relate the stream discharge,...

  10. MAP OF ECOREGIONS OF THE MISSISSIPPI ALLUVIAL PLAIN

    EPA Science Inventory

    The ecoregions of The Mississippi Alluvial Plain (73) have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a ...

  11. On Earthquake Ground Motion and Structural Response in Alluvial Valleys

    E-print Network

    Shewchuk, Jonathan

    On Earthquake Ground Motion and Structural Response in Alluvial Valleys By Jacobo Bielak 1 , Member amplification and structural dam­ age due to local site conditions in sedimentary valleys during earthquakes the 1988 Armenia Earthquake. A more realistic two­dimensional finite element analysis is performed herein

  12. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.

    PubMed

    Foppen, J W A; van Herwerden, M; Kebtie, M; Noman, A; Schijven, J F; Stuyfzand, P J; Uhlenbrook, S

    2008-01-01

    Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies. PMID:17854950

  13. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Foppen, J. W. A.; van Herwerden, M.; Kebtie, M.; Noman, A.; Schijven, J. F.; Stuyfzand, P. J.; Uhlenbrook, S.

    2008-01-01

    Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial ( Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10 6 CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d - 1 . Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.

  14. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet

    NASA Technical Reports Server (NTRS)

    Peltzer, Gilles; Tapponnier, Paul; Armijo, Rolando

    1989-01-01

    Images taken by the earth observation satellite SPOT of the Quaternary morphology at 18 sites on the 2000-kilometer-long Altyn Tagh fault at the north edge of Tibet demonstrate that it is outstandingly active. Long-term, left-lateral strike-slip offsets of stream channels, alluvial terrace edges, and glacial moraines along the fault cluster between 100 and 400 meters. The high elevation of the sites, mostly above 4000 meters in the periglacial zone, suggests that most offsets resulted from slip on the fault since the beginning of the Holocene. These data imply that slip rates are 2 to 3 centimeters per year along much of the fault length and support the hypothesis that the continuing penetration of India into Asia forces Tibet rapidly toward the east.

  15. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of ?-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  16. An index of ecological integrity for the Mississippi alluvial plain ecoregion: index development and relations to selected landscape variables

    USGS Publications Warehouse

    Justus, B.G.

    2003-01-01

    Macroinvertebrate community, fish community, water-quality, and habitat data collected from 36 sites in the Mississippi Alluvial Plain Ecoregion during 1996-98 by the U.S. Geological Survey were considered for a multimetric test of ecological integrity. Test metrics were correlated to site scores of a Detrended Correspondence Analysis of the fish community (the biological community that was the most statistically significant for indicating ecological conditions in the ecoregion) and six metrics--four fish metrics, one chemical metric (total ammonia plus organic nitrogen) and one physical metric (turbidity)--having the highest correlations were selected for the index. Index results indicate that sites in the northern half of the study unit (in Arkansas and Missouri) were less degraded than sites in the southern half of the study unit (in Louisiana and Mississippi). Of 148 landscape variables evaluated, the percentage of Holocene deposits and cotton insecticide rates had the highest correlations to index of ecological integrity results. sites having the highest (best) index scores had the lowest percentages of Holocene deposits and the lowest cotton insecticide use rates, indicating that factors relating to the amount of Holocene deposits and cotton insecticide use rates partially explain differences in ecological conditions throughout the Mississippi Alluvial Plain Ecoregion.

  17. Simulation of the transfer of organochlorine pollutants in an alluvial aquifer in an alpine valley: the case of tetrachloroethene

    NASA Astrophysics Data System (ADS)

    Kouamé, A. A.; Jaboyedoff, M.; Tacher, L.; Derron, M.-H.

    2012-04-01

    During a series of environmental analysis carried out in soil and groundwater in the Alpine Valley (Rhone valley Western Switzerland), were identified high levels of chlorinated solvents, particularly the tetrachloroethene. The leakage of this pollutant originates from industry. The geological substratum in this part of the valley is mainly composed of alluvial deposits and the deposit of a large rock avalanche. The sediments are composed of sandy silt, sandy clay, sand and gravel. The rock avalanche deposit which is the wall of the alluvial aquifer consists of fine materials, stones and large debris mainly of limestone. The investigations developed in this area have shown the presence of a contaminant plume of 60 m long and 35 m wide approximately. Thus the technique of venting / sparging was proposed as remediation measure. Despite the effectiveness of this technique, it turns out that there are still some pockets of contamination of groundwater in the area. In order to assess the potential pollution, a numerical modeling was developed by using the Visual Modflow software. The stages of this modeling are: • Selecting the parameters of the models; • Developing conceptual and numerical models; • Calibration and validation of the model; • Reproducing the observed concentrations; • Sensitivity analysis; • Making a parametric study to see at different stages the tetrachloroethene plume. The first results of the simulation show a slow leakage of the pollutant forming a pocket in the water flow direction.

  18. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    A coarse-grained alluvial fan sequence at Lipci, Kotor Bay, in western Montenegro, provides a sedimentary record of meltwater streams draining from the Orjen Massif (1,894 m a.s.l.) to the coastal zone. At Lipci sedimentary evidence and U-series ages have been used alongside offshore bathymetric imagery and seismic profiles to establish the size of the fan and constrain the nature and timing of its formation. Establishing the depositional history of such coastal fans is important for our understanding of cold stage sediment flux from glaciated uplands to the offshore zone, and for exploring the impact of sea level change on fan reworking. There is evidence of at least four phases of Pleistocene glaciation on the Orjen massif, which have been U-series dated and correlated to MIS 12, MIS 6, MIS 5d-2 and the Younger Dryas. A series of meltwater channels delivered large volumes of coarse- and fine-grained limestone sediment from the glaciated uplands into the Bay of Kotor. At the southern margin of the Orjen massif, a series of large (>700 m long) alluvial fans has developed. Some of these extend offshore for up to 600 m. Lipci fan lies downstream of end moraines in the valley immediately above, which were formed by an extensive outlet glacier of the Orjen ice cap during MIS 12. The terrestrial deposits are part of the fan apex (50 m a.s.l.) that lies at the foot of a steep bedrock channel, but the majority of the fan is now more than 25 m below sea level. The terrestrial fan sediments are strongly cemented by multiple generations of calcite precipitates: the oldest U-series ages are infinite indicating that the fan is >350 ka in age. These ages are in agreement with alluvial sedimentary evidence and U-series ages from other fluvial units on Mount Orjen. The terrestrial portion of the Lipci fan surface contains several channels. These are well preserved due to cementation with calcium carbonate. Submarine imagery indicates that the now submerged portion of the fan also contains deeply incised (up to 10 m) channels which are similar in morphology to those exposed onshore. It is likely that strong cementation of the fan sediments, and associated channel forms, has protected them from coastal erosion during several regression-transgression cycles. These records provide important opportunities to correlate the Pleistocene terrestrial glacial and fluvial records with the marine archive.

  19. The distinction of submarine mass failure deposits from tsunami backwash deposits - an example from Hornitos, Northern Chile

    NASA Astrophysics Data System (ADS)

    Spiske, M.; Bahlburg, H.; Weiss, R.

    2013-12-01

    Sedimentary features of onshore tsunami deposits were studied in great detail within the last decade. While the characteristics of such onshore deposits are well documented, the associated marine tsunami effects, such as sediment dispersion, re-deposition, and sediment bypassing during runup and backwash are scarcely reported. The knowledge of the appearance of submarine tsunami features is important, not only to understand the hydrodynamic processes involved, but also because pre-Quaternary sediments tend to be of marine origin when extending the geological record farther into the past. In this study we challenge the former interpretation of a backwash tsunami origin of a Pliocene coarse clast unit at Hornitos that was previously linked to the Eltanin impact tsunami. The respective unit contains several tens of meters long rock slabs and components from both the shallow marine basin and onshore environments, such as alluvial fans, beaches, cliffs and the local basement rocks. It is intercalated into breccia layers of smaller scale that represent the likewise energetic background sedimentation. The unit was most likely emplaced by a high-density flow with possible hydroplaning at its base and front. This is underlined by soft-sediment deformation and sand dykes. The comparison to recent submarine tsunami sediments shows that there are hardly any similarities, most notably because the unit at Hornitos was deposited en masse without any obvious trends. Our re-interpretation considers the local synsedimentary tectonic background and a comparison to recent submarine tsunami sediments caused by tsunamis with similar onshore wave heights. We show that a relation to the Eltanin impact can be excluded because enhanced models that include a shoaling effect as soon as the tsunami approaches shallow shelf regions prove that such an impact did not entail large onshore wave heights at Hornitos. Additionally, the biostratigraphic age of the La Portada formation is not overlapping with the age of the Eltanin impact. Instead, we argue for an earthquake-triggered debris flow origin of the unit. Its emplacement occurred a phase of increased uplift during the Pliocene that entailed the oversteepening of the coastal scarp. Contemporaneous increase in the frequency of seismic events caused slope failures and cliff collapses. Hence, the megabreccia unit at Hornitos represents an extraordinary event that is intercalated into mass wasting deposits of smaller scale, but is not linked to a tsunami.

