Science.gov

Sample records for quaternary alluvial deposits

  1. Quaternary alluvial deposits of Wadi Gaza in the middle of the Gaza Strip (Palestine): Facies, granulometric characteristics, and their paleoflow direction

    NASA Astrophysics Data System (ADS)

    Ubeid, Khalid Fathi

    2016-06-01

    The Quaternary rocks of the Gaza Strip mainly consist of clastic sedimentary rocks. In Wadi Gaza, the outcropping rocks consist of brownish fine-grained deposits, sandstones, and conglomerates. The deposits have been studied from a genetic point of view, and six facies have been described: (i) graded clast-supported conglomerates, (ii) cross-bedded clast-supported conglomerates, (iii) sandy matrix conglomerates, (iv) cross-laminated medium-grained sandstones, (v) graded coarse-grained sandstones, and (vi) massive sandstones. The field work observations and granulometric analysis show that the sphericity of the grains increase toward the west, where its value ranges from ∼0.64 in the east to ∼0.70 in the west. In addition, the grain forms tend to be disc shape in the east, whereas they tend to be disc-to spheroid shape in the west, and they become well rounded to well sorted toward the west. Moreover, the features, geometry, and spatial relationship among these facies suggest that the Wadi Gaza was meandering wadi fed from Beir Sheva and the Northern Negev in the southeast of Gaza Strip through Wadi Al Shallala and Wadi Sheneq and from Hebron mountains in the West Bank at the east through Wadi Al Shari'a alluvials. Within the Gaza Strip, paleocurrent data ranges from 210° to 310°, indicating a mean a paleoflow direction to the W (276°) and a median value about 275°. The sedimentary rocks in the Wadi Gaza are considered to be deposited in two periods of climate conditions: the coarse-grained rocks were deposited during the period of wet condition before 12.4 ka age, whereas the eolinite fine-grained rocks were deposited during semiarid climate conditions which are younger in age than 12.4 ka.

  2. Evaluating the reliability of Late Quaternary landform ages: Integrating 10Be cosmogenic surface exposure dating with U-series dating of pedogenic carbonate on alluvial and fluvial deposits, Sonoran desert, California

    NASA Astrophysics Data System (ADS)

    Blisniuk, K.; Sharp, W. D.

    2015-12-01

    To assess the reliability of Quaternary age determinations of alluvial and fluvial deposits across the Sonoran Desert (Coachella Valley and Anza Borrego) in southern California, we applied both 10Be exposure age dating of surface clasts and U-series dating of pedogenic carbonate from subsurface clast-coatings to the same deposits. We consider agreement between dates from the two techniques to indicate reliable age estimates because each technique is subject to distinct assumptions and therefore their systematic uncertainties are largely independent. 10Be exposure dates should yield maximum ages when no correction is made for inheritance and post-depositional erosion is negligible. U-series dating, in contrast, provides minimum dates because pedogenic carbonate forms after deposition. Our results show that: (1) For deposits ca. 70 ka or younger, 10Be and U-series dates were generally concordant. We note, however, that in most cases U-series soil dates exceed 10Be exposure dates that are corrected for inheritance when using 10Be in modern alluvium. This suggests that 10Be concentrations of modern alluvium may exceed the 10Be acquired by late Pleistocene deposits during fluvial transport and hillslope residence (i.e., Pleistocene inherited 10Be). (2) For deposits older than ~70 ka, U-series dates are significantly younger than the 10Be dates. This implies that U-series dates in this region may significantly underestimate the depositional age of older alluvium, probably because of delayed onset of deposition, slow accumulation, or poor preservation of secondary carbonate in response to climatic controls. Thus, whenever possible, multiple dating methods should be applied to obtain reliable ages for late Quaternary deposits.

  3. Modern and ancient alluvial fan deposits

    SciTech Connect

    Nilsen, T.H.

    1985-01-01

    Understanding the structure and depositional processes of alluvial fans (river outwash deposits) has a special interest for those involved with the exploration of petroleum and many minerals. This collection of facsimile reprints of significant and classical research papers sheds new light on the subject. This reference covers the stratigraphy, sedimentology, and depositional processes of modern and ancient alluvial fans. Geographical areas considered include Arctic Canada, the American Southwest, Australia, Wyoming, Norway, and Spain. It includes a state-of-the-art introduction by the editor along with commentaries on all the papers included, a master author citation index and a subject index, and a chronological listing of early studies of alluvial fans.

  4. Identification of a late Quaternary alluvial-aeolian sedimentary sequence in the Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Liang; Ju, Jian-Ting; Chen, Feng; Hu, Zhao-Guo; Zhao, Xiang; Gao, Shao-Peng

    2016-03-01

    The late Quaternary sedimentary sequence in the northwestern part of the Sichuan Basin consists of five lithological units and with increasing depth include the: Chengdu Clay; Brown Clay; Red Clay; Sandy Silt; and basal Muddy Gravel. The genesis, provenance and age of the sediments, as well as the possible presence of hiatuses within this sequence are debated. Measurements of grain-size, magnetic susceptibility, quartz content, quartz δ18O values, element composition, and Sr-Nd isotopic concentrations of samples from a typical sedimentary sequence in the area provides new insights into the genesis and history of the sequence. The new data confirm that the sediments in study site are alluvial-aeolian in origin, with basal alluvial deposits overlain by aeolian deposits. Like the uppermost Chengdu Clay, the underlying Brown Clay and Red Clay are aeolian in origin. In contrast, the Silty Sand, like the basal Muddy Gravel, is an alluvial deposit and not an aeolian deposit as previously thought. Moreover, the succession of the aeolian deposits very likely contains two significant sedimentary hiatuses. Sedimentological analysis demonstrates that the source materials for the aeolian deposits in the northwestern part of the Sichuan Basin and those on the eastern Tibetan Plateau are different. Furthermore, the loess deposits on the eastern Tibetan Plateau are derived from heterogeneous local sources.

  5. Quaternary climate change and hillslope processes: What can we learn from alluvial fans?

    NASA Astrophysics Data System (ADS)

    Kenworthy, M.; Pierce, J. L.; Rittenour, T. M.; Sharp, W. D.; Pierce, K. L.

    2009-12-01

    Examining the timing of sediment deposition on alluvial fans may clarify relationships among Quaternary changes in climate, sediment production, and sediment removal from uplifted mountain blocks. Deposition on fans indicates that (1) ample sediment is available for transport within contributing basins and (2) that stream power is adequate to move that sediment to the fan environment. Dating alluvial fan deposition clarifies relationships among climatically controlled factors (e.g. precipitation, vegetation, temperature), and hydrologic and geomorphic responses (e.g. weathering rates, frost action, glaciation, stream power) that influence landscape evolution. Numerous 2-5 km radius, low gradient alluvial fans head along the western side of the Lost River Range (LRR) in east-central Idaho. Timing of deposition on these fans is based on optically stimulated luminescence dating (OSL). In addition we described general deposit characteristics and mapped different aged fan surfaces to explore how fan deposition has changed over time. OSL results indicate that evacuation of sediment from contributing basins and deposition on fans was enhanced ~10-14 ka and ~40-50 ka. The younger episode is more robust in this record, with deposition recorded on all five studied fans despite differences in Quaternary glacial extent in contributing basins that varied from ~0-80%. Glacial chronologies from the nearby Sawtooth Range (Thackray, 2008) and Yellowstone-Teton region (Licciardi and Pierce, 2008; Gosse et al, 1995) suggest that this time period may have coincided with and followed the last glacial maxima in the northern Rocky Mountains. Deposition during the ~40-50 ka episode is recorded on the two largest studied fans, both with <10% glaciation in basin areas, as well as a ~40 m terrace of the East Fork Big Lost River that drains the Pioneer Range west of the LRR. A ~60-65 ka moraine in the northern LRR dated by U-series on pedogenic carbonate, an extensive glacio-fluvial terrace

  6. Cathodoluminescence in Quaternary carbonate deposits

    NASA Astrophysics Data System (ADS)

    Braithwaite, Colin J. R.

    2016-05-01

    The cathodoluminescent oscillatory and sectoral growth zones common in crystals formed in ancient limestone successions in a variety of putative environments appear to be rare or absent from Recent and Pleistocene marine carbonate sequences. The factors controlling cathodoluminescence and reasons for this disparity are examined. The cathodoluminescent zones in the cements of ancient rocks have been interpreted as responses to variations in the redox potential of formative pore waters during crystal growth; although similar cathodoluminescent behaviour is recorded from some deposits, including travertines and Quaternary speleothems, formed in what are thought to have been strongly oxidizing environments. The apparent absence of cathodoluminescence in the most Recent and Pleistocene marine deposits, that presumably reflect deposition and diagenesis in environments that are also characteristically oxidized, therefore seems anomalous. The controlling influences on cathodoluminescence are reviewed, together with evidence relating to observations of Pleistocene marine deposits and likely conditions of formation but, where it is present, the mechanism(s) for its development remain elusive.

  7. Alluvial Fans as Recorders of Landscape Development: Potential for Determining Depositional Chronologies Using Luminescence Dating

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Rhodes, E. J.; Roder, B. J.; Antinao, J.; McDonald, E.

    2011-12-01

    Alluvial fans in both arid and humid environments provide a record of depositional events at the transition between mountain and lowland environments. Though complex in the detail of their depositional and erosional characteristics, they undoubtedly provide a valuable record of the highest erosion rate events in their upland catchments. Alluvial fans often also record tectonic activity; their mountain-front location is ideal to intersect bounding faults, and their characteristic geometry renders offsets easily recognisable. Dating of Quaternary alluvial fans can be accomplished using a number of techniques. These include radiocarbon dating where suitable organic materials are preserved; uranium series methods may be applied to provide a minimum age by dating carbonate inter-clast cements in some arid or semi-arid environments; terrestrial cosmogenic nuclide (TCN) methods work well in many dryland contexts though issues of inheritance in some catchments are significant. Optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) rely on light sensitive charge populations trapped at meta-stable centers associated with impurities in quartz and feldspar grains. When grains are exposed to light, charge is evicted from these traps, and is slowly re-tapped by interaction with environmental ionizing radiaton. These signals have the potential to date a range of Quaternary sediments including alluvial fans on timescales of one year to several hundred thousand years. The specific issues relating to alluvial fans are problems of incomplete signal zeroing caused by rapid deposition, as well as low sensitivity and poor signal characteristics for quartz OSL. In this presentation, we explore the relative importance of these issues in determining luminescence chronologies for alluvial fans in different locations, and the ways in which these chronologies may be used to help inform models of landscape evolution, both numerical and conceptual.

  8. Late Quaternary Alluvial Fans and Beach Ridge Systems in Jakes Valley, Central Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Garcia, A. F.; Stokes, M.; Benitez, L.

    2002-12-01

    Alluvial fan and lake beach ridge landforms provide archives of the geomorphic response to Late Quaternary climate change within the Great Basin region. This study presents the first detailed results of landform mapping and soil characterization from Jakes Valley, a high altitude (1920m) and internally drained basin, located within a previously unstudied part of White Pine County, East-Central Nevada. Mountain front alluvial fans sourced from the White Pine and Egan Ranges (west-east basin margins) are characterized by four morphostratigraphic units: Qf0 (oldest) through to Qf3 (youngest). Analysis of the soil properties of these stratigraphic units reveals two landform-soil assemblages: 1) Qf0-1, characterized by well-developed calcic soils (stages III+ to IV) and 2) Qf2-3, characterized by less well-developed calcic soils (stages I to II). Beach ridge systems formed during pluvial lake highstands are extensively developed into the mid and distal parts of alluvial fans. Integrated field and aerial photograph mapping has revealed a sequence of between 4-6 ridges with linear and / or highly curved / arcuate morphologies. Beach ridge soil properties are characterized by less well-developed calcic soils (stages I+ to II) that are similar to soils formed in Qf2 alluvial fan units. The interaction between the alluvial fan and beach ridge landforms can be utilized to explore the geomorphic response in relation to climatic amelioration during the Late Pleistocene-Holocene transition. Of particular interest is the common occurrence of the curved / arcuate beach ridges which may correspond to a period of fan progradation coincident with base-level lowering.

  9. Climatic, geomorphic, and archaeological implications of a late Quaternary alluvial chronology for the lower Salt River, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Huckleberry, Gary; Onken, Jill; Graves, William M.; Wegener, Robert

    2013-03-01

    Recent archaeological excavations along the lower Salt River, Arizona resulted in the unexpected discovery of buried late Pleistocene soils and cultural features dating 5800-7100 cal YBP (Early Archaic), the latter representing the earliest evidence of human activity in the lower Salt River floodplain thus far identified. Because the lower Salt River floodplain has been heavily impacted by recent agriculture and urbanization and contains few stratigraphic exposures, our understanding of the river's geological history is limited. Here we present a late Quaternary alluvial chronology for a segment of the lower Salt River based on 19 accelerator mass spectrometry 14C and four optically stimulated luminescence ages obtained during two previous geoarchaeological investigations. Deposits are organized into allostratigraphic units and reveal a buried late Pleistocene terrace inset into middle-to-late Pleistocene terrace deposits. Holocene terrace fill deposits unconformably cap the late Pleistocene terrace tread in the site area, and the lower portion of this fill contains the Early Archaic archaeological features. Channel entrenchment and widening ~ 900 cal YBP eroded much of the older terrace deposits, leaving only a remnant of fill containing the buried latest Pleistocene and middle-to-late Holocene deposits preserved in the site area. Subsequent overbank deposition and channel filling associated with a braided channel system resulted in the burial of the site by a thin layer of flood sediments. Our study confirms that the lower Salt River is a complex mosaic of late Quaternary alluvium formed through vertical and lateral accretion, with isolated patches of buried soils preserved through channel avulsion. Although channel avulsion is linked to changes in sediment load and discharge and may have climatic linkages, intrinsic geomorphic and local base level controls limit direct correlations of lower Salt River stratigraphy to other large rivers in the North American

  10. Geochemical proxies for weathering and provenance of Late Quaternary alluvial core-sediments from NW India

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Amir, Mohd; Paul, Debajyoti; Sinha, Rajiv

    2014-05-01

    The Indo-Gangetic alluvial plains are formed by sediment deposition in the foreland basin as a result of upliftment and subsequent erosion of the Himalaya. Earlier study (Sinha et al., 2013) has shown the subsurface existence of buried channel bodies beneath the Ghaggar plains in NW Indo-Gangetic plains. The mapped sand bodies follow trace of a paleochannel that begins at the mountain front near the exit of river Sutlej and extends to the northern margin of the Thar desert, suggesting existence of a large Himalayan-sourced river (Singh et al., 2011) in the past. The buried sand bodies hold potential records of erosion history over the Himalaya that could be used to assess climate-controlled erosion over the Himalaya. Geochemical variations in the sediments from two (~45m long) cores drilled below the trace of the paleochannel (upstream) near Sirhind, Punjab and two cores (GS-10 & 11) from downstream near Kalibangan, Rajasthan, are used in this study to understand the erosional pattern over the Himalaya during Late Quaternary. Down-core variations in chemical index of alteration (CIA=51-79) along with K2O/Na2O and Al2O3/(CaO+Na2O) ratios are consistent with the trends of SW summer monsoonal fluctuations during the Glacial-Interglacial periods indicating climate controlled weathering at the source; higher values during Interglacial and lower during Glacial periods with maximum value during the Holocene. Sr-Nd isotopic compositions of drill-cores sediments, 87Sr/86Sr (0.7314-0.7946), ɛNd (-23.2 to -14) are within the range of silicate rocks from the Higher and Lesser Himalaya. Significant down-core variations in 87Sr/86Sr and ɛNd are observed that reflect the mixing of varying proportions of the Higher and Lesser Himalayan sediments, the two dominant sources to the core sites. Sediments deposited during MIS-2 and MIS-4, cold and dry Glacial periods, show high 87Sr/86Sr and low ɛNd suggesting an enhanced contribution from the Lesser Himalayan rocks that are

  11. Distinguishing allogenic from autogenic causes of bed elevation change in late Quaternary alluvial stratigraphic records

    NASA Astrophysics Data System (ADS)

    Daniels, J. Michael

    2008-10-01

    Allogenic and autogenic mechanisms both cause changes in the bed elevation of rivers and thereby influence the characteristics of alluvial stratigraphic records (ASRs). Allogenic forcing mechanisms can be grouped into five categories whose relative influence varies with timescale: climate, tectonism, base level, land use/land cover and direct human modification of channels. Late Quaternary ASRs are influenced by the greatest range of allogenic forcing variables with climate among the most important. Autogenic mechanisms of bed elevation change are ubiquitous throughout fluvial systems and are always time-transgressive. Autogenic bed elevation change propagates through drainage networks at predictable rates and results in a time-space envelope within which its effects are capable of operating. ASRs that can be correlated over geographical areas large enough and time intervals small enough to exist outside this envelope most likely result from allogenic forcing. This formulation represents a quantitative and geographic set of threshold criteria for distinguishing between autogenic and allogenic mechanisms. Over late Quaternary timescales (10 2 to 10 5 years) in tectonically stable regions climate change is the dominant allogenic mechanism and, therefore, the first-order control on the morphology, sedimentology, pedologic characteristics and chronology of alluvial stratigraphic records that meet or exceed the threshold criteria for demonstrating allogenic causality.

  12. Late Quaternary alluvial processes in the north piedmont of Wutai Mountain in the graben system of north China and the influencing factors

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Gong, Z.; Ding, R.; Li, T.

