Science.gov

Sample records for quaternary alluvial deposits

  1. Evolution of a coastal alluvial deposit in response to the last Quaternary marine transgression, Baha Blanca estuary, Argentina

    NASA Astrophysics Data System (ADS)

    Giagante, Daro Andrs; Aliotta, Salvador; Ginsberg, Silvia Susana; Vecchi, Laura Gabriela; Spagnuolo, Jorge Osvaldo

    2011-05-01

    The purpose of this research is to analyze the seismostratigraphic and paleoenvironmental features of an ancient fluvial deposit characterized by the presence of paleochannels and sedimentary structures in Baha Blanca estuary, Argentina. To this end, high-resolution seismic methods were used. Paleochannels exhibiting v-shaped cuts were found at different topographic positions at the base of this deposit. It was observed that channel silting is indicative of the relative change of river base level and the consequent migration of fluvial tributaries. This alluvial deposit is composed of low compacted fine sand and its middle-upper facies is characterized by the presence of horizontal and discontinuous wavy reflectors. The upper boundary of this deposit is an erosive discontinuity resulting from Holocene sea-level rise during which the mouth of old fluvial courses underwent changes. The deposit was subsequently buried by sandy and clayey silt sediments. The paleodrainage at subbottom indicates that this deposit is associated with an ancient river mouth. Based on the seismostratigraphic and lithological characteristics and the paleochannel structures found in the study area, it can be concluded that the deposit analyzed is an alluvial sequence formed in the period from the Middle-Late Pleistocene to Holocene marine transgression.

  2. In situ crystal chemical study of solid diamond inclusions from Quaternary alluvial deposit in the Siberian craton

    NASA Astrophysics Data System (ADS)

    Dera, P. K.; Manghnani, M. H.; Hushur, A.; Sobolev, N. V.; Logvinova, A. M.; Newville, M.; Lanzirotti, A.

    2013-12-01

    Kimberlites belong to rare rock type available only within the Earth's cratonic areas and have been a subject of detailed studies because of the great depth of their origin in the mantle. Kimberlitic diamonds often contain pristine inclusions derived from significant depths with different histories of their origins. Many of kimberlitic diamonds were formed in ultramafic (peridotitic) and mafic (eclogitic) environments of the upper mantle. Thus far only a handful of comprehensive in situ studies including single-crystal X-ray diffraction characterization of pristine diamond solid inclusions have been reported (e.g. Kunz et al. 2001, Nestola et al. 2011). In this study five single-crystal solid inclusions from diamonds found in the Quaternary alluvial deposit in NW of the Siberian craton have been investigated using a combination of in situ single-crystal X-ray diffraction, Raman spectroscopy, synchrotron X-ray microfluorescence and X-ray Absorption Near Edge Spectroscopy (XANES). The grains were identified to be a suite of major upper mantle minerals including olivine, enstatite orthopyroxene (opx), C2/c omphacite clinopyroxene (cpx) and majoritic garnet (two grains), indicating eclogitic origin. All five inclusions are chemically homogeneous, do not show compositional zoning, and exhibit very similar major element chemistry, with significant amounts of Mn2+, Ni2+ and Cr3+ incorporated into the crystal structures, suggesting common geologic origin. All samples were studied in situ, while still embedded in the diamond crystals. High quality single-crystal X-ray diffraction data was collected at the Advanced Photon Source, Argonne National Laboratory to reveal details of the crystal structures and provide crystal chemical information. Some of the structural characteristics of the solid inclusions were found to be fairly uncommon, e.g. the orthoenstatite exhibits an unusually high Ca2+ content (Carlson et al. 1988), and omphacite occurs as the less common C2/c polymorph (Banno, 1970), both of which are considered signatures of eclogitic high-temperature facies. Fe Ka-edge XANES was used to investigate the oxidation state of iron in the solid inclusions. All of the inclusions show predominantly Fe2+, indicating reducing conditions of formation. The combined results of our spectroscopic and diffraction experiments will be interpreted in the context of the conditions and mechanism of formation (syngenesis vs. protogenesis) and possible retrograde transformation the inclusions may have experienced when transported to the surface. References Carlson, W.D. J.S. Swinnea, D.E. Miser (1988) 'Stability of orthoenstatite at high temperature and low pressure' Amer. Mineral. 73: 1255-1263. Banno, S. (1970) 'Classification of eclogites in terms of physical condition of their origin' Phys. Earth. Planet. Interiors 3: 405-421. Kunz, M., P. Gillet, et al. (2002). "Combined in situ X-ray diffraction and Raman spectroscopy on majoritic garnet inclusions in diamonds." Earth and Planet. Sci. Lett. 198: 485-493. Nestola, F., P. Nimis, et al. (2011). "First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth's mantle." Earth and Planet. Sci. Lett. 305: 249-255.

  3. Modern and ancient alluvial fan deposits

    SciTech Connect

    Nilsen, T.H.

    1985-01-01

    Understanding the structure and depositional processes of alluvial fans (river outwash deposits) has a special interest for those involved with the exploration of petroleum and many minerals. This collection of facsimile reprints of significant and classical research papers sheds new light on the subject. This reference covers the stratigraphy, sedimentology, and depositional processes of modern and ancient alluvial fans. Geographical areas considered include Arctic Canada, the American Southwest, Australia, Wyoming, Norway, and Spain. It includes a state-of-the-art introduction by the editor along with commentaries on all the papers included, a master author citation index and a subject index, and a chronological listing of early studies of alluvial fans.

  4. Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, southeastern Utah

    USGS Publications Warehouse

    Reheis, M.C.; Reynolds, R.L.; Goldstein, H.; Roberts, H.M.; Yount, J.C.; Axford, Y.; Cummings, L.S.; Shearin, N.

    2005-01-01

    In upland areas of Canyonlands National Park, Utah, thin deposits and paleosols show late Quaternary episodes of eolian sedimentation, pedogenesis, and climate change. Interpretation of the stratigraphy and optically stimulated luminescence ages of eolian and nearby alluvial deposits, their pollen, and intercalated paleosols yields the following history: (1) Eolian deposition at ca. 46 ka, followed by several episodes of alluviation from some time before ca. 40 ka until after 16 ka (calibrated). (2) Eolian deposition from ca. 17 ka to 12 ka, interrupted by periods of pedogenesis, coinciding with late Pleistocene alluviation as local climate became warmer and wetter. (3) A wetter period from 12 to 8.5 ka corresponding to the peak of summer monsoon influence, during which soils formed relatively quickly by infiltration of eolian silt and clay, and trees and grasses were more abundant. (4) A drier period between ca. 8.5 and 6 ka during which sheetwash deposits accumulated and more desertlike vegetation was dominant; some dunes were reactivated at ca. 8 ka. (5) Episodic eolian and fluvial deposition during a wetter, cooler period that began at ca. 6 ka and ended by ca. 3-2 ka, followed by a shift to drier modern conditions; localized mobilization of dune sand has persisted to the present. These interpretations are similar to those of studies at the Chaco dune field, New Mexico, and the Tusayan dune field, Arizona, and are consistent with paleoclimate interpretations of pollen and packrat middens in the region. A period of rapid deposition and infiltration of eolian dust derived from distant igneous source terranes occurred between ca. 12 and 8 ka. Before ca. 17 ka, and apparently back to at least 45 ka, paleosols contain little or no such infiltrated dust. After ca. 8 ka, either the supply of dust was reduced or the more arid climate inhibited translocation of dust into the soils. ?? 2005 Geological Society of America.

  5. Quaternary climate change and hillslope processes: What can we learn from alluvial fans?

    NASA Astrophysics Data System (ADS)

    Kenworthy, M.; Pierce, J. L.; Rittenour, T. M.; Sharp, W. D.; Pierce, K. L.

    2009-12-01

    Examining the timing of sediment deposition on alluvial fans may clarify relationships among Quaternary changes in climate, sediment production, and sediment removal from uplifted mountain blocks. Deposition on fans indicates that (1) ample sediment is available for transport within contributing basins and (2) that stream power is adequate to move that sediment to the fan environment. Dating alluvial fan deposition clarifies relationships among climatically controlled factors (e.g. precipitation, vegetation, temperature), and hydrologic and geomorphic responses (e.g. weathering rates, frost action, glaciation, stream power) that influence landscape evolution. Numerous 2-5 km radius, low gradient alluvial fans head along the western side of the Lost River Range (LRR) in east-central Idaho. Timing of deposition on these fans is based on optically stimulated luminescence dating (OSL). In addition we described general deposit characteristics and mapped different aged fan surfaces to explore how fan deposition has changed over time. OSL results indicate that evacuation of sediment from contributing basins and deposition on fans was enhanced ~10-14 ka and ~40-50 ka. The younger episode is more robust in this record, with deposition recorded on all five studied fans despite differences in Quaternary glacial extent in contributing basins that varied from ~0-80%. Glacial chronologies from the nearby Sawtooth Range (Thackray, 2008) and Yellowstone-Teton region (Licciardi and Pierce, 2008; Gosse et al, 1995) suggest that this time period may have coincided with and followed the last glacial maxima in the northern Rocky Mountains. Deposition during the ~40-50 ka episode is recorded on the two largest studied fans, both with <10% glaciation in basin areas, as well as a ~40 m terrace of the East Fork Big Lost River that drains the Pioneer Range west of the LRR. A ~60-65 ka moraine in the northern LRR dated by U-series on pedogenic carbonate, an extensive glacio-fluvial terrace in the Wind River Basin (~200 km east of the LRR) dated to >55 8.6 ka (Sharp et al, 2003), and substantial loess accumulation near the Teton Range at ~46-54 ka (Pierce et al, personal comm.) suggest that this episode of fan deposition was late- to post-glacial with respect to the MIS 4 glaciation and associated climatic conditions. Deposition on alluvial fans generally results from (1) increases in the sediment supply and/or (2) changes in stream power that alter the relative balance between sediment supply and stream power. In this region, sediment supply could increase following glacial conditions if reduced effective moisture decreases hillslope vegetation cover, freeing accumulated regolith for transport to fans, or greater temperature fluctuations increase the effectiveness of frost weathering. Stream power following a glacial maxima may have decreased in response to effectively drier climate, but may still have been adequate to transport sediment to fans. Its also possible that stream power increased following glacial maxima with greater frequency of stochastic events such as rain on snow.

  6. Alluvial records of late Quaternary environmental change along the eastern Andes

    NASA Astrophysics Data System (ADS)

    May, J.; Preusser, F.; Veit, H.

    2010-12-01

    The piedmont in eastern Bolivia and northwestern Argentina is built from a series of coalescent alluvial fans and constitutes the transition between the Andean mountains and their foreland. As these alluvial fans receive their sediments from small local catchments in the Subandean ranges, past geomorphic and environmental changes are potentially stored in their alluvial stratigraphic record. The paleosol-sediment-sequences contained in these fans generally exhibit marked shifts between morphological activity with sedimentation and/or erosion, and periods of soil formation. Here, we present data from two different locations in eastern Bolivia and northwestern Argentina, and interpret them with regard to late Quaternary geomorphic, environmental and paleoclimatic changes in central South America. New chronological data (14C, OSL) from the laterally extensive exposures at Cabezas (eastern Bolivia) are combined with detailed sedimentological documentation of these sequences, and indicate important changes in sediment supply and transport capacities at least since Marine Isotope Stage (MIS) 3. In northwestern Argentina at Riacho Seco, piedmont stratigraphy is exposed in a profoundly incised stream valley, providing insights into downstream variations of paleosols, sediments and alluvial fan architecture. Interpretation of these data is complemented by new isotopic data from soil organic matter which contributes to an improved understanding of regional late Quaternary paleoenvironments. The comparison of both sites shows surprising similarities over the last 20-30 ka, but points to substantial differences during MIS 3, providing hints to potential changes in larger-scale circulation patterns and moisture sources. In summary, alluvial records contain valuable and largely unexplored regional archives for future application of a variety of methods. This way the investigation of the piedmont along the eastern Andes in Bolivia and Argentina can provide further data necessary for an improved understanding of the complex interplay between geological, geomorphic and environmental controls on landscape evolution over different late Quaternary timescales.

  7. Late Quaternary Alluvial Fans and Beach Ridge Systems in Jakes Valley, Central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Garcia, A. F.; Stokes, M.; Benitez, L.

    2002-12-01

    Alluvial fan and lake beach ridge landforms provide archives of the geomorphic response to Late Quaternary climate change within the Great Basin region. This study presents the first detailed results of landform mapping and soil characterization from Jakes Valley, a high altitude (1920m) and internally drained basin, located within a previously unstudied part of White Pine County, East-Central Nevada. Mountain front alluvial fans sourced from the White Pine and Egan Ranges (west-east basin margins) are characterized by four morphostratigraphic units: Qf0 (oldest) through to Qf3 (youngest). Analysis of the soil properties of these stratigraphic units reveals two landform-soil assemblages: 1) Qf0-1, characterized by well-developed calcic soils (stages III+ to IV) and 2) Qf2-3, characterized by less well-developed calcic soils (stages I to II). Beach ridge systems formed during pluvial lake highstands are extensively developed into the mid and distal parts of alluvial fans. Integrated field and aerial photograph mapping has revealed a sequence of between 4-6 ridges with linear and / or highly curved / arcuate morphologies. Beach ridge soil properties are characterized by less well-developed calcic soils (stages I+ to II) that are similar to soils formed in Qf2 alluvial fan units. The interaction between the alluvial fan and beach ridge landforms can be utilized to explore the geomorphic response in relation to climatic amelioration during the Late Pleistocene-Holocene transition. Of particular interest is the common occurrence of the curved / arcuate beach ridges which may correspond to a period of fan progradation coincident with base-level lowering.

  8. A Quaternary volcanic ash deposit in western Missouri

    SciTech Connect

    Emerson, J.W. )

    1993-03-01

    Quaternary volcanic ash has been found in more than fifty localities in the midwest. The most widespread deposits originated from the Long Valley caldera, California; the Jemez calderas, New Mexico; or the Yellowstone caldera, Wyoming. Fission track dating has grouped the deposits into six separate ash falls ranging from 700,000--2,000,000 years old. A small volcanic ash deposit in western Missouri may be correlative with those found along the Kansas and Marais de Cygnes rivers in eastern Kansas. The ash deposit is in Northwest Bates County Missouri, exposed along a tributary to Miami Creek, four miles east of the Kansas state line. The ash layer is interbedded with alluvial terrace deposits and ranges from fifteen to thirty inches in thickness. It is inferred to have been deposited in a pond or oxbow lake. The color is white with a pale yellow tinge (Munsell 10YR 8/2). Shard examination shows that about 70% are flat bubble-wall types, about 20% have straight ridges, less than 10% are bubble-junction, and only a trace are vesicular. The closest known volcanic ash occurrence is an ash outcropping in a Kansas river terrace near DeSoto, KS, forty-five miles to the northwest. The DeSoto deposit has been identified as the .62 m.y. Lava Creek B ash from the Yellowstone caldera. A preliminary correlation of the Missouri ash with the DeSoto ash is based on similar shard morphology and color.

  9. Geochemical proxies for weathering and provenance of Late Quaternary alluvial core-sediments from NW India

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Amir, Mohd; Paul, Debajyoti; Sinha, Rajiv

    2014-05-01

    The Indo-Gangetic alluvial plains are formed by sediment deposition in the foreland basin as a result of upliftment and subsequent erosion of the Himalaya. Earlier study (Sinha et al., 2013) has shown the subsurface existence of buried channel bodies beneath the Ghaggar plains in NW Indo-Gangetic plains. The mapped sand bodies follow trace of a paleochannel that begins at the mountain front near the exit of river Sutlej and extends to the northern margin of the Thar desert, suggesting existence of a large Himalayan-sourced river (Singh et al., 2011) in the past. The buried sand bodies hold potential records of erosion history over the Himalaya that could be used to assess climate-controlled erosion over the Himalaya. Geochemical variations in the sediments from two (~45m long) cores drilled below the trace of the paleochannel (upstream) near Sirhind, Punjab and two cores (GS-10 & 11) from downstream near Kalibangan, Rajasthan, are used in this study to understand the erosional pattern over the Himalaya during Late Quaternary. Down-core variations in chemical index of alteration (CIA=51-79) along with K2O/Na2O and Al2O3/(CaO+Na2O) ratios are consistent with the trends of SW summer monsoonal fluctuations during the Glacial-Interglacial periods indicating climate controlled weathering at the source; higher values during Interglacial and lower during Glacial periods with maximum value during the Holocene. Sr-Nd isotopic compositions of drill-cores sediments, 87Sr/86Sr (0.7314-0.7946), ɛNd (-23.2 to -14) are within the range of silicate rocks from the Higher and Lesser Himalaya. Significant down-core variations in 87Sr/86Sr and ɛNd are observed that reflect the mixing of varying proportions of the Higher and Lesser Himalayan sediments, the two dominant sources to the core sites. Sediments deposited during MIS-2 and MIS-4, cold and dry Glacial periods, show high 87Sr/86Sr and low ɛNd suggesting an enhanced contribution from the Lesser Himalayan rocks that are characterized by more radiogenic Sr and less radiogenic Nd. Whereas those deposited during MIS-1 and MIS-3, warm and humid Interglacial periods, are distinctly less radiogenic in Sr and more radiogenic in Nd (Higher Himalayan signature) suggesting increased contribution from the Higher Himalayan rocks. These variations can be attributed to decreased contribution from the Higher Himalaya during Glacial periods due to increased glacial cover over the Higher Himalaya which in turn are caused by lower solar insolation and vice versa. The findings of this study, consistent with those from the Ganga-Yamuna interfluve sediments (Rahaman et al., 2009), indicate a dominant control of climate on sediment provenance and source weathering. References: Sinha et al. (2013), Quaternary International, 308-309, 66-75. Singh et al. (2011), AGU Fall Meeting 5-9 December 2011. Rahaman et al. (2009), Geology, 37, 559-526.

  10. Distinguishing allogenic from autogenic causes of bed elevation change in late Quaternary alluvial stratigraphic records

    NASA Astrophysics Data System (ADS)

    Daniels, J. Michael

    2008-10-01

    Allogenic and autogenic mechanisms both cause changes in the bed elevation of rivers and thereby influence the characteristics of alluvial stratigraphic records (ASRs). Allogenic forcing mechanisms can be grouped into five categories whose relative influence varies with timescale: climate, tectonism, base level, land use/land cover and direct human modification of channels. Late Quaternary ASRs are influenced by the greatest range of allogenic forcing variables with climate among the most important. Autogenic mechanisms of bed elevation change are ubiquitous throughout fluvial systems and are always time-transgressive. Autogenic bed elevation change propagates through drainage networks at predictable rates and results in a time-space envelope within which its effects are capable of operating. ASRs that can be correlated over geographical areas large enough and time intervals small enough to exist outside this envelope most likely result from allogenic forcing. This formulation represents a quantitative and geographic set of threshold criteria for distinguishing between autogenic and allogenic mechanisms. Over late Quaternary timescales (10 2 to 10 5 years) in tectonically stable regions climate change is the dominant allogenic mechanism and, therefore, the first-order control on the morphology, sedimentology, pedologic characteristics and chronology of alluvial stratigraphic records that meet or exceed the threshold criteria for demonstrating allogenic causality.

  11. Characterizing avulsion stratigraphy in ancient alluvial deposits

    NASA Astrophysics Data System (ADS)

    Jones, H. L.; Hajek, E. A.

    2007-11-01

    Guidelines for identifying ancient avulsion deposits were set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268], building on the study by Smith et al. [Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36, 1-23] of the modern Saskatchewan River system (Cumberland Marshes, central Canada), and serve to characterize avulsion depositional sequences in the ancient Willwood and Fort Union Formations (Paleogene, Bighorn Basin, NW Wyoming, USA). We recognize, however, that the model is not universally applicable to avulsion-dominated successions, specifically systems which lack defining "heterolithic avulsion deposits", set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268]. Observations in several fluvial intervals suggest that the avulsion stratigraphy outlined by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268] represents one category of avulsion stratigraphy found in the rock record, but does not capture the nature of avulsion deposits everywhere. Based on observations (using measured sections, outcrop photo-panels, and aerial photographs) in the Willwood Formation (Eocene, Wyoming) and Ferris Formation (Cretaceous/Paleogene, Wyoming), we present two end-member categories of avulsion stratigraphy in ancient deposits; stratigraphically abrupt, when a main paleochannel is stratigraphically juxtaposed directly atop floodplain/overbank deposits, and stratigraphically transitional, where crevasse splays and other non-floodplain/-overbank deposits stratigraphically precede a main paleochannel. This characterization provides a broader, more inclusive way to recognize and describe avulsion stratigraphy in ancient deposits and may be an important factor to consider when modeling connectivity in fluvial reservoirs. Furthermore, our observations show that one type of avulsion channel stratigraphy may prevail over another within an ancient basin, suggesting that system-wide factors such as splay-proneness or avulsion style (i.e. aggradational, incisional, etc.; [Slingerland, R., Smith, N.D., 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences 32, 257-285]) may be primary controls on the type of avulsion stratigraphy deposited and preserved in ancient basin-fills.

  12. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  13. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  14. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill-Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.

  15. Mapping Quaternary Alluvial Fans in the Southwestern United States based on Multi-Parameter Surface Roughness of LiDAR Topographic Data

    NASA Astrophysics Data System (ADS)

    Regmi, N. R.; McDonald, E.; Bacon, S. N.

    2012-12-01

    Quaternary alluvial fans, common landforms in hyper- to semi-arid regions, have diverse surface morphology, desert varnish accumulation, clasts rubification, desert pavement formation, soil development, and soil stratigraphy. Their age and surface topographic expression vary greatly within a single fan between adjacent fans. Numerous studies have demonstrated that the surface expression and morphometry of alluvial fans can be used as an indicator of their relative age of deposition, but only recently has there been an effort to utilize high resolution topographic data to differentiate alluvial fans with automated and quantifiable routines We developed a quantitative model for mapping the relative age of alluvial fan surfaces based on a multi-parameter surface roughness computed from 1-meter resolution LiDAR topographic data. Roughness is defined as a function of scale of observation and the integration of slope, curvature (tangential), and aspect topographic parameters. Alluvial fan roughness values were computed across multiple observation scales (3m3m to 150m150m moving observation windows) based on the standard deviation (STD) of slope, curvature, and aspect. Plots of roughness value versus size of observation scale suggest that the STD of each of the three topographic parameters at 7m7m observation window best identified the signature of surface roughness elements. Roughness maps derived from the slope, curvature, and aspect at this scale were integrated using fuzzy logic operators (fuzzy OR and fuzzy gamma). The integrated roughness map was then classified into five relative morpho-stratigraphic surface age categories (active wash to ~400 ka) and statistically compared with a similar five-fold surface age map of alluvial fans developed using traditional field surveys and aerial photo interpretation. The model correctly predicted the distribution and relative surface age of ~61% of the observed alluvial fan map. The results of the multi-parameter model imply that the first order roughness elements of alluvial fan surfaces have the average wavelength of 7m, and the roughness contributed by these elements decreases with the age of alluvial fans.

  16. Pleistocene calcareous aeolian-alluvial deposition in a steep relief karstic coastal belt (island of Hvar, eastern Adriatic, Croatia)

    NASA Astrophysics Data System (ADS)

    Pavelić, Davor; Kovačić, Marijan; Vlahović, Igor; Wacha, Lara

    2011-07-01

    Pleistocene aeolian and alluvial deposits occur on the island of Hvar, belonging to the eastern Adriatic karstic coastal belt along the north-eastern Mediterranean margin. The depositional mechanism of the aeolian, alluvial and talus sediments are interpreted based on facies analysis and mineralogical composition. Aeolian deposits are represented by cross-bedded, cross-laminated, and sub-horizontally laminated fine- to medium-grained calcareous sands. The cross-bedded units form tabular sets stacked into cosets. Sets and cosets are separated by distinct low-angle bounding surfaces which mostly dip towards the east interpreted as the upwind direction. Cross-laminated units form isolated sets within the cross-bedded and sub-horizontally laminated units. Cross-bedded and cross-laminated units represent dunes dominated by grain fall and wind ripple deposition, respectively. Dunes produced by sand flow also occur, but are less common. The cross-bedding is truncated by reactivation surfaces. Transverse dunes and some small dome-shaped dunes were also present. Sub-horizontally laminated sandy units represent aeolian sand sheets developed by wind ripple migration in the interdune area. A few wind-rippled dune apron deposits also occur. Trace fossils are locally very abundant within the aeolian deposits, mostly produced by plants. Soft-sediment deformation, such as contorted cross-bedding and pocket structures occur scattered, and rare reddish horizons show pedogenesis. Unlikely most Quaternary coastal aeolian sands, these sands do not include marine bioclasts in composition. The sands are composed of extraclasts dominated by limestone with subordinate chert, quartz-sericite schist, quartzite and quartz. Amphiboles, pyroxene and epidote are the most abundant translucent heavy minerals. The mineralogical composition and palaeoflow directions indicate that the Dinarides were the main provenance of the sand transported by primary easterly and northerly continental winds causing migration of dunes towards the palaeo-Adriatic Sea. Alluvial deposits are intercalated with the aeolian sands. They are composed of breccia derived from a nearby steep hill-ridge, and by resedimented aeolian sand deposited by traction currents during flash floods. Talus fragments reached the aeolian sands only sporadically. Climate strongly affected aeolian, alluvial and talus depositions. During arid conditions dunes migrated forming a dune field, whilst more humid climate triggered heavy rains and generated erosion of aeolian deposits, alluvial sedimentation, colonisation of plants and pedogenesis. Deposition was in a topographic basin, and was controlled by capacity of source area and wind. However, local orography characterised by developed and steep karstic relief strongly affected wind directions, and in that way had specific controls on the dune field evolution. Dominating winds caused seaward dune migration differing from most Mediterranean Quaternary coastal aeolian dune localities characterised by landward migration.

  17. Late quaternary alluvial stratigraphy of a low-order tributary in central Texas, USA and its response to climate and sediment supply

    NASA Astrophysics Data System (ADS)

    Nordt, Lee

    2004-11-01

    This paper presents the first comprehensive late Quaternary alluvial stratigraphic study of a low-order tributary in central Texas, using Cowhouse Creek as a case study. The late Pleistocene Jackson (JA) alluvium forms the elevated T2 terrace. The entrenched Holocene valley is filled with the buried Georgetown (GT) alluvium (approximately 11,000 to 8000 14C yr B.P.) and associated Royalty paleosol, and the surficially exposed Fort Hood (FH) alluvium (approximately 7000 to 5000 14C yr B.P.) and West Range (WR) alluvium (approximately 4200 to 600 14C yr B.P.) forming the broad T1 terrace. The Ford (FO) alluvium (<600 14C yr B.P.) forms the modern T0 floodplain entrenched into T1. Conditioned by cooler and wetter climates, Cowhouse Creek was characterized by relatively high base flow and low sediment supply during deposition of the JA and GT alluvium. Appreciable upland soil erosion ensued during the middle Holocene in response to warmer climate conditions, resulting in widespread valley filling by the FH alluvium. Deposition of the late Holocene WR and F0 alluvium was characterized by diminished sediment storage during relatively stable climate conditions. The temporal alluvial stratigraphic framework of the bedrock-confined Cowhouse Creek valley is out of phase with the alluvial sequence in the larger Brazos River valley.

  18. Quaternary allostratigraphy of surficial deposit map units at Yucca Mountain, Nevada: A progress report

    SciTech Connect

    Lundstrom, S.C. ); Wesling, J.R.; Swan, F.H. ); Taylor, E.M.; Whitney, J.W. )

    1993-04-01

    Surficial geologic mapping at Yucca Mountain, Nevada, is relevant to site characterization studies of paleoclimate, tectonics, erosion, flood hazards, and water infiltration. Alluvial, colluvial, and eolian allostratigraphic map units are defined on the basis of age-related surface characteristics and soil development, as well as lithology and sedimentology indicative of provenance and depositional mode. In gravelly alluvial units, which include interbedded debris flows, the authors observe a useful qualitative correlation between surface and soil properties. Map units of estimated middle Pleistocene age typically have a well-developed, varnished desert pavement, and minimal erosional and preserved depositional microrelief, associated with a soil with a reddened Bt horizon and stage 3 carbonate and silica morphology. Older units have greater erosional relief, an eroded argillic horizon and stage 4 carbonate morphology, whereas younger units have greater preservation of depositional morphology, but lack well-developed pavements, rock varnish, and Bt and Kqm soil horizons. Trench and gully-wall exposures show that alluvial, colluvial and eolian dominated surface units are underlain by multiple buried soils separating sedimentologically similar deposits; this stratigraphy increases the potential for understanding the long-term Quaternary paleoenvironmental history of Yucca Mountain. Age estimates for allostratigraphic units, presently based on uranium-trend dating and regional correlation using soil development, will be further constrained by ongoing dating studies that include tephra identification, uranium-series disequilibrium, and thermoluminescence methods.

  19. Hydrogeologic features of the alluvial deposits in the Greybull River valley, Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Cooley, M.E.; Head, W.J.

    1979-01-01

    The alluvial aquifer along the Greybull River in Wyoming, consists principally of the Greybull terrace doposits and flood-plain alluvium but also includes Burlington terrace deposits east of Burlington, the McKinnie terrace, and the younger, generally undissected alluvial-fan deposits. Well-log data and 18 surface-resistivity measurements at four localities indicate that the thickness of the alluvial aquifer is as much as 60 feet thick only near Burlington and Otto. The most favorable area for development of ground water from the alluvial aquifer is near Burlington and Otto where relatively large amounts of water can be obtained from the Greybull terrace deposits and the flood-plain alluvium. Elsewhere, the deposits of the alluvial aquifer yield only small amounts of water to wells. (Woodard-USGS)

  20. Late Quaternary alluvial fans of Emli Valley in the Ecemi? Fault Zone, south central Turkey: Insights from cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Akif Sar?kaya, M.; Y?ld?r?m, Cengiz; iner, Attila

    2015-01-01

    Alluvial fans within the paraglacial Ecemi? River drainages on the Alada?lar Mountains in south central Turkey were studied using geomorphological, sedimentological, and chlorine-36 terrestrial cosmogenic nuclide (TCN) surface exposure dating methods to examine the timing of alluvial fan abandonment/incision, and to understand the role of climatic and tectonic processes in the region. These alluvial fan complexes are among the best-preserved succession of alluvial fans in Turkey and they were offset by the major strike-slip Ecemi? Fault of the Central Anatolian Fault Zone. The alluvial fans are mostly composed of well-lithified limestone cobbles (5 to 25 cm in size), and comprise crudely stratified thick beds with a total thickness reaching up to about 80 m. TCN surface exposure dating indicates that the oldest alluvial fan surface (Yalak Fan) was likely formed and subsequently abandoned latest by 136.0 23.4 ka ago, largely on the transition of the Penultimate Glaciation (Marine Isotope Stage 6, MIS 6) to the Last Interglacial (MIS 5) (i.e. Termination II). The second set of alluvial fan (Emli Fan) was possibly developed during the Last Interglacial (MIS 5), and incised twice by between roughly 97.0 13.8 and 81.2 13.2 ka ago. A younger alluvial fan deposit placed on relatively older erosional terraces of the Emli Fan suggests that it may have been produced during the Last Glacial Cycle (MIS 2). These events are similar to findings from other fluvial and lacustrine deposits throughout central Anatolia. The incision times of the Ecemi? alluvial fan surfaces largely coincide with major climatic shifts from the cooler glacial periods to warmer interglacial/interstadial conditions. This indicates that alluvial fans were produced by outwash sediments of paleoglaciers during cooler conditions, and, later, when glaciers started to retreat due to a major warming event, the excess water released from the glaciers incised the pre-existing fan surfaces. An alluvial fan in the study area was also cut by the Ecemi? Fault, highlighting the influence of tectonics on fan development. It was offset vertically 35 3 m since at least 97.0 13.8 ka, which suggests a 0.36 0.06 mm a- 1 vertical slip-rate of the fault.

  1. Development and lithogenesis of the palustrine and calcrete deposits of the Dibdibba Alluvial Fan, Kuwait

    NASA Astrophysics Data System (ADS)

    AlShuaibi, Arafat A.; Khalaf, Fikry I.

    2011-08-01

    A model is proposed for the development of the Quaternary palustrine carbonate-calcrete association, which occurs as hard crust capping low hills at a distal flood plain of Al Dibdibba alluvial fan located at southwestern Kuwait. Field occurrence, detailed petrographic investigation and geochemical analysis revealed that a single cycle of groundwater calcrete with vertical gradational maturity pattern was developed. This represents a continuous sedimentological cycle during which flood sheet conditions prevailed with intermittent periods of humid and arid conditions. Subsequently, calcitic micrite was continuously precipitated from small, shallow, local, isolated and short lived ponds fringed by freshwater marshes with abundant charophyte meadows. The latter were developed as a result of flooding scattered depressions by groundwater supersaturated with respect to calcite due to rise of groundwater table. The deposition of two facies of carbonate muds, namely; biomicrite and pelintraclasts skeletal micrites was followed by a drought phase which witnessed desiccation of the fresh water ponds and significant drop in groundwater level. A sequence of pedogenic and diagenetic processes acted on the deposited carbonate muds are manifested by: (a) desiccation cracks, (b) micrite neomorphism, (c) infilling of root burrows and some cracks by aeolian siliciclastics, (d) karstification, (e) marmorization, (f) calcretization of root burrow infill and development of pseudo-rhizocrete, (g) calcite cementation and mineral authigenesis, and (h) silcretization. These processes are responsible for the development of hard palustrine carbonate crust. At the advent of aridity, the whole system of Al Dibdibba alluvial fan was subjected to deflation. This resulted in reversing the paleotopography of the hard crusted palustrine depressions into carbonate capped domal hills.

  2. Rivers turned to rock: Late Quaternary alluvial induration influencing the behaviour and morphology of an anabranching river in the Australian monsoon tropics

    NASA Astrophysics Data System (ADS)

    Nanson, Gerald C.; Jones, Brian G.; Price, David M.; Pietsch, Timothy J.

    2005-09-01

    Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4-3 (65-50 ka). Aridity then capped these plains with 4-7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path. A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet-dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.

  3. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation

    USGS Publications Warehouse

    Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L.

    2006-01-01

    The Qaidam Basin in Northern Tibet is one of the largest hyper-arid intermontane basins on Earth. Alluvial fans, pediment surfaces, shorelines and a thick succession of sediments within the basin, coupled with moraines and associated landforms in the adjacent high mountain catchments of the Kunlun Mountains, record a complex history of Late Quaternary paleoenvironmental change and landscape evolution. The region provides an ideal natural laboratory to examine the interaction between tectonics and climate within a continent-continent collision zone, and to quantify rates of landscape evolution as controlled by climate and the associated glacial and hydrological changes in hyper-arid and adjacent high-altitude environments. Geomorphic mapping, analysis of landforms and sediments, and terrestrial cosmogenic radionuclide surface exposure and optically stimulated luminescence dating serve to define the timing of formation of Late Quaternary landforms along the southern and northwestern margins of the Qaidam Basin, and in the Burhan Budai Shan of the Kunlun Mountains adjacent to the basin on the south. These dates provide a framework that suggests links between climatic amelioration, deglaciation, lake desiccation and alluvial fan evolution. At least three glacial advances are defined in the Burham Budai Shan of the Kunlun Mountains. On the northern side of this range these occurred in the penultimate glacial cycle or early in the last glacial cycle, during the Last Glacial Maximum (LGM)/Lateglacial and during the Holocene. On the south side of the range, advances occurred during the penultimate glacial cycle, MIS-3, and possibly the LGM, Lateglacial or Holocene. Several distinct phases of alluvial fan sedimentation are likewise defined. Alluvial fans formed on the southern side of the Kunlun Mountains prior to 200 ka. Ice-contact alluvial fans formed during the penultimate glacial and during MIS-3. Extensive incised alluvial fans that form the main valley fills north of the Burham Budai and extend into the Qaidam Basin are dated to ???30 ka. These ages suggest that there was a period of alluvial fan aggradation and valley filling that persisted until desiccation of the large lakes in the Qaidam Basin post ???30 ka led to base level lowering and active incision of streams into the valley fills. The continued Lateglacial and Holocene desiccation likely led to further degradation of the valley fills. Ice wedge casts in the Qaidam Basin date to ???15 ka, indicating significant Lateglacial climatic amelioration, while Holocene loess deposits north of the Burham Bdudai suggest that aridity has increased in the region since the early Holocene. From these observations, we infer that the major landscape changes within high glaciated mountains and their adjacent hyper-arid intermontane basins, such as the Kunlun Mountains and Qaidam Basin, occur rapidly over millennial timescales during periods of climatic instability. ?? 2006 Elsevier Ltd and INQUA.

  4. Texture and depositional history of near-surface alluvial deposits in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Laudon, Julie; Belitz, Kenneth

    1989-01-01

    Saline conditions and associated high levels of selenium and other soluble trace elements in soil, shallow ground water, and agricultural drain water of the western San Joaquin Valley, California, have prompted a study of the texture of near-surface alluvial deposits in the central part of the western valley. Texture is characterized by the percentage of coarse-grained sediment present within a specified subsurface depth interval and is used as a basis for mapping the upper 50 feet of deposits. Resulting quantitative descriptions of the deposits are used to interpret the late Quaternary history of the area. Three hydrogeologic units--Coast Range alluvium, flood-basin deposits, and Sierran sand--can be recognized in the upper 50 feet of deposits in the central part of the western San Joaquin Valley. The upper 30 feet of Coast Range alluvium and the adjacent 5 to 35 feet of flood-basin deposits are predominantly fine grained. These fine-grained Coast Range deposits are underlain by coarse-grained channel deposits. The fine-grained flood basin deposits are underlain by coarse-grained Sierran sand. The extent and orientation of channel deposits below 20 feet in the Coast Range alluvium indicate that streams draining the Coast Range may have been tributary to the axial stream that deposited the Sierran sand and that streamflow may have been to the southeast. The fining-upward stratigraphic sequence in the upper 50 feet of deposits and the headward retreat of tributary stream channels from the valley trough with time support a recent hypothesis of climatic control of alluviation in the western San Joaquin Valley.

  5. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    SciTech Connect

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium.

  6. Depositional facies and Hohokam settlement patterns of Holocene alluvial fans, N. Tucson Basin, Arizona

    SciTech Connect

    Field, J.J.

    1985-01-01

    The distribution of depositional facies on eight Holocene alluvial fans of varying dimensions is used to evaluate prehistoric Hohokam agricultural settlement patterns. Two facies are recognized: channel gravelly sand facies and overbank silty sand facies. No debris flow deposits occur. The channel facies is characterized by relatively well sorted stratified sands and gravels with common heavy mineral laminations. Overbank facies deposits are massive and very poorly sorted due to heavy bioturbation. Lithostratigraphic profiles from backhoe trenches and sediment size analysis document headward migration of depositional facies which results in fining upward sequences. Each sequence is a channel fan lobe with an underlying coarse grained channel sand which fines to overbank silty sands. Lateral and vertical variations in facies distributions show that depositional processes are affected by drainage basin area (fan size) and distance from fan head. Gravelly channel sands dominate at the headward portions of the fan and are more pervasive on large fans; overbank silty sands are ubiquitous at fan toes and approach closer to the fan head of smaller alluvial fans. When depositional facies are considered as records of water flow over an alluvial surface, the farming potential of each fan can be analyzed. Depositional models of alluvial fan sedimentation provide the basis for understanding Hohokam settlement patterns on active alluvial surfaces.

  7. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    SciTech Connect

    Arvidson, R.; Becker, R.; Shanabrook, A.; Luo, W.; Sultan, M.; Sturchio, N.; Lotfy, Z.; Mahmood, A.M.; El Alfy, Z.

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.

  8. Alluvial deposits and plant distribution in an Amazonian lowland megafan

    NASA Astrophysics Data System (ADS)

    Zani, H.; Rossetti, D.; Cremon; Cohen, M.; Pessenda, L. C.

    2012-12-01

    A large volume of sandy alluvial deposits (> 1000 km2) characterizes a flat wetland in northern Amazonia. These have been recently described as the sedimentary record of a megafan system, which have a distinct triangular shape produced by highly migratory distributary rivers. The vegetation map suggests that this megafan is dominated by open vegetation in sharp contact with the surround rainforest. Understanding the relationship between geomorphological processes and vegetation distribution is crucial to decipher and conserve the biodiversity in this Amazonian ecosystem. In this study we interpret plant dynamics over time, and investigate its potential control by sedimentary processes during landscape evolution. The study area is located in the Viru National Park. Two field campaigns were undertaken in the dry seasons of 2010 and 2011 and the sampling sites were selected by combining accessibility and representativeness. Vegetation contrasts were recorded along a transect in the medial section of the Viru megafan. Due to the absence of outcrops, samples were extracted using a core device, which allowed sampling up to a depth of 7.5 m. All cores were opened and described in the field, with 5 cm3 samples collected at 20 cm intervals. The ?13C of organic matter was used as a proxy to distinguish between C3 and C4 plant communities. The chronology was established based on radiocarbon dating. The results suggest that the cores from forested areas show the most depleted values of ?13C, ranging from -32.16 to -27.28. The ?13C curve in these areas displays typical C3 land plant values for the entire record, which covers most of the Holocene. This finding indicates that either the vegetation remained stable over time or the sites were dominated by aquatic environments with freshwater plants before forest establishment. The cores from the open vegetation areas show a progressive upward enrichment in ?13C values, which range from -28.50 to -19.59. This trend is more pronounced after de mid-Holocene, suggesting that the open vegetation, represented mostly by C4 land plants, evolved only more recently. Based on our isotope data, a model is proposed taking into account the influence of sedimentary dynamics on the modern pattern of plan distribution. The establishment of open vegetation occurred at different times depending on location over the megafan area, varying from around 3,000 to 6,400 cal yrs BP. As sedimentation took place, areas located far from the surrounding rainforest were prone to inputs of organic matter derived from open vegetation, whereas the contribution of organic matter derived from arboreous vegetation increases toward the areas located closer to the rainforest. In general, open vegetation is constrained to depositional sites that remained active until relatively recent Holocene times, while surrounding areas with a relatively older geological history are covered by dense forest. The results presented here consist in a striking example of the influence of sedimentary processes during the Late Pleistocene-Holocene on the development of modern plants of this Amazonian lowland.

  9. Atomic layer deposition of quaternary chalcogenides

    SciTech Connect

    Thimsen, Elijah J; Riha, Shannon C; Martinson, Alex B.F.; Elam, Jeffrey W; Pellin, Michael J

    2014-06-03

    Methods and systems are provided for synthesis and deposition of chalcogenides (including Cu.sub.2ZnSnS.sub.4). Binary compounds, such as metal sulfides, can be deposited by alternating exposures of the substrate to a metal cation precursor and a chalcogen anion precursor with purge steps between.

  10. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Cederstrand, J.R.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries, maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma. Ground water in 1,305 square miles of Quaternary-age alluvial and terrace deposits along the the Cimarron River from Freedom to Guthrie is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. Alluvial and terrace deposits are composed of interfingering lenses of clay, sandy clay, and cross-bedded poorly sorted sand and gravel. The aquifer is composed of hydraulically connected alluvial and terrace deposits that unconformably overlie the Permian-age Formations. The aquifer boundaries are from a ground-water modeling report on the alluvial and terrace aquifer along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma and published digital surficial geology data sets. The aquifer boundary data set was created from digital geologic data sets from maps published at a scale of 1:250,000. The hydraulic conductivity values, recharge rates, and ground-water level elevation contours are from the ground-water modeling report. Water-level elevation contours were digitized from a map at a scale of 1:250,000. The maps were published at a scale of 1:900,000. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  11. Tuffaceous ephemeral lake deposits on an alluvial plain, Middle Tertiary of central California

    USGS Publications Warehouse

    Bartow, J.A.

    1994-01-01

    The Oligocene and Miocene Valley Springs Formation represents a large fluvial depositional system that extended westward from sediment-filled palaeovalleys in the high Sierra Nevada to a piedmont alluvial plain under the present Central Valley. The Valley Springs Formation consists largely of tuffaceous mudrocks, tuffaceous sandstone, polymict conglomerate and rhyodacitic tuff. The tuffaceous mudrock lithofacies probably represents a complex of ephemeral lake and marsh environments on a low gradient alluvial plain. The inferred abundance of shallow lakes, ponds and marshes implies a climate that was wetter than the semi-arid climate of the region today. -from Author

  12. Ground water in the alluvial deposits of the Washita River between Clinton and Anadarko, Oklahoma

    USGS Publications Warehouse

    Hart, D.L., Jr.

    1963-01-01

    The Washita River alluvial deposits between Clinton and Anadarko primarily are fine-grained sand and clay, and lesser amounts of coarser-grained material. These deposits range in thickness from 0 to 120 feet and average about 64 feet. Well yields range from only a few gallons per minute in some of the sandy clay beds to more than 240 gallons per minute (gpm) in sections where a higher percentage of coarse material has been deposited. Test pumping indicates that wells yielding 60 to 150 gpm could be developed in about 50 percent of the valley and wells yielding more than 150 gpm in about 10 percent. The higher yields generally occur along a relatively narrow buried channel where the alluvial deposits are thicker and coarser than the surrounding alluvium. This area is not discernible at the surface and must be located by test drilling.

  13. Ground water in the alluvial deposits of the Washita River between Clinton and Anadarko, Oklahoma

    USGS Publications Warehouse

    Hart, D.L., Jr.

    1965-01-01

    The Washita River alluvial deposits between Clinton and Aandarko primarily are fine-grained sand and clay, and lesser amounts of coarser-grained material. These deposits range in thickness from 0 to 120 feet and average about 64 feet. Well yields range from only a few gallons per minute in some of the sandy clay beds to more than 240 gallons per minute (gpm) in sections where a higher percentage of coarse material has been deposited. Test pumping indicates that wells yielding 60 to 150 gpm could be developed in about 50 percent of the valley and wells yielding more than 150 gpm in about 10 percent. The higher yields generally occur along a relatively narrow buried channel where the alluvial deposits are thicker and coarser than the surrounding alluvium. This area is not discernible at the surface and must be located by test drilling.

  14. Hydrogeologic features of the alluvial deposits in the Owl Creek Valley, Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Cooley, M.E.; Head, W.J.

    1982-01-01

    The alluvial acquifer principally of the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits and consists subordinately of alluvial-fan deposits. Thickness of the alluvial aquifer is generally 20 to 40 feet. Dissolved-solids concentration of water in the alluvial aquifer ranges from about 500 to more than 3,000 milligrams per liter. The most favorable areas for groundwater development are the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits; however, in much of these units, the water contains more than 2,000 milligrams per liter of dissolved solids. Measurements of specific conductance of the flow of Owl Creek indicate a progressive increase in the down stream direction and range between 15 and 355 micromhos per centimeter at 25C per mile. The increases are due to return flow of irrigation water, inflow from tributaries, and inflow from groundwater. Conspicuous terraces in Owl Creek Valley included an unnamed terrace at 500 feet above Owl Creek, the Embar Ranch terrace 160 to 120 feet above the creek, and the Arapahoe Ranch terrace 50 to 20 feet above the creek. (USGS)

  15. Quaternary tilt of Death Valley determined from landform modelling of alluvial fans

    SciTech Connect

    West, R.B.; Wilson, D.S. . Dept. of Geology)

    1993-04-01

    Alluvial fans along the east side of central Death Valley are being actively back-tilted along the Death Valley fault zone. Initial modelling of the Copper Canyon and Furnace Creek fans led to recognition of distinct segments. Field reconnaissance and aerial photo mapping were conducted to check model results and improve segment discrimination. Surface roughness, relative position, vegetation distribution, and drainage patterns provided independent evidence for segment discrimination. Subsequent modelling of individual segments produced a range of tilt values from 0.275[degree] to 0.559[degree] down to the northeast. Continued analysis of these fan segments is concentrated on: (1) assigning confidence and error values to the tilt values; and (2) dating individual segments. Further work will compare the tilt rates of east-side fans with those from the west. The mean squared error (MSE) is currently being used as a first order assessment of the quality of the model's fit to data digitized from 1:24,000 scale USGS topographic maps. MSE values of 1 m or less can be expected for relatively young or actively aggrading segments. Previous fan models have found the expected range of misfits to be between 2 m and 5 m. This seven parameter least squares model has produced fits with less than 2 m total range in misfits. Previous models have not accounted for tilt or have relied on simplifying assumptions to fix apex position.

  16. Geotechnical mapping for alluvial fan deposits controlled by active faults: a case study in the Erzurum, NE Turkey

    NASA Astrophysics Data System (ADS)

    Yarbasi, Necmi; Kalkan, Ekrem

    2009-08-01

    Erzurum, the biggest city of Eastern Anatolia Region in the Turkey, is located in Karasu Plain. Karasu Plain, located on the central segment of the Erzurum Fault Zone, is an intermountain sedimentary basin with a Miocene-Quaternary volcanic basement, andesitic-basaltic lava flows and fissure eruptions of basaltic lava. It was filled in the early Quaternary by lacustrine fan-delta deposits. The basin is characterized by NNE-SSW trending sinistral wrench faults on its eastern margin and ENE-WSW trending reverse faults on its southern margin. Both systems of active faults intersect very near to Erzurum, which is considered to be the most likely site for the epicenter of a probable future large earthquake. Historical records of destructive earthquakes, morphotectonic features formed by paleo-seismic events and instrument seismic data of region indicate to a very high regional seismicity. The residential areas of Erzurum are located on thick alluvial fan deposits forming under the control of faults on the central segment of the Erzurum Fault Zone, which is one of the most active fault belts of the East Anatolian Region. Over time, the housing estates of city such as Yenisehir and Yildizkent have been expanded toward to the west and southwest part of Erzurum as a consequence of rapid and massive construction during the last 30 years. Geotechnical investigation has therefore been undertaken the residential areas of city in order to characterize geotechnical properties over the varied lithologies examine the potential for geotechnical mapping and assess the foundation conditions of the present and future settlement areas. The geological field observations and operations have been performed to make the soil sampling and characterize the lateral and vertical changes in thickness of the alluvial deposits in trenches, excavations and deep holes with 6-12 m sections. The soil samples have been subjected to a series of tests under laboratory conditions to obtain physical and mechanical properties. Furthermore, the standard penetration tests have been applied to the soils under field conditions. The geological field observations, geotechnical data and distribution of bearing capacity have been considered for the geotechnical mapping. Based on the geotechnical map, there are five geotechnical zones distinguished in the study area.

  17. Sedimentary facies of alluvial fan deposits, Death Valley, California

    SciTech Connect

    Middleton, G.V. )

    1992-01-01

    Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River. The most remarkable features of the fan deposits are the very weak segregation of sand and gravel, and the complete absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and even large wash surfaces is steep enough to produce upper flow regimes. There are also very few trends in facies abundance down fans: most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). The facies characteristics of a given fan vary little from proximal to distal regions, but may differ strongly from the facies seen in adjacent fans. Ancient deposits that show clear segregation of gravel from cross-bedded sand beds, or strong proximal to distal facies transitions, must have been deposited in environments quite different from Death Valley.

  18. Clay sized fraction and powdered whole-rock X-ray analyses from alluvial basin deposits in central and southern New Mexico

    USGS Publications Warehouse

    Anderholm, S.K.

    1985-01-01

    As part of the study of the water quality and geochemistry of Southwest Alluvial Basins (SWAB) in parts of Colorado, New Mexico, and Texas, which is a Regional Aquifer-System Analysis (RASA) program, whole rock x-ray analysis and clay-size fraction mineralogy (x-ray) analysis of selected samples from alluvial basin deposits were done to investigate the types of minerals and clay types present in the aquifers. This was done to determine the plausible minerals and clay types in the aquifers that may be reacting with groundwater and affecting the water quality. The purpose of this report is only to present the whole rock x-ray and clay-fraction mineralogy data. Nineteen surface samples or samples from outcrop of Tertiary and Quaternary alluvial basin deposits in the central and southern Rio Grande rift were collected and analyzed. The analysis of the samples consisted of grain size analysis, and clay-size fraction mineralogy and semiquantitative analysis of the relative abundance of different clay mineral groups present. (USGS)

  19. Depth dependence and exponential models of permeability in alluvial-fan gravel deposits

    NASA Astrophysics Data System (ADS)

    Sakata, Yoshitaka; Ikeda, Ryuji

    2013-06-01

    To determine depth dependence of permeability in various geologic deposits, exponential models have often been proposed. However, spatial variability in hydraulic conductivity, K, rarely fits this trend in coarse alluvial aquifers, where complex stratigraphic sequences follow unique trends due to depositional and post-depositional processes. This paper analyzes K of alluvial-fan gravel deposits in several boreholes, and finds exponential decay in K with depth. Relatively undisturbed gravel cores obtained in the Toyohira River alluvial fan, Sapporo, Japan, are categorized by four levels of fine-sediment packing between gravel grains. Grain size is also analyzed in cores from two boreholes in the mid-fan and one in the fan-toe. Profiles of estimated conductivity, overline{K} , are constructed from profiles of core properties through a well-defined relation between slug-test results and core properties. Errors in overline{K} are eliminated by a moving-average method, and regression analysis provides the decay exponents of overline{K} with depth. Moving-average results show a similar decreasing trend in only the mid-fan above 30-m depth, and the decay exponent is estimated as ?0.11 m-1, which is 10- to 1,000-fold that in consolidated rocks. A longitudinal cross section is also generated by using the profiles to establish hydrogeologic boundaries in the fan.

  20. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in Central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Rea, Alan; Runkle, D.L.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma. Ground water in approximately 400 square miles of Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of clay, silt, sand, and gravel. Sand-sized sediments dominate the poorly sorted, fine to coarse, unconsolidated quartz grains in the aquifer. The hydraulically connected alluvial and terrace deposits unconformably overlie Permian-age formations. The aquifer is overlain by a layer of wind-blown sand in parts of the area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  1. Late Quaternary carbonate deposition at the bottom of the world

    NASA Astrophysics Data System (ADS)

    Frank, Tracy D.; James, Noel P.; Bone, Yvonne; Malcolm, Isabelle; Bobak, Lindsey E.

    2014-05-01

    Carbonate sediments on polar shelves hold great potential for improving understanding of climate and oceanography in regions of the globe that are particularly sensitive to global change. Such deposits have, however, not received much attention from sedimentologists and thus remain poorly understood. This study investigates the distribution, composition, diagenesis, and stratigraphic context of Late Quaternary calcareous sediments recovered in 15 piston cores from the Ross Sea shelf, Antarctica. Results are used to develop a depositional model for carbonate deposition on glaciated, polar shelves. The utility of the deposits as analogs for the ancient record is explored. In the Ross Sea, carbonate-rich lithofacies, consisting of poorly sorted skeletal sand and gravel, are concentrated in the west and along the outer reaches of the continental shelf and upper slope. Analysis of fossil assemblages shows that deposits were produced by numerous low-diversity benthic communities dominated locally by stylasterine hydrocorals, barnacles, or bryozoans. Radiocarbon dating indicates that carbonate sedimentation was episodic, corresponding to times of reduced siliciclastic deposition. Most accumulation occurred during a time of glacial expansion in the lead-up to the Last Glacial Maximum. A more recent interval of carbonate accumulation postdates the early Holocene sea level rise and the establishment of the modern grounding line for the Ross Ice Shelf. When carbonate factories were inactive, fossil debris was subjected to infestation by bioeroders, dissolution, fragmentation, and physical reworking. This study reveals the episodic nature of carbonate deposition in polar settings and a reciprocal relationship with processes that deliver and redistribute siliciclastic debris. Carbonate production is most active during colder periods of the glacial-interglacial cycle, a potential new sedimentological paradigm for polar carbonate systems. Low accumulation rates and long residence times on the seafloor leave sediments vulnerable to significant post-depositional modification, processes that profoundly affect the appearance of deposits as they enter the rock record. Comparison with other examples of polar carbonates highlights the utility of these Late Quaternary deposits as a well-constrained analog that can aid in the recognition and interpretation of similar deposits from the ancient record.

  2. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    USGS Publications Warehouse

    Gray, Harrison J.; Owen, Lewis; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on10Be surface exposure dating of boulders and10Be depth profiles define the timing of surface stabilization to 2.6+5.6/1.3 ka (Qyf1 surface), 67.25.3 ka (Qvof2 surface), and 28024 ka (Qvof1 surface). Comparison of10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.93.2 to 14922.5m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  3. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

    PubMed

    Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K

    2008-07-29

    This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions. PMID:18502538

  4. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    NASA Astrophysics Data System (ADS)

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkel, Robert C.; Mahan, Shannon A.

    2014-12-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/-1.3 ka (Qyf1 surface), 67.2 5.3 ka (Qvof2 surface), and 280 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 3.2 to 149 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  5. Preservation of daily tidal cycles and stacked alluvial swamp deposits: Depositional response to early compaction of buried peat bodies

    SciTech Connect

    Demko, T.M.; Gastaldo, R.A. )

    1990-05-01

    The character of the clastic depositional environments represented in the lower Mary Lee coal zone of the Pennsylvanian Pottsville Formation in the Warrior basin Alabama (tidally influenced mud flats and alluvial swamps) was controlled by the compaction of buried peat bodies. The lowest mineable coal in the Mary Lee coal zone, the Jagger, is overlain by laminated shale and sandstone exhibiting pronounced cycle bedding. This bedding records daily tidal cyclicity in the form of sand-mud couplets. These correspond to flood-current deposition of the coarser fraction followed by fallout of the finer grained fraction during ensuing slack-water periods. These couplets are cyclically bundled-sandier bundles corresponding to spring tides and muddier bundles to neap tides (lamination counts suggest a 24-30-day cycle). The clastic sequence above the overlying Blue Creek coal is characterized by a series of stacked alluvial swamp horizons. These can be identified by autochthonous fossil plants and pedological features indicative of gleyed paleosols. Catastrophic flooding buried and preserved these horizons. The rapid, early compaction of the buried Jagger and Blue Creek peat bodies created accommodation space that allowed both the preservation of tidalites in the Jagger coal to Blue Creek coal interval and the stacking of alluvial swamp paleosols above the Blue Creek seam. Carboniferous peats were comprised of highly compressible plant parts and hence, were sensitive to sediment loading. Once the peat bodies had compressed to a certain extent, stability of the overlying sediment surface created conditions amenable to resumption of peat accumulation.

  6. Field Demonstrations of Five Geophysical Methods that Could Be Used to Characterize Deposits of Alluvial Aggregate

    USGS Publications Warehouse

    Ellefsen, K.J.; Burton, B.L.; Lucius, J.E.; Haines, S.S.; Fitterman, D.V.; Witty, J.A.; Carlson, D.; Milburn, B.; Langer, W.H.

    2007-01-01

    Personnel from the U.S. Geological Survey and Martin Marietta Aggregates, Inc., conducted field demonstrations of five different geophysical methods to show how these methods could be used to characterize deposits of alluvial aggregate. The methods were time-domain electromagnetic sounding, electrical resistivity profiling, S-wave reflection profiling, S-wave refraction profiling, and P-wave refraction profiling. All demonstrations were conducted at one site within a river valley in central Indiana, where the stratigraphy consisted of 1 to 2 meters of clay-rich soil, 20 to 35 meters of alluvial sand and gravel, 1 to 6 meters of clay, and multiple layers of limestone and dolomite bedrock. All geophysical methods, except time-domain electromagnetic sounding, provided information about the alluvial aggregate that was consistent with the known geology. Although time-domain electromagnetic sounding did not work well at this site, it has worked well at other sites with different geology. All of these geophysical methods complement traditional methods of geologic characterization such as drilling.

  7. Late Quaternary depositional history of the Albemarle Embayment, NC

    SciTech Connect

    Riggs, S.R.; Klingman, C.R.; Wyrick, R.A. . Dept. of Geology)

    1993-03-01

    The depositional history of Albemarle Embayment documents deep fluvial incisement by the Roanoke River system during glacial episodes and subsequent infilling by fluvial-estuarine-barrier island sediment sequences during interglacial transgressions. Unraveling the Holocene time slice will help reconstruct complex Quaternary records of multiple incisement and backfilling. A network of drill holes, vibracores, and seismic data suggest a four-phase infill history over the last 12,000 years. (1) Lower Roanoke River: (a) Bedload-charged, braided fluvial systems deposited basal sequences of sand and gravel prior to [approximately]5,000 BP. (b) Aggradational, swamp-forest floodplains developed [approximately]5,000 BP and bound the modern incised channels characterized by minimal bedload sedimentation. (2) Albemarle sound: (a) In the central basin, the basal channel sand sequence is overlain by an open estuarine, highly interlaminated sand and mud sequence that accumulated between [approximately]12,000 BP and [approximately]2,000 BP. (b) Depositional patterns within this unit suggest multiple oscillations of Holocene sea level that caused channel reincisement and subsequent backfilling. (c) Present estuarine marsh sedimentation began in protected coastal areas [approximately]5,000 BP. (3) Outer banks: (a) Barrier islands first influenced sedimentation in the area after [approximately]5,000 BP producing a semi-enclosed Albemarle Sound. (b) Deposition within the central basin shifted to uniform organic-rich muds that grade eastward into overwash and inlet sands. (4) Modern man: (a) colonial development within the drainage basins in the early 1700's AD produced a wedge of orange mud in inner Albemarle Sound. (b) Dam construction in the 1950's terminated orange mud deposition and the central basin reverted to organic-rich mud sedimentation.

  8. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    NASA Astrophysics Data System (ADS)

    Stinchcomb, Gary; Peppe, Daniel

    2014-08-01

    Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 - 8.5 ka) corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 - 4.3 ka) corresponds with a transitional wet/dry phase and a previously documented incision event.......

  9. High resolution sequence stratigraphy and reservoir architecture of proximal alluvial deposits: The Buntsandstein facies of central Spain

    SciTech Connect

    Oliver, L.; Desaubliaux, G.; Verdier, F.

    1995-08-01

    The Buntsandstein facies outcrops along a 12 km long, 150 m thick cuesta near Ayllon (Central Spain). The outcrop study is based on vertical sedimentological sections and continuous photo paneling, and demonstrates the presence of two depositional systems: an alluvial fan system in the lower half of the outcrop, and a straight and braided river system in the upper part of the outcrop. This overall evolution is probably related to base-level fall to base-level rise cycle, in which the reservoir architecture is linked to genetic units stacking pattern: during the base-level fall, the alluvial fan is prograding over sand flat and sandy alluvial plain deposits. Coarse and pebbly proximal sandsheets are interbedded with finer reddish distal deposits. Reservoirs units are laterally continuous, but silty alluvial plain deposits constitute vertical permeability barriers, during base-level stillstand, erosive channels and sandsheets are vertically amalgamated. Reservoirs units are laterally continuous and vertically connected, during the base-level rise, alluvial fan deposits are overlapped by straight river deposits. Reservoirs units are laterally connected but silty argillaceous alluvial plain horizons are preserved, at the end of the base-level rise, braided and straight river deposits are amalgamated. Fully connected, these reservoirs units have a very large lateral extension. A lithofacies database is compiled on this outcrop, and variograms, horizontal and vertical proportion curves are completed. Each stage of the base-level cycle is then quantitatively characterized by a specific heterogeneity pattern. The outcrop study will improve the prediction of reservoir extension and architecture in subsurface gas storage of the Paris basin.

  10. Soil erosion history in central Tanzania based on OSL dating of colluvial and alluvial hillslope deposits

    NASA Astrophysics Data System (ADS)

    Eriksson, M. G.; Olley, J. M.; Payton, R. W.

    2000-12-01

    The Irangi Hills in Kondoa District, central Tanzania, are severely degraded by sheet, rill and gully erosion. Using recently developed optically stimulated luminescence (OSL) dating techniques, and a detailed study of the hillslope stratigraphy and soils, we have determined the sequence of events that gave rise to this highly degraded landscape. Two major colluvial deposits have been identified on the slopes. The oldest colluvium gave OSL deposition dates of 14,7001600, 14,2001500 and 11,4001300 years ago. These dates coincide with the climatic change from dry to wet conditions, which took place during the Late Pleistocene. It is possible that the erosion and deposition of the old colluvium occurred as a response to this change. This phase of erosion and deposition was followed by a long phase of stability and pedogenetic alteration of the old colluvium. A phase of accelerated soil erosion began not later than 900 years ago, as indicated by a dated alluvial fan, the presence of which indicates that some deeper gullies already existed on upper pediment slopes at that time. The second, more recent colluvial deposit gave OSL dates of 46040, 59070 and 66050 years. A major period of gully formation and incision, with subsequent fan development, occurred sometime between 600 and 300 years ago. The recent phase of erosion (<1000 years), which is still continuing, is probably a result of the introduction and/or intensification of agriculture, livestock husbandry and iron smelting practices in the Irangi Hills.

  11. Fracture Detection in Alluvial Fan Deposits Using Near-Surface Seismic Reflection Techniques

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Miller, B.

    2012-12-01

    In this study we document the observation of probable extensive shallow vertical fracture systems in unprocessed 2-D source gathers from near-surface seismic reflection surveys conducted over unconsolidated materials in alluvial fans environments. Mapping of fracture and fault systems within the sedimentary sections at hydrocarbon exploration scales has become common practice. This is due to the advent of post-stack attribute analysis of 3-D seismic images worldwide. However, examples of fracture detection and imaging in the near-surface are currently lacking in the literature. In addition, examples of fracture detection and mapping in the pre-stack domain are also lacking. In this study, unprocessed seismic source gathers from very high-resolution reflection surveys over alluvial fan deposits in tectonically active areas appear to display distinct patterns of amplitude drop off, geometrically similar to patterns expected for vertical fracture systems. The patterns can also be extracted by attribute analysis using techniques such as envelope and coherency analyses. Simple standard processing steps such as trace editing, muting, and bandpass filtering enhance interpretability. The patterns appear to be consistent and spatially fixed in the subsurface from source location to source location. These are observed in areas of obvious recent local large-scale fault movement. Examples are given from two areas, eastern Queen Valley in California and eastern Fish Lake Valley in Nevada. The stratigraphic and sedimentation patterns are quite complicated in both areas, and sediment characteristics vary considerably between sites. The surface sediments in the Queen Valley case are, in general, much coarser with many more boulder-sized clasts in the shallow subsurface. The seismic source consisted of a 30-06 rifle fired downhole at a depth of 0.5m. While the boulders interfered with seismic source operations, the record quality was excellent. The alluvial materials, especially those in Fish Lake Valley, are also probably unsaturated due to the desert environment and long-term, historic, upper watershed management by miners and ranchers. The unsaturated nature of the sediments probably contributes to the seismic detectability of the features. Other non-geological explanations for the observed amplitude features are possible, including aliasing effects, display artifacts, etc. However, the data are highly oversampled in both time and space, and the features appear in different types of displays. They are not observable in standard variable area/wiggle trace seismic displays traditionally used for displaying field records. Wider-scale mapping of these features would be an important contribution in studies of off-fault tectonic deformation, alluvial fan development, unsaturated flow, and near-surface hydrological systems in tectonically active areas.