  20. Quaternary crustal deformation along a major branch of the San Andreas fault in central California

    USGS Publications Warehouse

    Weber, G.E.; Lajoie, K.R.; Wehmiller, J. F.

    1979-01-01

    Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.

  1. The enigma of fine-grained alluvial basin fills: the Permo-Triassic (Cumbrian Coastal and Sherwood Sandstone Groups) of the Solway Basin, NW England and SW Scotland)

    Microsoft Academic Search

    Michael E. Brookfield

    2004-01-01

    The late Permian to Triassic sediments of the Solway Basin consist of a layer-cake succession of mature, predominantly fine-grained red clastics laid down in semi-arid alluvial plain to arid sabkha and saline marginal marine or lacustrine environments. The Cumbrian Coastal Group consists of Basal Clastics and Eden Shales. The Basal Clastics are thin regolith deposits resting unconformably on all-underlying units

  2. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the hyperthermals at Deer Creek suggest wetter conditions, and our preliminary interpretation is that a change to wetter conditions caused increased discharge and deposition of coarser (sandy) sediment. The thick sandstone complex at Gilmore Hill is underlain by paleosols with abundant calcrete nodules, which indicate drier soil conditions prior to deposition of the sandstone, and the change from drier to wetter conditions probably also caused increased sediment yield.

  3. An aminostratigraphy for the British Quaternary based on Bithynia opercula

    PubMed Central

    Penkman, Kirsty E.H.; Preece, Richard C.; Bridgland, David R.; Keen, David H.; Meijer, Tom; Parfitt, Simon A.; White, Tom S.; Collins, Matthew J.

    2013-01-01

    Aminostratigraphies of Quaternary non-marine deposits in Europe have been previously based on the racemization of a single amino acid in aragonitic shells from land and freshwater molluscs. The value of analysing multiple amino acids from the opercula of the freshwater gastropod Bithynia, which are composed of calcite, has been demonstrated. The protocol used for the isolation of intra-crystalline proteins from shells has been applied to these calcitic opercula, which have been shown to more closely approximate a closed system for indigenous protein residues. Original amino acids are even preserved in bithyniid opercula from the Eocene, showing persistence of indigenous organics for over 30 million years. Geochronological data from opercula are superior to those from shells in two respects: first, in showing less natural variability, and second, in the far better preservation of the intra-crystalline proteins, possibly resulting from the greater stability of calcite. These features allow greater temporal resolution and an extension of the dating range beyond the early Middle Pleistocene. Here we provide full details of the analyses for 480 samples from 100 horizons (75 sites), ranging from Late Pliocene to modern. These show that the dating technique is applicable to the entire Quaternary. Data are provided from all the stratotypes from British stages to have yielded opercula, which are shown to be clearly separable using this revised method. Further checks on the data are provided by reference to other type-sites for different stages (including some not formally defined). Additional tests are provided by sites with independent geochronology, or which can be associated with a terrace stratigraphy or biostratigraphy. This new aminostratigraphy for the non-marine Quaternary deposits of southern Britain provides a framework for understanding the regional geological and archaeological record. Comparison with reference to sites yielding independent geochronology, in combination with other lines of evidence, allows tentative correlation with the marine oxygen isotope record. PMID:23396683

  4. Late Quaternary sedimentation on the Leidy Creek fan, Nevada-California: Geomorphic responses to climate change

    USGS Publications Warehouse

    Reheis, M.C.; Slate, J.L.; Throckmorton, C.K.; McGeehin, J.P.; Sarna-Wojcicki, A. M.; Dengler, L.

    1996-01-01

    Well-dated surface and subsurface deposits in semiarid Fish Lake Valley, Nevada and California, demonstrate that alluvial-fan deposition is strongly associated with the warm dry climate of the last two interglacial intervals, and that fans were stable and (or) incised during the last glaciation. Fan deposition was probably triggered by a change from relatively moist to arid conditions causing a decrease in vegetation cover and increases in flash floods and sediment yield. We think that this scenario applies to most of the other valleys in the southern Basin and Range. Radiocarbon, tephra, and a few thermoluminescence and cosmogenic ages from outcrops throughout Fish Lake Valley and from cores on the Leidy Creek fan yield ages of > 100-50 ka and 11-0 ka for the last two periods of alluvial-fan deposition. Mapping, coring and shallow seismic profiling indicate that these periods were synchronous throughout the valley and on the proximal and distal parts of the fans. From 50 to 11 ka, fan deposition ceased, a soil formed on the older alluvium and the axial drainage became active as runoff and stream competence increased. Slow deposition due to sheet flow or aeolian processes locally continued during this interval, producing cumulic soil profiles. The soil was buried by debris-flow sediment beginning at about 11 ka, coincident with the onset of relatively dry and warm conditions in the region. However, ground-water discharge maintained a large freshwater marsh on the valley floor throughout the Holocene. Pulses of deposition during the Holocene are recorded in the marsh and fan deposits; some pulses coincided with periods of or transitions to warm, dry climate indicated by proxy climate records, whereas others may reflect local disturbances associated with volcanism and fires. Within the marsh deposits, much of the clastic material is probably desert loess. In addition, the deposition of coppice dunes within the fan deposits coincides with two dry periods during the late Holocene.

  5. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought. Rather, during the Quaternary period, they occur nearly three times as often as full polarity reversals. I will address analytical issues, including the size and consistency of system blanks, that have led to the recognition of minor (1%) discrepencies between the 40Ar/39Ar age for a particular reversal or excursion and the best astrochronologic estimates from ODP sediment cores. For example, re-analysis of lava flows from Haleakala volcano, Maui that record in detail the Matuyama-Brunhes polarity reversal have been undertaken with blanks an order of magntitude smaller and more stable than was common a decade ago. Using the modern astrochronologic calibration of 28.201 Ma for the age of the Fish Canyon sanidine standard, results thus far yield an 40Ar/39Ar age of 772 × 11 ka for the reversal that is identical to the most precise and accurate astrochronologic age of 773 × 2 ka for this reversal from ODP cores. Similarly, new dating of sanidine in the Cerro Santa Rosa I rhyolite dome, New Mexico reveals an age of 932 × 5 ka for the excursion it records, in perfect agreement with astrochronologically dated ODP core records. Work underway aims at refining the 40Ar/39Ar ages that underpin the entire GITS by further eliminating the bias between the radioisotopic and astrochronologically determined ages for several reversals and excursions.

  6. Ground-Water Geology and Hydrology of the Kern River Alluvial-Fan Area, California

    USGS Publications Warehouse

    Dale, R.H.; French, James J.; Gordon, G.V.