    2012-12-01

    The alluvial processes in the piedmont may be controlled by tectonics, climate fluctuations and base level of erosion, etc. To distinguish the contributions of each factors is a hot field in fluvial geomorphology. The north piedmont of Wutai Mountain in Shanxi graben is an ideal area for this kind of study. The piedmont fault is very active with a slip rate of no less than 1 millimeter per year in late Quaternary. This semiarid region experienced significant climatic fluctuations in Quaternary time which is indicated by striking contrast in colors between loess and paleosoils in loess strata. The stratigraphic sequence of alluvial fans in late Pleistocene and Holocene is established through field surveying and trenching. Ages of the strata have been well constrained by the method of radiocarbon dating. It is discovered that the alluvial processes in front of the mountain were strong and weak alternately. The strong periods were from 32 ka to 29 ka B.P., from 7.5 ka to 4.7 ka B.P., and since 1 ka B.P., when coarse-grained sediments deposited and the sediment rate is relatively high. The other times are weak periods when fine-grained sediments deposited and the sediment rate is much lower. The three strong periods correspond either with the transform stages from warm to cool climates, or with the intense fluctuation stage after the maximum of warm climate. These three periods share a common feature of intense fluctuations of weather whose amplitudes are larger than other periods. According to former studies on Holocene paleoearthquakes about Wutai Mountain piedmont fault, two events happened in strong periods of alluvial processes, one event in weak period. Strong earthquakes may lead to landslides and rock-falls in mountain area, which increment the clastic provenance and contribute to alluvial processes, but the limited information of paleoearthquakes cannot support a salient effect of big earthquakes on alluvial processes in front of mountain. As our preliminary

  13. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  14. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill-Hole Data in Yucca Flat, Nye County, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.

  15. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  16. Mapping Quaternary Alluvial Fans in the Southwestern United States based on Multi-Parameter Surface Roughness of LiDAR Topographic Data

    NASA Astrophysics Data System (ADS)

    Regmi, N. R.; McDonald, E.; Bacon, S. N.

    2012-12-01

    Quaternary alluvial fans, common landforms in hyper- to semi-arid regions, have diverse surface morphology, desert varnish accumulation, clasts rubification, desert pavement formation, soil development, and soil stratigraphy. Their age and surface topographic expression vary greatly within a single fan between adjacent fans. Numerous studies have demonstrated that the surface expression and morphometry of alluvial fans can be used as an indicator of their relative age of deposition, but only recently has there been an effort to utilize high resolution topographic data to differentiate alluvial fans with automated and quantifiable routines We developed a quantitative model for mapping the relative age of alluvial fan surfaces based on a multi-parameter surface roughness computed from 1-meter resolution LiDAR topographic data. Roughness is defined as a function of scale of observation and the integration of slope, curvature (tangential), and aspect topographic parameters. Alluvial fan roughness values were computed across multiple observation scales (3m×3m to 150m×150m moving observation windows) based on the standard deviation (STD) of slope, curvature, and aspect. Plots of roughness value versus size of observation scale suggest that the STD of each of the three topographic parameters at 7m×7m observation window best identified the signature of surface roughness elements. Roughness maps derived from the slope, curvature, and aspect at this scale were integrated using fuzzy logic operators (fuzzy OR and fuzzy gamma). The integrated roughness map was then classified into five relative morpho-stratigraphic surface age categories (active wash to ~400 ka) and statistically compared with a similar five-fold surface age map of alluvial fans developed using traditional field surveys and aerial photo interpretation. The model correctly predicted the distribution and relative surface age of ~61% of the observed alluvial fan map. The results of the multi-parameter model

  17. Quaternary alluvial fans of Ciudad Juárez, Chihuahua, northern México: OSL ages and implications for climatic history of the region

    USGS Publications Warehouse

    Zúñiga de León, David; Kershaw, Stephen; Mahan, Shannon

    2016-01-01

    Alluvial fans formed from sediments derived from erosion of the Juárez Mountains in northernmost México have a significant flood impact on the Ciudad Juárez, which is built on the fan system. The northern part of Ciudad Juárez is the most active; further south, older parts of the fan, upon which the rest of the city is built, were largely eroded by natural processes prior to human habitation and subsequently modified only recently by human construction. Three aeolian sand samples, collected from the uppermost (youngest) parts of the fan system in the city area, in places where human intervention has not disturbed the sediment, and constrain the latest dates of fan building. Depositional ages of the Quaternary alluvial fans were measured using Optically Stimulated Luminescence (OSL) on aeolian sands that have inter-fingered with alluvial fan material. These dates are: a) sample P1, 31 ka; b) sample P2, 41 ka; c) sample P3, 74 ka, between Oxygen Isotope Stages (OIS) 3 to 5. They demonstrate that fan development, in the area now occupied by the city, terminated in the Late Pleistocene, immediately after what we interpret to have been an extended period of erosion without further deposition, lasting from the Late Pleistocene to Holocene. The three dates broadly correspond to global glacial periods, implying that the cool, dry periods may reflect periods of aeolian transport in northern México in between phases that were wetter to form the alluvial fans. Alluvial fan margins inter-finger with fluvial terrace sediments derived from the Río Bravo, indicating an additional component of fan dissection by Río Bravo lateral erosion, presumed to be active during earlier times than our OSL ages, but these are not yet dated. Further dating is required to ascertain the controls on the fan and fluvial system.

  18. Late Quaternary Offset of Alluvial Fan Surfaces along the Central Sierra Madre Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Hanson, A.; Burgette, R. J.; Scharer, K. M.; Midttun, N. C.

    2015-12-01

    The Sierra Madre fault (SMF) is an east-west trending reverse fault system along the southern flank of the San Gabriel Mountains near Los Angeles, California. The ~140 km long SMF is separated into four segments, we focus on the multi-stranded, ~60 km long Central Sierra Madre fault (CSMF; W118.3-W117.7) as it lacks a well-characterized long-term geologic slip rate. We combine 1-m lidar DEM with geologic and geomorphic mapping to correlate alluvial fan surfaces along strike and across the fault strands in order to derive fault slip rates that cross the CSMF. We have refined mapping on two sets of terraces described by Crook et al. (1987) and references therein: a flight of Q3 surfaces (after nomenclature of Crook et al., 1987; McFadden, 1982) in Arroyo Seco with distinct terraces ~30 m, ~40 m, ~50 m, and ~55 m above the modern stream and in Pickens Canyon divided a Q3 and Q2 surface, with heights that are ~35 m and ~25 m above the modern stream respectively. Relative degree of clast weathering and soil development is consistent with geomorphic relationships; for example, hues of 7.5 YR to 10 YR are typical of Q3, while hues of 10 YR to 2.5 Y are typical of Q2. A scarp in the Q3 surface at Arroyo Seco has a vertical offset of ~16 m and a scarp in the Q3 at Pickens Canyon has a vertical offset of ~14 m, while the Q2 surface is not faulted. Our Quaternary dating strategy is focused on dating suites of terraces offset along CSMF scarps in order to provide broader stratigraphic context for the cosmogenic radionuclide and luminescence dating. We will present (pending) cosmogenic radionuclide depth profiles from the Q3 surfaces. A better-constrained slip rate for the CSMF will improve earthquake hazard assessment for the Los Angeles area and help clarify the tectonic role of the SMF in the broader plate boundary system. Additionally, the fan chronology will provide information about the timing of alluvial fan aggradation and incision in the western Transverse Ranges.

  19. Quaternary allostratigraphy of surficial deposit map units at Yucca Mountain, Nevada: A progress report

    SciTech Connect

    Lundstrom, S.C. ); Wesling, J.R.; Swan, F.H. ); Taylor, E.M.; Whitney, J.W. )

    1993-04-01

    Surficial geologic mapping at Yucca Mountain, Nevada, is relevant to site characterization studies of paleoclimate, tectonics, erosion, flood hazards, and water infiltration. Alluvial, colluvial, and eolian allostratigraphic map units are defined on the basis of age-related surface characteristics and soil development, as well as lithology and sedimentology indicative of provenance and depositional mode. In gravelly alluvial units, which include interbedded debris flows, the authors observe a useful qualitative correlation between surface and soil properties. Map units of estimated middle Pleistocene age typically have a well-developed, varnished desert pavement, and minimal erosional and preserved depositional microrelief, associated with a soil with a reddened Bt horizon and stage 3 carbonate and silica morphology. Older units have greater erosional relief, an eroded argillic horizon and stage 4 carbonate morphology, whereas younger units have greater preservation of depositional morphology, but lack well-developed pavements, rock varnish, and Bt and Kqm soil horizons. Trench and gully-wall exposures show that alluvial, colluvial and eolian dominated surface units are underlain by multiple buried soils separating sedimentologically similar deposits; this stratigraphy increases the potential for understanding the long-term Quaternary paleoenvironmental history of Yucca Mountain. Age estimates for allostratigraphic units, presently based on uranium-trend dating and regional correlation using soil development, will be further constrained by ongoing dating studies that include tephra identification, uranium-series disequilibrium, and thermoluminescence methods.

  20. Development and lithogenesis of the palustrine and calcrete deposits of the Dibdibba Alluvial Fan, Kuwait

    NASA Astrophysics Data System (ADS)

    AlShuaibi, Arafat A.; Khalaf, Fikry I.

    2011-08-01

    A model is proposed for the development of the Quaternary palustrine carbonate-calcrete association, which occurs as hard crust capping low hills at a distal flood plain of Al Dibdibba alluvial fan located at southwestern Kuwait. Field occurrence, detailed petrographic investigation and geochemical analysis revealed that a single cycle of groundwater calcrete with vertical gradational maturity pattern was developed. This represents a continuous sedimentological cycle during which flood sheet conditions prevailed with intermittent periods of humid and arid conditions. Subsequently, calcitic micrite was continuously precipitated from small, shallow, local, isolated and short lived ponds fringed by freshwater marshes with abundant charophyte meadows. The latter were developed as a result of flooding scattered depressions by groundwater supersaturated with respect to calcite due to rise of groundwater table. The deposition of two facies of carbonate muds, namely; biomicrite and pelintraclasts skeletal micrites was followed by a drought phase which witnessed desiccation of the fresh water ponds and significant drop in groundwater level. A sequence of pedogenic and diagenetic processes acted on the deposited carbonate muds are manifested by: (a) desiccation cracks, (b) micrite neomorphism, (c) infilling of root burrows and some cracks by aeolian siliciclastics, (d) karstification, (e) marmorization, (f) calcretization of root burrow infill and development of pseudo-rhizocrete, (g) calcite cementation and mineral authigenesis, and (h) silcretization. These processes are responsible for the development of hard palustrine carbonate crust. At the advent of aridity, the whole system of Al Dibdibba alluvial fan was subjected to deflation. This resulted in reversing the paleotopography of the hard crusted palustrine depressions into carbonate capped domal hills.

  1. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: A framework for examining the links between glaciation, lake level changes and alluvial fan formation

    USGS Publications Warehouse

    Owen, L.A.; Finkel, R.C.; Haizhou, M.; Barnard, P.L.

    2006-01-01

    The Qaidam Basin in Northern Tibet is one of the largest hyper-arid intermontane basins on Earth. Alluvial fans, pediment surfaces, shorelines and a thick succession of sediments within the basin, coupled with moraines and associated landforms in the adjacent high mountain catchments of the Kunlun Mountains, record a complex history of Late Quaternary paleoenvironmental change and landscape evolution. The region provides an ideal natural laboratory to examine the interaction between tectonics and climate within a continent-continent collision zone, and to quantify rates of landscape evolution as controlled by climate and the associated glacial and hydrological changes in hyper-arid and adjacent high-altitude environments. Geomorphic mapping, analysis of landforms and sediments, and terrestrial cosmogenic radionuclide surface exposure and optically stimulated luminescence dating serve to define the timing of formation of Late Quaternary landforms along the southern and northwestern margins of the Qaidam Basin, and in the Burhan Budai Shan of the Kunlun Mountains adjacent to the basin on the south. These dates provide a framework that suggests links between climatic amelioration, deglaciation, lake desiccation and alluvial fan evolution. At least three glacial advances are defined in the Burham Budai Shan of the Kunlun Mountains. On the northern side of this range these occurred in the penultimate glacial cycle or early in the last glacial cycle, during the Last Glacial Maximum (LGM)/Lateglacial and during the Holocene. On the south side of the range, advances occurred during the penultimate glacial cycle, MIS-3, and possibly the LGM, Lateglacial or Holocene. Several distinct phases of alluvial fan sedimentation are likewise defined. Alluvial fans formed on the southern side of the Kunlun Mountains prior to 200 ka. Ice-contact alluvial fans formed during the penultimate glacial and during MIS-3. Extensive incised alluvial fans that form the main valley fills north of

  2. Texture and depositional history of near-surface alluvial deposits in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Laudon, Julie; Belitz, Kenneth

    1989-01-01

    Saline conditions and associated high levels of selenium and other soluble trace elements in soil, shallow ground water, and agricultural drain water of the western San Joaquin Valley, California, have prompted a study of the texture of near-surface alluvial deposits in the central part of the western valley. Texture is characterized by the percentage of coarse-grained sediment present within a specified subsurface depth interval and is used as a basis for mapping the upper 50 feet of deposits. Resulting quantitative descriptions of the deposits are used to interpret the late Quaternary history of the area. Three hydrogeologic units--Coast Range alluvium, flood-basin deposits, and Sierran sand--can be recognized in the upper 50 feet of deposits in the central part of the western San Joaquin Valley. The upper 30 feet of Coast Range alluvium and the adjacent 5 to 35 feet of flood-basin deposits are predominantly fine grained. These fine-grained Coast Range deposits are underlain by coarse-grained channel deposits. The fine-grained flood basin deposits are underlain by coarse-grained Sierran sand. The extent and orientation of channel deposits below 20 feet in the Coast Range alluvium indicate that streams draining the Coast Range may have been tributary to the axial stream that deposited the Sierran sand and that streamflow may have been to the southeast. The fining-upward stratigraphic sequence in the upper 50 feet of deposits and the headward retreat of tributary stream channels from the valley trough with time support a recent hypothesis of climatic control of alluviation in the western San Joaquin Valley.

  3. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    SciTech Connect

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium.

  4. Depositional facies and Hohokam settlement patterns of Holocene alluvial fans, N. Tucson Basin, Arizona

    SciTech Connect

    Field, J.J.

    1985-01-01

    The distribution of depositional facies on eight Holocene alluvial fans of varying dimensions is used to evaluate prehistoric Hohokam agricultural settlement patterns. Two facies are recognized: channel gravelly sand facies and overbank silty sand facies. No debris flow deposits occur. The channel facies is characterized by relatively well sorted stratified sands and gravels with common heavy mineral laminations. Overbank facies deposits are massive and very poorly sorted due to heavy bioturbation. Lithostratigraphic profiles from backhoe trenches and sediment size analysis document headward migration of depositional facies which results in fining upward sequences. Each sequence is a channel fan lobe with an underlying coarse grained channel sand which fines to overbank silty sands. Lateral and vertical variations in facies distributions show that depositional processes are affected by drainage basin area (fan size) and distance from fan head. Gravelly channel sands dominate at the headward portions of the fan and are more pervasive on large fans; overbank silty sands are ubiquitous at fan toes and approach closer to the fan head of smaller alluvial fans. When depositional facies are considered as records of water flow over an alluvial surface, the farming potential of each fan can be analyzed. Depositional models of alluvial fan sedimentation provide the basis for understanding Hohokam settlement patterns on active alluvial surfaces.

  5. Quaternary migration of active extension revealed by a syn-tectonic alluvial fan shift. A case study in the Northern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Mirabella, Francesco; Bucci, Francesco; Cardinali, Mauro; Santangelo, Michele; Guzzetti, Fausto

    2016-04-01

    In areas characterized by the progressive migration of active extension through time, shifts in the position of the active depocenter occur. Such shifts through time produces peculiar geomorphological settings that are often characterized by wind gaps, abandoned valleys, streams captures and drainage inversions. These features provide the opportunity to investigate active areas by studying the recent-most geological history of the related nearby basins. We investigate this topic in a tectonically active area in the Northern Apennines of Italy, as indicated by both instrumental and historical seismicity (maximum epicentral intensity I0=VIII) and extension rates in the order of 2.5-2.7 mm/yr. In particular, we study the Montefalco ridge drainage inversion. Here, fluvial sands and imbricated conglomerates deposited in a lower Pleistocene depocenter constituted by an extensional subsiding basin, are presently uplifted more than 200 m above the present day alluvial plain. The Montefalco ridge drainage inversion, at about 400 m a.s.l., separates two valleys, the Gualdo Cattaneo - Bastardo valley to the West (300 m a.s.l.) and the Foligno present-day alluvial plain to the East (200 m a.s.l.). Seismic reflection data show that the maximum thickness of the continental sequence in the Foligno valley is in the order of 500 m. This valley is presently occupied by a 37 km2 alluvial fan produced by the Topino river flowing from NE to SW. To unravel the Quaternary tectonic evolution of the area, we integrate different data sets collected by field mapping, detailed photo-geological data, sediments provenance information, and subsurface data. We interpret the Montefalco ridge as a paleo-Foligno-like alluvial fan representing the evidence of the recent migration of the active extension to the East of around 7 km. Considering an age of deformation of 2.5 My, an extension rate of about 2.8 mm/yr is derived, which corresponds to the present-day geodetic rates. We stress the importance

  6. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    SciTech Connect

    Arvidson, R.; Becker, R.; Shanabrook, A.; Luo, W.; Sultan, M.; Sturchio, N.; Lotfy, Z.; Mahmood, A.M.; El Alfy, Z.

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.

  7. Atomic layer deposition of quaternary chalcogenides

    DOEpatents

    Thimsen, Elijah J; Riha, Shannon C; Martinson, Alex B.F.; Elam, Jeffrey W; Pellin, Michael J

    2014-06-03

    Methods and systems are provided for synthesis and deposition of chalcogenides (including Cu.sub.2ZnSnS.sub.4). Binary compounds, such as metal sulfides, can be deposited by alternating exposures of the substrate to a metal cation precursor and a chalcogen anion precursor with purge steps between.

  8. Dating intramontane alluvial deposits from NW Argentina using luminescence techniques: Problems and potential

    NASA Astrophysics Data System (ADS)

    Spencer, Joel Q. G.; Robinson, Ruth A. J.