  12. The tectonic deformation of Quaternary deposits within the Kleszczw Graben, central Poland

    NASA Astrophysics Data System (ADS)

    Krzyszkowski, Dariusz

    1989-07-01

    Three, well recognizable structural stages can be observed within the Kleszczw Graben (Central Poland). They are divided by angular discordances. The Valachian stage consists of strongly folded and faulted deposits of Miocene age. The Belchatw stage consists both of Pliocene and Quaternary deposits. The last stage dates back to the beginning of the Drenthe-Warthe interglacial. The tectonic origin or Quaternary deformation (folding) of the Belchatovian age seems rather unquestionable. In the uppermost structural stage only some glaciotectonic deformations can be observed.

  13. Rock magnetic properties of a soil developed on an alluvial deposit at Buttermilk Creek, Texas, USA

    NASA Astrophysics Data System (ADS)

    Lindquist, Anna K.; Feinberg, Joshua M.; Waters, Michael R.

    2011-12-01

    The evolution of magnetization within a floodplain soil begins with initial deposition of magnetic particles during sedimentation and continues via subsequent alteration and growth of iron-bearing compounds by pedogenic and biologic processes. Measurements of soil magnetic properties capture information about the developmental history of the soil and are a convenient method by which to investigate environmental change and pedogenesis. Using a range of magnetic measurements, a comprehensive scenario for soil development was constructed for floodplain sediments at the Debra L. Friedkin site, an important archeological site near Buttermilk Creek, Texas. Floodplain deposits have traditionally been avoided for soil magnetism studies because it is thought that the episodic input of sediment would form soils characterized by discrete sedimentary units rather than a continuous record of pedogenesis. We demonstrate that alluvial deposits can sometimes carry a straightforwardly interpretable magnetic signal similar to those typically seen in loess deposits. Smooth variation of rock magnetic parameters as a function of depth also leads us to conclude that the soil at this site is largely undisturbed and that the age of lithic artifacts found within the soil may be interpreted within stratigraphic context.

  14. Upper Fort Union coals in western Powder River Basin, Wyoming: alluvial-plain deposits

    SciTech Connect

    Flores, R.M.; Hardie, J.K.; Coss, J.M.; Weaver, J.N.; Van Gosen, B.S.

    1984-04-01

    Stratigraphic distribution of coals and associated lithofacies in the upper Fort Union Formation (Paleocene) was investigated in outcrop and subsurface from southeast of Sussex to south of Buffalo, Wyoming. In this area, Ayers and Kaiser in 1982 proposed that upper Fort Union coals accumulated in deltas and interdeltas, and pinched out into a lake. Our study does not support these interpretations. The upper 1000 ft (300 m) of the Fort Union Formation in the western Powder River basin comprises interbedded conglomerates, conglomeratic sandstones, sandstones, siltstones, mudstones, carbonaceous shales, and coals. The conglomerates, consisting of pebbles and cobbles reworked from Mesozoic and Paleozoic rocks, are in scour-based bodies as thick as 25 ft (8 m). A 300-ft (90 m) thick, 12-mi (19 km) long conglomeratic channel-sandstone complex is in the lower part of the interval. In the upper part of the interval, conglomeratic single- and multistory channel sandstones reach thickness of 100 ft (30 m) and widths of 4000 ft (1200 m). These channel sandstones grade into overbank-floodplain sediments, which are interbedded with backswamp deposits of coals and carbonaceous shales. The conglomeratic channel sandstones are interbedded with coal beds as thick as 20 ft (6 m). These coal beds probably are laterally equivalent to the 178-ft (54 m) thick Sussex coal deposit to the east. Lithofacies associated with the coals in the western Powder River basin suggest an alluvial-plain paleoenvironment. The alluvial plain consisted of braided and meandering streams flanked by well-drained and poorly drained backswamps. These streams probably are northeasterly flowing tributaries of trunk streams.

  15. A discontinuity in the late Pleistocene alluvial deposits, Hwacheon-ri, Gyeongju, Korea: Occurrences and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Paik, In Sung; Kyeong Seol, Weon; Kim, Hyun Joo; Lee, Ho Il; Kang, Hee Cheol

    2015-04-01

    Sedimentary discontinuity surface occurs in the late Pleistocene alluvial deposits exposed along the cliff (about 10 m thick and over 140 m in length) in stream side, Gyeongju, Korea. The discontinuity surface is laterally extensive and marked by distinct carbonaceous dark horizon in the middle part of the deposits. The deposits are divided into lower and upper units by the discontinuity surface. The lower unit overlies unconformably the Cretaceous andesitic rock (basement), and consists of braided-river deposits. Lower part of the lower unit is mainly composed of lenticular-bedded and clast-supported conglomeratic deposits, whereas gray to dark gray sandy to muddy channel-plug deposits occur in the uppermost part of the lower unit. It is characteristic that iron-oxide crusts occur in the lower unit. They are cutting across the lower unit and truncated by the overlying upper unit. Rootlets mineralized by vivianite are present in the channel-plug deposits below the discontinuity surface. The upper unit overlying the lower unit with erosive contact (discontinuity surface) is mostly composed of matrix-supported conglomeratic alluvial fan deposits. Hornfelsic gravels are common in the lower unit, whereas andesitic gravels are predominant in the upper unit, suggesting the provenance change from the lower unit to the upper unit. OSL ages for the lower and the upper units are 1259 ka and 949 ka, respectively, suggesting that the lower unit was deposited in MIS5e and the upper unit was formed in MIS5c to 5b. It is thus interpreted that the shift of depositional environment from a fluvial plain (lower unit) to an alluvial fan (upper unit) was an alluvial response to sea level change inducing fall of base level in an alluvial basin from the interglacial to the glacial stages. The development of iron-oxide crusts and diagenetic vivianite in the discontinuity surface suggest that humid condition persisted during the paleoclimatic shift from the last interglacial to the last glacial stages. Key words: Late Pleistocene, Alluvial deposits, Discontinuity, Iron-oxides, Vivianite

  16. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Becker, C.J.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma. Ground water in 710 square miles of Quaternary-age alluvial and terrace deposits along the North Canadian River is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer, composed of alluvial and terrace deposits, consists of sand, silt, clay, and gravel. The aquifer is underlain and in hydraulic connection with the upper zone of the Permian-age Garber-Wellington aquifer and the Pennsylvanian-age Ada-Vamoosa aquifer. Most of the lines in the four digital data sets were digitized from a published ground-water modeling report but portions of the aquifer boundary data set was extracted from published digital geologic data sets. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  17. The deep channel and alluvial deposits of the Ohio Valley in Kentucky

    USGS Publications Warehouse

    Walker, Eugene H.

    1957-01-01

    The alluvial deposits of Pleistocene age in the Ohio Valley form a ground-water reservoir of large storage capacity and yield. In this region it is the only source of large supplies of water that are both cool and of good quality the year round. The reservoir is heavily drawn upon, yet has very large potentialities for future development because of the favorable conditions for both natural and artificially induced infiltration of water from the river into the alluvial deposits. The principal features of the Ohio Valley were formed during the Pleistocene, or glacial, epoch. The drainage area upriver from Cincinnati was added when ice first advanced south, blocked rivers draining northwestward off the Appalachians, and diverted their waters southwest into the headwaters of the early Ohio River. A deep channel, the bottom of which is at a lower altitude than the present river bed, was excavated before the third (Illinoian) glacial stage. The thick body of sand and gravel that now lies in the deep channel was deposited by floods of melt water as the ice sheet of the Wisconsin stage melted away from the Ohio basin. The vertical distance between river pool level and the base of the old channel increases from 25 feet at Ashland, Ky., to 110 feet at the mouth of the river, for the old channel has a steeper gradient than the present river. The width of the bedrock valley ranges from half a mile at one point near Cincinnati to almost 10 miles near Uniontown, Ky. Where the valley is narrow, the flat-floored deep channel extends from one side of the valley to. the other. Where the valley is wide, the deep channel occupies only part of the width of the valley, the rest being underlain by rock benches mantled with alluvium. The alluvium consists of a sheet of sand and gravel overlain by a thinner layer of silt and clay. The sheet of sand and gravel is continuous across and up and down the valley, and at most places along the valley it is exposed in part of the river channel. The gravel is coarse and cobbly near Cincinnati but finer downstream, and near Paducah most of it is no larger than pea size. The thickness of water-saturated sand and gravel increases downvalley in the same way as does the distance between river level and the base of the old channel, roughly from 2b to 110 feet. The storage coefficient is likely to about 0.2, or 1.5 gallons of water per cubic foot of sand and gravel.

  18. Use of spectral data and Landsat TM for mapping alluvial fan deposits of the Rosillos Mountains in Brewster County, Texas

    SciTech Connect

    Bittick, S.M.; Morgan, K.M.; Busbey, A.B. . Dept. of Geology)

    1993-02-01

    The Rosillos Mountains consist of a large, highly faulted and fracture, exposed Tertiary igneous intrusion (laccolith) located adjacent to Big Bend National Park. This study examines the alluvial deposits that fan out over the 25,000 acre privately owned Rosillos Ranch located on the east side of the laccolith. Using a field spectrometer, spectral curves were generated for the various materials present. These surface reflectance patterns were used for spectral recognition and, along with Landsat digital data, for computer classification mapping of the alluvial fans. Several computer classification techniques will be presented along with mapping accuracies. Initial results indicate the resulting Landsat generated fan deposit maps are, in fact, related to the source areas and the age of deposition.

  19. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Schmidt, J.C.; Graf, J.B.

    1988-01-01

    High discharges occurring between 1983-1985 resulted in redistribution of sand stored in zones of recirculating current in the Colorado River in Grand Canyon National Park. Redistribution resulted in net loss in the number of reattachment deposits in narrow reaches and aggradation of some separation deposits. Separation deposits were more stable than other types of deposits. Alluvial sand deposits that are large enough and of sufficient size for use as campsites were more stable than smaller lower-elevation deposits. Fluctuating flows between October 1985 and January 1986 caused erosion throughout the Grand Canyon, and caused erosion of some deposits created by the high flows of 1983-1985. Data collected for this study included measurements of flow velocity, scour-and-fill of sand deposits, topographic and bathymetric surveys, mapping of surface-flow patterns, water-surface slope surveys, sedimentological analysis, and replication of photographs. A classification system of alluvial sand deposits was developed on the basis of morphometric characteristics and the location of these deposits in relation to parts of recirculation zones. (Author 's abstract)

  20. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Schmidt, John C.; Graf, Julia B.

    1990-01-01

    Alluvial sand deposits along the Colorado River in Grand Canyon National Park are used as campsites and are substrate for vegetation. The largest and most numerous of these deposits are formed in zones of recirculating current that are created downstream from where the channel is constricted by debris fans at tributary mouths. Alluvial sand deposits are classified by location and form. Separation and reattachment deposits are downstream from constrictions within recirculation zones. Separation deposits are near the point of flow separation and typically mantle large debris fans. Reattachment deposits are near the point of flow reattachment and project upstream beneath much of the zone of recirculating current. Upper-pool deposits are upstream from a constriction and are associated with backwaters. Channel-margin deposits line the channel and have the form of terraces. Some are created in small recirculation zones. Reattachment and channel-margin deposits are largest and most numerous in wide reaches, although small channel-margin deposits are used as campsites in the narrow Muav Gorge. Separation deposits are more uniformly distributed throughout Grand Canyon National Park than are other types of deposits. In some narrow reaches where the number of alluvial sand deposits used as campsites is small, separation deposits are a high percentage of the total. During high flows, both separation and reattachment deposits are initially scoured but are subsequently redeposited during flow recession. Sand is also exchanged between the main channel and recirculation zones. The rate of recession of high flows can affect the elevation of alluvial deposits that are left exposed after a flood has passed. Fluctuating flows that follow a period of steady discharge cause initial erosion of separation and reattachment deposits. A part of this eroded sand is transported to the main channel. Therefore, sand is exchanged between the main channel and recirculation zones and redistributed within recirculation zones over a broad range of discharges. Comparison of aerial photographs and reinterpretation of published data concerning changes of alluvial sand deposits following recession of high flows in 1983 and 1984 indicate that sand was eroded from recirculation zones in narrow reaches. In wide reaches, however, aggradation in recirculation zones may have occurred. In narrow reaches, the decrease of reattachment deposits was greater than that of separation deposits. In all reaches, the percentage of separation deposits that maintained a constant area was greater than for other deposits. Separation deposits, therefore, appear to be the most stable of the deposit types. Fluctuating flows between October 1985 and January 1986, which followed the higher and steadier flows of 1983 to 1985, caused erosion throughout the park. For separation deposits, erosion was greatest at those sites where deposition from the 1983 high flows had been greatest. The existing pattern of low campsite availability in narrow reaches and high campsite availability in wide reaches was thus accentuated by the sequence of flows between 1983 and 1985.

  1. Potential controls of alluvial bench deposition and erosion in southern Piedmont streams, Alabama (USA)

    NASA Astrophysics Data System (ADS)

    Haney, Nicholas R.; Davis, Lisa

    2015-07-01

    Benches are bank-attached channel deposits occurring at an elevation between the channel bed and top of banks. Their occurrence in a variety of geologic and hydrologic settings has led to confusion about the mechanisms driving their formation, which in turn contributes to difficulty identifying the active floodplain, bankfull stage, and the determination of environmental flows in some rivers. Hydrodynamic modeling software (River 2D), in combination with sediment particle size analysis and total station topographic surveys, was used to simulate flow conditions needed to erode and deposit the D84, D50, and D15 particle sizes of concave and lateral benches in two rivers (Talladega and Hillabee creeks) in Alabama. Results suggest that bench erosion requires flows at least 150% larger than benchfull stage at the Talladega site, while the Hillabee site experienced erosion at all discharges meeting and exceeding benchfull flow stage, likely owing to its overall smaller sediment particle sizes. At both sites, the presence of vegetation increased the bench area subjected to deposition but, somewhat counterintuitively, also helped influence the location of erosion by limiting flow vectors. In contrast with previous research findings, the occurrence of reverse flow was neither sustained nor widespread at either site. These findings provide new insight into alluvial benches, suggest that the study benches are relatively stable features under the prevailing hydrologic regime, and that in some temperate climate settings, such as the southern Piedmont, localized hydraulic controls on bench formation can be superseded in importance by hydrologic flow regime, even in the case of concave benches and where flow regulation is not a factor.

  2. Hydrogeologic characteristics of the alluvial aquifer and adjacent deposits of the Fountain Creek valley, El Paso County, Colorado

    USGS Publications Warehouse

    Radell, Mary Jo; Lewis, Michael E.; Watts, Kenneth R.

    1994-01-01

    The alluvial aquifer in Fountain Creek Valley between Colorado Springs and Widefield is the source for several public-supply systems. Because of the importance of this aquifer, defining aquifer boundaries, areas where underflow occurs, and where Fountain Creek is hydraulically connected to the aquifer will greatly add to the understanding of the alluvial aquifer and management of the public- supply systems. Bedrock altitude, water-table altitude for October 1991, saturated thickness for October 1991, selected hydrogeologic sections in the alluvial aquifer and adjacent deposits of the Fountain Creek Valley, and estimated underflow rates are mapped or tabulated for the area between Colorado Springs and Widefield, Colorado. Results from test drilling indicate that the bedrock surface is highly irregular and that several ridges and buried channels exist in the study area. These features affect the direction of ground-water flow on a local scale. In places, a shale ridge prevents exchange of water between Fountain Creek and the aquifer. Generally, ground water flowed toward Fountain Creek during the study (June 1991 to September 1992) in response to relatively high hydraulic heads in the aquifer and the steep gradients on the boundaries of the study area. Water levels, which were measured monthly, varied little during the study, except in areas near pumping wells or adjacent to Fountain Creek. Hydraulic-conductivity values, estimated from 30 bail tests in wells completed in the alluvial aquifer, were used to determine underflow across the saturated boundaries of the alluvial aquifer. Estimated hydraulic-conductivity values range from 1 to about 1,300 feet per day; the larger values occur in the buried channel of the alluvial aquifer and the smaller values occur near the boundaries of the saturated alluvium. Estimated underflow into the study area exceeded underflow out of the study area by about 10 times. Gain-loss investigations along Fountain Creek indicated that the creek primarily was gaining during the study.

  3. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma. Ground water in 830 square miles of the Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of poorly sorted, fine to coarse, unconsolidated quartz sand with minor amounts of clay, silt, and basal gravel. The hydraulically connected alluvial and terrace deposits unconformably overlie the Tertiary-age Ogallala Formation and Permian-age formations. Most of the lines in the aquifer boundary and recharge data sets and some of the lines in the hydraulic conductivity data set were extracted from a published digital surficial geology data set based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. The data sets are provided in both nonproprietary and ARC/INFO export file formats. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  4. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona; executive summary

    USGS Publications Warehouse

    Schmidt, J.C.; Graf, J.B.

    1988-01-01

    High discharges that occurred in 1983-85 resulted in redistribution of sand stored in zones of recirculating current in the Colorado River in Grand Canyon National Park. Redistribution resulted in net loss in the number of reattachment deposits in narrow reaches and aggradation of some separation deposits. Separation deposits were more stable than other types of deposits. Alluvial sand deposits that are large enough and of sufficient areal extent for use as campsites were more stable than smaller lower-elevation deposits. Fluctuating flows between October 1985 and January 1986 caused erosion throughout the Grand Canyon and caused erosion of some deposits created by the high flows of 1983-85. (Author 's abstract)

  5. Glaciers and Late Quaternary glacial deposits of Turkey

    NASA Astrophysics Data System (ADS)

    Çiner, A.

    2003-04-01

    Turkish glaciers and Late Quaternary glacial deposits are observed in 3 regions: 1. The Taurus Mountain Range (Mediterranean coast and SE Turkey): Two thirds of the present day glaciers are concentrated in the SE part. Among these mountains, Mount Cilo (4168 m) alone supports more than ten glaciers, couple of them 4 km long. In the central part, Aladag (3756 m) and Bolkardag (3524 m) Mountains contain few small glaciers. Small ice caps developed on top of both mountains in Pleistocene. Several U-shaped valleys were carved by glaciers that formed different types of moraines. Even though there are signs of past glacial activity in Beydag (3086 m), Akdag (3016 m) and Sandiras Mountains (2295 m) no glaciers are present in the W Taurus Mountains today. 2. The Pontic Mountain Range (E Black Sea coast): The highest peak is Mount Kaçkar (3932 m) where five glaciers are developed. Several other mountains such as Verçenik (3710 m), Bulut (3562 m), Altiparmak (3353 m), Karagöl (3107 m) and Karadag (3331 m) also support various glaciers. Large U-shaped valleys containing terminal, lateral and ground moraines are observed although the present humid climatic conditions altered most of them. 3. Volcanoes and independent mountain chains scattered in the Anatolian Plateau: The volcanoes in the interior of the country support active glaciers and show signs of past glacial activity. Among them, Mount Agri (Ararat) (5165 m) is the only mountain on which a 10 km2 recent ice cap is developed. Eleven glaciers emerged from the summit, descending down to 3900 m on the N-facing slope and 4200 m on the S facing slope. The near absence of moraines can be explained by the lack of confining ridges to control valley glaciers, by insufficient debris load in the ice to form moraines and by volcanic eruptions that later covered the pre-existing moraines. Other important volcanoes, Mount Süphan (4058 m) and Mount Erciyes (3916 m) also contain active glaciers and well preserved moraines. Apart from the volcanoes, few other mountains in Central Anatolia, such as Uludag (2543 m), Mercan (3368 m) and Mescid (3239 m) bear signs of past glacial activity. The absence of dating of the morainic landforms makes it difficult to assign a precise age to the past glacial periods. However a project that aims to establish glacial chronlogies for the above mentioned mountains by using in situ cosmogenic 36Cl in the moraines, is recently developed. The data available on glaciers indicate that the most recent glacier retreat probably started at the beginning of the 20th century, becoming faster since the 1930's. This shrinkage trend is yet to be quantified by additional field observations in order to understand the glacier evolution of Turkey.

  6. Ground water in the alluvial deposits of Cottonwood Creek Basin, Oklahoma

    USGS Publications Warehouse

    Stacy, B.L.

    1960-01-01

    Cottonwood Creek basin is a 377 square mile area in central Oklahoma. The rim of the basin has altitudes as high as 1,300 feet, and the mouth is at an altitude of 910. Deposits of Quaternary age consist of alluvium along the stream courses and high terrace deposits along the southern rim of the basin. The alluvium contains a high percentage of clay and silt, ranges in thickness from a few inches to 40 feet, and underlies about 36 square miles of the basin. Sandstone, siltstone, and shale of Permian age, which form the bedrock, consist of the Garber sandstone along the eastern edge, the Hennessey shale through the central part, and Flowerpot shale along the western edge. Replenishment of water in the alluvium is from precipitation, lateral seepage and runoff from adjoining areas, and infiltration from the stream channels during high flows. The major use of ground water in the alluvium is transpiration by cottonwood and willow trees. Virtually no water is withdrawn from the alluvium by wells. (available as photostat copy only)

  7. Late Quaternary mass-wasting records and formation of alluvial terraces in the actively uplifting Lao-nong catchment, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsui, H. K.; Hsieh, M. L.; Li, W. L.; Hsiao, Y. T.

    2014-12-01

    Although dominated by erosion over long term, the tectonically active mountains of Taiwan commonly contain thick landslide and debris-flow gravels capping hillslopes or forming alluvial terraces. These deposits and their associated landforms serve to study ancient mass-wasting histories and their controls on fluvial processes. This study focuses on the Lao-nong River draining the 1000-3000 m high mountain areas in southwestern Taiwan (current tectonic uplift: 10-20 mm/yr). The Lao-nong River exhibits numerous terraces, many of which are of tributary-fan origins and consist of fluvial/debris-flow gravels 20-200 m thick. The development of such alluvial terraces can be observed during 2009 Typhoon Morakot, which brought record-setting 2000 mm of rain. Triggered by this heavy rain, almost all the tributaries of the Lao-nong generated alluvial fans at their mouths and consequently caused up-to-30 m aggradation along the trunk river. The Lao-nong has yielded >100 radiocarbon dates (all <20 ka).These data reveal that the formation of the observed alluvial terraces (from deposition of thick gravels to subsequent incision) could proceed very rapidly (<1 ky), and that the trunk river has been characterized by repeated aggradation and incision. This fact highlights the significance of event-driven sediment supply in governing the river behavior, which has strongly obscured the effect of the concurrent tectonic uplift. Among the terraces consisting of thick gravels, the six with 100-200 m-thick gravels are dated~18ka, ~12ka (for two terraces), ~5.5ka, ~3.4ka, and ~1.4 ka. The seven terraces with 50-100 m-thick gravels are dated ~12ka, ~8.3ka, ~5.7ka, ~1.3ka and 0.2-1.6ka (two undated). These dates (and others) suggest the clusters of mass-wasting events around ~12ka, 5.5-5.7 ka, and <1.6 ka. However, note that most of the recorded mass-wasting events vary in time and magnitude among tributary catchments, which implies the controls of internal factors on the timing, magnitude, and frequency of the events. Our field observation suggests that at least some of the large Holocene tributary-fan terraces were sourced from pre-Holocene colluviums.

  8. Infiltration Into Sandy Alluvial Deposits: Effects of Moisture-Dependent Anisotropy?

    NASA Astrophysics Data System (ADS)

    Brainard, J. R.; Yeh, T. J.; Glass, R. J.

    2001-12-01

    An infiltration transport experiment was undertaken in a heterogeneous sandy alluvial deposit adjacent to and above a vertical exposure. Water containing red followed by blue food coloring was ponded on the surface using a square infiltrometer measuring 0.46-m on a side. The advancement of the dye and wetting front on the vertical face was photographed several times throughout the infiltration event. After infiltration was stopped, vertical slices were excavated at regular intervals to the midpoint of the infiltrometer providing the ability to observe the tracer in a quasi three-dimensional manner. While initial infiltration of the red dye enhanced the ability to observe wetting front patterns, sequential infiltration of the two dyes resulted in color contrast providing the ability to observe internal flow field behavior. The red dye front significantly lagged behind the wetting front. Dye fronts also exhibited significantly more complication than did the wetting front suggesting a less diffusive process. Lateral spreading of both wetting and dye fronts were twice that of the vertical indicating a pronounced effect of horizontal layering. Assuming homogeneity of the deposits, three-dimensional numerical simulations of the infiltration process were conducted. Results of the simulations indicated that the model with isotropic conductivity-pressure relations overestimated the vertical movement of the wetting front. Similarly, a model assuming constant hydraulic anisotropy did not adequately capture the evolution of the observed wetting front. The simulation, based on a model with moisture-dependent anisotropic conductivity relations, however, produced moisture distributions that appear to be in a good agreement with the observed distributions.

  9. Mineralogical characteristics of the superlarge Quaternary bauxite deposits in Jingxi and Debao counties, western Guangxi, China

    NASA Astrophysics Data System (ADS)

    Liu, Xuefei; Wang, Qingfei; Zhang, Qizuan; Feng, Yuewen; Cai, Shuhui

    2012-06-01

    In recent decades, more than 0.5 billion tons of ores scattered in the Quaternary laterite in western Guangxi, China have been explored. The ores were derived from a bauxite horizon in Permian via physical break-up and re-sediment process. Utilizing various test methods, i.e., XRD, DTA, TG/DTG, SEM/EDS and EPMA, the mineralogical characteristics of the Quaternary bauxite ores in Jingxi and Debao counties were investigated. XRD was used together with TG/DTG to obtain relatively accurate ore mineral abundance. Diaspore is the major phase, whereas hematite, kaolinite, anatase, chamosite, gibbsite, goethite, illite and rutile are minor. Diaspore is characterized by a small particle size, low degrees of crystallinity and complex chemical composition. Both gibbsite and goethite have a varied particle size, and goethite crystals contain high Al substitution and Si. It is clarified that diaspore, chamosite and anatase were formed in a mildly reduced and alkaline depositional environment in Permian, while gibbsite, hematite, goethite and part kaolinite were precipitated from Al3+-, Si4+- and Fe3+-enriched solutions within an Quaternary oxidized environment. The ions Al3+, Si4+ and Fe3+ are mostly released from chamosite in its dissolution process. The different physicochemical conditions between the Permian depositional and the Quaternary weathering periods resulted in a complex mineral assemblage in the Quaternary bauxite.

  10. Jesse Ewing Canyon Formation, an interpreted alluvial fan deposit in the basal Uinta Mountain Group (Middle Proterozoic), Utah

    SciTech Connect

    Sanderson, I.D.; Wiley, M.T.

    1986-07-01

    The Jesse Ewing Canyon Formation, a member of the Middle Proterozic Uinta Mountain Group, is here proposed as a formal lithostratigraphic unit. It consists of interbedded dark reddish-brown to dark gray conglomerate with predominant white, pale green, gray, or pink metaquartzite clasts, light to dark brown or reddish-brown quartz arenite, and reddish-brown, red, or maroon shale. This represents the first proposal of a formation in the Uinta Mountain Group in the eastern part of the range and follows by only a few years beginning efforts to establish formations in the group in the western part. The Jesse Ewing Canyon Formation locally constitutes the basal member of the Uinta Mountain Group and is here reaffirmed as an alluvial fan deposit, based on a detailed comparison of observed features to those of modern alluvial fans. This interpretation supports the hypothesis that the Uinta Trough is an aulacogen.

  11. Reconnaissance investigation of the alluvial gold deposits in the North Takhar Area of Interest, Takhar Province, Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Moran, Thomas W.

    2013-01-01

    This study is a reconnaissance assessment of the alluvial gold deposits of the North Takhar Area of Interest (AOI) in Takhar Province, Afghanistan. Soviet and Afghan geologists collected data and calculated the gold deposit reserves in Takhar Province in the 1970s, prior to the development of satellite-based remote-sensing platforms and new methods of geomorphic mapping. The purpose of this study was to integrate new mapping techniques with previously collected borehole sampling and concentration sampling data and geomorphologic interpretations to reassess the alluvial gold placer deposits in the North Takhar AOI. Through a combination of historical borehole and cross-section data and digital terrain modeling, the Samti, Nooraba-Khasar-Anjir, and Kocha River placer deposits were reassessed. Resource estimates were calculated to be 20,927 kilograms (kg) for Samti, 7,626 kg for Nooraba-Khasar-Anjir, 160 kg for the mouth of the Kocha, 1,047 kg for the lower Kocha, 113 kg for the middle Kocha, and 168 kg for the upper Kocha. Previous resource estimates conducted by the Soviets for the Samti and Nooraba-Khasar-Anjir deposits estimated 30,062 kg and 802 kg of gold, respectively. This difference between the new estimates and previous estimates results from the higher resolution geomorphic model and the interpretation of areas outside of the initial work zone studied by Soviet and Afghan geologists.

  12. Tectonic and climatic influences on the deposition and preservation of Quaternary units along the range-front of the Manastash Anticline, Yakima Fold Belt, Washington

    NASA Astrophysics Data System (ADS)

    Ladinsky, T. C.; Kelsey, H. M.; Sherrod, B. L.; Mahan, S.; Pratt, T. L.; Blakely, R. J.

    2012-12-01

    Based on multiple independent data sets, we infer episodic base-level lowering of the Kittitas Valley relative to tributaries flowing northward off the Manastash Ridge range-front and within the neighboring Lower Yakima River Canyon of central Washington. Manastash Ridge is a southeast-striking anticline within the Yakima fold and thrust belt, which deforms the extensive Miocene Columbia River Basalt flows that cover the region. Understanding the roles of climate aggradation and degradation cycles in concurrence with tectonic faulting along Manastash Ridge suggests both have contributed to the landscape evolution of the southern Kittitas Valley and Manastash range-front. Previously described proglacial outwash terraces within the northern Kittitas Valley and Upper Yakima River Canyon document periods of aggradation followed by fluvial degradation and entrenchment due to alteration in hillslope sediment production and transport capacity related to glacial and interglacial conditions. Luminescence age determinations and tephrochronology for Manastash range-front Quaternary units yield preliminary timing for aggradation of alluvial units, which we correlate to the late Pleistocene (MIS Stage V) glacial-interglacial climate transition. Seismic-reflection imagery, LiDAR, aeromagnetic surveys, and field mapping of Quaternary deposits reveal fault scarp lineaments within the Manastash range-front, west of the canyon entrance. We suggest these scarps are related to a series of north-verging thrust faults accommodating growth of the Manastash anticline. These faults isolate and uplift fan complexes, each complex generated during climate conditions favorable to fan aggradation. Entrenched alluvial fan deposits along the rangefront, strath terrace sequences, coincident knickpoints within tributary longitudinal profiles, and fault scarp lineaments suggest uplift rates of 0.02 to 0.2 m/1000yrs.

  13. Magnetic Properties of Quaternary Deposits, Kenai Peninsula, Alaska -- Implications for Aeromagnetic Anomalies of Upper Cook Inlet

    USGS Publications Warehouse

    Saltus, R.W.; Haeussler, P.J.

    2004-01-01

    We measured magnetic susceptibilities of exposed Quaternary deposits on several beach cliffs and river banks on the Kenai Peninsula near Soldotna, Alaska. Data, descriptions, and photos from nine sites are included in this report. The mean susceptibility for Quaternary materials in this region is approximately 2.5 x 10-3 SI units. This is sufficiently magnetic to produce subtle aeromagnetic anomalies such as those observed to correlate with topographic features in the region of the measurements. The highest susceptibilities measured (greater than 20 x 10-3 SI units) may help, at least in part, to explain moderate amplitude aeromagnetic anomalies observed elsewhere in Cook Inlet, particularly those relating to structures showing Quaternary movement. Comparison of measured beach cliff susceptibility and susceptibility predicted from idealized formulas and two-dimensional cliff models suggests that measured susceptibilies underestimate true bulk susceptibility by 20 percent to 50 percent in this region.

  14. Plio-Quaternary seismic stratigraphy and depositional history in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Yoo, Dong-Geun; Kang, Nyeon-Keon; Yi, Bo-Yeon; Kim, Seong-Pil

    2014-05-01

    Analysis of multi-channel seismic data from the Ulleung basin reveals that Plio-Quaternary sequence in the area consists of nine stacked sedimentary units bounded by erosional unconformities. On the southern slope, these units are acoustically characterized by chaotic seismic facies without distinct internal reflections, interpreted as mass-transport deposits. Toward the basin floor, the sedimentary units are defined by well-stratified facies with good continuity and strong amplitude, interpreted as turbidite/hemipelagic sediments. The seismic facies distribution suggests that deposition of Plio-Quaternary sediments in the area was controlled mainly by tectonic effects associated with sea-level fluctuations. During Pliocene, sedimentation was mainly controlled by tectonic movements related to the back-arc closure of the East Sea. The back-arc closure that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted crustal blocks, were supplied to the basin, forming Unit 1 which mainly consists of mass-transport deposits. During the Quaternary, sea-level fluctuations resulted in stacked sedimentary units (2 to 9) consisting of mass-transport deposits, formed during sea-level fall and lowstands, and thin hemipelagic/turbidite sediments, deposited during sea-level rise and highstands.

  15. Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. A.

    2005-01-01

    Moore and Howard [1] reported the discovery of large alluvial fans in craters on Mars. Their initial survey from 0-30 S found that these fans clustered in three distinct regions and occurred at around the +1 km MOLA defined Mars datum. However, due to incomplete image coverage, Moore and Howard [1]could not conduct a comprehensive survey. They also recognized, though did not quantitatively address, gravity scaling issues. Here, we briefly discuss the identification of alluvial fans on Mars, then consider the general equations governing the deposition of alluvial fans and hypothesize a method for learning about grain size in alluvial fans on Mars.

  16. Sedimentary environment and sequence stratigraphy of the late Quaternary deposits in the central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lee, G.; Yoo, D.; Kim, D. C.; Kim, S.; Choi, H.; Yi, H.

    2013-12-01

    In the central Yellow Sea, approximately 52,600 line-km of Chirp seismic profiles and 5,060 line-km of Sparker seismic profiles were used to define the sedimentary environments and to investigate the sequence stratigraphy of the late Quaternary deposits. On the basis of topography, depth, formation of deposition, and seismic facies, the central Yellow Sea are classified into three sedimentary environments: (1) a various scale sand ridges/waves and mud belt (the western inner-shelf of the Korean Peninsula), (2) recent- and paleo-channels, erosional and broad surface (the center of the Yellow Sea), and (3) prodelta mud patch (the eastern offshore of China). According to correlation of high-resolution seismic data and sediment cores in the central Yellow Sea, the late Quaternary deposits in the central Yellow Sea are divided into five distinctive sedimentary units (units CY1~5), consisting of two depositional sequences that can be defined as erosional and disconformable strata. The major depositional processes and sediment dispersal systems during the late Quaternary in the central Yellow Sea are: (1) regressive estuarine/deltaic deposits (unit CY1), (2) transgressive incised channel fill (unit CY2), (3) transgressive sand sheet (unit CY3), (4) transgressive sand ridges (unit CY4), and (5) prodelta/recent mud (unit CY5). The depositional sequences follow the general concepts of sequence stratigraphy very well. Lower sequence (DI) correspond to the falling stage systems tract regarded as regressive estuarine or deltaic deposits (unit CY1), whereas upper sequence (DII) consists of a set of the transgressive (units CY2, CY3, and CY4) and highstand systems tract (unit CY5) formed since the last-glacial period.

  17. A silicified bird from Quaternary hot spring deposits

    PubMed Central

    Channing, Alan; Schweitzer, Mary Higby; Horner, John R; McEneaney, Terry

    2005-01-01

    The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met. PMID:16024344

  18. A silicified bird from Quaternary hot spring deposits.

    PubMed

    Channing, Alan; Schweitzer, Mary Higby; Horner, John R; McEneaney, Terry

    2005-05-01

    The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met. PMID:16024344

  19. Subsurface geology of upper Tertiary and Quaternary deposits, coastal Louisiana and adjacent Continental Shelf

    SciTech Connect

    McFarlan, E. Jr.; Leroy, D.O.

    1988-09-01

    Upper Tertiary and Quaternary deposits thicken seaward from a feather edge on the outcrop in the uplands of southern Louisiana to more than 7000 ft (2134 m) beneath the middle continental shelf. Through a study of cores and cuttings from 100 control wells and electric-log pattern correlations from 350 water and petroleum industry wells with seismic corroboration in the offshore area, these deposits have been divided into six major time-stratigraphic units, four of which correlate to outcropping terraces. This investigation presents a regional stratigraphic framework of the major upper Tertiary and Quaternary units from their updip pinch-outs in and beneath the terraced uplands, into the subsurface, across the coastal plain to the Louisiana offshore area.

  20. Methane in ground ice and frozen Quaternary deposits of Western Yamal

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. A.; Streletskaya, I. D.; Melnikov, V. P.; Oblogov, G. E.

    2015-12-01

    The content and the genesis of methane in underground ice and frozen Quaternary sediments of Western Yamal is studied. The minimum concentration of methane in frozen Quaternary deposits was found for sand: 15-100 ppm V. The maximum concentration of methane reaches 3000 ppm V in marine clays. The concentration of methane in the ice wedges is 100-700 ppm V, and in the massive ground ice can be more than 10 000 ppm V. The high content of methane in the massive ground ice we explain by migration of methane from freezing deposits into ice body during its formation. The close connection between methane concentration and organic carbon content is found.

  1. Fossil oribatid mites (Acari, Oribatida) from the Florisbad Quaternary deposits, South Africa

    NASA Astrophysics Data System (ADS)

    Coetzee, Louise; Brink, James S.

    2003-03-01

    In a pioneer application of acarology to Quaternary fossil-bearing sediments in southern Africa, the oribatid composition in the Florisbad Quaternary sediments was determined and compared to the currently known distribution of those species. Nine species of oribatid mites were recorded in the Holocene aeolian deposits of the third test pit, three species from the Middle Stone Age (MSA) horizon sediments of the third test pit, and thirteen species from the Holocene spring sediments. The Florisbad results indicate a better agreement between the oribatid fauna of the last interglacial MSA horizon of the third test pit and the organic-rich mid-Holocene deposits near the spring than between either of these and early- and late-Holocene aeolian sediments of the third test pit, suggesting some similarity in microsedimentary environments. The majority of the species recorded in the sediments are parthenogenetic and can be regarded as pioneer species.

  2. Elevated Mercury Concentrations in Alluvial Deposits of the Humid Tropics of South America: Natural vs. Anthropogenic Sources

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Lechler, P. J.

    2001-12-01

    Mercury (Hg) amalgamation is extensively used throughout the humid tropics of South America for the extraction of fine-gold particles from secondary ore deposits. Early studies of water, sediments and fish generally concluded that these gold mining operations have extensively contaminated the aquatic environment. However, investigations along a 900-km reach of the Maderia River, Brazil suggest that while Hg values in sediments and water are above global averages, the high mercury levels are largely due to natural sources. Of primary significance is the inability to distinguish between Hg concentrations in upland soils (oxisols) and modern channel and floodplain deposits. Spatial trends in the data suggest that the impact of anthropogenically released Hg from mine sites is relatively localized. This conclusion is supported by other, independent studies in the Rio Negro basin where elevated Hg values were found in terrace deposits in spite of the fact that no modern mining activities are known to occur within the watershed. Moreover, Roulet and his colleagues have demonstrated using mass balance calculations that within the Tapajos River basin as much as 97 percent of Hg in the alluvial deposits is derived from Hg enriched oxisols eroded during deforestation. In a regional examination of Hg levels within alluvial deposits of Essequibo and Mazaruni Rivers of Guyana, we again found that Hg levels were above both regional background values (10 to 80 ppb) and global averages. However, deforestation within these watersheds is limited, reducing the influx of Hg from eroded upland soils. In addition, the spatial trends in Hg concentrations suggest a closer link between mining activities and Hg values than is found in Maderia River of Brazil. It is unclear at this time, however, whether the primary Hg source in Guyana is the direct input of Hg to the river during amalgamation, or to the influx of Hg enriched soils eroded during the dredging of channel bed sediments and hydraulic mining of floodplain materials.

  3. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions. PMID:18976857

  4. Sequence stratigraphy of the late Quaternary deposits in the southern Jeju Island

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, D. C.; Lee, G.; Bae, S.; Yi, H.

    2012-12-01

    Distribution pattern of the Holocene mud deposits and the sequence stratigraphy of late Quaternary in the southern Jeju Island of Korea were interpreted using the high-resolution seismic profiles (Chirp and Sparker system). Approximately 700 line-km data of chirp and sparker profiles were acquired in the study area. We also used a deep drill core to interpret the sedimentary sequences, and 11,000 line-km data of Chirp profiles provided by the National Oceanographic Research Institute of Korea. The late Quaternary deposits in the study area can be classified into three sedimentary units (Units I, II and III from bottom to top). The sedimentary sequences are bounded by an erosional surfaces and internal seismic reflectors: (1) regressive deltaic deposits (Unit I), (2) transgressive estuarine/deltaic complex and sand ridges/sheet (Unit II), and (3) recent mud (Unit III). Based on high-resolution seismic profiles and correlation with the ECSDP-102 core, the Unit I is interpreted as falling stage systems tract, whereas Unit II and Unit III are correspond to transgressive systems tract and highstand systems tract, respectively. The mud deposit showing a circle shape locates about 140 km off the southern Jeju Island and generally occurs at the depth between 60 and 90 m below sea level in this area. It is commonly 1~6 m thick. The circular distribution pattern of the mud deposits appears to be largely controlled by the presence of cyclonic eddy in the southern Jeju Island.

  5. Slope Deposits and (Paleo)Soils as Geoarchives to Reconstruct Late Quaternary Environments of Southern Africa

    NASA Astrophysics Data System (ADS)

    Huerkamp, K.; Voelkel, J.; Heine, K.; Bens, O.

    2009-04-01

    Although it is clear that large, rapid temperature changes have occurred during the last glacial-interglacial cycle and the Holocene in southern Africa, we have only limited, and often imprecise, knowledge of how the major moisture-bearing atmospheric circulation systems have reacted to these changes. Using slope deposits and soils as palaeoclimatic geoarchives we will overcome these constraints. The role of many geoarchives in the reconstruction of the Quaternary climate in southern Africa remains controversial, since the paleoclimate data are based on evidence from marine cores, lake sediments, speleothems and spring sinter, fluvial sediments, aeolian sands and dust, colluvium, and coastal sediments. To elucidate climate controls on Quaternary landscape evolution and to use these data for palaeoclimatic reconstructions, thus far slope deposits and soils have been investigated. Climatic controls on these cycles are incompletely known. The availability of results from earlier fieldwork, micromorphology, Optical Stimulated Luminescence (OSL), 14C dating and stable carbon isotope analysis will permit a thorough assessment of slope deposits and soils in terms of their palaeoenvironmental potential. The knowledge of suitable areas and sites in different climatic zones of southern Africa where slope deposits and soils have already been found document the late Quaternary climatic history and even climatic anomalies (e.g. Younger Dryas period at Eksteenfontein, 8.2 ka event at Tsumkwe, 4 ka event in the Auob valley, Little Ice Age in the Namib Desert). The findings will show the late Quaternary history of precipitation fluctuations, of the shifting of the ITCZ (and the ABF - Agulhas-Benguela Front), of wind intensities and directions, and of extreme precipitation events. The project will employ state-of-the-art geoscience methodology to interpret the record of precipitation changes of the late Quaternary, including the shifting of the summer and winter rain belts, the chronology of catastrophic floods, the wind intensity and direction, and the role climatic factors may have played for prehistoric cultures. We will use shallow geophysical surveys as ground penetrating radar, electrical resistivity tomography and seismic refraction to differentiate sediments and the layers within them. Drilling is needed to recover samples and cores. Remote sensing will basicly help to calculate the spreading of slope deposits in mountainous areas and escarpments. Sedimentological and pedogenetical lab analysis (XRF, XRA, element analysis etc.) is used to identify finger prints of special sediment units, their sources and transportation rates. OSL and other dating methods will give the needed chronostratigraphical informations. High resolution late Quaternary records are provided by analysing the interstratification of slope deposits and soils with fluvial, lacustrine and aeolian sediment sequences. Earlier research has shown that aeolian and fluvial processes were active at the same time in the southwestern Kalahari during the LGM, documented by sequences of alternate bedding of aeolian, colluvial and fluvial sediments. The interfingering of slope deposits with fluvial flood sediments (slackwater deposits) in Namib Desert valleys document extreme precipitation events in the upper highland catchments and rains at the same time in the desert itself. The program will generate space and time transgressive models of slope deposit formation and soil development and identify key parameters controlling slope processes. These results will provide a solid base for evaluation and assessment of precipitation conditions and erosion/sedimentation processes for southern Africa under global warming conditions.

  6. Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Pacifico, Annamaria; Rossi, Veronica; Ruberti, Daniela

    2012-12-01

    Extensive illustration of depositional facies, ostracod and foraminiferal assemblages, and Late Quaternary stratigraphic architecture is offered for the first time from beneath the modern coastal plain of Volturno River, the longest river in southern Italy. Proximity to an active volcanic district, including quiescent Vesuvius Volcano, provides an easily identifiable stratigraphic marker (Campania Grey Tuff or CGT), up to 55 m thick, emplaced 39 ky cal BP by a large-volume explosive pyroclastic eruption. Identification of top CGT to a maximum depth of 30 m allows tracing out the shape of a 15-20 km wide Late Quaternary palaeovalley incised by Volturno River into the thick ignimbritic unit immediately after its deposition. A terraced palaeotopography of the valley flanks is reconstructed on the basis of core data. Above the basal fluvial deposits, the early Holocene transgressive facies consist of a suite of estuarine (freshwater to brackish) deposits. These are separated from overlying transgressive barrier sands by a distinctive wave ravinement surface. Upwards, a distinctive shallowing-upward succession of middle-late Holocene age is interpreted to reflect initiation and subsequent progradation of a wave-dominated delta system, with flanking strandplains, in response to reduced rate of sea-level rise. The turnaround from transgressive to highstand conditions is identified on the basis of subtle changes in the meiofauna. These enable tracking of the maximum flooding surface into its updip (lagoonal/estuarine) counterpart, thus highlighting the role of refined palaeontological criteria as a powerful tool for high-resolution sequence-stratigraphic studies.

  7. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  8. Pedogenic and early diagenetic processes in Palaeogene alluvial fan and lacustrine deposits from the Sado Basin (S Portugal)

    NASA Astrophysics Data System (ADS)

    Pimentel, N. L. V.

    2002-04-01

    The Palaeogene deposits of the Sado Basin were deposited in a continental basin that shows a typical pattern with alluvial fans system in the margins of the basin, passing towards distal areas of mudflat facies where, in some areas, the installation of shallow water bodies favoured the development of palustrine conditions. The deposits of this basin vary form coarse conglomerates and sandstones to palustrine carbonates. These sediments were affected by pedogenesis and early diagenetic processes that promoted important modifications on their primary features. These modifications have been studied by the analyses of four profiles, developed on proximal, middle and distal fan deposits and the fourth one on lacustrine deposits. The overall analyses of the sedimentological, pedogenic, diagenetic features and their relationships indicate that three main processes took place throughout the basin: soil formation, palygorskite neoformation and dolomitization. Soil formation processes led to illuviation of clays and carbonate precipitation mostly around roots. Pedogenic carbonates increase towards distal areas, whereas hydromorphic features are present throughout the basin. Palygorskite neoformation was partially diagenetic, being maximum in proximal areas and palustrine deposits. This neoformation is attributed to the percolation of alkaline Mg-rich soil and groundwaters through smectitic-rich sediments, promoting important clay transformation. Dolomitization was an early diagenetic process that occurred mainly in carbonate-rich deposits of distal and lacustrine environments, as a result of the increasing Mg/Ca ratio of the percolating groundwaters. In all these processes there has been a close spatial and temporal interplay between pedogenesis and diagenesis, driven by the chemistry of soil particles and groundwaters.

  9. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  10. Sequence stratigraphy of the late Quaternary deposits in the central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Bae, S.-H.; Kim, D.-C.; Lee, G.-S.; Yi, H.-I.; Cho, H.-G.

    2012-04-01

    High-resolution (Chirp and Sparker system) seismic profiles and piston core samples were analyzed to investigate the sequence stratigraphy of late Quaternary in the central Yellow Sea. Approximately 52,610 line-km data of chirp and sparker profiles was acquired. Along with seismic profiling, 16 piston core samples collected in 1998 and 1999. We also used a deep drill core to interpret the sedimentary sequences. In this study High-resolution seismic profiles and deep drill core show the complex sedimentary structure. The late Quaternary deposits in the study area can be divided into five sedimentary units (units CY1, CY2, CY3, CY4, and CY5 from the oldest to youngest) bounded by an erosional surface and internal seismic reflectors: (1) regressive estuarine/deltaic deposits (unis CY1), (2) transgressive incised channel fill (unit CY2), (3) transgressive sand sheet (unit CY3), (4) transgressive sand ridges (unit CY4), and (5) prodelta/recent mud (unit CY5). Based on the interpretation of high-resolution seismic records and correlation with the YSDP-105 and piston cores, lower sequence (DI) correspond to the falling stage systems tract regarded as regressive estuarine or deltaic deposits (unit CY1), whereas upper sequence (DII) consists of a set of the transgressive (units CY2, CY3, and CY4) and highstand systems tract (unit CY5) formed since the last-glacial period.

  11. Plio-Quaternary Seismic Stratigraphy and Depositional History at the Southern Exit of the Bosphorus Strait

    NASA Astrophysics Data System (ADS)

    Kprl, Kerem; Vardar, Denizhan; Alpar, Bedri

    2015-04-01

    Analysis of Chirp seismic reflection data from the junction of the southern Bosphorus exit with the northern shelf of the Sea of Marmara reveal that Plio-Quaternary section in the area consists of three stacked sedimentary units separated by erosional unconformities. The seismic facies distribution suggests that deposition of Plio-Quaternary section in the studied area was controlled mainly by the hydrodynamic conditions which controlled the water exchange through the Bosphorus channel between the Black Sea and the Sea of Marmara, the sea-level fluctuations and partly by the tectonic movement as controlled by the North Anatolian fault. The main seismic sequences defined above the acoustic basement are made up of various sub-units with different seismic characteristic features. The deepest sequence (marine Unit 3), for example, is deposited under the control of the paleo-topography of the basement rocks. The overlying sub-unit (Unit 2a) is only observed in the natural paleo-canyon at the southern exit of the Bosphorus strait. Based on their reflection characteristics, its detrital material was supplied by a nearby river to the east during high-stand system tracts. Above the sub-unit 2a, a cut-and-fill structure forms the sub-unit 2b. It is small in size and caused locally by possible erosion of a northerly flow from the paleo-Bosphorus channel. At the top of these units, the parasequences of Unit 1 are transgressive marine deposits. The depositional energy, however, was relatively low at the beginning of these transgressive system tracts (sub-unit 1c) when the Black Sea flow into the study area was relatively weak. The ascending trajectory sigmoidal deposition of sub-unit 1b indicates the increment flow of Black Sea into the Sea of Marmara. The studied area was then invaded by the Mediterranean water. The sub-unit 1a is deposited under present oceanographic conditions.

  12. Quaternary mud deposits on the Korean shelf—processes, facies, stratigraphy: an introduction and future challenges

    NASA Astrophysics Data System (ADS)

    Chang, Tae Soo; Yoo, Dong-Geun

    2015-12-01

    On the Korean and adjacent Chinese epicontinental shelves of the Yellow Sea, a variety of mud deposits occur that all formed during the late Quaternary. The available evidence suggests that they were generated by different processes in different water depths and at different times. Over the last three decades, numerous studies have revealed the large-scale features and stratigraphic evolution histories of some of these mud deposits, but the nature of the deposits as such and, in particular, the factors controlling their deposition are still poorly understood. This has led to long-standing debates especially on the origin or provenance of the fine-grained sediments, but also on discrepancies concerning stratigraphic interpretations. To provide potential solutions to some of these issues, the international workshop "Quaternary Shelf Mud: Processes, Facies, and Stratigraphy" was held from 1-4 September 2014 at the Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon, Republic of Korea. At the workshop, recent progress in various research fields using newly acquired datasets was presented. Although dealing with an essentially regional issue, the results of the Korean studies have undoubtedly yielded new insights into shelf mud deposition, many aspects of which should also be of interest to the international scientific community. This special issue of Geo-Marine Letters comprises selected contributions to the workshop, the focus lying on extensive, newly acquired datasets from the continental shelf bordering the west (southeastern Yellow Sea) and east (southern East Sea) coasts of the Korean Peninsula, and involving the Heuksan mud belt and mud deposits off the Nakdong delta, respectively. These contributions are complemented by a state-of-the-art overview of key mud depocenters worldwide. In spite of some progress and new interpretations elaborated in this special issue, some aspects still remain to be solved as future challenges.

  13. A refined characterization of the alluvial geology of yucca flat and its effect on bulk hydraulic conductivity

    USGS Publications Warehouse

    Phelps, G.A.; Halford, K.J.

    2011-01-01

    In Yucca Flat, on the Nevada National Security Site in southern Nevada, the migration of radionuclides from tests located in the alluvial deposits into the Paleozoic carbonate aquifer involves passage through a thick, heterogeneous section of late Tertiary and Quaternary alluvial sediments. An understanding of the lateral and vertical changes in the material properties of the alluvial sediments will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating groundwater flow in the Yucca Flat area. Previously published geologic models for the alluvial sediments within Yucca Flat are based on extensive examination and categorization of drill-hole data, combined with a simple, data-driven interpolation scheme. The U.S. Geological Survey, in collaboration with Stanford University, is researching improvements to the modeling of the alluvial section, incorporating prior knowledge of geologic structure into the interpolation method and estimating the uncertainty of the modeled hydrogeologic units.

  14. Quaternary geology and sapphire deposits from the BO PHLOI gem field, Kanchanaburi Province, Western Thailand

    NASA Astrophysics Data System (ADS)

    Choowong, Montri

    2002-01-01

    One of the most famous blue sapphire deposits in Thailand and SE Asia is from the Bo Phloi District, Kanchanaburi Province, Western Thailand. This paper presents the results of our gemstone investigation as well as establishing the Bo Phloi depositional sequence as one of the Quaternary Type Sections in the region. Relationships among the sedimentology, depositional sequences and geomorphology were investigated in order to understand the gemstone depositional features. Sedimentary structures and textures of the sequences show that the deposition of gemstones is related genetically to fluvial processes. Gemstones are recognized in floodplain and low terrace deposits where gemstone paystreaks concentrate mostly inside layers of gravel beds and foreset-bedded gravels lithofacies. C-14 dating of wood and peat within gemstone-bearing layers indicated that the deposit formed during the middle to late Pleistocene. The gemstone-bearing gravel bed defines a north-south trend along the incised palaeo-channel of an ancient braided river system in the middle part of the basin.

  15. Tectonic significance of Upper Cretaceous alluvial-fan deposits in the Peninsular Ranges forearc basin complex, Baja California (Mexico)

    SciTech Connect

    Fulford, M.; Busby-Spera, C. )

    1990-05-01

    Recent evidence suggests that forearc basins, previously depicted as broad downwarps, may experience syndepositional faulting and/or folding. The upper Campanian El Gallo Formation, which was deposited along the northern margin of the Rosario embayment of the peninsula Ranges forearc basin complex, records tilting of the underlying arc massif basement contemporaneous with dissection of the arc source terrane. The La Escarpa member at the base of the El Gallo Formation consists of a 100-180-m thick upward-fining sequence, interpreted as a retrogradational proximal to distal alluvial-fan deposit. Overlying the La Escarpa member is the 1,000-m thick El Disecado member, which lies at the top of the El Gallo Formation and consists of sandy fluvial deposits. Conglomerate clast counts from the La Escarpa member and point-count data from sandstones throughout the El Gallo Formation show an upsection increase in granitic and metasedimentary rock fragments relative to volcanic/metavolcanic rock fragments, reflecting unroofing and progressive headward erosion of the source terranes in the Peninsular Ranges. Paleocurrent data from the La Escarpa and El Disecado members suggest a rotation of approximately 110{degree} with time, from west-northwesterly to southerly, reflecting tilting of the basin floor. This may have been accomplished by downdropping along an east-west-trending fault that divided the Rosario embayment into separate subbasins during the Cretaceous.

  16. Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil)

    NASA Astrophysics Data System (ADS)

    Zani, Hiran; Assine, Mario Luis; McGlue, Michael Matthew

    2012-08-01

    Traditional Shuttle Radar Topography Mission (SRTM) topographic datasets hold limited value in the geomorphic analysis of low-relief terrains. To address this shortcoming, this paper presents a series of techniques designed to enhance digital elevation models (DEMs) of environments dominated by low-amplitude landforms, such as a fluvial megafan system. These techniques were validated through the study of a wide depositional tract composed of several megafans located within the Brazilian Pantanal. The Taquari megafan is the most remarkable of these features, covering an area of approximately 49,000 km2. To enhance the SRTM-DEM, the megafan global topography was calculated and found to be accurately represented by a second order polynomial. Simple subtraction of the global topography from altitude produced a new DEM product, which greatly enhanced low amplitude landforms within the Taquari megafan. A field campaign and optical satellite images were used to ground-truth features on the enhanced DEM, which consisted of both depositional (constructional) and erosional features. The results demonstrate that depositional lobes are the dominant landforms on the megafan. A model linking baselevel change, avulsion, clastic sedimentation, and erosion is proposed to explain the microtopographic features on the Taquari megafan surface. The study confirms the potential promise of enhanced DEMs for geomorphological research in alluvial settings.

  17. Delineation of Late Quaternary depositional sequences by high-resolution seismic stratigraphy, Louisiana continental shelf

    SciTech Connect

    Suter, J.R.; Berryhill, H.L. Jr.; Penland, S.

    1987-05-01

    Interpretations of over 20,000 line km of single-channel, high-resolution seismic reflection profiles, coupled with nearshore vibracores and logs of industrial platform borings, provide the data base for determining the history and stratigraphy of late Quaternary sea level fluctuations on the Louisiana continental shelf. Regional unconformities, formed by subaerial exposure of the shelf during glacio-eustatic sea level withdrawals and modified by shoreface erosion during ensuing transgression, serve as markers to identify the boundaries of depositional sequences. Unconformities are recognizable on seismic profiles by high-amplitude reflectors as well as discordant relationships between reflectors. Within the upper Quaternary section, six depositional sequences have been recognized. Five of these are related to glacio-eustatic sea level fluctuations, involving sea level fall close to, or beyond, the margin of the continental shelf. Three of these fluctuations culminated in the deposition of shelf margin delta sequences. Extensive fluvial channeling characterizes the regressive phase of these sequences. Transgressive phases are marked by infilling of fluvial channels, flood-plain aggradation, truncation, or deposition of sand sheets, depending upon sediment supply and rate of sea level rise. Sequences 4 and 5 are correlated with the late Wisconsinan glacial stage and Holocene transgression. The upper portion of sequence 5 consists of an early Holocene Mississippi delta complex. Abandonment and transgression of this delta are responsible for the formation of sequence 6. Although these deposits cover a smaller area, this demonstrates that deltaic processes can produce sequences similar to those driven by glacially controlled sea level changes.

  18. Seismogenic structures in Quaternary lacustrine deposits of Lake Van (eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Üner, Serkan

    2014-07-01

    Soft-sediment deformation structures formed by liquefaction and/or fluidisation of unconsolidated sediments due to seismic shocks are frequent in the Quaternary sandy, silty and clayey deposits of Lake Van. They are present in both marginal and deep lacustrine facies. Their morphology and interpreted genesis imply that they should be considered as fluid-escape structures (dish and pillar structures, flame structures and sand volcanoes), contorted structures (simple and complex convolutions and ball-and-pillow structures) and other structures (disturbed layers and slump structures). The most recently formed structures are related to the October 23rd, 2011 Van-Tabanli (M 7.2) earthquake. The existence of seismites at various stratigraphic levels in the lacustrine deposits is indicative of tectonic activity that frequently triggered earthquakes with magnitudes of 5 or more, affecting the Lake Van Basin.

  19. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    USGS Publications Warehouse

    Paces, James B.; Taylor, Emily M.; Bush, Charles

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ?? 1, 30 ?? 3, 45 ?? 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites.

  20. Extensive Quaternary aeolian deposits in the Drakensberg foothills, Rooiberge, South Africa

    NASA Astrophysics Data System (ADS)

    Telfer, M. W.; Mills, S. C.; Mather, A. E.

    2014-08-01

    Deposits of aeolian sand are known to have accumulated in periglacial environments during the cold phases of the late Quaternary. In many instances, however, they form low-relief topographic units which may not be readily identified without detailed field survey. This study aims to use a multidisciplinary approach, combining remotely sensed data analysis and field survey, to investigate the extent and palaeoenvironmental significance of sand ramps in the Drakensberg/Rooiberge foothills of South Africa. Analysis of Google Earth imagery has demonstrated that gully systems are a common component of the landscape, and heterogeneously distributed across the landscape. Field investigation confirmed the hypothesis that the gullies are mainly eroding into sand ramps of fine sands and very coarse silts which mantle many of the lower hillslopes of the region. These sand units include palaeosols and occasional gravel lags, but are otherwise remarkable for their homogenous composition, cross-bedding and the complete absence of clasts. Much of the sediment is thus interpreted as aeolian in origin. The deposits are sufficiently similar in many respects to the Masotcheni Formation, a late Quaternary colluvium which outcrops abundantly in the Drakensberg, to propose an assignation to this unit. However, an aeolian component in the Masotcheni has not previously been described. The distribution of aeolian accumulation in the region is consistent with southward transport during late Quaternary cold phases from a source on the Highveld to the north of the study area. The low relief and complex fluvial network in this region would concentrate sediment eroded from the Drakensberg/Rooiberge, which would subsequently be available for deflation when the balance between fluvial flow regime, seasonally frozen ground and north-westerly trade winds were optimal for aeolian entrainment. Deposition is primarily topographically controlled, and is in places sufficiently extensive that it may be better described as a discontinuous coversand. This study suggests that aeolian deposits may be overlooked in other environments subject to past periglacial landscape development, and develops a potential methodology by which this problem may be overcome.

  1. Debris-flow deposits in an alluvial-plain succession: The upper Triassic Callide coal measures of Queensland, Australia

    SciTech Connect

    Jorgensen, P.J.; Fielding, C.R.

    1999-09-01

    The Carnian-Rhaetian Callide Coal Measures are preserved in a small (22.5 km by 8 km), partially fault-bounded basin remnant in east-central Queensland, Australia. The <150 m thick coal-measure succession is interpreted to have accumulated during a phase of mild crustal extension that formed a series of discrete, intermontane basins in eastern Australia. The succession fines upward from a conglomerate-rich lower part into a finer-grained and coal-bearing upper section (including coal seams <34 m thick), and is interpreted as the deposits of an alluvial-plain environment. Anomalous, matrix-rich diamictites, breccias, and conglomerates have been recognized within the succession at several localities, in many cases interbedded with coals. These are interpreted as the product of debris flows. Two debris-flow lithofacies are recognized: (1) mixtures of fine carbonaceous material, clay, silt, sand, gravel, and volcaniclastic debris, and (2) breccias consisting principally of coal clasts in a coaly matrix with minor clastic and volcaniclastic debris. The distribution of debris flows in the Callide Coal Measures shows a coincidence with mapped faults and interpreted structural lineaments. The debris flows may have been triggered by fault movements, which formed rupture topography on the flat alluvial plain, and caused destabilization of water-saturated clastic and organic sediments. Some debris-flow bodies may have been mounded, such that subsequent peat formation was restricted until those bodies were buried. The preservation of debris-flow units at different stratigraphic levels along mapped structures suggests multiple paleoseismic events or multiple debris-flow units at different stratigraphic levels along mapped structures suggests multiple paleoseismic events or multiple debris-flow events along those structures. The mixing of volcaniclastic debris into debris-flow facies suggests that seismic events were coincident with (or perhaps caused by) nearby, explosive volcanic activity. The close relationship between debris-flow deposits and thick coal bodies on the inferred downthrown sides of faults at Callide further suggests that periodic, tectonic subsidence may have facilitated thick coal accumulation.

  2. Alluvial plains and earthquake recurrence at the Coalinga anticline

    SciTech Connect

    Tucker, A.B. ); Donahue, D.J.; Jull, A.J.T ); Payen, L.A. ); Atwater, B.F.; Trumm, D.A.; Tinsley, J.C. III; Stein, R.S.

    1990-01-01

    Having approached 0.5 m during the May 2 earthquake, the uplift of Quaternary deposits on the Coalinga anticline may provide evidence of the average repeat time of similar earthquakes during the recent geologic past. Stein and King (1984) estimated the average late Quaternary repeat time to be 500 to 1,500 yr from the degree of folding in the upper Pliocene and Pleistocene Tulare Formation; in addition, they estimated the average Holocene repeat time to be at least 200 to 600 yr on the basis of an alluvial-plain profile near Los Gatos Creek, whose arroyo extends across the Coalinga anticline from the synclinal Pleasant Valley into the synclinal San Joaquin Valley. In this chapter, the authors estimate an average repeat time from the stratigraphy of Holocene alluvium exposed in the walls of that arroyo. Largely deposited overbank, this alluvium reveals the approximate configuration of former alluvial plains whose present configuration over the anticline should reflect the rate of anticlinal growth. Resulting constraints on the Holocene uplift rate, though made uncertain by possible differences in the initial configuration of the alluvial plains, suggest an average repeat time of at least 200 to 1,000 yr for major (M = 6-7) Coalinga-area earthquakes during the late Holocene.

  3. Bank accretion and the development of vegetated depositional surfaces along modified alluvial channels

    USGS Publications Warehouse

    Hupp, C.R.; Simon, A.