    1966-01-01

    The Kern River alluvial fan is the southernmost major alluvial fan built by the streams which drain the west side of the Sierra Nevada. The climate is semiarid with rainfall near 5 inches per year. Agricultural development within the area uses over half the 700,000 acre-feet per year flow of the Kern River, plus a considerable amount drawn from the ground-water reservoir particularly during periods of low flow. The area overlies a deep structural trough between crystalline rocks of the Sierra Nevada and the marine rocks of Tertiary age of the Coast Ranges. The top horizon of the marine rocks that lap on the Sierra Nevada block underlies the report area at an average depth of 2,000 feet. The overlying continental deposits that form the groundwater reservoir consist of alluvial-fan and lacustrine deposits. The continental deposits are subdivided into three lithologic units on the basis of grain size and sorting. The gravel and clay unit consists of older alluvial-fan material, of both Sierra Nevada and Coast Range provenance, that shows extremely poor sorting with some diagenetic decomposition through chemical weathering. The fine sand to clay unit consists principally of fine sand, silt, and clay deposited in a lacustrine environment, although some of the unit is of alluvial-fan origin derived from poorly consolidated marine shale of the Coast Ranges. Within the fine sand to clay unit three distinct clays, which affect ground-water conditions, can be recognized. The gravel to medium sand unit consists of unweathered alluvial-fan material that shows much better sorting than the gravel and clay unit. In the eastern part of the area the basal part of this unit is a gravel lentil that can be traced in the subsurface more than 250 square miles. The overlying deposits consist principally of medium sand. In the western part of the area the unit is a heterogeneous gravel and sand unit. Permeability in Meinzer units of the gravel and clay unit ranges between 10 and 100 with specific yield about 5 percent. For the fine sand to clay unit the permeability ranges between 0.0001 and 100 with about 10 percent specific yield. The gravel to medium sand unit has permeabilities between 100 and 10,000, and specific yield is about 15 percent. For the period 1955-59 the annual gross surface-water supply was estimated at 421,000 acre-feet and pumpage was 664,000 acre-feet, giving a rounded total supply of 1,100,000 acre-feet. Annual consumptive use was estimated at 750,000 acre-feet and annual infiltration at 350,000 acre-feet. The approximate 300,000 acre-feet difference between 664,000 acre-feet pumped and 350,000 acre-feet infiltrated has caused an annual decline in water levels of up to 7 feet. Ground water occurs under both unconfined and confined conditions within the report area. In general, the gravel to medium sand unit contains unconfined water, and the other two units contain confined water. Pumping is less intense in the Kern River fan area than in the adjoining areas to the north or south. This fact, plus infiltration from the Kern River, results in ground-water movement being principally out of the area. There is a ground-water divide that approximately underlies the Kern River. South of the river the flow spreads out semicircularly from the river, and north of the river the flow is linear to the northwest. Based on chemical quality the ground water has been divided areally into (1) east side, (2) west side, and (3) axial water. With the exception of two areas of comparable size northwest of Bakersfield and a much smaller area southeast of that city where ground water is somewhat saline, east-side ground water is generally of the calcium bicarbonate and calcium sodium bicarbonate type of low to medium salinity. The chemical character of east-side ground water is necessarily related to that of Kern River water, the principal source of recharge, and water of intermittent streams which drain the dissected upland

  7. Evidence of Late Quaternary Faulting along the Northeastern Segment of the Stagner Creek Fault in the Northwestern Wind River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Abousaif, A.; Wang, H.; Cochran, W. J.; Hinrichs, N.; Gomez, F.; Sandvol, E. A.

    2012-12-01

    The Stagner Creek fault, located along the southern margin of the Owl Creek Mountains in central Wyoming, is one of several east-west striking Quaternary faults that may correspond with scattered, present-day, intraplate seismicity in the region. These Quaternary faults are peculiar in that they strike nearly orthogonal to the Basin and Range faults observed in western Wyoming, and their orientation may reflect the influence of inherited, Laramide structures. These east-west striking faults are inferred to be predominantly normal faults. Previous studies have documented the Quaternary activity of the Stagner Creek fault affecting 6 distinct alluvial fan southeast of the Boysen Reservoir. This study aims to expand on these prior efforts using geomorphic and geophysical analyses. In this area, the Stagner Creek fault is expressed as a prominent scarp, visible in air photos and satellite imagery. Microtopographic mapping was accomplished using a real-time kinematic GPS surveying. The resulting DEM provides detailed scarp morphology, as well as documenting possible knick points within the alluvial surfaces upstream from the scarp. The alluvial surface has a regional slope of 2-3 degrees, and the scarp face has a relatively shallow slope of 6-12 degrees. Scarp heights range from 0.4 to 2 meters. The minimum scarp may reflect a single faulting event, corresponding with a magnitude 6.5 - 6.7. These surfaces are believed to be Late Pleistocene and younger, and geochronological constraints are pending. A shallow seismic reflection profile acquired across the scarp imaged structure to depths of about 500 meters. The profile suggests a steep fault coincident with the surface scarp that offsets Tertiary reflectors several 10s of meters in the subsurface. The steep dip is similar to Laradmide structures. These results suggest that the Stagner Creek fault is capable of generating moderate magnitude earthquakes in this low-strain tectonic environment.

  8. Late Quaternary paleosols and climate change in southern New Mexico

    SciTech Connect

    Monger, H.C. (New Mexico State Univ., Las Cruces, NM (United States). Agronomy Dept.); Cole, D.R. (Oak Ridge National Lab., TN (United States)); Gish, J.W. (Quaternary Palynology Research, Flagstaff, AZ (United States))

    1992-01-01

    A climate change toward more arid conditions in the southwest US has been postulated for a period around 7 ka. In southern NM, deposition of the youngest generation of alluvial fans surrounding arid mountains began around 7 ka based on radiocarbon dates of charcoal. The deposition of these fans has been interpreted as evidence for aridity because plant cover would have declined, thus making the landscape more susceptible to erosion and sedimentation. Isotopes of pedogenic calcite and pollen content in well-preserved paleosols associated with alluvial fans provide additional evidence for testing the aridity hypothesis. Buried paleosols, ranging from 23,070 [+-] 190 to 9,070 [+-] 70 yr BP, contain pedogenic calcite that is isotopically heavier in carbon than calcite in soils younger than 7 ka. The buried paleosols have a mean delta C-13 values of [minus]2.2 [+-] 0.8 [per thousand] (PDP). In contrast, soils younger than 7 ka have a man delta C-13 value of [minus]7.8 [+-] 1.3 [per thousand]. The higher delta C-13 values in buried paleosols may reflect the presence of abundant C[sub 4] grasses, similar to the present vegetation in the southern High Plains, which would have curtailed erosion. Pollen analysis reveals that buried paleosols contain more grass pollen than soils younger than 7 ka, which contain high proportions of desertscrub pollen taxa. delta O-18 values of pedogenic calcite are similar for the buried paleosols ([minus]5.2 [+-] 0.3 [per thousand] PDB) and soils younger than 7 ka ([minus]5.1 [+-] 0.6 [per thousand]). These values indicate a relatively constant mean annual temperature of approximately 14C, which prevailed throughout late Pleistocene and Holocene time.

  9. Geophysical approach to delineate arsenic hot spots in the alluvial aquifers of Bhagalpur district, Bihar (India) in the central Gangetic plains

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Avtar, Ram; Kumar, Alok; Singh, Chander Kumar; Tripathi, Parijat; Senthil Kumar, G.; Ramanathan, A. L.

    2014-06-01

    A combined study of the geophysical survey and hydro-geochemistry in the Quaternary alluvial aquifers of Bhagalpur district from Bihar state in central Gangetic plain of India was carried out with the objective of identifying the geochemical processes and their relation with lithological profile. Results of resistivity survey validated with borehole lithology gave us a clear picture of the geological signature of the aquifers, which support the reducing nature of the aquifer where concentration of arsenic was high. Reducing nature of the aquifer environment was shown by water samples having relatively negative Eh value. From XRD study of the soil samples, it was found that goethite, dolomite, calcite, quartz and feldspar are the major minerals for most of the samples. Output of this work concludes that resistivity survey is an economically feasible tool which can be successfully used to target arsenic-safe aquifers on wide scale.

  10. A model of channel response in disturbed alluvial channels

    USGS Publications Warehouse

    Simon, A.