    2008-01-01

    Intramontane basin sediments are an archive of the interaction between basin bounding faults, and alluvial fan and fluvial systems. The chronologies of intramontane basin sedimentation enable an understanding of the cycling of sediments within a basin through time, can be interrogated to identify periods of alluvial storage and erosion, provide rates of sediment accumulation and storage and date fault movement. If suitable dating methods (in terms of resolution and timescale) are applied to develop the chronologies of alluvial archives, it is then possible to discriminate between climate and tectonic forcing mechanisms on long-term basin behaviour. Optically stimulated luminescence (OSL) dating of quartz grains from alluvial sediments is an ideal technique for establishing a chronological framework of basin sedimentation as the method directly dates sedimentation events. However, our experience of OSL dating of quartz minerals extracted from Late Quaternary alluvial sequences in the quebradas of the Eastern Cordillera of NW Argentina has presented a number of challenges concerning selection of appropriate facies to analyse, mineral contamination, failure of fundamental protocol tests, proximity to saturation, and broad and multi-modal age distributions. Through careful analysis of the alluvial sedimentology and choice of sampling environments we have been able to locate suitable samples in most vertical sequences studied. A post-infrared-OSL approach demonstrated that contaminant signals were resulting in protocol test failure and, conversely, circumvention of this problem has increased confidence and reliability in the dating results. Assessment of dose-response characteristics suggests that the luminescence for the oldest samples is not likely to be saturated and in turn ages are not considered to be underestimated. Finally, different statistical tests have enabled objective identification of single low-dose populations in complex distributions and confirmed that

  9. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Cederstrand, J.R.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries, maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma. Ground water in 1,305 square miles of Quaternary-age alluvial and terrace deposits along the the Cimarron River from Freedom to Guthrie is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. Alluvial and terrace deposits are composed of interfingering lenses of clay, sandy clay, and cross-bedded poorly sorted sand and gravel. The aquifer is composed of hydraulically connected alluvial and terrace deposits that unconformably overlie the Permian-age Formations. The aquifer boundaries are from a ground-water modeling report on the alluvial and terrace aquifer along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma and published digital surficial geology data sets. The aquifer boundary data set was created from digital geologic data sets from maps published at a scale of 1:250,000. The hydraulic conductivity values, recharge rates, and ground-water level elevation contours are from the ground-water modeling report. Water-level elevation contours were digitized from a map at a scale of 1:250,000. The maps were published at a scale of 1:900,000. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  10. Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion

    NASA Astrophysics Data System (ADS)

    Hsu, Leslie; Pelletier, Jon D.

    2004-06-01

    Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m 2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30-50% accuracy.

  11. Quaternary tilt of Death Valley determined from landform modelling of alluvial fans

    SciTech Connect

    West, R.B.; Wilson, D.S. . Dept. of Geology)

    1993-04-01

    Alluvial fans along the east side of central Death Valley are being actively back-tilted along the Death Valley fault zone. Initial modelling of the Copper Canyon and Furnace Creek fans led to recognition of distinct segments. Field reconnaissance and aerial photo mapping were conducted to check model results and improve segment discrimination. Surface roughness, relative position, vegetation distribution, and drainage patterns provided independent evidence for segment discrimination. Subsequent modelling of individual segments produced a range of tilt values from 0.275[degree] to 0.559[degree] down to the northeast. Continued analysis of these fan segments is concentrated on: (1) assigning confidence and error values to the tilt values; and (2) dating individual segments. Further work will compare the tilt rates of east-side fans with those from the west. The mean squared error (MSE) is currently being used as a first order assessment of the quality of the model's fit to data digitized from 1:24,000 scale USGS topographic maps. MSE values of 1 m or less can be expected for relatively young or actively aggrading segments. Previous fan models have found the expected range of misfits to be between 2 m and 5 m. This seven parameter least squares model has produced fits with less than 2 m total range in misfits. Previous models have not accounted for tilt or have relied on simplifying assumptions to fix apex position.

  12. Hydrogeologic features of the alluvial deposits in the Owl Creek Valley, Bighorn Basin, Wyoming

    USGS Publications Warehouse

    Cooley, M.E.; Head, W.J.

    1982-01-01

    The alluvial acquifer principally of the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits and consists subordinately of alluvial-fan deposits. Thickness of the alluvial aquifer is generally 20 to 40 feet. Dissolved-solids concentration of water in the alluvial aquifer ranges from about 500 to more than 3,000 milligrams per liter. The most favorable areas for groundwater development are the flood-plain alluvium and part of the Arapahoe Ranch terrace deposits; however, in much of these units, the water contains more than 2,000 milligrams per liter of dissolved solids. Measurements of specific conductance of the flow of Owl Creek indicate a progressive increase in the down stream direction and range between 15 and 355 micromhos per centimeter at 25C per mile. The increases are due to return flow of irrigation water, inflow from tributaries, and inflow from groundwater. Conspicuous terraces in Owl Creek Valley included an unnamed terrace at 500 feet above Owl Creek, the Embar Ranch terrace 160 to 120 feet above the creek, and the Arapahoe Ranch terrace 50 to 20 feet above the creek. (USGS)

  13. Sedimentary facies of alluvial fan deposits, Death Valley, California

    SciTech Connect

    Middleton, G.V. )

    1992-01-01

    Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River. The most remarkable features of the fan deposits are the very weak segregation of sand and gravel, and the complete absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and even large wash surfaces is steep enough to produce upper flow regimes. There are also very few trends in facies abundance down fans: most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). The facies characteristics of a given fan vary little from proximal to distal regions, but may differ strongly from the facies seen in adjacent fans. Ancient deposits that show clear segregation of gravel from cross-bedded sand beds, or strong proximal to distal facies transitions, must have been deposited in environments quite different from Death Valley.

  14. Clay sized fraction and powdered whole-rock X-ray analyses from alluvial basin deposits in central and southern New Mexico

    USGS Publications Warehouse

    Anderholm, S.K.

    1985-01-01

    As part of the study of the water quality and geochemistry of Southwest Alluvial Basins (SWAB) in parts of Colorado, New Mexico, and Texas, which is a Regional Aquifer-System Analysis (RASA) program, whole rock x-ray analysis and clay-size fraction mineralogy (x-ray) analysis of selected samples from alluvial basin deposits were done to investigate the types of minerals and clay types present in the aquifers. This was done to determine the plausible minerals and clay types in the aquifers that may be reacting with groundwater and affecting the water quality. The purpose of this report is only to present the whole rock x-ray and clay-fraction mineralogy data. Nineteen surface samples or samples from outcrop of Tertiary and Quaternary alluvial basin deposits in the central and southern Rio Grande rift were collected and analyzed. The analysis of the samples consisted of grain size analysis, and clay-size fraction mineralogy and semiquantitative analysis of the relative abundance of different clay mineral groups present. (USGS)

  15. Origin, age, and paleoclimatic setting of the Late Quaternary deposits in Wadi Feiran, Sinai Peninsula: Geomorphologic, geochronologic, and isotopic constraints

    NASA Astrophysics Data System (ADS)

    Farag, A. Z. A.; Sultan, M.; Forman, S. L.; Krishnamurthy, R. V.

    2015-12-01

    There is considerable debate on the origin, age, and paleoclimatic setting of Late Quaternary deposits within the basement complex of the Sinai Peninsula. Our research in Wadi Feiran focused on documenting the sedimentology, stratigraphy, geochemistry and chronology of Late Quaternary deposits in the Feiran (lat. 28.706 N; long. 33.665; elevation: 715 to 772 m a.m.s.l) and Tarfa (lat. 28.692 N; long. 33.933 E; elevation: 1160 to 1244 m a.m.s.l) oases. Sequence stratigraphy, analysis of remote sensed images, and groundwater levels in these two areas indicate that the investigated deposits are structurally-controlled as they are found in areas with anomalously elevated groundwater levels and upstream from shear zone/wadi intersections. Sediments are largely arenaceous upstream and transition downstream to marly successions. We infer that these sediments were not deposited in lake settings because of the absence of shorelines and associated littoral, sublittoral and deeper water facies, and the presence of rhizoliths, secondary calcite veins and gastropods, all of which suggest deposition in a spring or wetland environment. A short hydrologic residence time and/or deposition in an open water system is supported by the lack of correlation (R = 0.08) between δ18O and δ13C values in carbonate deposits. Our findings are consistent with deposition of sediments by alluvial, fluvial and paludal processes under variable hydrologic conditions and higher water table conditions. Quartz extracts from these sediments yielded optically stimulated luminescence ages between ca. 27 and 11 ka and place these wetter conditions during the last glacial period and extend the "greening" of North Africa further eastward. Our findings are consistent with models which identify the wet periods in the Late Quaternary in the Sinai Peninsula and in North Africa as being glacial periods.

  16. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in Central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Rea, Alan; Runkle, D.L.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma. Ground water in approximately 400 square miles of Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of clay, silt, sand, and gravel. Sand-sized sediments dominate the poorly sorted, fine to coarse, unconsolidated quartz grains in the aquifer. The hydraulically connected alluvial and terrace deposits unconformably overlie Permian-age formations. The aquifer is overlain by a layer of wind-blown sand in parts of the area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  17. Three-dimensional sedimentary architecture of Quaternary deposits; a case study of environmental sedimentology (Bam, Iran)

    NASA Astrophysics Data System (ADS)

    Rezaei, K.; Guest, B.; Friedrich, A.; Fayazi, F.; Nakhaei, M.; Bakhtiari, H.; Nouri, L.

    2009-04-01

    Detailed 3-D analysis of the sedimentary structure and stratigraphy of these deposits allows for an accurate understand of sedimentary model of basin. This paper presents a case study in Bam (SE Iran) reconstructing the 3-D distribution of fluvial sediments based on a high resolution, process-orientated sedimentary facies classification and lithostratigraphy. We investigated the mean grain size with vertical and horizontal change of it, clay mineralogy, sediment texture, sedimentary structures, petrology and petrography and determination of paleo-environments and finally, we prepared two cross sections in S-N and W-E directions and a 3D block diagram for the situation of changes in subsurface sediments and compare them with the destruction rate map of earthquake in Bam city. Quaternary alluvial sediments are characterized by lithofacies deposited by braided river channels, debris flows and hyperconcentrated flows. The channel flow deposits constitute relatively well sorted, well imbricated and clast-supported gravels with coarse to medium sand matrix. Mostly poorly sorted, weakly imbricated to disorganized matrix supported pebble to boulder gravels with silty sand represent debris flow deposits. Hyperconcentrated flow deposits consist of clast-supported, poorly developed sorted polymodal gravel facies with poorly developed imbricated fabric, and generally occupy the lower parts of the terrace and fan sequences. The alternation from hyperconcentrated flow to channel flow deposits is predominant in the sequence, and is possibly the response to different climate modes. The high discharge and supply of sediments as well as the dispersal and deposition of these materials in the trunk stream is attributed to climatic perturbations during the Quaternary. These models allow quantifying the thickness and volume distribution of sandy gravel and clay deposits. We correlate these sedimentary units on the basis of lithofacies similarities, stratigraphic position. These

  18. Late Quaternary carbonate deposition at the bottom of the world

    NASA Astrophysics Data System (ADS)

    Frank, Tracy D.; James, Noel P.; Bone, Yvonne; Malcolm, Isabelle; Bobak, Lindsey E.

    2014-05-01

    Carbonate sediments on polar shelves hold great potential for improving understanding of climate and oceanography in regions of the globe that are particularly sensitive to global change. Such deposits have, however, not received much attention from sedimentologists and thus remain poorly understood. This study investigates the distribution, composition, diagenesis, and stratigraphic context of Late Quaternary calcareous sediments recovered in 15 piston cores from the Ross Sea shelf, Antarctica. Results are used to develop a depositional model for carbonate deposition on glaciated, polar shelves. The utility of the deposits as analogs for the ancient record is explored. In the Ross Sea, carbonate-rich lithofacies, consisting of poorly sorted skeletal sand and gravel, are concentrated in the west and along the outer reaches of the continental shelf and upper slope. Analysis of fossil assemblages shows that deposits were produced by numerous low-diversity benthic communities dominated locally by stylasterine hydrocorals, barnacles, or bryozoans. Radiocarbon dating indicates that carbonate sedimentation was episodic, corresponding to times of reduced siliciclastic deposition. Most accumulation occurred during a time of glacial expansion in the lead-up to the Last Glacial Maximum. A more recent interval of carbonate accumulation postdates the early Holocene sea level rise and the establishment of the modern grounding line for the Ross Ice Shelf. When carbonate factories were inactive, fossil debris was subjected to infestation by bioeroders, dissolution, fragmentation, and physical reworking. This study reveals the episodic nature of carbonate deposition in polar settings and a reciprocal relationship with processes that deliver and redistribute siliciclastic debris. Carbonate production is most active during colder periods of the glacial-interglacial cycle, a potential new sedimentological paradigm for polar carbonate systems. Low accumulation rates and long residence

  19. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

    PubMed

    Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K

    2008-07-29

    This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions. PMID:18502538

  20. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    USGS Publications Warehouse

    Gray, Harrison J.; Owen, Lewis; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  1. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    NASA Astrophysics Data System (ADS)

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkel, Robert C.; Mahan, Shannon A.

    2014-12-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/-1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  2. Reconstruction of the Palaeo-environment of the Alluvial Deposits in the Eastern Free State, South Africa

    NASA Astrophysics Data System (ADS)

    Evans, M. Y.

    2009-04-01

    Small alluvial fan systems have formed off the hillslopes of the remnant Karoo koppies at Heelbo in the Eastern Free State, South Africa. The landform geometry is a result of complex relationships between climate, lithology, structure and vegetation. This research area, which includes a large mammal mass death site, potentially contains a wealth of palaeo-environmental and specifically palaeoclimatic information. Palaeo-environmental information and proxy records on past climates in southern Africa has traditionally been obtained from a variety of techniques including stable isotope analysis of speleothems, pollen , faunal analyses at archeological sites, animal remains and crater-lake sediments (see references below). However, little information exists in the scientific literature on the use of palaeosols for defining the depositional palaeoenvironments in southern Africa. The aim of this research is to attempt to address the lack of palaeo-environmental information by extracting palaeoclimatic information from the sedimentary processes and the palaeosols at the Heelbo farm that have been extensively exposed through gullying. The sedimentary fans in the area have experienced climatically controlled histories of erosion, sedimentation and pedogenesis. Extreme sedimentation is assumed to have occurred during relatively arid climatic intervals, when decreased vegetation cover provided little surface protection. In contrast pedogenesis occurs during humid intervals when vegetation cover is restored, the land stabilizes and the uppermost gravely sands weather to form soils. A combined approach of both radiocarbon- and luminescence -dating may provide a detailed chronology of these successive hillslope events in order to relate hillslope instability to climatic forcing factors. Preliminary results indicate that at least 3 depositional events are recorded within the large mammal mass death site, which have been confirmed by the radiocarbon dates of 3,610 ±110 in the top

  3. Preservation of daily tidal cycles and stacked alluvial swamp deposits: Depositional response to early compaction of buried peat bodies

    SciTech Connect

    Demko, T.M.; Gastaldo, R.A. )

    1990-05-01

    The character of the clastic depositional environments represented in the lower Mary Lee coal zone of the Pennsylvanian Pottsville Formation in the Warrior basin Alabama (tidally influenced mud flats and alluvial swamps) was controlled by the compaction of buried peat bodies. The lowest mineable coal in the Mary Lee coal zone, the Jagger, is overlain by laminated shale and sandstone exhibiting pronounced cycle bedding. This bedding records daily tidal cyclicity in the form of sand-mud couplets. These correspond to flood-current deposition of the coarser fraction followed by fallout of the finer grained fraction during ensuing slack-water periods. These couplets are cyclically bundled-sandier bundles corresponding to spring tides and muddier bundles to neap tides (lamination counts suggest a 24-30-day cycle). The clastic sequence above the overlying Blue Creek coal is characterized by a series of stacked alluvial swamp horizons. These can be identified by autochthonous fossil plants and pedological features indicative of gleyed paleosols. Catastrophic flooding buried and preserved these horizons. The rapid, early compaction of the buried Jagger and Blue Creek peat bodies created accommodation space that allowed both the preservation of tidalites in the Jagger coal to Blue Creek coal interval and the stacking of alluvial swamp paleosols above the Blue Creek seam. Carboniferous peats were comprised of highly compressible plant parts and hence, were sensitive to sediment loading. Once the peat bodies had compressed to a certain extent, stability of the overlying sediment surface created conditions amenable to resumption of peat accumulation.

  4. Field Demonstrations of Five Geophysical Methods that Could Be Used to Characterize Deposits of Alluvial Aggregate

    USGS Publications Warehouse

    Ellefsen, K.J.; Burton, B.L.; Lucius, J.E.; Haines, S.S.; Fitterman, D.V.; Witty, J.A.; Carlson, D.; Milburn, B.; Langer, W.H.

    2007-01-01

    Personnel from the U.S. Geological Survey and Martin Marietta Aggregates, Inc., conducted field demonstrations of five different geophysical methods to show how these methods could be used to characterize deposits of alluvial aggregate. The methods were time-domain electromagnetic sounding, electrical resistivity profiling, S-wave reflection profiling, S-wave refraction profiling, and P-wave refraction profiling. All demonstrations were conducted at one site within a river valley in central Indiana, where the stratigraphy consisted of 1 to 2 meters of clay-rich soil, 20 to 35 meters of alluvial sand and gravel, 1 to 6 meters of clay, and multiple layers of limestone and dolomite bedrock. All geophysical methods, except time-domain electromagnetic sounding, provided information about the alluvial aggregate that was consistent with the known geology. Although time-domain electromagnetic sounding did not work well at this site, it has worked well at other sites with different geology. All of these geophysical methods complement traditional methods of geologic characterization such as drilling.

  5. Local recharge processes in glacial and alluvial deposits of a temperate catchment

    NASA Astrophysics Data System (ADS)

    Fragalà, Federico A.; Parkin, Geoff

    2010-07-01

    SummaryThis study demonstrates that the composition and structure of Quaternary deposits and topography significantly influence rates of recharge and distribution of diffuse agricultural pollution at the hillslope scale. Analyses were made of vertical profiles of naturally-occurring chloride and nitrate, and artificially introduced bromide, in unsaturated and saturated sections of borehole cores of glacial till and alluvium under different land uses in the Upper Eden valley (UK). Estimates of local potential recharge were made based on chloride mass balance and nitrate peak methods. Persistent chloride bulges below the root zone were observed, and are interpreted to result from filtration processes at lithological boundaries. Changes in the shape of chloride profiles downslope, corroborated by nitrate profiles, indicate the roles of surface or near-surface runoff and runon, and the existence of lateral subsurface flows at depth. These findings have implications for estimation of recharge rates through unsaturated zones in Quaternary deposits, and the interpretation of potential 'hot-spots' of diffuse agrochemicals, particularly nitrates, moving through Quaternary deposits into groundwater.