    1991-01-01

    This paper describes the recovery of stable bank form and development of vegetated depositional surfaces along the banks of channelized West Tennessee streams. Most perennial streams in West Tennessee were straightened and dredged since the turn of the century. Patterns of fluvial ecological responses to channelization have previously been described by a six-stage model. Dendrogeomorphic (tree-ring) techniques allowed the determination of location, timing, amount, and rate of bank-sediment deposition. Channel cross sections and ecological analyses made at 101 locations along 12 streams, encompassing bends and straight reaches, show that channel and bank processes initially react vertically to channelization through downcutting. A depositional surface forms on banks once bed-degradation and heightened bank mass wasting processes have eased or slowed. The formation of this depositional surface marks the beginning of bank recovery from channelization. Dominating lateral processes, characteristic of stable or natural channels, return during the formation and expansion of the depositional surface, suggesting a relation with thalweg deflection, point-bar development, and meanderloop extension. Characteristic woody riparian vegetation begins to grow as this depositional surface develops and becomes part of the process and form of restabilizing banks. The depositional surface initially forms low on the bank and tends to maintain a slope of about 24??. Mean accretion rates ranges from 5.9 cm/yr on inside bends to 0 cm/yr on most outside bends; straight reaches have a mean-accretion rate of 4.2 cm/yr. The relatively stable, convex upward, depositional surface expands and ultimately attaches to the flood plain. The time required for the recovery process to reach equilibrium averaged about 50 years. Indicative pioneer speccies of woody riparian vegetation include black willow, river birch, silver maple, and boxelder. Stem densities generally decrease with time after and initial flush of about 160 stems per 100 m2. Together bank accretion and vegetative regrowth appear to be the most important environmental processes involved in channel bank recovery from channelization or rejuvenation. ?? 1991.

  4. Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California

    USGS Publications Warehouse

    Atwater, Brian F.; Hedel, Charles W.; Helley, Edward J.

    1977-01-01

    Sediments collected for bridge foundation studies at southern San Francisco Bay, Calif., record estuaries that formed during Sangamon (100,000 years ago) and post-Wisconsin (less than 10,000 years ago) high stands of sea level. The estuarine deposits of Sangamon and post-Wisconsin ages are separated by alluvial and eolian deposits and by erosional unconformities and surfaces of nondeposition, features that indicate lowered base levels and oceanward migrations of the shoreline accompanying low stands of the sea. Estuarine deposits of mid-Wisconsin age appear to be absent, suggesting that sea level was not near its present height 30,000–40,000 years ago in central California. Holocene sea-level changes are measured from the elevations and apparent 14C ages of plant remains from 13 core samples. Uncertainties of ±2 to ±4 m in the elevations of the dated sea levels represent the sum of errors in determination of (1) sample elevation relative to present sea level, (2) sample elevation relative to sea level at the time of accumulation of the dated material, and (3) postdepositional subsidence of the sample due to compaction of underlying sediments. Sea level in the vicinity of southern San Francisco Bay rose about 2 cm/yr from 9,500 to 8,000 years ago. The rate of relative sea-level rise then declined about tenfold from 8,000 to 6,000 years ago, and it has averaged 0.1–0.2 cm/yr from 6,000 years ago to the present. This submergence history indicates that the rising sea entered the Golden Gate 10,000–11,000 years ago and spread across land areas as rapidly as 30 m/yr until 8,000 years ago. Subsequent shoreline changes were more gradual because of the decrease in rate of sea-level rise. Some of the sediments under southern San Francisco Bay appear to be below the level at which they initially accumulated. The vertical crustal movement suggested by these sediments may be summarized as follows: (1) Some Quaternary(?) sediments have sustained at least 100 m of tectonic subsidence in less than 1.5 million years (<0.07 mm/yr) relative to the likely elevation of the lowest Pleistocene land surface; (2) the deepest Sangamon estuarine deposits subsided tectonically about 20–40 m in about 0.1 million years (0.2±0.1–0.4±0.1 mm/yr) relative to the assumed initial elevations of the thalwegs buried by these sediments; and (3) Holocene salt-marsh deposits have undergone about 5 m of tectonic and possibly isostatic subsidence in about 6,000 years (0.8±.0.7 mm/yr) relative to elevations which might be expected from eustatic sea-level changes alone.

  5. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia

    NASA Astrophysics Data System (ADS)

    Scott Eaton, L.; Morgan, Benjamin A.; Craig Kochel, R.; Howard, Alan D.

    2003-11-01

    A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains. The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene-late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. Radiocarbon dating indicates that debris flow activity since 25,000 YBP has recurred, on average, at least every 2500 years. The presence of stratified slope deposits, emplaced from 27,410 through 15,800 YBP, indicates hillslope stripping and reduced vegetation cover on upland slopes during the Wisconsinan glacial maximum. Regolith generated from mechanical weathering during the Pleistocene collected in low-order stream channels and was episodically delivered to the valley floor by debris flows. Debris fans prograded onto flood plains during the late Pleistocene but have been incised by Holocene stream entrenchment. The fan incision allows Holocene debris flows to largely bypass many of the higher elevation debris fan surfaces and deposit onto the topographically lower surfaces. These episodic, high-magnitude storm events are responsible for transporting approximately half of the sediment from high gradient, low-order drainage basins to debris fans and flood plains.

  6. Relating lithofacies to hydrofacies: outcrop-based hydrogeological characterisation of Quaternary gravel deposits

    NASA Astrophysics Data System (ADS)

    Klingbeil, Ralf; Kleineidam, Sybille; Asprion, Ulrich; Aigner, Thomas; Teutsch, Georg

    1999-12-01

    A considerable part of today's drinking water supplies in Europe and North America rely on clean groundwater from gravelly valley aquifers of Quaternary age. The sedimentary architecture, the distribution of lithofacies and of architectural elements in such heterogeneous deposits are of fundamental importance for the analysis of groundwater flow and contaminant transport. As the aquifers are not directly accessible for observation, representative outcrop analogues were used to study the sedimentology on a local scale. Conventional sedimentological classification schemes were adapted for the purpose of hydrogeological evaluations. Measurements of hydraulic properties were then used to define a set of 5 hydrofacies from 23 possible sediment lithofacies. A digital-photographic mapping procedure was developed to allow fast data acquisition in the field. The sedimentologically interpreted outcrops were stored in a GIS style database and thus allow the output for further sedimentological or hydrogeological analysis.

  7. Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California

    USGS Publications Warehouse

    Witter, Robert C.; Knudsen, Keith L.; Sowers, Janet M.; Wentworth, Carl M.; Koehler, Richard D.; Randolph, Carolyn E.; Brooks, Suzanna K.; Gans, Kathleen D.

    2006-01-01

    This report presents a map and database of Quaternary deposits and liquefaction susceptibility for the urban core of the San Francisco Bay region. It supercedes the equivalent area of U.S. Geological Survey Open-File Report 00-444 (Knudsen and others, 2000), which covers the larger 9-county San Francisco Bay region. The report consists of (1) a spatial database, (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map and liquefaction interpretation (part 3), and (4) a text introducing the report and describing the database (part 1). All parts of the report are digital; part 1 describes the database and digital files and how to obtain them by downloading across the internet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a consistent detailed treatment of the central part of the 9-county region in which much of the mapping of Open-File Report 00-444 was either at smaller (less detailed) scale or represented only preliminary revision of earlier work. Like Open-File Report 00-444, the current mapping uses geomorphic expression, pedogenic soils, inferred depositional environments, and geologic age to define and distinguish the map units. Further scrutiny of the factors controlling liquefaction susceptibility has led to some changes relative to Open-File Report 00-444: particularly the reclassification of San Francisco Bay mud (Qhbm) to have only MODERATE susceptibility and the rating of artificial fills according to the Quaternary map units inferred to underlie them (other than dams - adf). The two colored maps provide a regional summary of the new mapping at a scale of 1:200,000, a scale that is sufficient to show the general distribution and relationships of the map units but not to distinguish the more detailed elements that are present in the database. The report is the product of cooperative work by the National Earthquake Hazards Reduction Program (NEHRP) and National Cooperative Geologic Mapping Program of the U.S. Geological Survey, William Lettis and & Associates, Inc. (WLA), and the California Geological Survey. An earlier version was submitted to the U.S. Geological Survey by WLA as a final report for a NEHRP grant (Witter and others, 2005). The mapping has been carried out by WLA geologists under contract to the NEHRP Earthquake Program (Grant 99-HQ-GR-0095) and by the California Geological Survey.

  8. A methodological toolkit for field assessments of artisanally mined alluvial diamond deposits

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.

    2014-01-01

    This toolkit provides a standardized checklist of critical issues relevant to artisanal mining-related field research. An integrated sociophysical geographic approach to collecting data at artisanal mine sites is outlined. The implementation and results of a multistakeholder approach to data collection, carried out in the assessment of Guinea’s artisanally mined diamond deposits, also are summarized. This toolkit, based on recent and successful field campaigns in West Africa, has been developed as a reference document to assist other government agencies or organizations in collecting the data necessary for artisanal diamond mining or similar natural resource assessments.

  9. Preliminary description of quaternary and late pliocene surficial deposits at Yucca Mountain and vicinity, Nye County, Nevada

    SciTech Connect

    Hoover, D.L.

    1989-11-01

    The Yucca Mountain area, in the south-central part of the Great Basin, is in the drainage basin of the Amargosa River. The mountain consists of several fault blocks of volcanic rocks that are typical of the Basin and Range province. Yucca Mountain is dissected by steep-sided valleys of consequent drainage systems that are tributary on the east side to Fortymile Wash and on the west side to an unnamed wash that drains Crater Flat. Most of the major washes near Yucca Mountain are not integrated with the Amargosa River, but have distributary channels on the piedmont above the river. Landforms in the Yucca Mountain area include rock pediments, ballenas, alluvial pediments, alluvial fans, stream terraces, and playas. Early Holocene and older alluvial fan deposits have been smoothed by pedimentation. The semiconical shape of alluvial fans is apparent at the junction of tributaries with major washes and where washes cross fault and terrace scarps. Playas are present in the eastern and southern ends of the Amargosa Desert. 39 refs., 9 figs., 1 tab.

  10. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    PubMed

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation. PMID:22905536

  11. Imaging Quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments

    NASA Astrophysics Data System (ADS)

    Simard, Patrick Tremblay; Chesnaux, Romain; Rouleau, Alain; Daigneault, Ral; Cousineau, Pierre A.; Roy, Denis W.; Lambert, Mlanie; Poirier, Brigitte; Poignant-Molina, Lo

    2015-08-01

    Aquifer formations along the northern shore of the Saint-Lawrence River in Quebec (Canada) mainly consist of glacial and coastal deposits of variable thickness overlying Precambrian bedrock. These deposits are important because they provide the main water supply for many communities. As part of a continuing project aimed at developing an inventory of the groundwater resources in the Charlevoix and Haute-Cte-Nord (CHCN) regions of the province of Quebec in Canada, the central loop transient electromagnetic (TEM) method was used to map the principal hydrogeological environments in these regions. One-dimensional smooth inversion models of the TEM soundings have been used to construct two-dimensional electrical resistivity sections, which provided images for hydrogeological validation. Electrical contour lines of aquifer environments were compared against available well logs and Quaternary surface maps in order to interpret TEM soundings. A calibration table was achieved to represent common deposits and basements. The calibration table was then exported throughout the CHCN region. This paper presents three case studies; one in the Forestville site, another in the Les Escoumins site and the other in the Saint-Urbain site. These sites were selected as targets for geophysical surveys because of the general lack of local direct hydrogeological data related to them.

  12. Latest Quaternary outer shelf and slope deposits, northern Gulf of Mexico, USA: Industry research consortium

    SciTech Connect

    Winn, R.D. Jr. )

    1991-03-01

    A consortium of oil companies is undertaking a multiyear shallow coring and high-resolution seismic investigation of the outer shelf-slope deposits of the northern Gulf of Mexico. The program's objective is to reconstruct the depositional, seismic stratigraphic, biostratigraphic, isotopic, and organic geochemical record of the latest Quaternary of a portion of the Gulf margin. Results will serve as an analog to deeper hydrocarbon reservoirs and to help in understanding sedimentation with glacial-interglacial sea-level changes. Nearly continuous cores up to 850 ft long from Main Pass Blocks 303, 242, 288 and Viosca Knoll Block 774 are being described and analyzed. Main Pass 303 core samples Holocene to Oxygen Isotope Stage 6 deposits and as old or older strata are expected to have been penetrated in the other boreholes. Three or four sea level cycles are represented. Seismic acquisition is planned for late 1990. The outer shelf and slope of the northern Gulf is an area of active growth faulting, high sedimentation rate, diapirism, and slumping. Recent work, including this study, shows that near-surface stratigraphy consists of coarse clastics alternating with carbonate-rich mud. Sands and gravels are inferred to have been deposited mostly during lowstands and rising sea level in deltas and valley-fill systems. Delta clinoforms on high-resolution seismic may represent shelf-margin wedges, prograding wedges, or highstand systems tracts. Highstand deposits are characterized largely by thin, continuous intervals of bioturbated muds containing abundant diagenetic carbonate and pyrite. Precise dating and correlation of outer shelf-upper slope facies to magnitude and direction of sea level change is intended during the project.

  13. High-Resolution Subsurface Imaging and Stratigraphy of Quaternary Deposits, Marapanim Estuary, Northern Brazil

    NASA Astrophysics Data System (ADS)

    Silva, C. A.; Souza Filho, P. M.; Gouvea Luiz, J.

    2007-05-01

    The Marapanim estuary is situated in the Para Coastal Plain, North Brazil. It is characterized by an embayed coastline developed on Neogene and Quaternary sediments of the Barreiras and Pos-Barreiras Group. This system is strongly influenced by macrotidal regimes with semidiurnal tides and by humid tropical climate conditions. The interpretation of GPR-reflections presented in this paper is based on correlation of the GPR signal with stratigraphic data acquired on the coastal plain through five cores that were taken along GPR survey lines from the recent deposits and outcrops observed along to the coastal area. The profiles were obtained using a Geophysical Survey Systems Inc., Model YR-2 GPR, with monostatic 700 MHz antenna that permitted to get records of subsurface deposits at 20m depth. Were collected 54 radar sections completing a total of 4.360m. The field data were analyzed using a RADAN software and applying different filters. The interpretation of radar facies following the principles of seismic stratigraphy that permitted analyze the sedimentary facies and facies architecture in order to understand the lithology, depositional environments and stratigraphic evolution of this sedimentary succession as well as to leading to a more precise stratigraphic framework for the Neogene to Quaternary deposits at Marapanim coastal plain. Facies characteristics and sedimentologic analysis (i.e., texture, composition and structure aspects) were investigated from five cores collected through a Rammkernsonde system. The locations were determined using a Global Positioning System. Remote sensing images (Landsat-7 ETM+ and RADARSAT-1 Wide) and SRTM elevation data were used to identify and define the distribution of the different morphologic units. The Coastal Plain extends west-east of the mouth of the Marapanim River, where were identified six morphologic units: paleodune, strand plain, recent coastal dune, macrotidal sandy beach, mangrove and salt marsh. The integration of GPR profiles and stratigraphy data allowed for the recognition of paleochannel geometry, with width of 150m and depth of 20m, developed on Barreiras Group, two discontinuity surfaces and three facies associations organized into sedimentary facies: (i) Tidal channel with mottled sand, Conglomerate with clay pebble and Ophiomorpha/linear Skolithos, channel-fill and tabular cross-bedding sand and sand/mud interlayer facies. (ii) Dune/interdune with wavy bedding and cross-bedding sand and planar bedding and tabular cross-bedding sand facies. (iii) infilled tidal channel with mottled sand, planar/flaser bedding sand, lenticular bedding clay and sand/mud interlayer facies. The present study demonstrates that some facies associations occur restricts to tidal paleochannels and shows features well preserved that are very important to reconstruction of the relative sea-level history in the Marapanim Estuary.

  14. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    USGS Publications Warehouse

    Pigati, Jeff S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur, III

    2013-01-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ?12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ?40 ka should be viewed with caution as they may reflect trace amounts of contamination. In sum, our results show that small terrestrial gastropod shells, especially from the Succineidae family, provide reliable ages for late Quaternary loess deposits in North America.

  15. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    NASA Astrophysics Data System (ADS)

    Pigati, Jeffrey S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur

    2013-09-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain 12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching 40 ka should be viewed with caution as they may reflect trace amounts of contamination. In sum, our results show that small terrestrial gastropod shells, especially from the Succineidae family, provide reliable ages for late Quaternary loess deposits in North America.

  16. Depositional character of a dry-climate alluvial fan system from Palaeoproterozoic rift setting using facies architecture and palaeohydraulics: Example from the Par Formation, Gwalior Group, central India

    NASA Astrophysics Data System (ADS)

    Chakraborty, Partha Pratim; Paul, Pritam

    2014-09-01

    The ?20 m thick coarse-grained clastic succession in the basal part of Palaeoproterozoic Par Formation, Gwalior Group has been investigated using process-based sedimentology and deductive palaeohydraulics. Bounded between granitic basement at its base and shallow marine succession at the top, the studied stratigraphic interval represents products of an alluvial fan and its strike-wise co-existent braided river system that possibly acted as a tributary for the fan. Detailed facies, facies association analysis allowed identification of two anatomical parts for the fan system viz. proximal and mid fan. While thin proximal fan is represented by products of rock avalanche and hyperconcentrated flows with widely varying rheology, the mid fan is represented by products of sheet floods and flows within streamlets. The interpretation found support from palaeoslope estimation carried out on the fluvial part of the mid fan that plot dominantly within the alluvial fan field demarcated by Blair and McPherson (1994). Dry climatic condition suggested from dominance of stream flow over mass flow deposition within the Par alluvial fan. Strike-wise, the fan is discontinuous and juxtaposed with a braid plain system. In contrast to the fluvial part of fan system, the palaeoslope data from the braid plain system dominantly plot within the natural depositional gap' defined by Blair and McPherson. A raised palaeoslope for the river systems, as suggested from Proterozoic braid plain deposits around the Globe, is found valid for the Par braid plain system as well. From preponderance of granular and sandy sediments within the alluvial fan and braid plain systems and a pervasive north-westward palaeocurrent pattern within the fluvial systems the present study infers a gently sloping bevelled source area in the south-southeast of the basin with occurrence of steep cliffs only locally.

  17. Optical dating of late Quaternary deposits preserved beneath the eastern English Channel

    NASA Astrophysics Data System (ADS)

    Mellett, C. L.; Mauz, B.; Hodgson, D. M.; Plater, A. J.; Lang, A.

    2012-04-01

    A stratigraphic model detailing the sequence and nature of processes responsible for sculpting the shallow continental shelf in the eastern English Channel has been developed through the interpretation of high resolution sub-bottom seismic records. The seafloor is an erosional unconformity and large sediment bodies are limited to palaeovalley infills and offshore extensions of present day coastal environments. In simplistic terms the stratigraphic model proposes fluvial incision and deposition during sea-level lowstand with periglacial processes operating on the sub-aerially exposed shelf under cold climate conditions. Subsequent sea-level rise triggers reworking of existing deposits and infilling of the palaeovalleys with shallow marine and coastal deposits that migrate in step with sea-level rise. The frequency and magnitude of sea-level changes during the late Quaternary lends to significant reworking of sediments during each glacial/interglacial cycle and remnants of previous cycles are rarely preserved. This study uses OSL dating to test the validity of the proposed stratigraphic model. Samples for OSL dating were taken from vibrocores tied to known seismic stratigraphic units representing fluvial, coastal and colluvial depositional environments. The single-aliquot-regenerative dose protocol was applied to 1 mm aliquots of fine quartz sand and individual aliquots were rejected following the criteria proposed by Wintle and Murray (2006). All samples exhibited low sensitivity and poor recycling ratios necessitating the rejection of up to 75% of all aliquots measured. A total of 40 to 60 aliquots were accepted per sample. For all samples regardless of depositional environment, normal equivalent dose (De) distributions were observed with overdispersion values typically <25% and weighted skewness values of ~0.2 advocating the application of the Central Age Model (CAM) to estimate Des. The OSL chronology places periglacial reworking of existing estuarine deposits at ~18 ka, deposition of fluvial sediments preserved in palaeovalleys at ~15ka and progradation of a shoreface at ~8 ka. The ages are remarkably consistent with the stratigraphic model and provide the first chronological control on the timing of processes responsible for the morphological evolution of the continental shelf. We demonstrate the successful application of OSL dating to fluvial, coastal and colluvial deposits preserved in the eastern English Channel.

  18. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece

    USGS Publications Warehouse

    Hein, J.R.; Stamatakis, G.; Dowling, J.S.

    2000-01-01

    The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and filling dilatational fractures along with barite.

  19. Hydraulic and field water-chemistry characteristics of piedmont alluvial deposits in the Middle Tyger River near Lyman, Spartanburg County, South Carolina, 2005

    USGS Publications Warehouse

    Harrelson, Larry G.; Addison, Adrian D.

    2006-01-01

    This study explores the possibility of developing a bank-filtration process to improve water quality in which alluvial deposits serve as a natural sand filter to pretreat water to be used as a secondary drinking-water source in a small piedmont reservoir along the Middle Tyger River near Lyman in Spartanburg County, South Carolina. From January 2004 to September 2005, data from 10 auger borings, 2 sediment cores, 29 ground-penetrating radar transects, and 3 temporary observation wells, and field water-chemistry data were collected and analyzed. These data were collected and used to characterize the lithology, geometry, hydraulic properties, yield potential, and water-chemistry characteristics of the alluvial deposits in the channel and on the right bank of the reservoir. The assessment was undertaken to determine if an adequate amount of water could be withdrawn from the alluvial deposits to sustain a bank-filtration process and to characterize the water chemistry of the surface water and pore water. The heterogeneous alluvial and fill material at the study site--clay, silty clay, clayey sand, fine- to coarse-grained sand, and mica--on the right bank of the Middle Tyger River ranges in thickness from 0.6 to 7 meters, has a calculated horizontal hydraulic conductivity of 1 meter per day, and yields approximately 0.07 liter per second of water. The small calculated horizontal hydraulic conductivity and water yield for these deposits restrict the use of the right bank as a potential bank-filtration site. The coarse-grained alluvial sand deposit in the channel of the Middle Tyger River, however, may be used for a limited bank-filtration process. The discharge during pumping of the channel deposit yielded water at the rate of 1.9 liters per second. The coarse-grained channel deposit is approximately 49 meters wide and 3 meters thick near the dam. At approximately 183 meters upstream from the dam, the channel narrows to roughly 9 meters and the channel deposits thin to approximately 0.1 meter. Slug tests conducted in the channel deposits near the dam produced a calculated horizontal hydraulic conductivity of 60 meters per day. The limited thickness and aerial extent of the coarse-grained channel deposits coupled with large horizontal hydraulic conductivity likely would allow rapid transmission of water and may degrade the effectiveness of some water-chemistry improvements typical of a bank-filtration process. Field water-chemistry data were collected for approximately 1 hour and 45 minutes at 10 to 15 minute intervals to compare the surface-water and pore-water quality in and beneath the channel of the Middle Tyger River. The waterchemistry data indicate that (1) the mean water temperature was higher in surface water (22.5 degrees Celsius) than in pore water (18.5 degrees Celsius), (2) the mean specific conductance was less in surface water (56.9 microsiemens per centimeter at 25 degrees Celsius) than in pore water (125.7 microsiemens per centimeter at 25 degrees Celsius), (3) alkalinity was lower in surface water (22.5 milligrams per liter) than in pore water (44.6 milligrams per liter), and (4) recorded pH values ranged between 6.2 and 6.3 in the surface water and pore water during the sampling period. The flow velocity was orders of magnitude slower in the pore water than in the surface water; therefore, the pore water interacts with the alluvial sediment for a longer period of time producing the variation in water-chemistry data between the two waters.

  20. Quaternary investigation

    SciTech Connect

    Stieve, A.

    1991-05-15

    The primary purpose of the Quaternary investigation is to provide information on the location and age of Quaternary deposits for use in evaluating the presence or absence of neotectonic deformation or paleoliquefaction features within the Savannah River Site (SRS) region. The investigation will provide a basis for evaluating the potential for capable faults and associated deformation in the SRS vicinity. Particular attention will be paid to the Pen Branch fault.

  1. Correlations between radiometric analysis of Quaternary deposits and the chronology of prehistoric settlements from the southeastern Brazilian coast.

    PubMed

    Anjos, R M; Macario, K D; Lima, T A; Veiga, R; Carvalho, C; Fernandes, P J F; Vezzone, M; Bastos, J

    2010-01-01

    Natural gamma radiation measurements of sand deposits were carried out in order to study the chronology of prehistoric colonization of the Brazilian coast during the Holocene. The method employs thorium, uranium and potassium as tracers of the geological provenance of Quaternary deposits, where artificial shellmounds are found. The so-called sambaquis are archaeological settlements, characteristic of fisher-gatherers, specialized in the exploitation of shellfish. Our results show a considerable positive correlation between the formation of coastal deposits, based on cross plots of eTh/eU and eTh/K, and the antiquity of its prehistoric human occupation. PMID:19800154

  2. Stratigraphical and palynological appraisal of the Late Quaternary mangrove deposits of the west coast of India

    NASA Astrophysics Data System (ADS)

    Kumaran, K. P. N.; Nair, K. M.; Shindikar, Mahesh; Limaye, Ruta B.; Padmalal, D.

    2005-11-01

    The organic deposits derived from the mangrove swamps form reliable stratigraphic markers within the Late Quaternary sequence of Kerala-Konkan Basin. Three generations of such deposits have been identified. The older one is dated to around 43,000-40,000 14C yr B.P., with a few dates beyond the range of radiocarbon. The younger ones date from the Middle Holocene to latest Pleistocene (10,760-4540 14C yr B.P.) and the Late Holocene (<4000 14C yr B.P.). Pollen analyses confirm that the deposits are mostly derived from the mangrove vegetation. Peat accumulation during the period 40,000-28,000 14C yr B.P. can be correlated with the excess rainfall, 40-100% greater than modern values, of the Asian summer monsoon. The low occurrence of mangrove between 22,000 and 18,000 14C yr B.P. can be attributed to the prevailing aridity and/or reduced precipitation associated worldwide with Last Glacial Maximum, because exposure surfaces and ferruginous layers are commonly found in intervals representing this period. The high rainfall of 11,000-4000 14C yr B.P. is found to be the most significant as the mangrove reached an optimum growth around 11,000 14C yr B.P. but with periods of punctuated weaker monsoons. From the present and previous studies, it has been observed that after about 5000 or 4000 14C yr B.P., the monsoons became gradually reduced leading to drying up of many of the marginal marine mangrove ecosystems. A case study of Hadi profile provided an insight to the relevance of magnetic susceptibility (?) to record the ecological shift in Late Holocene.

  3. Issues associated with the distinction between climatic and tectonic controls on Permian alluvial fan deposits from the Kotzen and Barnim Basins (North German Basin)

    NASA Astrophysics Data System (ADS)

    Kallmeier, Enrico; Breitkreuz, Christoph; Kiersnowski, Hubert; Geiler, Marion

    2010-01-01

    Facies analysis focussing on coarse-grained sediments has been carried out on more than 2500 m of drill cores from seven wells from southern margins of the North German Basin (NGB). The NGB forms a central element of the Southern Permian Basin (SPB). The wells exposed conglomerates and sandstones of the Rotliegend Grneberg and Parchim Formations deposited in the Kotzen Basin and the Barnim Basin. 17 lithofacies types have been grouped into six lithofacies associations. The studied successions are dominated by fluid gravity flow deposits (hyperconcentrated flows and stream flows) of alluvial fan and alluvial plain systems. Maximum particle size/bed thickness plots (MPS/BTh) support the interpretation as fluid gravity flow deposits. The MPS and BTh data have also been used to differentiate coarsening-thickening and fining-thinning trends of the fan systems. The dominance of water-rich mass flow processes together with sedimentary structures such as dewatering structures and outwashed tops suggests the presence of wet-type fans and plains under semi-humid to semi-arid seasonal climates in the central SPB. The investigated sediments show variation in clast composition subsequent to deep erosion processes on basin margins and changes of source areas. Synsedimentary normal faults and clastic dykes have been interpreted as indicators of tectonic activity of grabens itself and its frames. On a larger scale, then evolution from a half-graben to a graben is apparent for the Tuchen Sub-basin at least. The progradational/retrogradational cycles of the studied alluvial fan systems document combined local tectonic movements and influences of climatic changes. However, our data did not allow for a clear distinction between climatic and tectonic signals. Furthermore, a one-to-one correlation of fan cycles with depositional trends in the NGB basin centre would appear to be oversimplistic.

  4. Erosion and deposition on the eastern margin of the Bermuda Rise in the late Quaternary

    NASA Astrophysics Data System (ADS)

    McCave, I. N.; Hollister, C. D.; Laine, E. P.; Lonsdale, P. F.; Richardson, M. J.

    1982-05-01

    A near-bottom survey has been made on the Eastward Scarp (3250'N, 5730'W) of the Bermuda Rise, which rises 1150 m above the 5500-m deep Sohm Abyssal Plain in the western North Atlantic. The survey reveals evidence of erosion and deposition at present and in the late Quaternary by the deeper levels of the westward flowing Gulf Stream Return Flow. Four distinct regions of increasing bed gradient show increasing sediment smoothing and scour in the transition from plateau to abyssal plain. Bedforms observed are current crescents, crag and tail, triangular ripples, elongate mounds, transverse mud ripples, lineations, and furrows ranging from 10 to 1 m or less in depth, decreasing generally with bed gradient. Measured near-bottom current speeds are up to 20 cm s -1. Temperature structure on the lower, steep, slopes suggests that detachment of bottom mixed layers may occur there. Extensive net erosion appears to be confined to the lower steep slopes of the scarp. Reflection profiles (4 kHz) show that there has been erosion in areas thinly draped with recent sediments and in areas that show development of small scarps. The distribution of subsurface acoustic characteristics of the region corresponds broadly to the areas characterized by bed gradient and distinct sedimentation conditions. Subsurface hyperbolae, possibly caused by buried furrows, show furrow persistence through several tens of metres of deposition. Erosion occurs up to the top of the scarp during episodes of presumed stronger currents, which may correspond with intensified circulation during glacials.

  5. Calibrated, late Quaternary age indices using clast rubification and soil development on alluvial surfaces in Pilot Knob Valley, Mojave Desert, southeastern California

    NASA Astrophysics Data System (ADS)

    Helms, John G.; McGill, Sally F.; Rockwell, Thomas K.

    2003-11-01

    The orange coating (varnish) that forms on the undersides (ventral sides) of clasts in desert pavements constitutes a potential relative-age indicator. Using Munsell color notation, we semiquantified the color of the orange, ventral varnish on the undersides of clasts from 15 different alluvial fan and terrace surfaces of various ages ranging from less than 500 to about 25,000 yr. All of the surfaces studied are located along the central portion of the left-lateral Garlock fault, in the Mojave Desert of southern California. The amount of left-lateral offset may be used to determine the relative ages of the surfaces. The previously published slip rate of the fault may also be used to estimate the absolute age of each surface. The color of the ventral varnish is strongly correlated with surface age and appears to be a more reliable age-indicator than the percentage coverage of dorsal varnish. Soil development indices also were not as strongly correlated with age, as were the colors of the ventral varnish. In particular, rubification appears to be more useful than soils for distinguishing relative ages among Holocene surfaces. Humidity sensors indicated that the undersides of clasts condensed moisture nightly for a period of several days to over a week after each rain. These frequent wet-dry cycles may be responsible for the rapid development of clast rubification on Holocene surfaces.

  6. Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, U.S.A.

    USGS Publications Warehouse

    Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John

    2015-01-01

    We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed discrete tephra deposits are correlative with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 - >~0.780 Ma), 2) the Rockland ash bed (~0.575 Ma), 3) the Loleta ash bed (~0.390 Ma), and 4) a middle Pleistocene tephra resembling volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~0.180 Ma, correlated age). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades near Lassen Peak, California, and occurs in deposits up to >7 m thick as observed in core samples taken from ~40 m depth below land surface. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following the volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates (~0.07-0.29 m/1000 yr) in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in developing a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.

  7. Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John C.

    2015-03-01

    We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed tephra deposits correlate with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 to >~ 0.780 Ma), 2) the Rockland ash bed (~ 0.575 Ma), 3) the Loleta ash bed (~ 0.390 Ma), and 4) middle Pleistocene volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~ 0.180 Ma). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades and occurs in up to > 7-m-thick deposits in cores from ~ 40 m subsurface in the Sacramento-San Joaquin Delta. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.

  8. Static and dynamic characterization of alluvial deposits in the Tiber River Valley: New data for assessing potential ground motion in the City of Rome

    NASA Astrophysics Data System (ADS)

    Bozzano, F.; Caserta, A.; Govoni, A.; Marra, F.; Martino, S.

    2008-01-01

    The paper presents the results of a case study conducted on the Holocene alluvial deposits of the Tiber River valley, in the city of Rome. The main test site selected for the study, Valco S. Paolo, is located about 2 km South of Rome's historical centre. The alluvial deposits were dynamically characterized in a comprehensive way via site investigations and geotechnical laboratory tests. Normalized shear modulus decay and damping curves (G/G0 and D/D0 vs ?) were obtained for the dominantly fine-grained levels. The curves demonstrate that these levels have a more marked shear stiffness decay if compared with the underlying Pliocene bedrock. Decay curves from laboratory tests for the Tiber alluvia correlated well with the trend of the function proposed by Hardin and Drnevich, making it possible to derive their specific interpolation function coefficients. Use was made of the extrapolation of the findings from the Valco S. Paolo test site to a large part of Rome's historical centre by means of two other test sites, supported by an engineering-geology model of the complex spatial distribution of the Tiber alluvia. The experimental Valco S. Paolo Vs profile was extrapolated to the other test sites on the basis of a stratigraphic criterion; the analysis of seismic noise measurements, obtained for the three test sites, validated the engineering-geology based extrapolation and showed that the main rigidity contrast occurs inside the alluvial body (at the contact with the underlying basal gravel-level G) and not between the alluvia and the Plio-Pleistocene bedrock, composed of highly consistent clay (Marne Vaticane). The 1D modeling of local seismic response to the maximum expected earthquakes in the city of Rome confirms that the deposits have one principal mode of vibration at about 1 Hz. However, the simulation also evidenced that the silty-clay deposits (level C), making up the most part of the Tiber alluvial body, play a key role in characterizing the soil column deformation profile since it can be affected by non linear effects induced by the maximum expected earthquake when some stratigraphic conditions are satisfied.

  9. Preliminary maps of Quaternary deposits and liquefaction susceptibility, nine-county San Francisco Bay region, California: a digital database

    USGS Publications Warehouse

    Knudsen, Keith L.; Sowers, Janet M.; Witter, Robert C.; Wentworth, Carl M.; Helley, Edward J.; Nicholson, Robert S.; Wright, Heather M.; Brown, Katherine H.

    2000-01-01

    This report presents a preliminary map and database of Quaternary deposits and liquefaction susceptibility for the nine-county San Francisco Bay region, together with a digital compendium of ground effects associated with past earthquakes in the region. The report consists of (1) a spatial database of fivedata layers (Quaternary deposits, quadrangle index, and three ground effects layers) and two text layers (a labels and leaders layer for Quaternary deposits and for ground effects), (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map, liquefaction interpretation, and the ground effects compendium, and (4) the databse description pamphlet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a modern and regionally consistent treatment of Quaternary surficial deposits that builds on the pioneering mapping of Helley and Lajoie (Helley and others, 1979) and such intervening work as Atwater (1982), Helley and others (1994), and Helley and Graymer (1997a and b). Like these earlier studies, the current mapping uses geomorphic expression, pedogenic soils, and inferred depositional environments to define and distinguish the map units. In contrast to the twelve map units of Helley and Lajoie, however, this new map uses a complex stratigraphy of some forty units, which permits a more realistic portrayal of the Quaternary depositional system. The two colored maps provide a regional summary of the new mapping at a scale of 1:275,000, a scale that is sufficient to show the general distribution and relationships of the map units but cannot distinguish the more detailed elements that are present in the database. The report is the product of years of cooperative work by the USGS National Earthquake Hazards Reduction Program (NEHRP) and National Cooperative Geologic Mapping Program, William Lettis and & Associates, Inc. (WLA) and, more recently, by the California Division of Mines and Geology as well. An earlier version was submitted to the Geological Survey by WLA as a final report for a NEHRP grant (Knudsen and others, 2000). The mapping has been carried out by WLA geologists under contract to the NEHRP Earthquake Program (Grants #14-08-0001-G2129, 1434-94-G-2499, 1434-HQ-97-GR-03121, and 99-HQ-GR-0095) and with other limited support from the County of Napa, and recently also by the California Division of Mines and Geology. The current map consists of this new mapping and revisions of previous USGS mapping.

  10. Nitrogen, sulfate, chloride, and manganese in ground water in the alluvial deposits of the South Platte River Valley near Greeley, Weld County, Colorado

    USGS Publications Warehouse

    Gaggiani, N.G.

    1984-01-01

    Ground water from the valley-fill deposits of the South Platte River Valley and its tributaries is used extensively for agriculture in the study area, about 10 miles east of Greeley and about 50 miles northeast of Denver, Colorado. The valley-fill deposits, which consist of alluvial and terrace deposits, are in a valley system eroded in Laramie Formation bedrock. Water samples collected from 53 wells during 1974 and 1980 were analyzed for nitrite plus nitrate nitrogen, sulfate, chloride, and manganese. Median concentrations changes in these constituents from 1974 to 1980 are as follows: 6.0 to 8.8 milligrams per liter for nitrite plus nitrate nitrogen, 850 to 900 milligrams per liter for sulfate, and 94 to 120 milligrams per liter for chloride. Manganese concentrations were greater than 1,000 micrograms per liter in both 1974 and 1980 in a small area at the mouth of Box Elder Creek. (USGS)

  11. Occurrence and seismic characteristics of stacked Quaternary debris-flow deposits in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Yoo, Dong-Geun; Lee, Young-Mi; Kang, Nyeon-Keon; Yi, Bo-Yeon; Bahk, Jang-Jun; Kim, Gil-Young

    2015-04-01

    Analysis of multi-channel seismic reflection profiles collected from the Ulleung Basin, East Sea reveals that the Quaternary sequence in this area includes eighteen stacked debris flow deposits, which are variable in the geometry and spatial distribution. Each deposit is acoustically characterized by chaotic or transparent seismic facies without distinct internal reflections and shows wedge or lens-shaped external form. Based on distribution patterns, these deposits which form a succession of vertically and/or laterally stacked wedges are widely distributed on the southern slope and cover an area of more than 8,000 km2. Their general flow direction is from south to north and the thickness gradually decreases toward the basin plain. The results of seismic interpretation suggest that sedimentation during the Quaternary was controlled mainly by tectonic effects associated with sea-level fluctuations. The back-arc closure of the East Sea that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted blocks, were supplied to the basin through the mass transport processes, leading to the formation of stacked debris-flow deposits. Consequently, the development of debris flow deposits in the Ulleung Basin is largely controlled by regional tectonic event associated with the back-arc closure of the East Sea.

  12. The Quaternary deposits and landforms of Scotland and the neighbouring shelves: A review

    NASA Astrophysics Data System (ADS)

    Sutherland, Donald G.

    A thick sequence of Quaternary sediments (up to 1000 m) has been deposited in the North Sea Basin and perhaps five major glacial episodes, the first occurring prior to ca. 1.8-2.1 Ma BP and the last during the Late Devensian, can be recognised. Between the glacial events periods of low salinity arctic marine or glacio-marine sedimentation have been dominant although episodes of ameliorated climate when North Atlantic Drift waters had access to the North Sea have been identified. A number of horizons in separate boreholes have been correlated with the last interglacial (oxygen isotope stage 5e) and a sequence of water mass movements around the Scottish coasts can be reconstructed for the last ca. 125 ka. On land, sequences of Quaternary deposits relating to several glacial and non-glacial (terrestrial and marine) events occur in different areas but due to poor dating correlation between these sequences cannot yet be achieved. In particular, North-East Scotland has a complex glacial history with evidence for ice sheet glaciation on at least four occasions. Evidence from the Outer Hebrides, North-East Scotland and the North Sea Basin indicates that the Late Devensian Scottish ice sheet had a rather restricted extent, only reaching a short distance offshore along much of the east and west coasts. At this time ice free areas existed in North-East Scotland, on the Isle of Lewis and, probably, in Caithness and Orkney, whilst part of the outer shelf around St Kilda was dry land. A marine embayment extended down the east coast of Scotland between the Scottish and Scandinavian ice sheets and independent ice caps existed on the Outer Hebrides and probably on Shetland. Deglaciation of the greater part of the country took place prior to ca. 13 ka BP whilst the climate was still very cold. The ice retreat appears to have been orderly with stagnant ice masses being trapped only in topographically suitable locations. A number of retreat stages or minor readvances occurred during the general deglaciation. The Firth of Clyde was one of the last areas outside the Highlands to be deglaciated and this occurred in a rapid, possibly catastrophic, fashion shortly prior to ca. 13 ka BP. Despite the mild climate at the start of the Lateglacial Interstadial it is not known if there was complete deglaciation prior to the Loch Lomond Readvance. The Readvance glaciers, however, may have started to advance during the latter part of the Interstadial when declining terrestrial temperatures coincided with a period of mild marine conditions. The Loch Lomond Readvance maximum can only be dated to some time after ca. 10.9 ka BP and it is likely that final ice free conditions were not achieved until the earliest Holocene.

  13. Late Quaternary paleodune deposits in Abu Dhabi Emirate, UAF: Paleoclimatic implications

    SciTech Connect

    Brouwers, E.M.; Bown, T.M. ); Hadley, D.G. )

    1993-04-01

    Remnants of late Quaternary paleodunes are exposed near the coast of the Arabian Gulf and in large inland playas and interdunal areas in central and western Abu Dhabi Emirate over a distance of >45 km normal to the coast. Paleodunes occur south of Madinat Zayed (lat. 23[degree]35 N), which marks the northern limit of a modern dune field that grades into the mega-dune sand sea of the ar Rub al Khali, Saudi Arabia. Coastal paleodunes are composed of weakly cemented millolid foraminifers, ooids, and rounded biogenic grains, whereas inland and southward the paleodunes show a progressive increase in the proportion of eolian quartz sand. The paleodunes exhibit large-scale trough foresets in remnant exposures 0.5 to 10 m thick, indicating paleowind directions from 65[degree] to 184[degree] (dominantly southeast transport). Scattered paleoplaya remnants provide paleodune scale. Paleoplaya deposits form buttes 30--50 m high. If coeval with the Paleodunes, large-scale paleodune fields are implied (100+ m high), comparable to star dunes and sand mountains at the northwestern edge of the ar Rub al Khali. Based on U-Th isotopic analyses, the carbonate paleodune sands are >160ka and probably >250ka. The carbonate source was a shallow, nearly dry Arabian Gulf at a time when large areas were exposed during a low sea-level stand. Paleowind direction indicates that Pleistocene prevailing winds were northwesterly, the direction of the dominant (winter shamal) wind today. The geographic extend and implied magnitude of the paleodunes suggest large-scale eolian transport of carbonate sand during the Pleistocene disiccation, and admixed quartz sand identifies a youthful stage of contemporaneous evolution of the ar Rub al Khali. Wave-eroded paleodunes probably floor much of the present-day Gulf and extend beneath the modern dunes and sand mountains.

  14. Late quaternary depositional systems and sea level change-Santa Monica and San Pedro Basins, California continental borderland

    SciTech Connect

    Nardin, T.R.

    1983-07-01

    A suite of seismic reflection data that provides different degrees of resolution and penetration was used to map the depositional systems that have developed in Santa Monica and San Pedro basins during the late Quaternary. Submarine fan growth, particularly at the mouths of Hueneme and Redondo Canyons, has been the dominant mode of basin filling. Mass movement processes, ranging from creep to large-scale catastrophic slumping, have been important locally. In general, large-scale fan growth fits Normark's model in which the suprafan is the primary locus of coarse sediment deposition. Smaller scale morphologic and depositional patterns on the Hueneme and Redondo fans (e.g., distributary channels and coarse sediment concentrations basinward of the inner suprafan) suggest that a significant amount of coarse sediment presently bypasses the suprafans, however. Long-distance coarse sediment transport was particularly pronounced during late Wisconsinan lowstand of sea level and resulted in progradation of lower mid-fan and lower fan deposits.

  15. High resolution seismic stratigraphy and sedimentological signature of the Late Quaternary deposits in the northern Western Basin (Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Corradi, N.; Finocchiaro, F.; Ivaldi, R.; Melis, R.; Pitt, A.

    2003-04-01

    The northern Western Basin is a sector of the continental shelf of the Western Ross Sea that is considered to be the natural northward extension of the Drygalski Basin by many authors. The literature provides a general model of the evolution of the basin and the recent papers propose a seismic stratigraphy for the post-Miocene sedimentation. However, the sedimentary processes during the Late Quaternary and, in particular, the Last Glacial Maximum (LGM) are still little understood (Brambati et al., 2001). In this paper we present the preliminary results of the very high-resolution seismic surveys (Sub Bottom Profiler, Huntec Deep Tow Boomer and Sparker) and their calibration with the sediment samples collected during the three Marine Geology Campaigns of the PNRA (XIII, XIV and XVII), with the scientific objective of the research to investigate the role of the East Antarctic Ice Sheet (EAIS) in the morphogenesis and deposition of the Late Quaternary sedimentary series.

  16. Recurring deposition of eolian sand during the Late Quaternary in northeastern Colorado

    SciTech Connect

    Madole, R.F. )

    1992-01-01

    Three superposed units of late Quaternary eolian sand separated by buried soils and (or) clayey pond sediment are present along the southeast side of the South Platte River valley in northeastern Colorado. The oldest unit consists of at least 1.5 m of pale-brown sheet sand in which an A/Bw/C soil profile is developed; the solum is typically 45-55 cm thick. At Sterling, the oldest unit is overlain by organic-rich pond sediment that yielded a radiocarbon age of 9,010[+-]100 B.P. The middle unit consists of at least 0.4-2 m of pale-brown, massive to horizontally stratified sand. An A/C soil profile, with a light brownish-gray A horizon 13-25 cm thick, marks the upper limit of the unit. Radiocarbon ages from the Sterling site indicate that the middle unit was deposited between 9,010[+-]100 B.P., the age of underlying pond sediment, and 2,860[+-]60 B.P., the age of organic matter from the horizon at the top of the unit. The youngest unit consists of 0.5-8 m of pale-brown dune sand in which a faint A horizon (Valent series), typically 3-10 cm thick, has developed. Data from the cutbanks near Brush indicate that this unit was deposited about 1 ka or later. Organic matter from a buried A horizon beneath the youngest unit yielded a radiocarbon age of 1,380[+-]90 B.P. More importantly, however, the dated paleosol contained Plains Woodland ceramics, and Upper Republican ceramics were present just above the paleosol. The Plains Woodland culture was present in eastern Colorado between about 1.9 and 1 ka, and the Upper Republican culture between about 1 and 0.7 ka. The dune topography and soil development in the youngest unit near Brush are characteristic of large tracts of dune sand in northeastern Colorado, which suggests that the most recent episode of eolian activity may be younger than 1 ka.

  17. Mapping quaternary landforms and deposits in the Midwest and Great Plains by means of ERTS-1 multispectral imagery

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1973-01-01

    ERTS-1 multispectral images are proving effective for differentiating many kinds of Quaternary surficial deposits and landforms units in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Examples of features that have been distinguished are: (1) the more prominent end moraines of the last glaciation; (2) certain possible palimpsests of older moraines mantled by younger deposits; (3) various abandoned river valleys, including suspected ones deeply filled by deposits; (4) river terraces; and (5) some known faults and a few previously unmapped lineaments that may be faults. The ERTS images are being used for systematic mapping of Quaternary landforms and deposits in about 20 potential study areas. Some study areas, already well mapped, provide checks on the reliability of mapping from the images. For other study areas, previously mapped only partly or not at all, our maps will be the first comprehensive, synoptic ones, and should be useful for regional land-use planning and ground-water, engineering-geology, and other environmental applications.

  18. The organic and mineral matter contents in deposits infilling floodplain basins: Holocene alluviation record from the K?odnica and Osob?oga river valleys, southern Poland

    NASA Astrophysics Data System (ADS)

    Wjcicki, K. J.; Marynowski, L.

    2012-07-01

    The work examines the timing and environmental conditions of floodplain sedimentation in the valleys of the upland K?odnica and piedmont Osob?oga rivers in the Upper Odra River basin. A distribution of 52 14C-ages shows relatively high floodplain sedimentation at the Late Glacial-Holocene transition, more stable floodplain environments since the Early (in the K?odnica Valley) and Middle Holocene (in the Osob?oga Valley) and a gradual increase in floodplain deposition in the Late Holocene (since < 3.4 kyr BP). Organic matter [OM] and mineral matter [MM] fluctuations were correlated with variables responsible for the activation of erosion (i.e. vegetation changes, human impact and hydrological events) as well as factors affecting the local record of sedimentation (i.e. valley morphology, hydrologic conditions and episodes of local erosion). A clear relationship is shown between an increase in alluviation and climate- or human-induced extension of unforested areas. The deposition of mineral-rich sediments increases rapidly during periods characterized by non-arboreal pollen values exceeding approximately 8% in pollen diagrams. On the other hand, the results obtained do not confirm significant interactions between Holocene changes in forest composition and alluviation. Despite the settlement of agrarian groups, the sedimentary record of human activity in the Osob?oga catchment is very poor during the Neolithic and early Bronze Age. A large-scale alluviation of the Osob?oga and K?odnica valleys was initiated during the settlement of people of the Lusatian culture from the middle Bronze Age and escalated in the early Middle Ages and Modern Times. The deposition of products of soil erosion was limited to between ca. 1.9-1.2 kyr BP, probably due to demographic regression during the Migration Period. Comparison of OM/MM fluctuations with phases of increased fluvial activity does not show a relationship between Holocene wetter phases and catchment sediment yield. Sedimentary episodes in the Upper Odra basin also show a low degree of correlation with the probability density curve of the 14C-ages. The results obtained in the K?odnica and Osob?oga valleys indicate a strong to moderate correlation between the spatial distribution of the study sites and the origin of MM-rich deposits, but a weak correlation between the spatial distribution of the study sites and TOC content. Such a pattern suggests that OM/MM fluctuations relate predominantly to the changes in sediment yield, although morphological conditions have a significant impact on the capture potential of sedimentary basins during phases of alluviation. Additionally, high OM content is not a simple function of an increase in wetness of the sedimentary environment. On the other hand, hydrologically-conditioned hiatuses as well as erosion episodes impoverish the sedimentary record, complicating the consideration on the geochronology of deposits and making it difficult to calculate reliable accumulation rates. However, they do not reduce the value of OM/MM fluctuations as an indicator of alluviation events for a preserved series of sediments.

  19. Quaternary deposits and soil formation in the Aragn Pyrenees (Spain) - First results from sedimentological studies

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Raab, Thomas; Schuhart, Stefan

    2010-05-01

    Within the scope of the research project Post LGM Pedogenesis and Geomorphodynamics in the Aragn Pyrenees funded by the DFG (Az RA 931/3-1) late Quaternary glacial, periglacial, fluvial and anthropogenic sediments are used to reconstruct the palaeoenvironment. The two research areas Gllego Valley and Aragn Valley are located in Aragn about 50 km northwest of Huesca which is a type region for Pleistocene glaciation in the Central Spanish Pyrenees. Our reconstruction of the paleoenvironment is based on a first soil mapping along catenas and the facies differentiation of the sediments. Sedimentological analyses are performed by a measurement of macrofabrics, clast roundness, lithology and followed in the laboratory by grain size and chemical analyses. Preliminary results indicate that beside the glacial also periglacial morphodynamics play a major role for the formation of the soils present in the area. Moreover, we have hints for human impacts on the soil landscape as in several profiles periglacial and glacial sediments are superimposed by colluvial sediments which we interpret as a correlative sediment of soil erosion on the slopes. The pedostratigraphy is characterized by horizontal and vertical small scale heterogeneity which also results in varying stages of pedogenesis. Sedimentological analyses show that in the unglaciated backslopes periglacial slope deposits (PSD) consisting of a Lower and an Upper Head are present. The coarse fraction (> 2 mm) of the PSDs in the unglaciated area is limited to autochthon or parautochthon material. The Upper Head clearly differs from the Lower Head and tills by higher amounts of fine material (< 2 mm) which is interpreted as a result of the eolian genesis typically mentioned for this type of PSD. Upper Heads are mainly found on sheltered sites (old forest stands) indicating the frequent erosion caused by anthropogenic land-use. On these sheltered sites luvisols are developed. Lower Heads are characterized by only a small amount of fine material and a high amount of angular clasts, whose a-axes are parallel to the slope direction. Therefore the Lower Heads are more resistant to erosion induced by anthropogenic land-use. On the exposed Lower Heads leptosols are the dominant soil type indicating a short time for soil formation. Formerly glaciated areas on the footslopes and on the valley floors are characterized by diamictic and allochthon sediments consisting solely of angular to sub-rounded clasts orientated parallel to the direction of the former glacier movement. These properties are characteristic for subglacial environments and lodgement processes. Soils on the glacigenic sediments are reddish and form cambic horizons. Anthropogenic superimposing is common on the tills with truncated profiles and colluvisols.

  20. Quaternary geology of Avery Island, Louisiana

    SciTech Connect

    Autin, W.J.; McCulloh, R.P.; Davison, A.T.

    1986-09-01

    Avery Island, one of the Five Islands salt domes of south-central Louisiana, is a piercement-type dome that has been uplifted from several kilometers' depth. It is nearly circular in plan with a maximum elevation approximately 50 m above the surrounding coastal marsh. Dissection has produced a terrain of gullies and steep slopes. The features identified indicate a complex geologic history for Avery Island. Deposition of late Pleistocene sediments in a low-relief alluvial plain and subsequent soil development predate domal uplift. The stratigraphy of loess and colluvial silts indicates the island was emergent during loess depositions. The degree of dissection, distribution of colluvium, and shearing of Quaternary sediments reflects continual uplift after loess deposition.

  1. Composition and provenance of Late Pleistocene-Holocene alluvial sediments of the eastern Andean piedmont between 33 and 34° S (Mendoza Province, Argentina)

    NASA Astrophysics Data System (ADS)

    Mehl, A.; Blasi, A.; Zárate, M.

    2012-12-01

    The Andean cordillera, and its piedmont in the central western Argentina, has been long considered as one of the main source areas of detritus for the Chaco-Pampean plain sand dune fields and loess/loess-like deposits of central Argentina. The main goal of this study is to evaluate the composition of the late Pleistocene-Holocene alluvial deposits of the Andes cordillera piedmont, from 33° to 34° S. The results are interpreted in the context of the regional geology, tectonic setting of the study area and its implications in the continent-wide perspective of modern alluvial sands proposed by Potter (1994). Sampling was conducted at the alluvial stratigraphic sequences of four study sites along three Andean piedmont arroyos; modal mineralogy in the very fine sand fraction (3 phi to 4 phi) was determined using standard petrographic microscope methods. Q:F:LF average compositions indicate that the Late Pleistocene-Holocene very fine-grained alluvial sands of the Cordillera Frontal piedmont reflects the modern lithic arenites of the Argentine Association reported by Potter (1994). The results show two geologically distinct sources in the catchment areas, volcaniclastic and metamorphic rocks. High concentrations of mica and volcanic glass are likely related to particle morphologies and to the deposition sedimentary environment recorded in the alluvial sequences—floodplains. The overabundance of micas over the volcanic glass in the mid-late Holocene alluvial sequence indicates the drainage of a metamorphic area at the expense of other lithological sources. Source areas are located mainly in the Frontal cordillera, and to a lesser extent, in the piedmont Tertiary deposits, another likely source for the analyzed Quaternary alluvial sediments. The mineralogical signature of the late Pleistocene and Holocene alluvial sequences is in agreement with the composition of the southern Pampean sand mantles, loess and loess-like deposits mainly formed by a volcanic mineral assemblage with source areas placed at the headwaters of the main Andean rivers.

  2. Fault-scarp morphology and amount of surface offset on late-Quaternary surficial deposits, eastern escarpment of the central Sierra Nevada, CA

    SciTech Connect

    Berry, M.E. . Dept. of Geology)

    1992-01-01

    Faults scarps, formed on glacial deposits and an alluvial fan near the east-central Sierra Nevada mountain front by late-Quaternary movement on the Hilton Creek (HCF), Wheeler Crest (WCFZ) and Coyote Warp (CWFZ) fault zones, were profiled to determine the amount and to estimate the recency of fault offset. Areas studied include McGee (N--near Lake Crowley), Pine, Mount Tom, Basin Mountain, McGee (S--near Bishop), and Bishop Creek drainages. The profile data indicate that movement of the range-front faults (HCF and WCFZ), which is characterized by normal slip, has offset Tioga-age deposits 6.5-26 m. Offset of Tahoe-age moraines cannot be measured directly because the landforms are buried at the mountain-front by moraines from later glaciations. However, the amount of offset is estimated at 52--130 m, based on crest-height differences between Tahoe and Tioga moraines. The rates of slip are highest on the northern end of the HCF, at McGee (N) Creek; the higher slip rates in this latter area may be related to its close proximity to the Long Valley caldera, where tectonic processes are complex and considered closely related to ongoing magmatic activity. The preservation of bevels on the fault scarps in both HCF and WCFZ, combined with the amounts of surface offset on the late-Pleistocene moraines, and AMS C-14 dates for charcoal found in fault-scarp colluvium, indicate that large ground-rupturing events have occurred on these faults during the Holocene. In contrast to the mountain-front faults, faults in the CWFZ, on a broad warp that separates the WCFZ from range-front faults to the south of Bishop, do not cross Tioga moraines, implying that surface rupture has not occurred in the CWFZ for at least 15,000-25,000 years. The degraded morphology of the fault scarps on adjacent Tahoe and pre-Tahoe moraines, which have been offset between 10.5 and 30 m, attests to the lack of late-Pleistocene and Holocene fault activity in this latter area.

  3. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  4. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for 20-odd potential study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Among the more distinct features are the major moraines and outwash channels of the last (Wisconsin) glaciation. Analysis of dissection/drainage patterns from the synoptic imagery is proving useful for detecting anomalies that may be caused by stream diversions and moraines of pre-Wisconsin glaciations, by variable loess deposition, by tectonism, and other factors. Numerous abandoned river valleys have been mapped. Trend-lines of several known pre-Wisconsin moraine systems have been identified in Iowa, Nebraska, and Kansas, and also several similar trend-lines, that may indicate previously unknown moraine systems of middle and possibly early Pleistocene age, have been found in Iowa and Missouri. The area inundated by a major flood in southwestern Iowa also has been delineated from ERTS-1 imagery.

  5. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be determined primarily by information on landforms and soils (obtained by analysis of stream dissection and drainage and stream-divide patterns, land use patterns, etc.). Maps showing the Quaternary geologic-terrain units that can be distinguished on the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps of 1:1,000,000 scale are included for three of the study areas: the Grand Island and Fremont, Nebraska, and the Davenport, Iowa-Illinois, 1 deg x 2 deg quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from the ERTS-1 images alone, with no additional information. These maps show that commonly the boundaries of geologic-terrain units can be delineated more accurately on ERTS-1 images than on topographic maps at 1:250,000 scale.

  6. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps at 1:1 million scale are given of two of the study areas, the Peoria and Decatur, Illinois, 1 deg x 2 quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from ERTS-1 images alone, without input of additional data. These maps shown that commonly the boundaries of geologic-terrain units can be identified more accurately on ERTS-1 images than on topographic maps of 1:250,000 scale. From analysis of drainage patterns, stream-divide relations, and tone and textural variations on the ERTS-1 images, the trends of numerous moraines of Wisconsinan and possibly some of Illinoian age were mapped. In the Peoria study area the trend of a buried valley of the Mississippi River is revealed.

  7. Late Quaternary stratigraphy and depositional history of the Long Island Sound basin

    USGS Publications Warehouse

    Lewis, Ralph S.; Stone, Janet R.

    1991-01-01

    Where quiet waters prevail, marine mud generally less than 15 m thick blankets the older deposits of the Basin. Elsewhere, especially in eastern LIS, tidal currents are actively reworking and transporting glacial and postglacial deposits.

  8. Ground-water levels in the alluvial aquifer in eastern Arkansas, 1988

    USGS Publications Warehouse

    Westerfield, P.W.; Baxter, C.R.

    1990-01-01

    This report, prepared by the U.S. Geological Survey in cooperation with the Arkansas Soil and Water Conservation Commission, the U.S. Soil Conservation Service, and local Conservation Districts, contains groundwater level measurements of 509 wells that tap the alluvial aquifer in the Quaternary deposits of the Mississippi Alluvial Plain. The measurements were made by district Soil Conservation Service personnel during 1988. The shallowest prepumping season water levels occurred in Ashley, Clay, Greene, Mississippi, Phillips, and Randolph Counties where water levels averaged less than 20 ft below the land surface. The deepest water levels occurred in Arkansas, Lonoke, Poinsett, and Prairie Counties where water levels of more than 100 ft below land surface were measured. Water levels in the postpumping season averaged about 4.1 ft lower than during the prepumping season. (USGS)

  9. Ground-water levels in the alluvial aquifer in Eastern Arkansas, 1989

    USGS Publications Warehouse

    Westerfield, P.W.; Baxter, C.R.

    1990-01-01

    This report, prepared by the U.S. Geological Survey in cooperation with the Arkansas Soil and Water Conservation Commission, the U.S. Soil Conservation Service and local Conservation Districts, contains groundwater level measurements of 504 wells that tap the alluvial aquifer in the Quaternary deposits of the Mississippi Alluvial Plain. The measurements were made by district Soil Conservation Service personnel during 1989. The shallowest prepumping season water levels occurred in Clay, Greene, Independence, Mississippi, Phillips, and Randolph Counties where water levels averaged less than 20 ft below the land surface. The deepest water levels occurred in Arkansas, Lonoke, Poinsett, and Prairie Counties where water levels of more than 100 ft were measured. Water levels in the postpumping season averaged about 2.5 ft lower than during the prepumping season. (USGS)

  10. Erosion and deposition on the Pajarito Plateau, New Mexico, and implications for geomorphic responses to late Quaternary climatic changes

    SciTech Connect

    Reneau, S.L.; McDonald, E.V.; Gardner, J.N.; Longmire, P.A.; Kolbe, T.R.; Carney, J.S.; Watt, P.M.

    1996-04-01

    The Pajarito Plateau of northern New Mexico contains a rich and diverse record of late Quaternary landscape changes in a variety of geomorphic settings that include gently-sloping mesa tops, steep canyon walls, and canyon bottoms. A broad range of investigations during the past decade, motivated by environmental and seismic hazard concerns, have resulted in examination of the characteristics, stratigraphy, and age of sediments and soils at numerous locations throughout the Plateau. Geochronologic control is provided by >140 radiocarbon dates supplemented by soil characterization and tephrochronology. In this paper we first summarize some of the results of recent and ongoing work on late Quaternary deposits on the Pajarito Plateau, illustrating both the complexity of the geomorphic record and some common elements that have been observed in multiple locations. We then use these observations, in combination with other work in the Southwest, to make some inferences about the local geomorphic response to regional climatic changes. Because the geomorphic and paleoclimatic records are fragmentary, and because the relations between large scale climate changes and local variations in precipitation, vegetation, and geomorphic processes are not fully understood, many uncertainties exist concerning the response of the local landscape to past climatic fluctuations. In addition, variations in local landscape sensitivity related to prior erosional history and spatial variations in vegetation, and the localized nature of many storms, probably contribute to the complexity of the geomorphic record. Nevertheless, the work discussed in this paper suggests a strong relation between regional climatic changes and local geomorphic history, and provides a framework for considering relations between modem processes, the record of past landscape changes, and future erosion and deposition on the Plateau and in surrounding areas.

  11. Active Tectonics and Alluvial Rivers

    NASA Astrophysics Data System (ADS)

    Talwani, Pradeep

    Flying into San Francisco, California, for the AGU Fall Meeting from the east coast of the United States, one sees an ever-changing pattern of rivers below. From straight channels, the rivers take on a meandering pattern, become braided, and form oxbow lakes. Their drainage patterns change from regional directions in response to local structures and tectonic activity This carving of the landscape is the response of alluvial rivers to active tectonics manifested locally by ongoing tectonic uplift, river erosion, and alluvial deposition.

  12. Seismic responses of pipelines laid through alluvial valleys

    SciTech Connect

    Liang, J.W.; Jia, S.; Hou, Z.

    1995-12-31

    In this paper, dynamic characteristics of pipelines laid through alluvial valleys are analyzed. The scattering solution of SH-waves by a shallow circular alluvial valley is used to evaluate ground motion, and pipeline-soil interaction is considered. The results show that the alluvial valley has spectacular effects on dynamic behaviors of the pipelines, and for a narrow valley, damage will appear at two interfaces between the alluvial deposit and the riverbed, and for a wider valley, the damage will appear not only at two interfaces but also in the alluvial deposit, this depends on the valley width and the wavelength of incidence seismic waves.

  13. Quaternary glacial and post-glacial depositional history associated with the Green Bay lobe, east-central Wisconsin

    SciTech Connect

    Thieme, L.D.; Smith, G.L. . Dept. of Geology)

    1993-03-01

    Multiple layers of peat and wood fragments indicate that Quaternary glaciation of the east-central region of Wisconsin was punctuated by at least two interglacial periods. Till, outwash, and glaciolacustrine deposits suggest that deposition took place in alternating glacial and non-glacial environments due to oscillations in the position of the Green Bay Lobe terminus. The data for this study consists of 36 auger borings, 70 geologic logs and 100 well-construction reports from water wells. Nine vibracores were taken at the northern margin of Lake Winnebago in order to document in detail the post-glacial history of Glacial Lake Oshkosh/Lake Winnebago. Local bedrock consists of limestones and dolomites of the Middle Ordovician Sinnipee Group. Bedrock elevations range from 211--237 m; bedding dips regionally to the southeast at 1--2 degrees. Bedrock is overlain by a 3--13 m-thick layer of alternating red clay and gray silty-clay (basal Kewaunee Formation ) perhaps deposited in a proglacial lake. These sediments are overlain by apeat/wood layer indicating marsh deposition. This peat/wood layer is overlain by more proglacial lake sediment, 3--10 m of gray brown clay to silty-clay. A second peat/wood layer overlies the gray/brown sediment and may correlate with the Two Creeks buried forest bed. The uppermost unit consists of 2--3 m red silty-clay till (Middle Inlet Member of the Kewaunee Formation). Along the northern margin of present-day Lake Winnebago, red silty-clay is overlain by silty-sand deposited by Glacial Lake Oshkosh. Future work includes obtaining radiocarbon dates from buried peat/wood layers to verify these tentative correlations between east-central Wisconsin and the Lake Michigan Basin.

  14. Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

    NASA Astrophysics Data System (ADS)

    Rufer, Daniel; Preusser, Frank; Schreurs, Guido; Gnos, Edwin; Berger, Alfons

    2014-05-01

    The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe-Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

  15. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan.