    1989-01-01

    Dredging and straightening of alluvial channels between 1959 and 1978 in West Tennessee caused a series of morphologic changes along modified reaches and tributary streams. Degradation occurred for 10 to 15 years at sites upstream of the area of maximum disturbance and lowered bed-levels by as much as 6.1 m. Following degradation, reaches upstream of the area of maximum disturbance experienced a secondary aggradation phase in response to excessive incision and gradient reduction. -from Author

  11. The nature, timing and controls of the Quaternary development of the Rio Bergantes, Ebro basin, northeast Spain

    NASA Astrophysics Data System (ADS)

    Whitfield, R. Greg; Macklin, Mark G.; Brewer, Paul A.; Lang, Andreas; Mauz, Barbara; Whitfield (née Maher), Elizabeth

    2013-08-01

    Geomorphological, sedimentological and geochronological analyses have been undertaken to decipher the effects of Quaternary environmental change on the development of the Rio Bergantes, Ebro basin, northeast Spain. Field mapping and profiling using aerial photography and airborne LiDAR data have identified a sequence of six river terraces. Age control, provided by luminescence dating, has revealed two major phases of valley floor aggradation that appear to have occurred at ~ 183-130 ka (Terrace BT1, elevated ~ 25 m above the modern river channel) and ~ 111-26.8 ka (BT2, ~ 18-20 m above the modern river channel), punctuated by ~ 20 m of incision in the intervening period. Following these two phases of large-scale aggradation, the Bergantes river system appears to have adjusted to a relatively sediment-limited regime and responded to environmental changes through a series of smaller cut and fill cycles. This resulted in four lower elevation terraces (BT3-BT6) that are inset within the older (BT1 and BT2) valley fills. These lower terraces have been temporally constrained to ~ 24.5-14.2 ka (BT3); 10.6-9.8 ka (BT4); 8.3-6.2 ka (BT5) and ~ 3 ka (BT6). Field sedimentological and stratigraphic analyses of the alluvial fills indicate the influence of tributary and hill slope derived sediment supply during the aggradation of BT1 and, to a lesser extent BT2. This contrasts with the predominantly trunk river derived deposits which make up the fill of BT3-BT6, when the hillslopes and tributaries in the study area appear to have been relatively de-coupled from the trunk river. Data presented in this paper suggest that the Bergantes river system has responded to, and has preserved, a record of environmental changes operating both in synchrony with, and at a higher frequency than, Milankovitch-driven glacial-interglacial cycles. Major net aggradation phases (those associated with relatively large amounts of fluvial sediment e.g. BT1 and BT2) appear to coincide with Pleistocene glacial conditions in MIS 6, and parts of MIS 5 and MIS 4, when the climate on the Iberian Peninsula was cool and dry. Intervening phases of net valley incision appear to coincide with warmer and moister climates in Pleistocene interglacials. The younger terraces (BT3-BT6) are characterised by much smaller amounts of fluvial sediment supply. Dating control places their development during stadial (aggradation) and interstadial (incision) events of the Late Pleistocene and Holocene. Some phases of aggradation appear to coincide with North Atlantic Heinrich Events, and also with other securely dated phases of aggradation elsewhere in the Mediterranean basin.

  12. Alluvial model for Eocene Wasatch Formation coal, Powder River basin, Wyoming

    SciTech Connect

    Warwick, P.D.; Flores, R.M.; Ferm, J.C.

    1984-07-01

    The Eocene Wasatch Formation in the Powder River basin, Wyoming, consists of a conglomerate facies (Kingsbury Conglomerate Member) on the western margin of the basin and a coal-bearing facies near the center of the basin. The conglomeratic facies consists of abundant, basally scoured, pebble to boulder conglomerates and sandstones, and minor rooted siltstones. The conglomerates contain abundant sedimentary and subordinate crystalline rock fragments derived from the adjoining Bighorn uplift. The coal-bearing facies comprises dominant coarse to conglomertic sandstones and rooted siltstones and claystones. Minor constituents are fossiliferous limestones, carbonaceous shales, and coals. A thick, widespread coal bed (Felix coal) ranges from 10 to 28 ft (3 to 8.5 m) thick within a 400 mi/sup 2/ (1035 km/sup 2/) area and splits outward from this area into several beds. Where the coal is thick, it is underlain by sandstones and the coal splits are underlain by finer grained deposits. The conglomeratic facies represents wet alluvial-fan deposits consisting of graded gravel bars, channel sands, and finer overbank detritus. These sediments grade eastward into the coal-bearing facies that represents deposits of meandering streams and their adjoining flood plain and backswamp. The locations of the thickest, most widespread coal body and its splits in this facies are governed by depositional topography controlled by differential compaction of the substrate. Where the substrate is poorly compactible channel sandstones, the swamp surface was relatively high and free of sediment influx. Where the underlying deposits are fine grained and more compactible, the resulting low-lying swamp attracted water-borne sediments that interrupted peat accumulation.

  13. Uranium in framboidal pyrite from a naturally bioreduced alluvial sediment.

    PubMed

    Qafoku, Nikolla P; Kukkadapu, Ravi K; McKinley, James P; Arey, Bruce W; Kelly, Shelly D; Wang, Chongmin; Resch, Charles T; Long, Philip E

    2009-11-15

    Samples of a naturally bioreduced, U-contaminated alluvial sediment were characterized with various microscopic and spectroscopic techniques and wet chemical extraction methods. The objective was to investigate U association and interaction with minerals of the sediment. Bioreduced sediment comprises approximately 10% of an alluvial aquifer adjacent to the Colorado River, in Rifle, CO, that was the site of a former U milling operation. Past and ongoing research has demonstrated that bioreduced sediment is elevated in solid-associated U, total organic carbon, and acid-volatile sulfide, and depleted in bioavailable Fe(III) confirming that sulfate and Fe(III) reduction have occurred naturally in the sediment. SEM/EDS analyses demonstrated that framboidal pyrites (FeS(2)) of different sizes ( approximately 10-20 microm in diameter), and of various microcrystal morphology, degree of surface weathering, and internal porosity were abundant in the <53 microm fraction (silt + clay) of the sediment and absent in adjacent sediments that were not bioreduced. SEM-EMPA, XRF, EXAFS, and XANES measurements showed elevated U was present in framboidal pyrite as both U(VI) and U(IV). This result indicates that U may be sequestered in situ under conditions of microbially driven sulfate reduction and pyrite formation. Conversely, such pyrites in alluvial sediments provide a long-term source of U under conditions of slow oxidation, contributing to the persistence of U of some U plumes. These results may also help in developing remedial measures for U-contaminated aquifers. PMID:20028047

  14. Bedrock erosion surface beneath the rocky flats alluvial fan, Jefferson and Boulder counties, Colorado

    USGS Publications Warehouse

    Knepper, D.H., Jr.

    2005-01-01

    The early Pleistocene Rocky Flats alluvial fan formed at the mouth of unglaciated Coal Creek Canyon along the eastern flank of the Colorado Front Range. The fan consists of boulder, cobble, and pebble gravel deposited on an erosional surface cut on tilted Mesozoic sedimentary strata. A north-trending hogback of steeply dipping Cretaceous Laramie Formation and Fox Hills Sandstone is exposed through the gravel across the central portion of the fan. Elevations on the gravel-bedrock contact were used in a GIS to reconstruct the bedrock surface at the base of the gravel, providing a glimpse of the geomorphology of the early Pleistocene Colorado Piedmont. The reconstructed erosional bedrock surface portrays a landscape carved by a series of easterly flowing streams that eroded headward to the resistant hogback units, creating a bedrock step up to 37 m high. East-trending ridges on the bedrock surface are remnants of drainage divides between the Pleistocene streams. Water gaps in the bedrock step allowed the streams access to the upper surface of the step. This entire surface, except the hogback, was covered by gravel about 1.35 to 1.5 Ma ago. Subsequent erosion of the alluvial fan has been by headward (westward) erosion of easterly flowing streams incising into the eastern portion of the fan. Because the gravel is more resistant than the underlying bedrock, modern streams are established over the Pleistocene drainage divides, where the gravel was thinnest. Thicker gravel in the Pleistocene paleovalleys now caps modern drainage divides, producing an inverted topography.

  15. The application of geospatial interpolation methods in the reconstruction of Quaternary landform records

    NASA Astrophysics Data System (ADS)

    Geach, M. R.; Stokes, M.; Telfer, M. W.; Mather, A. E.; Fyfe, R. M.; Lewin., S.