  6. Late Quaternary depositional history of the Albemarle Embayment, NC

    SciTech Connect

    Riggs, S.R.; Klingman, C.R.; Wyrick, R.A. . Dept. of Geology)

    1993-03-01

    The depositional history of Albemarle Embayment documents deep fluvial incisement by the Roanoke River system during glacial episodes and subsequent infilling by fluvial-estuarine-barrier island sediment sequences during interglacial transgressions. Unraveling the Holocene time slice will help reconstruct complex Quaternary records of multiple incisement and backfilling. A network of drill holes, vibracores, and seismic data suggest a four-phase infill history over the last 12,000 years. (1) Lower Roanoke River: (a) Bedload-charged, braided fluvial systems deposited basal sequences of sand and gravel prior to [approximately]5,000 BP. (b) Aggradational, swamp-forest floodplains developed [approximately]5,000 BP and bound the modern incised channels characterized by minimal bedload sedimentation. (2) Albemarle sound: (a) In the central basin, the basal channel sand sequence is overlain by an open estuarine, highly interlaminated sand and mud sequence that accumulated between [approximately]12,000 BP and [approximately]2,000 BP. (b) Depositional patterns within this unit suggest multiple oscillations of Holocene sea level that caused channel reincisement and subsequent backfilling. (c) Present estuarine marsh sedimentation began in protected coastal areas [approximately]5,000 BP. (3) Outer banks: (a) Barrier islands first influenced sedimentation in the area after [approximately]5,000 BP producing a semi-enclosed Albemarle Sound. (b) Deposition within the central basin shifted to uniform organic-rich muds that grade eastward into overwash and inlet sands. (4) Modern man: (a) colonial development within the drainage basins in the early 1700's AD produced a wedge of orange mud in inner Albemarle Sound. (b) Dam construction in the 1950's terminated orange mud deposition and the central basin reverted to organic-rich mud sedimentation.

  7. Seismic stratigraphy and depositional history of late Quaternary deposits in the Yellow Sea.

    NASA Astrophysics Data System (ADS)

    Lee, Gwang-Soo; Yoo, Dong Geun; Bae, Sungho; Choul Kim, Dae; Yi, Hi-Il

    2016-04-01

    To identify the seismic stratigraphy and depositional history of late Quaternary deposits in the Yellow Sea, approximately 52,600 line-km of Chirp seismic profiles and 5,060 line-km of Sparker seismic profiles were analyzed. The Yellow Sea are correspond to three sedimentary environments: (1) a various scale sand ridges/waves and mud belt (the western inner-shelf of the Korean Peninsula), (2) recent- and paleo-channels, erosional and broad surface (the center of the Yellow Sea), and (3) prodelta mud patch (the eastern offshore of China). Based on the seismic stratigraphic analysis of seismic profiles, the late Quaternary deposits in the Yellow Sea are divided into five distinctive seismic units (units CY1~5), consisting of two depositional sequences that can be defined as erosional and disconformable strata. Each unit show different seismic facies and geometry, and is clearly separated by each bounding surface. The major depositional processes and sediment dispersal systems during the late Quaternary in the Yellow Sea are: (1) regressive estuarine/deltaic deposits (unit CY1), (2) transgressive incised channel fill (unit CY2), (3) transgressive sand sheet (unit CY3), (4) transgressive sand ridges (unit CY4), and (5) prodelta/recent mud (unit CY5). The depositional sequences follow the general concepts of sequence stratigraphy very well. Lower sequence (DI) correspond to the falling stage systems tract regarded as regressive estuarine or deltaic deposits (unit CY1), whereas upper sequence (DII) consists of a set of the transgressive (units CY2, CY3, and CY4) and highstand systems tract (unit CY5) formed since the last-glacial period.

  8. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    NASA Astrophysics Data System (ADS)

    Stinchcomb, Gary; Peppe, Daniel

    2014-08-01

    Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 - 8.5 ka) corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 - 4.3 ka) corresponds with a transitional wet/dry phase and a previously documented incision event.......

  9. Mineral Occurrence, Translocation, and Weathering in Soils Developed on Four Types of Carbonate and Non-carbonate Alluvial Fan Deposits in Mojave Desert, Southeastern California

    NASA Astrophysics Data System (ADS)

    Deng, Y.; McDonald, E. V.

    2007-12-01

    Soil geomorphology and mineralogy can reveal important clues about Quaternary climate change and geochemical process occurring in desert soils. We investigated (1) the mineral transformation in desert soils developed on four types of alluvial fans (carbonate and non-carbonate) under the same conditions of climate and landscape evolution; and (2) the effects of age, parent materials, and eolian processes on the transformation and translocation of the minerals. Four types of alluvial-fan deposits along the Providence Mountains piedmonts, Mojave Desert, southeastern California, USA were studied: (1) carbonate rocks, primarily limestone and marble (LS), (2) fine-grained rhyodacite and rhyolitic tuff mixed with plutonic and carbonate rocks (VX), (3) fine- to coarse- grained mixed plutonic (PM) rocks, and (4) coarse-grained quartz monzonite (QM). These juxtaposed fan deposits are physically correlated in a small area (about 20 km by 15 km) and experienced the same climatic changes in the late Pleistocene and Holocene. The soils show characteristic mineral compositions of arid/semiarid soils: calcite is present in nearly all of the samples, and a few of the oldest soils contain gypsum and soluble salts. Parent material has profound influence on clay mineral composition of the soils: (1) talc were observed only in soils developed on the volcanic mixture fan deposits, and talc occurs in all horizons; (2) palygorskite occur mainly in the petrocalcic (Bkm) of old soils developed on the LS and VX fan deposits, indicating pedogenic origin; (3) chlorite was observed mainly in soils developed on VX fan deposits (all ages) and on some LS deposits, but it is absent in soils developed on PM and QM fan deposits; and (4) vermiculite was common throughout soils developed on plutonic rock fan deposits. These mineralogical differences suggest that minerals in the soils are primarily inherited from their parent materials and that mineral weathering in this area was weak. Except the

  10. Fracture Detection in Alluvial Fan Deposits Using Near-Surface Seismic Reflection Techniques

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Miller, B.

    2012-12-01

    In this study we document the observation of probable extensive shallow vertical fracture systems in unprocessed 2-D source gathers from near-surface seismic reflection surveys conducted over unconsolidated materials in alluvial fans environments. Mapping of fracture and fault systems within the sedimentary sections at hydrocarbon exploration scales has become common practice. This is due to the advent of post-stack attribute analysis of 3-D seismic images worldwide. However, examples of fracture detection and imaging in the near-surface are currently lacking in the literature. In addition, examples of fracture detection and mapping in the pre-stack domain are also lacking. In this study, unprocessed seismic source gathers from very high-resolution reflection surveys over alluvial fan deposits in tectonically active areas appear to display distinct patterns of amplitude drop off, geometrically similar to patterns expected for vertical fracture systems. The patterns can also be extracted by attribute analysis using techniques such as envelope and coherency analyses. Simple standard processing steps such as trace editing, muting, and bandpass filtering enhance interpretability. The patterns appear to be consistent and spatially fixed in the subsurface from source location to source location. These are observed in areas of obvious recent local large-scale fault movement. Examples are given from two areas, eastern Queen Valley in California and eastern Fish Lake Valley in Nevada. The stratigraphic and sedimentation patterns are quite complicated in both areas, and sediment characteristics vary considerably between sites. The surface sediments in the Queen Valley case are, in general, much coarser with many more boulder-sized clasts in the shallow subsurface. The seismic source consisted of a 30-06 rifle fired downhole at a depth of 0.5m. While the boulders interfered with seismic source operations, the record quality was excellent. The alluvial materials, especially

  11. Rock magnetic properties of a soil developed on an alluvial deposit at Buttermilk Creek, Texas, USA

    NASA Astrophysics Data System (ADS)

    Lindquist, Anna K.; Feinberg, Joshua M.; Waters, Michael R.

    2011-12-01

    The evolution of magnetization within a floodplain soil begins with initial deposition of magnetic particles during sedimentation and continues via subsequent alteration and growth of iron-bearing compounds by pedogenic and biologic processes. Measurements of soil magnetic properties capture information about the developmental history of the soil and are a convenient method by which to investigate environmental change and pedogenesis. Using a range of magnetic measurements, a comprehensive scenario for soil development was constructed for floodplain sediments at the Debra L. Friedkin site, an important archeological site near Buttermilk Creek, Texas. Floodplain deposits have traditionally been avoided for soil magnetism studies because it is thought that the episodic input of sediment would form soils characterized by discrete sedimentary units rather than a continuous record of pedogenesis. We demonstrate that alluvial deposits can sometimes carry a straightforwardly interpretable magnetic signal similar to those typically seen in loess deposits. Smooth variation of rock magnetic parameters as a function of depth also leads us to conclude that the soil at this site is largely undisturbed and that the age of lithic artifacts found within the soil may be interpreted within stratigraphic context.

  12. A discontinuity in the late Pleistocene alluvial deposits, Hwacheon-ri, Gyeongju, Korea: Occurrences and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Paik, In Sung; Kyeong Seol, Weon; Kim, Hyun Joo; Lee, Ho Il; Kang, Hee Cheol

    2015-04-01

    Sedimentary discontinuity surface occurs in the late Pleistocene alluvial deposits exposed along the cliff (about 10 m thick and over 140 m in length) in stream side, Gyeongju, Korea. The discontinuity surface is laterally extensive and marked by distinct carbonaceous dark horizon in the middle part of the deposits. The deposits are divided into lower and upper units by the discontinuity surface. The lower unit overlies unconformably the Cretaceous andesitic rock (basement), and consists of braided-river deposits. Lower part of the lower unit is mainly composed of lenticular-bedded and clast-supported conglomeratic deposits, whereas gray to dark gray sandy to muddy channel-plug deposits occur in the uppermost part of the lower unit. It is characteristic that iron-oxide crusts occur in the lower unit. They are cutting across the lower unit and truncated by the overlying upper unit. Rootlets mineralized by vivianite are present in the channel-plug deposits below the discontinuity surface. The upper unit overlying the lower unit with erosive contact (discontinuity surface) is mostly composed of matrix-supported conglomeratic alluvial fan deposits. Hornfelsic gravels are common in the lower unit, whereas andesitic gravels are predominant in the upper unit, suggesting the provenance change from the lower unit to the upper unit. OSL ages for the lower and the upper units are 125±9 ka and 94±9 ka, respectively, suggesting that the lower unit was deposited in MIS5e and the upper unit was formed in MIS5c to 5b. It is thus interpreted that the shift of depositional environment from a fluvial plain (lower unit) to an alluvial fan (upper unit) was an alluvial response to sea level change inducing fall of base level in an alluvial basin from the interglacial to the glacial stages. The development of iron-oxide crusts and diagenetic vivianite in the discontinuity surface suggest that humid condition persisted during the paleoclimatic shift from the last interglacial to the

  13. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Becker, C.J.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the North Canadian River from Oklahoma City to Eufaula Lake in east-central Oklahoma. Ground water in 710 square miles of Quaternary-age alluvial and terrace deposits along the North Canadian River is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer, composed of alluvial and terrace deposits, consists of sand, silt, clay, and gravel. The aquifer is underlain and in hydraulic connection with the upper zone of the Permian-age Garber-Wellington aquifer and the Pennsylvanian-age Ada-Vamoosa aquifer. Most of the lines in the four digital data sets were digitized from a published ground-water modeling report but portions of the aquifer boundary data set was extracted from published digital geologic data sets. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  14. Unconfined alluvial flow processes: Recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction

    NASA Astrophysics Data System (ADS)

    North, Colin P.; Davidson, Stephanie K.

    2012-02-01

    Palaeogeographic interpretation of the sedimentary rock record depends on correct recognition from the preserved evidence of the processes responsible for transporting and depositing the sediment. This in turn depends on robust knowledge transfer from previous workers, and the successful exchange of ideas between workers requires consistent use of a well-defined vocabulary. We have identified serious breakdowns in all these interpretation steps in the case of terrestrial unconfined flow and its deposits, and these failures are leading to unreliable environmental and climatic interpretation. This is significant because such alluvial deposits commonly form a majority of the rock record of continental environments. Working from the basic principles of geomorphology and fluid dynamics, we have undertaken a wide-ranging analysis of the nature of out-of-channel flow and from this make predictions about the characteristics of its deposits. We identify the range of possible locations and conditions that lead to the development of unconfined flow, review the processes operating in each case, and examine the range of lithological features that can be produced by these processes. This allows us to evaluate the reliability of the criteria claimed for identification of out-of-channel flow deposits, and examine how our new insights might alter palaeoclimatic and palaeogeographic reconstructions published previously by others. The sedimentary record of unconfined flows is much more diverse and complex than usually portrayed. The received wisdom that the record of unconfined flow consists solely of upwards-fining thin beds produced from shallow waning flows is shown to be flawed. A wide range of lithofacies are possible, and the variation in both flow steadiness and uniformity needs to be taken into account. The previously published criteria for recognition of flows of this type are not diagnostic of process or location; unconfined flow deposits cannot reliably be identified from

  15. Use of spectral data and Landsat TM for mapping alluvial fan deposits of the Rosillos Mountains in Brewster County, Texas

    SciTech Connect

    Bittick, S.M.; Morgan, K.M.; Busbey, A.B. . Dept. of Geology)

    1993-02-01

    The Rosillos Mountains consist of a large, highly faulted and fracture, exposed Tertiary igneous intrusion (laccolith) located adjacent to Big Bend National Park. This study examines the alluvial deposits that fan out over the 25,000 acre privately owned Rosillos Ranch located on the east side of the laccolith. Using a field spectrometer, spectral curves were generated for the various materials present. These surface reflectance patterns were used for spectral recognition and, along with Landsat digital data, for computer classification mapping of the alluvial fans. Several computer classification techniques will be presented along with mapping accuracies. Initial results indicate the resulting Landsat generated fan deposit maps are, in fact, related to the source areas and the age of deposition.

  16. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Schmidt, J.C.; Graf, J.B.

    1988-01-01

    High discharges occurring between 1983-1985 resulted in redistribution of sand stored in zones of recirculating current in the Colorado River in Grand Canyon National Park. Redistribution resulted in net loss in the number of reattachment deposits in narrow reaches and aggradation of some separation deposits. Separation deposits were more stable than other types of deposits. Alluvial sand deposits that are large enough and of sufficient size for use as campsites were more stable than smaller lower-elevation deposits. Fluctuating flows between October 1985 and January 1986 caused erosion throughout the Grand Canyon, and caused erosion of some deposits created by the high flows of 1983-1985. Data collected for this study included measurements of flow velocity, scour-and-fill of sand deposits, topographic and bathymetric surveys, mapping of surface-flow patterns, water-surface slope surveys, sedimentological analysis, and replication of photographs. A classification system of alluvial sand deposits was developed on the basis of morphometric characteristics and the location of these deposits in relation to parts of recirculation zones. (Author 's abstract)

  17. Soils developed from alluvial and proluvial deposits in the Gröndalselva River valley in West Spitsbergen

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.; Litvinova, T. I.

    2012-05-01

    The genetic characterization of soils developed from alluvial and proluvial deposits in the Gröndalselva River valley (West Spitsbergen) is presented. These soils are compared with analogous soils formed on marine terraces along the coasts of Isfjord and Grönfjord. Gray-humus (soddy) soils with an O-AY-C profile have been described on parent materials of different origins, including alluvial and proluvial sediments. The texture of the soils in the Gröndalselva River valley varies from medium to heavy loam and differs from the texture of the soils on other geomorphic positions in the higher content of fine particles. The soils developed from the alluvial deposits are characterized by their richer mineralogical and chemical composition in comparison with the soils developed from proluvial deposits, marine deposits, and bedrocks. All the deposits are impoverished in CaO. No differentiation of the chemical composition of the soils along the soil profiles has been found in the soils of the coastal areas and the river valley. Some accumulation of oxalate-soluble Al and Fe compounds takes place in the uppermost mineral horizon. The soils of all the geomorphic positions have a high humus content and a high exchange capacity.

  18. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Schmidt, John C.; Graf, Julia B.