    PubMed

    Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane

    2014-10-01

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center. PMID:25004850

  16. High-frequency cyclicity in quaternary fan-delta deposits of the Andean fore-arc: Relative sea level changes and aseismic ridge subduction

    SciTech Connect

    Flint, S. ); Jolley, E.J.; Turner, P.; Williams, G.D.; Buddin, T. )

    1990-05-01

    The coast of northern Chile comprises Mesozoic magmatic rocks and Cenozoic-Holocene shallow-marine and alluvial fan/fan-delta sediments. The structure, landform development, and sedimentary response of the coast between Antofagasta in the south and Arica (600 km to the north) have been investigated to evaluate the influence of Nazca plate subduction on sea level changes over Quaternary to Holocene times. At Arica the coastal range is in net extension characterized by extensional normal faulting and subsidence, similar to much of Chile. South of Arica, uplift is recorded by marine terrace development and incision of alluvial fan surfaces; uplift reaches a maximum south of Iquiqui. The boundary between regions in net subsidence and net uplift is marked by north-facing neotectonic normal fault scarps. Variations in apparent uplift and subsidence are consistent with recently published oceanographic records on relative sea level changes over a 30 yr period. The authors data suggest that these regionally variable patterns of coastal uplift along the north Chilean coast are controlled by the subduction of an aseismic ridge, which overprints the effect of eustatic sea level fluctuations. Subduction of oceanic plate heterogeneities may provide a mechanism for producing cyclicity in sedimentary sequences at a frequency equal to or higher than glacio-eustacy in fore-arc and possibly back-arc sedimentary basins. These sequences will be neither of global extent nor of global synchroneity.

  17. Processes of late Quaternary turbidity current flow and deposition on the Var deep sea fan, northwest Mediterranean sea

    SciTech Connect

    Piper, D. ); Savoye, B. )

    1993-09-01

    Late Quaternary sedimentation patterns on the Var deep-sea fan are known from high-resolution seismic boomer profiles (vertical resolution < 1 m), piston cores, SAR side-scan sonargraphs, and submersible dives. Foram biostratigraphy and radiocarbon dating provide chronologic control that is seismically correlated across the fan. Regional erosional events correspond to the isotopic state 2 and 6 glacial maxima. A widespread surface sand layer was deposited from the 1979 turbidity current, which broke two submarine cables. Numerical modeling constrains its character. A small slide on the upper prodelta developed into an accelerating turbidity current, which eroded sand from the Var canyon. The current was 30 m thick in the upper valley, expanding downflow to >120 m, where it spilled over the eastern Var sedimentary ridge at a velocity of 2.5 ms[sup [minus]1]. Other Holocene turbidity currents (with a 103-yr recurrence interval) were muddier and thicker, but also deposited sand on middle fan-valley levees and are inferred to have had a similar slide-related origin. Late Pleistocene turbidity currents deposited on the high Var sedimentary ridge. The presence of sediment waves and the cross-flow slope inferred from levee asymmetry indicate that some flow were hundreds of meters thick, with velocities of 0.35 ms[sup [minus]1]. Estimated times for deposition of thick levee mud beds are many days or weeks. Late Pleistocene flows therefore are interpreted to result from hyperpycnal flow of glacial outwash in the Var River. Variation in late Pleistocene-Holocene turbidite sedimentation thus is controlled more by changes in sediment supply than by sea level.

  18. A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho

    USGS Publications Warehouse

    Desborough, G.A.; Foord, E.E.

    1992-01-01

    A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

  19. The Effect of Shallow Quaternary Deposits on the Shape of the H/V Spectral Ratio

    NASA Astrophysics Data System (ADS)

    Macau, A.; Benjumea, B.; Gabàs, A.; Figueras, S.; Vilà, M.

    2014-09-01

    In the last two decades, the horizontal-to-vertical (H/V) spectral ratio of seismic noise technique has been widely used for site-effect estimation and geophysical exploration through the soil fundamental frequency. Usually, only one peak is observed in the H/V spectral ratio, but in some cases, a second peak can also be obtained. Nevertheless, to date, the peaks at higher frequencies are rarely studied in detail. Geological and geophysical data are especially needed to better explain the presence of this second peak, which normally is neglected. An extensive survey of H/V measurements was conducted in the Llobregat river delta, located to the south of Barcelona. At most sites, two clear peaks were identified: one at low frequencies (<1 Hz) and the other at higher frequencies (>1 Hz). To understand this behaviour, a seismic noise array and active surface wave measurements have been conducted to obtain a shear-wave velocity profile (V s) up to the bedrock. Two impedance contrasts have been detected: the first one at a shallow depth and the second one between the soft sedimentary cover and the bedrock. During the modelling process, the theoretical H/V computed from the obtained V s models fits well with the experimental H/V peaks. The results from this study show that the structure of shallow quaternary layers can clearly change the shape of the H/V ratio, producing two clear peaks in some situations. In this case, the contact between the low-velocity clay layer and the gravels with a high seismic wave velocity produces a shallow impedance contrast related to the second peak observed in the H/V ratio. Comprehension of these secondary peaks could avoid a misreading of the soil fundamental frequency that could produce errors in a site-effect evaluation or in the calculation of the bedrock depth. Finally, we show that passive seismic techniques provide the quaternary overburden and bedrock geometry in urban areas and allow for the limitations of other geophysical techniques in these environments to be overcome.

  20. The Effect of Shallow Quaternary Deposits on the Shape of the H/V Spectral Ratio

    NASA Astrophysics Data System (ADS)

    Macau, A.; Benjumea, B.; Gabàs, A.; Figueras, S.; Vilà, M.

    2015-01-01

    In the last two decades, the horizontal-to-vertical (H/V) spectral ratio of seismic noise technique has been widely used for site-effect estimation and geophysical exploration through the soil fundamental frequency. Usually, only one peak is observed in the H/V spectral ratio, but in some cases, a second peak can also be obtained. Nevertheless, to date, the peaks at higher frequencies are rarely studied in detail. Geological and geophysical data are especially needed to better explain the presence of this second peak, which normally is neglected. An extensive survey of H/V measurements was conducted in the Llobregat river delta, located to the south of Barcelona. At most sites, two clear peaks were identified: one at low frequencies (<1 Hz) and the other at higher frequencies (>1 Hz). To understand this behaviour, a seismic noise array and active surface wave measurements have been conducted to obtain a shear-wave velocity profile ( V s) up to the bedrock. Two impedance contrasts have been detected: the first one at a shallow depth and the second one between the soft sedimentary cover and the bedrock. During the modelling process, the theoretical H/V computed from the obtained V s models fits well with the experimental H/V peaks. The results from this study show that the structure of shallow quaternary layers can clearly change the shape of the H/V ratio, producing two clear peaks in some situations. In this case, the contact between the low-velocity clay layer and the gravels with a high seismic wave velocity produces a shallow impedance contrast related to the second peak observed in the H/V ratio. Comprehension of these secondary peaks could avoid a misreading of the soil fundamental frequency that could produce errors in a site-effect evaluation or in the calculation of the bedrock depth. Finally, we show that passive seismic techniques provide the quaternary overburden and bedrock geometry in urban areas and allow for the limitations of other geophysical techniques in these environments to be overcome.

  1. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    NASA Astrophysics Data System (ADS)

    Andrades-Filho, Cldis de Oliveira; Rossetti, Dilce de Ftima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugnio; Valeriano, Mrcio de Morisson; Cremon, dipo Henrique; Oliveira, Roberto Gusmo de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In addition, two units of the latter (i.e., PB1 and PB2) previously mapped in the field were promptly separated based on Th concentration. A regression analysis indicated that the relationship between geophysical and geochemical values obtained for the PB1, PB2 and Barreiras Formation is significant (R-squared = 0.91; p-value <0.05). Map validation presented a high overall accuracy of 84%, with a coefficient of quantity disagreement of 12% and a coefficient of allocation disagreement of 8%. These results indicate that the methodology applied in the central onshore Paraba Basin can be successfully used for mapping the Barreiras Formation and Post-Barreiras Sediments in other areas of the Brazilian coast. The ability to rapidly and precisely map these units using such methodology could reveal their geographic distribution along the northeastern coast of Brazil.

  2. Redoximorphic paleosols in alluvial and lacustrine deposits, 1.8 GA Lochness Formation, Mount Isa, Australia: Pedogenic processes and implications for paleoclimate

    SciTech Connect

    Driese, S.G.; Simpson, E.L.; Eriksson, K.A.

    1995-10-02

    Paleosols in the Lochness Formation (1.8 Ga, Australia) include both rare, non-red and abundant, strongly reddened varieties that formed at subaerial exposure surfaces in both ephemeral-river and lacustrine settings. Physical processes dominated non-red paleosols, which were characterized by repeated episodes of desiccation, shrinking, and cracking alternating with wetting and introduction of sand, silt, clay, and iron oxyhydroxides into planar voids. Redoximorphic (oxidation-reduction) processes were especially intense for the red paleosols; redox depletions of Fe and Mn (hypoalbans) occur immediately adjacent to desiccation-related macropores and peds, whereas redox concentrations of Fe and Mn (quasi-coatings) occur within paleosol matrix adjacent to redox depletions. Redoximorphic features indicate periodic water infiltration and saturation, accompanied by development of reducing conditions along planar macropores and ped surfaces in Lochness Formation paleosols. Variations in soil saturation were caused by seasonal fluctuations of lake level in lacustrine deposits, and by formation of perched saturation zones within floodplain deposits, respectively. Occurrences of red, hematitic paleosols in the Lochness Formation are compatible with previous interpretations of a weakly oxygenated 1.8 Ga paleoatmosphere. Redoximorphic features in the paleosols suggest a warm to cool temperate paleoclimate characterized by seasonal saturation, by analogy with Quaternary redoximorphic soils. A minimal concentration of organic C, possibly of microbial or bacterial origin, must have been present in these Proterozoic soils to allow for Fe reduction.

  3. Quaternary depositional history of Providenciales and West Caicos, Turks and Caicos Islands, British West Indies

    SciTech Connect

    Fouke, B.W.; Glenister, B.F.; Ressmeyer, P.F.; Prezbindowski, D.R.

    1985-01-01

    The Turks and Caicos Islands represent the SE limit of emergent portions of the Bahamian Platform. Providenciales and West Caicos are low-lying islands, composed of Quaternary marine and eolian carbonates, that lie near the NW margin of the Caicos Bank. Highest elevations of marine skeletal-peletal grainstones on Providenciales are 6m above present s.l.; reefs associated with marine grainstones on West Caicos are 3-4m above s.l., and allowing for growth in several meters water depth support interpretation of maximum s.l. as +6m. Marine sediments are dated as approximately 50,000 C14 Years B.P. This suggests correlation with the mid-Wisconsin s.l. maximum and implies tectonic instability. Eolian dunes achieve an elevation of 48 m on Providenciales, where they are differentiated into five systems based on geomorphology and grain composition. Oolites, now generated exclusively in the narrow swash-zone, predominate on the Bank side whereas coated pellets and skeletal grains characterize calcarenites formed in the seaward reef tract. Fall in s.l. to the late Wisconsin minimum (17,000 years, perhaps -120m) generated successively lower arcs of dunes as carbonate productivity decreased, and resulted in subaerial diagenesis as the entire Bank emerged. Spectacular karst formation during the late Wisconsin as well as earlier s.l. lows provided conduits that allow restricted marine faunas to flourish in inland lakes and sink holes.

  4. Episode(s) of intense alluvial deposition during an era of drought on Mars: Evidence from fans at Saheki (and Gale?)

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Beyer, R. A.

    2012-12-01

    The martian alluvial fans of the Hesperian-Amazonian period [1,2] may represent a portion of the last widespread episode of large-scale fluvial modification on the red planet's surface. We undertook a detailed study of the fans in the western Terra Tyrrhena region, including geomorphic mapping, calculations of surface ages derived from crater density statistics, estimations of hydrology based on the morphologic parameters of the observed channels, and landform evolution modeling. Understanding the processes and prevalent climatic conditions during fan formation provides key insights into Mars' fluvial history, which continues to remain the premier focus of martian geologic study. The fans feature channel morphologies which indicate that they formed fluvially (as opposed to being debris flows), including the presence of scroll bars and meander bends. These are observed on the fan surface, meaning that the final flows responsible for forming the fan were fluvial. The lack of boulders greater than 0.5m (at which size they would be observed in HiRISE images), the presence of washed out portions of channels, and aeolian inversion of channel topography lead us to conclude that the channel beds are primarily made up of fine grained (sand to granule) sediment. Crater age statistics were computed using [3] software, using the chronology function of [4] and the production function of [5]. All of the fans in the area date to the Hesperian and in some cases as late as the early Amazonian, epochs that otherwise are generally characterized by a cool, dry Mars. This is at around same time period at which the alluvial deposits in Gale Crater may have formed. Natural levees observed on the fan were used to estimate paleochannel width. Channel depth is calculated from an assumed grain size and measured slope. Slopes were obtained from Digital Elevation Models (DEMs) that we have constructed from CTX and HiRISE stereo pairs. We use Manning and Darcy-Weisbach equations to obtain discharge estimates ranging from 2-6 m3/s, comparable with obtained values for similarly sized fans in the Atacama Desert [6]. In order to constrain climatic and geomorphic factors during the epoch of fan formation model we have been developing a numerical landform evolution model to simulate the aggradation of an alluvial fan. Output is statistically compared with our DEMs of the study area. References: [1]Moore, J.M., and A.D. Howard (2005), JGR, 110, E04005, doi:10.1029 / 2004JE002352 [2] Grant, J. A., Wilson, S.A. (2011) GRL, 38, L08201, doi:10.1029/2011- GL046844 [3]Michael G.G., Neukum G. (2010) Earth and Planetary Science Letters. doi: 10.1016/j.epsl.- 2009.12.041 [4]Hartmann, W.K., Neukum, G. (2001) Space Sci. Rev., v96, p. 165-194, doi: 10.1023/A:1011945222010 [5] Ivanov, B.A. (2001) Space Science Reviews 96, p. 87-104 [6] Haug, E.W., Kraal, E.R., Sewall, J.O., Van Dijk, M., Diaz, G.C. (2010) Geomorphology 121, 184-196, doi: 10.1016/j.geomorph.2010.04.005

  5. Field evidence of seismites in Quaternary deposits of the Jijel (Eastern Algeria) coastal region

    NASA Astrophysics Data System (ADS)

    Benhamouche, A.; Nedjari, A.; Bouhadad, Y.; Machane, D.; Oubaiche, E.; Sidi Said, N.

    2014-04-01

    Jijel has been hit by a strong earthquake in 1856 that triggered a destructive tsunami. Field geological investigations show that the marine terrace deposits (Tyrrhenian or likely Eutyrrhenian) exhibit several types of soft sediment deformation features including sismoslumps, thixotropic bowls, thixotropic wedges, and diapir-like structures. In addition, paleo-liquefaction features represented by neptunian and injection dikes have been observed in the sand dune deposits (Aterian or Wrm). Furthermore, typical paleo-earthquake-induced ground failures including lateral spreading, paleo-landslides, and sand volcanoes have been observed in recent, likely, Holocene deposits. Such features, remarkably comparable to present-day earthquake-induced ground failures showing clearly repetitive occurrence of past events may constitute a precious material for future paleo-seismic investigation. The various features have been interpreted herein as seismites associated to strong earthquakes produced likely by the potentially active faults previously identified in the area.

  6. Source area, depositional environment, and composition of Quaternary sands, Monterey Bay, California

    SciTech Connect

    O'Brien, W.D. Jr.; Dupre, W.R.

    1988-01-01

    A suite of 173 sand samples from the Monterey Bay region was studied, using a stepwise discriminant function analysis, to determine the role of source area and depositional environment in controlling the modal framework constituents of the sands. These medium to fine-grained sands were derived from the Salines, Pajaro, and Carmel drainage basins, and were deposited in fluvial, nearshore marine, and eolian environments. They range in age from recent to early Pleistocene. Provenance exerts the most significant control on composition, providing an 87% assignment efficiency (independent of depositional environment); volcanic and sedimentary rock fragments were the most important variables. There was a 100% efficiency when discriminating between fluvial sands from the three drainage basins; however, the efficiencies were less strong in marine and eolian sands (90.5 and 86%, respectively). This difference is, in part, the result of modification in transit and mixing of sources.

  7. A Geophysical Survey of the Quaternary Beatty Junction Paleolake Shoreline Deposit, Death Valley National Park, California

    NASA Astrophysics Data System (ADS)

    Craig, M.; Warnke, D.; Teitler, L.; Narvaez, R.

    2005-12-01

    We conducted a ground-penetrating radar (GPR) and seismic refraction survey of the Beatty Junction Shoreline Deposit in Death Valley National Park in March 2005. The deposit is a beach barrier bar approximately 500 m long, 50 m wide, and 5 m high, at an elevation of about 30 m above sea level and corresponds to a relict shoreline of the former Lake Manly (Orme and Orme, Phys. Geog., 12, pp. 334-346, 1980). The bar is oriented WSW-ENE, slopes to the east and is cut by the Beatty Junction Road. The longitudinal profile of the bar slopes to the east and is slightly concave upward. A total of 730 m of GPR data were recorded, including a longitudinal line 360 m in length, oriented along the crest of the bar, and four transverse lines, each approximately 100 m long. A hammer seismic refraction line was also recorded along the crest of the bar, and yielded a 3-layer model consisting of a surface layer about 1 m thick with a velocity of 200 m/s, a second layer 4-9 m thick with a velocity of 700 m/s, and a basal unit with a velocity of 1500 m/s. The uppermost layer apparently corresponds to an unconsolidated surface veneer of coarse gravel that has been winnowed to form desert pavement. The second layer is presumably sand and gravel that forms the main portion of the bar, and which thins in the longitudinal direction, from 9 m in the west to 4 m in the east. The third, basal layer represents older, more consolidated fan sediments. Shallow reflectors on the lakeward side of two of the transverse GPR lines have a distinct step-like appearance that may represent berms. All GPR lines show a thin surface layer, about 1 m thick, that unconformably covers all reflectors in the interior of the deposit, similar to the Hanaupah Shoreline Deposit at Tule Spring, described by Ibbeken and Warnke ( J. Paleolimnology, 23, pp. 439-447, 2002). The age of the deposit is given as 153 ± 12 Ka, late in Marine Isotope Stage 6 (Orme and Orme, 1991). Since this age range overlaps with that given by Machette et al. for the Tule Spring deposit ( GSA Abstracts with Programs, 34, pp. 257-258, 2003), we consider both deposits nearly time equivalent, deposited near or during Termination II.

  8. Ages of Quaternary Rio Grande terrace-fill deposits, Albuquerque area, New Mexico

    USGS Publications Warehouse

    James Channing Cole; Mahan, Shannon; Stone, Byron D.; Shroba, Ralph R.

    2007-01-01

    Results from luminescence dating on 13 samples from the Albuquerque area show that major-drainage fluvial deposits represent significant periods of aggradation that formed paired, correlatable terraces on the east and west margins of the Rio Grande valley . The youngest terrace fills (Primero Alto) formed during late Pleistocene as a result of streamflow variations with climate cooling during Marine Oxygen-Isotope Stage 3; our ages suggest aggradation of the upper part of the fill occurred at about 47–40 ka . Deposits of the second (Segundo Alto) terraces reached maximum height during climate cooling in the early part of Marine Oxygen-Isotope Stage 5 as late as 90–98 ka (based on dated basalt flows) . Our luminescence ages show considerable scatter and tend to be younger (range from 63 ka to 162 ka) . The third (Tercero Alto) and fourth (Cuarto Alto) terraces are dated on the basis of included volcanic tephra. Tercero Alto terrace-fill deposits contain the Lava Creek B tephra (639 ka), and Cuarto Alto terrace-fill deposits contain tephra of the younger Bandelier Tuff eruption (1 .22 Ma), the Cerro Toledo Rhyolite (1 .47 Ma), and the older Bandelier Tuff eruption (1 .61 Ma). These periods of aggradation culminated in fluvial terraces that are preserved at maximum heights of 360 ft (Cuarto Alto), 300 ft. (Tercero Alto), 140 ft (Segundo Alto), and 60 ft. (Primero Alto) above the modern floodplain. Despite lithologic differences related to local source-area contributions, these terracefill deposits can be correlated across the Rio Grande and up- and down-valley for tens of miles based on maximum height of the terrace above the modern floodplain.

  9. Ages of Quaternary Rio Grande terrace-fill deposits, Albuquerque area, New Mexico

    USGS Publications Warehouse

    Cole, J.C.; Mahan, S.A.; Stone, B.D.; Shroba, R.R.

    2007-01-01

    Results from luminescence dating on 13 samples from the Albuquerque area show that major-drainage fluvial deposits represent significant periods of aggradation that formed paired, correlatable terraces on the east and west margins of the Rio Grande valley. The youngest terrace fills (Primero Alto) formed during late Pleistocene as a result of streamflow variations with climate cooling during Marine Oxygen-Isotope Stage 3; our ages suggest aggradation of the upper part of the fill occurred at about 47-40 ka. Deposits of the second (Segundo Alto) terraces reached maximum height during climate cooling in the early part of Marine Oxygen-Isotope Stage 5 as late as 90-98 ka (based on dated basalt flows). Our luminescence ages show considerable scatter and tend to be younger (range from 63 ka to 162 ka). The third (Tercero Alto) and fourth (Cuarto Alto) terraces are dated on the basis of included volcanic tephra. Tercero Alto terrace-fill deposits contain the Lava Creek B tephra (639 ka), and Cuarto Alto terrace-fill deposits contain tephra of the younger Bandelier Tuff eruption (1.22 Ma), the Cerro Toledo Rhyolite (1.47 Ma), and the older Bandelier Tuff eruption (1.61 Ma). These periods of aggradation culminated in fluvial terraces that are preserved at maximum heights of 360 ft (Cuarto Alto), 300 ft (Tercero Alto), 140 ft (Segundo Alto), and 60 ft (Primero Alto) above the modern flood-plain. Despite lithologic differences related to local source-area contributions, these terracefill deposits can be correlated across the Rio Grande and up- and down-valley for tens of miles based on maximum height of the terrace above the modern floodplain.

  10. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  11. Lithology, mineralogy, and paleontology of Quaternary lake deposits in Long Valley Caldera, California

    USGS Publications Warehouse

    Fournier, R.B.

    1989-01-01

    Drill cores and cuttings from two drill holes, about 3 km apart, in Long Valley caldera, Mono County, California, were studied using x-ray diffraction and optical methods. A thick sequence of tuffs and lake sediments was encountered in LVCH-1 (1,000 ft deep) and Republic well 66-29 (6,920 ft deep), drilled in the southeast part of the Long Valley caldera. Ostracods, diatoms, and isotopic data indicate that the sediments and tuffs were deposited in a shallow caldera lake which changed in salinity over time. Conditions ranged from very saline in the older lake to fresh in the youngest. The sequence of secondary minerals from top to bottom is: clinoptilolite, mordenite, analcime, K-feldspar (and albite). In some geothermal systems, this sequence of secondary minerals is a function of temperature; however, the paleontological and isotopic data indicate that the change in secondary minerals with increasing depth is due to the older strata being deposited in a more saline environment. No mineralogical evidence of hydrothermal alteration is present, although the high lithium content of some clays and feldspars and the isotopic composition of some sulfate (gypsum) seems to require a hydrothermal source. (Lantz-PTT)

  12. Uranium-series dating of carbonate (tufa) deposits associated with quaternary fluctuations of Pyramid Lake, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Bush, C.A.; Benson, L.V.

    1996-01-01

    Uranium-series dating of dense tufa deposited in a small cave, at former lake margins, and in large tufa mounds clarifies the timing of lake-level variation during the past 400,000 yr in the Pyramid Lake basin. A moderate-sized lake occasionally overflowed the Emerson Pass sill at elevation of ???1207 m between ca. 400,000 and 170,000 and from ca. 60,000 to 20,000 yr B.P., as shown by 230Th/234U ages of the cave samples, 230Th-excess ages of tubular tufas, and average isochron-plot ages of shoreline-deposited tufas. (By comparison, modern Pyramid Lake is ???50 m below this sill). There is a lack of tufa record during the intervening period from ca. 170,000 to 60,000 yr B.P. After ca. 20,000 yr, Pyramid Lake underwent abrupt changes in level and, based on previous 14C ages, reached its highest elevation (ca 1335 m) at ca. 14,000 yr B.P. The youngest uranium-series ages are comparable with previously reported 14C ages. ?? 1996 University of Washington.

  13. Uranium and thorium series disequilibrium in quaternary carbonate deposits from the Serra da Bodoquena and Pantanal do Miranda, Mato Grosso do Sul State, central Brazil.

    PubMed

    Ribeiro, F B; Roque, A; Boggiani, P C; Flexor, J M

    2001-01-01

    Activities of gamma-ray emitting members of the uranium (238U) and thorium (232Th) series were measured in a quaternary limestone deposit that outcrops in the southeastern Pantanal Matogrossense Basin and in quaternary tufas deposited at the drainage of the Serra da Bodoquena. It is a first step in a study of the mobilization of uranium and thorium series and its relation to surface hydrology, in a region where carbonate deposits are being continuously dissolved and reprecipitated. The obtained results show that all these deposits are characterized by very low concentrations of uranium and thorium. The 238U/226Ra and 228Th/228Ra activity ratios are significantly different than 1.0, indicating that both series are in radioactive disequilibrium. Although the Serra da Bodoquena deposits seem to be very recent, their very fine granulation and high porosity suggest that they behave as open systems for geochemical exchanges of uranium and thorium series members. The Pantanal do Miranda limestone has a radiocarbon age of 3900 yr BP. Since the thorium series is in disequilibrium it is also concluded that this deposit behaves as an open system for geochemical exchanges. PMID:11144246

  14. Stratigraphy and U-series geochronology of Late Quaternary megatsunami deposits in Hawaii

    NASA Astrophysics Data System (ADS)

    McMurtry, G. M.; Fryer, G. J.; Tappin, D. R.; Fietzke, J.

    2008-12-01

    Our previous work on Kohala, Hawaii, established that the elevated marine basalt boulder conglomerates found there represent at least one, and probably two megatsunami events in the late Pleistocene. Together with the evidence for giant submarine landslides off western Hawaii island from contemporaneous flank failures of Mauna Loa volcano and identical sequences of submarine terraces off the NW coasts of the islands of Hawaii and Lanai, our hydrodynamic modeling indicates that all islands in the Hawaiian chain must have been affected by these giant waves. We present new dating of these deposits on Hawaii, Lanai and Maui islands together with stratigraphic interpretations of their impacts and origins. We used uranium-series dating of in situ coral clasts to constrain the age of the marine conglomerates, using multiple ion counting- inductively coupled plasma-mass spectrometry techniques, and used 87Sr/86Sr ratios of carbonates to help delineate their origins where marine fossils were absent. Southern Lanai records at least four megatsunami events: at 110 ka, 135 ka, 200 ka, and 240 ka, that likely correspond to the Alika phase 2, Alika phase 1, and two stages of the older South Kona giant submarine landslides. These event dates also correspond to O- isotopic stages 5d, 5e, 7a and 7b, and are in agreement with a changing-climate trigger mechanism for volcanic flank collapse proposed in previous work by ourselves and others. On southern Lanai, there is evidence for two megatsunami deposits in stratigraphic succession in the vicinity of Manele Bay, as well as higher-elevation deposits there containing reworked coral-bearing debris from two older megatsunami events. Coral clasts have been dated from all four events within the high-elevation gullies within Kaluakapo Crater on southern Lanai in this study and Moore and Moore (1988), indicating enormous runups to more than 626 m and wave heights of more than 240 m there that are in agreement with the latest hydrodynamic modeling. There is presently evidence for the 110 ka event on Hawaii, Lanai and West Maui, and for the 200 ka and 240 ka events on the islands of Lanai, Molokai and probably Hawaii. The 135 ka event has so far only been recorded on southern Lanai, but will likely turn up in future work elsewhere.

  15. Ochotona(Lagomorpha) from Late Quaternary Cave Deposits in Eastern North America

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Grady, Frederick

    1996-01-01

    Pikas ( Ochtona)small gnawing mammals, related to rabbitsrange today throughout parts of the Northern Hemisphere, but had a wider distribution during the Pleistocene. Nine caves from northeastern North America (a region not occupied by pikas today) have Pleistocene deposits containing remains of Ochotona.We examine 526 fossil specimens (ranging in age from approximately 850,000 to 8670 yr B.P.) from five of these caves. Two morphological forms of Ochotonalived in northeastern North America during the late Pleistocenea large species (probably O. whartoni) and a small species (probably O. princeps). Ochotonaof glacial age are not necessarily indicative of talus slopes and mesic communities. O. princeps-like of the Irvingtonian of West Virginia were living with an amphibian-reptilian assemblage found in the area today, implying winters not much, if at all, colder than at present. Late glacial and postglacial change in climate south of the ice sheets in effect would have isolated Ochotonain eastern North America, where they were unable to retreat to the west or north. Whereas western pika had the option of moving up in elevation, into boreal islands, eastern forms became restricted to ever-diminishing habitats, culminating in extinction and extirpation. Radiocarbon ages imply that Ochotonalived in eastern North America during the late Pleistocene (late Rancholabrean) and into the earliest Holocene. We describe the youngest remains of Ochotonain eastern North America and the youngest for the extinct large form, O. whartoni.

  16. Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska

    USGS Publications Warehouse

    de Fontaine, C.S.; Kaufman, D.S.; Scott, Anderson R.; Werner, A.; Waythomas, C.F.; Brown, T.A.

    2007-01-01

    Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1-5??mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the two lakes, Paradox Lake contained a higher frequency of tephra (0.8 tephra/100 yr; 109 over the 13,200-yr record). The unusually large number of tephra in this lake relative to others previously studied in the area is attributed to the lake's physiography, sedimentology, and limnology. The frequency of ash fall was not constant through the Holocene. In Paradox Lake, tephra layers are absent between ca. 800-2200, 3800-4800, and 9000-10,300??cal yr BP, despite continuously layered lacustrine sediment. In contrast, between 5000 and 9000??cal yr BP, an average of 1.7 tephra layers are present per 100 yr. The peak period of tephra fall (7000-9000??cal yr BP; 2.6 tephra/100 yr) in Paradox Lake is consistent with the increase in volcanism between 7000 and 9000 yr ago recorded in the Greenland ice cores. ?? 2007 Elsevier Inc. All rights reserved.

  17. Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala

    USGS Publications Warehouse

    Rose, William I., Jr.; Newhall, Christopher G.; Bornhorst, Theodore J.; Self, Stephen

    1987-01-01

    Atitlán caldera has been the site of several silicic eruptions within the last 150,000 years, following a period of basalt/andesite volcanism. The silicic volcanism began with 5–10 km3 of rhyodacites, erupted as plinian fall and pyroclastic flows, about 126,000 yr. B.P. At 85,000 yr. B.P. 270–280 km3 of compositionally distinct rhyolite was erupted in the Los Chocoyos event which produced widely dispersed, plinian fall deposits and widespread, mobile pyroclastic flows. In the latter parts of this eruption rhyodacite and minor dacite were erupted which compositionally resembled the earliest silicic magmas of the Atitlán center. As a result of this major eruption, the modern Atitlán (III) caldera formed. Following this event, rhyodacites were again erupted in smaller (5–13 km3) volumes, partly through the lake, and mafic volcanism resumed, forming three composite volcanoes within the caldera. The bimodal mafic/silicic Atitlán volcanism is similar to that which has occurred elsewhere in the Guatemalan Highlands, but is significantly more voluminous. Mafic lavas are thought to originate in the mantle, but rise, intrude and underplate the lower crust and partly escape to the surface. Eventually, silicic melts form in the crust, possibly partly derived from underplated basaltic material, rise, crystallize and erupt. The renewed mafic volcanism could reflect either regional magmato-tectonic adjustment after the large silicic eruption or the onset of a new cycle.

  18. Chronostratigraphic and paleoclimatic data for Quaternary loessial and fluvial deposits in the Mississippi River Valley of Arkansas and Tennessee

    SciTech Connect

    Markewich, H.W. ); Millard, H.T. Jr. ); Pavich, M.J. ); Rodbell, D.T. ); Rich, F.J. ); Rutledge, E.M. ); Ward, L. . Soil Conservation Service); Van Valkenberg, S. ); Wysocki, D. . Soil Conservation Service)

    1992-01-01

    Ongoing investigations into Quaternary paleoclimates of the Mississippi River Valley in eastern Arkansas and western Tennessee include age estimations using [sup 14]C, [sup 10]Be, thermoluminescent (TL), and optically stimulated luminescent (OSL) analyses; compositional studies using petrographic and diffractometer analyses; pedological analyses with complete characterization studies; and magnetic susceptibility measurements with laboratory analyses to investigate the source of the magnetism. Preliminary data on composition of the < 63-micron fraction, thickness, and age of the loesses and associated paleosols are available from selected stratigraphic sections that are being described and sampled in detail. These data suggest the following: (1) overall thickness of loess, as well as thickness of each loess sheet, decreases by one-half to two-thirds within the 96-km distance from the south end of Crowleys Ridge near Helena, AR northward to Forest City, AR and Memphis, TN; (2) near Helena, loess thicknesses are 25 to 30 m, 7 m, 6 m, and 6 m for the Peoria, Roxana, Loveland, and Crowleys Ridge respectively; (3) the depth of weathering in the Peoria ranges from 4.5 to 8.5 m near Helena, depending on slope position; (4) at the south end of Crowleys Ridge, near Helena, the Roxana has two associated paleosols and an intervening layer of weathered parent material; (5) isotopic data suggest that (a) loess deposition took place between 4,500 ka and 10 ka and that (b) each younger disconformity represents less time than the one before; (6) the predominantly illite and illite/smectite mineralogy of the paleosols, even that of the Sangamon soil, suggests minimal weathering of labile loessial minerals prior to pedogenic development; (7) pollen data indicate that by 10 ka this part of the valley had vegetation indicative of a cool temperate climate, with minimal cypress and no boreal components.

  19. Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California

    USGS Publications Warehouse

    Wells, S.G.; McFadden, L.D.; Dohrenwend, J.C.

    1987-01-01

    Radiocarbon dating of late Quaternary deposits and shorelines of Lake Mojave and cation-ratio numerical age dating of stone pavements (Dorn, 1984) on the adjacent Soda Mountains piedmont provide age constraints for alluvial and eolian deposits. These deposits are associated with climatically controlled stands of Lake Mojave during the past 15,000 yr. Six alluvial fan units and three eolian stratigraphic units were assigned ages based on field relations with dated shorelines and piedmont surfaces, as well as on soil-geomorphic data. All but one of these stratigraphic units were deposited in response to time-transgressive climatic changes beginning approximately 10,000 yr ago. Increased eolian flux rates occurred in response to the lowering of Lake Mojave and a consequent increase in fine-sediment availability. Increased rates of deposition of eolian fines and associated salts influenced pedogenesis, stone-pavement development, and runoff-infiltration relations by (1) enhancing mechanical weathering of fan surfaces and hillslopes and (2) forming clay- and silt-rich surface horizons which decrease infiltration. Changes in alluvial-fan source areas from hillslopes to piedmonts during the Holocene reflect runoff reduction on hillslopes caused by colluvial mantle development and runoff enhancement on piedmonts caused by the development of less-permeable soils. Inferred increased in early to middle Holocene monsoonal activity resulted in high-magnitude paleo-sheetflood events on older fan pavements; this runoff triggered piedmont dissection which, in turn, caused increased sediment availability along channel walls. Thus, runoff-infiltration changes during the late Quaternary have occurred in response to eolian deposition of fines, pedogenesis, increased sheetflood activity in the Holocene, and vegetational changes which are related to many complicated linkages among climatic change, lake fluctuations, and eolian, hillslope, and alluvial-fan processes. ?? 1987.

  20. Temporal correlation of fluvial and alluvial sequences in the Makran Range, SE-Iran

    NASA Astrophysics Data System (ADS)

    Kober, F.; Zeilinger, G.; Ivy-Ochs, S.; Dolati, A.; Smit, J.; Burg, J.-P.; Bahroudi, A.; Kubik, P. W.; Baur, H.; Wieler, R.; Haghipour, N.

    2009-04-01

    The Makran region of southeastern Iran is an active accretionary wedge with a partially subaerial component. New investigations have revealed a rather complex geodynamic evolution of the Makran active accretionary wedge that is not yet fully understood in its entity. Ongoing convergence between the Arabian and Eurasian plates and tectonic activity since the late Mesozoic has extended all trough the Quaternary. We focus here on fluvial and alluvial sequences in tectonically separated basins that have been deposited probably in the Pliocene/Quaternary, based on stratigraphic classification in official geological maps, in order to understand the climatic and tectonic forces occurring during the ongoing accretionary wegde formation. Specifically, we investigate the influence of Quaternary climate variations (Pleistocene cold period, monsoonal variations) on erosional and depositional processes in the (semi)arid Makran as well as local and regional tectonic forces in the Coastal and Central Makran Range region. Necessary for such an analysis is a temporal calibration of alluvial and fluvial terrace sequences that will allow an inter-basin correlation. We utilize the exposure age dating method using terrestrial cosmogenic nuclides (TCN) due to the lack of otherwise datatable material in the arid Makran region. Limited radiocarbon data are only available for marine terraces (wave-cut platforms). Our preliminary 21Ne and 10Be TCN-ages of amalgamated clast samples from (un)deformed terrace and alluvial sequences range from ~250 ky to present day (modern wash). These ages agree in relative terms with sequences previously assigned by other investigations through correlation of Quaternary sequences from Central and Western Iran regions. However, our minimum ages suggest that all age sequences are of middle to late Pleistocene age, compared to Pliocene age estimates previously assigned for the oldest units. Although often suggested, a genetical relation and connection of those fluvial sequences to coastal terraces and wave-cut platforms is problematic due to ambiguous ages and obscured stratigraphic linkage. Our data suggest that events of terrace formation are roughly coeval between basins, but do not indicate a distinct climate forcing, though there is some tendency that terraces were formed during interglacial periods. Preliminary incision rates derived from strath terraces are on the order of 0.1-3 mm/yr with non-steady intervals. This in turn is well in the range of uplift rates deduced from coastal terraces. Further investigations are on the way, especially resolving complex exposure histories based on combining cosmogenic radionuclides and 21Ne.

  1. Morphology and facies of the alluvial-fan sedimentation in the Kangra Valley, Himachal Himalaya

    NASA Astrophysics Data System (ADS)

    Sah, M. P.; Srivastava, R. A. K.

    1992-02-01

    A number of alluvial fans, having an average width (E-W) of 10-15 km and length (N-S) of 8-15 km, have been mapped using the LANDSAT TM imageries on 1:250,000 scale in the Kangra Valley of Himachal Himalaya. This important geomorphic zone of alluvial fans is confined between the foot of the Dhauladhar Range and the Siwalik ridges. These fans are gently sloping from north to south and are slightly dissected having distinct horizons of glacial, glacio-fluvial, fluvial, lacustrine and loessic sediments derived from the Dhauladhar granitic complex, Dharamsala and Siwalik Formations during the glacial and interglacial climatic stages of the Quaternary period. The vertical lithological profiles of these fans show a dominance of gravelly (nearly 60%) facies along with other lithofacies associations representing a braided-river depositional environment. In general, the thickness of fan sediments ranges between 90 and 120 m. The vertical facies are subdivided into three main facies, i.e. lower-, middle- and upper-fan facies, showing distinct sediment characteristics. The presence of glacial moraines and clay-rich debris-flow deposits is significant in the upper-fan facies. The middle-fan facies is gravel-dominated along with some interbedded sandy channel-fill deposits, whereas the lower-fan facies is composed of sand, silt and mud. The genesis of these three fan facies is closely related with the uplift of the source area and climatic changes during the Pleistocene period.

  2. Late Quaternary sediment deposition of core MA01 in the Mendeleev Ridge, the western Arctic Ocean: Preliminary results

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyu; Kim, Sunghan; Khim, Boo-Keun; Xiao, Wenshen; Wang, Rujian

    2014-05-01

    Late Quaternary deep marine sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers (Poore et al., 1999; Polyak et al., 2004). Previous studies reported that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~450 ka) of core MA01 was tentatively estimated by correlation of brown layers with an adjacent core HLY0503-8JPC (Adler et al., 2009). A total of 22 brown layers characterized by low L* and b*, high Mn concentration, and abundant foraminifera were identified. Corresponding gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which occurred with the coarse-grained (>0.063 mm) fractions (i.e., IRD) both in brown and gray layers. IRDs are transported presumably by sea ice for the deposition of brown layers and by iceberg for the deposition of gray layers (Polyak et al., 2004). A strong correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, which suggests that the fine-grained particles in the Mendeleev Ridge are transported from the north coast Alaska and Canada where Mesozoic and Cenozoic strata are widely distributed. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that the TOC and CaCO3 peaks are obviously distinct in the upper part of core MA01, whereas these peaks are reduced in the lower part of the core. More study on these contrasting features is in progress. References Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E.T., Xuan, C., Grottoli, A.G., Sellén, E., and Crawford, K.A., 2009. Global and Planetary Change 68(1-2), 18-29. Polyak, L., Curry, W.B., Darby, D.A., Bischof, J., and Cronin, T.M., 2004. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 73-93. Poore, R., Osterman, L., Curry, W., and Phillips, R., 1999. Geology 27, 759-762.

  3. Quaternary downcutting rate of the new river, Virginia, measured from differential decay of cosmogenic {sup 26}Al and {sup 10}Be in cave-deposited alluvium

    SciTech Connect

    Granger, D.E.; Kirchner, J.W.; Finkel, R.C.

    1997-02-01

    The concentrations of the cosmogenic radionuclides {sup 26}Al and {sup 10}Be in quartz can be used to date sediment burial. Here we use {sup 26} Al and {sup 10}Be in cave-deposited river sediment to infer the time of sediment emplacement. Sediment burial dates from a vertical sequence of caves along the New River constrain its Quaternary downcutting rate to 27.3{+-}4.5 m/m.y. and may provide evidence of regional tectonic tilt. 32 refs., 3 figs., 1 tab.

  4. Geophysical Characterization of the Quaternary-Cretaceous Contact Using Surface Resistivity Methods in Franklin and Webster Counties, South-Central Nebraska

    USGS Publications Warehouse

    Teeple, Andrew P.; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.

    2009-01-01

    To help manage and understand the Platte River system in Nebraska, the Platte River Cooperative Hydrology Study (COHYST), a group of state and local governmental agencies, developed a regional ground-water model. The southern boundary of this model lies along the Republican River, where an area with insufficient geologic data immediately north of the Republican River led to problems in the conceptualization of the simulated flow system and to potential problems with calibration of the simulation. Geologic descriptions from a group of test holes drilled in south-central Nebraska during 2001 and 2002 indicated a possible hydrologic disconnection between the Quaternary-age alluvial deposits in the uplands and those in the Republican River lowland. This disconnection was observed near a topographic high in the Cretaceous-age Niobrara Formation, which is the local bedrock. In 2003, the U.S. Geological Survey, in cooperation with the COHYST, collected surface geophysical data near these test holes to better define this discontinuity. Two-dimensional imaging methods for direct-current resistivity and capacitively coupled resistivity were used to define the subsurface distribution of resistivity along several county roads near Riverton and Inavale, Nebraska. The relation between the subsurface distribution of resistivity and geology was defined by comparing existing geologic descriptions of test holes to surface-geophysical resistivity data along two profiles and using the information gained from these comparisons to interpret the remaining four profiles. In all of the resistivity profile sections, there was generally a three-layer subsurface interpretation, with a resistor located between two conductors. Further comparison of geologic data with the geophysical data and with surficial features was used to identify a topographic high in the Niobrara Formation near the Franklin Canal which was coincident with a resistivity high. Electrical properties of the Niobrara Formation made accurate interpretation of the resistivity profile sections difficult and less confident because of similar resistivity of this formation and that of the coarser-grained sediment of the Quaternary-age deposits. However, distinct conductive features were identified within the resistivity profile sections that aided in delineating the contact between the resistive Quaternary-age deposits and the resistive Niobrara Formation. Using this information, an interpretive boundary was drawn on the resistivity profile sections to represent the contact between the Quaternary-age alluvial deposits and the Cretaceous-age Niobrara Formation. A digital elevation model (DEM) of the top of the Niobrara Formation was constructed using the altitudes from the interpreted contact lines. This DEM showed that the general trend of top of the Niobrara Formation dips to the southeast. At the north edge of the study site, the Niobrara Formation topographic high trends east-west with an altitude range of 559 meters in the west to 543 meters in the east. Based on the land-surface elevation and the Niobrara Formation DEM, the estimated thickness of the Quaternary-age alluvial deposits throughout the study area was mapped and showed a thinning of the Quaternary-age alluvial deposits to the north, approximately where the topographic high of the Niobrara Formation is located. This topographic high in the Niobrara Formation has the potential to act as a barrier to ground-water flow from the uplands alluvial aquifer to the Republican River alluvial aquifer as shown in the resistivity profile sections. The Quaternary-age alluvial deposits in the uplands and those in the Republican River Valley are not fully represented as disconnected because it is possible that there are ground-water flow paths that were not mapped during this study.

  5. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    USGS Publications Warehouse

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through Panamint Valley and over Wingate Wash. A remnant of ancient lake shoreline deposits that once extended across the Hanaupah Canyon fan constrains the timing and extent of the last deep cycle of Pleistocene Lake Manly. The lacustrine delta complex yields a 36Cl depth-profile date of 130 ka, which is consistent with deposition during a highstand of Lake Manly at the end of MIS 6. These deposits are presently at an altitude of about 30 meters above sea level (asl), which relates to a lake with a maximum depth of about 115 meters. Remnants of shoreline deposits at higher elevations on the southern margin of the Hanaupah Canyon fan complex are cut across older alluvium (unit Qao) and may be related to an MIS 6 highstand of at least 67 meters asl or, more likely, an older (MIS 8 or earlier) highstand that is poorly preserved and still undated in the valley. As part of our work on the west-side fans, we also dated an older phase of alluvial-fan deposits from the Trail Canyon fan complex, which is north of Hanaupah Canyon. A 36Cl depth-profile age of 170 ka suggests alluvial deposition of unit Qaio (older phase of Qao) took place prior to the MIS 6 highstand of Lake Manly. Knowing the absolute ages (or range in ages) of the intermediate-age (Qai) surfaces in Death Valley allows us to estimate the following rates of geologic processes: (1) a lateral slip rate of 5 millimeters per year for the northern Death Valley fault zone; (2) uplift of 50 meters in roughly the past 80,000 years for parts of the Mustard Canyon hills in east-central Death Valley; and (3) an estimated 10-40 m of dip-slip thrust movement on the Echo Canyon fault in Furnace Creek Canyon.

  6. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    SciTech Connect

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  7. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer consideration of the fluvial influence on aeolian archives in palaeoenvironmental studies from central Asian and other drylands.

  8. Alluvial Fan in Icaria Planum, Mars

    NASA Astrophysics Data System (ADS)

    Korteniemi, J.; Raitala, J.; Aittola, M.; Kostama, V.; Hauber, E.; Kronberg, P.; Neukum, G.; HRSC Co-I Team

    2005-12-01

    The Mars Express HRSC data were used to study fluvial history of southern Claritas on Mars (1, 2). Volatiles, transported downslope to the basin, breached through a saddle valley and formed a channel towards Icaria Planum in the west. Along the channel, sapping provided additional water. The channel broke into a 30-km impact crater and formed a temporary lake. The crater rim has terraces and the floor has smooth deposits. A delta was formed in a standing water. After breaching the crater rim through a neck which is higher than the crater floor, water deposited onto Icaria Planum an alluvial fan. This fan was studied using the HRSC colour data by mapping deposit units of the Icaria lowlands in front of the channel. The flood deposits were made visible by the multichannel HRSC data classification. The alluvial structures reflect topography and regional slopes as well as the amount of available water. The hi-resolution HRSC image provides an additional view into the alluvial structures, erosion and sedimentation in the channel formation. These remote sensing approaches facilitate the mapping of characteristic phases in the fluvial development of the area studied. References. (1) Raitala et al., 2005. LPS XXXVI, #1307. (2) Korteniemi, J., Raitala, J., Aittola, M., Kostama V.-P., Hauber E., Kronberg P., Neukum G. and the HRSC Co-I Team, 2005. Fluvial channel resulted in alluvial fan formation in Icaria Planum, Mars. Submitted to 42nd Vernadsky-Brown Microsymposium, Moscow 9-12. 10. 2005.

  9. Integrative geomorphological mapping approach for reconstructing meso-scale alluvial fan palaeoenvironments at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Majid Padashi, Seyed; Baumhauer, Roland

    2013-04-01

    Alluvial fans and aprons are common depositional features in general Iranian geomorphology. The countries major cities as well as settlements and surrounding area have often been developed and been built up on this Quaternary sediment covers. Hence they periodically face the effects of varying fluvial and slope-fluvial activity occurring as part of this geosystem. The Geological Survey of Iran therefore supports considerable efforts in Quaternary studies yielding to a selection of detailed mapped Quaternary landscapes. The studied geomorphologic structures which are settled up around an endorheic basin in Semnan Province represent a typical type of landform configuration in the area. A 12-km-transect was laid across this basin and range formation. It is oriented in north-south direction from the southern saltpan, called "Kavir-e-Haj Aligholi"/"Chah-e-Jam" ("Damghan Kavir"), across a vast sandy braided river plain, which is entering from the north east direction of the city of Shahroud. At its northern rim it covers alluvial sediment bodies, which are mainly constituted by broad alluvial aprons, fed by watersheds in Alborz Mountains and having their genetic origins in Mio-/Pliocene times. During this study a fully analytical mapping system was used for developing a geodatabase capable of integrating geomorphological analyses. Therefore the system must provide proper differentiation of form, material and process elements as well as geometric separation. Hence the German GMK25 system was set up and slightly modified to fit to the specific project demands. Due to its structure it offers most sophisticated standards and scale independent hierarchies, which fit very well to the software-determinated possibilities of advanced geodatabase applications. One of the main aspects of mapping Quaternary sediments and structures is to acquire a proper description and systematic correlation and categorization of the belonging mapping-objects. Therefore the team from GSI and University of Würzburg performs additional geochronologic and stratigraphic studies of different alluvial surfaces in the investigation area. Relative and absolute dating methods are applied, as well as non-invasive and invasive methods for studying subsurface sedimentation and layering. The ongoing mapping work has revealed a progradational sequence of at least five more or less dissected surfaces of alluvial deposits. These can be distinguished by optically taken morphometric and spectrometric parameters and material reflectance using remote sensing imagery data. An important role for geomorphometric measurements and landform identification was occupied by DEM data. In the field these parameters could be correlated with differently developed covers of desert pavement, and changes in curvature, roughness and levels of sediment surfaces. The studied alluvium has been formed by several phases of debris flow activity and braided river dynamics over a distance of more than 3.5 km and is reworked recently. Gradual differences in structure and form may be linked to changes in depositional process and quaternary environmental development as well as neotectonic activity. Future correlation between alluvium and sediment cores from the playa is targeting on better understanding of depositional milieus during activity phases.

  10. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    NASA Astrophysics Data System (ADS)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are the two main vectors of schistosomiasis in northeast Africa, suggests that this parasitic disease could become endemic across the valley. Any future plans to manage the Juba River need to take proper account of alluvial history and geomorphic processes.

  11. Surface roughness as a calibrated proxy for dating alluvial surfaces

    NASA Astrophysics Data System (ADS)

    Mushkin, A.; Sagy, A.; Trabelci, E.

    2012-12-01

    Determining the age of alluvial deposits, which often constitute effective recorders of tectonic and climatic signals, is a pivotal component in many quantitative studies of recent tectonic activity, past climatic variations and landscape evolution processes. In arid to semi-arid desert environments the scarcity in suitable materials for dating commonly implies that numerical dating of alluvial surfaces remains a challenging and fairly expensive task, carried out on an opportunistic basis and typically requiring substantial commitment of resources. With the goal of addressing this problem, we present a new and widely applicable surface dating technique that builds on surface roughness as a quantitative calibrated proxy for the age of alluvial surfaces in desert environments. The well-studied development of reg soils provides the physical basis for the approach, and recent technological advances in the form of portable ground-based laser scanners (LiDAR), facilitate its application by allowing quantitative high resolution (~several millimeters) 3D characterization of the roughness of alluvial chronosequences as they mature into smooth and stable desert pavements. We construct regional age-roughness calibration curves using 'conventional' numerical dating techniques and LiDAR to quantitatively characterize the evolution trends and time-scales associated with roughness changes of reg soils through time. Here, we present results from two previously dated late Quaternary alluvial chronosequences along the Dead Sea Transform in the hyper-arid Negev desert of southern Israel. LiDAR scanning was applied on representative areas (~30-50 m2) of 10 separate terraces ranging from rough (active surfaces) to fairly smooth surfaces with well-developed pavements displaying an OSL age of 87 kyr. Power spectral density (PSD) analysis was used to characterize the roughness evolution trend of these terraces: We find typical and recurring time-dependent changes in the offset as well as shape of the PSD curves in both chronosequences: PSD offset is continuously reduced over time reflecting the overall reduction in the amplitude of roughness at all wavelengths. All PSD curves display moderation of slopes at the longer wavelengths, which consistently increases with increasing surface age. The kink point itself in the PSD curves is systematically shifted to shorter wavelengths. This characteristic evolution of PSD offset and slope moderation at longer wavelengths reflects the typical break up of boulder-sized clasts through time as such reg soil surfaces mature into well-developed desert pavements. Deviation of the PSD curve from the characteristic evolution pattern also serves as an indication in cases where the natural surface evolution was interrupted. Accordingly, we thus suggest that with suitable regional calibration curves, PSD analysis of desert alluvial surfaces can serve as a practical and quantitative proxy for constraining surface age in places where 'conventional' dating cannot be applied.

  12. Mohawk Lake or Mohawk meadow Sedimentary facies and stratigraphy of Quaternary deposits in Mohawk Valley, upper Middle Fork of the Feather River, California

    SciTech Connect

    Yount, J.C. ); Harwood, D.S. ); Bradbury, J.P. )

    1993-04-01

    Mohawk Valley (MV) contain thick, well-exposed sections of Quaternary basin-fill sediments, with abundant interbedded tephra and a diverse assemblage of sedimentary facies. The eastern arm of MV, extending from Clio to Portola, contains as much as 100 m of trough cross-bedded cobble to pebble gravel and planar and trough cross-bedded coarse and medium sand, interpreted as braided stream deposits. Sections exposed in the western arm of MV consist in their lower parts of massive organic-rich silt and clay interbedded with blocky to fissile peat beds up to 1 m thick. Diatom assemblages are dominated by benthic species indicating fresh marsh environments with very shallow water depths of one meter or less. Proglacial lacustrine deposits of limited lateral extent are present within the outwash complexes as evidenced by varved fine sand and silt couplets, poorly sorted quartz-rich silt beds containing dropstones, and contorted beds of diamict grading laterally into slump blocks surrounded by wood-bearing silt and silty sand. The Rockland Ash (400 ka) is a prominent marker in the middle or lower part of many sections throughout MV, indicating that at least half of the basin-fill sequence is Late Quaternary in age. A log buried in diamict slumped into a proglacial lake lying approximately 3 km downstream from the Tioga Stage ice termini in Jamison and Gray Eagle Creeks yields an age of 18,715 [+-]235 C[sup 14] years BP. Previous interpretations of MV deposits originating in a large, deep lake with water depths in excess of 150 m are untenable given the sedimentary facies and diatom floras that dominate the valley. Unexhumed valleys such as Sierra Valley to the east and Long Valley to the northwest which contain large meadows traversed by braided streams are probably good analogs for the conditions that existed during the accumulation of the Mohawk Valley deposits.

  13. Pliocene-Quaternary contourite depositional system along the south-western Adriatic margin: changes in sedimentary stacking pattern and associated bottom currents

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Maselli, Vittorio; Trincardi, Fabio

    2015-09-01

    The Pliocene-Quaternary history of the south-western Adriatic margin, represented by a complex contourite depositional system, records the palaeoceanography of the basin and the interactions between oceanographic processes and the uneven slope morphology that resulted from tectonic deformation. Three main stages can be recognized: (1) during the Pliocene, a giant sediment drift formed on the southern flank of the slope-transverse Gondola anticline that focused and accelerated the flow of slope-parallel bottom currents; (2) since the early to middle Pleistocene transition, a reorganization of bottom-current pathways led to a sharp change in the sedimentary architecture of the margin that became dominated by the growth of contourite deposits; (3) as of 350 ka, landward-migrating contourites on the outer shelf (less than 120 m water depth) reflect the presence of bottom currents also in shallow waters. This analysis of the sedimentary stacking pattern of the contourite depositional system that developed along the south-western Adriatic margin since the Pliocene enables disentangling the processes that controlled changes in bottom-current activity, demonstrating that bottom-current deposits constitute the bulk of depositional sequences at the Milankovitch timescale.

  14. Pliocene-Quaternary contourite depositional system along the south-western Adriatic margin: changes in sedimentary stacking pattern and associated bottom currents

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Maselli, Vittorio; Trincardi, Fabio

    2016-02-01

    The Pliocene-Quaternary history of the south-western Adriatic margin, represented by a complex contourite depositional system, records the palaeoceanography of the basin and the interactions between oceanographic processes and the uneven slope morphology that resulted from tectonic deformation. Three main stages can be recognized: (1) during the Pliocene, a giant sediment drift formed on the southern flank of the slope-transverse Gondola anticline that focused and accelerated the flow of slope-parallel bottom currents; (2) since the early to middle Pleistocene transition, a reorganization of bottom-current pathways led to a sharp change in the sedimentary architecture of the margin that became dominated by the growth of contourite deposits; (3) as of 350 ka, landward-migrating contourites on the outer shelf (less than 120 m water depth) reflect the presence of bottom currents also in shallow waters. This analysis of the sedimentary stacking pattern of the contourite depositional system that developed along the south-western Adriatic margin since the Pliocene enables disentangling the processes that controlled changes in bottom-current activity, demonstrating that bottom-current deposits constitute the bulk of depositional sequences at the Milankovitch timescale.

  15. Rock varnish microlamination dating of late Quaternary geomorphic features in the drylands of western USA

    NASA Astrophysics Data System (ADS)

    Liu, Tanzhuo; Broecker, Wallace S.

    2008-01-01

    Varnish microlamination (VML) dating is a correlative age determination technique that can be used to date and correlate various geomorphic features in deserts. In this study, we establish a generalized late Quaternary (i.e., 0-300 ka) varnish layering sequence for the drylands of western USA and tentatively correlate it with the SPECMAP oxygen isotope record. We then use this climatically correlated varnish layering sequence as a correlative dating tool to determine surface exposure ages for late Quaternary geomorphic features in the study region. VML dating of alluvial fan deposits in Death Valley of eastern California indicates that, during the mid to late Pleistocene, 5-15 ky long aggradation events occurred during either wet or dry climatic periods and that major climate shifts between glacial and interglacial conditions may be the pacemaker for alteration of major episodes of fan aggradation. During the Holocene interglacial time, however, 0.5-1 ky long brief episodes of fan deposition may be linked to short periods of relatively wet climate. VML dating of alluvial desert pavements in Death Valley and the Mojave Desert reveals that pavements can be developed rapidly (< 10 ky) during the Holocene (and probably late Pleistocene) in the arid lowlands (< 800 m msl) of these regions; but once formed, they may survive for 74-85 ky or even longer without being significantly disturbed by geomorphic processes operative at the pavement surface. Data from this study also support the currently accepted, "being born at the surface" model of desert pavement formation. VML dating of colluvial boulder deposits on the west slope of Yucca Mountain, southern Nevada, yields a minimum age of 46 ka for the emplacement of these deposits on the slope, suggesting that they were probably formed during the early phase of the last glaciation or before. These results, combined with those from our previous studies, demonstrate that VML dating has great potential to yield numerical age estimates for various late Quaternary geomorphic features in the western USA drylands.

  16. New identification and interpreted correlation, deposition, and significance of widespread Quaternary volcanic ash in the Sacramento-San Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gatti, E.; Wan, E.; Ponti, D. J.; Tinsley, J. C.; Starratt, S. W.; Hillhouse, J.; Pagenkopp, M.; Olson, H. A.; Burtt, D.; Rosa, C. M.; Holzer, T. L.

    2013-12-01

    We recently identified and correlated volcanic ash deposits buried in the Sacramento-San Joaquin Delta, California, with widespread ash in the Pacific Northwest. The Sacramento-San Joaquin Delta (herein, the Delta) contains stratigraphic records of climate change, sea level variability, and tectonic processes. It drains the interior of central and northern California, covers ~1400 km2, and is underlain by Quaternary deposits that are difficult to correlate and date. Tephrochronology provides maximal depositional ages and regional sequence stratigraphic correlations. Using Electron Microprobe analysis, we identified the Loleta (0.390 Ma), the Rockland (~0.575 Ma), and an unnamed volcanic ash (>0.78-<1.45 Ma) in ten samples from eight boreholes in the Delta drilled by the California Department of Water Resources. These tephra correlate chemostratigraphically with widespread volcanic ash found in California, Nevada, and the Pacific Northwest. Major and minor element compositions of glass shards from each tephra sample also indicate that these deposits derive from Cascade Range volcanic sources. The Rockland ash erupted from the southern Cascades near Lassen Peak, California. The Loleta ash is the distal equivalent of the Bend pumice tuff that probably originated from the Three Sisters volcanoes, Oregon. The unnamed, but chemically distinctive, ash bed also resembles Cascade -type tephra. The ash layers are identified in 27 boreholes in the northern to central Delta that we correlate using facies. Grain-size distributions and sedimentary structures are inconsistent within the tephra units and indicate variations in concentrations, deposition rates, and depositional environments. Much of the Delta tephra was transported and deposited in fluvial settings. The tephra deposits occur as three facies: 1) volcanic ash, in thick deposits containing silt- to sand-size glass shards; 2) pumice, in thick deposits of bedded and variably current-structured coarse-sand to pebble-size grains; and 3) volcanic ash, in thin deposits or mixed with non-volcanic sediments. The Rockland ash occurs as facies 1 and 2 in the Delta and indicates changing conditions during a large flood following eruption. The Loleta ash in the Delta occurs as facies 3 and represents lower energy depositional environments than facies 1 and 2. Ash is distinguished from non-volcanic silt with diatoms that can provide paleoenvironmental indicators. Both the Rockland and Loleta ash layers were deposited during sea-level lowstands. The Loleta ash is found at deeper depths in the central Delta than depths in the northern Delta where the older Rockland ash occurs owing to thickening of deposits in the central Delta, where organic-rich units may record sea level highstands. Rockland and Loleta ash layers in the subsurface Delta provide extensive new examples of these tephra and help to constrain depositional responses to Quaternary climate, sea level, and tectonic activity.

  17. Variations in fluvial deposition on an alluvial plain: an example from the Tongue River Member of the Fort Union Formation (Paleocene), southeastern Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Johnson, E.A.; Pierce, F.W.

    1990-01-01

    The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.

  18. Holocene flood plain soil formation in the lower Mississippi River Valley: Implications for the interpretation of alluvial paleosols

    SciTech Connect

    Aslan, A. . Dept. of Geological Sciences); Autin, W.J. )

    1992-01-01

    Holocene Mississippi River flood soils representing different depositional environments and ages were sampled along three east-west transects between Vicksburg, MS and Baton Rouge, LA. Flood plain soil development is primarily controlled by episodic flood plain sedimentation and ground water table fluctuations as evidenced by relatively thick cumulative soil profiles with abundant mottles, nodules, and slickensides. Within flood plain deposits of similar age, profile, development is best expressed in moderately-drained silty and sandy soils in natural levee and point bar ridge environmental that occur within and adjacent to meander belts. Soils in natural levee and point bar ridge environments greater than 3 ka generally are acidic and have better-developed Bt horizons and brighter mottles than their younger counterparts. In addition to being acidic and brightly mottled, older back swamp soils have larger and more abundant slickensides and iron nodules. This study suggests that alluvial paleosols formed in aggradational settings may be better suited for interpreting flood plain depositional histories and paleohydrology than climate. Parameters such as solum thickness and clay and carbonate accumulations, routinely used to estimate relative time and climatic effects on soil development in Quaternary studies of stable geomorphic surfaces, may not be applicable to ancient alluvial deposits that reflect continuous sediment aggradation.

  19. Influence of compaction on alluvial architecture

    SciTech Connect

    Anderson, S.

    1989-03-01

    Two- and three-dimensional studies of alluvial architecture were undertaken on laterally continuous coastal exposures of the Middle Jurassic nonmarine Scalby Formation of North Yorkshire, England. Sandstones and mudstones were collected and analyzed to quantify the processes involved in compaction and to investigate the influence of differential compaction on alluvial architecture. The original geometry of alluvial deposits is distorted during burial due to the juxtaposition of sediments of different compressibilities inherent in the alluvial environment. Mudstones, having higher initial porosities, compact at a greater rate than sandstones, with the result that small faults and folds may develop within the mudstone to accommodate the different compaction rates. More importantly, differential compaction affects the flood-plain topography during sedimentation and, therefore, influences the subsequent pattern of facies distribution, most notably channel-sandstone body stacking patterns. The Scalby Formation consists of a basal, complex, multilateral sheet sandstone that passes upward into meandering stream deposits, which exhibit both inclined homolithic and heterolithic stratification. Decompaction models of the sedimentary rocks reveal the original depositional architecture before differential compaction produced the present-day geometry. The decompacted sandstone/mudstone geometry provides a more accurate estimate of mudstone channel-fill thickness and inclined homolithic and heterolithic stratification dimensions, both of which are used in estimating paleochannel dimensions.

  20. Single-phase quaternary MgxZn1-xO1-ySy alloy thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    He, Yunbin; Cheng, Hailing; Tai, Jiali; Li, Lei; Zhang, Lei; Li, Mingkai; Lu, Yinmei; Zhang, Wei; Meyer, Bruno K.

    2015-02-01

    Quaternary-alloy MgxZn1-xO1-ySy thin films were grown quasi-epitaxially on c-plane sapphire substrates by pulsed laser deposition. Single-phase wurtzite MgxZn1-xO1-ySy films with compositions of 0.07 < x < 0.21 and y ? 0.8 were achieved using various ceramic targets. The S contents in the quaternary alloy films were far beyond the reported solid solubility limits of S in single-phase ternary alloy ZnO1-ySy films. The bandgap of MgxZn1-xO1-ySy, inferred from optical transmission measurements, was narrower than the bandgap of MgxZn1-xO while broadened compared with that of ZnO1-ySy. The broadening effect was enhanced with the increase of Mg content. The simultaneous substitution of cation (Zn2+) and anion (O2-) by isoelectronic elements (Mg2+ and S2-) offers further flexibility for the band-gap engineering and potentially facilitates the p-type doping of ZnO.

  1. Hydrogeologic Framework and Ground-Water Flow in Quaternary Deposits at the U.S. Army Atterbury Joint Maneuver Training Center near Edinburgh, Indiana, 2002-2003

    USGS Publications Warehouse

    Robinson, Bret A.; Risch, Martin R.