    2014-07-01

    Erosional landform features and their associated sedimentary assemblages (river terraces) often provide important records of long-term landscape evolution. However, the methods available for spatial representations of such records are typically limited to the generation of two-dimensional transects (valley long profiles and cross sections). Such transects limit the full quantification of system responses in a three-dimensional landscape (e.g., the identification of spatial changes in net sediment flux within a hydrological basin). The purpose of this paper is to explore the use of geospatial interpolation methods in the reconstruction of Quaternary landform records. This approach enables more precise quantifications of terrace landform records at a range of spatial scales (from a single river reach to geological basin scales). Here we use a case study from the Tabernas basin in SE Spain to test the applicability of multiple methods of geospatial interpolation in the reconstruction of Quaternary landforms (river terrace and alluvial fan remnants). We take steps in (1) refining the terrace data sets and the methods of technique application in order to reduce modelling errors, and (2) in highlighting the requirements for an assessment of interpolation method suitability when modelling highly fragmented landform records. The results from our study show that the performance of interpolation methods varies considerably and is dependent upon the data modelled. Method performance is primarily controlled by the inherent geomorphological characteristics (surface morphology and elevation) of the data; however, the attributes of data structure are significant. We further identify the importance of predefined model parameters (e.g., search radius) upon technique performance, increasing the appreciation of these commonly neglected variables in such studies. Ultimately, the overall applicability of the interpolation process is evidenced by the close correlation of surface volume data generated by all interpolation methods. These data would suggest that the interpolation technique can be applied in many forms as a useful tool in the reconstruction of Quaternary landform features.

  16. Quantum description of quaternary nuclear fission

    Microsoft Academic Search

    S. G. Kadmensky; O. V. Smolyansky

    2007-01-01

    The quantum theory of binary and ternary fission is generalized to the case of recently observed quaternary nuclear fission.\\u000a Formulas for the amplitudes of partial fission widths and angular and energy distributions of quaternary fission products\\u000a are derived with allowance for strong channel coupling. The nonevaporation mechanism for formation of light particles is used\\u000a to explain the experimentally observed decrease

  17. Evidence for episodic alluvial fan formation in far western Terra Tyrrhena, Mars

    NASA Astrophysics Data System (ADS)

    Williams, Rebecca M. E.; Deanne Rogers, A.; Chojnacki, Matthew; Boyce, Joseph; Seelos, Kimberly D.; Hardgrove, Craig; Chuang, Frank

    2011-01-01

    A Late Noachian-aged alluvial fan complex within Harris Crater in far western Terra Tyrrhena, Mars, is comprised of two well-defined source regions and associated discrete depositional lobes. Three fan units were recognized based on common morphological characteristics, thermal properties and spectral signatures. Although the entire fan complex has been subjected to extensive erosional degradation, the preserved morphologies record episodic fan formation and indicate the type of flow processes that occurred; the bulk of the fan surface has morphology consistent with fluvial emplacement while one fan unit exhibits a rugged surface texture with boulders consistent with a debris flow. This transition from fluvial to late-stage debris flow(s) suggests a decline in available water and/or change in sediment supply. The thermal inertia values obtained for all three fan surface units (mean values ranged from 318 to 344 J m -2 K -1 s -1/2) are typical for coarse-grained and/or well-indurated materials on Mars, but subtle variations point to important distinctions. Variations in aeolian bedform coverage as well as the density of ridges (inferred inverted channels) and boulders contribute to these subtle fan thermophysical differences and likely reflect changes in the fan depositional mechanisms and variations in post-depositional modification histories. The majority of the alluvial fan surface has a spectral signature that is broadly similar to TES "Surface Type 2" (ST2), with some important exceptions at long wavelengths. However, a unique spectral component was identified in one of the fan units (unit 3), that likely reflects lithological differences from other fan materials. This spectral attribute of unit 3 matched locations within the western catchment providing confirmation of provenance and supporting the contention that sediment supply changed over time as the fan developed. Finally, we applied simple modeling to a well preserved subsection of the fan complex to quantify the developmental history. Using the computed eastern fan volume (32 km 3), significant water, likely from precipitation, was involved in fan construction (>50 km 3) and an extensive period of fan formation occurred over millennia or longer.

  18. A combined hydrochemical - isotopic approach for assessing the regional pollution of an alluvial aquifer in a urbanized environment

    NASA Astrophysics Data System (ADS)

    Gesels, Julie; Orban, Philippe; Popescu, Cristina; Knöller, Kay; Brouyère, Serge

    2014-05-01

    The alluvial aquifer of the Meuse River is contaminated at regional scale in the urbanized and industrialized area of Liège in Belgium with different types of contaminants, in particular inorganics such as sulfate, nitrate and ammonium. The sources of those contaminants are numerous: brownfields, urban waste water, subsurface acid mine drainage from former coal mines, atmospheric deposits related to pollutants emissions in the atmosphere... Sulfate, nitrate and ammonium are both typical pollutants of the aquifer and tracers of the possible pollution sources. According to the European legislation on water, groundwater resources should reach a good quality status before 2015. However, an exemption can be obtained if it may be unfeasible or unreasonably expensive to achieve good status. In this case, groundwater quality objectives and management plans can be adapted to these specific conditions. To obtain such an exemption for the Meuse alluvial aquifer, it is required to demonstrate that the poor qualitative status is caused by acid mine drainage, or by widespread historical atmospheric deposition from industries, and not by recent anthropogenic contamination from the urban and industrial context. In this context, a detailed hydrogeochemical characterization of groundwater has been performed, with the aim of determining the origin of the inorganic contaminations and the main processes contributing to poor groundwater quality. A large hydrochemical sampling campaign was performed, based on 71 selected representative sampling locations, to better characterize the different vectors (end-members) of contamination of the alluvial aquifer and their respective contribution to groundwater contamination in the area. Groundwater samples were collected and analyzed for major and minor compounds and metallic trace elements. The analyses also include stable isotopes in water, sulfate, nitrate, ammonium, boron and strontium. Different hydrogeochemical approaches are combined to obtain a global understanding of the hydrogeochemical processes at regional scale. Hydrochemical interpretations are based on classical diagrams (e.g. Piper), spatial distribution maps, geochemical equations, multivariate statistics and isotopic analyses. With this combined approach, the location of the contaminant sources and most contaminated sectors of the alluvial aquifer together with a better understanding of geochemical processes involved are obtained.

  19. From source to sink in the sediment cascade of the Hei-River Basin: Implications for late Quaternary landscape dynamics in the Gobi Desert, NW China

    NASA Astrophysics Data System (ADS)

    Schimpf, Stefan; Nottebaum, Veit; Diekmann, Bernhard; Hartmann, Kai; Lehmkuhl, Frank; Wünnemann, Bernd; Zhang, Chi