    1990-01-01

    Alluvial sand deposits along the Colorado River in Grand Canyon National Park are used as campsites and are substrate for vegetation. The largest and most numerous of these deposits are formed in zones of recirculating current that are created downstream from where the channel is constricted by debris fans at tributary mouths. Alluvial sand deposits are classified by location and form. Separation and reattachment deposits are downstream from constrictions within recirculation zones. Separation deposits are near the point of flow separation and typically mantle large debris fans. Reattachment deposits are near the point of flow reattachment and project upstream beneath much of the zone of recirculating current. Upper-pool deposits are upstream from a constriction and are associated with backwaters. Channel-margin deposits line the channel and have the form of terraces. Some are created in small recirculation zones. Reattachment and channel-margin deposits are largest and most numerous in wide reaches, although small channel-margin deposits are used as campsites in the narrow Muav Gorge. Separation deposits are more uniformly distributed throughout Grand Canyon National Park than are other types of deposits. In some narrow reaches where the number of alluvial sand deposits used as campsites is small, separation deposits are a high percentage of the total. During high flows, both separation and reattachment deposits are initially scoured but are subsequently redeposited during flow recession. Sand is also exchanged between the main channel and recirculation zones. The rate of recession of high flows can affect the elevation of alluvial deposits that are left exposed after a flood has passed. Fluctuating flows that follow a period of steady discharge cause initial erosion of separation and reattachment deposits. A part of this eroded sand is transported to the main channel. Therefore, sand is exchanged between the main channel and recirculation zones and redistributed

  19. Supercritical sheetflood deposits on the volcaniclastic alluvial fan: the Cretaceous upper Daeri Member, Wido Island, Korea

    NASA Astrophysics Data System (ADS)

    Gul Hwang, In; Gihm, Yong Sik; Kim, Min Cheol

    2016-04-01

    The upper Daeri Member is composed of subaerial primary and resedimented pyroclastic deposits. The upper Daeri Member accumulated under influence of tectonic subsidence, and the basin was divided into four blocks (Block 1 to 4) by intrabasinal normal faults (Fault A to C). Vertical separation of Fault B is estimated about 250 m and provided sufficient accommodation space on Block 3 with intrabasinal physiographic relief, resulting in conformable stacking of the upper Daeri Member on a volcaniclastic alluvial fan. The welded pumiceous lapilli tuff (primary one) was deposited by a pyroclastic density current during an explosive volcanic eruption. After the eruption, the resedimented pyroclastic deposits were deposited by episodic sediment gravity flows and are intercalated with the reddish, homogeneous mudstones. In Block 3 the resedimented pyroclastic deposits show an abrupt decrease in ten largest lithic clasts from within 3 km away from Fault B, reflecting rapid waning of parental sediment gravity flows. A wavy bedded lapilli tuff is one of the lithofacies of the resedimented pyroclastic deposits. The wavy bedded lapilli tuff is composed of symmetrical or nearly-symmetrical, wavy stratifications, forming undulatory bed geometry. The wavy stratifications are recognized by distinctive alternations of few cm to 10 cm thick, lapilli-rich and ash-rich layers. Beds of the wavy bedded lapilli tuff are 0.1 to 2 m thick (estimated in crests) and range in wavelength 1.3 m to 12 m (ave. 8 m). Both amplitude and wavelength gradually decrease away from Fault B. The wavy bedded lapilli tuff can laterally be traced over 90 m. Based on undulatory bed geometry and wavy stratifications, the wavy bedded lapilli tuff is interpreted as antidune bedforms, formed by supercritical sheetfloods. The symmetrical or nearly symmetrical wavy stratifications are due to maintenance of stationary state of standing waves of the sheetfloods. A down current decrease in both wavelength and thickness

  20. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma. Ground water in 830 square miles of the Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of poorly sorted, fine to coarse, unconsolidated quartz sand with minor amounts of clay, silt, and basal gravel. The hydraulically connected alluvial and terrace deposits unconformably overlie the Tertiary-age Ogallala Formation and Permian-age formations. Most of the lines in the aquifer boundary and recharge data sets and some of the lines in the hydraulic conductivity data set were extracted from a published digital surficial geology data set based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. The data sets are provided in both nonproprietary and ARC/INFO export file formats. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  1. Aggradation and degradation of alluvial sand deposits, 1965 to 1986, Colorado River, Grand Canyon National Park, Arizona; executive summary

    USGS Publications Warehouse

    Schmidt, J.C.; Graf, J.B.

    1988-01-01

    High discharges that occurred in 1983-85 resulted in redistribution of sand stored in zones of recirculating current in the Colorado River in Grand Canyon National Park. Redistribution resulted in net loss in the number of reattachment deposits in narrow reaches and aggradation of some separation deposits. Separation deposits were more stable than other types of deposits. Alluvial sand deposits that are large enough and of sufficient areal extent for use as campsites were more stable than smaller lower-elevation deposits. Fluctuating flows between October 1985 and January 1986 caused erosion throughout the Grand Canyon and caused erosion of some deposits created by the high flows of 1983-85. (Author 's abstract)

  2. Late Quaternary mass-wasting records and formation of alluvial terraces in the actively uplifting Lao-nong catchment, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsui, H. K.; Hsieh, M. L.; Li, W. L.; Hsiao, Y. T.

    2014-12-01

    Although dominated by erosion over long term, the tectonically active mountains of Taiwan commonly contain thick landslide and debris-flow gravels capping hillslopes or forming alluvial terraces. These deposits and their associated landforms serve to study ancient mass-wasting histories and their controls on fluvial processes. This study focuses on the Lao-nong River draining the 1000-3000 m high mountain areas in southwestern Taiwan (current tectonic uplift: 10-20 mm/yr). The Lao-nong River exhibits numerous terraces, many of which are of tributary-fan origins and consist of fluvial/debris-flow gravels 20-200 m thick. The development of such alluvial terraces can be observed during 2009 Typhoon Morakot, which brought record-setting 2000 mm of rain. Triggered by this heavy rain, almost all the tributaries of the Lao-nong generated alluvial fans at their mouths and consequently caused up-to-30 m aggradation along the trunk river. The Lao-nong has yielded >100 radiocarbon dates (all <20 ka).These data reveal that the formation of the observed alluvial terraces (from deposition of thick gravels to subsequent incision) could proceed very rapidly (<1 ky), and that the trunk river has been characterized by repeated aggradation and incision. This fact highlights the significance of event-driven sediment supply in governing the river behavior, which has strongly obscured the effect of the concurrent tectonic uplift. Among the terraces consisting of thick gravels, the six with 100-200 m-thick gravels are dated~18ka, ~12ka (for two terraces), ~5.5ka, ~3.4ka, and ~1.4 ka. The seven terraces with 50-100 m-thick gravels are dated ~12ka, ~8.3ka, ~5.7ka, ~1.3ka and 0.2-1.6ka (two undated). These dates (and others) suggest the clusters of mass-wasting events around ~12ka, 5.5-5.7 ka, and <1.6 ka. However, note that most of the recorded mass-wasting events vary in time and magnitude among tributary catchments, which implies the controls of internal factors on the timing, magnitude

  3. Ground water in the alluvial deposits of Cottonwood Creek Basin, Oklahoma

    USGS Publications Warehouse

    Stacy, B.L.

    1960-01-01

    Cottonwood Creek basin is a 377 square mile area in central Oklahoma. The rim of the basin has altitudes as high as 1,300 feet, and the mouth is at an altitude of 910. Deposits of Quaternary age consist of alluvium along the stream courses and high terrace deposits along the southern rim of the basin. The alluvium contains a high percentage of clay and silt, ranges in thickness from a few inches to 40 feet, and underlies about 36 square miles of the basin. Sandstone, siltstone, and shale of Permian age, which form the bedrock, consist of the Garber sandstone along the eastern edge, the Hennessey shale through the central part, and Flowerpot shale along the western edge. Replenishment of water in the alluvium is from precipitation, lateral seepage and runoff from adjoining areas, and infiltration from the stream channels during high flows. The major use of ground water in the alluvium is transpiration by cottonwood and willow trees. Virtually no water is withdrawn from the alluvium by wells. (available as photostat copy only)

  4. Mineralogical characteristics of the superlarge Quaternary bauxite deposits in Jingxi and Debao counties, western Guangxi, China

    NASA Astrophysics Data System (ADS)

    Liu, Xuefei; Wang, Qingfei; Zhang, Qizuan; Feng, Yuewen; Cai, Shuhui

    2012-06-01

    In recent decades, more than 0.5 billion tons of ores scattered in the Quaternary laterite in western Guangxi, China have been explored. The ores were derived from a bauxite horizon in Permian via physical break-up and re-sediment process. Utilizing various test methods, i.e., XRD, DTA, TG/DTG, SEM/EDS and EPMA, the mineralogical characteristics of the Quaternary bauxite ores in Jingxi and Debao counties were investigated. XRD was used together with TG/DTG to obtain relatively accurate ore mineral abundance. Diaspore is the major phase, whereas hematite, kaolinite, anatase, chamosite, gibbsite, goethite, illite and rutile are minor. Diaspore is characterized by a small particle size, low degrees of crystallinity and complex chemical composition. Both gibbsite and goethite have a varied particle size, and goethite crystals contain high Al substitution and Si. It is clarified that diaspore, chamosite and anatase were formed in a mildly reduced and alkaline depositional environment in Permian, while gibbsite, hematite, goethite and part kaolinite were precipitated from Al3+-, Si4+- and Fe3+-enriched solutions within an Quaternary oxidized environment. The ions Al3+, Si4+ and Fe3+ are mostly released from chamosite in its dissolution process. The different physicochemical conditions between the Permian depositional and the Quaternary weathering periods resulted in a complex mineral assemblage in the Quaternary bauxite.

  5. Jesse Ewing Canyon Formation, an interpreted alluvial fan deposit in the basal Uinta Mountain Group (Middle Proterozoic), Utah

    SciTech Connect

    Sanderson, I.D.; Wiley, M.T.

    1986-07-01

    The Jesse Ewing Canyon Formation, a member of the Middle Proterozic Uinta Mountain Group, is here proposed as a formal lithostratigraphic unit. It consists of interbedded dark reddish-brown to dark gray conglomerate with predominant white, pale green, gray, or pink metaquartzite clasts, light to dark brown or reddish-brown quartz arenite, and reddish-brown, red, or maroon shale. This represents the first proposal of a formation in the Uinta Mountain Group in the eastern part of the range and follows by only a few years beginning efforts to establish formations in the group in the western part. The Jesse Ewing Canyon Formation locally constitutes the basal member of the Uinta Mountain Group and is here reaffirmed as an alluvial fan deposit, based on a detailed comparison of observed features to those of modern alluvial fans. This interpretation supports the hypothesis that the Uinta Trough is an aulacogen.

  6. Application of rock varnish dating of quaternary surficial deposits in determining times of fault movement

    SciTech Connect

    Harrington, C.D.

    1987-01-01

    Rock varnish, a coating commonly found on rock surfaces in arid and semiarid regions, has a significant potential in paleoseismic studies, as a wide variety of Quaternary surfaces and surficial deposits can be dated with the rock varnish technique. If the formation of geomorphic surfaces or surficial deposits can be related to times of faulting or if faulting has broken or deformed such features, then rock varnish dating can be used to constrain maximum and minimum times of motion on the related fault.

  7. Reconnaissance investigation of the alluvial gold deposits in the North Takhar Area of Interest, Takhar Province, Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Moran, Thomas W.

    2013-01-01

    This study is a reconnaissance assessment of the alluvial gold deposits of the North Takhar Area of Interest (AOI) in Takhar Province, Afghanistan. Soviet and Afghan geologists collected data and calculated the gold deposit reserves in Takhar Province in the 1970s, prior to the development of satellite-based remote-sensing platforms and new methods of geomorphic mapping. The purpose of this study was to integrate new mapping techniques with previously collected borehole sampling and concentration sampling data and geomorphologic interpretations to reassess the alluvial gold placer deposits in the North Takhar AOI. Through a combination of historical borehole and cross-section data and digital terrain modeling, the Samti, Nooraba-Khasar-Anjir, and Kocha River placer deposits were reassessed. Resource estimates were calculated to be 20,927 kilograms (kg) for Samti, 7,626 kg for Nooraba-Khasar-Anjir, 160 kg for the mouth of the Kocha, 1,047 kg for the lower Kocha, 113 kg for the middle Kocha, and 168 kg for the upper Kocha. Previous resource estimates conducted by the Soviets for the Samti and Nooraba-Khasar-Anjir deposits estimated 30,062 kg and 802 kg of gold, respectively. This difference between the new estimates and previous estimates results from the higher resolution geomorphic model and the interpretation of areas outside of the initial work zone studied by Soviet and Afghan geologists.

  8. Magnetic Properties of Quaternary Deposits, Kenai Peninsula, Alaska -- Implications for Aeromagnetic Anomalies of Upper Cook Inlet

    USGS Publications Warehouse

    Saltus, R.W.; Haeussler, P.J.

    2004-01-01

    We measured magnetic susceptibilities of exposed Quaternary deposits on several beach cliffs and river banks on the Kenai Peninsula near Soldotna, Alaska. Data, descriptions, and photos from nine sites are included in this report. The mean susceptibility for Quaternary materials in this region is approximately 2.5 x 10-3 SI units. This is sufficiently magnetic to produce subtle aeromagnetic anomalies such as those observed to correlate with topographic features in the region of the measurements. The highest susceptibilities measured (greater than 20 x 10-3 SI units) may help, at least in part, to explain moderate amplitude aeromagnetic anomalies observed elsewhere in Cook Inlet, particularly those relating to structures showing Quaternary movement. Comparison of measured beach cliff susceptibility and susceptibility predicted from idealized formulas and two-dimensional cliff models suggests that measured susceptibilies underestimate true bulk susceptibility by 20 percent to 50 percent in this region.

  9. Tectonic and climatic influences on the deposition and preservation of Quaternary units along the range-front of the Manastash Anticline, Yakima Fold Belt, Washington

    NASA Astrophysics Data System (ADS)

    Ladinsky, T. C.; Kelsey, H. M.; Sherrod, B. L.; Mahan, S.; Pratt, T. L.; Blakely, R. J.

    2012-12-01

    Based on multiple independent data sets, we infer episodic base-level lowering of the Kittitas Valley relative to tributaries flowing northward off the Manastash Ridge range-front and within the neighboring Lower Yakima River Canyon of central Washington. Manastash Ridge is a southeast-striking anticline within the Yakima fold and thrust belt, which deforms the extensive Miocene Columbia River Basalt flows that cover the region. Understanding the roles of climate aggradation and degradation cycles in concurrence with tectonic faulting along Manastash Ridge suggests both have contributed to the landscape evolution of the southern Kittitas Valley and Manastash range-front. Previously described proglacial outwash terraces within the northern Kittitas Valley and Upper Yakima River Canyon document periods of aggradation followed by fluvial degradation and entrenchment due to alteration in hillslope sediment production and transport capacity related to glacial and interglacial conditions. Luminescence age determinations and tephrochronology for Manastash range-front Quaternary units yield preliminary timing for aggradation of alluvial units, which we correlate to the late Pleistocene (MIS Stage V) glacial-interglacial climate transition. Seismic-reflection imagery, LiDAR, aeromagnetic surveys, and field mapping of Quaternary deposits reveal fault scarp lineaments within the Manastash range-front, west of the canyon entrance. We suggest these scarps are related to a series of north-verging thrust faults accommodating growth of the Manastash anticline. These faults isolate and uplift fan complexes, each complex generated during climate conditions favorable to fan aggradation. Entrenched alluvial fan deposits along the rangefront, strath terrace sequences, coincident knickpoints within tributary longitudinal profiles, and fault scarp lineaments suggest uplift rates of 0.02 to 0.2 m/1000yrs.

  10. Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. A.

    2005-01-01

    Moore and Howard [1] reported the discovery of large alluvial fans in craters on Mars. Their initial survey from 0-30 S found that these fans clustered in three distinct regions and occurred at around the +1 km MOLA defined Mars datum. However, due to incomplete image coverage, Moore and Howard [1]could not conduct a comprehensive survey. They also recognized, though did not quantitatively address, gravity scaling issues. Here, we briefly discuss the identification of alluvial fans on Mars, then consider the general equations governing the deposition of alluvial fans and hypothesize a method for learning about grain size in alluvial fans on Mars.

  11. Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation

    NASA Astrophysics Data System (ADS)

    Kleman, Johan; Stroeven, Arjen P.; Lundqvist, Jan

    2008-05-01

    It has long been recognised that the formerly glaciated area of Fennoscandia shows large spatial differences in thicknesses of Quaternary deposits (mainly tills), and exhibits distinct patterns of glacial scouring and deep linear erosion. The reasons for this striking zonation have been elusive, and in particular the relative roles of mountain ice sheets (MIS) and full-sized Fennoscandian ice sheets (FIS) in shaping the landscape surface need clarification. On the basis of current advances in our understanding of the climate evolution and basal thermal organisation of ice sheets, we perform spatio-temporal qualitative modelling of ice sheet extent and migration of erosion and deposition zones through the entire Quaternary, and proceed to suggest an explanatory model for the current spatial pattern of Quaternary deposits and the two different types of erosion zones. We use the spatial distribution of fjords and deep non-tectonic lakes for delineating zones of deep glacial erosion, and relict landscapes as markers for frozen-bed conditions. On the basis of the amount of exposed bedrock, the landscape was classified into a tripartite system of drift thickness (thick drift, intermediate drift thickness, absence of drift/scoured zones). It is found that a centrally placed (central and northern Sweden) zone of thick drift cannot be explained by deposition under FIS style ice sheets, but is instead likely to be the combined result of marginal deposition of fluctuating MIS style ice sheets, primarily during the early and middle Quaternary, and the inefficiency of later east-centered FIS style ice sheets in evacuating this drift from underneath their central low-velocity and possibly frozen-bed areas. The western (fjord) zone of deep glacial erosion formed underneath both MIS- and FIS style ice sheets during the entire Quaternary, while the eastern (lake) zone of deep glacial erosion is exclusively related to MIS style ice sheets, and formed largely during the early and

  12. Investigations on alluvial deposits through borehole stratigraphy, radiocarbon dating and passive seismic technique (Carnic Alps, NE Italy)

    NASA Astrophysics Data System (ADS)

    Viero, Alessia; Marchi, Lorenzo; Cavalli, Marco; Crema, Stefano; Fontana, Alessandro; Mozzi, Paolo; Venturini, Corrado

    2016-04-01

    Alluvial sediment investigations provide fundamental tools to infer the processes that control geomorphological evolution of mountain environments. By analyzing sediment stratigraphy in depth, it is possible to retrieve the source, the geology, the time of deposition, the relative distance travelled by material as well as to distinguish among different type of transport (i.e., gravitational, fluvial or glacial). In this work, we present a combination of log stratigraphy, radiocarbon dating and geophysical surveys carried out on the valley floor of the But River (Carnic Alps, North East Italy). The But River basin drains an area of 326 km2 with a range in elevation from 2769 to 323 m a.s.l.; the bedrock mainly consists of carbonates and quartz arenites with minor inclusions of effusive rocks. After Pleistocene the gravitational deposits from mountain slopes have impounded the But River several times. In particular, we analyzed a sector of the upper portion of the But valley close to the confluence of the Moscardo Torrent, frequently affected by debris flows. A borehole was drilled in the But River floodplain, at the intersection with the Moscardo Torrent alluvial fan, down to a depth of 80 m. The analysis of the core samples allowed discerning three sedimentary levels rich in clay and organic materials, which testify the presence of small dam lakes, originated from the Moscardo debris-flow deposits. Three samples of wood and plant debris were collected from 13, 14 and 23 m of depth, respectively. They were analyzed through radiocarbon dating in order to determine the age of the lakes and, thus, to infer the activity of the debris flows building the Moscardo cone. The calibrated ages of the 3 samples are close to the younger limit of the radiocarbon method indicating a fast aggradation of the valley floor, starting from a period ranging between 1450 - 1632 AD. Historical maps and documents confirm the presence of the lakes until 19th century and they permit to assess

  13. A silicified bird from Quaternary hot spring deposits

    PubMed Central

    Channing, Alan; Schweitzer, Mary Higby; Horner, John R; McEneaney, Terry

    2005-01-01

    The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met. PMID:16024344

  14. Australian dust deposits: modern processes and the Quaternary record

    NASA Astrophysics Data System (ADS)

    Hesse, Paul P.; McTainsh, Grant H.