    2006-01-01

    A hydrogeologic framework was developed for unconsolidated Quaternary deposits at the U.S. Army Atterbury Joint Maneuver Training Center. The framework describes the potential for the occurrence of ground water on the basis of physiography and the distribution of geologic materials within the study area. Four geologic units-the Jessup, Trafalgar, Atherton, and Martinsville Formations-were identified, and their distribution was mapped as four hydrogeologic regions. The Jessup and Trafalgar Formations are fine-grained, poorly sorted tills. At least two facies of the Atherton Formation, the lacustrine and outwash facies, are in the study area. The Martinsville Formation includes materials deposited or reworked since the glacial period. With the exception of the Atherton Formation outwash facies, the Quaternary deposits are primarily fine-grained, silt- and clay-rich sediments that function as confining layers or aquitards. The Atherton Formation out-wash facies includes sand and gravel deposits that constitute the primary aquifers in the study area. The four hydrogeologic regions mapped in this investigation are designated as the Bedrock, Jessup Till, Trafalgar Till, and Atherton Outwash Regions. Each region represents an area with a distinctive physiographic expression and vertical sequence of Quaternary deposits. The Bedrock Region in the western and southwestern part of the study area commonly is underlain by 0 to 15 feet of Martinsville Formation resting directly on bedrock. Potential ground-water yields are limited. The Jessup Till Region in the southeastern part of the study area includes the uplands on either side of the stream valleys. Sediments commonly range from 30 to 90 feet in thickness. This region includes clay-rich till of the Jessup Formation and sand and gravel deposits of the Atherton Formation outwash facies; the Atherton Formation outwash facies tends to be thin, and ground-water yields will be moderate. The Trafalgar Till Region in the north and northwest-central part of the study area commonly is underlain by 10 to 30 feet of Trafalgar till or Trafalgar till over 25 to 50 feet of Jessup till. Within, separating, and beneath these tills are deposits of the Atherton Formation outwash facies-the sand and gravel deposits with the best potential to support a water-supply well. Generally, the outwash facies in this region are thin sand and gravel lenses, except in a few locations that are in excess of 30 feet thick. The Atherton Outwash Region is the lowland area associated with the major valleys in all but the far southwestern part of the study area. This region has the greatest thickness of outwash facies sands and gravels (often in excess of 20 feet), which are the primary aquifers. In the Atterbury Joint Maneuver Training Center, the combined Atherton Outwash Region and the Trafalgar Till Region have the greatest potential as infiltration areas because of low topographic relief and(or) sandy soils. From water-level data collected in July and August 2003, horizontal ground-water flow was determined generally to be toward the Atherton Outwash Region and the valley of the Drift-wood River to the east. Vertical hydraulic gradients were documented at nested well pairs. At two sites, upwardly directed gradients are reflected by flowing wells. Ground-water discharge to surface water is likely in some eastern reaches of the valleys of Nineveh and Lick Creeks. In the valley of Nineveh Creek, potential for ground-water discharge is indicated by the presence of a flowing well, upwardly directed vertical hydraulic gradients, and ground-water heads that were higher than surface-water elevations. In the valley of Lick Creek, ground-water discharge also is indicated by the presence of flowing wells and ground-water heads that were higher than surface-water elevations.

  2. VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    SciTech Connect

    C. Harrington; R. Kelly; K.T. Ebert

    2005-08-26

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic system that primarily responds to the incising of the channels into the upper fan surface, and the development of protecting desert pavements with time.

  3. Laboratory alluvial fans in one dimension.

    PubMed

    Guerit, L; Mtivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported. PMID:25215729

  4. Late Quaternary landscape evolution, climate, and neotectonism along the eastern margin of the Puna Plateau: Pucar Valley, NW Argentina

    NASA Astrophysics Data System (ADS)

    McCarthy, J. A.; Schoenbohm, L. M.; Bierman, P. R.; Rood, D. H.

    2013-12-01

    The eastern margin of the Puna Plateau has been the focus of many studies seeking to link climatically-moderated surface processes and tectonism through dynamic feedbacks. However, evaluating any theories regarding climatic-tectonic feedbacks requires the determination of tectonic, climatic, and geomorphic chronologies across a wide region, from plateau to wedge-top to foreland. In this study, we contribute to that effort by examining Quaternary landscape evolution of a single intermontane basin of spatially uniform climate, adjacent to the plateau margin. The semi-arid Pucar Valley contains eight abandoned and incised geomorphic surfaces, most of which are deformed by active structures. These geomorphic surfaces - thin alluvial fans and strath terraces - dominate the landscape and record multiple pulses of incision in the late Quaternary. We find no evidence for significant depositional intervals and valley incision continues currently. Substantial accumulations of pedogenic carbonate and pedogenic gypsum within abandoned surfaces indicate that arid or semi-arid conditions are long lived in this valley. Conversely, relict periglacial morphology in adjacent ranges supports cooler temperatures in the past. River incision is enhanced across active structures, but preliminary observations suggest that the magnitude of deformation cannot fully explain the magnitude of incision. As a result, we argue that extrabasinal base-level lowering is the primary driver of incision in the Pucar Valley, but Quaternary deformation is significant enough to spatially influence erosion. Cooler climatic intervals may influence the sedimentology of alluvial and fluvial deposits, but we find no evidence for significant climatic changes that could change rates or styles of landscape evolution over this time frame. Pending cosmogenic nuclide analysis of fan deposits and river sediments will permit the derivation of fault slip rates, surface ages, modern and paleo-erosion rates, and sediment transport histories. These results will further refine our understanding of tectonic and climatic forcing of surface processes in the Quaternary.

  5. Fluvial response to late Quaternary climatic fluctuations, central Kobuk Valley, northwestern Alaska

    SciTech Connect

    Ashley, G.M. . Dept. of Geological Sciences); Hamilton, T.D. )

    1993-09-01

    Much of northwestern Alaska remained unglaciated during the Pleistocene and thus offers a favorable setting for examining long-term records of high-latitude geological and biological change. Epiguruk, a large cut bank 3.5 km long and up to 36 m high on the Kobuk River south of the Brooks Range in eastern Beringia, exposes complex sedimentary successions representing cycles of upper quaternary alluviation and eolian sedimentation, downcutting, and soil formation. A rich record of plants and mammals is also preserved in the section. Deposits of fluvial channels and flood plains, eolian dunes, sand sheets, loess, and ponds, as well as organic soils (Histosols) are represented. Parallel-bedded fine sand and coarse silt couplets that commonly contain root structures, ripple cross-lamination, silt drapes are flood-plain sediments apparently deposited at the interface of fluvial and eolian environments. Multiple fluvial-to-eolian depositional sequences were caused by influx of eolian sediment to the river from intermittently active dune fields south of the Kobuk River. Alluviation in the Kobuk Valley was coeval with glaciation in the Brooks Range, whereas downcutting occurred during interstadials when dune stabilization limited sediment supply. The depositional model developed at Epiguruk may be useful in interpreting some of the widespread subhorizontally stratified late-glacial deposits of Europe and North America.

  6. Provenance of the Heavy Mineral-enriched Alluvial Deposits at the West Coast of Red Sea. Implications to the Evolution of Arabian-Nubian Crust

    NASA Astrophysics Data System (ADS)

    Mahar, M. A.; Ibrahim, T.; Goodell, P.

    2014-12-01

    Here we present the LA-ICP-MS U-Pb ages and Hf isotopic record of detrital zircons from the active alluvial fans at the west coast of the Red Sea. The Ras Manazal alluvial fan (primarily composed of zircon, magnetite with some rutile, ilmenite and monazite) yielded a relatively restricted age population ranges from 765 to 666 Ma. These ages and present-day drainage pattern is consistent that the sediments are primarily derived from erosion of nearby subduction related granitoids in the immediate west (i.e., not more than 50 km from the Red Sea coast) of the fan. In contrast, approximately 160 km south, at the Egypt-Sudan border, the Wadi Diit fan is relatively more enriched in ilmenite and REE-bearing phases (e.g., thorite, monazite, xenotime, garnet etc.) and yielded five zircon age populations of 1) 824-733 Ma, 2) 730-705 Ma, 3) 646-608 Ma, 4) 516-500 Ma, and 5) 134-114 Ma. The age populations 1-3 if coupled with the present-day drainage pattern can be related to the earlier subduction related and later post collision granitoids in the southern part of the South Eastern Desert and Gebeit terrane of northern Sudan. Sparse Early Cretaceous zircons (134-114 Ma) are derived from the Mesozoic volcanic suits in the source region. However, the age group 516-500 Ma is enigmatic. Wadi Diit zircons are primarily derived from granitoids in the broad S-N directed Hamisana Shear Zone and its subordinate SW to NE directed Onib-Sol-Hamed Suture Zone. These shear zones provided pathways for the present-day drainage system for sediment transportation to the Wadi Diit and adjacent coastal region. We infer that the ca. 500 Ma late-stage magmatic zircons represent a hitherto unknown magmatic event, possibly related to the shear heating associated with the crustal scale shear zones. This implies that the shear zones in the South Eastern Desert and northern Sudan remained thermally active as late as ~500 Ma. The time resolved hafnium composition (?Hf (t)) of both fans varies from +3.5 to +13.5. Our new U-Pb ages and Hf isotopic composition suggests that the detrital zircons were derived from the Neoproterozoic juvenile crust. This is consistent with the Neoproterozoic juvenile igneous and metamorphic rocks in the Eastern Desert and northern Sudan.

  7. Provenance of the heavy mineral-enriched alluvial deposits at the west coast of the Red Sea. Implications for evolution of Arabian-Nubian crust

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Ibrahim, Tarek M. M.; Goodell, Philip C.

    2014-12-01

    Here we present the LA-ICP-MS U-Pb ages and Hf isotopic record of detrital zircons from the active alluvial fans at the west coast of the Red Sea. The Ras Manazal alluvial fan (primarily composed of zircon, magnetite with some rutile, ilmenite and monazite) yielded a relatively restricted age population ranges from 765 to 666 Ma. These ages and present-day drainage pattern is consistent that the sediments are primarily derived from erosion of nearby subduction related granitoids in the immediate west (i.e., not more than 50 km from the Red Sea coast) of the fan. In contrast, approximately 160 km south, at the Egypt-Sudan border, the Wadi Diit fan is relatively more enriched in ilmenite and REE-bearing phases (e.g., thorite, monazite, xenotime, garnet, etc.) and yielded five zircon age populations of (1) 824-733 Ma, (2) 730-705 Ma, (3) 646-608 Ma, (4) 516-500 Ma, and (5) 134-114 Ma. The age populations 1-3 if coupled with the present-day drainage pattern can be related to the earlier subduction related and later post collision granitoids in the southern part of the South Eastern Desert and Gebeit terrane of northern Sudan. Sparse Early Cretaceous zircons (134-114 Ma) are derived from the Mesozoic volcanic suits in the source region. However, the age group 516-500 Ma is enigmatic. Wadi Diit zircons are primarily derived from granitoids in the broad S-N directed Hamisana Shear Zone and its subordinate SW to NE directed Onib-Sol-Hamed Suture Zone. These shear zones provided pathways for the present-day drainage system for sediment transportation to the Wadi Diit and adjacent coastal region. We infer that the ca. 500 Ma late-stage magmatic zircons represent a hitherto unknown magmatic event, possibly related to the shear heating associated with the crustal scale shear zones. This implies that the shear zones in the South Eastern Desert and northern Sudan remained thermally active as late as ?500 Ma. The time resolved hafnium composition (?Hf (t)) of both fans varies from +3.5 to +13.5. Our new U-Pb ages and Hf isotopic composition suggests that the detrital zircons were derived from the Neoproterozoic juvenile crust. This is consistent with the Neoproterozoic juvenile igneous and metamorphic rocks in the Eastern Desert and northern Sudan.

  8. P and PS data to reduce the uncertainty in the reconstruction of near-surface alluvial deposits (Case studyCentral Italy)

    NASA Astrophysics Data System (ADS)

    Orlando, Luciana; Pelliccioni, Giovanni

    2010-09-01

    Seismic refraction, surface wave surveys and P and PS seismic reflection data were acquired and processed to derive the geological setting as well as P and S velocity profiles of the Plio-Pleistocene sediments that are filling a tectonic valley in central Italy. The results were constrained by boreholes, vertical electrical sounding and electrical resistivity tomography. The P-wave data, processed with standard processing, was allowed to detect the top of limestone 50 m depth. The converted PS-wave data were processed with Asymptotic Common Conversion Point (ACCP) sort and non-hyperbolic normal move out correction. The study shows that special care must be devoted to data muting because of the low signal-to-noise ratio, which is mainly due to the high energy of the ground roll and the air wave. The stack section was the result of an iterative process. From theoretical analysis, we determined that the use of ACCP binning does not allow the reflection to be focused for all of the time windows because the ACCP approximation is correct only for depths greater than the shot-receiver offset. The joint interpretation of the direct and indirect data proved the capability of P and PS seismic reflection data of constraining the interpretation and removing the ambiguity in the reconstruction of the geological setting and the P and S profiles of the formation of an alluvial valley located in a seismic area.

  9. Giant landslide deposits in northwest Argentina

    SciTech Connect

    Fauque, L.; Strecker, M.R.; Bloom, A.L.

    1985-01-01

    Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 m higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.

  10. Neogene to Quaternary ash deposits in the Coastal Cordillera in northern Chile: Distal ashes from supereruptions in the Central Andes

    NASA Astrophysics Data System (ADS)

    Breitkreuz, Christoph; de Silva, Shanaka L.; Wilke, Hans G.; Pfänder, Jörg A.; Renno, Axel D.

    2014-01-01

    Silicic volcanic ash deposits investigated at 14 localities between 22° and 25°S in the Chilean Coastal Cordillera are found to be the distal ash fall from supereruptions in the Central Andean cordillera several hundreds of kilometers to the east. Depositional textures, modal composition and granulometry of the ashes and tuffs (the latter lithified by halite and gypsum under ultra-arid conditions) allow for a distinction between primary fallout/aeolian deposits (mean 4-5 Φ, sorting 1.5-2 Φ) and secondary deposits that formed by down wash from hill slopes during local rain fall. Primary volcanic components comprise two types of glass shards (with small stretched vesicles and coarse-walled with rounded to elliptic vesicles), and biotite.

  11. Neogene-Quaternary depositional history of the eastern US continental rise seaward of the Washington-Norfolk Canyon systems

    SciTech Connect

    Locker, S.D.; Laine, E.P.

    1985-01-01

    High quality, digitally recorded and processed, water gun and air gun seismic reflection data collected seaward of the present position of the Washington-Norfolk canyon systems reveals new information on the development of the continental rise. This includes insight into the depositional history of the Washington-Norfolk fan system and the relative importance of gravity flow depositional processes versus abyssal bottom current reworking during rise development. Three major post-Horizon A/sup u/ accretionary sequences describe major changes in depositional processes and history within the region. Accretionary sequence I (early to middle Miocene) is characterized by the initial development of a depositional bulge seaward of the Washington-Norfolk canyon systems which is modified by bottom currents on the lower-most rise to form a proto-Hatteras Outer Ridge. The predominance of chaotic and hummocky seismic facies suggests widespread reworking by abyssal bottom currents. Accretionary sequence II (middle Miocene to late Pliocene) in this area is characterized by sediment waves (lower rise) and smooth, southward dipping, parallel reflectors associated with a thick central rise drift(.) deposit off the Hudson system to the North. Washington-Norfolk fan development appears less important during this time. Bottom currents are active, but more depositional in nature than during accretionary sequence I. Accretionary sequence III (late Pliocene to Present) is marked by gravity flow processes and distinct development of the Washington-Norfolk fan on the central rise.

  12. Morphology, mineralogy and magnetic susceptibility of epikarst-Terra Rossa developed in late Quaternary aeolianite deposits of southeastern Saurashtra, India

    NASA Astrophysics Data System (ADS)

    Khadkikar, Aniruddha S.; Basavaiah, Nathani

    2004-03-01

    The nature and development of epikarst and soil development in aeolianites under a monsoonal climatic regime has not yet been described. Late Quaternary aeolianites of the southeastern coast of Saurashtra in western India show a wide array of epikarst and red-soil formation, and serve to typify the character of aeolianite weathering under a monsoonal climate. Three varieties of epikarst are identified that represent down-profile increase in groundwater flow. Five types of Terra Rossae represent a transition from the karstified limestone to soil development. Terra Rossae differ in the content of residual aeolianite and show both simple and complex profiles. The latter at places shows ped development. The results show that an ontogenetic (growth) sequence exists from incipient epikarst to complex palaeosols. This ontogenetic sequence represents an incremental increase in the groundwater budget of the region in response to changing intensification of the Indian monsoon rainfall. Magnetic properties of the Terra Rossae formed under a monsoonal climate are described for the first time. The magnetic susceptibility together with its frequency-dependent and anhysteretic remanent magnetization (ARM) represents both the concentration of single domain and ultrafine superparamagnetic (SP) magnetite. The formation of single domain and superparamagnetic magnetite and hematite are linked genetically to weathering of the aeolianite that leads to the formation of Terra Rossa.

  13. Soil genesis on the island of Bermuda in the Quaternary: the importance of African dust transport and deposition

    USGS Publications Warehouse

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-01-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (N/YbN, GdN/YbN that can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past 500 ka.

  14. Sedimentology and paleogeographic evolution of the intermontane Kathmandu basin, Nepal, during the Pliocene and Quaternary. Implications for formation of deposits of economic interest

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Kharel, B. D.; Singh, V. K.; Piya, B.; Busch, K.; Geyh, M.

    2001-10-01

    The Kathmandu Valley is an intermontane basin in the center of a large syncline of the Lesser Himalayas. The sedimentary basin fill comprises three units of Plio-Pleistocene to Holocene age. The study aimed at modeling the paleogeographic evolution of the basin, with emphasis on sedimentary series of fossil fuels and non-metallic deposits. The lithological setting of the basin and the tectonic framework were instrumental to basin subsidence. Alluvial through lacustrine sedimentation during incipient stages is a direct response to uplift in the hinge zone of the synclinorium. Axial parallel sediment dispersal gave way to fluviodeltaic sedimentation mainly from the limbs of the synclinorium. Ongoing compression and renewed uplift in the core zone of the synclinorium drove the uplift of a NW-SE running divide and a subdivision of the mono-lake into two basins. This ridge blocked the flow of transverse rivers and the northern subbasin became gradually choked. Ongoing uplift of the entire basin during the recent geological history caused a reorganization of the drainage pattern and triggered linear erosion in the southern mountain range. Step-by-step the remaining lacustrine basins disappeared. Fan aggradation coincide with cold dry or warm seasons, fluvial dissection and discharge increased during warmer and more humid periods. High lake levels exist during phases of increased humidity. The results of this basin analysis may be used predictively in the exploration for coal, natural gas, diatomaceous earths and quarrying for sand or clay. The gas potential is at its maximum in the lacustrine facies, sand and clay for construction purposes may be quarried economically from various fluvial and deltaic deposits. Diatomaceous earths predominantly accumulated in marginal parts of the lake and some landslide-dammed ponds. Lignitic brown coal can be mined together with combustible shales from poorly drained swamps.

  15. Late Quaternary extraglacial cold-climate deposits in low and mid-altitude Tasmania and their climatic implications

    NASA Astrophysics Data System (ADS)

    McIntosh, P. D.; Eberhard, R.; Slee, A.; Moss, P.; Price, D. M.; Donaldson, P.; Doyle, R.; Martins, J.

    2012-12-01

    Many Tasmanian deposits previously described as 'periglacial' have been described in more detail, re-interpreted and dated. We suggest that 'periglacial' has little meaning when applied locally and the term 'relict cold-climate deposits' is more appropriate. In this paper we examine the origin and age of relict cold-climate slope deposits, fan alluvium and aeolian sediments in Tasmania, and infer the conditions under which they accumulated. Fan alluvium dating from the penultimate Glacial (OIS 6) and capped by a prominent palaeosol deduced to date to the Last Interglacial (OIS 5e) is present at Woodstock, south of Hobart. Many fan deposits formed before 40 ka or in a period c. 30-23 ka; only a few deposits date to the Last Glacial Maximum in Tasmania, which is defined as spanning the period 23.5-17.5 ka. Slope deposits indicate widespread instability down to present-day sea level throughout the Last Glacial, probably as a result of freeze-thaw in a sparsely vegetated landscape. Layered fine gravel and coarse sand colluvial deposits resembling grzes lites, produced both by dry deposition and by the action of water, are locally common where jointed siltstone bedrock outcrops. These deposits occur from altitudes of 500 m to near sea level and also in caves and must have formed under sparse vegetation cover, probably by freeze-thaw in extremely dry conditions. They have been radiocarbon dated from 35 to 17.5 cal. ka. Relict dunes and sandsheets are widespread at the margin of the Bassian Plain that once provided a land bridge between Tasmania and the mainland. They are also found in western Tasmania and in areas of inland southern Tasmania that now support wet eucalypt forest and rainforest and receive mean annual rainfall > 1500 mm. In the south they have been dated > 87.5-19 ka and attest to a long period of semi-arid climate in an area extending well to the west and south of the present semiarid zone. We deduce that during most of the Last Glacial anticyclones dominated Tasmania's climate and rain-bearing depressions generally passed south of the land mass. However in the east prominent palaeosols in aeolian deposits, dated between 26.4 ka and 16 ka at different locations, and palaeosols with morphology indicating formation under humid conditions, indicate periods of wetter climate in eastern Tasmania during or close to the LGM, deduced to be the result of easterlies associated with near-coastal depressions in the western Tasman Sea. Such easterlies may also be responsible for short Last Glacial wet periods noted at mainland coastal sites. A plot of ages of all dated deposits reveals an increase of erosion and deposition between 35 and 20 ka, and greater prevalence of aeolian deposits in the 35-15 ka period than earlier in the Last Glacial. There are two possible explanations for this pattern: (1) that aeolian activity increased as the result of climatic effects (e.g. increased windiness); or (2) that shrubland biomass increased after the megafauna were hunted to extinction following human arrival c. 40 ka, causing increased fire frequency, and in the cold dry climate of the late Last Glacial such fires caused increased erosion and increased aeolian accumulation.

  16. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary fault, Eastern Yucca Mountain

    SciTech Connect

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W.; Widmann, B.; Wesling, J.R.

    1994-12-31

    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain.

  17. Soil genesis on the island of Bermuda in the Quaternary: The importance of African dust transport and deposition

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-09-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (<20?m) component of distal loess from the lower Mississippi River Valley, and LRT dust from Africa. These parent materials can be characterized geochemically using trace elements that are immobile in the soil-forming environment. Results indicate that local volcanic bedrock on Bermuda has Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbNthat can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past 500 ka.

  18. A late quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Been, J.; Bradbury, J.P.; Dean, W.E.

    2003-01-01

    Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  19. A debris flow deposit in alluvial, coal-bearing facies, Bighorn Basin, Wyoming, USA: Evidence for catastrophic termination of a mire

    USGS Publications Warehouse

    Roberts, S.B.; Stanton, R.W.; Flores, R.M.

    1994-01-01

    Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.

  20. High Resolution Particle Size Analyses Applied to Late Quaternary Loess Deposits at Orkutsay, Uzbekistan, Western Tien-Shan

    NASA Astrophysics Data System (ADS)

    Mavlyanova, N. G.; Machalett, B.; Rakhmatullaev, H.

    2011-12-01

    The loess deposits in the proximity of Tashkent (Uzbekistan) are one of the most promising widespread terrestrial climate and environmental archives of the Pleistocene in Central Asia, in addition to the loess of southern Tajikistan and the loess in the region of Almaty (Kazakhstan). In this paper we present high resolution particle-size data from the upper part of the long-studied loess record at Orkutsay (Uzbekistan). During the fieldwork samples for grain size and magnetic susceptibility were taken at 2 cm and 5 cm intervals from the loess. Particle size measurements of all samples were made on a Beckman Coulter LS 13320 PIDS laser sizer with auto-prep station to provide a dynamic range that spans from 0.04 to 2000 ?m and ensure accuracy and reproducibility. The granulometric results show a maximum in the fine and middle silt fraction and allow a clear distinction between cold and dry, and warm cycles. They show an important coherence between the type of dust sedimentation and the prevailing climate. Loess layers, which are associated with cold climate conditions, are dominated by the deposition of coarser dust particles. In contrast, finer airborne material has been deposited within the pedocomplexes that represent temperate interstadial or interglacial environments. Our results demonstrate the potential of the aeolian dust record at Orkutsay to decipher impacts of past climatic changes on terrestrial ecosystems and to understand climate feedback processes in continental interiors such as Central Asia.

  1. High-resolution particle size analyses applied to late Quaternary loess deposits at Orkutsay, Uzbekistan, Western Tien-Shan

    NASA Astrophysics Data System (ADS)

    Mavlyanova, Nadira G.; Machalett, Bjoern; Rakhmatullaev, Hirojilla L.

    2013-04-01

    The loess deposits in the proximity of Tashkent (Uzbekistan) are one of the most promising widespread terrestrial climate and environmental archives of the Pleistocene in Central Asia, in addition to the loess of southern Tajikistan and the loess in the region of Almaty (Kazakhstan). In this paper we present high resolution particle-size data from the upper part of the long-studied loess record at Orkutsay (Uzbekistan). During the fieldwork samples for grain size and magnetic susceptibility were taken at 2 cm and 5 cm intervals from the loess. Particle size measurements of all samples were made on a Beckman Coulter LS 13320 PIDS laser sizer with auto-prep station to provide a dynamic range that spans from 0.04 to 2000 m and ensure accuracy and reproducibility. The granulometric results show a maximum in the fine and middle silt fraction and allow a clear distinction between cold and dry, and warm cycles. They show an important coherence between the type of dust sedimentation and the prevailing climate. Loess layers, which are associated with cold climate conditions, are dominated by the deposition of coarser dust particles. In contrast, finer airborne material has been deposited within the pedocomplexes that represent temperate interstadial or interglacial environments. Our results demonstrate the potential of the aeolian dust record at Orkutsay to decipher impacts of past climatic changes on terrestrial ecosystems and to understand climate feedback processes in continental interiors such as Central Asia.

  2. Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits

    NASA Astrophysics Data System (ADS)

    Nii-Annang, S.; Grnewald, H.; Freese, D.; Httl, R. F.; Dilly, O.

    2009-04-01

    The impact of alley cropping on post lignite mine soils developing from quaternary deposits after 9 years of recultivation was evaluated on the basis of microbial indicators, organic C and total N contents, and the isotope characteristics of soil C. Soils were sampled at the 0 to 3, 3 to 10 and 10 to 30 cm depths under black locust (Robinia pseudoacacia L.), poplar clone (Populus spp.), the transition zone and in the middle of alley under rye (Secale cereale). There was no significant effect of vegetation on microbial properties presumably, due to the high spatial variability, whereas organic C and total N contents at the 0 to 3 cm layer were significantly higher under black locust and poplar than in the transition zone and rye field. Organic C total N contents, and basal respiration, microbial biomass and microbial quotient decreased with soil depth. Soil organic C and total N contents were more than doubled after 9 years of recultivation, with annual C and N accretion rate of 162 g Corg m-2 yr-1 and 6 g Nt m-2 yr-1. Microbial properties indicated that the soils are in early stages of development; the C isotope characteristics confirmed that the sequestered C was predominantly from C3 plants of the alley cropping.

  3. Geochronology, geochemistry, and tectonic characterization of Quaternary large-volume travertine deposits in the southwestern United States and their implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Priewisch, Alexandra

    Travertines are freshwater carbonates that precipitate from carbonic groundwater due to the degassing of CO2. Travertine deposits are often situated along faults that serve as conduits for CO2-charged groundwater and their geochemistry often records mixing of deeply-derived fluids and volatiles with shallow meteoric water. Travertines are surface expressions of dynamic mantle processes related to the tectonic setting. This dissertation includes four chapters that focus on different aspects of travertine formation and their scientific value. They are excellent, although underestimated, diagnostic tools for climatology, hydrology, tectonics, geochemistry, geomicrobiology, and they can inform carbon sequestration models. Quaternary large-volume travertine deposits in New Mexico and Arizona occur in an extensional tectonic stress regime on the southeastern Colorado Plateau and along the Rio Grande rift. They accumulated above fault systems during episodes of high hydraulic head in confined aquifers, increased regional volcanic activity, and high input of mantle-derived volatiles such as CO 2 and He. Stable isotope and trace element geochemistry of travertines is controlled by groundwater geochemistry as well as the degassing of CO 2. The geochemical composition allows for distinguishing different travertine facies and evaluating past groundwater flow. The travertine deposits in New Mexico are interpreted to be extinct CO2 fields due to the large volumes that accumulated and in analogy to the travertine deposits in Arizona that are associated with an active CO2-gas field. Travertines are natural analogues for CO2 leakage along fault systems that bypassed regional cap rocks and they provide important insight into the migration of CO2 from a reservoir to the surface. The volume of travertine can be used to infer the integrated CO2 leakage along a fault system over geologic time. This leakage is estimated as: (1) CO2 that becomes fixed in CaCO3/travertine (tons of carbon converted into tons of carbonate), (2) the amount of CO2 that degassed into the atmosphere (twice the amount of (1), based on reaction stoichiometry), (3) dissolved CO 2 that is carried away with the water discharging from a spring (based on modern spring discharge and dissolved carbon content), and (4) CO 2 that escapes through the soil (based on modern soil flux measurements). Better understanding of integrated CO2 leakage and fault-related seal bypass is needed to design CO2 sequestration sites to effectively store anthropogenic CO2 in the subsurface.

  4. The Quaternary Deformational History of the East Potrillo Fault, Dona Ana County, New Mexico

    NASA Astrophysics Data System (ADS)

    Cervera, S. N.; Hurtado, J. M.; Clague, J. W.; Andronicos, C. L.

    2006-12-01

    The East Potrillo Mountains are located immediately north of the U.S.-Mexico border in southwestern Dona Ana County, New Mexico. Along the east flank of the East Potrillo Mountains are north-striking piedmont scarps that indicate continuous, late Quaternary movement on the high-angle normal faults of the East Potrillo Fault system. This East Potrillo fault may pose a major seismic hazard to the 2.2 million people that live in the El Paso, Texas border region. We investigate the Quaternary deformational history in this area using GPS, field and remote sensing observations, traditional survey techniques, and new advances in desert varnish geochronology. We focus on estimating the average slip rate on the East Potrillo fault and the earthquake recurrence interval. The amount of Quaternary deformation is constrained by measuring displacements of geomorphic surfaces, including alluvial fans and fluvial deposits. A total of thirteen profiles perpendicular to the scarp have been surveyed to reproduce the fault scarp geometry. From these profiles, we estimate fault scarp age by using three types of slope degradation modeling: calibrated scarp-height-slope-angle relationships, a diffusion model, and a general morphologic dating method for transport-limited hillslopes. A total of 18 varnished rock samples were also collected from displaced alluvial fan surfaces and from cut terraces associated with slip events on the East Potrillo fault. These samples were analyzed using x-ray fluorescence (XRF) to obtain concentrations of Mn and Fe present in the varnish. The accumulation of Fe and Mn reflects the amount of time that varnish has accumulated on a clast, and, thus, provides a constraint on the age of the surface from which the clast was obtained. The morphologic dating results will be compared with the desert varnish results to better understand landform evolution, fault mechanics, and determine the slip history in the study area. These measurements are vital for constraining paleoseismic and tectonic activity as well as seismic hazards in the region.

  5. Sedimentology and depositional history of Neogene gravel deposits in lower Tornillo Creek area of Big Bend National Park, Texas

    SciTech Connect

    Thurwachter, J.E.

    1984-04-01

    Neogene gravel deposits in the lower Tornillo Creek area of Big Bend National Park, Texas, record the filling of a small structural basin formed during Basin and Range tectonism. Four lithofacies are recognized in the Late Miocene La Noria member (informal name): (1) a medial braided-stream lithofacies consisting of upward-fining packages of cross-bedded gravel, sandstone, and siltstone; (2) a distal braided-stream lithofacies consisting of poorly-defined upward-fining packages of fine gravel, sandstone, and mudstone; (3) a calcrete-rich gravel and sandstone lithofacies representing strike-valley and alluvial-fan deposition, and (4) and ephemeral lake-plain lithofacies consisting of massive and burrowed mudstones with sheet-like sandstone interbeds. Upward-fining packages in the braided-stream lithofacies represent the lateral migration and avulsion of the stream tract across the basin; together with the strike-valley and alluvial-fan deposits, these record the initial stages of basin filling. Provenance studies show that much of this sediment was derived from northern Mexico. Overlying ephemeral-lake deposits record the structural tilting and closing of the downstream (north) end of the basin. Gravels and minor sandstones of the Pleistocene Estufa member (informal name) represent basinward progradation of alluvial fans. Deposition of the Estufa member resulted from: (1) Quaternary tectonic activity in the Chisos Mountains area; (2) lowering of local base level by post-Miocene development of the Rio Grande drainage through the area; and (3) Pleistocene pluvial-period climatic changes. Subsequent Quaternary faulting has caused minor deformation of the deposits.

  6. Climatic and Tectonic Controls on Alluvial Fan Evolution: The Lost River Range, Idaho

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Pierce, J. L.; Sharp, W. D.; Pierce, K. L.

    2006-12-01

    In the northern Basin &Range, alluvial fans developed along the Lost River range-front consist of several distinct inset fan segments with concave-up radial profiles. Multiple large radius (>5 km), shallow (2- 3), alluvial fans extend across and beyond the active, ~140-km-long, normal Lost River fault. These large fans are relict features, formed by major sheetfloods that occurred intermittently between ~15-180 ka. More recent deposition has been dominated by debris-flows that form small-radius (<2 km), steep (8- 17), fans closely confined to the mountain front [1,2]. In order to determine the timing of fan surface stabilization, we have undertaken precise mass spectrometric 230Th/U dating of pedogenic carbonate from calcic soils that mantle fan surfaces on the Arco fault segment. Careful selection of mg-size samples of dense soil carbonate pebble coats, from within a trench that cuts through gravelly fan deposits, indicates that the fan soils are geochemically suitable for uranium-series dating (median U=7ppm, 232Th=0.09ppm, 232Th/230Th=154). 230Th/U analysis of these calcic soils can thus provide precise temporal constraints on intervals of surface stability and subsequent soil formation. The oldest fan surface (Qfo1, 178+/-8 ka), exposed within the footwall of the trench, suggests an interval of surface stability, indicating that the fan was likely abandoned due to incision early in MIS 6. Incision may have resulted from surface faulting along the Arco segment of the Lost River fault, but could relate to changes in stream power or sediment supply associated with climatic change or with auto-cyclic variations within the drainage basin. A younger incised and faulted fan surface (Qfo2, 69+/-6 ka), likely represents active alluviation at the beginning of MIS 4 and, since it formed as hanging-wall alluvial gravel, provides age limits on an episode of fault displacement between Qfo1 and Qfo2. In situ pedogenic carbonate coats on sub-angular gravels within the colluvial fault wedge date at 68+/-2 ka, suggesting that either faulting occurred soon after Qfo2 stabilized or that soil carbonate coats were recycled into the colluvial wedge from the faulted surface. Further studies in the Lost River Range will assess the timing of fan deposition, surface stabilization and fault activity since the late Pleistocene using coupled application of Optically Stimulated Thermoluminescence (OSL) dating of loess and fine-sands, and 230Th/U-dating of pedogenic carbonate formed within well- exposed fan stratigraphy. Defining intervals of erosion, deposition and stability within the context of regional records of Quaternary climate change will yield new insights into the interplay between faulting, climate change and alluvial fan deposition and incision in semi-arid environments. [1] Pierce, K.L., Scott, W.E., 1982. Idaho Mines &Geol. Bull. 26. [2] Patterson, S.J., 2006. M.S. Thesis, Montana State University

  7. Paleoseismology at high latitudes: Seismic disturbance of upper Quaternary deposits along the Castle Mountain fault near Houston, Alaska

    USGS Publications Warehouse

    Haeussler, P.J.; Best, T.C.; Waythomas, C.F.

    2002-01-01

    Most paleoseismic studies are at low to moderate latitudes. Here we present results from a high-latitude (61??30??? N) trenching study of the Castle Mountain fault in south-central Alaska. This fault is the only one known in the greater Anchorage, Alaska, area with historical seismicity and a Holocene fault scarp. It strikes eastnortheast and cuts glacial and postglacial sediments in an area of boreal spruce-birch forest, shrub tundra, and sphagnum bog. The fault has a prominent vegetation lineament on the upthrown, north side of the fault. Nine trenches were logged across the fault in glacial and postglacial deposits, seven along the main trace, and two along a splay. In addition to thrust and strike-slip faulting, important controls on observed relationships in the trenches are the season in which faulting occurred, the physical properties of the sediments, liquefaction, a shallow water table, soil-forming processes, the strength of the modern root mat, and freeze-thaw processes. Some of these processes and physical properties are unique to northern-latitude areas and result in seismic disturbance effects not observed at lower latitudes. The two trenches across the Castle Mountain fault splay exposed a thrust fault and few liquefaction features. Radiocarbon ages of soil organic matter and charcoal within and overlying the fault indicate movement on the fault at ca. 2735 cal. (calendar) yr B.P. and no subsequent movement. In the remaining seven trenches, surface faulting was accompanied by extensive liquefaction and a zone of disruption 3 m or more wide. The presence of numerous liquefaction features at depths of <0.5-1.0 m indicates faulting when the ground was not frozen-i.e., from about April to October. Sandy-matrix till, sand, silt, gravel, and pebbly peat were injected up to the base of the modern soil, but did not penetrate the interlocking spruce-birch root mat. The strength of the root mat prohibited development of a nonvegetated scarp face and colluvial wedge. In only one trench did we observe a discrete fault plane with measurable offset. It lay beneath a 2-m-thick carapace of liquefied sand and silt and displayed a total of 0.9-1.85 m of thrust motion since deposition of the oldest deposits in the trenches at ca. 13,500 yr B.P. We found liquefaction ejecta on paleosols at only one other trench, where there were bluejoint (Calamagrostis canadensis) tussocks that lacked an extensive root mat. From crosscutting relationships, we interpret three paleoliquefaction events on the main trace of the Castle Mountain fault: 2145-1870, 1375-1070, and 730-610 cal. yr B.P. These four earthquakes on the Castle Mountain fault in the past ???2700 yr indicate an average recurrence interval of ???700 yr. As it has been 600-700 yr since the last significant earthquake, a significant (magnitude 6-7) earthquake in the near future may be likely. Paleoseismic data indicate that the timing and recurrence interval of megathrust earthquakes is similar to the timing and recurrence interval of Castle Mountain fault earthquakes, suggesting a possible link between faulting on the megathrust and on "crustal" structures.

  8. Stable isotope variations in the Quaternary epithermal calcite-fluorite deposit at Monte delle Fate near Cerveteri (Latium, central Italy)

    USGS Publications Warehouse

    Masi, U.; O'Neil, J.R.

    1980-01-01

    Carbon, oxygen and hydrogen isotope variations have been measured in samples from the epithermal fluorite vein deposit at Monte delle Fate, Latium. The ranges in ?? 13C and ??18O of calcite are -1.3 to 3.4 and 9.5 to 17.3, respectively. ??D values of water extracted from fluid inclusions are -49 to -39 for calcite and -41 to -34 for fluorite. Fluid inclusion filling temperatures (225??-240??C) and salinites (3.75) are nearly the same for both fluorite and sparry calcite. An elongated form of calcite, of minor abundance, precipitated at lower temperatures. The data indicate that (1) the CO2 involved in the mineralization was provided by the local marine limestones, (2) the waters were meteoric in origin and underwent an 18O shift of ??? 10 permil by exchange with marine country rocks, and (3) all geochemical features can be explained by the action of two hydrothermal fluids. Hot brines recently discovered in the Cesano geothermal area, 30 km to the east, have temperatures and some chemical characteristics similar to the hydrothermal fluids at Monte delle Fate. ?? 1980 Springer-Verlag.

  9. Controls on alluvial fan long-profiles

    USGS Publications Warehouse

    Stock, J.D.; Schmidt, K.M.; Miller, D.M.

    2008-01-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans where water transport of gravel predominates, channel slopes tend to decrease downfan from ???0.10-0.04 to ???0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects grain-size fining downfan such that higher threshold slopes are required just to entrain coarser particles in the waters of the upper fan, whereas lower slopes are required to entrain finer grains downfan (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses for alluvial fan long-profiles using detailed hydraulic and particle-size data in sediment transport models. On four alluvial fans in the western U.S., we find that channel hydraulic radiiare largely 0.5-0.9 m at fan heads, decreasing to 0.1-0.2 m at distal margins. We find that median gravel diameter does not change systematically along the upper 60%-80% of active fan channels as slope declines, so downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, channel-bed sand cover increases systematically downfan from areal fractions of <20% above fan heads to distal fan values in excess of 70%. As a result, entrainment thresholds for bed material might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off-channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off channel every -0.20-1.4 km downfan. This leads us to hypothesize that some alluvial fan long-proffies are statements about the rate of overbank deposition of coarse particles downfan, a process for which there is currently no mechanistic theory. ?? 2007 Geological Society of America.

  10. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India.

    PubMed

    Saha, Dipankar; Dhar, Y R; Vittala, S S

    2010-06-01

    A part of the Gangetic Alluvial Plain covering 2,228 km(2), in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km(2), affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of-(1) cumulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability. PMID:19415511

  11. Late Quaternary tectonics in the inner Northern Apennines (Siena Basin, southern Tuscany, Italy) and their seismotectonic implication

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Capezzuoli, Enrico; Martini, Ivan; Picozzi, Matteo; Sandrelli, Fabio

    2014-05-01

    Defining the most recent Quaternary tectonics represents a challenging task for neotectonic, palaeoseismological and seismotectonic studies. This paper focuses on an integrated approach to reconstructing the latest Quaternary deformation affecting the northern part of the Siena Basin (inner Northern Apennines, i.e., southern Tuscany, Italy) near the town of Siena, and to discuss the seismological implications. Field work and structural and stratigraphic analyses, coupled with the interpretation of reflection seismic lines, have been combined to define the geometry, kinematics and age of mesoscopic to map-scale faults which have affected the mainly Quaternary continental and Pliocene marine deposits. The resulting dataset describes a tectonic setting characterized by coeval SW- and NW-trending transtensional and normal faults, respectively, dissecting alluvial sediments younger than 23.9 0.23 ka. Seismic interpretation sheds light on the geometrical setting of the faults at deeper levels, down to 1-2 km, and provides support for the presence of a wide brittle shear zone defined by conjugated fault segments, locally giving rise to an asymmetrical negative flower-like structure. Faults and their damage zones have controlled (and still control) the discharge of gas vents (mainly CO2 and H2S) and hydrothermal circulation (which deposits travertine) since at least 23.216 0.124 ka. The resulting complete data set provides support for our description of the Neogene-Quaternary tectonics which were active until the late Quaternary, providing additional information about the seismotectonic framework of an area characterized by low seismicity and generally low-magnitude earthquakes (M < 4), but having experienced significant seismic events over the last few centuries.

  12. Significance of relic carbonate deposits along the central and southwestern margin of India for late Quaternary environmental and sea level changes

    NASA Astrophysics Data System (ADS)

    Rao, V. Purnachandra; Montaggioni, L.; Vora, K. H.; Almeida, F.; Rao, K. M.; Rajagopalan, G.

    2003-06-01

    Environmental and sea level indicators were investigated using dredge samples from late Quaternary carbonate deposits along the shelf break between Goa and Cape Comorin, India. Geomorphic features in the area were identified from sonar profiles and included isolated patch reefs with a relief of up to 10 m, and linear reefs with reliefs between 2 and 15 m. The main clast types recovered from these features include fragmented corals and carbonate nodules dominated by either encrusted foraminifera or coralline algae. Some of these clast types are clearly of shallow-water origin. Fragments of reef-forming Poritid corals, for example, were collected off Mangalore at depths of 110-105 m and dated between 11,520 and 12,610 14C years BP (13.42-14.77 ka). Nodules of similar age dominated by Lithothamnium and capped by foraminiferal veneers were also collected at -90 m off Cape Comorin. Their altered algal tissues are consistent with formation in shallow water, high-energy conditions. In contrast, nodules recovered off Kochi and Mangalore-Goa are of deeper water origin, younger in age (10,980-7350 14C years BP), and are dominated by Gypsina encrustations with volumetrically less algal encrustation. They show cyclic succession of foraminiferal-algal, or foraminiferal-algal-coral laminations in which the algal species are typical of deeper waters. The age and elevation of corals and shallow-water nodules are both consistent with published glacio-eustatic sea-level curves. In addition, the alternate micro-encrustations of foraminifera, algae and encrusting corals could indicate changing conditions from nutrient-rich and turbid to nutrient-poor and clear water that may be attributable to seasonal variations in sediment flux caused by monsoons.

  13. Late Quaternary geomorphology and soils in Crater Flat, Yucca mountain area, southern Nevada

    SciTech Connect

    Peterson, F.F.; Bell, J.W.; Ramelli, A.R.; Dorn, R.I.; Ku, T.L.

    1995-04-01

    Crater Flat is an alluvium-filled structural basin on the west side of Yucca Mountain, Nevada, which is under consideration for a high-level nuclear waste repository. North-trending, late Quaternary faults offset alluvium in Crater Flat both along the canyons of the western flanks of Yucca Mountain and out on the piedmont slope. We believe the initial lack of young offsets at Yucca Mountain was in part due to unrecognized late Quaternary stratigraphy. We hypothesize that alluviation in the Yucca Mountain region was more active during the late Quaternary than previously thought. Several techniques were tried to test this hypothesis. Results are compared with previous soils and surface-exposure dating studies, and correlated to stratigraphy of other late Quaternary units in the southern Nevada, Death Valley, and Mojave Desert areas, and provide new stratigraphic data relevant to understanding climatic-alluvial processes in the Basin and Range Province during the late Quaternary. 76 refs., 7 figs., 6 tabs.

  14. Bedrock versus alluvial channel geometry

    NASA Astrophysics Data System (ADS)

    Church, M. A.; Venditti, J. G.; Rennie, C. D.

    2012-12-01

    We present observations of channel geometry obtained on a 524 km long continuous traverse of Fraser River, British Columbia, Canada, as it passes through the Fraser canyons. The channel alternates between gravel-bedded reaches that are incised into semi-consolidated glacial deposits and bedrock-bound reaches (7.7% of the reach above Hope). We obtained data of 71 cross-sections using 600 kHz and 1200 kHz aDcp and, in addition, obtained measures of channel width from Google imagery at 0.5 km spacing throughout the traverse. To homogenize the data of sectional geometry along the river (to compensate increasing flows at tributary junctions), we computed w/Q^1/2 and d/Q^1/3, following commonly observed scaling relations. For the sounded cross sections Q is the recorded flow at the time of the survey; for the map measurements, Q is mean annual flood for the reach, leading to some difference between the two sets of statistics. From the more abundant map data, alluvial reaches are 2.3x wider than and, from soundings, 0.60 as deep as rock-bound reaches, implying that mean velocity is accelerated in rock reaches by 38%. These data are based on section averages: extremes of depth and velocity in rock canyons are substantially greater. There is also variation from reach to reach along the river controlled by variation in rock lithologies, with the narrowest canyons occurring in Fraser Canyon proper (w/Q^1/2 = 0.083 compared with 1.4 elsewhere). The uppermost ('Marguerite') and lowermost ('Agassiz') alluvial reaches are considerably wider (w/Q^1/2 = 3.9 and 7.1 respectively) than intervening ones (~2.35). These reaches have lower gradients and exhibit wandering channels. Because of lithological control, the downstream hydraulic geometry of the river does not, in fact, conform with the common pattern, even when sections are analyzed according to boundary material. However, river gradient is well correlated with scaled width, inversely for gravel reaches and directly, but with little sensitivity for rock-bound reaches. We show distributions of channel width and depth along the river.

  15. Influences of quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California

    USGS Publications Warehouse

    McFadden, L.D.; Wells, S.G.; Dohrenwend, J.C.

    1986-01-01

    Soils formed in loess are evidence of both relict and buried landscapes developed on Pliocene-to-latest Pleistocene basalt flows of the Cima volcanic field in the eastern Mojave Desert, California. The characteristics of these soils change systematically and as functions of the age and surface morphology of the lava flow. Four distinct phases of soil development are recognized: phase 1 - weakly developed soils on flows less than 0.18 M.y. old; phase 2 - strongly developed soils with thick argillic horizons on 0.18 - 0.7 M.y. old flows; phase 3 - strongly developed soils with truncated argillic horizons massively impregnated by carbonate on 0.7 to 1.1 M.y. old flows; and phase 4 - degraded soils with petrocalcic rubble on Pliocene flows. A critical aspect of the development of stage 1 soils is the evolution of a vesicular A horizon which profoundly affects the infiltration characteristics of the loess parent materials. Laboratory studies show that secondary gypsum and possibly other salt accumulation probably occurred during the period of phase 1 soil development. Slight reddening of the interiors of peds from vesicular-A horizons of phase 1 soils and presence of weakly developed B horizons indicates a slight degree of in situ chemical alteration. However, clay and Fe oxide contents of these soils show that these constituents, as well as carbonates and soluble salts, are incorporated as eolian dust. In contrast to phase 1 soils, chemical and mineralogical analysis of argillic horizons of phase 2 soils indicate proportionally greater degrees of in-situ chemical alteration. These data, the abundant clay films, and the strong reddening in the thick argillic horizons suggest that phase 2 and phase 3 soils formed during long periods of time and periodically were subjected to leaching regimes more intense than those that now exist. Flow-age data and soil-stratigraphic evidence also indicate that several major loess-deposition events occurred during the past ??? 1.0 M.y. Loess events are attributed to past changes in climate, such as the Pleistocene-to-Holocene climatic change, that periodically caused regional desiccation of pluvial lakes, reduction of vegetational density, and exposure of loose, unconsolidated fine materials. During times of warmer interglacial climates, precipitation infiltrates to shallower depths than during glacial periods. Extensive, saline playas which developed in the Mojave Desert during the Holocene are a likely source of much of the carbonates and soluble salts that are accumulating at shallow depths both in phase 1 soils and in the formerly noncalcareous, nongypsiferous argillic horizons of phase 2 and 3 soils. ?? 1986.

  16. Quaternary history of the northeastern Bighorn Basin based on a climatically-controlled process-response model

    SciTech Connect

    Birdseye, R.U.

    1985-01-01

    The highest surfaces and oldest Pleistocene sediments in the northeastern Bighorn Basin are associated with the 600 kya North Kane Ash. Subsequent climatically-induced periods of aggradation and incision produced the remaining geomorphic elements. Processes associated with a typical interglacial-glacial cycle include: (1) interglacial stability with Bighorn River alluviation, pedimentation, and eolian deposition; (2) late-interglacial to early-glacial incision; (3) alluvial fan extension and increased landslide development during glacial intervals; and (4) an early-interglacial return to more stable conditions. Frequent stream captures during interglacial times were caused by the out-of-phase relationships between the Bighorn River and its tributaries. Quaternary climates of a given type have not been of equal magnitude or duration in the northeastern Bighorn Basin. The most intense glacial climates from which sediments are preserved are believed to have occurred ca. 600 kya, 440 kya an d140 kya. An abnormally dry climate existed between 400 kya and 275 kya, while extremely wet interglacial conditions prevailed about 100 kya. The last complete climatic cycle was the Bull Lake. The subsequent Holocene interglacial has been unusually dry. Thus not all Pleistocene climates have been capable of generating terraces of extensive alluvial fans.

  17. Hydraulic processes on alluvial fans

    SciTech Connect

    French, R.H.

    1987-01-01

    Alluvial fans are among the most prominent landscape features in the American Southwest and throughout the semi-arid and arid regions of the world. The importance of developing a qualitative and quantitative understanding of the hydraulic processes which formed, and which continue to modify, these features derives from their rapid and significant development over the past four decades. As unplanned urban sprawl moved from valley floors onto alluvial fans, the serious damage incurred from infrequent flow events has dramatically increased. This book presents a discussion of our current and rapidly expanding knowledge of hydraulic processes on alluvial fans. It addresses the subject from a multidisciplinary viewpoint, acquainting the reader with geological principles pertinent to the analysis of hydraulic processes on alluvial fans.

  18. Morphotectonic, Quaternary and Structural Geology Analyses of the Shallow Geometry of the Mw 6.1, 2009 L'Aquila Earthquake Fault (central Italy): A Missed Opportunity for Surface Faulting Prevention.

    NASA Astrophysics Data System (ADS)

    Pucci, S.; Villani, F.; Civico, R.; Pantosti, D.; Smedile, A.; De Martini, P. M.; Di Naccio, D.; Gueli, A.

    2014-12-01

    The surface-rupturing 2009 L'Aquila earthquake evidenced the limited knowledge of active faults in the Middle Aterno Valley area. Gaps in detailed mapping of Quaternary deposits and tectonic landforms did not trigger researches on active faults, but after the tragic event. We present a morphotectonic study of geometry and evolution of the activated fault system (Paganica-San Demetrio, PSDFS). The LIDAR analysis and field survey yield to a new geological and structural map of the area with an unprecedented detail for the Quaternary deposits. It shows an alluvial depositional system prograding and migrating due to fault system evolution. The normal faults offset both the Quaternary deposits and the bedrock. The structural analysis allows us to recognize two fault systems: (A) NNE- and WNW-trending conjugate extensional system overprinting a strike-slip kinematics and (B) dip-slip NW-trending system. Crosscut relationship suggests that the activity of system B prevails, since Early Pleistocene, on system A, which earlier may have controlled a differently shaped basin. System B is the main responsible for the present-day compound outline of the Middle Aterno Valley, while system A major splays now act as segment boundaries. The long-term expression of B results in prominent fault scarps offsetting Quaternary deposits, dissecting erosional and depositional flat landforms. We retrieved detailed morphologic throws along fault scarps and we dated landforms by 14C, OSL (Optically Stimulated Luminescence), CRN (Cosmogenic Radionuclide) and tephra chronology. We show the persistent role of extensional faulting in dominating Quaternary landform evolution and we estimate slip-rate of the PSDFS at different time-scales. The results support repeated activity of PSDFS for ~20 km total length, thus implying M6.6 maximum expected earthquake. Such an approach should have been applied beforehand for the actual hazard estimation, to trigger, early enough, the adoption of precautionary measures against surface faulting events.

  19. Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin

    NASA Astrophysics Data System (ADS)

    Blthe, Jan H.; Munack, Henry; Korup, Oliver; Flling, Alexander; Garzanti, Eduardo; Resentini, Alberto; Kubik, Peter W.

    2014-06-01

    The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr-1. Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic 10Be, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before 200 ka and 50-20 ka, judging from terrace treads stranded >150 m and 30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a late- or post-glacial sediment pulse seems a more likely source of this widespread sedimentation that has partly buried the dissected bedrock topography. Overall, the long residence times of fluvial, alluvial and lacustrine deposits in the region (>500 ka) support previous studies, but remain striking given the dominantly steep slopes and deeply carved valleys that characterise this high-altitude mountain desert. Recalculated late Quaternary rates of fluvial bedrock incision in the Indus and Zanskar of 1.5 0.2 mm yr-1 are at odds with the longevity of juxtaposed valley-fill deposits, unless a lack of decisive lateral fluvial erosion helps to preserve these late Pleistocene sedimentary archives. We conclude that alternating, 104-yr long, phases of massive infilling and incision have dominated the late Quaternary history of the Indus valley below the western Tibetan Plateau margin.

  20. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  1. Alluvial-river response to neotectonic deformation in louisiana and Mississippi.

    PubMed

    Burnett, A W; Schumm, S A

    1983-10-01

    Repeat geodetic surveys show uplift of the Monroe and Wiggins anticlines in Louisiana and Mississippi. There are deformed Quaternary terraces, which indicate long-term deformation in the valleys of the alluvial rivers that cross these structures, and there are floodplain and channel convexities that provide evidence of modern deformation. In addition, the channels show significant variations of morphology (sinuosity, gradient, and depth) and behavior appropriate to reaches of increased and decreased valley slope. These alluvial rivers are adjusting to modern deformation and their adjustment confirms two geodetic leveling anomalies. PMID:17810088

  2. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently formed around the time of the Noachian-Hesperian boundary. We infer that these fans formed during an episode of enhanced precipitation (probably snow) and runoff, which exhibited both sudden onset and termination.

  3. Late Quaternary rates of uplift and shortening at Baatar Hyarhan (Mongolian Altai) with optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Nissen, Edwin; Walker, Richard; Molor, Erdenebat; Fattahi, Morteza; Bayasgalan, Amgalan

    2009-04-01

    We investigate mountain building in the Altai range of western Mongolia, focusing on Baatar Hyarhan, a NW-trending massif bounded by active thrust faults. Our primary aims are to describe how thrusting has evolved over time, to calculate late Quaternary slip rates by dating offset alluvial markers with optically stimulated luminescence (OSL) and to compare these late Quaternary rates with measurements of deformation on decadal and geological timescales. Patterns of topography and drainage suggest that Baatar Hyarhan has grown in length and has propagated laterally from the SE towards the NW over time. On the NE side of the massif, the range-bounding Zereg fault appears active only along younger parts of Baatar Hyarhan; next to the oldest, SE part of the massif faulting has migrated into the adjacent Zereg Basin, where it has uplifted low, linear ridges of folded sediment, known locally as forebergs. On the SW side of the massif, only the range-bounding Tsetseg fault appears active. Using OSL, we establish ages of ~15, ~20 and ~85 kyr for alluvial deposits cut by these faults. These ages are close to those of alluvial markers in the separate Gobi Altai range, suggesting that periods of fan and terrace formation may correlate over wide tracts of Mongolia, presumably under the primary control of climate. Combining our OSL ages with offsets measured with differential GPS, we calculate Late Quaternary slip rates across forebergs in the Zereg Basin and across the range-bounding Zereg and Tsetseg faults. Uncertainties in fault dip (due to lack of clear fault exposures) and burial ages (due to incomplete resetting of the luminescence clock) mean that the exact slip rates are poorly constrained. Nevertheless, the vertical displacement rates we calculate across the Zereg and Tsetseg range-front faults-0.2-0.6 and 0.1-0.4 mm yr-1, respectively-are at the lower end of long-term (~5 Myr) estimates of 0.4-0.8 and 0.3-0.7 mm yr-1, respectively. Vertical rates of deformation may, therefore, have remained constant over the past ~5 Myr, but equally the late Quaternary rates might be lower than the geological ones. This possible discrepancy could be accounted for if some of the shortening has shifted away from the range-front faults onto other nearby structures. The forebergs in the eastern Zereg Basin are an obvious candidate, but they show at least 10 km cumulative shortening (which would take a few Ma to accumulate at late Quaternary rates) and cannot simply be regarded as the latest stage of outward mountain growth. The total Late Quaternary shortening rate across all three areas of faulting is 0.7-2.4 mm yr-1, making up between one tenth and one third of the ~7 mm yr-1 convergence across the whole Altai range.

  4. Quaternary Tectonic and Climatic Processes shaping the Central Andean hyperarid forearc (southern Peru)

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Benavente, Carlos; Zerathe, Swann; Saillard, Marianne; Hall, Sarah R.; Farber, Daniel L.

    2015-04-01

    Understanding the forearc structure and processes related to Quaternary evolution and uplift of the Western Andean Cordillera remains an outstanding scientific issue. Models of Andean Plateau evolution based on Tertiary volcanic stratigraphy since 5Ma suggest that the deformation was focused along the eastern margin of the plateau and that minimal uplift occurred along the Pacific margin. On the contrary, new tectonic data and Quaternary surface 10Be dating highlight the presence of recently active deformation, incision and alluvial processes within the upper Andean forearc together with a regional uplift of the coastal zone. Additionally, the high obliquity observed in the northern Arica Bend region makes it an ideal target to discuss whether partitioning of the oblique convergence is accommodated by the neotectonic features that dissect the Quaternary forearc. Our goals are both to decipher the Quaternary tectonic and climatic processes shaping the hyperarid forearc along strike and across strike. Finally, we aim to quantify the respective influence of these factors in the overall uplift of the Western Andes. Indeed, sequences of pediment surfaces, landslide products, paleolake deposits and marine terraces found along the oblique Peruvian margin are a unique set of datable markers that can be used to quantify the rates of Quaternary processes. In this study, we focus on the southern Peru hyperarid Atacama area where regional surfaces and tectonic markers (scarps, folds, temporary streams and paleolake levels offsets) are well preserved for the Quaternary timescale. Numerous landsliding events align on the major fault segments and reflect Plio-Pleistocene climatic and tectonic activity together with filled and strath terraces. As the present day sea-level is one of the highest levels recorded for Quaternary time span, any emerged marine terrace is preserved by tectonic coastal uplift. In particular, the geomorphic and chronologic correlation between marine and continental planation surfaces or terraces permit to deduce net vertical rates and suggests that the along strike uplift affected not only the coast but also the overall ~50 km-wide forearc of the Western Andes. We produced a chronology of remnant low-relief surfaces and a new neotectonic map of the Central Andean forearc between ~14 and 18S based on detailed field mapping and 10Be cosmogenic dating. We address 1) the spatial and temporal correlations of various markers, and 2) the correlation of the surface abandonment ages to various regional climatic events and 3) the description of neotectonic activity accommodating both uplift and partitioning. Multiple markers yield 10Be surface abandonment ages that spanning 35 ka to >2 Ma. Erosion surfaces >2 Ma yield low erosion rates of <0.1mm/yr. However uplift rates of ~0.1-1mm/yr and multiple surfaces dated at ~35 ka suggest that the hyperarid forearc landscape has been recently modified through Quaternary surface uplift and climatic events, contradicting the Miocene fossil forearc hypothesis. Generally, surface abandonment ages and activated landslides periods tend to correlate with cold wet periods preceding Plio Pleistocene deglaciation on the Altiplano. Finally, neotectonic oblique faults connecting at depth participate to topography building in the Arica Bend region and suggest that Quaternary surface abandonment is the result of both surface uplift in the forearc and specific high-discharge climate periods in the high Andes. Obtained Quaternary regional uplift rates and individual slip-rates suggest that the Andean forearc may accommodate as much as 0.5 to 1 mm/yr of regional uplift for the Quaternary time period.

  5. Late Quaternary vertical displacement rate across the Fish Springs fault, Owens Valley fault zone, California

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Harrison, T. Mark; Gillespie, Alan R.

    1987-03-01

    A cinder cone located 11 km south of Big Pine, California, is vertically displaced 78 6 m by the Fish Springs fault of the Owens Valley fault zone. The surfaces of Tahoe-age and Tioga-age alluvial fans that overlie the cone are vertically displaced 31 3 and 3.3 0.3 m, respectively. Neither the cinder cone nor the Tioga-age fan appears to have been laterally offset. The cone is dated by the {39Ar}/{40Ar} method at 314,000 36,000 yr B.P. (2?), indicating an average late Quaternary vertical displacement rate of 0.25 0.03 mm/yr (2?). The age of the Tahoe glaciation is uncertain, but probably corresponds to the age of marine oxygen isotope stage 4 and/or 6 (65,000-75,000 and 128,000-195,000 yr, respectively). If the older fan were deposited during stage 4, then the average post-Tahoe vertical displacement rate probably was at least twice the pre-Tahoe late Quaternary rate. If the displacement rate has been constant during the last 314,000 yr, then the surface of the Tahoe-age fan is dated at 124,000 19,000 yr B.P., and the bulk of the fan most likely would have been deposited during stage 6. Based on the displacement of the surface of the Tioga-age (10,600 - 26,000 yr) fan, the average Holocene displacement rate appears to have been slightly less than the average late Quaternary rate.

  6. Geology and mineral deposits of Churchill County, Nevada

    USGS Publications Warehouse

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  7. Beryllium-10 terrestrial cosmogenic nuclide surface exposure dating of Quaternary landforms in Death Valley

    NASA Astrophysics Data System (ADS)

    Owen, Lewis A.; Frankel, Kurt L.; Knott, Jeffrey R.; Reynhout, Scott; Finkel, Robert C.; Dolan, James F.; Lee, Jeffrey

    2011-02-01

    Quaternary alluvial fans, and shorelines, spits and beach bars were dated using 10Be terrestrial cosmogenic nuclide (TCN) surface exposure methods in Death Valley. The 10Be TCN ages show considerable variance on individual surfaces. Samples collected in the active channels date from ~ 6 ka to ~ 93 ka, showing that there is significant 10Be TCN inheritance within cobbles and boulders. This suggests that the predominantly bedrock hillslopes erode very slowly and sediment is transferred very gradually in most regions within Death Valley. Comparisons of 10Be TCN ages on alluvial fan surfaces with chronostratigraphies based on soil development and optically stimulated luminescence dating show that minimum 10Be TCN ages within sample sets on individual surfaces most closely approximate to the age of landforms that are younger than ~ 70 ka. Alluvial fan surfaces older than ~ 70 ka have begun to undergo sufficient erosion such that the majority of 10Be TCN ages for datasets on individual surfaces probably underestimate the true age of the surface due to erosion and exhumation of fresh cobbles and boulders. The spread of 10Be TCN ages for beach bars near Beatty Junction and shorelines ~ 8 km south of Furnace Creek is large, ranging from ~ 119 ka to ~ 385 ka and ~ 109 ka to ~ 465 ka, respectively. New and previously published luminescence ages and soil development suggest that these landforms may have formed during marine isotope stage (MIS) 2 (~ 22-18 ka), but these younger ages may reflect elluviation of material into the bar deposit long after deposition, and hence the younger ages do not record the true antiquity of the landforms. This disparity between dates determined by different dating methods and the large spread of TCN ages suggests that the cobbles and boulders have considerable inherited 10Be concentrations, suggesting that the clasts have been derived from older shorelines or associated landforms. These results highlight the problems associated with using surface cobbles and boulders to date Quaternary surfaces in Death Valley and emphasizes the need to combine multiple, different dating methods to accurately date landforms in similar dryland regions elsewhere in the world. However, these results highlight the potential to use TCN methods, when used in combination with other dating techniques, to examine and quantify processes such as sediment transfer and denudation in drylands.

  8. Dynamics of Bedload Transport in a Bedrock-Alluvial River

    NASA Astrophysics Data System (ADS)

    Hodge, R. A.; Sharma, B. P.; Ferguson, R.; Hardy, R. J.; Warburton, J.