    2014-05-01

    The Hei River Basin with a catchment size of ~130,000 km² is host to one of the largest continental alluvial fans in the world. The basin comprises: (1) its high-elevated river sources in the glacier and the permafrost zone of the Qilian Mountains, (2) the semi-arid foreland of the Hexi Corridor in the middle reaches and (3) the endorheic Ejina Basin (Gaxun Nur Basin) as its recent sink. The river basin is characterized by small subcatchments of hyper-arid mountain ranges of the Gobi-Tienshan and Beishan as well as of smooth and fuzzy water divides of the Hexi-Corridor and the Badain Jaran Sand Sea. Up to 300 m of Quaternary sediments establish the large Ejina Basin, with a size of 28,000 km², as an excellent archive for environmental reconstructions located at the recent intersection of westerly and monsoonal air masses. Three sediment cores (up to 230 m long) provide evidence of sedimentation dynamics over the last 250,000 years, and cover at least two terminations since OIS 6. The sediments have to be regarded as a result of the interplay between tectonic activity and climate dynamics, accompanied by a related eolian and hydrological response of the catchment. Thus, it is crucial to understand and reconstruct the sedimentary processes along the huge sediment cascades, and to identify the most important sediment sources. Here we present a provenance analysis from mineralogical fingerprints of modern sediments that have been deposited along recent pathways from the sources to the Ejina Basin. The methodical approach combines the analysis of clay minerals, bulk mineralogy, and bulk geochemistry. Furthermore, we use heavy mineral data obtained from automated particle-analysis via a computer-controlled scanning electron microscope (CCSEM) and XRD measurements. We analyzed ~200 surface samples from the whole catchment as reference material, as well as the upper 19 m of cored sediments, to gain insight into temporal changes of depositional processes and provenance. Geostatistical analyses of the compositional data reveal a clear discrimination between sediments from the Qilian Shan in the south and from local basin sediments in the north. Moreover the mineralogical fingerprints allow the differentiation of sources from intrusive rocks that are dominant in the Bei Shan mountain sub-catchment, and from greenschist-bearing metamorphic rocks, that are widespread in the Qilian Mountain catchment. Finally, we draw conclusions about the main transport processes and pathways from assumed source regions to the sink (Ejina Basin). The provenance analysis of the sediment core reveals strong changes from local (Bei Shan) to long-distant (Qilian Shan) sources. The Late Pleistocene record reveals frequently changing sediment supply between periodic high mountain runoff and local episodic runoff. We assume that these variations are related to basin internal processes (e.g. fan dynamics, tectonics) and changing environmental conditions that are linked with variations in meltwater runoff and precipitation in the upper reaches of the southern catchment. These conclusions are supported by grain size characteristics that indicate phases of predominant alluvial activity and limnic deposition around the Late Glacial to Holocene transition and enhanced pre-Holocene eolian activity.

  20. Geologic map of Late Cenozoic deposits, Santa Clara County, California

    USGS Publications Warehouse

    Helley, E.J.; Brabb, E.E.

    1971-01-01

    This map is the first of several in the San Francisco Bay region showing the distribution and differentiation of the late Cenozoic alluvial, estuarine, and volcanic deposits. The sedimentary deposits of gravel, sand, silt, and clay were separated into geologic map units on the basis of their post-depositional soil development, texture, and geomorphology. Some of the geologic units are associated with different landforms having recognizable topographic expression such as alluvial fans, natural stream terraces, levees, and interfluvial basins. The relative ages of these unites were established on the basis of intensity of soil profile development, stratigraphic position, and geomorphic expression. The older deposits exhibit strongly developed soil profiles with strong horizon differentiation whereas younger deposits display minimal soil profile development, consisting primarily of organic matter accumulations near the land surface. Geomorphic expression and degree of erosion and dissection were additional criteria used to aid in the age determinations. For example, younger deposits form well-defined morphologic features such as levees, terraces, and broad, undissected alluvial fans along the margin of the bay basin and are related to present drainage patterns. The oldest deposits shown on this map (QTs) are structurally deformed by folding and faulting and therefore exhibit no original depositional geomorphic features. These deposits are not related to present drainage patterns but suggest earlier patterns much different from those existing today.

  1. Quaternary fossil faunas from caves in Takaka Valley and on Takaka Hill, northwest Nelson, South Island, New Zealand

    Microsoft Academic Search

    T. H. Worthy; R. N. Holdaway

    1994-01-01

    The late Quaternary fossil vertebrate faunas from 43 caves in Oligocene limestones and Ordovician marbles in the Takaka Valley and on Takaka Hill, northwest Nelson, New Zealand, are described and discussed. Depositional environments are described and interpreted. Major sites, including Ngarua Cave, Hawkes Cave, Kairuru Cave, Hobsons Tomo, and Irvines Tomo are described in detail. Many sites on Takaka Hill

  2. Paleomagnetism of Quaternary sediments from Lomonosov Ridge and Yermak Plateau: implications for age models in the Arctic Ocean

    E-print Network

    Stoner, Joseph

    for age models in the Arctic Ocean Chuang Xuan a,*, James E.T. Channell a , Leonid Polyak b , Dennis A magnetization (NRM) in Quaternary sediment cores from the Arctic Ocean have been widely used for stratigraphic deposited during the Brunhes Chron in the Arctic Ocean appear to have a partly diagenetic origin. Rock

  3. Quaternary seismic stratigraphy of the North Sea Fan: glacially-fed gravity flow aprons, hemipelagic sediments, and large submarine slides

    Microsoft Academic Search

    Edward L. King; Hans Petter Sejrup; Haflidi Haflidason; Anders Elverhøi; Inge Aarseth

    1996-01-01

    Approximately 1000 km of high resolution sleeve-gun array transects on the North Sea Fan, located at the mouth of the Norwegian Channel, reveal three dominant styles of sedimentation within a thick (> 900 m) Quaternary sediment wedge comprising numerous sequences. These are interpreted as: terrigenous hemipelagic sedimentation, large scale translational slides, and aprons of glaciogenic debris flow deposits contributing to

  4. Architectural analysis and chronology of an Alpine alluvial fan using 3D ground penetrating radar investigation and quantitative outcrop analysis

    NASA Astrophysics Data System (ADS)

    Franke, D.; Hornung, J.; Hinderer, M.

    2012-04-01

    Alluvial fans represent sediment sinks directly at the outlet of the source area in mountain landscapes. They contain multiple information on short-term as well as on long-term changes of sediment supply and of environmental parameters like climate and vegetation. However, most studies on alluvial fans are restricted to selective surface analysis and almost no studies exist which aim to clear the subsurface geometry of an alluvial fan in total. Our study is embedded in the SedyMONT research program within the TOPO-EUROPE framework and aims to clarify the subsurface structure of an alluvial fan by a time-controlled 3D architectural model. The Illgraben fan is located in the Central Alps of Switzerland within the Rhone valley and covers an area of about 6.5 km2. Currently construction works for a highway cuts through the fan exposing its deposits (mainly gravel and diamicton) up to 15 m depth and therefore offers the unique opportunity to link ground penetrating radar (GPR) investigations with quantitative outcrop analysis. GPR measurements on the Illgraben fan have been carried out at two different scales: (i) a fan-wide scale with about 80 km radar sections forming a half spiderweb pattern to identify the fundamental architecture of the fan (using 100 MHz and 40 MHz antenna), and (ii) four orthogonal grids of about 50 m x 100 m for detailed architectural analysis (using a 200 MHz antenna). Penetration depth was up to 15 m for high and low frequency antennas. The radargrams were processed, georeferenced and transferred into a 3D-modeling software (GOCAD®) to map radar facies units. By means of quantitative sedimentological analyses and precisely scaled photo panels we could translate radar facies pattern into sedimentary facies, and interpret reflectors and their properties in terms of sedimentary units. These geobodies can be characterized in terms of volume, shape, geometrical key parameters, their spatial distribution, as well as internal sedimentary structures in order to identify depositional processes. Preliminary results show distinct horizons ('palaeosurfaces') indicating fan-wide depositional starvation and minimized sediment supply. Furthermore, between these horizons the Illgraben fan is built up by multi-storey and multilateral architectural elements of different type and at characteristic scales which can be attributed to specific depositional processes (e.g. debris flows, channel fills, levees). At small-scale a heterogeneous and complex stacking pattern of geobody interfaces was observed, showing a distinct multi-fold hierarchy of mainly concave, convex and horizontal structures. First 14C AMS ages from the central part of the alluvial fan (ca. 10 m depth) indicate high sedimentation rates during the past 2000 years. We found no control of natural spectral gamma-ray radiation by lithofacies units. Hence variations must indicate changes in the source areas and/or climate-controlled weathering conditions in the drainage basin (ca. 9.5 km2).

  5. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  6. Late Quaternary terrestrial vertebrate coprolites from New Zealand

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.

    2014-08-01

    Over the past decade, concerted efforts to find and study Late Quaternary terrestrial vertebrate coprolites in New Zealand have revealed new insights into the diets and ecologies of New Zealand's prehistoric birds. Here, we provide a broader review of the coprolites found in natural (non-archaeological) Late Quaternary deposits from New Zealand. We summarise the morphological diversity of the coprolites, and discuss the taphonomy of the sites in which they are found. Since the 1870s more than 2000 coprolites have been discovered from 30 localities, all restricted to the South Island. The distribution of coprolite localities appears to reflect the presence of geological and climatic factors that enhance the potential for coprolite preservation; coprolites require dry conditions for preservation, and have been found on the ground surface within drafting cave entrances and at shallow (<300 mm) depths beneath rock overhangs with a northerly aspect. We classify the coprolites into eleven morphotypes, each of which may represent a range of different bird and/or reptile species. A review of genetically identified specimens shows that coprolites of different bird species overlap in size and morphology, reinforcing the need for identifications to be based on ancient DNA analysis.