    2003-09-01

    Dust raising and transport are common and important processes in Australia today. The aridity of the Australian continent and high climatic variability result in widespread dust raising in the arid and semi-arid areas and transport to the humid margins and surrounding oceans. The supply of erodible particles appears to be the greatest limitation on total flux of transported dust. Dust raising is greatest in the Lake Eyre Basin, including the Simpson Desert, and Murray-Darling Basin where internal drainage renews supplies of fine particles to the arid zone. In the west and northwest dust entrainment is low, despite considerable aridity. The marine record of dust flux shows at least a threefold increase in dust flux, compared with the Holocene, in the last glacial maximum in both tropical and temperate Australia, driven by weakened Australian monsoon rains and drier westerly circulation, respectively. Despite the widespread confirmation of aeolian dust deposits in southeastern and southwestern Australia, dated or quantified records are extremely rare. The dominant model of Australian dust deposits, the clay-rich 'parna', is shown to be poorly substantiated while modern and ancient dust deposits examined in detail are shown to bear a strong similarity to conventional definitions of loess.

  15. Methane in ground ice and frozen Quaternary deposits of Western Yamal

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. A.; Streletskaya, I. D.; Melnikov, V. P.; Oblogov, G. E.

    2015-12-01

    The content and the genesis of methane in underground ice and frozen Quaternary sediments of Western Yamal is studied. The minimum concentration of methane in frozen Quaternary deposits was found for sand: 15-100 ppm V. The maximum concentration of methane reaches 3000 ppm V in marine clays. The concentration of methane in the ice wedges is 100-700 ppm V, and in the massive ground ice can be more than 10 000 ppm V. The high content of methane in the massive ground ice we explain by migration of methane from freezing deposits into ice body during its formation. The close connection between methane concentration and organic carbon content is found.

  16. Subsurface geology of upper Tertiary and Quaternary deposits, coastal Louisiana and adjacent Continental Shelf

    SciTech Connect

    McFarlan, E. Jr.; Leroy, D.O.

    1988-09-01

    Upper Tertiary and Quaternary deposits thicken seaward from a feather edge on the outcrop in the uplands of southern Louisiana to more than 7000 ft (2134 m) beneath the middle continental shelf. Through a study of cores and cuttings from 100 control wells and electric-log pattern correlations from 350 water and petroleum industry wells with seismic corroboration in the offshore area, these deposits have been divided into six major time-stratigraphic units, four of which correlate to outcropping terraces. This investigation presents a regional stratigraphic framework of the major upper Tertiary and Quaternary units from their updip pinch-outs in and beneath the terraced uplands, into the subsurface, across the coastal plain to the Louisiana offshore area.

  17. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions. PMID:18976857

  18. Atomic layer deposition of quaternary oxide (La,Sr)CoO3-δ thin films.

    PubMed

    Ahvenniemi, E; Matvejeff, M; Karppinen, M

    2015-05-01

    A novel atomic layer deposition (ALD) process was developed for fabricating quaternary cobalt oxide (La1-xSrx)CoO3-δ thin films having the eye on future applications of such films in e.g. solid oxide fuel cell cathodes, oxygen separation membranes or thermocouples. The deposition parameters and the conditions of a subsequent annealing step were systematically investigated, and using the thus optimized parameters the cation stoichiometry in the films could be accurately tuned. The most detailed study was conducted for x = 0.7, i.e. the composition with the highest application potential within the (La1-xSrx)CoO3-δ system. PMID:25826428

  19. Slope Deposits and (Paleo)Soils as Geoarchives to Reconstruct Late Quaternary Environments of Southern Africa

    NASA Astrophysics Data System (ADS)

    Huerkamp, K.; Voelkel, J.; Heine, K.; Bens, O.

    2009-04-01

    Although it is clear that large, rapid temperature changes have occurred during the last glacial-interglacial cycle and the Holocene in southern Africa, we have only limited, and often imprecise, knowledge of how the major moisture-bearing atmospheric circulation systems have reacted to these changes. Using slope deposits and soils as palaeoclimatic geoarchives we will overcome these constraints. The role of many geoarchives in the reconstruction of the Quaternary climate in southern Africa remains controversial, since the paleoclimate data are based on evidence from marine cores, lake sediments, speleothems and spring sinter, fluvial sediments, aeolian sands and dust, colluvium, and coastal sediments. To elucidate climate controls on Quaternary landscape evolution and to use these data for palaeoclimatic reconstructions, thus far slope deposits and soils have been investigated. Climatic controls on these cycles are incompletely known. The availability of results from earlier fieldwork, micromorphology, Optical Stimulated Luminescence (OSL), 14C dating and stable carbon isotope analysis will permit a thorough assessment of slope deposits and soils in terms of their palaeoenvironmental potential. The knowledge of suitable areas and sites in different climatic zones of southern Africa where slope deposits and soils have already been found document the late Quaternary climatic history and even climatic anomalies (e.g. Younger Dryas period at Eksteenfontein, 8.2 ka event at Tsumkwe, 4 ka event in the Auob valley, Little Ice Age in the Namib Desert). The findings will show the late Quaternary history of precipitation fluctuations, of the shifting of the ITCZ (and the ABF - Agulhas-Benguela Front), of wind intensities and directions, and of extreme precipitation events. The project will employ state-of-the-art geoscience methodology to interpret the record of precipitation changes of the late Quaternary, including the shifting of the summer and winter rain belts, the

  20. Electrochemical co-deposition of magnesium with lithium from quaternary ammonium-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Shimamura, Osamu; Yoshimoto, Nobuko; Matsumoto, Mami; Egashia, Minato; Morita, Masayuki

    Electrochemical deposition of magnesium (Mg) has been successfully achieved from an ionic liquid (IL) solution based on quaternary ammonium salt containing lithium (Li) salt. Irreversible electrochemical behavior was generally observed in the IL-based electrolytes containing simple Mg salt. In the IL-based electrolyte dissolving both Mg and Li salts, electrochemical reduction and oxidation of magnesium cation (Mg 2+) have become detectable. Such reversible processes correspond respectively to cathodic deposition and anodic dissolution of metallic Mg, which are accompanied by the co-deposition/co-dissolution of Li. Potentiostatic electrolysis of IL dissolving binary Mg and Li salts gave metallic deposit consisting of both elements with total current efficiency of ca. 52%.

  1. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  2. Comparison of high-resolution P- and SH-wave reflection seismic data in alluvial and pyroclastic deposits in Indonesia

    NASA Astrophysics Data System (ADS)

    Wiyono, Wiyono; Polom, Ulrich; Krawczyk, Charlotte M.

    2013-04-01

    Seismic reflection is one of the stable methods to investigate subsurface conditions. However, there are still many unresolved issues, especially for areas with specific and complex geological environments. Here, each location has an own characteristic due to material compounds and the geological structure. We acquired high-resolution, P-and SH-wave seismic reflection profiles at two different locations in Indonesia. The first location was in Semarang (Central Java) and the second one was in Tiris (East Java). The first region is located on an alluvial plain with thick alluvial deposits of more than 100 m estimated thickness, and the second location was located on pyroclastic deposit material. The seismic measurements for both locations were carried out using a 48-channel recording system (14-Hz P-wave, 10-Hz SH-wave geophones) with geophone intervals of 5 m (P-waves) and 1 m (SH-waves), respectively. The seismic source for the P-wave was a ca. 4 kg sledge hammer which generated a seismic signal by by hitting on an aluminum plate of 30x30 cm, whereas the SH-wave source was a mini-vibrator ELVIS (Electrodynamic Vibrator System), version 3. Thirteen seismic profiles at Semarang and eighth profiles at Tiris were acquired. The results of seismic data in Semarang show fair to good seismic records for both P-and SH-waves. The raw data contain high signal-to-noise-ratio. Many clear reflectors can be detected. The P-wave data shows reflectors down to 250 ms two-way time while the SH-wave records show seismic events up to 600 ms two-way time. This result is in strong contrast to the seismic data result from the Tiris region. The P-wave data show very low signal to noise ratio, there is no reflection signal visible, only the surface waves and the ambient noise from the surrounding area are visible. The SH-waves give a fair to good result which enables reflector detection down to 300 ms two-way time. The results from the two seismic campaigns show that SH-wave reflection

  3. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California.

    NASA Astrophysics Data System (ADS)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas

    2013-04-01

    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  4. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  5. Quaternary mud deposits on the Korean shelf—processes, facies, stratigraphy: an introduction and future challenges

    NASA Astrophysics Data System (ADS)

    Chang, Tae Soo; Yoo, Dong-Geun

    2015-12-01

    On the Korean and adjacent Chinese epicontinental shelves of the Yellow Sea, a variety of mud deposits occur that all formed during the late Quaternary. The available evidence suggests that they were generated by different processes in different water depths and at different times. Over the last three decades, numerous studies have revealed the large-scale features and stratigraphic evolution histories of some of these mud deposits, but the nature of the deposits as such and, in particular, the factors controlling their deposition are still poorly understood. This has led to long-standing debates especially on the origin or provenance of the fine-grained sediments, but also on discrepancies concerning stratigraphic interpretations. To provide potential solutions to some of these issues, the international workshop "Quaternary Shelf Mud: Processes, Facies, and Stratigraphy" was held from 1-4 September 2014 at the Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon, Republic of Korea. At the workshop, recent progress in various research fields using newly acquired datasets was presented. Although dealing with an essentially regional issue, the results of the Korean studies have undoubtedly yielded new insights into shelf mud deposition, many aspects of which should also be of interest to the international scientific community. This special issue of Geo-Marine Letters comprises selected contributions to the workshop, the focus lying on extensive, newly acquired datasets from the continental shelf bordering the west (southeastern Yellow Sea) and east (southern East Sea) coasts of the Korean Peninsula, and involving the Heuksan mud belt and mud deposits off the Nakdong delta, respectively. These contributions are complemented by a state-of-the-art overview of key mud depocenters worldwide. In spite of some progress and new interpretations elaborated in this special issue, some aspects still remain to be solved as future challenges.

  6. Quaternary geology and sapphire deposits from the BO PHLOI gem field, Kanchanaburi Province, Western Thailand

    NASA Astrophysics Data System (ADS)

    Choowong, Montri

    2002-01-01

    One of the most famous blue sapphire deposits in Thailand and SE Asia is from the Bo Phloi District, Kanchanaburi Province, Western Thailand. This paper presents the results of our gemstone investigation as well as establishing the Bo Phloi depositional sequence as one of the Quaternary Type Sections in the region. Relationships among the sedimentology, depositional sequences and geomorphology were investigated in order to understand the gemstone depositional features. Sedimentary structures and textures of the sequences show that the deposition of gemstones is related genetically to fluvial processes. Gemstones are recognized in floodplain and low terrace deposits where gemstone paystreaks concentrate mostly inside layers of gravel beds and foreset-bedded gravels lithofacies. C-14 dating of wood and peat within gemstone-bearing layers indicated that the deposit formed during the middle to late Pleistocene. The gemstone-bearing gravel bed defines a north-south trend along the incised palaeo-channel of an ancient braided river system in the middle part of the basin.

  7. A refined characterization of the alluvial geology of yucca flat and its effect on bulk hydraulic conductivity

    USGS Publications Warehouse

    Phelps, G.A.; Halford, K.J.

    2011-01-01

    In Yucca Flat, on the Nevada National Security Site in southern Nevada, the migration of radionuclides from tests located in the alluvial deposits into the Paleozoic carbonate aquifer involves passage through a thick, heterogeneous section of late Tertiary and Quaternary alluvial sediments. An understanding of the lateral and vertical changes in the material properties of the alluvial sediments will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating groundwater flow in the Yucca Flat area. Previously published geologic models for the alluvial sediments within Yucca Flat are based on extensive examination and categorization of drill-hole data, combined with a simple, data-driven interpolation scheme. The U.S. Geological Survey, in collaboration with Stanford University, is researching improvements to the modeling of the alluvial section, incorporating prior knowledge of geologic structure into the interpolation method and estimating the uncertainty of the modeled hydrogeologic units.

  8. Delineation of Late Quaternary depositional sequences by high-resolution seismic stratigraphy, Louisiana continental shelf

    SciTech Connect

    Suter, J.R.; Berryhill, H.L. Jr.; Penland, S.

    1987-05-01

    Interpretations of over 20,000 line km of single-channel, high-resolution seismic reflection profiles, coupled with nearshore vibracores and logs of industrial platform borings, provide the data base for determining the history and stratigraphy of late Quaternary sea level fluctuations on the Louisiana continental shelf. Regional unconformities, formed by subaerial exposure of the shelf during glacio-eustatic sea level withdrawals and modified by shoreface erosion during ensuing transgression, serve as markers to identify the boundaries of depositional sequences. Unconformities are recognizable on seismic profiles by high-amplitude reflectors as well as discordant relationships between reflectors. Within the upper Quaternary section, six depositional sequences have been recognized. Five of these are related to glacio-eustatic sea level fluctuations, involving sea level fall close to, or beyond, the margin of the continental shelf. Three of these fluctuations culminated in the deposition of shelf margin delta sequences. Extensive fluvial channeling characterizes the regressive phase of these sequences. Transgressive phases are marked by infilling of fluvial channels, flood-plain aggradation, truncation, or deposition of sand sheets, depending upon sediment supply and rate of sea level rise. Sequences 4 and 5 are correlated with the late Wisconsinan glacial stage and Holocene transgression. The upper portion of sequence 5 consists of an early Holocene Mississippi delta complex. Abandonment and transgression of this delta are responsible for the formation of sequence 6. Although these deposits cover a smaller area, this demonstrates that deltaic processes can produce sequences similar to those driven by glacially controlled sea level changes.

  9. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    SciTech Connect

    Paces, J.B.; Taylor, E.M.; Bush, C.

    1993-12-31

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 {+-} 1, 30 {+-} 3, 45 {+-} 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in a good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites.

  10. Bank accretion and the development of vegetated depositional surfaces along modified alluvial channels

    USGS Publications Warehouse

    Hupp, C.R.; Simon, A.

    1991-01-01

    This paper describes the recovery of stable bank form and development of vegetated depositional surfaces along the banks of channelized West Tennessee streams. Most perennial streams in West Tennessee were straightened and dredged since the turn of the century. Patterns of fluvial ecological responses to channelization have previously been described by a six-stage model. Dendrogeomorphic (tree-ring) techniques allowed the determination of location, timing, amount, and rate of bank-sediment deposition. Channel cross sections and ecological analyses made at 101 locations along 12 streams, encompassing bends and straight reaches, show that channel and bank processes initially react vertically to channelization through downcutting. A depositional surface forms on banks once bed-degradation and heightened bank mass wasting processes have eased or slowed. The formation of this depositional surface marks the beginning of bank recovery from channelization. Dominating lateral processes, characteristic of stable or natural channels, return during the formation and expansion of the depositional surface, suggesting a relation with thalweg deflection, point-bar development, and meanderloop extension. Characteristic woody riparian vegetation begins to grow as this depositional surface develops and becomes part of the process and form of restabilizing banks. The depositional surface initially forms low on the bank and tends to maintain a slope of about 24??. Mean accretion rates ranges from 5.9 cm/yr on inside bends to 0 cm/yr on most outside bends; straight reaches have a mean-accretion rate of 4.2 cm/yr. The relatively stable, convex upward, depositional surface expands and ultimately attaches to the flood plain. The time required for the recovery process to reach equilibrium averaged about 50 years. Indicative pioneer speccies of woody riparian vegetation include black willow, river birch, silver maple, and boxelder. Stem densities generally decrease with time after and

  11. Late Quaternary depositional history, Holocene sea-level changes, and vertical crustal movement, southern San Francisco Bay, California

    USGS Publications Warehouse

    Atwater, Brian F.; Hedel, Charles W.; Helley, Edward J.