    2014-12-01

    The processes controlling the entrainment, transport and deposition of coarse sediment in bedrock-alluvial systems are key for understanding sediment fluxes in these systems. Theories have been developed for these processes, and assumptions are made about them in models of bedrock incision. However, there are relatively few field datasets from these rivers with which to test these ideas. We report results from a gravel tracer experiment in the bedrock-alluvial Trout Beck, UK. The 410 m long study section consists of alluvial, mixed bedrock-alluvial and bedrock reaches. There are no tributary inputs so discharge is constant throughout. Two sets of 270 magnet-tagged pebbles covering the grain size distribution of the in-situ sediment were seeded in August 2013. Tracers were placed in an alluvial reach and in a bedrock reach, enabling quantification of grain dynamics over different substrates but under the same flow conditions. Tracers were resurveyed six times over nine months. Concurrent measurements of stage, discharge and bedload impacts at various locations in the channel aid interpretation of the tracer measurements. Tracers installed in the bedrock reach were far more mobile than those in the alluvial reach, with mean travel distances of 70.6 and 2.4 m respectively in the first two months. The transport of tracers was largely size independent over the purely bedrock reach. This finding may be explained by bulk hydraulic measurements that indicate that effective shear stress is highest in this section of the channel. Once these tracers reached the downstream mixed bedrock-alluvial reach, transport distances became relatively shorter, though still greater than in the purely alluvial reach (mean distances of 27.6 and 15.4 m from month 2 to month 7), and became size selective. The second set of tracers seeded in the alluvial reach displayed size-selective transport throughout the experimental period. This study demonstrates how reach substrate exerts a strong control on sediment mobility, through influence on both the sediment and the flow.

  9. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    SciTech Connect

    P. Goodell; J. Walton; P.J. Rodriguez

    2005-07-11

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  10. Ancient and modern sites of natural CO2 leakage: Geochemistry and geochronology of Quaternary and modern travertine deposits on the Colorado Plateau, USA, and implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Priewisch, A.; Crossey, L. J.; Karlstrom, K. E.; McPherson, B. J.; Mozley, P.

    2013-12-01

    Travertine-precipitating springs and travertine deposits of the Colorado Plateau serve as natural analogues for evaluating potential leakage associated with geologic sequestration of carbon dioxide (CO2). Extensive Quaternary and modern travertine deposits occur along the Jemez lineament and Rio Grande rift in New Mexico and Arizona, and in the Paradox Basin in Utah, along the Little Grand Wash Fault and the Salt Wash Graben. These groundwater discharge deposits are interpreted to be sites of persistent and significant CO2 degassing along faults and above magmatic systems. Analysis of the geochemical and isotopic composition of U-series dated travertine deposits and modern travertine-precipitating waters allows evaluation of the flow paths of CO2-charged waters. Initial results from New Mexico and Arizona travertine deposits show characteristic rare earth element (REE) signatures for individual travertine deposits and yet generally overlap in concentrations of other trace elements such as Al, As, B, Ba, K, and Si. We report stable oxygen and carbon isotopes of the travertines in New Mexico, Arizona, and Utah. Different travertine deposits have different carbon-oxygen isotope variation patterns suggesting that these stable isotopes are tracers that have the ability to identify distinctive groundwater sources within and between spring groups based on the travertine record. Stable isotope analyses of travertine deposits in New Mexico and Arizona overlap substantially between deposits and cluster around -10 to -6 for ?18O and around 3.5 to 6.5 for ?13C. Travertine deposits in Utah show a distinctly different range of stable isotope values: ?18O values cluster around -14 to -10.5 and ?13C around 4.5 to 6.5. U-series dating of travertine deposits shows episodic travertine formation in New Mexico and Arizona over the last 700,000 years, and travertine accumulation over the last 400,000 years in Utah. We use U-series dating and volumetric analysis of the travertine deposits to estimate the minimum CO2 flux that was necessary to form the deposits and compare it to modern flux measurements in order to assess the extent of former and modern CO2 leakage. In addition, the thickness of dated travertine sections provides information about the longevity of travertine mound or spring systems that may be controlled by, e. g., sealing of faults, alternating wet/ dry paleohydrologic conditions, and/or rates of magmatic CO2 supply to springs. Understanding travertine deposition is important for the assessment of the long-term performance of a potential CO2 sequestration site because travertine deposits give insight into the complexities of CO2 pathways and leakage rates over timescales necessary for CO2 sequestration.

  11. Paleovalley systems: Insights from Quaternary analogs and experiments

    NASA Astrophysics Data System (ADS)

    Blum, M.; Martin, J.; Milliken, K.; Garvin, M.

    2013-01-01

    Ancient fluvial valley systems are long recognized as important features in the stratigraphic record, but emerged as a specific focus of attention with publication of first-generation sequence-stratigraphic concepts. This paper reviews current understanding of paleovalley systems from the perspective of Quaternary analogs and experimental studies. Paleovalley systems can include distinct mixed bedrock-alluvial, coastal-plain, and cross-shelf segments. Mixed bedrock-alluvial segments are long-lived, cut across bedrock of significantly older age, and have an overall degradational architecture. By contrast, coastal-plain and cross-shelf segments are non-equilibrium responses to high-frequency cycles of relative sea-level change: most coastal-plain and cross-shelf segments form as a geometric response to relative sea-level fall, as river systems cut through coastal-plain and inner shelf clinothems, and extend basinward to track the shoreline. After incision and cross-shelf extension, lateral channel migration and contemporaneous channel-belt deposition creates a valley-scale feature. Coastal-plain and cross-shelf paleovalley widths are set by the number of channel-belt sandbodies deposited during this time. Paleovalley systems play a key role in source-to-sink sediment routing. Early views included the model of incision and complete sediment bypass in response to relative sea-level fall. However, this model does not stand up to empirical, theoretical, or experimental scrutiny. Instead, there is a complex dynamic between incision, deposition, and sediment export from an evolving valley: periods of incision correspond with sediment export minima, whereas periods of lateral migration and channel-belt construction result in increased flux to the river mouth. Sediment export from evolving valleys, and merging of drainages during cross-shelf transit, play key roles in sediment transfer to the shelf-margin and genetically-linked slope to basin-floor systems. Connection between the river mouth and the shelf margin likely occurs for different periods of time depending on gradient of the river and shelf, as well as amplitude of high-frequency sea-level changes. Late Quaternary analogs and experimental studies provide an alternative sequence-stratigraphic interpretation for paleovalley systems. In coastal-plain paleovalleys, basal valley-fill surfaces meet criteria for an unconformity and a classically-defined sequence boundary: however, this surface is mostly everywhere of the same age as overlying fluvial deposits, and does not correspond to a long period of incision and sediment bypass. In cross-shelf paleovalleys, the basal contact between fluvial and deltaic or shoreface deposits is commonly interpreted as a sequence boundary, but is not an unconformity characterized by incision and sediment bypass. Instead, this surface is a facies contact that separates genetically-related fluvial and deltaic strata: the surface that correlates to the basal valley-fill surface within the coastal-plain paleovalley dips below cross-shelf prograding deltaic and/or shoreface strata, which are fed by deposition within the evolving valley itself, and should be the downlap surface. Many issues deserve attention in the future. We have stressed understanding the inherent scales and physical processes that operate during the formation and evolution of paleovalley systems. We also suggest the relative roles of allogenic forcing vs. autogenic dynamics, and the potential significance of high-frequency isostatic adjustments should be topics for future discussion.

  12. Investigation of Quaternary slip rates along the Banning strand of the southern San Andreas Fault near San Gorgonio Pass

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2013-12-01

    Present-day Pacific-North American relative plate motion in southern California is shared primarily between the San Jacinto and San Andreas faults. At the north end of the Coachella Valley, the San Andreas fault splits into the Banning and Mission Creek strands, which are sub-parallel to each other within the Indio Hills. Northwest of the Indio Hills, the Mission Creek fault diverges from the Banning and continues northwest toward the southeastern San Bernardino Mountains, but loses surface expression beneath Quaternary alluvial deposits in Morongo Wash. The Banning fault, upon exiting the Indio Hills, is deflected toward the west and transitions into a structurally complex fault zone at San Gorgonio Pass, where it is delineated by thrust scarps in Holocene alluvium. The slip rates of the Banning and Mission Creek fault strands northwest of the Indio Hills and southeast of San Gorgonio Pass are presently unconstrained, but understanding how slip is partitioned between these two strands is critical to southern California earthquake forecasting efforts. Here we present preliminary slip rate data for the Banning fault ~2 km southeast of San Gorgonio Pass at Devers Hill. Using the B4 LiDAR as a base, we have mapped the extents of three truncated and offset alluvial fan deposits, which we have differentiated based on both field and remote (LiDAR- and air photo-based) observations of texture: in particular, the distribution of different clast sizes, pavement and soil development, and color and appearance. To confirm across-fault correlation of the displaced deposits, we have measured 26 cosmogenic Be-10 ages from boulders and cobble samples taken from each of the three fan surfaces on both sides of the fault. One debris flow deposit (Q2a) has been dated to ~80 ka, and appears to be offset 1.6-2.2 km, though confirming this reconstruction will depend on future excavations and uranium-series dating of soil carbonate. A second debris flow deposit (Q2b), for which ages are pending, has been displaced 1-1.6 km. Together, these measurements suggest a late Quaternary slip rate for the Banning strand of the San Andreas fault of about 12-24 mm/yr. Our preliminary slip rate measurement for the Banning strand just southeast of San Gorgonio Pass is consistent with the slip rate of the San Bernardino section of the San Andreas fault to the northwest, and suggests that averaged over late Quaternary timescales (~80 ka), displacement along the San Andreas south of San Gorgonio Pass may be more focused on the Banning strand than the Mission Creek strand.

  13. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    SciTech Connect

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples that may be useful for future studies.

  14. The use of O, H and Sr isotopes and carbamazepine to identify the origin of water bodies supplying a shallow alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Sassine, Lara; Le Gal La Salle, Corinne; Lancelot, Joël; Verdoux, Patrick

    2014-05-01

    Alluvial aquifers are of great socio-economic importance in France since they supply 82% of drinking water production, though they reveal to be very vulnerable to pesticides and emerging organic contaminants. The aim of this work is to identify the origin of water bodies which contribute to the recharge of an alluvial aquifer for a better understanding of its hydrochemistry and transfer of contaminants therein. The study is based on an isotopic and geochemical tracers approach, including major elements, trace elements (Br, Sr),and isotopes (δ18O, δ2H, 87Sr/86Sr), as well as organic molecules. Indeed, organic molecules such as pharmaceutical compounds, more precisely carbamazepine and caffeine, have shown their use as indicators of surface water in groundwater. The study area is a partially-confined shallow alluvial aquifer, the so-called Vistrenque aquifer, located at 15 km from the Mediterranean Sea, in the Quaternary alluviums deposited by an ancient arm of the Rhône River, in Southern France. This aquifer constitutes a shallow alluvial layer in a NE-SW graben structure. It is situated between a karst aquifer in lower Cretaceous limestones, on the NW border, and the Costières Plateau, on the SE border, having a similar geology as the Vistrenque. The alluvial plain is crossed by a surface water network with the Vistre as the main stream, and a canal used for irrigation essentially, the BRL canal, which is fed by the Rhône River. δ18O and δ2H allowed to differentiate the BRL canal water, depleted in heavy isotopes (δ2H = -71.5o vs V-SMOW), and the more enriched local rainwater (δ2H = -35.5o vs V-SMOW). In the Vistre surface water a binary mixing were evidenced with the BRL canal water and the rainwater, as end members. Then, in the Vistrenque groundwater both the BRL and the Vistre contributions could be identified, as they still show contrasting signature with local recharge. This allows to highlight the surface water contribution to a heavily exploited alluvial aquifer. These mixing processes are confirmed by comparing O and H isotopes to major elements composition. Furthermore, organic compound concentrations such as carbamazepine which show relatively high concentrations in surface waters, was also detected in groundwater especially in those influenced by the BRL canal water, and hence may be used as a tracer of surface water contribution. On the other hand, 87Sr/86Sr allowed highlighting this time a mixing process between groundwater bodies contributing to the recharge of the alluvial aquifer. The 87Sr/86Sr vs 1/Sr plot showed a locale influence on the Vistrenque groundwater by the karst limestone aquifer (87Sr/86Sr ≡0.7076; [Sr] =1540 μg/L), and the Costières Plateau water (87Sr/86Sr ≡0.7090; [Sr] =320 μg/L). In conclusion, 18O and 2H isotopes allowed to highlight the influence of surface waters on the quality of a shallow vulnerable alluvial aquifer, by determining the relationship between the two water bodies. While 87Sr/86Sr were useful to identify mixing processes between groundwater bodies from aquifers of different geology, the limestone karst and alluvial sediments. A multi-isotope approach proved useful to understand the origin of water bodies and contaminants.

  15. Late Quaternary geology of the Lower Central Plain, Thailand

    NASA Astrophysics Data System (ADS)

    Sinsakul, Sin

    2000-08-01

    The Lower Central Plain or Chao Phraya Plain, located in the upper Gulf of Thailand, has an average elevation of 2 m above the present mean sea level. It is a fault bounded basin developed in the Plio-Pleistocene epoch. Consequently, the basin has been filled with Quaternary sediment reaching a thickness of almost 2000 m, of which only the upper 300 m is known. The Pleistocene deposits of the Lower Central Plain represent a complex interplay of alluvial, fluvial and deltaic environments of the Chao Phraya River and its tributaries. The upper sequence of sand and stiff clay with iron-oxide concretions on the surface was deposited in a fluviatile environment subjected to a regressive period in the late Pleistocene. The term "Chao Phraya delta" is used to define the landform where the Chao Phraya River interacted with marine processes as the sea level changed during the Holocene transgression. These strata indicated that the Holocene sea reached its maximum height of 4 m above the present mean sea level around 6000 years B.P.; from then on sea level fluctuated until it reached its present level around 1500 years B.P. This complex sea level history has caused the progradation of tidal flat, and tide-dominated delta deposits, consisting of soft marine clay, that covered the Lower Central Plain to an average depth of 15 m in the Bangkok area. The soft marine clay or Bangkok clay is the most important unit in the stratigraphic sequence in terms of land subsidence in the Lower Central Plain. Evidence of coastal erosion is also considerable in the low tidal flat area on the west bank of the Chao Phraya River mouth and adjacent coast.

  16. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of the valley immediately north of the international border.

  17. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"…

  18. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"

  19. Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain)

    USGS Publications Warehouse

    Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, Victor H.; Prez-Lpez, R.; Giner-Robles, J.L.; Israde-Alcntara, I.; Calvo, J.P.; Williams, Ross W.

    2009-01-01

    The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.

  20. Morphodynamic equilibrium of alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Tambroni, Nicoletta; Bolla Pittaluga, Michele; Canestrelli, Alberto; Lanzoni, Stefano; Seminara, Giovanni

    2014-05-01

    The evolution of the longitudinal bed profile of an estuary, with given plan-form configuration, subject to given tidal forcing at the mouth and prescribed values of water and sediment supply from the river is investigated numerically. Our main goal is to ascertain whether, starting from some initial condition, the bed evolution tends to reach a unique equilibrium configuration asymptotically in time. Also, we investigate the morphological response of an alluvial estuary to changes in the tidal range and hydrologic forcing (flow and sediment supply). Finally, the solution helps characterizing the transition between the fluvially dominated region and the tidally dominated region of the estuary. All these issues play an important role also in interpreting how the facies changes along the estuary, thus helping to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions (Dalrymple and Choi, 2007). Results show that the model is able to describe a wide class of settings ranging from tidally dominated estuaries to fluvially dominated estuaries. In the latter case, the solution is found to compare satisfactory with the analytical asymptotic solution recently derived by Seminara et al. (2012), under the hypothesis of fairly 'small' tidal oscillations. Simulations indicate that the system always moves toward an equilibrium configuration in which the net sediment flux in a tidal cycle is constant throughout the estuary and equal to the constant sediment flux discharged from the river. For constant width, the bed equilibrium profile of the estuarine channel is characterized by two distinct regions: a steeper reach seaward, dominated by the tide, and a less steep upstream reach, dominated by the river and characterized by the undisturbed bed slope. Although the latter reach, at equilibrium, is not directly affected by the tidal wave, however starting from an initial uniform stream with the constant 'fluvial' slope, the final equilibrium state is reached through an erosional wave, which leads to bed degradation of the upstream 'fluvial reach'. For a given river discharge, the length of the tidal reach increases quite rapidly with tidal amplitude, up to some threshold value of the tidal amplitude above which the length of the estuary becomes comparable with the length of the tidal wave. When the channel plan-form is convergent, deposition of sediments of fluvial origin in the funnel-shaped region drastically changes the equilibrium configuration. The effect of an increasing channel convergence is thus to induce bed aggradation close to the inlet. Nevertheless, tidal forcing only slightly changes the non-tidal profile. The effect of increasing tidal oscillations again leads to an increase of the bed slope at the inlet and to a general bed degradation upstream. The effects of varying sediment supply, flow discharge and river width in the upstream reach have also been investigated and play an important role. Further geomorphological implications of these results will be discussed at the meeting. References Dalrymple, R. W., and K. Choi (2007), Morphologic and facies trends through the fluvialmarine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation, Earth-Science Reviews, 81(3-4), 135-174, doi:10.1016/j.earscirev.2006.10.002. Seminara, G., M. Bolla Pittaluga, and N. Tambroni (2012), Morphodynamic equilibrium of tidal channels, Environmental Fluid Mechanics: Memorial Volume in Honour of Prof. Gerhard H. Jirka, 153-174

  1. Variation in sedimentology and architecture of Eocene alluvial strata, Wind River and Washakie basins, Wyoming

    SciTech Connect

    Patterson, P.E.; Larson, E.E. )

    1991-03-01

    Eocene continental, alluvial strata of the Wind River Formation (Wind River Basin) and the Cathedral Bluffs Member of the Wasatch Formation (Washakie basin) provide two examples of Laramide intermontane basin aggradation. These alluvial sediments primarily represent overbank flood deposits marginal to channel complexes. Their sedimentology and architecture, although grossly similar, appear to vary somewhat with proximity to Laramide uplifts. In both cases, repetitive sedimentation on the floodplain produced a succession of depositional couplets, each composed of a light-gray sand overlain by a red clay-rich silt or sand. The lower sands are tabular bodies that, near their distal margins, taper discernibly. They commonly display planar and ripple-drift laminations. Upper clay-rich layers, which are laminated, are also generally tabular. Those floodplain strata depositional proximal to Laramide uplifts show little evidence of scouring prior to deposition of the next, overlying couplet. Most of these sedimentary layers, therefore, are laterally continuous (up to 2 km). This alluvial architecture results in relatively uniform porosity laterally within depositional units but variable porosity stratigraphically through the sequence. In contrast, alluvial sediments deposited farther from the Laramide uplifts have undergone sporadic incision (either during rising flood stage or subsequently) followed by aggradation. As a result, many of these floodplain couplets are discontinuous laterally and, hence, exhibit large-scale lateral variability in porosity. Both alluvial sequences have undergone similar types and extents of burial diagenesis.

  2. Integration of channel and floodplain suites. I. Developmental sequence and lateral relations of alluvial paleosols.

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1987-01-01

    The lower Eocene Willwood Formation of the Bighorn Basin, northwest Wyoming, consists of about 770 m of alluvial rocks that exhibit extensive mechanical and geochemical modifications resulting from Eocene pedogenesis. Five arbitrary stages are proposed to distinguish these soils of different maturities in the Willwood Formation. An inverse relationship exists between soil maturity and short-term sediment accumulation rate. Illustrates several important principles of soil-sediment interrelationships in aggrading alluvial systems that have broad application to other deposits.-from Authors

  3. Timescales of alluvial fan development by precipitation on Mars

    NASA Astrophysics Data System (ADS)

    Armitage, John J.; Warner, Nicholas H.; Goddard, Kate; Gupta, Sanjeev

    2011-09-01

    Dozens of large, low-gradient alluvial fans are present within impact crater basins on the cratered highlands of Mars. The timescales and climate conditions that were required to generate such fans are unknown, but testable through our understanding of terrestrial hill slope erosion in the presence of precipitation. Previous estimates of fan formation time vary from years to millions of years. Here, we use an idealised physical model of 2-D catchment-fan evolution to present a framework within which the development of Martian alluvial fans should be considered. We simplify the erosional and depositional system so that there are only three variables: erodibility due to gravity, amount of water runoff due to precipitation, and catchment-fan boundary elevation. Within this framework, to generate large, low-gradient (<6°) alluvial fans on Mars requires significant periods of erosion due to runoff. We suggest two climate scenarios, either: (1) rates of precipitation that are similar to arid terrestrial climates over timescales of 107 to 108 yr or (2) a shorter duration of semiarid to temperate climate conditions over a period on the order of 106 yr. Hyper-arid conditions generate low-gradient alluvial fans under conditions of a topographically lowered fan-catchment boundary and only over timescales >108 yr if the substrate is extremely erodible relative to terrestrial examples.

  4. Loess sedimentation in Tibet: provenance, processes, and link with Quaternary glaciations

    USGS Publications Warehouse

    Sun, Jielun; Li, S.-H.; Muhs, D.R.; Li, B.

    2007-01-01

    Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13-11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a "glacial" origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial-interglacial cycle of the Quaternary. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Alluvial Fans and Megafans Along the Southern Side of the Alps

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Mozzi, P.

    2011-12-01

    The Po Plain extents for about 40.000 km2 and fills an area representing the foreland of the Alps and the foredeep of the Apennines. Towards East, the Po plain continues in the Venetian-Friulian Plain, which has an area of 10.000 km2. Along the Alpine piedmont sector the alluvial deposition has been related to the major Alpine rivers, that drain a total mountain catchement of about 50.000 km2, with a maximum elevation between 2800-4810 m. A major depositional phase occurred in the area during LGM (24-17 ka BP), when the fronts of the glaciers hosted in the main Alpine valleys reached the plain and fed the related fluvioglacial and fluvial systems. These experienced a large and widespread aggradation and led to the formation of several megafans (i.e. Isonzo, Tagliamento, Piave, Brenta, Chiese, Oglio, Adda, Ticino) and fans (e.g. Cellina, Astico, Serio, Lambro). The LGM megafans have an extent between 1000-3000 km2 and are characterized by a piedmont sector (10-25 km from the apex) of amalgamated gravels related to unconfined braided channels; the distal sector is fine-dominated and channels are sandy braided, whereas the meandering typology started from the terminal portion (40-60 km from apex). The thickness of LGM alluvial sedimentation spans between 30-20 m in the plain and thins to 10 m in the Adriatic seabed. Soon after the ice decay (since 17 ka BP), the sedimentary delivery from Alpine catchments to the plain stopped, mainly due to the formation of intramontane lakes trapping the bedload. Thus, an erosive phase affected the whole pede-Alpine sector, leading the Alpine rivers to entrench for tens of meters in the apical gravelly portions of their fans or megafans. In the Venetian-Friulian Plain a single incision characterize the apical portion, whereas 2-5 fluvial incisions developed in the distal sector, up to the present coastal area, where they have a depth of 15-30 m and a width of 600-2000 m. The incised-valley fills (IVF) have been recognized in the Isonzo, Tagliamento, Piave and Brenta systems and they display a similar internal architecture, characterized by coarse gravel deposits at bottom and a general fining-upward trend. Radiocarbon datings demonstrate that fluvial entrenchment and coarse-gravel transport mainly occurred during Lateglacial and early Holocene and almost stopped around 8.0-7.0 ka cal. BP. In the Venetian-Friulian Plain, directly connected with Adriatic Sea, some abandoned incisions were drowned by marine transgression since 7.0 ka cal. BP, allowing the formation of 15-km long tidal inlets and to the deposition of lagoonal and estuarine sediments inside the incisions. Late Holocene fluvial activity has been characterized by the formation of fluvial ridges along the last 30 km of Alpine rivers, which largely contributed to silt-up completely the Lateglacial incisions. In the central and western Po Plain, due to its more internal position from the coast, the incisions are still present along the Alpine tributaries of Po River, up to their junction with this course. A very different late Quaternary evolution characterize the southern sector of Po Plain, where the alluvial systems are fed by the Apennines and LGM glacial activity was very limited.

  6. Alluvial terraces on the Ionian coast of northern Calabria, southern Italy: Implications for tectonic and sea level controls

    NASA Astrophysics Data System (ADS)

    Robustelli, Gaetano; Luc, Federica; Corbi, Fabio; Pelle, Teresa; Dramis, Francesco; Fubelli, Giandomenico; Scarciglia, Fabio; Muto, Francesco; Cugliari, Domenico

    2009-05-01

    In this paper we present the results of an integrated geomorphological, pedological and stratigraphical study carried out along the Ionian coast of northern Calabria (southern Italy). This area is characterised by the occurrence of five orders of alluvial terraces that are striking features of the landscape, where large and steep catchments debouch from the mountain front to the hilly coastal belt. Field investigations indicate that the deposits of all five terraces are suggestive of shallow gravel-bed braided streams. On the basis of the age of the Pleistocene substratum and morphostratigraphic correlation with marine terraces cropping out in the nearby areas, each order has been associated to specific marine oxygen isotope stages. Consequently, we focused on the interplay of allocyclic factors influencing stream aggradation/degradation. Soil features and other climatic proxies suggest that climate didn't play an important role with respect to tectonic and base-level changes in controlling fluvial dynamics. In particular, we recognised that during the middle Pleistocene the study area experienced a period of subaerial landscape modelling, as suggested by the thick and complex alluvial sequence of the highest terrace (T1). The onset of regional uplift marks a change in the geomorphic scenario, with tectonic and eustatically driven changes in base-level working together in causing switches in fluvial aggradational/erosional phases (T2-T5 terraces). Because of the uplift, river dissection occurred during phases of sea level fall, whereas aggradation phases occurred during periods of climate amelioration (sea level rise) just before highstands were attained. As a consequence, the stepped terraces in the study area reflect the interplay between tectonics (uplift) and sea level changes, in which terraces define episodes of relative sea level fall during the late Quaternary.

  7. Resolving electrolayers from VES: A contribution from modeling the electrical response of a tightly constrained alluvial stratigraphy

    NASA Astrophysics Data System (ADS)

    Mele, M.; Ceresa, N.; Bersezio, R.; Giudici, M.; Inzoli, S.; Cavalli, E.

    2015-08-01

    The reliability of the hydrostratigraphic interpretation of electrostratigraphy derived from ground based, Direct Current resistivity methods is analyzed through the forward modeling of synthetically derived electrostratigraphic layering in a tightly constrained alluvial framework. To this purpose, a high-resolution stratigraphic model of the horizontally-stratified, alluvial aquifers hosted by the Quaternary regressive cycle of the Po plain in Lombardy was elaborated for a small area (1 ha) by correlation of borehole lithostratigraphic data down to 160 m below the ground surface. The stratigraphic model was used to compute 1-D synthetic electrostratigraphy based on the petrophysical relationship linking the bulk electrical resistivity of porous sediments to the coarse-to-fine litho-textural ratio and to the average pore-water electrical conductivity. A synthetic apparent resistivity curve was computed for the 1-D synthetic electrostratigraphy and for a traditional Vertical Electrical Sounding with Schlumberger array and a maximum dipole separation of 300 m. A good agreement was observed with the experimental apparent resistivity curve obtained with a Vertical Electrical Sounding collected in the study area. The comparison of the 1-D synthetic electrostratigraphy with the results obtained by inversion of the experimental data with the linear-digital filter method, under the assumption of electrically homogeneous layers and no lateral resistivity transition, was used to estimate the hydrostratigraphic resolving power of ground-based resistivity data at various depths. Stratigraphic units of different hierarchic orders can be resolved by Direct Current methods at different depths and at different sites. In this specific case study, Vertical Electrical Sounding resolution was comparable to the hierarchy of the genetic depositional systems, corresponding to the rank of the hydrostratigraphic systems.

  8. Lateral groundwater inflows into alluvial aquifers of main alpine valleys

    NASA Astrophysics Data System (ADS)

    Burger, Ulrich

    2015-04-01

    In alpine regions the topography is mainly characterised by deep incised valleys, mountain slopes and ridges. Usually the main valleys contain aquifers in alluvial soft rock. Lateral these aquifers are confined by mountainous hard rock slopes covered by heterogeneous sediments with different thickness. The slopes can be incised by lateral valleys. Numerical models for the main alluvial aquifers ask for lateral hydrogeological boundaries. Usually no flow boundaries or Constant head Boundaries are used, even if the lateral inflows to the main aquifers are rarely known. In this example a data set for a detailed investigated and monitored area is studied to give an answer on the location and the quantification of these lateral subsurface inflows. The study area is a typical main alpine valley with a thick alluvial aquifer (appr. 120m thick), lateral confined by granite, covered at the base of the steep slopes by quaternary sediments (Burger at al. 2012). The study consists of several steps 1.) Analytical calculation of the inflows on the base of investigated and monitored 2d profiles along fault zones (Perello et al 2013) which pinch out in the main valley 2.) Analytical models along typical W-dipping slopes with monitored slope springs 3.) Evaluating temperature and electrical conductivity profiles measured in approx. 30 groundwater wells in the alluvial aquifers and along the slopes to locate main lateral subsurface inflows 4.) Output of a regional model used for the hydrogeological back analyses of the excavation of a tunnel (Baietto et al. 2014) 5.) Output of a local numerical model calibrated with a monitoring dataset and results of a pumping test of big scale (450l/s for 10days) Results of these analyses are shown to locate and quantify the lateral groundwater inflows in the main alluvial aquifer. References Baietto A., Burger U., Perello P. (2014): Hydrogeological modelling applications in tunnel excavations: examples from tunnel excavations in granitic rocks; congress of IAEG, Engineering Geology for Society and Territory, Torino Burger U., San Nicoló L. Bösel D. und Perello P. (2012): Hydrogeologische Modelle - Hilfsmittel für die Planung am Beispiel des Brenner Basistunnel, Beiträge zur Beiträge zur COGeo 2011, Salzburg COGEO Perello P., Baietto A., Burger U., Skuk S. (2013): Excavation of the Aica-Mules pilot tunnel for the Brenner base tunnel: information gained on water inflows in tunnels in granitic massifs, Rock Mechanics and Rock Engineering, DOI 10.1007/s00603-013-0480-x

  9. Sedimentology of Holocene debris flow-dominated alluvial fans, northwest Wyoming: Contributions to alluvial fan facies models

    SciTech Connect

    Cechovic, M.T.; Schmitt, J.G. . Dept. of Earth Sciences)

    1993-04-01

    Facies models for debris flow-dominated alluvial fans are based exclusively upon studies of relatively few fans in the arid American southwest. Detailed geomorphic, stratigraphic, and sedimentologic analyses of several highly-active, debris flow-dominated alluvial fans in northern Yellowstone National Park, WY (temperature, semi-arid) serve to diversify and increase the usefulness of alluvial fan facies models. These fans display an intricate distributary pattern of incised active (0--6 m deep; 700--900 m long) and abandoned channels (1--4 m deep; 400 m long) with levees/levee complexes (<3 m high; <20 m wide; <750 m long) and lobes constructed by pseudoplastic to plastic debris flows. The complex pattern of debris flow deposits is due to repeated channel back filling and overtopping by debris flows behind in-channel obstructions which subsequently lead to channel abandonment. Debris-flow deposition is dominant due to: (1) small, steep (up to 35 degrees) source area catchments, (2) extensive mud rock outcrops in the source area, and (3) episodic summer rainfall events. Proximal to distal fan surfaces exhibit sheetflood deposits several cm thick and up to 70 m in lateral extent. Vertical lithofacies profiles reveal: (1) massive, matrix- and clast-supported gravel units (1--2 m thick) deposited by clast-poor and clast-rich debris flows respectively, with reworked; scoured tops overlain by thin (<0.25 m) trough cross-bedded gravel and ripple cross-laminated sand intervals, and (2) volumetrically less significant 1--2 m thick intervals comprising fining-upward sequences of interbedded cm-scale trough cross-bedded pebbly gravel, massive sand, horizontally stratified sand, and mud rock deposited by hyperconcentrated flow and stream flow during decelerating sheetflood events. Organic rich layers record periods of non-deposition. Channelized stream flow is restricted to minor reworking of in-channel debris flow and hyperconcentrated flow deposits.

  10. A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania

    USGS Publications Warehouse

    Ridge, J.C.; Evenson, E.B.; Sevon, W.D.

    1992-01-01

    In the Delaware Valley of New Jersey and eastern Pennsylvania the late Quaternary history of colluviation, fluvial adjustment, and soil formation is based on the ages of pre-Wisconsinan soils and glacial deposits which are indicated by feld relationships and inferred from mid-latitude climate changes indicated by marine oxygen-isotope records. The area is divided into four terranes characterized by sandstone, gneiss, slate and carbonate rocks. Since the last pre-Wisconsinan glaciation (> 130 ka, inferred to be late Illinoian), each terrane responded differently to chemical and mechanical weathering. During the Sangamon interglacial stage (??? 130-75 ka) in situ weathering is inferred to have occurred at rates greater than transportation of material which resulted in the formation of deep, highly weathered soil and saprolite, and dissolution of carbonate rocks. Cold climatic conditions during the Wisconsinan, on the other hand, induced erosion of the landscape at rates faster than soil development. Upland erosion during the Wisconsinan removed pre-Wisconsinan soil and glacial sediment and bedrock to produce muddy to blocky colluvium, gre??zes lite??es, and alluvial fans on footslopes. Fluvial gravel and overlying colluvium in the Delaware Valley, both buried by late Wisconsinan outwash, are inferred to represent episodes of early and middle Wisconsinan (??? 75-25 ka) upland erosion and river aggradiation followed by river degradation and colluvium deposition. Early-middle Wisconsinan colluvium is more voluminous than later colluvium despite colder, possibly permafrost conditions during the late Wisconsinan ??? 25-10 ka). Extensive colluviation during the early and middle Wisconsinan resulted from a longer (50 kyr), generally cold interval of erosion with a greater availability of easily eroded pre-Wisconsinan surficial materials on uplands than during the late Wisconsinan. After recession of late Wisconsinan ice from its terminal position, soil formation and landscape stability were delayed until the Holocene by a lingering cold climate, slope erosion, colluvium and alluvial fan deposition, and eolian sedimentation. Late Quaternary erosion in the Delaware Valley was dominated by glacial and periglacial processes during glacial stages. During the warm interglacial stages, soils developed on a more stable landscape. These souls were easily colluviated by periglacial erosion during periods of intermittent cold climate. ?? 1992.

  11. Resistivity imaging of Pleistocene alluvial aquifers in a contractional tectonic setting: A case history from the Po plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Mele, M.; Bersezio, R.; Giudici, M.; Inzoli, S.; Cavalli, E.; Zaja, A.

    2013-06-01

    In this work we present the hydrogeophysical imaging of a key sector of the Quaternary Po foreland basin (northern Italy), focussing on the reconstruction of clastic aquifers and aquitards in a complex tectono-sedimentary subsurface architecture. The study area includes the relic reliefs of Casalpusterlengo and Zorlesco, two smooth morphological features involving uplifted and gently folded Pleistocene marine to alluvial sediments, plausibly linked to the buried Northern Apennines thrust and fold belt. The geophysical data include 35 Direct Current Vertical Electrical Soundings collected over a 37 km2 wide area, acquired with Schlumberger array and maximum half-spacing of 500 m. 1-D resistivity-depth profiles were computed for each VES. An integrated hydrostratigraphic approach was applied, to constrain the interpretation of the geophysical data along several cross-sections, including the comparison of resistivity soundings to stratigraphic logs, borehole electric logs and the pore-water properties. The resistivity interfaces, traceable with the same laterally continuous vertical polarity, were used to develop an electrostratigraphic model in order to portray the stacking of electrostratigraphic units down to 200 m below ground surface. Their vertical associations show a general upward increase of electrical resistivity. This assemblage mimics the regional coarsening upwards depositional trend, from the conductive units of the Plio-Pleistocene marine-to-transitional depositional systems to the resistive units of the Middle-Late Pleistocene fluvial and alluvial plain depositional systems. Middle Pleistocene depositional systems host an alternation of North-dipping, high-to-intermediate permeability aquifer systems (70-180 ?m, thickness of 5-70 m) separated by low permeability aquitards (20-50 ?m, thickness up to 40 m). These units pinch out against the Casalpusterlengo and Zorlesco relic reliefs, where they cover the uplifted and folded regional aquitard (20-50 ?m) formed by Pliocene-Lower Pleistocene clays to sandy silts with gravel lenses in agreement with borehole data. In the deepest part of the local stratigraphy, a broad low-resistivity anomaly (< 10 ?m) was clearly mapped through the study area. By comparison with electrical borehole logs in deep oil-wells, it could be interpreted as the fresh-saltwater interface due to the presence of connate waters and brines hosted by the marine-to-transitional shales.

  12. Early Cretaceous stratigraphy, paleontology, and sedimentary tectonics in Paris overthrust foredeep (western Wyoming and southeastern Idaho) compared with Quaternary features of indo-gangetic plain

    SciTech Connect

    Dorr, J.A. Jr.

    1983-08-01

    Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formation - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.

  13. Meander wavelength of alluvial rivers.

    PubMed

    Schumm, S A

    1967-09-29

    Data on river channel and sediment characteristics were collected at 36 cross sections of stable alluvial river channels in Australia and western United States. These data demonstrate that the meander wavelength of a river is dependent not only on water discharge, but also on the type of sediment load moved through the channel. The meander wavelength of rivers that are transporting a high proportion of their total sediment load as both sand and gravel will be greater than the meander wavelengths of channels of similar discharge which are transporting mainly fine sediment loads. PMID:17816939

  14. Alluvial Fan Delineation from SAR and LIDAR-Derived Digital Elevation Models in the Philippines

    NASA Astrophysics Data System (ADS)

    Aquino, D. T.; Ortiz, I.; Timbas, N.; Gacusan, R.; Montalbo, K.; Eco, R. C.; Lagmay, A.

    2013-12-01

    Occurrence of floods and debris flows leading to the formation of alluvial fans at the base of mountains naturally improve fertility of alluvial plains. However, these formations also have detrimental effects to communities within these zones like the case of Barangay (village) Andap, New Bataan, Compostela Valley where the whole village was wiped out by debris flow when it was hit by Supertyphoon Bopha in 2012. Hence, demarcating the boundaries of alluvial fans is crucial in disaster preparedness and mitigation. This study describes a method to delineate alluvial fans through contour maps from SAR and LiDAR-derived digital elevation models. Based on this data, we used hydrographic apex point polygons to plot the outflow points of upstream watersheds. The watershed and alluvial fan polygons were used to simulate debris flows in the study sites. The fans generated from the flood simulation were consistent with the polygons delineated from the digital elevation model. Satellite imagery and evidences of alluvial deposits found on site revealed 392 alluvial fans in the country. Widest among these is the sprawling 760 sq km fan identified in Cagayan Valley threatening about 434,329 persons at risk of debris flow. Other fans include those identified in Calapan, Mindoro (531 sq km), Kaliwanagan, Pangasinan (436 sq km), Pampanga Alluvial Fan (325 sq km), Mina, Iloilo (315 sq km), Lamsugod, S. Cotabato (286 sq km), in Tignaman, Oton and Alimodian in Iloilo (272 sq km), and the bajada, a series of alluvial fan coalescing to form a larger fan, identified in Ilocos Norte (218 sq km).

  15. First record of Eremotherium laurillardi (Lund, 1842) (Mammalia, Xenarthra, Megatheriidae) in the Quaternary of Uberaba, Tringulo Mineiro (Minas Gerais State), Brazil

    NASA Astrophysics Data System (ADS)

    Martinelli, Agustn G.; Ferraz, Patrcia Fonseca; Cunha, Gabriel Cardoso; Cunha, Isabella Cardoso; de Souza Carvalho, Ismar; Borges Ribeiro, Luiz Carlos; Neto, Francisco Macedo; Cavellani, Camila Lourencini; de Paula Antunes Teixeira, Vicente; da Fonseca Ferraz, Mara Lcia

    2012-08-01

    Although the occurrence of Pleistocene mammals is abundant in many localities of Minas Gerais State (e.g., Lagoa Santa, Janaba, Bambu, Cordisburgo, Patos de Minas, Arax), there are no references at present of Quaternary megafauna in Uberaba, Tringulo Mineiro, southeastern Brazil. This region is traditionally recognized for its taxonomically diverse fauna of the Late Cretaceous Bauru Group. In 2006, fossil material attributed to giant ground sloth Eremotherium laurillardi (Xenarthra, Megatheriidae), a typical taxon of the Brazilian Pleistocene, was discovered in the Uberaba City (Minas Gerais State). The specimen (CPP 1122) which is here described consists of several cranial and postcranial bones of a single individual. The material was confined to a small alluvial deposit, yielding in the Crrego da Saudade stream, which due its restricted area distribution it is not represented in geological maps.

  16. Radiocarbon dates and late-Quaternary stratigraphy from Mamontova Gora, unglaciated central Yakutia, Siberia, U.S.S.R.

    USGS Publications Warehouse

    Pewe, T.L.; Journaux, A.; Stuckenrath, R.

    1977-01-01

    A fine exposure of perennially frozen ice-rich silt and associated flora and vertebrate fauna of late-Quaternary age exists at Mamontova Gora along the Aldan River in central Yakutia, Siberia, U.S.S.R. The silt deposit caps a 50-m-high terrace and consists of three units. An upper layer 1-2 m thick overlies a 10-15-m-thick brownish to black silt layer. The lower silt layer is greenish to gray and about 15 m thick. All the silt is well sorted with 60% of the particles falling between 0.005 and 0.5 mm in diameter and is generally chemically and mineralogically homogeneous. The middle unit contains may extinct vertebrate mammal remains and ice wedges. The lower unit contains little vegetation and no ice wedges. The silt is widespread and exists as a loamy blanket on terraces at various elevations on both sides of the lower Aldan River. The origin of the silt blanket of late-Quaternary age in central Yakutia has long been controversial. Various hypotheses have been suggested, including lacustrine and alluvial, as well as frost-action origins. It is sometimes referred to as loess-like loam. Pe??we?? believes the silt at Mamontova Gora is loess, some of which has been retransported very short distances by water. The silt probably was blown from wide, braided, unvegetated flood plains of rivers draining nearby glaciers. The silt deposits are late Quaternary in age and probably associated with the Maximum glaciation (Samarov) and Sartan and Syryan glaciations of Wisconsinan age. On the basis of biostratigraphy, 10 radiocarbon dates, and their relation to the nearby glacial record, it is felt that the upper unit at Mamontova Gora is Holocene and the middle unit is Wisconsinan. The youngest date available from the middle unit at this particular location is 26,000 years. Dates greater than 56,000 years were obtained in the lower part of the middle unit. The lower unit is definitely beyond the range of radiocarbon dating and probably is older than the last interglacial. The sediment, fauna, ice wedges, stratigraphy, and age of perennially frozen slit deposits in central Alaska are remarkably similar to those of the deposits exposed in central Yakutia. Both areas consist of unglaciated rolling lowlands and river terraces surrounded by high mountains that were extensively glaciated in Pleistocene time. The glaciers extended from the high mountains to the edges of the ranges. In both regions, extensively braided, silt-charged rivers drained the mountains and flowed through the lowlands on their way to the sea. It follows that there should be a similar late-Quaternary history. ?? 1977.

  17. Distinguishing early groundwater alteration effects from pedogenesis in ancient alluvial basins: examples from the Palaeogene of southern Portugal

    NASA Astrophysics Data System (ADS)

    Pimentel, N. L.; Wright, V. P.; Azevedo, T. M.

    1996-08-01

    Colour mottling and horizons of secondary carbonates are common in ancient alluvial sequences and are normally interpreted as pedogenic features. They have been used to assess palaeoclimates, soil drainage conditions and deposition rates. Palaeogene alluvial deposits in the Sado and Lisbon basins of Portugal exhibit prominent colour variations and mottle patterns, as well as carbonate accumulations both at the bases of fining-upwards cyclothems and as thick units (up to 20 m) capping alluvial megasequences. However, these colour and carbonate features are interpreted as the products of shallow, saline, reducing groundwaters, unrelated to pedogenesis. Such non-pedogenic products are easily mistaken for soil-formed ones and criteria for differentiating the two are reviewed to assist interpretations in other alluvial deposits. Key criteria are thickness, gradational tops and bases, absence of soil horizon features, occurrence in coarser alluvium and prevalence of hydromorphic colour and mottling patterns.

  18. Report from working group on alluvial pedogenesis

    USGS Publications Warehouse

    Autin, W.J.; Aslan, A.; Bettis, E.A.; Walthall, P.M.

    1998-01-01

    These uses illustrate the complexity of alluvial pedogenesis as it relates to the analysis and interpretation of paleosols. Difficulties with interpretations of alluvial paleosols are probably greatest when applied to the preserved sedimentary record, where direct evidence of paleolandscape variability is scanty or lacking.

  19. Directional scales of heterogeneity in alluvial fan aquifers

    SciTech Connect

    Neton, M.J.; Dorsch, J.; Young, S.C.; Olson, C.D. . Dept. of Geological Sciences Tennessee Valley Authority Engineering Lab., Norris, TN )

    1992-01-01

    Abrupt lateral and vertical permeability changes of up to 12 orders of magnitude are common in alluvial fan aquifers due to depositional heterogeneity. This abrupt heterogeneity is problematic, particularly in construction of a continuous hydraulic conductivity field from point measurements. Site characterization is improved through use of a scale-and-directionally-related model of fan heterogeneities. A directional classification of alluvial fan aquifer heterogeneities is proposed. The three directional scales of heterogeneity in alluvial fan aquifers are: (1) within-fan, (2) between-fan (strike-parallel), and (3) cross-fan (strike-perpendicular). Within-fan heterogeneity ranges from very small-scale intergrain relationships which control the nature of pores, to larger scale permeability trends between fan apex and toe, and includes abrupt lateral and vertical facies relationships. Between-fan heterogeneities are of a larger-scale and include differences between adjacent (non)coalescent fans along a basin-margin fault due primarily to changes in lithology between adjacent upland source basins. These differences produce different (a) grain and pore fluid compositions, (b) lithologic facies and proportions, and (c) down-fan fining trends, between adjacent fans. Cross-fan heterogeneities extend from source to basin. Fan deposits are in abrupt contact upgradient with low permeability, basin-margin source rock. Downgradient, fan deposits are in gradational to abrupt contact with time-equivalent, generally lower permeability deposits of lake, desert, longitudinal braided and meandering river, volcanic, and shallow marine environments. Throughout basin history these environments may abruptly cover the fan with low permeability horizons.

  20. Quaternary stratigraphy of northern Chukchi Sea, Alaska

    SciTech Connect

    Phillips, R.L.; Barnes, P.W.; Colgan, M.W., Miley, J.M.

    1986-05-01

    A widespread ash deposit within Quaternary marine sediments of the northern Chukchi Sea, Alaska, provides a unique time-stratigraphic horizon that defines both regions of sediment erosion and regions of deposition on a shallow, ice-covered epeiric sea. High-resolution seismic profiles show a thin, usually less than 5 m thick, Quaternary sediment cover overlying folded bed rock, which is incised by filled fluvial channels. Vibracores, to 6 m depth, record the stratigraphy and depositional history preserved within the thin blanket deposit. The basal units cored consist of overconsolidated silt, sand, and pebbly mudstone. They represent the underlying bed rock, channel-fill deposits, or Quaternary shallow-marine sequences containing ice-rafted cobbles. The ash deposit, ranging in thickness from 2 m to over 3 m, covers the basal stratigraphic units. It lies from 1 to 4 m beneath the sea floor and forms a distinctive reflector on 3.5 khz seismic profiles. The ash extends laterally at least 100 km east-west and 200 km north-south. The well-sorted, massive to laminated ash was deposited in a marine environment based on the occurrence of diatoms, foraminifera, and sponge spicules. Overlying the ash is a thin, less than 1 m thick, pebbly mudstone or marine sand. An abrupt textural break separates the uppermost depositional sequence from the strata overlying the ash. The uppermost sequence grades vertically from a gravel-shell lag, granules, or coarse sand to bioturbated mud and represents marine sediments deposited since the Holocene transgression. Recognition of the stratigraphic sequences bounding the ash deposit will aid in correlating and interpreting the depositional events and processes on this shallow sea.

  1. The paradox of large alluvial rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.

    2010-12-01

    Large alluvial rivers exhibit large floodplains, very gentle slopes, a good selection of bed materials (generally sand), low specific stream power, and could represent the ultimate examples of “dynamic equilibrium” in fluvial systems. However, equilibrium can be discussed at different temporal scales. Base level changes by tectonic or climatic effects, modifications in sediment and water supply or different kinds of human impacts are the traditional causes that could trigger “disequilibrium” and changes in the longitudinal profile. Simultaneously, adjustments of longitudinal profiles were thought to be evolving from downstream to upstream by several processes, being the most common receding erosion. Some authors,have demonstrated that when changes in base level happen, a variety of adjustments can be reached in the lower course in function of the available sediment and water discharge, slopes articulations between the fluvial reach and the continental shelve, among others, and that the adjustments can be transferred upstream significantly in small rivers but not far upstream along large fluvial systems. When analyzing the Quaternary fluvial belts of large rivers in the millennium scale, paleohydrological changes and modifications in floodplain constructional processes or erosion, are associated normally to late Quaternary climatic changes. The study of several of the largest rivers demonstrates that climatic changes and fluvial responses are not always working totally in phase and those direct cause-consequences relations are not a rule. This paper describes floodplain evolution and the lagged geomorphic responses of some large river system to recent climatic changes. Information from some of the largest rivers of the world such as the Amazon, Parana, several tributaries of the Amazon (Negro, Xingú, Tapajos) as well as some large Siberian Rivers was used. Since the last deglaciation, these large fluvial systems have not had enough time to reach equilibrium conditions along whole the river and present several stages of “incomplete floodplains”. Furthermore, minor climatic changes during the Holocene have possibly also affected their fluvial style, producing additional and partial adjustments. A main concept presented here is that large rivers achieved equilibrium conditions mainly from upstream to downstream by partially filling up their valleys and local sedimentary basins/sediment sinks (e.g. wide valleys, flood basins and permanent water saturated floodplains, tectonic sunken blocks, among others) with a variety of morpho-sedimentological processes, and transferring equilibrium conditions from upstream to downstream. When the “available space” (sedimentary sink) becomes as full of sediments as possible, the rivers adjust on a more efficient corridor of channels in quasi-equilibrium conditions. Valley infilling processes progress downstream as a prograding system on areas of the channel-floodplain system that have not yet reached quasi-equilibrium conditions Because most results in the literature are focused on small to medium size rivers, these results intend to open a new discussion about floodplain mechanisms of construction, demystifying some traditional concepts relating floodplains and equilibrium, and climatic changes and river responses in large rivers.

  2. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants

    NASA Astrophysics Data System (ADS)

    Davies, Neil S.; Gibling, Martin R.

    2010-02-01

    In present-day alluvial environments, the impact of vegetation on sedimentological processes and deposits is well known. A vegetated catchment may decrease sediment yield, sediment erodibility, Hortonian overland flow, aeolian winnowing of fines, the proportion of sediment transported as bedload, and may increase bank stability, infiltration into substrates, and bed roughness. Vegetation also promotes the production of chemically-weathered clays and soils and the adoption of a meandering style. It is generally understood that, prior to the evolution of terrestrial vegetation during the Early Palaeozoic, ancient alluvial systems were markedly different from modern systems, with many systems adopting a "sheet-braided" style. This understanding has previously informed the interpretations of many Precambrian pre-vegetation alluvial successions, but there has been relatively little work regarding Early Palaeozoic alluvial successions laid down prior to and during the initial colonization of the Earth's surface by plants. A comprehensive review of 144 Cambrian to Devonian alluvial successions documented in published literature was combined with original field data from 34 alluvial successions across Europe and North America. The study was designed to identify changes in alluvial style during the period that vegetation was evolving and first colonizing alluvial environments. An increase in mudrock proportion and sandstone maturity is apparent, along with a decrease in overall sand grain size through the Early Palaeozoic. These trends suggest that primitive vegetation cover promoted the production and preservation of muds from the mid Ordovician onwards and increased the residence time of sand-grade sediment in alluvial systems. The compilation also enables the first stratigraphic occurrence of certain vegetation-dependent sedimentary features to be pinpointed and related to the evolution of specific palaeobotanical adaptations. The first markedly heterolithic alluvial sequences appeared at about the same time as the most primitive terrestrial vegetation in the Ordovician, and prolific pedogenic calcite, charcoal and bioturbated floodplain fines first appeared in the rock record at about the same time as vascular-plant macrofossils became abundant in the late Silurian. Lateral accretion sets in channel deposits appeared near the Silurian-Devonian boundary, at or shortly before the appearance of underground rooting systems, and become progressively more abundant in the record during the Devonian, implying a major expansion of meandering rivers as rooted plants stabilized river banks. Coals become abundant after the development of plant arborescence. The analysis suggests that the evolution of embryophytes had a profound effect on fluvial processes and deposits, and this period of landscape evolution must be considered amongst the most significant environmental and geomorphological changes in Earth history, with profound consequences for all aspects of the Earth system.

  3. Bedload transport in alluvial channels

    USGS Publications Warehouse

    Bravo-Espinosa, M.; Osterkamp, W.R.; Lopes, V.L.

    2003-01-01

    Hydraulic, sediment, land-use, and rock-erosivity data of 22 alluvial streams were used to evaluate conditions of bedload transport and the performance of selected bedload-transport equations. Transport categories of transport-limited (TL), partially transport-limited (PTL), and supply-limited (SL) were identified by a semiquantitative approach that considers hydraulic constraints on sediment movement and the processes that control sediment availability at the basin scale. Equations by Parker et al. in 1982, Schoklitsch in 1962, and Meyer-Peter and Muller in 1948 adequately predicted sediment transport in channels with TL condition, whereas the equations of Bagnold in 1980, and Schoklitsch, in 1962, performed well for PTL and SL conditions. Overall, the equation of Schoklitsch predicted well the measured bedload data for eight of 22 streams, and the Bagnold equation predicted the measured data in seven streams.

  4. The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat

    PubMed Central

    Ortuño, Vicente M.; Gilgado, José D.; Jiménez-Valverde, Alberto; Sendra, Alberto; Pérez-Suárez, Gonzalo; Herrero-Borgoñón, Juan J.

    2013-01-01

    In this paper we describe a new type of subterranean habitat associated with dry watercourses in the Eastern Iberian Peninsula, the “Alluvial Mesovoid Shallow Substratum” (alluvial MSS). Historical observations and data from field sampling specially designed to study MSS fauna in the streambeds of temporary watercourses support the description of this new habitat. To conduct the sampling, 16 subterranean sampling devices were placed in a region of Eastern Spain. The traps were operated for 12 months and temperature and relative humidity data were recorded to characterise the habitat. A large number of species was captured, many of which belonged to the arthropod group, with marked hygrophilous, geophilic, lucifugous and mesothermal habits. In addition, there was also a substantial number of species showing markedly ripicolous traits. The results confirm that the network of spaces which forms in alluvial deposits of temporary watercourses merits the category of habitat, and here we propose the name of “alluvial MSS”. The “alluvial MSS” may be covered or not by a layer of soil, is extremely damp, provides a buffer against above ground temperatures and is aphotic. In addition, compared to other types of MSS, it is a very unstable habitat. It is possible that the “alluvial MSS” may be found in other areas of the world with strongly seasonal climatic regimes, and could play an important role as a biogeographic corridor and as a refuge from climatic changes. PMID:24124544

  5. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    NASA Astrophysics Data System (ADS)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-01-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  6. Response to “Comment on 'The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site', by David Lang et al.”

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Foster, Gavin L.; Bolton, Clara T.; Friedrich, Oliver; Gutjahr, Marcus

    2014-11-01

    In volume 93 of Quaternary Science Reviews we published a new record of terrigenous inputs to Integrated Ocean Drilling Program (IODP) Site U1313 that tracks the history of aeolian dust deposition in the North Atlantic Ocean and aridity on North America during the late Pliocene-earliest Pleistocene intensification of northern hemisphere glaciation (iNHG, 3.3 to 2.4 Ma). Naafs et al. (2014) are generally supportive but question one of our conclusions, specifically our argument that "glacial grinding and transport of fine grained sediments to mid latitude outwash plains is not the fundamental mechanism controlling the magnitude of the flux of higher plant leaf waxes from North America to Site U1313 during iNHG." They suggest that our argument is predominantly based on our observation that the relationship between sediment lightness (L*)-based terrigenous inputs and dust-derived biomarkers, which is observed to be linear elsewhere (Martínez-Garcia et al., 2011), is non-linear at Site U1313.

  7. Are North Slope surface alluvial fans pre-Holocene relicts?

    USGS Publications Warehouse

    Reimnitz, Erk; Wolf, Stephen C.

    1998-01-01

    The surface morphology of the northern slope of the Brooks Range (North Slope) from the Canning River, Alaska, eastward is dominated by a series of large alluvial fans and braided streams floored by coarse alluvium. On the basis of our studies, we conclude that the fans are not prograding now nor have they been prograding at any time during the Holocene. During the latest transgression and the following sea-level highstand, the North Slope depositional environment and climate probably differed greatly from the present ones.

  8. The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia).

    PubMed

    Benito-Calvo, Alfonso; Barfod, Dan N; McHenry, Lindsay J; de la Torre, Ignacio

    2014-11-01

    This paper presents the Quaternary sequence of the Mieso area of Central-East Ethiopia, located in the piedmont between the SE Ethiopian Escarpment and the Main Ethiopian Rift-Afar Rift transition sector.In this region, a piedmont alluvial plain is terraced at þ25 m above the two main fluvial courses, the Mieso and Yabdo Rivers. The piedmont sedimentary sequence is divided into three stratigraphic units separated by unconformities. Mieso Units I and II contain late Acheulean assemblages and a weakly consolidated alluvial sequence, consisting mainly of fine sediments with buried soils and, to a lesser degree, conglomerates. Palaeo-wetland areas were common in the alluvial plain, represented by patches of tufas, stromatolites and clays. At present, the piedmont alluvial surface is preserved mainly on a dark brown soil formed at the top of Unit II. Unit III corresponds to a fluvial deposit overlying Unit II, and is defined by sands, silty clays and gravels, including several Later Stone Age (LSA) occurrences. Three fine-grained tephra levels are interbedded in Unit I (tuffs TBI and TA) and II (tuff CB), and are usually spatially-constrained and reworked. Argon/argon (40Ar/39Ar) dating from tuff TA, an ash deposit preserved in a palustrine environment, yielded an age of 0.212 ± 0.016 Ma (millions of years ago). This date places thetop of Unit I in the late Middle Pleistocene, with Acheulean sites below and above tuff TA. Regional correlations tentatively place the base of Unit I around the Early-Middle Pleistocene boundary, Unit II inthe late Middle Pleistocene and within the Late Pleistocene, and the LSA occurrences of Unit III in the LatePleistoceneeHolocene. PMID:25440135

  9. Quaternary vertebrates from Greenland: A review

    NASA Astrophysics Data System (ADS)

    Bennike, Ole

    Remains of fishes, birds and mammals are rarely reported from Quaternary deposits in Greenland. The oldest remains come from Late Pliocene and Early Pleistocene deposits and comprise Atlantic cod, hare, rabbit and ringed seal. Interglacial and interstadial deposits have yielded remains of cod, little auk, collared lemming, ringed seal, reindeer and bowhead whale. Early and Mid-Holocene finds include capelin, polar cod, red fish, sculpin, three-spined stickleback, Lapland longspur, Arctic hare, collared lemming, wolf, walrus, ringed seal, reindeer and bowhead whale. It is considered unlikely that vertebrates could survive in Greenland during the peak of the last glaciation, but many species had probably already immigrated in the Early Holocene.

  10. Alluvial fans and fan deltas: a guide to exploration for oil and gas

    SciTech Connect

    Fraser, G.S.; Suttner, L.

    1986-01-01

    This volume is a result of a series of lectures presented to an oil company in 1985 and is intended for an audience of explorationists. Material is presented in the order in which an exploration program might proceed in a frontier area. The volume is divided into six chapters that cover definitions and tectonic setting, alluvial-fan morphology, processes and facies on alluvial fans, geomorphic controls, effects of extrinsic controls (chiefly tectonism and climate) on alluvial-fan sequences, and diagenesis. Previously published black-and-white line drawings from studies of modern and ancient fans and fan deltas provide almost all the illustrative material; only one photograph is included, an aerial view of fans in part of Death Valley. The authors emphasize the complexity and variability of fan deposits and their resultant architecture. Although the volume contains a useful review of previous literature, it contains little new material, and it is remarkably lacking subsurface examples and data for a volume intended for the exploration community. In addition, fan deltas receive only brief attention; the overwhelming part of the book is devoted to alluvial fans. The volume will be of interest to those involved in studies of modern and ancient alluvial-fan deposits. 165 references.

  11. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Dolan, James F.

    2007-06-01

    Range-front alluvial fan deposition in arid environments is episodic and results in multiple fan surfaces and ages. These distinct landforms are often defined by descriptions of their surface morphology, desert varnish accumulation, clast rubification, desert pavement formation, soil development, and stratigraphy. Although quantifying surface roughness differences between alluvial fan units has proven to be difficult in the past, high-resolution airborne laser swath mapping (ALSM) digital topographic data are now providing researchers with an opportunity to study topography in unprecedented detail. Here we use ALSM data to calculate surface roughness on two alluvial fans in northern Death Valley, California. We define surface roughness as the standard deviation of slope in a 5-m by 5-m moving window. Comparison of surface roughness values between mapped fan surfaces shows that each unit is statistically unique at the 99% confidence level. Furthermore, there is an obvious smoothing trend from the presently active channel to a deposit with cosmogenic 10Be and 36Cl surface exposure ages of 70 ka. Beyond 70 ka, alluvial landforms become progressively rougher with age. These data suggest that alluvial fans in arid regions smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces.

  12. Fossil spring deposits in the southern Great Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada, during quaternary time

    SciTech Connect

    Quade, J.; Mifflin, M.D.; Pratt, W.L.; McCoy, W.; Burckle, L.

    1995-02-01

    The proposed high-level nuclear waste repository at Yucca Mountain will be located nearly 200-400 m above the modern water table. Water tables will rise in response to a future return to glacial climates, but the magnitude of the change - and the consequences for radionuclide travel times and overall repository integrity - are key uncertainties. Increased recharge during past pluvial periods in the Spring Mountains and Sheep Range caused water tables to rise and ground water to discharge over broad expanses of the Las Vegas Valley system, and in nearby Pahrump, Sandy, and Coyote Springs Valleys. The change in water-table levels since the last full glacial period varies between and within valleys, from as little as 10 m in several areas to 95 m in the Coyote Springs Valley. At Yucca Mountain, the water table has probably changed by {le}115 m in response to climate change. The spring deposits and the mollusk faunas found with them, often misinterpreted as lacustrine in origin, share many essential features with active spring systems in northeast Nevada. Deposits associated with discharge mainly consist of pale brown silt and sand that is entrapped by dense stands of phreatophytes covering valley bottoms when water tables are high. 81 refs., 13 figs., 6 tabs.

  13. Shapefile of the Elevation of the Bedrock Surface Beneath the Rocky Flats Alluvial Fan, Boulder and Jefferson Counties, Colorado

    USGS Publications Warehouse

    Knepper, Daniel H.

    2003-01-01

    The Rocky Flats alluvial fan is a large early Pleistocene gravel deposit at the mouth of Coal Creek Canyon along the eastern flank of the Colorado Front Range in Jefferson and Boulder Counties, Colorado. Elevations of the bedrock surface beneath the alluvial fan gravels have been compiled at selected points from a variety of sources and recorded in a digital dataset suitable for importing into commonly used GIS and image processing software packages.

  14. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    USGS Publications Warehouse

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could potentially be inundated during high-flow events. Sampling began in 2009 and was completed in 2010. A total of 74 geochemical samples were collected from fluvial deposits at reference sites, and 473 samples were collected from potentially contaminated sites. Sediment samples collected were analyzed for 23 metals, including arsenic and mercury. Sequential replicate, split duplicate, and field quality-control samples were analyzed for quality assurance of data-collection methods. The metal concentrations in sediment samples and location information are presented in this report in electronic format (Microsoft Excel), along with non-parametric summary statistics of those data. Cross-sectional topography is graphed with arsenic and mercury concentrations on transects at the potentially contaminated sites. The mean arsenic concentration in reference sediment samples was 8 milligrams per kilogram (mg/kg), compared to 250, 650, and 76 mg/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively. The mean mercury concentration in reference sediment samples was 16 micrograms per kilogram (μg/kg), compared to 130, 370, and 71 μg/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively.

  15. Geomorphic Processes and Remote Sensing Signatures of Alluvial Fans in the Kun Lun Mountains, China

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Chadwick, Oliver A.

    1996-01-01

    The timing of alluvial deposition in arid and semiarid areas is tied to land-surface instability caused by regional climate changes. The distribution pattern of dated deposits provides maps of regional land-surface response to past climate change. Sensitivity to differences in surface roughness and composition makes remote sensing techniques useful for regional mapping of alluvial deposits. Radar images from the Spaceborne Radar Laboratory and visible wavelength images from the French SPOT satellite were used to determine remote sensing signatures of alluvial fan units for an area in the Kun Lun Mountains of northwestern China. These data were combined with field observations to compare surface processes and their effects on remote sensing signatures in northwestern China and the southwestern United States. Geomorphic processes affecting alluvial fans in the two areas include aeolian deposition, desert varnish, and fluvial dissection. However, salt weathering is a much more important process in the Kun Lun than in the southwestern United States. This slows the formation of desert varnish and prevents desert pavement from forming. Thus the Kun Lun signatures are characteristic of the dominance of salt weathering, while signatures from the southwestern United States are characteristic of the dominance of desert varnish and pavement processes. Remote sensing signatures are consistent enough in these two regions to be used for mapping fan units over large areas.