  7. Tectonic Geomorphology and 36Cl geochronology of the Camardi Alluvial Fan Complex, Central Anatolia: Implications for Neotectonic activity of the Central Anatolian Fault Zone (CAFZ)

    NASA Astrophysics Data System (ADS)

    Higgins, M.; Schoenbohm, L. M.; Gosse, J. C.

    2013-12-01

    Situated between an extensional province to the west and younger, compressional forces to the east, the significance of internal deformation within Central Anatolia, and particularly the Central Anatolian Fault Zone, remains poorly understood. The CAFZ, which records approximately 70+/- 10km of Cenozoic sinistral displacement, was initially described as an active, NE trending, 700km long, major intra-plate shear zone. However, the Cenozoic evolution of the CAFZ and its relevance to the modern tectonic setting of Anatolia are the subject of debate, and the kinematics, geometry and activity levels of the CAFZ remain both poorly documented and understood. The aim of this study is to constrain the extrusion related, neotectonic portion of this total displacement using methods unavailable to previous studies of the area: Terrestrial Cosmogenic Nuclide (TCN) geochronology and newly acquired high-resolution satellite imagery. Focusing on a tectonically offset alluvial fan complex, we apply In situ TCN 36Cl exposure dating to produce new geochronologically constrained quaternary slip rates for the southern, Ecemis Segment of the CAFZ. A combination of field observations, high precision GPS based fault scarp profiles and mapping on high-resolution satellite images are used to document offset geomorphic markers including: deflected streams, terrace edges and shutter ridges. These features show sinistral and normal displacement of 60 and 18 m respectively in the older alluvial surface. Determining the ages of this faulted surface, as well as a younger un-deformed alluvial surface using TCN, will yield a minimum quaternary slip-rate. Additionally, morphological characteristics of 25 drainage basins along the Ecemis Fault are determined using Digital Elevation Model (DEM)data. Key geomorphic indices include: hypsometric integral, basin asymmetry and the valley width-to-height ratio (Vf). The results suggest the morphology of these drainage basins is influenced by the recent tectonic history of the region. The drainage morphology of the Ecemis Fault Zone now constrained by 36Cl geochronology is used as a reference to assess the relative activity levels of additional northern strands of the CAFZ, investigated using the same geomorphological approach. These new field observation, geomorphologic and TCN data are considered with published geologic and geodetic slip rates along the CAFZ to better understand the geometry, segmentation and recent kinematics the fault zone, and produce a Neotectonic evolutionary Model for the CAFZ. These results will be integrated into a multidisciplinary research project investigating the regional deformation throughout the Cenozoic, and its implications for the geodynamical evolution of Central Anatolia.

  8. Quaternary soils and dust deposition in southern Nevada and California

    E-print Network

    Ahmad, Sajjad

    of Geological Sciences, San Diego State University, San Diego, California 92182 Jennifer W. Harden U of Geological Sciences, San Diego State University, San Diego, California 92182 Ralph R. Shroba U.S. Geological.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 Leslie D. McFadden Department

  9. Tropical Rain Forest and Climate Dynamics of the Atlantic Lowland, Southern Brazil, during the Late Quaternary

    Microsoft Academic Search

    Hermann Behling; Raquel R. B. Negrelle

    2001-01-01

    Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between

  10. First Quaternary Fossil Record of Caecilians from a Mexican Archaeological Site

    NASA Astrophysics Data System (ADS)

    Wake, Thomas A.; Wake, Marvalee H.; Lesure, Richard G.

    1999-07-01

    A single vertebra from an Early Formative period archaeological site in coastal Chiapas, México, is identified as belonging to the amphibian Dermophis mexicanus (Duméril and Bibron) 1841 (Amphibia: Gymnophiona: Caeciliidae). The vertebra was recovered from deposits dated to approximately 1200-1350 B.C. The specimen represents the first Quaternary fossil record for gymnophiones. Its presence suggests the possible role of the species as a bioturbator. Its recovery is further evidence of the utility of fine-grained archaeological recovery techniques.

  11. Ice Age refugia and Quaternary extinctions: An issue of Quaternary evolutionary palaeoecology

    NASA Astrophysics Data System (ADS)

    Stewart, John R.; Cooper, Alan

    2008-12-01

    Quaternary palaeoecology, as a discipline, involves the analysis of a large range of fossil organisms from the last ca. 2 million years. This paper considers the role that these Quaternary records can take in better understanding the evolution of those organisms. We also discuss the surprisingly low uptake of evolutionary biology in Quaternary palaeoecological studies. This leads us to encourage an advance on both these fronts with a greater degree of collaboration with phylogeographic and ancient DNA researchers. These discussions accompany a summary of a special issue of Quaternary Science Reviews representing the proceedings of the XVII INQUA held in Cairns Australia in 2007. This special issue includes papers on a wide variety of Quaternary evolutionary palaeoecological and population dynamic subjects including extinct Pacific Island palm trees, Beringian beetles, Scandinavian trees, and the effects on human and animal populations of an extraterrestrial impact event in the Late Glacial of North America.

  12. The rio caliente ignimbrite: Analysis of a compound intraplinian ignimbrite from a major late quaternary Mexican eruption

    Microsoft Academic Search

    J. V. Wright

    1981-01-01

    The Rio Caliente ignimbrite is a multi-flow unit orcompound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption\\u000a sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, anintraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded

  13. Anisotropies in Quaternary Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    2008-03-01

    From the high-temperature series expansion of magnetic susceptibilities and the anisotropic Weiss temperatures, the first Steven's parameter, B2^0 , and the magnetic exchange interaction constant Jex^ll of each R^=3 ions magnetic sublattice in quaternary intermetallic compounds, RNi2B2C B(R= Tm, Er, Ho, Dy, and Tb) were obtained. The R =Dy system shows the biggest B2^0 value and the R = Tb system does the smallest one. Also we have measured and analyzed the anisotropic M(H) isotherms as a function of applied magnetic fields for H perpendicular and parallel to the c-axis for each compounds to check out our crystalline electric field (CEF) results obtained from the previous mentioned method by using the anisotropic Weiss temperatures. It turned out that most of the temperature dependence of magnetization curve M (T) for H perpendicular the c-axis at low temperature comes from the temperature dependent population of the singlet ground state in group L among groups L(low-lying levels of ground states), H(high levels of ground states), and M(first excited states).

  14. Quaternary glaciation of Mount Everest

    NASA Astrophysics Data System (ADS)

    Owen, Lewis A.; Robinson, Ruth; Benn, Douglas I.; Finkel, Robert C.; Davis, Nicole K.; Yi, Chaolu; Putkonen, Jaakko; Li, Dewen; Murray, Andrew S.

    2009-07-01

    The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24-27 ka (Jilong moraine), 14-17 ka (Rongbuk moraine), 8-2 ka (Samdupo moraines) and ˜1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8-7.7 ka) and Samdupo II (˜2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.

  15. Surface processes on a mud-dominated Mars analogue alluvial fan, Atacama Desert, northern Chile

    NASA Astrophysics Data System (ADS)

    Hobley, D. E.; Howard, A. D.; Morgan, A. M.; Matsubara, Y.; Moore, J. M.; Parsons, R.; Williams, R. M.; Burr, D. M.; Hayes, A. G.; Dietrich, W.