    1977-01-01

    Sediments collected for bridge foundation studies at southern San Francisco Bay, Calif., record estuaries that formed during Sangamon (100,000 years ago) and post-Wisconsin (less than 10,000 years ago) high stands of sea level. The estuarine deposits of Sangamon and post-Wisconsin ages are separated by alluvial and eolian deposits and by erosional unconformities and surfaces of nondeposition, features that indicate lowered base levels and oceanward migrations of the shoreline accompanying low stands of the sea. Estuarine deposits of mid-Wisconsin age appear to be absent, suggesting that sea level was not near its present height 30,000–40,000 years ago in central California. Holocene sea-level changes are measured from the elevations and apparent 14C ages of plant remains from 13 core samples. Uncertainties of ±2 to ±4 m in the elevations of the dated sea levels represent the sum of errors in determination of (1) sample elevation relative to present sea level, (2) sample elevation relative to sea level at the time of accumulation of the dated material, and (3) postdepositional subsidence of the sample due to compaction of underlying sediments. Sea level in the vicinity of southern San Francisco Bay rose about 2 cm/yr from 9,500 to 8,000 years ago. The rate of relative sea-level rise then declined about tenfold from 8,000 to 6,000 years ago, and it has averaged 0.1–0.2 cm/yr from 6,000 years ago to the present. This submergence history indicates that the rising sea entered the Golden Gate 10,000–11,000 years ago and spread across land areas as rapidly as 30 m/yr until 8,000 years ago. Subsequent shoreline changes were more gradual because of the decrease in rate of sea-level rise. Some of the sediments under southern San Francisco Bay appear to be below the level at which they initially accumulated. The vertical crustal movement suggested by these sediments may be summarized as follows: (1) Some Quaternary(?) sediments have sustained at least 100 m of

  12. Depositional morphotypes and implications of the Quaternary travertine and tufa deposits from along Gafsa Fault: Jebel El Mida, southwestern Tunisia

    NASA Astrophysics Data System (ADS)

    Henchiri, Mohsen

    2014-02-01

    The diversity of depositional morphologies of tufa and travertine in the field, which are controlled by a complex set of bio-physio-chemical parameters, can make them difficult to distinguish. In Jebel El Mida, the Late Villafranchian faulted alluvial deposits are overlain by complex lithofacies and growth patterns of spring-fed tufa and travertine. Travertine facies include travertine pinnacles, microterraces, thermal ponds, pisoids and conical structures, oncoids, microbial crusts, bacterial shrubs, microstromatolites, lithified bubbles (foam rocks) and microfans and cones. Their formation is controlled by (i) the volume of spring water and gas supplies and their respective daily, monthly or annual fluctuations, and (ii) topography and location with respect to the spring vent. The travertines highlight the predominance of physico-chemical processes over biochemical processes in their formation. In this context, water turbulence, temperature, and/or pressure changes are the dominant agents in releasing CO2. Tufa facies include rhizocretions and cushions, plant moulds and imprints, lithified terrestrial land snails, gyttja and paleosols. Their formation is linked to the dominance of biochemical processes over physio-chemical processes. In this context the amount of CO2 in calmer waters is regulated by photosynthesis, which indirectly regulates the rate of calcium carbonate precipitation. Gafsa strike-slip Fault, in addition to its tectonic role in creating fluid paths to the surface through flowing springs, acts as a major regional sill that controlled paleoflow directions, discharge locations, volume, rate and fluctuations of the water supply.

  13. Late Quaternary marginal marine deposits and palaeoenvironments from northeastern Buenos Aires Province, Argentina: A review

    NASA Astrophysics Data System (ADS)

    Aguirre, M. L.; Whatley, R. C.

    The late Quaternary marginal marine deposits along eastern Argentina (Southwestern Atlantic) are reviewed according to our present knowledge. In the northeastern coastal area of Buenos Aires Province they have been assigned to a series of transgressions and regressions ranging from the late Pliocene to the late Quaternary. The most widely accepted model is Frenguelli's (1957) classical chronostratigraphical scheme of: 'Belgranense', late Pleistocene marine sediments at 3-6 m above m.s.l. and ca. 26,000->35,000 14C years BP, the 'Querandinense', Pleistocene-Holocene estuarine sediments below or at present m.s.l., and the most extensive 'Platense', mid-Holocene marine deposits at 4.5-2 m above m.s.l. dated at ca. 8000-1340 14C years BP. The restricted 'Belgranense' deposits, recorded in Samborombon Bay, in Magdalena at ca. 32,000 BP, near Mar Chiquita at ca. 24,900 and 30,500 BP and southwards in Bahía Blanca at ca. 26,000-35,500 BP, may belong to an interstadial (González et al., 1986). The molluscan composition suggests a marine invasion of the area but not a typical interglacial cycle characterized by euhaline and warm water elements. However, the oxygen isotope record argues against an interstadial during the interval 34-27 ka and the chronological control for these deposits is very poor, suggesting that they most probably have been elevated neotectonically. The Pleistocene-Holocene 'Querandinense' deposits, extensively distributed along the Bonaerensian coastal plain and continental shelf (ca. 11,000 14C years BP), with very low faunal diversity, abundance of freshwater ostracods and absence of the warm water molluscs characteristic of the Holocene ridges, indicate low salinity and cool water conditions. Further dating and isotope analysis of these deposits are required for a better understanding of the chronology of climatic events by the end of the Pleistocene in this area and to establish whether or not they could correspond to the Younger Dryas event of

  14. Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California

    USGS Publications Warehouse

    Witter, Robert C.; Knudsen, Keith L.; Sowers, Janet M.; Wentworth, Carl M.; Koehler, Richard D.; Randolph, Carolyn E.; Brooks, Suzanna K.; Gans, Kathleen D.

    2006-01-01

    This report presents a map and database of Quaternary deposits and liquefaction susceptibility for the urban core of the San Francisco Bay region. It supercedes the equivalent area of U.S. Geological Survey Open-File Report 00-444 (Knudsen and others, 2000), which covers the larger 9-county San Francisco Bay region. The report consists of (1) a spatial database, (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map and liquefaction interpretation (part 3), and (4) a text introducing the report and describing the database (part 1). All parts of the report are digital; part 1 describes the database and digital files and how to obtain them by downloading across the internet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a consistent detailed treatment of the central part of the 9-county region in which much of the mapping of Open-File Report 00-444 was either at smaller (less detailed) scale or represented only preliminary revision of earlier work. Like Open-File Report 00-444, the current mapping uses geomorphic expression, pedogenic soils, inferred depositional environments, and geologic age to define and distinguish the map units. Further scrutiny of the factors controlling liquefaction susceptibility has led to some changes relative to Open-File Report 00-444: particularly the reclassification of San Francisco Bay mud (Qhbm) to have only MODERATE susceptibility and the rating of artificial fills according to the Quaternary map units inferred to underlie them (other than dams - adf). The two colored

  15. A methodological toolkit for field assessments of artisanally mined alluvial diamond deposits

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.

    2014-01-01

    This toolkit provides a standardized checklist of critical issues relevant to artisanal mining-related field research. An integrated sociophysical geographic approach to collecting data at artisanal mine sites is outlined. The implementation and results of a multistakeholder approach to data collection, carried out in the assessment of Guinea’s artisanally mined diamond deposits, also are summarized. This toolkit, based on recent and successful field campaigns in West Africa, has been developed as a reference document to assist other government agencies or organizations in collecting the data necessary for artisanal diamond mining or similar natural resource assessments.

  16. Sputtered tungsten-based ternary and quaternary layers for nanocrystalline diamond deposition.

    PubMed

    Walock, Michael J; Rahil, Issam; Zou, Yujiao; Imhoff, Luc; Catledge, Shane A; Nouveau, Corinne; Stanishevsky, Andrei V

    2012-06-01

    Many of today's demanding applications require thin-film coatings with high hardness, toughness, and thermal stability. In many cases, coating thickness in the range 2-20 microm and low surface roughness are required. Diamond films meet many of the stated requirements, but their crystalline nature leads to a high surface roughness. Nanocrystalline diamond offers a smoother surface, but significant surface modification of the substrate is necessary for successful nanocrystalline diamond deposition and adhesion. A hybrid hard and tough material may be required for either the desired applications, or as a basis for nanocrystalline diamond film growth. One possibility is a composite system based on carbides or nitrides. Many binary carbides and nitrides offer one or more mentioned properties. By combining these binary compounds in a ternary or quaternary nanocrystalline system, we can tailor the material for a desired combination of properties. Here, we describe the results on the structural and mechanical properties of the coating systems composed of tungsten-chromium-carbide and/or nitride. These WC-Cr-(N) coatings are deposited using magnetron sputtering. The growth of adherent nanocrystalline diamond films by microwave plasma chemical vapor deposition has been demonstrated on these coatings. The WC-Cr-(N) and WC-Cr-(N)-NCD coatings are characterized with atomic force microscopy and SEM, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation. PMID:22905536

  17. Chronostratigraphy of uplifted Quaternary hemipelagic deposits from the Dodecanese island of Rhodes (Greece)

    NASA Astrophysics Data System (ADS)

    Quillévéré, Frédéric; Cornée, Jean-Jacques; Moissette, Pierre; López-Otálvaro, Gatsby Emperatriz; van Baak, Christiaan; Münch, Philippe; Melinte-Dobrinescu, Mihaela Carmen; Krijgsman, Wout

    2016-07-01

    An integrated magneto-biostratigraphic study, based on calcareous nannofossils and foraminifers, together with the radiometric dating of a volcaniclastic layer found in several outcrops, was carried out on the hemipelagic deposits of the Lindos Bay Formation (LBF) at six localities on the island of Rhodes (Greece). Our highly refined chronostratigraphic framework indicates that the lower and upper lithostratigraphic boundaries of the LBF are diachronous. Associated with the 40Ar/39Ar age determination of 1.85 ± 0.08 Ma for the volcaniclastic layer, our data show that among the investigated outcrops, the Lindos Bay type locality section provides the longest record (1.1 Ma) of the LBF. Hemipelagic deposition occurred continuously from the late Gelasian (∼1.9 Ma) to the late Calabrian (∼0.8 Ma), i.e., from Chrons C2n (Olduvai) to C1r.1r (Matuyama) and from nannofossil Zones CNPL7 to CNPL10. This long record, together with the hemipelagic nature of the deposits, make the Lindos Bay type locality section a unique element in the eastern Mediterranean region, allowing future comparisons with other early Quaternary deep-sea sections available in the central and western Mediterranean regions.

  18. Preliminary description of quaternary and late pliocene surficial deposits at Yucca Mountain and vicinity, Nye County, Nevada

    SciTech Connect

    Hoover, D.L.

    1989-11-01

    The Yucca Mountain area, in the south-central part of the Great Basin, is in the drainage basin of the Amargosa River. The mountain consists of several fault blocks of volcanic rocks that are typical of the Basin and Range province. Yucca Mountain is dissected by steep-sided valleys of consequent drainage systems that are tributary on the east side to Fortymile Wash and on the west side to an unnamed wash that drains Crater Flat. Most of the major washes near Yucca Mountain are not integrated with the Amargosa River, but have distributary channels on the piedmont above the river. Landforms in the Yucca Mountain area include rock pediments, ballenas, alluvial pediments, alluvial fans, stream terraces, and playas. Early Holocene and older alluvial fan deposits have been smoothed by pedimentation. The semiconical shape of alluvial fans is apparent at the junction of tributaries with major washes and where washes cross fault and terrace scarps. Playas are present in the eastern and southern ends of the Amargosa Desert. 39 refs., 9 figs., 1 tab.

  19. Latest Quaternary outer shelf and slope deposits, northern Gulf of Mexico, USA: Industry research consortium

    SciTech Connect

    Winn, R.D. Jr. )

    1991-03-01

    A consortium of oil companies is undertaking a multiyear shallow coring and high-resolution seismic investigation of the outer shelf-slope deposits of the northern Gulf of Mexico. The program's objective is to reconstruct the depositional, seismic stratigraphic, biostratigraphic, isotopic, and organic geochemical record of the latest Quaternary of a portion of the Gulf margin. Results will serve as an analog to deeper hydrocarbon reservoirs and to help in understanding sedimentation with glacial-interglacial sea-level changes. Nearly continuous cores up to 850 ft long from Main Pass Blocks 303, 242, 288 and Viosca Knoll Block 774 are being described and analyzed. Main Pass 303 core samples Holocene to Oxygen Isotope Stage 6 deposits and as old or older strata are expected to have been penetrated in the other boreholes. Three or four sea level cycles are represented. Seismic acquisition is planned for late 1990. The outer shelf and slope of the northern Gulf is an area of active growth faulting, high sedimentation rate, diapirism, and slumping. Recent work, including this study, shows that near-surface stratigraphy consists of coarse clastics alternating with carbonate-rich mud. Sands and gravels are inferred to have been deposited mostly during lowstands and rising sea level in deltas and valley-fill systems. Delta clinoforms on high-resolution seismic may represent shelf-margin wedges, prograding wedges, or highstand systems tracts. Highstand deposits are characterized largely by thin, continuous intervals of bioturbated muds containing abundant diagenetic carbonate and pyrite. Precise dating and correlation of outer shelf-upper slope facies to magnitude and direction of sea level change is intended during the project.

  20. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    NASA Astrophysics Data System (ADS)

    Pigati, Jeffrey S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur

    2013-09-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ˜12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ˜40 ka should

  1. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

    USGS Publications Warehouse

    Pigati, Jeff S.; McGeehin, John P.; Muhs, Daniel R.; Bettis, E. Arthur, III

    2013-01-01

    Constraining the ages and mass accumulation rates of late Quaternary loess deposits is often difficult because of the paucity of organic material typically available for 14C dating and the inherent limitations of luminescence techniques. Radiocarbon dating of small terrestrial gastropod shells may provide an alternative to these methods as fossil shells are common in loess and contain ∼12% carbon by weight. Terrestrial gastropod assemblages in loess have been used extensively to reconstruct past environmental conditions but have been largely ignored for dating purposes. Here, we present the results of a multi-faceted approach to understanding the potential for using small terrestrial gastropod shells to date loess deposits in North America. First, we compare highly resolved 14C ages of well-preserved wood and gastropod shells (Succineidae) recovered from a Holocene loess section in Alaska. Radiocarbon ages derived from the shells are nearly identical to wood and plant macrofossil ages throughout the section, which suggests that the shells behaved as closed systems with respect to carbon for at least the last 10 ka (thousands of calibrated 14C years before present). Second, we apply 14C dating of gastropod shells to late Pleistocene loess deposits in the Great Plains using stratigraphy and independent chronologies for comparison. The new shell ages require less interpretation than humic acid radiocarbon ages that are commonly used in loess studies, provide additional stratigraphic coverage to previous dating efforts, and are in correct stratigraphic order more often than their luminescence counterparts. Third, we show that Succineidae shells recovered from historic loess in the Matanuska River Valley, Alaska captured the 20th century 14C bomb spike, which suggests that the shells can be used to date late Holocene and historic-aged loess. Finally, results from Nebraska and western Iowa suggest that, similar to other materials, shell ages approaching ∼40 ka should

  2. Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece

    USGS Publications Warehouse

    Hein, J.R.; Stamatakis, G.; Dowling, J.S.

    2000-01-01

    The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water hydrothermal system. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were hydrothermally mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same hydrothermal system. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (hydrothermal fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The hydrothermal fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The hydrothermal fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and

  3. Late tertiary and quaternary fluvial deposits in the Mesilla and Hueco bolsons, El Paso area, Texas

    NASA Astrophysics Data System (ADS)

    Stuart, Charles J.; Willingham, Daniel L.

    1984-03-01

    The late Tertiary to Quaternary Fort Hancock and Camp Rice Formations fill several extensional basins of the southern Rio Grande Rift. Interior drainage and central playa lakes characterize most of these rift basins. However, sedimentation in two basins located in the central part of the southern rift, the Mesilla and Hueco bolsons, was also greatly influenced by a northern segment of the ancestral Rio Grande river system. During the late Pliocene, a large-scale stream system entered the north end of the Mesilla bolson and deposited a south-sloping fluvial plain that overwhelmed playa lake and bolson-margin areas. The fluvial plain subsequently advanced across the eastern or southeastern margins of the Mesilla bolson then inundated a playa lake in the adjacent Hueco bolson. The Fort Hancock Formation was deposited during fluvial inundation of the bolsons. Four lithofacies of the Fort Hancock Formation are recognized: claystone, mudstone and sandstone, channelized sandstone, and conglomerate. The conglomerate and claystone facies were deposited in bolson-margin and playa depositional environments, respectively. The channelized sandstone facies formed the proximal fluvial plain of the ancestral Rio Grande system. The mudstone and sandstone facies formed in both playa-margin and distal fluvial-plain environments. By the middle Pleistocene, a major drainage basin south of the Hueco bolson, which formed the southern segment of the ancestral Rio Grande system, extended northward into the Hueco and Mesilla bolsons. At this time, the Rio Grande system was entirely integrated from southern Colorado to the Gulf of Mexico. Pebbly, coarse sand transported through this channel system formed the middle Pleistocene Camp Rice Formation.

  4. Quaternary investigation

    SciTech Connect

    Stieve, A.

    1991-05-15

    The primary purpose of the Quaternary investigation is to provide information on the location and age of Quaternary deposits for use in evaluating the presence or absence of neotectonic deformation or paleoliquefaction features within the Savannah River Site (SRS) region. The investigation will provide a basis for evaluating the potential for capable faults and associated deformation in the SRS vicinity. Particular attention will be paid to the Pen Branch fault.

  5. Late Quaternary Spring-Fed Deposits of the Grand Canyon and Their Implication for Deep Lava-Dammed Lakes

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; O'Brien, Gary; Mead, Jim I.; Bright, Jordon; Umhoefer, Paul

    2002-11-01

    One of the most intriguing episodes in the Quaternary evolution of the Grand Canyon of the Colorado River, Arizona, was the development of vast lakes that are thought to have backed up behind lava erupted into the gorge. Stratigraphic evidence for these deep lava-dammed lakes is expectedly sparse. Possible lacustrine deposits at six areas in the eastern canyon yielded no compelling evidence for sediment deposited in a deep lake. At two of the sites the sediment was associated with late Quaternary spring-fed pools and marshes. Water-lain silt and sand at lower Havasu Creek was deposited ˜3000 cal yr ago. The deposit contains an ostracode assemblage similar to that living in the modern travertine-dammed pools adjacent to the outcrop. The second deposit, at Lees Ferry, formed in a spring-fed marsh ˜43,000 cal yr ago, as determined by 14C and amino acid geochronology. It contains abundant ostracode and mollusk fossils, the richest assemblages reported from the Grand Canyon to date. Our interpretation of these sediments as spring-fed deposits, and their relative youth, provides an alternative to the conventional view that deposits like these were formed in deep lava-dammed lakes that filled the Grand Canyon.

  6. Using Varnish Microlaminations to Provide Minimum Ages on Alluvium Associated with Ground Water Discharge Deposits on an Alluvial Fan at Fenner Gap, Cadiz, CA.

    NASA Astrophysics Data System (ADS)

    Erickson, B.; Hemphill-Haley, M. A.