  16. Morphometric Characterization and Classification of Alluvial Fans in Eastern Oman

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Mattern, Frank; van Gasselt, Stephan

    2015-04-01

    Morphologic characteristics of alluvial fans are a product of fluvial erosion, transportation and deposition. Consequently, fans have been described and defined on the basis of their shape, their composition, conditions and processes under which they from, their so-called "controlling factors", and their geomorphic and tectonic settings. The aim of our study is to reconstruct the morphologic evolution and to relate it to past and present climate conditions. In order to achieve this, we first characterize alluvial fans based on their climatic settings and conditions and classify them accordingly using satellite image data and digital elevation models. For mapping of different alluvial fan bodies multispectral images of the Landsat Enhanced Thematic Mapper (ETM+) with a scale of 15-30 m/px were utilized. For the detection of morphometric parameters as input data for subsequent hydrological studies digital terrain model data of the Shuttle Radar Topography Mission (SRTM) and the ASTER GDEM with a scale of 90 m/px and 30m, respectively, were used. Using these datasets morphological characteristics, such as sizes of drainage basins, transport areas and areas of deposition derived from spatial semi-automatic analysis, have been computed. The area of Muscat at the Oman Mountains has been selected as a study area because of its size, accessibility and climate conditions and it is considered well-suited for studying the development of alluvial fans and their controlling factors. The Oman Mountains are well-known for the world's largest intact and best exposed obducted ophiolite complex, the Semail Ophiolite. They are today subjected to a mild desert climate (Bwh), influenced by the Indian Ocean but they have experienced extensive pluvial periods in the geologic past. Formation of alluvial fans was, therefore, likely triggered by the interplay of increased sediment production caused by high rainfalls with enhanced erosion of hillslopes and transport rates during pluvial periods. Typical morphometric parameters controlled by hydrological conditions are sizes of catchment areas, the morphometry of associated rivers and slope angles as well as sizes of alluvial fans. In order to distinguish the catchment areas, semi-automatized spatial analyses based on DEM data were carried out within a commercial GIS environment. Our analyses generally verify that there is a positive correlation between, e.g., fan areas and sizes of catchment areas as well as between fan areas and lengths of valley lines of associated rivers. Furthermore, our analyses show a negative correlation between average fan slopes and sizes of catchment areas. The observations are in good agreement with previous analyses from other areas we conducted. The applied methodology has shown to be adequate to be compared to and combined with future field investigations. Flow events are dominant in fan evolution, but the way in which alluvial fan systems responded to fluvial environmental conditions differs between systems under different climate conditions. We compared our results with data from other places located in different climate zones around the world. This allows us to constrain boundary conditions and their potential influence on shapes in a more efficient way.

  17. Quaternary Faults and Basin-fill Sediments of the Las Vegas Basin, Southern Nevada

    NASA Astrophysics Data System (ADS)

    Taylor, W. J.; Fossett, E.; Luke, B.; Snelson, C.; Rasmussen, T.; McCallen, D.; Rodgers, A.; Louie, J.

    2003-12-01

    The N-S elongated extensional Las Vegas basin, southern Nevada, contains 100's of meters of Cenozoic basin-fill sediments that are cut by several Quaternary (Q) faults. These faults define or influence the basin geometry. The basin is generally an asymmetrical half graben defined by the W-dipping, Q Frenchman Mountain fault (FMF) along its E side and a series of smaller offset E-dipping faults to the W. The N terminus of the basin is controlled by the Las Vegas Valley shear zone, along which the majority of the offset occurred prior to the Q. Here, we asses the influence of the Q faults on the distribution of the sedimentary units. Well, exposure, seismic reflection and seismic refraction data show that sedimentary units of different grain sizes or seismic velocity dominate different parts of the basin. Sections dominated by coarse clastic deposits occupy a narrow area along the E side of the basin. Coarse clastic sediments are mixed with finer grained sediments in a broader area along the W side of the basin. Based on provenance and alluvial fan distribution, the coarse deposits along the E side of the basin appear to be trapped in close proximity to the W-dipping FMF. The coarse-grained deposits along the opposite, W side of the basin, are sourced from the nearby Spring Mountains. Because of the structural asymmetry of the basin, these sediments traveled farther from their source area than those on the E side. Some of these E-dipping faults influence the depth to Paleozoic bedrock and some faults form small sub-basins filled with finer grained sediments. Along a WNW trend near the center of the basin and near the present-day Las Vegas Wash, a change in the grain size distribution occurs up stratgraphic section: continuous clay layers are less common and coarse-grained deposits are more common. This difference may reflect a change from internal drainage early in the basin history to external drainage through the Las Vegas Wash in the latter history of the basin-fill sedimentation. This interpretation implies that the FMF was breached by a wash connected to the Colorado River drainage system during basin development. The basin fill deposits suggest an early history of alluvial fan dominated deposits showing internal drainage. That depositional system was followed by E- and W-sloping alluvial fans cut by a NW-trending external drainage system that probably flowed to the Colorado River. The greatest structural influence on sediment distribution was from the Q FMF on the E side of the basin and the dominantly Miocene Las Vegas Valley shear zone on the north, but the structural influence is reduced as Colorado River system and base level imposes on the basin up section.

  18. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, U.

    2015-10-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays triggered by above normal precipitation events due to La Nia. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all the twelve tributaries of the Ro Mamor with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. I found that most of the sediments eroded from the Andes by the tributaries of the Mamor are deposited in the alluvial plains, before reaching the parent river. The mid- to late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a year to decade time scale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  19. Paleobiogeoclimatic scenarios of the Late Quaternary inferred from fluvial deposits of the Quadrilátero Ferrífero (Southeastern Brazil)

    NASA Astrophysics Data System (ADS)

    Barros, Luiz Fernando de Paula; Coe, Heloísa Helena Gomes; Seixas, Amanda Pacheco; Magalhães, Antônio Pereira, Jr.; Macario, Kita Chaves Damasio

    2016-04-01

    The Quadrilátero Ferrífero is an important mineral province in Southeastern Brazil and has one of the largest iron ore reserves in the world. Previous work in this region has indicated that the formation of fluvial successions with duricrusts coincided with drier/cooler climatic phases alternating with moister/warmer periods during which the formation of fluvial successions without duricrusts occurred. For the construction of this proposal, ages of fluvial sediments obtained through Optically Stimulated Luminescence (OSL) were associated with data from the literature on paleobioclimatic scenarios. Therefore, using these observations as a starting point, this paper aims to investigate evidence of bioclimatic oscillations obtained directly from the fluvial successions and discuss its influence on the geomorphogenis of local river valleys. For this purpose, phytolith, carbon isotope and granulometric analyses were carried out, as well as dating of sediments using OSL and of soil organic matter through radiocarbon. The results show that in the oldest depositional succession (DS1 - about 34ka) the predominant phytoliths are those of bulliform polyedric, elongate, acicular and globular granulate types and δ13C values are typical of C3 plants. On the other hand, despite having a similar phytolith assemblage (abundance of bulliform polyedric, elongate, bulliform cuneiform, acicular, globular psilate and bilobate flat/concave types), the fluvial successions associated with significant conglomeratic duricrusts (DS2 and DS3) present a dominance of δ13C values characteristic of C4 plants. The Bi index indicates water stress in all the successions, and the Ic index suggests decreasing temperatures with depth in DS3. Thus, the three fluvial successions indicate a savanna-like environment, but depositional successions DS2 (∼27ka) and DS3 show drier/cooler climatic conditions when compared to DS1 and to the present-day regime. Both scenarios evolved under conditions of the Last Glacial period, but DS2 and DS3 were formed closer to the Last Glacial Maximum, and therefore under the strong influence of the lower temperatures during this period. These drier/cooler conditions in steep valleys with unprotected hillslopes may have been decisive for the formation of relatively thicker layers of gravel and sand, which later became duricrusts. The results indicate that climate has also played an important role in the regional hydrosedimentological dynamics, given the variations in vegetation influencing the abandonment of fill terraces and formation of nested floodplains.

  20. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature

  1. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  2. Patterns of debris-flow erosion, transport, and deposition across the upper Adige River, Italy

    NASA Astrophysics Data System (ADS)

    Brardinoni, Francesco; Sosio, Rosanna

    2013-04-01

    Debris flows are effective agents of sediment transfer in mountain drainage basins. They typically convey colluvial and/or glacigenic deposits to basin mouth, connecting hillslopes and low-order streams to alluvial fans and major valley floors. They dominate topographic change and sediment dynamics in steep, low-order streams and pose serious hazards to residential areas and infrastructure. To advance understanding of the debris-flow geomorphic process domain at the regional scale we analyze a historical database of debris flows from 82 headwater basins of the upper Adige River, north-eastern Italy. This database reports systematically (since 1998) a number of quantitative attributes on single debris-flow events including the classification of the drainage network into initiation, transportation, and deposition reaches. By combining information on channel-reach mapping, LiDAR-derived digital topography, and geological and Quaternary materials mapping we: (i) characterize the principal topographic conditions in which debris-flow initiation, transportation and deposition occur; and (ii) constrain shallow landslide, debris flow, and alluvial domains, yet documenting the variability associated with different lithological units and glacigenic sediment availability.

  3. Architecture of a Coarse-Grained Upper Middle Cambrian Alluvial Delta Dominated by Braidplain and Gilbert-Style Delta Components

    NASA Astrophysics Data System (ADS)

    Pound, K. S.

    2014-12-01

    The ~500-m thick upper Middle Cambrian Lockett Conglomerate was deposited as part of an alluvial delta that includes Gilbert-type mega-crossbeds as well as braidplain conglomerates, and was constructed across an accretionary prism. Internal Lockett Conglomerate architecture indicates at least three phases of progradation are recorded by Gilbert-type, delta-front deposits that are separated by delta-top distributaries and/or braidplain deposits, all of which form discontinuous sheets and lenses, and record aggradation. Evaluation of sedimentary features (particle size and organization, bedding features) allows identification of eight facies within the Lockett Conglomerate; sedimentary features were used to infer transportational and depositional mechanisms. Conglomerate facies HL-1 - HL-8 were assigned to one or more of the following depositional associations: Beachface/shoreface, Deltafront, Alluvial fan, Braidplain (fluvial, unchannelized), Delta-top distributaries, and Mouth-bars. A series of Depositional Packages was identified, and mapped; integration with measured sections allowed development of a facies model for an alluvial delta in which the subaerial component is dominated by the braidplain association, and the subaqueous component by the (Gilbert-type) deltafront association as well as the delta-top distributary and mouthbar associations. Locally, the beachface association marks the transition between the subaqueous and subaerial components of the alluvial delta. Alluvial fan deposits are absent, but the rounded pebbles, cobbles and boulders with a new and distinctive provenance signature indicate derivation from a newly exposed igneous and metamorphic basement, and abrasion during transport through the fluvial (braidplain) system prior to deposition as part of the alluvial delta.

  4. Geometry and evolution of a syntectonic alluvial fan, Southern Pyrenees

    SciTech Connect

    Arminio, J.F. ); Nichols, G.J. )

    1993-02-01

    Syntectonic alluvial fans formed on the northern margin of the Ebro Foreland Basin along the South Pyrenean thrust front during late orogenic thrust movements in the late Oligocene/early Miocene. The present-day geometry, structural relations and sedimentology of one of these fans, the Aguero fan in the province of Huesca, Spain, were studied. Field observations of the architecture of depositional facies and the geometries of syn-tectonic folds and unconformities indicate that the Aguero fan formed as the result of several phases of sedimentation which were primarily controlled by periods of tectonic activity and quiescence. The syntectonic unconformities and growth folds in the fan deposits provide a detailed record of the evolution of a fan adjacent to an active thrust front. Using a computer program to simulate sedimentation and deformation of an alluvial fan it is possible to constrain rates of both sedimentary and tectonic processes by modeling the evolution of the fan body. A facies model for the fan phases indicates that the facies change from proximal (coarse-grained, amalgamated) to distal (finger grained, stacked fining up cycles) in less than 1 km across a fan of radius estimated to be about 2 km.

  5. Lower Palaeozoic Alluvial Systems: The Sedimentological Impact of Evolving Vegetation in Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Davies, N. S.; Gibling, M. R.

    2009-04-01

    In present-day alluvial environments, the impact of vegetation on sedimentological processes and deposits is well known. A vegetated catchment may decrease sediment yield, sediment erodability, Hortonian overland flow, aeolian winnowing of fines, the proportion of sediment transported as bedload, may increase bank stability, infiltration into substrates, bed roughness, and can promote the production of chemically-weathered clays and soils and the adoption of a meandering style. It is generally understood that, prior to the evolution of terrestrial vegetation during the Lower Palaeozoic, ancient alluvial systems were markedly different from modern systems, with many systems adopting a "sheet-braided" style. This understanding has previously informed the interpretations of many Precambrian pre-vegetation alluvial successions, but there has been relatively little work regarding Lower Palaeozoic alluvial successions that existed during the active terrestrialization of plants. In this study, a comprehensive review of 141 Cambrian to Devonian alluvial successions documented in published literature was combined with original field data from 20 alluvial successions from across Europe and North America, in order to identify changes in the sedimentary style of alluvial strata while vegetation was evolving and colonizing alluvial environments. This approach has established clear trends indicating an increase in mudrocks and sandstone maturity and a decrease in overall sand grain size through the Lower Palaeozoic, suggesting that primitive vegetation cover was able to promote the production and preservation of muds and increase the residence time of sand-grade sediment (and thus sediment reworking) in alluvial systems. It has also enabled the first stratigraphic occurrence of certain vegetation-dependent sedimentary features to be pinpointed and tied directly to the onset of specific evolutionary adaptations recorded in the palaeobotanical fossil record. As such, the first markedly heterolithic alluvial sequences can be shown to first appear at the same time as the most primitive terrestrial vegetation in the Lower Ordovician, whilst pedogenic calcite first appears in the rock record at the same time as vascular plants in the Lower Silurian. Vertisols, coal, and certain indicators of meandering fluvial style (lateral accretion surfaces) only appear after the development of plant arborescence and deep rooting in the Devonian.

  6. Estimating the surface age of arid-zone alluvial fans using spaceborne radar data

    NASA Astrophysics Data System (ADS)

    Hetz, Guy; Mushkin, Amit; Blumberg, Dan G.; Baer, Gidi

    2013-10-01

    Alluvial fans constitute important recorders of tectonic and climatic signals. Thus, determining the age of alluvial deposits is a common and pivotal component in many quantitative studies of recent tectonic activity, past climatic variations and landscape evolution processes. In this study we build on the established relation between surface age and surface roughness and examine the use of radar backscatter data as a calibrated proxy for constraining the age of alluvial surfaces in such environments. This study was conducted in the hyper-arid environment of the southern Arava rift valley north of the Gulf of Aqaba. ALOS-PALSAR L-Band dual-polarized (i.e., HH, HV) data with different incidence angles (24, 38) and resolutions (6.25m, 12.5m) were examined for 11 alluvial surfaces, for which surface ages ranging from 5-160 ka were previously determined. As expected, radar backscatter in such low-relief hyper-arid desert environments responded primarily to SR at pixel-scales and below. Nonetheless, measured backscatter values for single pixels were found to be unsuitable proxies for surface age because of the natural variability in SR across alluvial units of a given age. Instead, we found the statistical properties of radar pixel populations within a given unit to be the most effective proxies for surface age. Our results show that the mean backscatter value within representativeROI's (region of interest) provided the best predictor for surface age: Lower mean backscatter values correlated well with older and smoother alluvial surfaces. The HHpolarized image with ~38 incidence angle and 6.25 m/pixel resolution allowed the best separation of surface ages. This radar-based approach allows us to quantitatively constrain the age of alluvial surfaces in the studied region at comparable uncertainty to that of "conventional" surface dating techniques commonly used.

  7. Particle Dynamics: Bedrock versus Alluvial River Segments

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2014-12-01

    Many channels alternate longitudinally between bedrock and alluvial substrate. These alternations occur over a range of spatial scales and associated temporal scales. Transient bedrock and alluvial patches alternate over downstream distances of a few meters to hundreds of meters, whereas persistent bedrock and alluvial reaches alternate downstream over distances of kilometers to hundreds of kilometers. These longitudinal alternations are significant because of the differences in process and form between bedrock and alluvial reaches. Bedrock reaches limit the response of the channel and the greater drainage basin to relative base level fall. Alluvial reaches limit the rate and distance of particle movement downstream, as well as limiting the habitat available for riverine organisms, biogeochemical reactions and nutrient storage, and water quality. In both types of substrate, particle movement is a limiting factor. (Here, particles include mineral sediment and particulate organic matter.) In bedrock channels, particle movement largely governs the rate and manner of erosion. In alluvial channels, particle movement governs channel form and the stability of habitat. Fundamental research questions for both channel types center on particle dynamics: How do interactions among bedrock substrate, sediment supply, sediment transport, and hydraulics influence rates of bedrock erosion? How do interactions among sediment supply, sediment transport, and biota influence particle transport and residence time? Although bedrock channel segments likely exert a more fundamental influence on river response to relative base level change and landscape evolution, alluvial channel segments likely exert a stronger limiting effect on downstream fluxes of water, solutes, and particles, as well as more critical influences on riverine habitat.

  8. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P.; Gawthorpe, R.L.

    1996-12-31

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka{sup -1} at fault segment centers to 0.8 m ka{sup -1} at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  9. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P. ); Gawthorpe, R.L. )

    1996-01-01

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka[sup -1] at fault segment centers to 0.8 m ka[sup -1] at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  10. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Beer, Christopher J.; Bolton, Clara T.; Friedrich, Oliver; Newsam, Cherry; Spencer, Megan R.; Gutjahr, Marcus; Foster, Gavin L.; Cooper, Matthew J.; Milton, J. Andrew

    2014-06-01

    We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (?13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high CO2 conditions of the Early Pliocene but contrast with most model predictions for the response of the hydrological cycle to anthropogenic warming over the coming 50 years (poleward expansion of the subtropical dry zones).

  11. Late Quaternary slip rate of the Owl Lake fault and maximum age of the latest event on the easternmost Garlock fault, S. California

    SciTech Connect

    McGill, S.F. . Dept. of Geological Sciences)

    1993-04-01

    The Owl Lake fault is an active, left-lateral oblique-slip fault in the southwestern Basin and Range province. It intersects the left-lateral Garlock fault in the Quail Mountains and extends about 19 km northeastern toward southern Death Valley. The eastern wall of a channel incised into Late Tertiary or Quaternary fanglomerate north of the fault and into Late Quaternary alluvial fan deposits south of the fault has been offset at least 43 meters left-laterally. This slip estimate is a minimum because of possible erosion of the channel wall upstream from (north of) the fault. If the upstream channel prior to offset was of comparable width to the modern channel, the offset is no more than about 80 m. Organic matter entombed beneath rock varnish on two boulders on the alluvial fan surface into which the channel incised has conventional radiocarbon ages of 29,470 [+-] 270 and 30,820 [+-] 280 years B.P. Abandonment of the fan surface was probably caused by incision of the offset channel, so the channel wall probably has a similar age. This suggests a preliminary left-lateral slip rate of about 1--3 mm/yr for the Owl Lake fault. Fault scarp heights suggest relative uplift of the northwestern side of the fault by at least 1--2 meters and possibly more since deposition of the Late Quaternary fan. At a site in the Avawatz Mountains, within 2 km of the eastern end of the Garlock fault (Leach Lake strand), a terrace riser has been offset 2.7 [+-] 0.6 m left-laterally and 0.2 m south-side-up. This offset probably occurred during the most recent large earthquake on this part of the fault. Organic matter beneath varnish on two cobbles on the upper terrace has conventional radiocarbon ages of 1,583 [+-] 90 and 1,656 [+-] 88 years B.P. This suggests the most recent slip event occurred after a date of A.D. 150--590. This is significantly older than the maximum age (AD 1490) of the most recent slip event on the central Garlock fault in Searles Valley.

  12. Cosmogenic Helium In Alluvial Diamonds From Namaqualand, South Africa

    NASA Astrophysics Data System (ADS)

    Burgess, R.; Harris, J. W.

    2005-12-01

    The interpretation of He in diamonds is not straightforward, potential sources include trapped mantle-derived He, radiogenic 4He, and 3He produced in situ by cosmic-ray spallation. The presence of cosmogenic 3He is manifested by high 3He/4He values and ratios of >200 Ra have been measured. 3He contents can be used to distinguish pipe from alluvial diamonds and the time interval that they have been involved in the sedimentary cycle, i.e. their surface exposure history. This is important information for locating the source of alluvial diamonds, understanding their transport histories and may provide a useful tool for diamond exploration. In this study we are analysing the He composition of ten alluvial diamonds from the Koignass-Namaqualand area along the south-west coast of South Africa and Namibia. Diamonds are currently mined at a depth of 100m below the surface from deposits of gravel beaches and river channels. Helium is extracted from the diamonds using a newly developed high temperature filament furnace having a blank approximately 200x lower than conventional resistance furnaces. The low blank of this system means it is possible to extract He by stepwise heating of diamonds weighing 0.05 g. Helium isotopes were analysed using a mass spectrometer with a 3He detection limit of 2,000,000 atoms equivalent to about 20 ka of surface exposure. Results from one diamond from Namaqualand illustrate the range of data obtained so far. This diamond was analysed using eight temperature steps and shows an overall increase in 3He/4He value with temperature from 8.8 x 10-6 to 2.6 x 10-2, the latter being only 10x lower than the pure spallogenic ratio. The cosmogenic 3He content is estimated at 73.5 x 10-12 cm3/g which is at the upper end of the range determined previously in alluvial diamonds from west African sources. Assuming a sea level 3He production rate at 30S, then the 3He content of this diamond is equivalent to 16 Ma of surface exposure. Most of this exposure is likely to have occurred since the mid to late Tertiary when diamonds were no longer being released from primary sources, but were being reworked from older terrace deposits.

  13. Analysis of alluvial hydrostratigraphy using indicator geostatistics, with examples from Santa Clara Valley, California

    SciTech Connect

    1995-03-01

    Current trends in hydrogeology seek to enlist sedimentary concepts in the interpretation of permeability structures. However, existing conceptual models of alluvial deposition tend to inadequately account for the heterogeneity caused by complex sedimentological and external factors. This dissertation presents three analyses of alluvial hydrostratigraphy using indicator geostatistics. This approach empirically acknowledges both the random and structured qualities of alluvial structures at scales relevant to site investigations. The first analysis introduces the indicator approach, whereby binary values are assigned to borehole-log intervals on the basis of inferred relative permeability; it presents a case study of indicator variography at a well-documented ground-water contamination site, and uses indicator kriging to interpolate an aquifer-aquitard sequence in three dimensions. The second analysis develops an alluvial-architecture context for interpreting semivariograms, and performs comparative variography for a suite of alluvial sites in Santa Clara Valley, California. The third analysis investigates the use of a water well perforation indicator for assessing large-scale hydrostratigraphic structures within relatively deep production zones.

  14. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  15. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and environmental conditions, which influence seasonal farming.

  16. Silicate weathering in the Ganges alluvial plain

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as δ30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher δ30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  17. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  18. Late quaternary sequence stratigraphy, South Florida margin

    SciTech Connect

    Locker, S.D.; Hine, A.C.

    1995-12-01

    Late Quaternary sea-level change and the Florida Current have combined to produce a progradational shelf-slope margin along the western portion of the south Florida Platform facing the Straits of Florida. Analysis of high resolution seismic reflection profiles suggest at least eight 5th order late Quaternary sequences downlap onto the Pourtales Terrace at 250 m water depth. Along most of the south Florida margin, this Late Quaternary section is very thin, and only where significant accumulations occur can the stratigraphic patterns produced by sea-level change be clearly observed. Recognition of systems tracts and their boundaries from high-resolution seismic data is important for prediction of sedimentary facies and stratigraphic development of margins. Many south Florida seismic boundaries can be fit to the Exxon sequence stratigraphy model. Others appear to reflect the added effect of bottom-current erosion that complicates the signal produced by sea-level change. Overall, the sea-level signal appears to dominate the stratigraphic record, especially from the 2-dimensional perspective of dip-oriented seismic profiles. However, the 3-dimensional geometry of deposits are strongly influenced by along slope accumulation patterns controlled by the Florida Current. This study provides new insight on the importance of both geostrophic boundary currents and sea-level change in controlling stratigraphic development of a carbonate platform margin. Similar anomalously thick slope deposits in ancient sequences may indicate similar controls on accumulation and could lend to predictions of related paleo-platform configurations.

  19. Wilson Creek Valley Restoration: Transformation of a Bedrock Channel to an Alluvial Stream

    NASA Astrophysics Data System (ADS)

    Parola, A. C.; Vesely, W. S.

    2005-05-01

    Wilson Creek Valley Restoration: Transformation of a Bedrock Channel to an Alluvial Stream The historically high economic value of alluvial valleys associated with agriculture, transportation infrastructure and habitation in the eastern US has resulted in the modification of virtually all alluvial stream valleys sufficiently suitable for subsistence agriculture. In stream valleys with thin alluvial veneers over bedrock, anthropogenic modification that includes increases in channel cross sectional dimensions, reduction in channel sinuosity, flood flow confinement, removal of form drag elements, and relocation of streams may transform alluvial stream reaches into bedrock reaches through channel incision processes. The effects of channel incision on infrastructure adjacent to deep alluvial systems are well known; however, exposure, flow quarrying, transport and deposition of broken bedrock pieces in valleys adjusted for transport of gravels represent serious fluvial hazards not widely recognized. In addition, the transformation from alluvial regimes to one dominated by bedrock involves changes of several important stream and wetland habitat features including substrate modification, reduction in bed topographic variation, reduced frequency of floodplain inundation, and a general groundwater lowering that adversely affects hyporheic zones. The restoration of Wilson Creek valley in central Kentucky transformed the stream channel from its anthropogenically imposed low sinuosity, confined, and relocated bedrock regime to a sinuous alluvial stream position near the valley center. The restoration demonstrates the ecological effectiveness of restoring valleys to accommodate streams to a form similar to their historic alluvial form. In addition to sediment transport, many other important aspects of stream design were considered to restore riverine habitat to a valley modified for agricultural purchases more than 80 years ago. An important restoration design component was the proximity of valley groundwater levels and aquifer thickness to support high stress period (low flow) pool and hyporheic zone habitat. Pre- and post-restoration biological data indicate an unanticipated rapid re-colonization of the restoration and an increase in fish species only months after restoration completion. Continued detailed post-restoration biological and geomorphic monitoring including bedload sampling is in-progress.

  20. Alluvial diamond resource potential and production capacity assessment of Guinea

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Van Bockstael, Mark; Diaby, Mamadou; Cissé, Kabinet; Diallo, Thierno Amadou; Sano, Mahmoud

    2012-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that export shipments of rough diamonds were free of conflict concerns. Outcomes of the meeting were formally supported later in December of 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. The goal of this study was to estimate the alluvial diamond resource endowment and the current production capacity of the alluvial diamond mining sector of Guinea. A modified volume and grade methodology was used to estimate the remaining diamond reserves within Guinea's diamondiferous regions, while the diamond-production capacity of these zones was estimated by inputting the number of artisanal miners, the number of days artisans work per year, and the average grade of the deposits into a formulaic expression. Guinea's resource potential was estimated to be approximately 40 million carats, while the production capacity was estimated to lie within a range of 480,000 to 720,000 carats per year. While preliminary results have been produced by integrating historical documents, five fieldwork campaigns, and remote sensing and GIS analysis, significant data gaps remain. The artisanal mining sector is dynamic and is affected by a variety of internal and external factors. Estimates of the number of artisans and deposit variables, such as grade, vary from site to site and from zone to zone. This report has been developed on the basis of the most detailed information available at this time. However, continued fieldwork and evaluation of artisanally mined deposits would increase the accuracy of the results.

  1. Hydrogeology and simulation of flow between the alluvial and bedrock aquifers in the upper Black Squirrel Creek basin, El Paso County, Colorado

    USGS Publications Warehouse

    Watts, K.R.

    1995-01-01

    Anticipated increases in pumping from the bedrock aquifers in El Paso County potentially could affect the direction and rate of flow between the alluvial and bedrock aquifers and lower water levels in the overlying alluvial aquifer. The alluvial aquifer underlies about 90 square miles in the upper Black Squirrel Creek Basin of eastern El Paso County. The alluvial aquifer consists of unconsolidated alluvial deposits that unconformably overlie siltstones, sandstones, and conglomerate (bedrock aquifers) and claystone, shale, and coal (bedrock confining units) of the Denver Basin. The bedrock aquifers (Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers) are separated by confining units (upper and lower Denver and the Laramie confining units) and overlie a relatively thick and impermeable Pierre confining unit. The Pierre confining unit is assumed to be a no-flow boundary at the base of the alluvial/ bedrock aquifer system. During 1949-90, substantial water-level declines, as large as 50 feet, in the alluvial aquifer resulted from withdrawals from the alluvial aquifer for irrigation and municipal supplies. Average recharge to the alluvial aquifer from infiltration of precipitation and surface water was an estimated 11.97 cubic feet per second and from the underlying bedrock aquifers was an estimated 0.87 cubic foot per second. Water-level data from eight bedrock observation wells and eight nearby alluvial wells indicate that, locally, the alluvial and bedrock aquifers probably are hydraulically connected and that the alluvial aquifer in the upper Black Squirrel Creek Basin receives recharge from the Denver and Arapahoe aquifers but-locally recharges the Laramie-Fox Hills aquifer. Subsurface-temperature profiles were evaluated as a means of estimating specific discharge across the bedrock surface (the base of the alluvial aquifer). However, assumptions of the analytical method were not met by field conditions and, thus, analyses of subsurface-temperature profiles did not reliably estimate specific discharge across the bedrock surface. The vertical hydraulic diffusivity of a siltstone and sandstone in the lower Denver confining unit was estimated, by an aquifer test, to be about 8 x 10'4 square foot per day. Physical and chemical characteristics of water from the bedrock aquifers in the study area generally differ from the physical and chemical characteristics of water from the alluvial aquifer, except for the physical and chemical characteristics of water from one bedrock well, which is completed in the Laramie-Fox Hills aquifer. In the southern part of the study area, physical and chemical characteristics of ground water indicate downward flow of water from the alluvial aquifer to the Laramie-Fox Hills aquifer. A three-dimensional numerical model was used to evaluate flow of water between the alluvial aquifer and underlying bedrock. Simulation of steady-state conditions indicates that flow from the bedrock aquifers to the alluvial aquifer was about 7 percent of recharge to the alluvial aquifer, about 0.87 cubic foot per second. The potential effects of withdrawal from the alluvial and bedrock aquifers at estimated (October 1989 to September 1990) rates and from the bedrock aquifers at two larger hypothetical rates were simulated for a 50-year projection period. The model simulations indicate that water levels in the alluvial aquifer will decline an average of 8.6 feet after 50 years of pumping at estimated October 1989 to September 1990 rates. Increases in withdrawals from the bedrock aquifers in El Paso County were simulated to: (1) Capture flow that currently discharges from the bedrock aquifers to springs and streams in upland areas and to the alluvial aquifer, (2) induce flow downward from the alluvial aquifer, and (3) accelerate the rate of waterlevel decline in the alluvial aquifer.

  2. A Quaternary paleolake in a sinkhole at Cassis (SE France) : a geomorphology and geophysical study

    NASA Astrophysics Data System (ADS)

    Romey, C.; Rochette, P.; Vella, C.; Arfib, B.; Champollion, C.; Dussouillez, P.; Hermitte, D.; Parisot, J.-C.

    2012-04-01

    The Lower Provence and the Massif des Calanques, near Marseille, are a key area in understanding the mechanisms of evolution of the Mediterranean climate and the study of human impact on the local environment during the Quaternary. However, a continuous continental record of paleoenvironment in coastal Provence was not previously available. Looking for such a record, we discovered in a coastal alluvial plain a small paleolake filling a sinkhole that occurred in a marl sequence topping pure limestones at an altitude of 80 m, and a distance to the sea of 2 km. The sinkhole is close to the outlet of a small catchment area of about 8 km2. Limestone is massive but much fractured and therefore suitable for the development of karst. The drilling sedimentary sequence of 50 meters is mainly resulting from the weathering of Cretaceous marls. It consists of 5 meters of oxidized brown clay deposit which covers 45 meters of laminated lacustrine gray clay with sandy past. Cretaceous marls are at the base of the sequence. The presence of marls pebbles in the last meters of the sequence reflects the collapse of the sinkhole. The lacustrine clay was probably deposed during stages isotope 2 to 4 (48 3 ka C14 date at 23 meters depth), whereas brown clay deposit was interpreted as Holocene paleosol. Combination of surface observation, drilling and geophysical studies (gravimetry and Electrical Resistivity Tomography) allows to constraint the geometry of the paleo-polje that formed during glacial period. Lake diameter was likely of the order of 200 m. It evolved from a deep lake to a swamp (probably Holocene, dating in progress) and it was drained in roman times for agriculture. Locally, this discovery has implications for the understanding of karst processes and water resources. The relationship between the sinkhole, rooted at circa 100 m below surface according to gravimetric modeling and the underground karstic river of Bestouan is strongly suggested by underwater exploration and hydrogeologic investigations.

  3. Late Quaternary faulting along the southern Lemhi fault, southeastern Idaho: A complex segmentation history

    SciTech Connect

    Hemphill-Haley, M.A.; Sawyer, T.L.; Wong, I.G. ); Knuepfer, P.L.K. ); Forman, S.L. . Byrd Polar Research Center); Smith, R.P. . Idaho National Engineering Lab.)

    1993-04-01

    The Lemhi fault is a 140-km-long range-bounding normal fault in the northern Basin and Range province, north of the eastern Snake River Plain (ESRP). The authors investigation of the southern two (proposed) rupture segments, the Howe and the Fallert Springs, to the north, identified multiple large late Quaternary, surface-faulting events, some of which occurred in temporal clusters. Geologic evidence suggest that the history of the late Pleistocene activity along the northern part of the Fallert Springs segment differs from that along the southern part of the segment. The distribution and timing of surface ruptures, suggest that the Howe segment has ruptured together with at least the southern half of the Fallert Springs segment during the late Pleistocene faulting events. They propose that the Howe-Fallert Springs segment boundary has had little, if any, influence on the propagation of coseismic ruptures for some events, but appears to have effectively arrested others. Their data imply that the central portion of the Fallert-Springs segment has ruptured independent of the southern part of the segment, and that a non-persistent boundary exists within the segment. Paleoseismic activity of the southern Lemhi fault was evaluated in five trenches, two excavated on the Howe segment and three on the Fallert Springs segment; all trenches were excavated in mapped Pinedale-aged alluvial fan deposits (Pierce, 1982). At the southern site on the Howe segment, the most-recent-event colluvial wedge is interbedded with reworked loess, probably derived from the ESRP, that was deposited from about 25 to 15 ka. Thermoluminescence (TL) dates on loess bracket the event between 19 and 15 ka. TL dates indicate the penultimate event occurred before 27--25 ka. TL dates on a probable colluvial wedge, partly exposed in a trench on the southern Fallert Springs segment, suggests that the first of three faulting events occurred about 75 ka.

  4. Alluvial Fan, Rocky Mountain National Park

    USGS Multimedia Gallery

    The Alluvial Fan is a fan-shaped area of disturbance in Rocky Mountain National Park. It was created on July 15, 1982, when the earthen Lawn Lake Dam above the area gave way, flooding the Park and nearby town of Estes Park with more than 200 million gallons of water. Enormous boulders were displaced...

  5. Arsenate adsorption by unsaturated alluvial sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenate adsorption as a function of solution arsenic concentration and solution pH was investigated on five alluvial sediments from the Antelope Valley, Western Mojave Desert, California. Arsenate adsorption increased with increasing solution pH, exhibited a maximum around pH 4 to 5, and then decr...

  6. Gulf coastal plain evolution in West Louisiana: Heavy mineral provenance and Pleistocene alluvial chronology

    NASA Astrophysics Data System (ADS)

    Mange, Maria A.; Otvos, Ervin G.

    2005-12-01

    High Resolution Heavy Mineral Analysis (HRHMA) of late Pleistocene terrace samples, their Tertiary source rocks, and modern river sediments provided an effective tool for reconstructing sediment provenance and mapping heavy mineral provinces in southwest Louisiana. Each province, linked to a discrete source region, represents Pleistocene fluvial channel belts within which depositional activity was controlled by periods of climate, sediment supply, and sea level changes. Four coastal heavy mineral provinces have been identified. The Northern Province (NP), drained by the lower reaches of the Sabine and Calcasieu Rivers underlies level mid- and late Pleistocene coastal terrace surfaces and is distinguished by high-grade metamorphic assemblages (kyanite, staurolite, sillimanite) and abundant zircon, probably of Ouachita Mts. derivation. Transporting eroded Cretaceous, Tertiary, and Pleistocene coastal plain deposits, the modern Calcasieu and Sabine River sands in west-central and southwest Louisiana and east Texas, display identical heavy mineral composition to that of the NP. Level Late Pleistocene coastal terrace areas in the east represent the Red River Province (RRP) with dominant epidote, tourmaline, garnet, and zircon. Its mineralogy is influenced significantly by Paleozoic-Mesozoic sedimentary units that frame the drainage basin upstream. Modern Red River sands differ in their spectra both from Red River Pleistocene coastal terrace and valley terrace deposits, interpreted by temporal fluctuations in sediment supply initiating a variable contribution of detritus from different sources. Tributaries that drain formations with high concentrations of high-grade metamorphic minerals also affected Red River valley Pleistocene terrace deposits in west-central Louisiana, enriching them in kyanite and staurolite. The Mississippi Province (MP) occupies the eastern-southeastern area of the low, flat, gently seaward-sloping Prairie coastal terrace. Whereas modern Mississippi alluvium is dominated by hornblende, pyroxenes, and epidote, as the result of post-depositional dissolution, pyroxenes are rare in the MP. The Mixed Suite Province (MSP) reflects MP, RRP, and to a lesser degree, NP signatures and forms the Prairie fluvial coastal plain surface closer to the Texas state line. Raw data of the principal heavy minerals were used for statistical analysis. Statistical parameters proved consistent with mineralogy-derived reconstruction of sediment provenance and provinciality of heavy mineral suites, thus providing an independent and objective support to data interpretation. Optical and thermal luminescence dating at other Gulf locations [Otvos, E.G. (2005). Numerical chronology of Pleistocene coastal plain and valley development; extensive aggradation during glacial low sea levels. Quaternary Internat., 135 91-113.] supports the pre-Sangamon ages of the Intermediate Pleistocene terraces in the NP area. Sangamon (135-116 ka), Eowisconsin (114-76 ka), and Wisconsin (74-36 ka) dates characterize the four provinces in the low, level northern Gulf Prairie coastal plain. Refuting earlier assumptions that coastal plain aggradation occurred only during marine highstand phases, thermal and optical luminescence dates indicated that, despite the low Eowisconsin and Wisconsin eustatic sea levels of several preglacial and glacial stages and substages, coastal plain alluviation, paradoxically, recurred between 106 and 35 ka BP. An interesting outcome of our heavy mineral study is the recognition and dating of a previously undocumented, rare ash-fall event that originated in Caribbean andesitic volcanoes. It was identified by the presence of a volcanogenic heavy mineral suite, composed of pristine euhedral clinopyroxene, sphene, zircon, apatite, and hexagonal biotite. Unaffected by fluvial reworking, this suite was recovered from a MP sample, dated ca. 86 ka BP.

  7. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    NASA Astrophysics Data System (ADS)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  8. Quaternary shorelines of the broader area of Cape Maleas - Neapolis - Elafonissos Isl. (SE Peloponnese)

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Gaki-Papanastassiou, Kalliopi; Papanastassiou, Dimitris; Tsodoulos, Ioannis; Tsivgoulis, Nikolaos; Tsanakas, Konstantinos; Valkanou, Kanella

    2015-04-01

    The aim of this study is to provide information about the landscape evolution of the broader area of Cape Maleas - Neapolis - Elafonissos Isl. during the Quaternary. In order to investigate the geomorphic evolution of the study area the uplifted coastal landforms, such as shore platforms, notches and remnants of marine terraces, were studied in detail through extensive field-work using topographic diagrams at a scale of 1:5,000, obtained from the Hellenic Military Geographical Service. Additionally, a spatial database was constructed derived from analogue topographic maps at various scales (1:50,000 and 1:5,000), geological maps (1:50,000 maps of IGME), aerial photographs and Google earth images using GIS techniques. The study area is located in SE Peloponnese in a particularly tectonically active area. Geodynamic processes in the region, which is part of the Hellenic island arc, are related to the active subduction of the African lithosphere beneath the Eurasian plate. The Paleozoic basement of the study area consists of geological formations of the geotectonic units of Arna, Tripolis, and Pindus. The Alpine basement is overlain by extensive outcrops of Pliocene and Pleistocene deposits. Upper Pliocene to Lower Pleistocene formations are composed of marine - lacustrine deposits which are mainly pelites, sandstones, conglomerates, calcarenites and carbonate rocks with red algae whereas Pleistocene formations consist of fluvioterrential deposits (clay, sands, loams and angular rock fragments). The Holocene deposits consist of talus cones, scree, and unconsolidated alluvial deposit, eluvial mantle materials and coastal sand dunes along the N, NE and S shoreline of Elafonissos Isl. as well as at Cape Punta. The general trend of the faults in the study area is mainly NW-SE with some secondary ones having NE-SW direction. Along the coast between Cape Koulendi and Cape Maleas, uplifted geomorphological features were mapped, including marine terraces, shore platforms and marine notches. Remnants of Quaternary marine terraces have also been identified at several locations on the Elafonissos Isl. The marine terraces are imprinted into pre-existing Pleistocene marine - lacustrine formations and only a few of them have a thin sandstone caprock. The uplifted Quaternary marine terraces are excellent morphological markers and have been used worldwide to recognize past sea-level changes. Their correlation with the main interglacial high-stands can be done only in areas where a continuous uplift at a regional scale exists combined by dating their exposure. Selected samples were collected for OSL dating in order to correlate the terraces in space and time. The detailed field geomorphological mapping of the study area revealed a sequence of seven to eight marine terraces, according their location, ranging in elevations from 2 to 180m. Based on the raised coastal features of the study area it becomes evident that the prevailing tectonic movement is positive (emergence) during the Pleistocene and Holocene periods. The occurrence of the terraces at different elevations supports the suggestion that the study area is composed by different tectonic blocks moving disparately.

  9. Rapid delineation of alluvial fans using IfSAR-derived DEM for selected provinces in the Philippines

    NASA Astrophysics Data System (ADS)

    Ortiz, Iris Jill; Aquino, Dakila; Norini, Gianluca; Narod Eco, Rodrigo; Mahar Lagmay, Alfredo

    2015-04-01

    Alluvial fans are fan-shaped geomorphic features formed when sediments from a watershed are transported and deposited downstream via tributaries flowing out from the sudden break of a slope. Hazards usually associated with alluvial fans are flooding and debris flows. In this study, we used an Interferometric Synthetic Aperture Radar-derived digital elevation model of Pangasinan and Nueva Ecija Provinces in the Philippines to identify and delineate alluvial fans. Primary parameters considered include the geomorphic characteristics of the catchment area, stream network and slopes ranging from 0.11 to 8 degrees. Using this method, 12 alluvial fans were identified in Pangasinan and 16 in Nueva Ecija with areas ranging from 0.35 to 80 sq. km. The largest fan identified is the Mangatarem-Aguilar fan in Pangaisnan with a total area of 80.87 sq km while the Gabaldon fan in Nueva Ecija with total area of 48.11 sq km. We observed from the results that some alluvial fans have multiple feeder streams, and others have overlapping lateral extents with adjacent fans. These overlapping fans are called bajadas. In addition, the general location of fans and their apices in the two provinces appear to coincide with segments of the Philippines Fault System. There are about people 1.4 million living within these alluvial fans. Mapping and characterizing and identifying their associated hazards is crucial in the disaster preparedness efforts of the exposed population.

  10. Simulating Fine grained Alluvial Fan Sedimentation on Mars

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Beyer, R. A.

    2013-12-01

    The alluvial fans on Mars date to as late as the Hesperian Period and may be representative of the last major episode of widespread fluvial modification to the red planet's surface. These fans lie within enclosed crater basins, and are characterized by their large size (tens of km in length) and gentle gradient (less than 1-3°). The fans generally feature a network of channel distributaries floored with coarser sediment and what we have interpreted to be fine grained overbank deposits that comprise the bulk of the fan material [1]. We have developed a landform evolution model based on the approach of [2] to simulate the growth of these fans in order to answer several questions about their formation, including: (1) what are the characteristics of water discharge (flow magnitude and duration) and sediment supply (quantity and grain size); and (2) what are the associated implications for the responsible climatic environment (e.g. amount and frequency of precipitation sourcing the fans). The model combines discharge and sediment deposition with channel avulsion and abandonment, allowing for an analysis of both the micro and macro scale processes concerning fan formation. Water and sediment is routed through a distributary network that can branch, recombine, and avulse. The model simulates deposition of both coarse-grained bedload and a fine-grained suspended load material that can be deposited overbank during flood events. The model records the stratigraphy of the deposited material in terms of the relative proportions of coarse and fine-grained sediment. Using measures such as channel width, relative proportions of channel versus overbank deposited sediment, and frequency of channel branching, output is statistically compared with digital elevation models that have been produced from high-resolution CTX and HiRISE stereo pairs. Initial results suggest fans formed from hundreds of flow events over many thousands of years. Fan formation processes appear to be similar to those active in terrestrial fans in northern Chile's Atacama Desert. Additional model runs will simulate fan development under different patterns of precipitation (uniform over the fan versus an orographic pattern of greater precipitation on upper crater walls) and variations in sediment size distribution. References: [1] Morgan, A. M., Howard, A. D., Hobley, D. E. J., Moore, J. M., Dietrich, W. E., Williams, R. M. E., Burr, D. M., Grant, J. A., Wilson, S. A., and Matsubara, Y. (in review) Sedimentology and Climatic Environment of Alluvial Fans in the Martian Saheki Crater and a Comparison with Terrestrial Fans in the Atacama Desert [2] Sun, T., C. Paola, G. Parker, and P. Meakin (2002), Water Resour. Res., 38, no.8, 10.

  11. Characterization and modeling of spatial variability in a complex alluvial aquifer: Implications on solute transport

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Ritzi, Robert W.; Sims, Darrell W.

    2008-04-01

    Field investigations of stratified alluvial deposits suggest that they can give rise to a hierarchy of permeability modes across scales, corresponding to a hierarchy of sedimentary unit types and thus may lead to enhanced plume spread in such media. In this work, we model the sedimentary architecture of the alluvium deposits in Fortymile Wash, Nevada, using a hierarchical transition probability geostatistical approach. The alluvial aquifer comprises a segment of the groundwater flow pathway from the potential high-level nuclear waste repository at Yucca Mountain, Nevada to the downstream accessible environment and may be a natural barrier to radionuclide migration. Thus our main goal is to quantify the impact of spatial variability in the alluvium on solute transport. The alluvial aquifer is a gravel-dominated braid-belt deposit, having lower-permeability paleosols interstratified with higher-permeability gravel-bar deposits. A three-dimensional hierarchical hydrofacies model is developed through fusion of multiple geologic data types and sources. Markov chain models of transition probabilities are employed to represent complex patterns of spatial variability at each hierarchical level in a geostatistical fashion and to impose realistic constraints to such variations through conditioning on existing data. The link between the alluvium spatial variability and solute dispersion at different spatiotemporal scales is demonstrated using the stochastic-Lagrangian transport theory. We show that the longitudinal macrodispersivity can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value until after 1,000 years of traveltime.

  12. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median of 5,100 feet squared per day. Water in storage in the alluvium was estimated to be approximately 200,000 acre-feet. The amount of water annually recharging the aquifer was estimated to be approximately 4,800 acre-feet. Specific conductance for all water samples ranged from 161 to 6,650 microsiemens per centimeter. Median specific conductance for the alluvium was 683 microsiemens per centimeter and for the terrace deposits was 263 microsiemens per centimeter. Dissolved-solids concentrations, estimated from specific conductance, for water samples from the aquifer ranged from 88 to 3,658 milligrams per liter. Estimated median dissolved- solids concentration for the alluvium was 376 milligrams per liter and for the terrace deposits was 145 milligrams per liter. More than half of the samples from the Quaternary aquifer were estimated to contain less than 500 milligrams per liter dissolved solids. Field-screened nitrate concentrations for the sampling in December 2001-August 2002 ranged from 0 to 15 milligrams per liter. The field-screened nitrate concentrations for the second sampling in September 2002 were less than corresponding laboratory reported values.

  13. Profiling of late Trias-early Quaternary surface in the Eskisehir basin using microtremors

    NASA Astrophysics Data System (ADS)

    Tn, Muammer; Pekkan, Emrah; zel, O?uz

    2015-04-01

    Earthquakes in our country and in the world cause damage and collapse of engineering structures due to several reasons. Settlement areas are under the effect of strong and long-duration seismic vibrations due to resonance and focusing effects. In this study, we propose the first approximation for thickness of Quaternary sediment and late Trias topography for the Eskisehir basin in microtremor methods. The 3-D basin structures and site resonance frequencies in the Eski?ehir Basin were investigated by geophysical measurements based on the 318 single station and 9 array sites microtremor methods situated on soft soil sediments and rock units within the study area. The microtremor data collection, processing, and interpretation of the H/V curves were carried out following the recommendations and guidelines of the SESAME consortium (Site EffectS assesment using AMbient Excitation) The signals recorded were analysed for horizontal to the vertical (H/V) spectral ratio using GEOPSY software. The H/V ratios were calculated for the frequency range 0.2 to 20 Hz, using 60 s as a time window length and removing time windows contaminated by transients. Almost of the HVSR curves on the alluvium deposits have a low-frequency peak at 0.6-0.8 Hz and a second peak at 4-10 Hz. We used the Spatial Autocorrelation (SPAC) method in Eskisehir Basin using broadband seismometers distributed in triangular arrays. We derive a power-law relationship that correlates the fundamental site resonance frequencies with the sedimentary cover thickness obtained from the seismic reflection data, borehole data and shear wave velocity data in the study area. We use this relationship to estimate bedrock depth and thickness of alluvial deposits in the Eskisehir basin. Our estimation of maximum basin depths is 650 m for the Muttalip. The thickness of quaternary sediment is 25 m for Eskisehir alluvium. The estimated thickness is used to plot digital elevation model and cross profiles correlating with geomorphology and geology of the study area. The inferred sediment-bedrock interface along a cross-section shows an half graben shaped basin with a sedimentary cover thickness reaching about 500 m at the deepest part of the Eskisehir basin.

  14. Late Miocene to Plio-Pleistocene fluvio-lacustrine system in the Karacasu Basin (SW Anatolia, Turkey): Depositional, paleogeographic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Aliek, Hlya; Jimnez-Moreno, Gonzalo

    2013-06-01

    The sedimentary record of the late Cenozoic Karacasu Basin, a long-lived continental half-graben from southwestern Turkey, is characterized by siliciclastic and carbonate deposits. Sedimentation was controlled by an active NW-SE trending major normal fault along the basin's southern margin and by climatically-induced lake-level changes. Detailed facies analysis subdivides the entire Neogene-Quaternary basin-fill into three distinct litostratigraphic units representing paleogeographic changes and sedimentation patterns throughout the basin evolution. Sedimentation commenced in the late Miocene with the deposition of proximal-medial alluvial fan and fluvial facies (Damdere Formation; FA1). At this stage, alluvial fans developed in elevated areas to the south, prograding towards the basin center. At the beginning of the Pliocene, fresh to slightly alkaline, shallow lake deposits (FA2a) of the Karacaren Formation formed. The lake became open and meromictic conditions developed (FA2b). Pollen data from the FA2b facies show that climate was arid to humid. Climate probably changed cyclically through time producing alternation of Artemisia steppe (cold and dry periods) and more forested vegetation (warm and wet). The open lake facies passes upwards into lake margin facies (FA2c), but it was still dominated by alkaline to slightly saline lake conditions. Sedimentation was almost continuous from the late Miocene to Pleistocene. In the early Quaternary, the basin was dissected by the re-activation of basin bounding faults. The unconformable base of the overlying Quaternary deposits (Karacasu Formation; FA3) reflected the basin's transformation from a half-graben into a full-graben system. Oxygen isotope data from carbonates show an alternation of humid climatic periods, when freshwater settings predominated, and semiarid/arid periods in which the basin hosted alkaline and saline water lakes. Neotectonic activity has rejuvenated many of the basin-bounding faults, causing development of talus aprons and local alluvial fans. The basin was progressively incised by modern rivers that have largely smoothed out the topographic relief of the graben margins. id="ab0010" The study highlights to the paleo-geography/-climatology in the east Mediterranean.

  15. Interaction of fine sediment with alluvial streambeds

    USGS Publications Warehouse

    Jobson, H.E.; Carey, W.P.

    1989-01-01

    An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. -from Authors

  16. The Irish quaternary fauna project

    NASA Astrophysics Data System (ADS)

    Woodman, Peter; Mccarthy, Margaret; Monaghan, Nigel

    Much of Ireland's Pleistocene and Early Holocene mammalian faunas are derived from a series of late 19th/early 20th century cave excavations. In many instances it would appear that the deposits containing these faunal remains were disturbed. This project assessed the chronological range of the mammalian species present in the caves using 14C dating, in particular accelerator mass spectrometry (AMS). The research has shown that (1) a wide range of mammals colonised Ireland in the period between at least 45 ka and 20 ka, with some elements surviving until close to the Last Glacial Maximum; (2) a more restricted range of species re-colonised Ireland during the Lateglacial period, with evidence for a slightly more temperature fauna being replaced by an Arctic fauna at about 11 ka; (3) certain elements of Ireland's Holocene fauna may have survived through from the Lateglacial into the Holocene; (4) there is a lack of evidence for red deer, Cervus elaphus, being present in the Early Holocene in Ireland; and (5) horse is only documented in the Irish Holocene from 4 ka. The paper also discusses the implications of the Quaternary Fauna Project for the Late Pleistocene of Ireland, the mechanism and period of colonisation of Ireland as well as the introduction of domesticates in the Mid Holocene.

  17. Quaternary megafans, large rivers and other avulsive systems: a potential "who is who" in the geological record

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.

    2012-12-01

    A fascinating discussion has been recently calling the attention of sedimentologists and geomorphologists regarding to the dominant fluvial styles preserved in the geological record. While some authors postulate that distributary (or distributive) patterns are the most important systems likely to dominate the alluvial rock record (Weissmann et al.2010, among others) others suggest that a variety of fluvial styles are remarkably preserved in the geological record, rejecting the importance of the distributary systems (such as megafans and other like fans coastal systems) (Fielding et al, 2012 among others). However, the Quaternary record of the largest depositional tracks on Earth has been not assessed in a comparative and detailed way. Here I present results from some of the most important Quaternary areas of sedimentation of the world such as the alluvial belts of the largest rivers, the largest megafans and other impressive fluvial dominated wetlands in active tectonic basins. My study is based on field work I carried out in many of the analyzed areas, a literature review and remote sensing products. Specific examples are discussed from several rivers of the Amazon basin, the Parana River, the Mississippi River, among others. Large depositional tracks in forelands, platforms and intracratonic basins such as the Chaco, the Orinoco Llanos, the Bananal and Pantanal basin, the Ucamara depression, and the Indo-Gangetic plain, which contain a variety of complex avulsive systems and megafans, are discussed. A main conclusion is that megafans and similar distributary systems, avulsive systems with a variety of channel patterns and linear fluvial belts of major rivers, have the potential for preservation in the geological record. The scarcity of purely braided systems in large rivers is noticeable and they are mainly constrained to small-medium size channels, short length piedmont courses or related to relatively small alluvial fans. Meandering and anabranching systems are dominant in large rivers while anabranching systems are characteristic of megarivers. Despite the findings above, a remarkable challenge remains to identify characteristic facies assemblages for reconstructing large rivers, as they are not clearly identified in the geological record. The scale-size limitation of the architectural characteristics of fluvial landforms and the floodplain complexity of large systems are some of the challenges that need additional research when looking for analogs in the sedimentary record. References: Fielding, Christopher R., Ashworth, Philip J., Best, James L., Prokocki, EricW., Smith, Gregory H. Sambrook, (2012). Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record?, Sedimentary Geology doi: 10.1016/j.sedgeo.2012.03.004 Weissmann, G.S., Hartley, A.J., Nichols, G.J., Scuderi, L.A., Olson, M., Buehler, H., Banteah, R., 2010. Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology 38, 39-42

  18. Late Quaternary Blind Thrust Faults along the Southern Margin of the Cul-de-Sac Plain, Haiti: A Newly Recognized Seismic Source?

    NASA Astrophysics Data System (ADS)

    Briggs, R. W.; Prentice, C. S.; Crone, A. J.; Gold, R. D.; Hudnut, K. W.; Narcisse, R.

    2012-12-01

    Joint inversion of geologic, geodetic, and seismologic data showed that most of the moment release associated with the 2010 M 7.0 Haiti earthquake occurred on a blind thrust fault, the Logne fault, adjacent to the transpressional plate-bounding Enriquillo-Plantain Garden fault (EPGF). Preliminary geomorphic and stratigraphic analysis of folded alluvial-fan deposits north of the EPGF and beneath and directly east of Port-au-Prince suggests that they have a similar style and orientation to the structure or structures associated with the 2010 earthquake. A series of east-southeast-trending, unnamed, low hills extend across the southern Cul-de-Sac Plain adjacent to a right bend in the EPGF. The hills are the surface expression of doubly-plunging folds that trend approximately 285, or 15-25 more northwesterly than the neighboring EPGF. We used optical imagery and LiDAR topographic data to identify two main fold belts: a western belt that spans at least 12 km of southern Port-au-Prince and Petionville and an eastern belt that extends more than 20 km from Fond Parisien to Croix-des-Bouquets. Our field reconnaissance along the eastern belt shows that these hills are cored by steeply folded to overturned alluvial-fan deposits of probable Quaternary age. Active folding has sequentially deflected north-flowing drainages, and wind gaps indicate that the folding was sufficiently active to defeat drainages and deform river channels. When folding defeated the drainages, lacustrine sediment locally ponded against the south flank of the folds. In an unnamed drainage about 2 km west of Ganthier, charcoal from a 10-m-thick section of interbedded fluvial and ponded lacustrine sediments yielded a calibrated radiocarbon age of 4978 158 cal. yr B.P. We speculate that the base of each fine-grained lacustrine section may be an event horizon corresponding with an earthquake that rejuvenated the fold; however, more detailed mapping of these sediments is needed to test this hypothesis. In summary, the overall geomorphic expression of the folds in the broad, gently north-sloping Cul-de-Sac Plain is suggestive of late Quaternary activity. Because the folds are similar in orientation and style to the Logne fault and are located in similar positions north of the EPGF, they are likely underlain by blind thrust faults, and thus may represent additional earthquake sources that should be considered in seismic-hazard assessments for Port-au-Prince.

  19. Fire, Holocene Climate Change, and Geomorphic Response Recorded in Alluvial Fan Sediments

    NASA Astrophysics Data System (ADS)

    Pierce, J. L.; Meyer, G. A.

    2004-12-01

    Alluvial fan stratigraphic sequences record fire history in charcoal-rich deposits and buried burned soil surfaces. Deposit characteristics provide information about the magnitude of fire-related sedimentation events and severity of associated fires, and radiocarbon-dating of charcoal establishes the timing of fires. Unlike lakes, alluvial fans are ubiquitous in mountain environments. Although alluvial-fan fire records lack the annual resolution of tree-ring records, compilation of data from many alluvial fan sites provides a statistical sample of fire timing and approximate severity that can be related to climate variations over centennial to millennial timescales. We examine alluvial fan records from xeric Pinus ponderosa-dominated forests of central Idaho, and compare them with similar records from cooler, high-elevation Pinus contorta-dominated forests of Yellowstone National Park. Identification of charcoal macrofossils from Idaho fan deposits limits inbuilt age errors in radiocarbon dating, and shows that similar forest compositions have existed over the last ca. 4000 years in the fan drainage basins. Limited data from ca. 4000-7000 yr ago suggest that Pinus ponderosa was either sparse or absent in the 4 basins represented. Large fire-related debris flows in both Idaho and Yellowstone indicate severe fires during the ca. 1050-750 cal yr BP Medieval Climatic Anomaly (MCA), which included widespread and severe western US droughts. Another such episode 2700-1600 cal yr BP is less prominent in the Idaho record. Numerous small, fire-induced sedimentation events in Idaho ca. 350-500 (Little Ice Age), 1200-1400, and 2800-3000 cal yr BP likely indicate frequent low- to mixed-severity fires, and coincide with indicators of generally cool, moist conditions in the western USA and North Atlantic, and with minimal fire activity in Yellowstone. We infer that these effectively wetter periods allow greater grass growth, fueling frequent surface fires in ponderosa forests, but limiting fires in general in the effectively wetter forests of Yellowstone. Maxima in dated small events may relate to significant droughts within these intervals, e.g. in the late AD 1500s, but widespread severe fires are not indicated. Alluvial-fan records add to data from other charcoal-based proxy records of fire that indicate the importance of centennial- to millennial-scale climate change in modulating fire activity and geomorphic response in conifer forests over the Holocene.

  20. From incision to infill: What a Late Quaternary valley system records?

    NASA Astrophysics Data System (ADS)

    Maselli, V.; Asioli, A.; Trincardi, F.; Ceregato, A.; Rizzetto, F.; Taviani, M.

    2014-12-01

    Erosional sequence boundaries and incised valleys buried in modern continental shelves represent the response of alluvial and coastal systems to Quaternary sea level oscillations. The study of the processes leading to valley incision reveals, at both regional and global scales, the influence of tectonics and eustatism on the evolution of fluvial landforms in coastal plains, while the sedimentary infill of the valley may represents one of the best archives to investigate past environmental changes. Although the time registered in the stratigraphic record represents only a small portion of the geological history, informations about the processes governing the evolution of past landscapes can be quantified by looking to erosional surfaces, where much of the time is condensed. The Manfredonia Incised Valley (southern Adriatic Sea), is a very interesting case of valley as it formed during a single episode of incision related to the last glacial sea level fall and was completely filled during the post-glacial sea level rise. The inverse-funnel shape of the incision, and its confinement toward the mid-inner shelf reveal the impact of the step-wise sea level fall on preexisting coastal morphologies, in particular during the MIS5-4 and MIS3-2 transitions. The 45 m thick sedimentary succession filling the valley recorded the post-glacial sea level rise, as revealed by the upward transition from fluvial to shallow-marine deposits, and the impact of base level and high-frequency climate change on river to coastal systems. The upper 15 m of infill, in particular, consist of multiple bayhead delta progradations occurred synchronously to the formation of sapropel S1, and represent the very-shallow water equivalent of the cm-thick sapropel layers accumulated offshore in the deeper southern Adriatic basin.

  1. Orbital forcing of glacioeustasy: Evaluation of the alluvial clastic source/sink term

    SciTech Connect

    Matthews, R.K. ); Frohlich, C. )

    1990-05-01

    Orbital forcing of climate change at key latitudes has long been recognized as a probable cause of variation in continental ice budget and thereby sea level. The precession cycle, variation in tilt of the earth's axis relative to the sun, and variation in the eccentricity of the earth's orbit about the sun all affect seasonal solar insolation. The seasonal solar insolation signal at any particular latitude is complex, with periods ranging upward from 20,000 yr to hundreds of thousands of years, Further, nonlinear responses of the earth system (e.g., slow buildup and rapid destruction of continental ice sheets) can convert modulation of short-period signal into long-period sea level variation. The alluvial valley/floodplain can be an important factor in sand supply to the marine environment. The alluvial system is constantly linked to the marine depositional system by sea level. With rising sea level, the alluvial system may store sand, thus depriving the marine system. With falling sea level, incisement may release sand previously sequestered in the alluvial system. To investigate these relationships in the context of numerous, rapid, and complex glacioeustatic sea level fluctuations, the authors have incorporated into their two-dimensional forward model an interactive, model-driven alluvial source/sink sediment supply term which includes numerous user-specified parameters. Valley/floodplain geomorphic evolution includes incisement, terrace erosion, and floodplain sedimentation. Sensitivity tests suggest the system seldom reaches equilibrium for geologically reasonable parameterizations. Source/sink relations, which might be ignored if one assumed sea level to be moving slowly in one direction for long periods, can drastically modify availability of sand to the marine environment.

  2. Exploring the use of weathering indexes in an alluvial fan chronology

    NASA Astrophysics Data System (ADS)

    Hardenbicker, Ulrike; Watanabe, Makiko; Kotowich, Roberta

    2015-04-01

    Alluvial fan sediments can act as an archive of local environmental history. Two borehole cores (FN 350 cm and AG 850cm) from Holocene alluvial fans located in the Qu'Appelle Valley in southern Saskatchewan were analyzed in order to identify how changes in land use of upland catchment plateaus modified the pattern and rate of sediment delivery to the fan. Due to the lack of material for radiometric dating a chronology of depositional events within the alluvial fans was established by using lithostratigraphy data of soils and sediments. In order to establish a more detailed relative chronology we evaluated if weathering indexes (the Parker Index, the CaO/ZrO2 molar ratio, the Product Index) originally developed for studies of in situ weathering of bedrock, are suitable to assess sediment weathering within alluvial fan sediments. To quantify the degree of weathering within the sediment samples the three indexes of weathering were calculated using the proportions of elements measure by Energy Dispersive X-ray Spectroscopy and there is an inverse relationship between weathering index and sample age. For further statistical analyses the fan sediments were classified into three groups: a sheet flow facies of well sorted silt loam and sandy loam textures, bed load facies characterized by high sand and gravel content and layers with high organic matter in combination with higher clay content indicative of in situ weathering and soil development. First results show that the Product Index may be the most suitable weathering index to indicate weathering or input of less weathered sediment within the sheet flow and bed load facies. In general, the weathering indexes do not take into account complexities of the weathering processes nor the overall environmental conditions in an alluvial fan. But chemical weathering indexes accompanied by geophysical and geo-chemical information have value, especially when the amount of sample material is limited.

  3. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes.