    2012-12-01

    We characterize surface processes on highly unusual terrestrial alluvial fans, which we interpret as a strong analogue for large fans on Mars. The Mars fans date to post-Noachian periods when the martian climate was dominated by cold, hyperarid conditions. Some of the martian fans are differentially eroded to leave their distributary channels in positive relief. This inversion, along with the lack of boulders visible on most fan surfaces, reveals that the dominant grain size of the fans is fine enough for the overbank deposits to be stripped by wind. Degradation, image resolution, and lack of ground truthing all act to obscure the nature of the past flow processes. The fans in the Pampa de Tamarugal of the Atacama Desert of northern Chile are excellent potential Mars analogues for a number of reasons: 1. Hyperaridity, with ~2 mm/y rainfall over the fans themselves, resulting in 2. very little vegetation, 3. no fluvial erosion on the fans themselves, and 4. wind-driven erosion of the fan surfaces; 5. equivalent fan scale (tens of km); 6. similar fan gradient (low); 7. low channel branching density; 8. runoff fed from adjacent, much steeper terrain receiving more precipitation (~500 km2 drainages receiving 0.1-1 m/y precipitation in the High Andes, crater walls and interpreted orographic effects on Mars). Both the modern channels and the preserved stratigraphy are dominated by debris flow-like sheetflow mud deposits. Channels are leveed by concrete-like mass-supported deposits of granules and sand suspended in a silt and clay matrix, often overtopping the channel margins and forming up to 150 m wide levees and km-length sheet flows. This leveeing strongly constrains the aggrading channel, which is typically dominated by better sorted and imbricated fluvial deposits. We infer that the wetter tail of mudlfows sorts the deposits, keeping the central channel unblocked by mud. Relatively few channels are active at any time, but aggradation triggers occasional avulsions. The older, inactive parts of the Atacama fan surface develop partially inverted topography, leaving paleochannels in positive relief. Lack of direct rainfall onto the fan itself means the fan surface is not locally fluvially incised, and the dominant degradation process is aeolian stripping of overbank deposits. Low granular ripples with ~1 m spacing are common on the low surfaces, presumably moving by reptation, and part of a partially mobile desert pavement derived primarily from the channel deposits and channel-marginal overbank sediments. Both development of a coarse grain lag on paleochannel ridge crests and cementation of ridge flanks by halite produce the erodability contrast necessary for inversion.

  16. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  17. Summary of Quaternary Stratigraphy and history, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Fulton, R. J.; Karrow, P. F.; LaSalle, P.; Grant, D. R.

    Deposits of three Wisconsinan substages, Sangamonian Stage, and older Quaternary stratigraphic units are recognized in Eastern Canada. The age assignment of these units is based on radiocarbon dating and correlation of events. Quaternary deposits older than Sangamonian are recognized locally in Eastern Canada. In southern Ontario glacial deposits directly underlie Sangamonian sediments and are referred to as Illinoian in age. In other areas the ages of older sediments are largely unknown. Offshore core stratigraphy suggests that a major glaciation took place about 436 ka and that the Illinoian (oxygen isotope stage 6) was also a time of extensive glaciation. In this report Sangamonian is used as the name for the chronostratigraphic stage that includes all of deep-sea oxygen isotope stage 5 and consequently, on a regional basis, it includes warm interglacial deposits, glacial deposits and cool interglacial deposits. In southern Ontario the warm interglacial deposits are represented by the Don Formation, the stadial deposits by the Scarborough Formation and the cool interglacial deposits by the Pottery Road Formation. Warm interglacial deposits have not been recognized in Quebec (unless they are part of the pre-Johnville Sediments); the Bécancour Till is included as glacial Sangamonian sediments, and the St. Pierre Sediments are recognized as cool interglacial sediments. The Early Wisconsinan appears to have been the time of maximum Wisconsinan glaciation in Eastern Canada with ice moving south of the International Boundary and well out onto the continental shelf. The Middle Wisconsinan was primarily a nonglacial period in southern Ontario and a glacial stade elsewhere in Eastern Canada. In southern Ontario the Middle Wisconsinan record has been subdivided into two interstades (Port Talbot and Plum Point), separated by a stade (Cherrytree). The Port Talbot Interstade began before the limit of radiocarbon dating (before 48 ka) and ended about 40 ka; glacial or near glacial conditions of the Cherrytree Stage lasted from about 40 to 35 ka ago, and the Plum Point Interstade was from about 35 to 23 ka ago. Central St. Lawrence Lowland was occupied by ice throughout the Middle Wisconsinan, but southeastern Quebec and the Montreal area were briefly deglaciated. Scattered evidence in Atlantic Canada suggests local deglaciation of coastal areas during Middle Wisconsinan but extensive ice remained on the continental shelf and ice from centres located on the shelf flowed onto land in at least two areas. Glacial conditions predominated throughout Eastern Canada during the Late Wisconsinan. At the Late Wisconsinan maximum, through-moving ice deposited the Catfish Creek Drift in southern Ontario but ice lobes, which developed in the basins of the Great Lakes after 15.5 ka, controlled ice flow during a period of ice margin oscillation and retreat. A calving bay developed in lower St. Lawrence valley, after the Late Wisconsinan maximum, causing a reversal of flow on the south shore of the St. Lawrence and replacing ice in the valley with the Champlain Sea about 12 ka. Late Wisconsinan glaciers were largely limited to land areas in Atlantic Canada. Local ice caps dominated with complicated patterns of flow and retreat developing as centres of accumulation shifted and competing ice centres achieved dominance. The period of Late Wisconsinan retreat in Atlantic Canada appears to have lasted from about 14 to 10 ka.

  18. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Hobley, D. E. J.; Moore, J. M.; Dietrich, W. E.; Williams, R. M. E.; Burr, D. M.; Grant, J. A.; Wilson, S. A.; Matsubara, Y.

    2014-02-01

    The deflated surfaces of the alluvial fans in Saheki crater reveal the most detailed record of fan stratigraphy and evolution found, to date, on Mars. During deposition of at least the uppermost 100 m of fan deposits, discharges from the source basin consisted of channelized flows transporting sediment (which we infer to be primarily sand- and gravel-sized) as bedload coupled with extensive overbank mud-rich flows depositing planar beds of sand-sized or finer sediment. Flow events are inferred to have been of modest magnitude (probably less than ?60 m3/s), of short duration, and probably occupied only a few distributaries during any individual flow event. Occasional channel avulsions resulted in the distribution of sediment across the entire fan. A comparison with fine-grained alluvial fans in Chile’s Atacama Desert provides insights into the processes responsible for constructing the Saheki crater fans: sediment is deposited by channelized flows (transporting sand through boulder-sized material) and overbank mudflows (sand size and finer) and wind erosion leaves channels expressed in inverted topographic relief. The most likely source of water was snowmelt released after annual or epochal accumulation of snow in the headwater source basin on the interior crater rim during the Hesperian to Amazonian periods. We infer the Saheki fans to have been constructed by many hundreds of separate flow events, and accumulation of the necessary snow and release of meltwater may have required favorable orbital configurations or transient global warming.

  19. Effects of Climate-Induced Hydrologic Modifications on Biogeochemical Cycling of Trace Metals in Alluvial and Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Lee, M.; Natter, M. G.; Keevan, J. P.; Guerra, K.; Saunders, J.; Uddin, A.; Humayun, M.; Wang, Y.; Keimowitz, A. R.

    2013-12-01

    Assessing the impacts of climate changes on water quality requires an understanding of the biogeochemical cycling of trace metals. Evidence from research on alluvial aquifers and coastal watersheds shows direct impacts of climate change on the fate and transformation of trace metals in natural environments. This study employs field data and numerical modeling techniques to test assumptions about the effects of climate change on natural arsenic contamination of groundwater in alluvial aquifers and mercury bioaccumulation in coastal saltmarshes. The results show that the rises of sea level and river base during the warm Holocene period has led to an overall increase in groundwater arsenic concentration due to the development of reducing geochemical conditions and sluggish groundwater movement. Modeling results indicate that the intrusion of seawater occurring during high sea-level stand may lead to desorption of arsenic from the surfaces of hydrous oxides due to pH effects and ionic competition for mineral sorbing sites. Our results also show that contamination and bioaccumulation of Hg and other metals in estuarine and coastal ecosystems may be influenced by climate-induced hydrologic modifications (atmospheric deposition, riverine input, salinity level, etc.). An integrated research framework consisting of numerical modeling, long-term monitoring, laboratory experiments will be necessary for building a comprehensive understanding of the complex response of biogeochemical cycling of trace metals to climate change.