  4. Long-term interactions between man and the fluvial environment - case of the Diyala alluvial fan, Iraq

    NASA Astrophysics Data System (ADS)

    Heyvaert, Vanessa M. A.; Walstra, Jan; Mortier, Clément

    2014-05-01

    The Mesopotamian alluvial plain is dominated by large aggradading river systems (the Euphrates, Tigris and their tributaries), which are prone to avulsions. An avulsion can be defined as the diversion of flow from an existing channel onto the floodplain, eventually resulting in a new channel belt. Early civilizations depended on the position of rivers for their economic survival and hence the impact of channel shifts could be devastating (Wilkinson 2003; Morozova 2005; Heyvaert & Baeteman 2008). Research in the Iranian deltaic part of the Mesopotamian plain has demonstrated that deliberate human action (such as the construction of irrigation canals and dams) triggered or obstructed the alluvial processes leading to an avulsion on fluvial megafans (during preconditioning, triggering and post-triggering stages) (Walstra et al. 2010; Heyvaert et al. 2012, Heyvaert et al.2013). Thus, there is ample evidence that the present-day alluvial landscapes in the region are the result of complex interactions between natural and anthropogenic processes. Here we present a reconstruction of the Late Holocene evolution of the Diyala alluvial fan (one of the main tributaries of the Tigris in Iraq), with particular attention to the relations between alluvial fan development, changes in channel pattern, the construction of irrigation networks and the rise and collapse of societies through historic times. The work largely draws on the use of remote sensing and GIS techniques for geomorphological mapping, and previously published archaeological field data (Adams 1965). By linking archaeological sites of known age with traces of ancient irrigation networks we were able to establish a chronological framework of alluvial activity of the Diyala alluvial fan. Our results demonstrate that centralized and technologically advanced societies were able to maintain a rapidly aggradading distibutary channel system, supplying water and sediment across the entire alluvial fan. As a consequence, during these periods (Parthian, Sasanian and again in modern times), significant human modification of the landscape took place. Periods of societal decline are associated with reduced human impact and the development of a single-threaded incising river system. Adams, R.M. (1965). Land behind Baghdad: A history of settlement on the Diyala plains. University of Chicago Press, Chicago, Illinois. Heyvaert, V.M.A. & Baeteman, C. (2008). A Middle to Late Holocene avulsion history of the Euphrates river: a case study from Tell ed-D-er, Iraq, Lower Mesopotamia. Quaternary Science Reviews, 27, 2401-2410. Heyvaert, V. M. A., Walstra, J., Verkinderen, P., Weerts, H. J. T. & Ooghe, B. (2012). The role of human interference on the channel shifting of the river Karkheh in the Lower Khuzestan plain (Mesopotamia, SW Iran). Quaternary International, 251, 52-63. Heyvaert, V.M.A., Walstra, J., Weerts, H.J.T. (2013). Human impact on avulsion and fan development in a semi-arid region: examples from SW Iran. Abstractbook of the 10th International Fluvial Sedimentology Conference, July 2013,Leeds, United Kingdom. Morozova, G.S. (2005). A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology, 20, 401-423. Walstra, J., Heyvaert, V. M. A. & Verkinderen, P. (2010). Assessing human impact on alluvial fan development: a multidisciplinary case-study from Lower Khuzestan (SW Iran). Geodinamica Acta, 23, 267-285. Wilkinson, T.J. (2003). Archaeological Landscapes of the Near East. The University of Arizona Press, Tucson, Arizona.

  5. Hydraulic geometry of meandering, alluvial sand-bed streams: the roles of washload, vegetation and natural bank armoring

    NASA Astrophysics Data System (ADS)

    Parker, G.; Eke, E.

    2011-12-01

    The great majority of single-channel meandering, alluvial sand-bed streams have well-vegetated floodplains. The channel and floodplain co-evolve by means of migration and floodplain deposition. Natural armoring of eroding banks due to e.g. slump blocks, vegetal encroachment on point bars and overbank deposition of washload all play roles in establishing hydraulic geometry. Here we present a first model that includes these factors.

  6. Are the topsoil structures relevant indicators of alluvial soil evolution ?

    NASA Astrophysics Data System (ADS)

    Salom, Clmence; Le Bayon, Rene.-Claire; Guenat, Claire; Hallaire, Vincent; Bullinger Weber, Graldine; Verrecchia, Eric

    2010-05-01

    Floodplains contain a wide range of all steps of soil evolution, which are relevant in order to study the initial steps of soil structuring. Alluvial soils exhibit characteristics of both sediment and / or inherited soil deposition, and in situ soil formation resulting in different types of soil structure, especially in the topsoil layers. In calcareous alluvium deposits, the structuration processes of the topsoil are fast resulting in different structures. In this context, our aim is to verify if these topsoil structures, at macroscopic and microscopic scales, are relevant indicators of in situ soil evolution in a carbonate-rich and calcium saturated environment. We hypothesise that along a soil-vegetation stabilisation gradient both macroscopic and microscopic structures of topsoil reflect this in situ soil evolution. Along this evolutionary gradient the type of structure changes and becomes more stable and widespread within the topsoil. We characterize the topsoil structure in three different vegetation types from the pioneer stage (willow vegetation) on new sediment deposits (carbonate-rich FLUVIOSOLS BRUTS according to the Sound Reference base for soils, 1998) to mature forests (beech, ash, spruce) on stable soils (carbonate-rich FLUVIOSOLS TYPIQUES) at three different altitudes (subalpine to hill levels). In order to evaluate the heterogeneity within each site and between them three replicates are made resulting in a total of 27 soil samples. At the macroscopic scale, topsoil structure is described based on morphological and macroscopic descriptions (humus form, type and size of structure) as well as structure stability (Mean Weight Diameter, MWD) and water stable macro aggregates (WSA%) according to Kemper and Rossenau (1986). At the microscopic scale, polished slabs (dimension of 7cm X 10 cm and 0.5 cm in thickness) are used to quantify pore space using a morphological approach and 2D image analysis. After binarization of the image, leading to the detection and quantification of the soil porosity, a multi fractal algorithm is applied in order to characterize the pores by the slope value of the regression line between the frequencies and their associated amplitudes. In addition, the pore size distribution is described using moments of the third and the fourth orders applied on the pore cumulative curve (pore size vs frequency). These holistic parameters of the structure can be compared with other evolution indicators (e.g. vegetation stage, soil type, structural stability) and are pertinent to evaluate the stage of the humiferous topsoil evolution. They can be considered as relevant indicators of in situ alluvial soil evolution.

  7. Quaternary geology of the Bellevue area in Blaine and Camas Counties, Idaho

    USGS Publications Warehouse

    Schmidt, Dwight Lyman

    1962-01-01

    The Bellevue area covers about 350 square miles of a foothill belt between the Rocky Mountains to the north and the Snake River plains to the south. Complexly deformed impure quartzites and limestones of the Mississippian Milligen and Pennsylvanian-Permian Wood River formations were intruded by large bodies of quartz diorite and granodiorite along regional structures trending northwesterly; the intrusions are part of the Cretaceous Idaho batholith. Erosional remnants of the Challis volcanics, dominantly latitic to andesitic in composition and early(?) to middle Tertiary in age, rest unconformably on the older rocks. A sequence of Pliocene Rhyolitic ash flows and basaltic lava flows unconformably overlies the Challis and older rocks and is in turn unconformably overlain by olivine basalt of late Pliocene or early Quaternary age. The main valleys of the area, partly Erosional and partly structural in origin, are underlaind by late Quaternary olivine basalt flows (Snake River basalt) and intercalated lacustrine, fluvial, proglacial sediments. The Big Wood River, the master stream of the area, flows southward through a narrow steep-sided valley in the mountainous country north of the Bellevue area and debouches into a broad alluvial valley, the Wood River Valley, in the foothill belt. The valley has the shape of an isosceles triangle with a ten mile long, east-west base consisting of a ridge of Pliocene volcanics which separates the valley from the Snake River Plains to the south. The river now flows through a narrow gap in the southwest corner of the triangle. A similar, but wider, gap around the east end of the ridge was formerly occupied by the river. The river has been shifted back and forth between these two gaps at least four times during an interval in which six late Quaternary basalt flows erupted in the Bellevue area. Two of the flows caused direct diversion of the river and another was influential in bringing about a diversion on an aggradational fan upstream from the lava dam. Just prior to the Bull Lake stage the river, flowing out the east gap, was blocked but not diverted by the youngest basalt flow in the Bellevue area. During the proglacial aggradation, the river shifted widely on its fan and spilled alternatively out both the east and west gaps. After the Bull Lake stage, the west gap had an advantageous base level relative to the lava-blocked east gap, and the river cut down in the west gap. After the second, Pinedale, proglacial aggradation in the Wood River Valley, the west gap still maintained an advantageous base level, and the river again cut down in the west outlet valley where it remains today. Periglacial deposits completely dominate the sidestream valleys of the Bellevue area. They formed under a rigorous climate during the Pinedale stage, when slope erosion accelerated by frost activated processes caused aggradation of valley floors by local detritus. Even at present the larger sidestreams are so choked with detritus that the streams have not regained control of their valley floors. Recent basalt, comparable in age to the younger flows of the Craters of the Moon National Monument, spread from a rugged, cratered vent several miles south of the Bellevue area. Using degree of weathering, erosion, and soil development as a basis of comparison, this flow provides and end point for estimating the relative ages of the six late Quaternary flows in the Bellevue area.

  8. Possible Late Quaternary faulting in the Benton Hills, southeastern Missouri

    SciTech Connect

    Palmer, J.R.; Hoffman, D. . Dept. of Natural Resources)

    1993-03-01

    Geologic mapping in the 1930's by Dan Stewart and Lyle McManamy identified numerous faults in the Thebes Gap area of the Benton Hills, including two post-late Quaternary faults (max. of 10 m displacement) along the southeastern escarpment. Recent geologic mapping (Richard Harrison, pers. comm.) suggests dextral strike-slip displacement on most of these faults; some deformation post-dates the Pliocene-Pleistocene Mounds gravel. Small historical earthquake epicenters have been recorded in the Benton Hills area. Review of these data and analysis of the geologic and structural relationships to small- and large-scale drainage and alluvial features suggest tectonic control of the southeastern escarpment of the Benton Hills. The authors propose the coincidence of geologic structures and landforms resembles tectonically active alluvial basin margins, with the Benton Hills southeastern margin representing a fault block uplift escarpment. Future seismic reflection, drilling and trenching studies are planned to determine if the escarpment is fault controlled and of recent origin.

  9. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas.

    PubMed

    Amalfitano, S; Del Bon, A; Zoppini, A; Ghergo, S; Fazi, S; Parrone, D; Casella, P; Stano, F; Preziosi, E

    2014-11-15

    Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies. PMID:25165005

  10. Turkana Grits - a Cretaceous braided alluvial system in northern Kenya

    SciTech Connect

    Handford, C.R.

    1987-05-01

    Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record a major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.

  11. Dynamic Modeling of Meandering Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Lan, Yongqiang

    1990-01-01

    The migration of meandering alluvial channels is investigated theoretically, numerically, and experimentally. An equation for the rate of bank erosion is derived from a two-dimensional continuity equation for sediment transport linked with the depth-averaged dynamic flow equations. A simple one-dimensional theoretical analysis of meander migration leads to a relationship between the migration rate and the relative channel curvature and sediment properties. The simple model appropriately simulates the pattern and rate of meander expansion and migrations of the White River, Indiana and the East Nishnabotna River, Iowa. Application of the one-dimensional model to sine -generated alluvial channels indicates that meander migration reaches its maximum when the relative radius of curvature reaches about 4.8, or when the sinuosity of meander approaches 1.3. A two-dimensional numerical model, DYNAMIC, which predicts both lateral and longitudinal migration of alluvial channels is then developed, based on a system of quasi -steady depth-averaged flow dynamic equations, a sediment continuity equation, and a bank erosion equation. A linear analysis of the two-dimensional model leads to a convolutional relation between the rate of meander migration and flow and sediment properties. In the two-dimensional numerical analysis, a numerical algorithm called FLOWSOL is developed to solve the flow dynamic equations. The flow algorithm is then linked to the sediment continuity equation and bank erosion equation to simulate bed deformation and bank erosion. The developed two-dimensional model is applied to calculate the velocity profiles in Rozovskii's experiments and the bed deformation and shear stress in Hooke's experiments. Good agreement is obtained between the calculated and measured velocities, shear stresses and bed profiles in all experiments. Small scaled meandering rivers are developed successfully on a floodplain with or without cohesive materials (about 3%) in a wide recirculating flume. The lateral migration of miniature rivers under relatively constant flow discharge is documented, analyzed, and compared with simulation results by the two-dimensional numerical model.

  12. CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.

    USGS Publications Warehouse

    Simon, Andrew; Hupp, Cliff R.

    1987-01-01

    This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).

  13. Ground Penetrating Radar Imaging of the Emigrant Peak Fault Zone and Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Christie, M. W.; Tsoflias, G. P.

    2006-12-01

    Near-surface geophysical studies at the University of Kansas are investigating active faulting in the Eastern California Shear Zone. The Emigrant Peak Fault, in Fish Lake Valley, Nevada, is a normal fault that aids in the transfer of right-lateral deformation associated with the Furnace Creek/Fish Lake/Death Valley fault system of the Walker Lane Belt/Eastern California Shear Zone. During the spring and summer of 2006 we collected ground penetrating radar (GPR) across the deformed alluvial fan associated with the Emigrant Peak Fault. The GPR study is conducted in conjunction with high resolution shallow seismic and geologic investigations underway to more fully characterize the fault zone. The GPR data crosses the surface expression of the Emigrant Peak Fault and it is comprised of a 50 MHz 3-D grid and 25 MHz 2-D lines. The 3-D grid covers an area of 115m X 500m at 1m trace spacing, 5m in-line spacing and intersecting cross-lines at 50, 100, 150, 250, and 450m across the in-lines. 2-D GPR lines were acquired at coincident locations with the shallow seismic data and along a 1500m regional line over the fault and alluvial fan deposits. Depth of imaging ranged between 17m for the 50 MHz data and 25m for the 25 MHz data. GPR imaging aids in the characterization of the fault zone structurally as well as characterizing alluvial fan stratigraphy. Data shows stratigraphic reflectors on a 1m scale. Reflector geometries are quite complex, showing continuous coherent events, as well as areas that are less coherent which appear to signal a change to more boulder/cobble-rich deposition, a common characteristic in debris-flow dominated alluvial fans. The reflectors are also heavily influenced by the structural components that are imaged. The GPR shows a number of west-dipping faults that seem to migrate towards the basin. The faults are not imaged merely as interrupted reflectors, but the fault surfaces are actually imaged. Stratigraphic reflectors truncate at the faults in many instances. Some of the reflectors do not truncate, but instead roll-over into steeply dipping reflectors. The GPR data shows that not only is it useful for determining the near-surface stratigraphy of alluvial fans, but is very useful in determining the shallow structures associated with normal fault deformation in the alluvial fan as well as imaging the fault surface.

  14. Alluvial and bedrock aquifers of the Denver Basin; eastern Colorado's dual ground-water resource

    USGS Publications Warehouse

    Robson, Stanley G.

    1989-01-01

    Large volumes of ground water are contained in alluvial and bedrock aquifers in the semiarid Denver basin of eastern Colorado. The bedrock aquifer, for example, contains 1.2 times as much water as Lake Erie of the Great Lakes, yet it supplies only about 9 percent of the ground water used in the basin. Although this seems to indicate underutilization of this valuable water supply, this is not necessarily the case, for many factors other than the volume of water in the aquifer affect the use of the aquifer. Such factors as climatic conditions, precipitation runoff, geology and water-yielding character of the aquifers, water-level conditions, volume of recharge and discharge, legal and economic constraints, and water-quality conditions can ultimately affect the decision to use ground water. Knowledge of the function and interaction of the various parts of this hydrologic system is important to the proper management and use of the ground-water resources of the region. The semiarid climatic conditions on the Colorado plains produce flash floods of short duration and large peak-flow rates. However, snowmelt runoff from the Rocky Mountains produces the largest volumes of water and is typically of longer duration with smaller peak-flow rates. The alluvial aquifer is recharged easily from both types of runoff and readily stores and transmits the water because it consists of relatively thin deposits of gravel, sand, and clay located in the valleys of principal streams. The bedrock aquifer is recharged less easily because of its greater thickness (as much as 3,000 feet) and prevalent layers of shale which retard the downward movement of water in the formations. Although the bedrock aquifer contains more than 50 times as much water in storage as the alluvial aquifer, it does not store and transmit water as readily as the alluvial aquifer. For example, about 91 percent of the water pumped from wells is obtained from the alluvial aquifer, yet water-level declines generally have not exceeded 40 feet. By contrast, only 9 percent of the water pumped from wells is obtained from the bedrock aquifer, yet water-level declines in this aquifer have exceeded 500 feet in some areas. Depth to water in the alluvial aquifer generally is less than 40 feet, while depth to water in the bedrock aquifer may exceed 1,000 feet in some areas. Cost of pumping water to the surface and cost of maintaining existing supplies in areas of rapidly declining water levels in the bedrock aquifer affect water use. Water use is also affected by the generally poorer quality water found in the alluvial aquifer and, to a lesser extent, by the greater susceptibility of the alluvial aquifer to pollution from surface sources. Because of these factors, the alluvial aquifer is used primarily as a source of irrigation supply, which is the largest water use in the area. The bedrock aquifer is used primarily as a source of domestic or municipal supply, which is the smaller of the two principal uses, even though the bedrock aquifer contains 50 times more stored ground water than the alluvial aquifer.

  15. Morphostratigraphy, Chronostratigraphy, and Evolution of Alluvial Terraces Within the Kansas River Valley, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Johnson, W. C.

    2011-12-01

    The Kansas River valley, located in the Central Great Plains, is an important locale for studying the relationships between climate and river evolution because, unlike other Great Plains rivers, i.e., the Missouri, Platte, and Arkansas, it and its tributaries lie entirely within the Great Plains. Four terraces are formally recognized within the Kansas River valley: the Menoken, Buck Creek, Newman, and Holliday; however, little is known of their stratigraphy and chronology of formation. To increase our understanding, these terraces were mapped and stratigraphic and chronologic evaluations were conducted, yielding new data on the evolution and history of the Kansas River. Oldest and highest of the terraces (T4) is the Menoken, with fill consisting of a thick, clay-rich diamicton hypothesized to have formed from fluvially reworked glacial sediments deposited during a Pre-Illinoian glacial stage. Independent, but limited, age control based on the presence of Lava Creek B ash found within the terrace provides a maximum limiting age of ~620 ka. Mantling the Menoken Terrace are isolated aeolian dunes constructed of sand winnowed from the Kansas River floodplain following Menoken deposition. Optical dating documents this deposition during MIS 3, between 36 and 31 ka. About 15 m below the Menoken is the Buck Creek (T3), a late-Pleistocene feature. This terrace is characterized by thick, fine-grain deposits, which were deposited prior to ~ 15 ka. Some data suggest that the Buck Creek may contain a sandy unit in the upper reaches of the river valley, and unpublished AMS 14C ages place this sand deposition after ~ 40 ka. Holocene river evolution has resulted in two terraces. The Newman (T2), older of the two, is the most extensive of all terraces in the river valley and is characterized by a thick basal soil formed at ~ 14-10 ka, and overlying Holocene alluvial sediments and soils. Most recent intrenchment produced the Holliday terrace (T1), which is the youngest of the alluvial terraces and is elevated only two meters above the modern floodplain (T0). The Holliday is predominantly comprised of sandy alluvial packages interspersed between weak floodplain (soil) deposits. In addition, the Holliday is morphologically distinct from the other terraces in that it is comprised primarily of meander scars. AMS 14C ages from the Holliday suggest alluviation occurred within the last 3.5 k years with limited entrenchment occurring ~ 1.2 ka.

  16. High-quality quaternary AlInGaN epilayers on sapphire

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Egawa, Takashi; Ishikawa, Hiroyasu; Jimbo, Takashi

    2003-11-01

    Quaternary AlInGaN epilayers were grown on sapphire substrates by atmospheric pressure metalorganic chemical vapour deposition (MOCVD). The characterization data indicate that the grown quaternary AlInGaN epilayers are of high-quality. The influence of indium incorporation on the properties of quaternary epilayers were studied. The PL spectra of the quaternary layers showed narrow full-width at half-maximum (FWHM) values (52 meV) at room temperature, which are comparable to that of GaN. The X-ray rocking curves of quaternary layers for (0004) diffraction exhibited narrow FWHM values ranged from 250 to 280 arcsec. To the best of our knowledge, these are the best results among those published in the literature. (

  17. Alluvial dolines in the central Ebro basin, Spain: a spatial and developmental hazard analysis

    NASA Astrophysics Data System (ADS)

    Soriano, Mara Asuncon; Simn, JosLuis

    1995-03-01

    Alluvial dolines are abundant in Quaternary terraces and pediments overlying Neogene gypsum in the Zaragoza area (central Ebro basin). Spatial analysis and experimental simulation show that sulphate content in the groundwater, grain size of the detrital cover, topography of the Tertiary/Quaternary boundary, annual variation of the water table and thickness of the detrital cover are the main factors controlling their development. Taking into account these variables a theoretical spatial hazard model has been elaborated, expressed as a mathematical equation and a hazard map. Both experiments and field data show a high correspondance between two basic mechanisms of evacuation and subsidence (dragging slow subsidence and collapse of cavities) and two basic types of morphology and internal structure of dolines (basin doline funnel structure and well doline vault structures, respectively). A genetic classification of dolines and some evolutionary patterns based on these criteria are developed. Historical changes observed in doline distribution, as well as field surveys of urban damage and microtopographic profiles allow us to evaluate the present day activity of dolines. Local subsidence rates measured in urban areas range from 2.5 to 10 cm/year, although doline generation and reactivation in the whole area tend to be compensated by filling by human activity.

  18. Southern Dobrogea coastal potable water sources and Upper Quaternary Black Sea level changes

    NASA Astrophysics Data System (ADS)

    Caraivan, Glicherie; Stefanescu, Diana

    2013-04-01

    Southern Dobrogea is a typical geologic platform unit, placed in the south-eastern part of Romania, with a Pre-Cambrian crystalline basement and a Paleozoic - Quaternary sedimentary cover. It is bordered to the north by the Capidava - Ovidiu fault and by the Black Sea to the east. A regional WNW - ESE and NNE - SSW fault system divides the Southern Dobrogea structure in several tectonic blocks. Four drinking water sources have been identified: surface water, phreatic water, medium depth Sarmatian aquifer, and deep Upper Jurassic - Lower Cretaceous aquifer. Surface water sources are represented by several springs emerged from the base of the loess cliff, and a few small rivers, barred by coastal beaches. The phreatic aquifer develops at the base of the loess deposits, on the impervious red clay, overlapping the Sarmatian limestones. The medium depth aquifer is located in the altered and karstified Sarmatian limestones, and discharges into the Black Sea. The Sarmatian aquifer is unconfined where covered by silty loess deposits, and locally confined, where capped by clayey loess deposits. The aquifer is supplied from the Pre-Balkan Plateau. The Deep Upper Jurassic - Lower Cretaceous aquifer, located in the limestone and dolomite deposits, is generally confined and affected by the regional WNW - ESE and NNE - SSW fault system. In the south-eastern Dobrogea, the deep aquifer complex is separated from the Sarmatian aquifer by a Senonian aquitard (chalk and marls). The natural boundary of the Upper Jurassic - Lower Cretaceous aquifer is the Capidava - Ovidiu Fault. The piezometric heads show that the Upper Jurassic - Lower Cretaceous aquifer is supplied from the Bulgarian territory, where the Upper Jurassic deposits crop out. The aquifer discharges into the Black Sea to the east and into Lake Siutghiol to the northeast. The cyclic Upper Quaternary climate changes induced drastic remodeling of the Black Sea level and the corresponding shorelines. During the Last Glacial Maximum (MIS 2), the shoreline retreats eastwards, reaching the 100-120 m isobaths. In these conditions, the surface drainage base level was very low. Phreatic nape closely followed the river valleys dynamics. Mean depth aquifer discharged on the inner shelf , where Sarmatian limestones outcrop. The deep aquifer discharge was restricted by the Capidava- Ovidiu Fault to the north-east and by a presumed seawards longitudinal Fault. This process enabled the migration of the prehistoric human communities, from Asia to Europe, who established settlements on the newly created alluvial plain on the western Black Sea shelf. The Holocene Transgression (MIS 1) determined a sea level rise up to the modern one, and probably higher. Under the pressure of these environmental changes, the Neolithic settlements slowly retreated upstream. During the Greek colonization, the rising sea level caused the salinisation of the previous drinking water phreatic sources. In these conditions, in the Roman Age, a new hydraulic infrastructure had to be developed, using aqueducts for available inland water delivery.

  19. Tomographic imaging of late Quaternary faulting, Oquirrh Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Mattson, Ann

    2004-11-01

    Seismic tomography can be used to image colluvial material in the subsurface by inverting first arrival travel times for velocity. Colluvial material deposited at the base of a fault-scarp free face often appears as a low-velocity zone (LVZ) on a tomogram because it is generally less compacted and cemented than the surrounding alluvium. A tomogram generated from a forward model of a synthetic velocity structure successfully images two LVZs stacked in the hanging wall of a normal fault. The Mercur fan, Oquirrh Mountains, Utah, provides an opportunity to look for stacked LVZs in a distributed fault zone. Three tomographic images across fault scarps on an intermediate age alluvial fan can be used to identify two stacked low-velocity zones. Interpretation of a fourth tomogram is less conclusive. These two low-velocity zones are interpreted as colluvial packages separated by higher-velocity alluvial material and suggest that tectonic activity is interspersed with pulses of fan building.

  20. Macro-roughness model of bedrock-alluvial river morphodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Stark, C. P.; Inoue, T.; Viparelli, E.; Fu, X.; Izumi, N.

    2015-02-01

    The 1-D saltation-abrasion model of channel bedrock incision of Sklar and Dietrich (2004), in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise to unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation that specifically tracks the spatiotemporal variation in both bedload transport and alluvial thickness. It does so by relating the bedrock cover fraction to the ratio of alluvium thickness to bedrock macro-roughness, rather than to the ratio of bedload supply rate to capacity bedload transport. The new formulation (MRSAA) predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances, and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection-diffusion of a sediment pulse over an alluvial bed. A solution for alluvial-incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, thus blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial-bedrock reach downstream migrates upstream in the form of a "hidden knickpoint". A tectonically more complex case of rock uplift subject to a localized zone of subsidence (graben) yields a steady-state solution that is not attainable with the original saltation-abrasion model. A solution for the case of bedrock-alluvial coevolution upstream of an alluviated river mouth illustrates how the bedrock surface can be progressively buried not far below the alluvium. Because the model tracks the spatiotemporal variation in both bedload transport and alluvial thickness, it is applicable to the study of the incisional response of a river subject to temporally varying sediment supply. It thus has the potential to capture the response of an alluvial-bedrock river to massive impulsive sediment inputs associated with landslides or debris flows.

  1. Macro-roughness model of bedrock-alluvial river morphodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Stark, C. P.; Inoue, T.; Viparelli, E.; Fu, X.; Izumi, N.

    2014-05-01

    The 1-D saltation-abrasion model of channel bedrock incision of Sklar and Dietrich, in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation which specifically tracks the spatiotemporal variation of both bedload transport and alluvial thickness. It does so by relating the cover fraction not to a ratio of bedload supply rate to capacity bedload transport, but rather to the ratio of alluvium thickness to a macro-roughness characterizing the bedrock surface. The new formulation predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection-diffusion of a sediment pulse over an alluvial bed. A solution for alluvial-incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, so blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial-bedrock reach downstream migrates upstream in the form of a "hidden knickpoint". A solution for the case of a zone of rock subsidence (graben) bounded upstream and downstream by zones of rock uplift (horsts) yields a steady-state solution that is unattainable with the original saltation-abrasion model. A solution for the case of bedrock-alluvial coevolution upstream of an alluviated river mouth illustrates how the bedrock surface can be progressive buried not far below the alluvium. Because the model tracks the spatiotemporal variation of both bedload transport and alluvial thickness, it is applicable to the study of the incisional response of a river subject to temporally varying sediment supply. It thus has the potential to capture the response of an alluvial-bedrock river to massive impulsive sediment inputs associated with landslides or debris flows.

  2. Quaternary seismo-tectonic activity of the Polochic Fault, Guatemala

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Brocard, Gilles; Teyssier, Christian; Suski, Barbara; Cosenza, Beatriz; MorN-Ical, Sergio; GonzLez-VLiz, Claussen Walther; Aguilar-Hengstenberg, Miguel Angel; Holliger, Klaus

    2012-07-01

    The Polochic-Motagua fault system is part of the sinistral transform boundary between the North American and Caribbean plates in Guatemala and the associated seismic activity poses a threat to 70% of the country's population. The aim of this study is to constrain the Late Quaternary activity of the Polochic fault by determining the active structure geometry and quantifying recent displacement rates as well as paleo-seismic events. Slip rates have been estimated from offsets of Quaternary volcanic markers and alluvial fan using in situ cosmogenic 36Cl exposure dating. Holocene left-lateral slip rate and Mid-Pleistocene vertical slip rate have been estimated to 4.8 2.3 mm/y and 0.3 0.06 mm/y, respectively, on the central part of the Polochic fault. The horizontal slip rate is within the range of longer-term geological slip rates and short-term GPS-based estimates. In addition, the non-negligible vertical motion participates in the uplift of the block north of the fault and seems to be a manifestation of the regional, far-field stress regime. We excavated the first trench for paleo-seismological study on the Polochic fault in which we distinguish four large paleo-seismic events since 17 ky during which the Polochic fault ruptured the ground surface.

  3. Fertilizers mobilization in alluvial aquifer: laboratory experiments

    NASA Astrophysics Data System (ADS)

    Mastrocicco, M.; Colombani, N.; Palpacelli, S.

    2009-02-01

    In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.

  4. Monti Martani (umbria, Italy) Alluvial Fans: Hazards Sites and Occurrence

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Melelli, L.

    In this paper we proposed modeling and simulation approaches for testing the debris flows occurrence hypothesis. The approach is an empirically and process based, and use multiple physically-based simulations to evaluate hazard down-slope from initiation sites in alluvial fans of the Terni basin-northern area (Umbria, Italy). The northern part of the area is bounded by the M. Martani normal fault that controls the drainage network where produces a large debris piedimont deposition. The main fault scarp is cut by narrow streams that represents the dominant constructional process by three alluvial fans generations. Field-based and remote sensing observations from the area will be used to provide a sound empirical evaluation of the new landslide occurrence hypothesis. In humid, soil-mantled environments in particular, debris flow always originate in fine-scale valleys in steep, rhythmically dissected terrain. Concave planform contours define topographic swales, referred to as "hollows" in the nomenclature, that typically contain colluvial soils significantly thicker than those found on adjacent slope. Areas underlain by massive, resistant bedrock, show that the majority of debris flows originated in colluvium-filled hollows. Hollows consequently define a mappable debris flow hazard. The association of debris flow with hollows is governed by relations between sediment transport, hillslope hydrology and slope stability. Consequently, colluvial deposits in hollows are particularly susceptible to landsliding. Furthermore topographic converge also focuses subsurface runoff into hollows, so high intensity rainfall cells indicate that a lack of historic landsliding from specific hollow is by no means an indicator of future stability. The strong likelihood that the 25m resolution DEM can be used in this project means that we will have the topographic control to do more detailed modeling of hill slope hydrology to account for spatial and temporal variability in groundwater saturation on hillslopes, and the consequences for slope failure. We will use a software tools for multiflow routing of runoff given a precipitation model, a DEM, and a probabilistic model of finding pockets of colluvium on hillslopes which is demonstrated for the synthetic hillslope.

  5. Morpho-sedimentary characteristics of the Quaternary Matiali fan and associated river terraces, Jalpaiguri, India: Implications for climatic controls

    NASA Astrophysics Data System (ADS)

    Kar, Rimpal; Chakraborty, Tapan; Chakraborty, Chandan; Ghosh, Parthsarathi; Tyagi, Anil K.; Singhvi, Ashok K.

    2014-12-01

    The Matiali fan is a coarse-grained, small alluvial fan in the eastern Himalayan foothills. It co-exists side by side with the large Tista megafan and other Quaternary fluvial deposits, and has been affected by a number of young thrust faults. It is generally believed that tectonics is the main control in the deposition of these proximal fan-terrace systems. In this paper, geomorphologic and sedimentologic study of the Matiali fan and associated river terraces are combined with five OSL dates from these deposits to understand the succession of events and the forcing mechanism that shaped the geomorphology in the study area during late Quaternary time. Two aggradational terraces (T1 and T2; T2 > T1) occur within the river valleys incised on the Matiali fan. Three E-W scarps cross the fan surface, and they represent the steeper limb of the asymmetric fault-propagation folds formed over blind thrusts. These folds have deformed the fan (T3) and T2 terrace sediments, but the youngest T1 terrace deposits have remained undeformed. Sedimentological studies indicate continuous gradation from the coarsening-upwards mass-flow megagravel in the proximal part to the traction transported finer sheetflood gravels in the distal part, implying a continuous sedimentation history across the fan, uninterrupted by any evidence of syn-depositional tectonic movement. Poorly consolidated sandy gravels of the terraces indicate deposition through braided fluvial processes during a later period of sediment aggradation that filled up the incised river valleys. Previously published 14C dates indicate that deposition of the Matiali fan started around 34 ka coinciding with a period of the intensified Indian summer monsoon of MIS-3. It is suggested that the fan was abandoned and river valleys incised during the LGM between 24 and 18 ka when the discharge decreased substantially. Increased rainfall and sediment supply, with their inherent fluctuations, during wetter periods of MIS-2 and MIS-1 since 12 ka probably resulted in the aggradation of T2 and T1 as shown by our OSL dates. OSL dates from the top of deformed T2 and base of undeformed T1 indicate that the Chalsa fold formed between ~ 11 and ~ 6 ka. Succession of geomorphic and deformational events reconstructed from this study and available age data indicate that the Matiali fan and terrace aggradation coincides with periods of increased monsoonal precipitation, whereas tectonic movements along blind thrusts of Chalsa and Matiali took place later, deforming the fan and older terrace deposits. The evidence unequivocally indicates, contrary to the prevalent notion of tectonic control of geomorphic features in the proximal mountain-front setting, that the deposition of the fan-terrace system was primarily controlled by the fluctuation of the Asian summer monsoon rather than Himalayan tectonics.

  6. ERODIBILITY OF URBAN BEDROCK AND ALLUVIAL CHANNELS, NORTH TEXAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major erosion of urban stream channels is found in smaller basins in the North Texas study area with contributing drainage areas of less than ten square miles. Within these basins, four basic channel types are identified based on bed and bank lithologies: alluvial banks and bottoms, alluvial banks ...

  7. Geomorphology, internal structure and evolution of alluvial fans at Motozintla, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Snchez-Nez, J. M.; Macas, J. L.; Saucedo, Ricardo; Zamorano, J. J.; Novelo, David; Mendoza, M. E.; Torres-Hernndez, J. R.

    2015-02-01

    Alluvial fans and terraces develop in diverse regions responding to different tectonic and climatic conditions. The Motozintla basin is located in the State of Chiapas, southern Mexico and has an E-W orientation following the trace of the left-lateral Polochic Fault. The evolution of the Motozintla basin and the alluvial plain is related to several factors, such as fault movement, intense erosion by hydrometeorological events, and anthropogenic activity. This study presents the geomorphology of the alluvial plain that between the villages of Motozintla and Mazapa de Jurez exposes 31 alluvial fans, 5 hanging terraces and 13 ramps. Fourteen of these alluvial fans have been truncated by the Polochic fault, exposing maximum uplifts of ~ 12 m. The internal structure of truncated fans consists of single massive beds (monolithologic fans) or stacked beds (polygenetic fans). The fans' stratigraphy is made of debris flow deposits separated by paleosols and minor hyperconcentrated flows, fluviatile beds, and pyroclastic fall deposits. The reconstruction of the stratigraphy assisted by radiocarbon geochronology suggests that these fans have been active since late Pleistocene (25 ka) to the present. This record suggests that at least 10 events have been recorded at the fan interior during the past ~ 1840 years. One of these events at 355 65 14C yrs. BP (cal yrs. AD 1438 to 1652) can be correlated across the fans and is likely associated with an extreme hydrometeorologic event. The presence of a 165 60 14C yrs. BP (cal yrs. AD 1652-1949) debris flow deposit within the fans suggests that movement along the Polochic fault formed the fans' scarp afterwards. In fact, a historic earthquake along the fault occurred east of Motozintla on July 22, 1816 with a Mw of 7.5-7.75. Recent catastrophic floods have affected Motozintla in 1998 and 2005 induced by extreme hydrometeorological events and anthropogenic factors. Therefore, scenarios for Motozintla involved several types of mass movement processes that pose a serious hazard and threat to the inhabitants of the region.

  8. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of, both, the ground surface and the alluvial vegetation. From the acquired point cloud the following products could be derived: (i) a very high resolution Digital Terrain Model (10 cm raster), (ii) a high resolution model of the water surface of the River Pielach (especially useful for validation of topo-bathymetry LiDAR data) and (iii) a detailed description of the complex vegetation structure.

  9. Geomorphology and regional stratigraphic model of Cenozoic deposits from "Continental to Marine" of Western Peninsular Malaysia and Strait of Malacca.

    NASA Astrophysics Data System (ADS)

    Menier, David; Mansor, Yazid; Sautter, Benjamin; Pubellier, Manuel; Estournes, Guilhem; Meng Choong, Chee; Ghosh Deva, Prasad; Proust, Jean-Noel; Goubert, Evelyne

    2014-05-01

    Coastal basins have been greatly influenced worldwide by their geological heritage (lithology, structural control) and eustatic sea-level fluctuations. Along the western side of Peninsular Malaysia, both the structures of the tertiary-quaternary basement and the geomorphology are poorly known. The coast is characterized landward by an absence of tertiary deposits on the alluvial and coastal plains and seaward by numerous deeply incised valleys although the incision potential is low. Offshore, in the Strait of Malacca, the thickness of sediments increases drastically, particularly at the apex of some N-S elongated basins (> 2 Km), and in the central part of the Strait of Malacca. Onshore, the geomorphology of the Western Peninsular Malaysia is controlled mostly by climatic effects on an old (Indosinian) orogen affected by transtensional brittle tectonics during the Tertiary. We investigate the effects of Tertiary extension and associated vertical motions on the Cenozoic geomorphology and stratigraphy. The study is based on a combined morphobathymetric approach of based on GEBCO data, supported by low and recent high resolution offshore seismic data, and DTM data from ASTER and SRTM. The main results are the followings: (1) the structural control appears to be responsible of the positioning and preservation of the Tertiary deposits; while the Quaternary (marine) deposits thinner, drowned the western Malaysia Peninsular coast, independently of the geomorphological and structural context; (2) The offshore Tertiary deposits seem disconnected from the modern drainage network, suggesting probable uplift during the late Tertiary period, which reactivated NW-SE trending faults and fractures; (3) The orientation, the shape and the depth of the ancient and modern incised valleys (Perak, Kerian , Kinta rivers) are controlled by the structural context and lithological contrast; (4) Finally, from a landward to a seaward directions, the Cenozoic deposits seems to have transited via incised valleys, therefore by-passing the platform.

  10. Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.

    2006-12-01

    The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been displaced by 8-10 km from entrenched bedrock drainages north of the SAFm (North Fork Whitewater River and Hell-For-Sure Canyon). This restoration, along with restoration of 3-4 km of dextral-slip along SAFmi, leads to an integrated drainage network that extended from San Gorgonio Peak southward across the SAFm and SAFmi, through the San Timoteo drainage basin and ultimately to the Santa Ana River drainage. Following final slip on the SAFmi, which occurred between approximately 1.2 and 0.5 Ma, the 8-10 km dextral-slip reconstruction on the SAFm can be used to restore the ancestral Mission Creek drainage system, which has always flowed southeast. A large alluvial-fan complex that overlies the SAFmi strand developed where the ancestral Mission Creek River debouched into the Coachella Valley. Analysis of cosmogenic radionuclides (21Ne from quartz) from surface boulders indicates that oldest deposits in the fan complex are about 400ka old, compatible with pedogenic development on the oldest surface. Approximately 2-4 km dextral slip on the youngest strands of the SAF (Banning and Garnet Hill) represents the latest bypass of the SGP structural knot. Cumulative displacement on all strands of the SAF in the greater SGP region appears to have been no more than ~18 km since inception of the left step in the SAFmi. Regional evidence suggests that this event initiated at ~1.2Ma, leading to a Quaternary slip rate on the SAF at SGP of no more than 10-15 mm/yr.

  11. Downstream hydraulic geometry of alluvial rivers

    NASA Astrophysics Data System (ADS)

    Julien, P. Y.

    2015-03-01

    This article presents a three-level approach to the analysis of downstream hydraulic geometry. First, empirical concepts based on field observations of "poised" conditions in irrigation canals are examined. Second, theoretical developments have been made possible by combining basic relationships for the description of flow and sediment transport in alluvial rivers. Third, a relatively new concept of equivalent channel widths is presented. The assumption of equilibrium may describe a perpetual state of change and adjustments. The new concepts define the trade-offs between some hydraulic geometry parameters such as width and slope. The adjustment of river widths and slope typically follows a decreasing exponential function and recent developments indicate how the adjustment time scale can be quantified. Some examples are also presented to illustrate the new concepts presented and the realm of complex river systems.

  12. Historical Ground-Water Development in the Salinas Alluvial Fan Area, Salinas, Puerto Rico, 1900-2005

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2008-01-01

    The Salinas alluvial fan area has historically been one of the most intensively used agricultural areas in the South Coastal Plain of Puerto Rico. Changes in agricultural practices and land use in the Salinas alluvial fan have also caused changes in the geographic distribution of ground-water withdrawals from the alluvial aquifer. As a result, the ground-water balance and ground-water flow pattern have changed throughout the years and may explain the presence of saline ground water along parts of the coast at present. By providing a reconstruction of historical ground-water development in the Salinas alluvial fan area, from the initial years of aquifer development at about 1900 to the most recent conditions existing in 2005, water resources managers and planners can use the results of the analysis for a more complete understanding of aquifer conditions especially pertaining to water quality. This study effort was conducted by the U.S. Geological Survey in cooperation with the Puerto Rico Department of Natural and Environmental Resources as a contribution in the management of the Jobos Bay National Estuarine Research Reserve. The study area encompasses about 20 mi2 (square miles) of the extensive South Coastal Plain alluvial aquifer system (fig. 1). The study area is bounded to the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, and to the east and west by the Rio Nigua de Salinas and the Quebrada Aguas Verdes, respectively. Fan-delta and alluvial deposits contain the principal aquifers in the study area.

  13. Differentiating tectonic from climatic factors in the evolution of alluvial fans

    SciTech Connect

    Wilson, D.S.; West, R.B. . Dept. of Geology)

    1993-04-01

    Alluvial fans are integral parts of landscapes of arid and semi-arid regions and are most commonly found along the flanks of tectonically active mountain ranges. Alluvial fans are sensitive indicators of tectonic and climatic activity through time. Three dimensional fan modelling has the potential to discriminate between these two forces and provide quantitative estimates of deformation of fan surfaces due to tilting, faulting, or folding. The model has tremendous potential for seismic hazard evaluation at both the reconnaissance and detailed level of investigation. The ability to recognize deformation of alluvial fans alleviates the need for postulation of complex interactions between climate and internal variables in the depositional system leading to present fan morphology. The greatest problems associated with fan modelling come from failure to identify individual segments. Inclusion of more than one segment can lead to poor model performance or, more likely, inaccurate results. The long term tectonic influence on a fan's evolution can be assessed from the differences in deformation of different segments. Reliable correlations of segments from different fans along the same mountain front can provide a means to asses regional deformation. Once tectonic effects are taken into account, then climatic effects can be evaluated. Previous fan models have failed to recognize areal limitations, failed to account for deformation, or assumed deformation geometry.

  14. Large Well-Exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early-Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters greater than or equal to 70 kilometers in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 degrees S and 30 degrees S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  15. Abo Formation alluvial facies and Associated Basin Fill, Sacramento Mountains, New Mexico

    SciTech Connect

    Speer, S.W.

    1986-03-01

    Outcrops of the Abo Formation (Wolfcampian to early Leonardian age) in the Sacramento Mountains of south-central New Mexico record the evolution of a dry alluvial fan system as it was deposited off the pedernal uplift into the Orogrande basin. The location and orientation of present-day outcrops allow us to observe an inferred east-to-west transverse facies tract consisting of: (1) proximal alluvial fans (lower Abo), which are contiguous in places with underlying Laborcita Formation fan-deltaic sediments; (2) medial anastomosed streams (middle Abo); and (3) distal low-gradient mud-dominated flood basins characterized by either distributary streams (upper Abo) or clastic tidal flats (Lee Ranch Tongue of the Abo) with associated marine carbonates (Pendejo Tongue of the Hueco Formation). Tectonism in the Pedernal highlands, which climaxed during the Late Pennsylvanian, apparently continued well into the Wolfcampian in this region, as evidenced by a major basal Abo unconformity and distinct stacked megasequences of lower Abo alluvial fan lithofacies. However, by the middle Abo, tectonic activity had quiesced and the uplift began eroding and retreating to the north and east. By the late Abo, a pediment surface had formed that was subsequently onlapped by upper Abo and eventually Yeso Formation sediments.

  16. Large Well-exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A.D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early- Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters = 70 km in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 deg S and 30 deg S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  17. Zircon geochronology of loess and alluvial sediment: implications for provenance of modern soils of Middle Tennessee

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ayers, J. C.; Katsiaficas, N. J.

    2014-12-01

    Soils in Middle Tennessee are commonly observed on limestone bedrock. However, comparison of zircon U-Pb age spectra of soil and bedrock (Ayers and Katsiaficas, unpublished data) suggests that there is a small but significant exotic (externally derived) zircon component. Potential sources of exotic zircon include loess and alluvial sediments. In western Tennessee the Roxana Silt was deposited 38-53 ka and the Peoria Loess 18-25 ka. Detrital zircon U-Pb geochronology is a direct and effective way to test the possibility of loess as a contributor to the source material of the soil. According to Aleinikoff et al. (2008), loess from Colorado and Nebraska have young detrital zircon age peaks at ~34Ma. If this is also true for the loess in Tennessee, it may explain the ~33 Ma age peak found in one of the three studied soil samples. To identify the source of the exotic zircon found in middle TN soils, zircon age spectra will be measured for Roxana Silt, Peoria Loess, and alluvial sediments from the Harpeth and Cumberland Rivers. The loess samples were collected near Memphis, TN, while the alluvial sediments were collected near the soil sample sites.

  18. Estimation of hydraulic conductivity in an alluvial system using temperatures

    USGS Publications Warehouse

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  19. Comment on “The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site, by David Lang et al. Quaternary Science Reviews 93: 125-141”

    NASA Astrophysics Data System (ADS)

    Naafs, B. D. A.; Martínez-García, A.; Grützner, J.; Higgins, S.

    2014-11-01

    Integrated Ocean Drilling Project (IODP) Site U1313 is regarded as a benchmark site for Plio/Pleistocene North Atlantic palaeoceanography. In volume 93 of Quaternary Science Reviews, Lang et al. (2014) provide a record of terrigenous input across the Plio/Pleistocene estimated from variations in sedimentary lightness (L*). The paper provides an elegant addition to the growing number of high-resolution records from Site U1313. Although we support the majority of their findings, we disagree with the conclusion that "glacial grinding and transport of fine grained sediments to mid latitude outwash plains is not the fundamental mechanism controlling the magnitude of the flux of higher plant leaf waxes from North America to Site U1313 during iNHG.", which is predominantly based on their observation that the relationship between L*-based terrigenous input and dust-derived biomarkers, which is linear at other sites (Martínez-Garcia et al., 2011), is non-linear at Site U1313.

  20. Ion-probe U-Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium

    NASA Astrophysics Data System (ADS)

    Neymark, L. A.; Paces, J. B.

    2013-01-01

    Knowing depositional ages of alluvial fans is essential for many tectonic, paleoclimatic, and geomorphic studies in arid environments. The use of U-Pb dating on secondary silica to establish the age of Neogene-Quaternary clastic sediments was tested on samples of authigenic and detrital opal and chalcedony from depths of ˜25 to 53 m in boreholes at Midway Valley, Nevada. Dating of authigenic opal present as rinds on rock clasts and in calcite/silica cements establishes minimum ages of alluvium deposition; dating of detrital opal or chalcedony derived from the source volcanic rocks gives the maximum age of sediment deposition. Materials analyzed included 12 samples of authigenic opal, one sample of fracture-coating opal from bedrock, one sample of detrital opal, and two samples of detrital chalcedony. Uranium-lead isotope data were obtained by both thermal ionization mass spectrometry and ion-microprobe. Uranium concentrations ranged from tens to hundreds of μg/g. Relatively large U/Pb allowed calculation of 206Pb/238U ages that ranged from 1.64±0.36 (2σ) to 6.16±0.50 Ma for authigenic opal and from 8.34±0.28 to 11.2±1.3 Ma for detrital opal/chalcedony. Three samples with the most radiogenic Pb isotope compositions also allowed calculation of 207Pb/235U ages, which were concordant with 206Pb/238U ages from the same samples. These results indicate that basin development at Midway Valley was initiated between about 8 and 6 Ma, and that the basin was filled at long-term average deposition rates of less than 1 cm/ka. Because alluvium in Midway Valley was derived from adjacent highlands at Yucca Mountain, the low rates of deposition determined in this study may imply a slow rate of erosion of Yucca Mountain. Volcanic strata underlying the basin are offset by a number of buried faults to a greater degree than the relatively smooth-sloping bedrock/alluvium contact. These geologic relations indicate that movement on most faults ceased prior to erosional planation and burial. Therefore, ages of the authigenic opal from basal alluvium indicate that the last movement on buried faults was older than about 6 Ma.

  1. Seismic facies analysis of shallowly buried channels, New Jersey continental shelf: understanding late Quaternary paleoenvironments during the last transgression

    NASA Astrophysics Data System (ADS)

    Nordfjord, S.; Goff, J. A.; Austin, J. A.; Gulick, S. P.; Sommerfield, C.; Alexander, C.; Schock, S.

    2004-12-01

    We are investigating the late Quaternary sedimentary record of the New Jersey mid-outer continental shelf using deep-towed chirp sonar (1-4 kHz and 1-15 kHz) profiles, coupled with lithologic and chronostratigraphic control from long sediment cores collected using the DOSECC AHC-800 drilling system. We have seismically mapped extensive, shallowly buried, dendritic drainage systems. Observed seismic facies distributions suggest the complex nature of channel fills, and synthetic seismograms derived from MST logs enable us to correlate the chirp data to changes in lithology and physical properties of the cored samples, including channel fills, confirming that fine-grained material is transparent seismically, while interbedded sand and mud produce laminated reflections. We suggest that these channels probably formed during shelfal exposure coincident with the last glacial lowstand along this margin. Observed seismic facies superposition within valley fills is in part consistent with a tripartite zonation derived from wave-dominated estuary models. We have mapped four main facies within these dendritic incised valleys: (1) The lower facies, SF1, consists of a high-amplitude chaotic configuration. We interpret this facies as lowstand fluvial fill; (2) Overlying facies SF2 is generally a thin layer (<1-2m) of stratified, high amplitude reflectors in valley axes. This facies is characterized by small wedges along channel flanks, with a generally transparent acoustic response, but occasionally also by internal clinoforms. This facies could have been deposited as transgression began, by backfilling of valleys (bayhead delta? aggradational alluvial deposits?); (3) SF3 is generally transparent; subtle horizontal and parallel reflectors onlap channel flanks. We interpret this facies as representing central basin/bay deposits, a low-energy zones during the transgression, perhaps related to turbidity maxima; (4) SF4 is observed only in the seaward end of the valley. This facies is more variable in amplitude and configuration, and includes a laminated acoustic response, small erosional surfaces, and some wavy reflections. We think the complexity of this facies likely reflects deposition of an estuary mouth complex in a dynamic environment, including frequent lateral variations in sedimentary facies from tidal inlets, washovers, tidal-deltas and barriers. A seismic transition upward from chaotic to flat-lying reflections and a more transparent acoustic response indicates less depositional energy, suggesting replacement of fluvial systems by tidal/estuarine environments. This has been confirmed by vibra-coring of one channel. Our paleo-flow reconstructions also yield velocities in the range of 0.5-1.5 m/s, which are reasonable estimates for flows in estuarine environments.

  2. Quaternary and pre-Quaternary( ) materials and processes of southeast Ohio: Overview, speculations, and recommendations

    SciTech Connect

    Berg, T.M. )

    1992-01-01

    Investigations and mapping of surficial deposits in Ohio have focused largely on the glacial deposits which cover nearly two-thirds of the state. Research on Quaternary deposits beyond the glacial border has been done by Foster, Hildreth, Andrews, Leverett, Tight, Stout, Goldthwait, Forsyth, Lessig, White, Totten, Hoyer, and Noltimier. However, growing human interaction with surficial materials of southeast Ohio now requires much more detailed mapping and characterization of these deposits. Recognition of periglacial, proglacial, and preglacial processes and materials in eastern and southern states has led to the search for similar processes and materials in southeast Ohio. Evidence for gelifraction, gelifluction, cryoturbation, and considerable periglacial colluviation is more extensive than previously thought. Proglacial deposits are also much more extensive, outwash and glaciolacustrine deposits cover large areas in southeast Ohio and are poorly mapped and characterized, or not mapped at all. Preglacial processes including a long span of profound weathering and formation of saprolite have been given little or no attention in southeast Ohio. The signature of protracted preglacial weathering still remains in this part of the state, and should change prevailing views of the terrain upon which periglacial processes worked. Mapping and characterization of these materials are urgently needed as citizens make important land-use decisions such as locating landfills and new developments.

  3. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    USGS Publications Warehouse

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before ~19.1 Ma until well after ~18.7 Ma, similar to timing of Barstow Formation lake deposition in the Calico Mountains but at least 3 million years older than comparable lacustrine facies in the Mud Hills type section. These observations are consistent with either of two paleogeographic models: westward transgression of lacustrine environments within a single large basin, or sequential development of geographically distinct eastern and western sub-basins.

  4. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge about the abrupt gravel-sand transition observed in a majority of alluvial fans.

  5. Fire, climate, and alluvial system dynamics: A Holocene record from Yellowstone National Park

    SciTech Connect

    Meyer, G.A. . Dept. of Geology); Wells, S.G. . Dept. of Earth Sciences); Jull, A.J. . NSF-Arizona Accelerator Facility For Isotope Dating)

    1992-01-01

    Many large debris-flow, hyperconcentrated-flow, and flood-streamflow sediment transport events have been produced in steep basins that were burned in the 1988 fires in northeaster Yellowstone National Park. The charcoal- and fines-rich character of fire-related debris-flow deposits and the abundance of similar facies in Holocene fan sections have allowed them to construct a [sup 14]C-dated chronology of fire-related sedimentation in the Soda Butte and Slough Creek drainages for the last 3500 years. Major periods of fire-related alluvial fan aggradation are interpreted as drought-dominated with the support of local paleoenvironmental data and statistical analyses of historical climate-fire relations; however, some fire-related events may occur due to high climatic variability and severe short-term drought within generally moist intervals. The last major episode of fire-related debris-flow activity encompasses the Medieval Warm Period of 900--1300 AD and peaks ca. 1150 AD; a prior episode culminates ca. 350--100 BC. Wetter periods contain minimal fire-related fan sedimentation; however, floodplain broadening and aggradation occurs along axial streams. Higher average snowmelt runoff discharges are probably involved, such that the dominant alluvial activity shifts to removal of sediment from alluvial fan storage and transport to downstream floodplains. The Little Ice Age (ca. 1300--1900 AD) contains minimal fire-related debris0flow activity and is associated with floodplain aggradation of the T4 terrace, and independent evidence suggests substantially wetter conditions during T3 aggradation ca. 350--650 AD. Thus, small-scale climate changes of the late Holocene effectively control the dominant mode of alluvial activity.

  6. Efficient extraction of fine heavy minerals from alluvial and ground ores

    SciTech Connect

    Tikhonov, O.N.

    1995-12-31

    A new extraction method which includes a combination of gravity and alternating electromagnetic fields with interfriction of mineral particles was proposed and tested in lab conditions at Mineral Processing Department of St. Petersburg Mining Institute. At the beginning of the work the main goal was to find an efficient alternative to traditional extraction methods (like shaking table, etc.) used for concentration of fine alluvial gold particles. After the method and a series of gradually improved lab separators were positively tested for gold, the efficiency of the method was also proved for extraction of platinum and other heavy minerals from alluvial and ground ores in experimental work at the St. Petersburg Mining institute. The fine heavy minerals were separated to concentrates with high technological indices. In parallel a semi-industrial gravi-electromagnetic separator was made and several technological flowsheets were designed for testing the method in industrial conditions. A series of industrial tests accompanied with complete sampling and standard technological measurements were performed at several alluvial deposits, with good technological indices. Thus the method and the flowsheets displayed high additional recovery of fine alluvial gold particles during elaborated industrial experiments in Siberia (Aldan province). At higher concentrate grade this method, even in one-stage operation, increased gold recovery more than by 25% compared with shaking table (for particles < 0.10 mm gold recovery was 82% vs. 55% by shaking table, for particles < 0.25 mm the recovery was 97.5% vs. 61.8%). Experiments were performed by joint team of St. Petersburg Mining institute and the Irkutsk Institute of Rare Metals.

  7. Carbonates in alluvial fan systems. An approach to physiography, sedimentology and diagenesis

    NASA Astrophysics Data System (ADS)

    Nickel, Enno

    1985-01-01

    This paper deals with the modes of accumulation and distribution of terrestrial carbonates in semi-arid alluvial-fluvial, generally clastic sedimentary environments. It is shown that composition and distribution of the carbonate phases are controlled by physical (transportation energy), morphological (slope gradient), chemical (precipitation, evaporization) processes and biochemical interaction with the respective subenvironment of mainly cyanophytes. Evaluation of recent and fossil examples from semi-arid alluvial settings indicate that the physical processes produce carbonate sequences which, like the clastic ones, are fining-upward, corresponding to the intermittently active sedimentation on an alluvial fan. The mineralogy of the carbonates seems to depend upon disproportioning of dissolved compounds in subsurface waters in down-fan directions. There is obviously a shift towards more "evaporitic" minerals in the distal parts in favour of high-Mg-calcite, dolomite or even gypsum. Biochemical carbonate production is in direct correspondence with the respective sedimentary subenvironment. In terms of transport energy and sediment supply there is evidence that high-energy (proximal) regimes are producing isolated biosedimentary structures, whereas low energy areas (distal, interchannel, floodplains) are favourable for continuous structures like algal stromatolites and algal mats. A newly proposed classification system based upon transport/precipitation mode and sediment type is thought to be more useful for environmental analysis and reconstructions than purely descriptive ones neglecting the process of formation. This is especially the case for the non-active phases of alluvial fans when the area of deposition is sediment-starved, referring to the clastics. The system takes into account that there are two general carbonate groups: detrital allochthonous and chemical/biochemical autochthonous ones. The latter may be formed within the pores of the clastic sediments or may be due to sedimentation in open water. Pedogenic processes may themselves be the carbonate-forming factor or they may "superprint" non-pedogenic processes.

  8. Characterization of dust emission from alluvial sediments using aircraft observations and modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, K.; Flamant, C.; Chaboureau, J.; Kocha, C.; Banks, J.; Brindley, H. E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P.

    2013-12-01

    Recent studies using satellite observations show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions such as over North Africa. Alluvial sediments deposited on the valley bottoms and flood plains are very prone to wind erosion and frequently serve as dust source. High surface wind speeds related to the break-down of the nocturnal low-level jet (LLJ) during the morning hours are identified as a frequent driving mechanism for dust uplift. We investigate dust emission from alluvial dust sources located within the upland region in northern Mauritania and discuss the impact of valleys with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, MSG SEVIR dust AOD fields and MesoNH model simulations, and analyzed in order to provide complementary information on dust source activation and local dust transport at different horizontal scales. Vertical distribution of atmospheric mineral dust was obtained from the LNG backscatter lidar system flying aboard the French Falcon-20 aircraft. Lidar extinction coefficients were compared to topography, aerial photographs, and dust AOD fields to confirm the relevance of alluvial sediments at the valley bottoms as dust source. The observed dust emission event was further evaluated using the regional model MesoNH. A sensitivity study on the impact of the horizontal grid spacing highlights the importance of the spatial resolution on simulated dust loadings. The results further illustrate the importance of an explicit representation of alluvial dust sources in such models to better capture the spatial-temporal distribution of airborne dust concentrations.

  9. Particle dynamics: The continuum of bedrock to alluvial river segments

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2015-07-01

    Particle dynamics refers to production, erosion, transport, and storage of particulate material including mineral sediment and organic matter. Particle dynamics differ significantly between the end members of bedrock and alluvial river segments and between alluvial river segments with different grain-size distributions. Bedrock segments are supply limited and resistant to change, with relatively slow, linear adjustments and predominantly erosion and transport. Particle dynamics in alluvial segments, in contrast, are transport limited and dominated by storage of mineral sediment and production of organic matter. Alluvial segments are resilient to change, with relatively rapid, multidirectional adjustments and stronger internal influences because of feedbacks between particles and biota. Bedrock segments are the governors of erosion within a river network, whereas alluvial segments are the biogeochemical reactors. Fundamental research questions for both types of river segments center on particle dynamics, which limit network-scale incision in response to base level fall (bedrock segments) and habitat, biogeochemical reactions, and biomass production (alluvial segments). These characterizations illuminate how the spatial arrangement of bedrock and alluvial segments within a river network influence network-scale resistance and resilience to external changes in relative base level, climate, and human activities.

  10. Alluvial Bars of the Obed Wild and Scenic River, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Fitch, K.C.; Ladd, D.E.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) and the National Park Service (NPS) initiated a reconnaissance study of alluvial bars along the Obed Wild and Scenic River (Obed WSR), in Cumberland and Morgan Counties, Tennessee. The study was partly driven by concern that trapping of sand by upstream impoundments might threaten rare, threatened, or endangered plant habitat by reducing the supply of sediment to the alluvial bars. The objectives of the study were to: (1) develop a preliminary understanding of the distribution, morphology, composition, stability, and vegetation structure of alluvial bars along the Obed WSR, and (2) determine whether evidence of human alteration of sediment dynamics in the Obed WSR warrants further, more detailed examination. This report presents the results of the reconnaissance study of alluvial bars along the Obed River, Clear Creek, and Daddys Creek in the Obed WSR. The report is based on: (1) field-reconnaissance visits by boat to 56 alluvial bars along selected reaches of the Obed River and Clear Creek; (2) analysis of aerial photographs, topographic and geologic maps, and other geographic data to assess the distribution of alluvial bars in the Obed WSR; (3) surveys of topography, surface particle size, vegetation structure, and ground cover on three selected alluvial bars; and (4) analysis of hydrologic records.

  11. Numerical Simulation of Sediment Plug Formation in Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Posner, A. J.; Duan, J. G.

    2011-12-01

    A sediment plug is the aggregation of sediment in a river reach that completely blocks the original channel resulting in plug growth upstream by accretion and flooding in surrounding areas. Sediment plugs historically form over relatively short periods, in many cases a matter of weeks. Although sediment plugs are much more common in reach constrictions associated with large woody debris, the mouths of tributaries, and along coastal regions, this investigation focuses on sediment plug formation in an alluvial river. During high flows in the years 1991, 1995, 2005, and 2008, a sediment plug formed in the San Marcial reach of the Middle Rio Grande. The Bureau of Reclamation has had to spend millions of dollars dredging the channel to restore flows to Elephant Butte Reservoir. The hydrodynamic and sediment transport processes, associated with plug formation, occurring in this reach are driven by 1) a flow constriction associated with a rock outcrop, 2) a railroad bridge, and 3) the water level of the downstream reservoir. The three-dimensional hydrodynamic model, Delft3D, was implemented to determine the hydrodynamic and sediment transport parameters and variables required to simulate plug formation in an effort to identify hydro- and morphodynamic thresholds. Several variables were identified by previous studies as metrics for plug formation. These variables were used in our investigation to detect the relative magnitude of each process. Both duration and degree of high flow events were simulated, along with extent of cohesive sediment deposits, reservoir level, and percent of fines in suspended sediment distribution. Results of this analysis illustrate that this model is able to reproduce the sediment plug formation. Model calibration was based on measured water levels and changes in bathymetry using both sediment transport and morphologic change parameters. Changes to hydraulic and sediment parameters are not proportional to morphologic changes and are asymptotic in their response. These results suggest that there are thresholds to predict plug formation and that the contribution of specific variables to plug formation is not uniform. Sediment plug formation is a costly and dangerous phenomenon, especially in large alluvial rivers. This investigation yielded specific insights into the hydrodynamic and morphologic processes occurring during sediment plug formation. These insights can be used to reduce the risk of plug formation and predict the locations and times of other sediment plugs.

  12. Regional water quality patterns in an alluvial aquifer: Direct and indirect influences of rivers

    NASA Astrophysics Data System (ADS)

    Baillieux, A.; Campisi, D.; Jammet, N.; Bucher, S.; Hunkeler, D.

    2014-11-01

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50 km2) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ18OH2O and δ2HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52 mg/L, and the nitrate concentration of infiltrating river at approximately 6 mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns.

  13. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    PubMed

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns. PMID:25249478

  14. Estimating alluvial fan surface ages using Landsat 8 multispectral imagery

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Mason, Philippa J.; Whittaker, Alexander C.; Roda Boluda, Duna C.

    2015-04-01

    Accurate exposure age models are now essential for geomorphological and stratigraphic field research, and generally depend on laboratory analyses such as radiocarbon, cosmogenic nuclide or luminescence approaches. However, these techniques cannot be deployed in situ in the field, meaning other methods are needed to produce a preliminary age model, map depositional surfaces of different ages, and select sampling sites for the types of laboratory analyses outlined above. With the widespread availability of high-resolution multispectral imagery, a promising approach is to use remotely sensed data to discriminate depositional surfaces with different ages. Here, we use new Landsat 8 Operational Land Imager (OLI) multispectral imagery to characterise the reflectance of 35 alluvial fan surfaces in the semi-arid Owens Valley, California. These surfaces have been mapped in detail in the field, have similar granitic compositions, and have well-constrained exposure ages ranging from modern to ~ 125 ka, measured using a high density of 10-Be cosmogenic nuclide samples. We identify a clear age signal recorded in the spectral properties of these surfaces. With increasing exposure age, there is a predictable redshift effect in the reflectance of the surfaces across the visible and short-wave infrared spectrum. Simple calculations, such as the brightness ratio of red/blue wavelengths, produce sensitive power law relationships with exposure age for at least 125 ka, meaning Landsat 8 imagery can be used to estimate surface exposure age remotely, at least in this calibrated dryland location. The ability to remotely sense exposure age has useful implications for field mapping, selecting suitable sampling sites for laboratory-based exposure age techniques, and correlating existing age constraints to previously un-sampled surfaces. We present the uncertainties associated with this spectral approach to exposure dating, evaluate its likely physical origins, and discuss its applicability in other locations and with other remotely sensed datasets.

  15. The Quaternary History of Scandinavia

    NASA Astrophysics Data System (ADS)

    Donner, Joakim

    1995-02-01

    During the Quaternary Period, Scandinavia's mountains were the source for repeated glaciation that covered much of eastern, central and western Europe. With a particular emphasis on Denmark, Norway, Sweden and Finland, this text describes how these glaciations, and their intervening warmer stages, affected Scandinavia and the surrounding areas. In particular, this account focuses on the last cold stage, the Weichselian, with its extensive Late Weichselian glaciation and the subsequent deglaciation, and on the last 10,000 years, the Holocene, with its well documented environmental changes. The Quaternary History of Scandinavia provides a cross-frontier synthesis of how the glaciation affected this vast region.

  16. The Quaternary History of Scandinavia

    NASA Astrophysics Data System (ADS)

    Donner, Joakim

    2005-08-01

    During the Quaternary Period, Scandinavia's mountains were the source for repeated glaciation that covered mu