    2015-12-01

    Groundwater discharge (GWD) deposits are situated on three lobes of an alluvial fan at Fenner Gap near Cadiz, CA, between 220-250 m elevations. They are representative of past wetlands that raised base level leading to aggradation upstream on the alluvial fan. This study utilized the varnish microlamination (VML) dating method to provide minimum ages on the alluvium overlying GWD deposits, as well as estimating the age of a remnant older alluvium in Fenner Gap. VML results provide a minimum age of 2.8-4.1 ka on the overlying alluvium at the Chambless GWD deposit; agreeable with previously published OSL dates on the underlying GWD of about 10 ka. A VML age of 8.1 ka was found on the overlying alluvium at the Archer sediments GWD situated on the southern lobe. The oldest remnant alluvium in Fenner Gap is situated < 1 km upstream from the GWD deposits and has a minimum VML age of 17.75 ka. This older alluvium could be indicative of a raise in base level caused by wetlands formed during a ground water highstand associated with the last glacial maximum. These VML minimum age estimates may be too young due to the collection of varnish that may not be the oldest present.

  7. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Kuzmina, Svetlana; Andreev, Andrei A.; Kienast, Frank; Meyer, Hanno; Schirrmeister, Lutz; Kuznetsova, Tatyana; Sierralta, Melanie

    2008-08-01

    Late Quaternary palaeoenvironments of the Siberian Arctic were reconstructed by combining data from several fossil bioindicators (pollen, plant macro-fossils, ostracods, insects, and mammal bones) with sedimentological and cryolithological data from permafrost deposits. The record mirrors the environmental history of Beringia and covers glacial/interglacial and stadial/interstadial climate variations with a focus on the Middle Weichselian interstadial (50-32 kyr BP). The late Pleistocene to Holocene sequence on Kurungnakh Island reflects the development of periglacial landscapes under changing sedimentation regimes which were meandering fluvial during the Early Weichselian, colluvial or proluvial on gently inclined plaines during the Middle and Late Weichselian, and thermokarst-affected during the Holocene. Palaeoecological records indicate the existence of tundra-steppe vegetation under cold continental climate conditions during the Middle Weichselian interstadial. Due to sedimentation gaps in the sequence between 32 and 17 kyr BP and 17 and 8 kyr BP, the Late Weichselian stadial is incompletely represented in the studied outcrops. Nevertheless, by several palaeoecological indications arctic tundra-steppe vegetation under extremely cold-arid conditions prevailed during the late Pleistocene. The tundra-steppe disappeared completely due to lasting paludification during the Holocene. Initially subarctic shrub tundra formed, which later retreated in course of the late Holocene cooling.

  8. Calibrated, late Quaternary age indices using clast rubification and soil development on alluvial surfaces in Pilot Knob Valley, Mojave Desert, southeastern California

    NASA Astrophysics Data System (ADS)

    Helms, John G.; McGill, Sally F.; Rockwell, Thomas K.

    2003-11-01

    The orange coating (varnish) that forms on the undersides (ventral sides) of clasts in desert pavements constitutes a potential relative-age indicator. Using Munsell color notation, we semiquantified the color of the orange, ventral varnish on the undersides of clasts from 15 different alluvial fan and terrace surfaces of various ages ranging from less than 500 to about 25,000 yr. All of the surfaces studied are located along the central portion of the left-lateral Garlock fault, in the Mojave Desert of southern California. The amount of left-lateral offset may be used to determine the relative ages of the surfaces. The previously published slip rate of the fault may also be used to estimate the absolute age of each surface. The color of the ventral varnish is strongly correlated with surface age and appears to be a more reliable age-indicator than the percentage coverage of dorsal varnish. Soil development indices also were not as strongly correlated with age, as were the colors of the ventral varnish. In particular, rubification appears to be more useful than soils for distinguishing relative ages among Holocene surfaces. Humidity sensors indicated that the undersides of clasts condensed moisture nightly for a period of several days to over a week after each rain. These frequent wet-dry cycles may be responsible for the rapid development of clast rubification on Holocene surfaces.

  9. Erosion and deposition on the eastern margin of the Bermuda Rise in the late Quaternary

    NASA Astrophysics Data System (ADS)

    McCave, I. N.; Hollister, C. D.; Laine, E. P.; Lonsdale, P. F.; Richardson, M. J.

    1982-05-01

    A near-bottom survey has been made on the Eastward Scarp (32°50'N, 57°30'W) of the Bermuda Rise, which rises 1150 m above the 5500-m deep Sohm Abyssal Plain in the western North Atlantic. The survey reveals evidence of erosion and deposition at present and in the late Quaternary by the deeper levels of the westward flowing Gulf Stream Return Flow. Four distinct regions of increasing bed gradient show increasing sediment smoothing and scour in the transition from plateau to abyssal plain. Bedforms observed are current crescents, crag and tail, triangular ripples, elongate mounds, transverse mud ripples, lineations, and furrows ranging from 10 to 1 m or less in depth, decreasing generally with bed gradient. Measured near-bottom current speeds are up to 20 cm s -1. Temperature structure on the lower, steep, slopes suggests that detachment of bottom mixed layers may occur there. Extensive net erosion appears to be confined to the lower steep slopes of the scarp. Reflection profiles (4 kHz) show that there has been erosion in areas thinly draped with recent sediments and in areas that show development of small scarps. The distribution of subsurface acoustic characteristics of the region corresponds broadly to the areas characterized by bed gradient and distinct sedimentation conditions. Subsurface hyperbolae, possibly caused by buried furrows, show furrow persistence through several tens of metres of deposition. Erosion occurs up to the top of the scarp during episodes of presumed stronger currents, which may correspond with intensified circulation during glacials.

  10. Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John C.

    2015-03-01

    We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed tephra deposits correlate with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 to >~ 0.780 Ma), 2) the Rockland ash bed (~ 0.575 Ma), 3) the Loleta ash bed (~ 0.390 Ma), and 4) middle Pleistocene volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~ 0.180 Ma). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades and occurs in up to > 7-m-thick deposits in cores from ~ 40 m subsurface in the Sacramento-San Joaquin Delta. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.

  11. Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta, California, U.S.A.

    USGS Publications Warehouse

    Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John

    2015-01-01

    We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed discrete tephra deposits are correlative with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 - >~0.780 Ma), 2) the Rockland ash bed (~0.575 Ma), 3) the Loleta ash bed (~0.390 Ma), and 4) a middle Pleistocene tephra resembling volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~0.180 Ma, correlated age). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades near Lassen Peak, California, and occurs in deposits up to >7 m thick as observed in core samples taken from ~40 m depth below land surface. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following the volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates (~0.07-0.29 m/1000 yr) in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in developing a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.

  12. Preliminary maps of Quaternary deposits and liquefaction susceptibility, nine-county San Francisco Bay region, California: a digital database

    USGS Publications Warehouse

    Knudsen, Keith L.; Sowers, Janet M.; Witter, Robert C.; Wentworth, Carl M.; Helley, Edward J.; Nicholson, Robert S.; Wright, Heather M.; Brown, Katherine H.

    2000-01-01

    This report presents a preliminary map and database of Quaternary deposits and liquefaction susceptibility for the nine-county San Francisco Bay region, together with a digital compendium of ground effects associated with past earthquakes in the region. The report consists of (1) a spatial database of fivedata layers (Quaternary deposits, quadrangle index, and three ground effects layers) and two text layers (a labels and leaders layer for Quaternary deposits and for ground effects), (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map, liquefaction interpretation, and the ground effects compendium, and (4) the databse description pamphlet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a modern and regionally consistent treatment of Quaternary surficial deposits that builds on the pioneering mapping of Helley and Lajoie (Helley and others, 1979) and such intervening work as Atwater (1982), Helley and others (1994), and Helley and Graymer (1997a and b). Like these earlier studies, the current mapping uses geomorphic expression, pedogenic soils, and inferred depositional environments to define and distinguish the map units. In contrast to the twelve map units of Helley and Lajoie, however, this new map uses a complex stratigraphy of some forty units, which permits a more realistic portrayal of the Quaternary depositional system. The two colored maps provide a regional summary of the new mapping at a scale of 1:275,000, a scale that is sufficient to show the general distribution and relationships of

  13. Nitrogen, sulfate, chloride, and manganese in ground water in the alluvial deposits of the South Platte River Valley near Greeley, Weld County, Colorado

    USGS Publications Warehouse

    Gaggiani, N.G.

    1984-01-01

    Ground water from the valley-fill deposits of the South Platte River Valley and its tributaries is used extensively for agriculture in the study area, about 10 miles east of Greeley and about 50 miles northeast of Denver, Colorado. The valley-fill deposits, which consist of alluvial and terrace deposits, are in a valley system eroded in Laramie Formation bedrock. Water samples collected from 53 wells during 1974 and 1980 were analyzed for nitrite plus nitrate nitrogen, sulfate, chloride, and manganese. Median concentrations changes in these constituents from 1974 to 1980 are as follows: 6.0 to 8.8 milligrams per liter for nitrite plus nitrate nitrogen, 850 to 900 milligrams per liter for sulfate, and 94 to 120 milligrams per liter for chloride. Manganese concentrations were greater than 1,000 micrograms per liter in both 1974 and 1980 in a small area at the mouth of Box Elder Creek. (USGS)

  14. Sedimentology and paleohydrology of Late Quaternary lake deposits in the northern Namib Sand Sea, Namibia

    NASA Astrophysics Data System (ADS)

    Teller, James T.; Rutter, Nat; Lancaster, N.

    The Namib Sand Sea is the largest active desert dunefield in southern Africa, and is comprised mainly of large north-south linear dunes. In the interdune areas of the northern Sand Sea eleven small areas of calcareous lacustrine sediment have been studied. These beds are typically less than a metre thick and are dominantly comprised of calcareous sandstones to mudstones and sandy limestones. The carbonates are mainly magnesian calcites (1-14% MgCO 3) with some protodolomite and aragonite. Calcified reed casts and fresh to brackish water gastropods, diatoms, and ostracods are present in some beds. δ18O values indicate a hot and dry climate. A number of enriched δ13C values may reflect high salinity, low organic populations, or carbonate recrystallization. These carbonate-rich lacustrine deposits are indicative of increased periods of moisture availability in this normally hyperarid region during the Late Quaternary. The origin of the water responsible for depositing these sediments may be: (1) ponding at the end point of the Tsondab River, which at one time extended farther west into the Sand Sea; (2) flooding into interdune corridors when water levels rose in rivers such as the Kuiseb; (3) groundwater seepage into depressions either through dunes that border rivers or from the underlying Tsondab Sandstone; and (4) increased rainfall. We do not believe that there is evidence to support a major increase in precipitation over the region. However, even a small increase in precipitation in the headwaters of valleys that drain toward the Sand Sea might: (1) generate enough additional runoff to extend the terminal point of rivers such as the Tsondab farther into the dunes; (2) cause lateral flooding from major valleys into interdune corridors; and (3) recharge aquifers. The sedimentary records at Narabeb, Ancient Tracks, and West Pan, which lie along the old course of the Tsondab River, favor a ponded river origin for them, whereas groundwater seepage is favored at

  15. Occurrence and seismic characteristics of stacked Quaternary debris-flow deposits in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Yoo, Dong-Geun; Lee, Young-Mi; Kang, Nyeon-Keon; Yi, Bo-Yeon; Bahk, Jang-Jun; Kim, Gil-Young

    2015-04-01

    Analysis of multi-channel seismic reflection profiles collected from the Ulleung Basin, East Sea reveals that the Quaternary sequence in this area includes eighteen stacked debris flow deposits, which are variable in the geometry and spatial distribution. Each deposit is acoustically characterized by chaotic or transparent seismic facies without distinct internal reflections and shows wedge or lens-shaped external form. Based on distribution patterns, these deposits which form a succession of vertically and/or laterally stacked wedges are widely distributed on the southern slope and cover an area of more than 8,000 km2. Their general flow direction is from south to north and the thickness gradually decreases toward the basin plain. The results of seismic interpretation suggest that sedimentation during the Quaternary was controlled mainly by tectonic effects associated with sea-level fluctuations. The back-arc closure of the East Sea that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted blocks, were supplied to the basin through the mass transport processes, leading to the formation of stacked debris-flow deposits. Consequently, the development of debris flow deposits in the Ulleung Basin is largely controlled by regional tectonic event associated with the back-arc closure of the East Sea.

  16. Late Quaternary paleodune deposits in Abu Dhabi Emirate, UAF: Paleoclimatic implications

    SciTech Connect

    Brouwers, E.M.; Bown, T.M. ); Hadley, D.G. )

    1993-04-01

    Remnants of late Quaternary paleodunes are exposed near the coast of the Arabian Gulf and in large inland playas and interdunal areas in central and western Abu Dhabi Emirate over a distance of >45 km normal to the coast. Paleodunes occur south of Madinat Zayed (lat. 23[degree]35 N), which marks the northern limit of a modern dune field that grades into the mega-dune sand sea of the ar Rub al Khali, Saudi Arabia. Coastal paleodunes are composed of weakly cemented millolid foraminifers, ooids, and rounded biogenic grains, whereas inland and southward the paleodunes show a progressive increase in the proportion of eolian quartz sand. The paleodunes exhibit large-scale trough foresets in remnant exposures 0.5 to 10 m thick, indicating paleowind directions from 65[degree] to 184[degree] (dominantly southeast transport). Scattered paleoplaya remnants provide paleodune scale. Paleoplaya deposits form buttes 30--50 m high. If coeval with the Paleodunes, large-scale paleodune fields are implied (100+ m high), comparable to star dunes and sand mountains at the northwestern edge of the ar Rub al Khali. Based on U-Th isotopic analyses, the carbonate paleodune sands are >160ka and probably >250ka. The carbonate source was a shallow, nearly dry Arabian Gulf at a time when large areas were exposed during a low sea-level stand. Paleowind direction indicates that Pleistocene prevailing winds were northwesterly, the direction of the dominant (winter shamal) wind today. The geographic extend and implied magnitude of the paleodunes suggest large-scale eolian transport of carbonate sand during the Pleistocene disiccation, and admixed quartz sand identifies a youthful stage of contemporaneous evolution of the ar Rub al Khali. Wave-eroded paleodunes probably floor much of the present-day Gulf and extend beneath the modern dunes and sand mountains.

  17. Late quaternary depositional systems and sea level change-Santa Monica and San Pedro Basins, California continental borderland

    SciTech Connect

    Nardin, T.R.

    1983-07-01

    A suite of seismic reflection data that provides different degrees of resolution and penetration was used to map the depositional systems that have developed in Santa Monica and San Pedro basins during the late Quaternary. Submarine fan growth, particularly at the mouths of Hueneme and Redondo Canyons, has been the dominant mode of basin filling. Mass movement processes, ranging from creep to large-scale catastrophic slumping, have been important locally. In general, large-scale fan growth fits Normark's model in which the suprafan is the primary locus of coarse sediment deposition. Smaller scale morphologic and depositional patterns on the Hueneme and Redondo fans (e.g., distributary channels and coarse sediment concentrations basinward of the inner suprafan) suggest that a significant amount of coarse sediment presently bypasses the suprafans, however. Long-distance coarse sediment transport was particularly pronounced during late Wisconsinan lowstand of sea level and resulted in progradation of lower mid-fan and lower fan deposits.

  18. Mapping quaternary landforms and deposits in the Midwest and Great Plains by means of ERTS-1 multispectral imagery

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1973-01-01

    ERTS-1 multispectral images are proving effective for differentiating many kinds of Quaternary surficial deposits and landforms units in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Examples of features that have been distinguished are: (1) the more prominent end moraines of the last glaciation; (2) certain possible palimpsests of older moraines mantled by younger deposits; (3) various abandoned river valleys, including suspected ones deeply filled by deposits; (4) river terraces; and (5) some known faults and a few previously unmapped lineaments that may be faults. The ERTS images are being used for systematic mapping of Quaternary landforms and deposits in about 20 potential study areas. Some study areas, already well mapped, provide checks on the reliability of mapping from the images. For other study areas, previously mapped only partly or not at all, our maps will be the first comprehensive, synoptic ones, and should be useful for regional land-use planning and ground-water, engineering-geology, and other environmental applications.

  19. Quaternary geology of Avery Island, Louisiana

    SciTech Connect

    Autin, W.J.; McCulloh, R.P.; Davison, A.T.

    1986-09-01

    Avery Island, one of the Five Islands salt domes of south-central Louisiana, is a piercement-type dome that has been uplifted from several kilometers' depth. It is nearly circular in plan with a maximum elevation approximately 50 m above the surrounding coastal marsh. Dissection has produced a terrain of gullies and steep slopes. The features identified indicate a complex geologic history for Avery Island. Deposition of late Pleistocene sediments in a low-relief alluvial plain and subsequent soil development predate domal uplift. The stratigraphy of loess and colluvial silts indicates the island was emergent during loess depositions. The degree of dissection, distribution of colluvium, and shearing of Quaternary sediments reflects continual uplift after loess deposition.

  20. Fault-scarp morphology and amount of surface offset on late-Quaternary surficial deposits, eastern escarpment of the central Sierra Nevada, CA

    SciTech Connect

    Berry, M.E. . Dept. of Geology)

    1992-01-01

    Faults scarps, formed on glacial deposits and an alluvial fan near the east-central Sierra Nevada mountain front by late-Quaternary movement on the Hilton Creek (HCF), Wheeler Crest (WCFZ) and Coyote Warp (CWFZ) fault zones, were profiled to determine the amount and to estimate the recency of fault offset. Areas studied include McGee (N--near Lake Crowley), Pine, Mount Tom, Basin Mountain, McGee (S--near Bishop), and Bishop Creek drainages. The profile data indicate that movement of the range-front faults (HCF and WCFZ), which is characterized by normal slip, has offset Tioga-age deposits 6.5-26 m. Offset of Tahoe-age moraines cannot be measured directly because the landforms are buried at the mountain-front by moraines from later glaciations. However, the amount of offset is estimated at 52--130 m, based on crest-height differences between Tahoe and Tioga moraines. The rates of slip are highest on the northern end of the HCF, at McGee (N) Creek; the higher slip rates in this latter area may be related to its close proximity to the Long Valley caldera, where tectonic processes are complex and considered closely related to ongoing magmatic activity. The preservation of bevels on the fault scarps in both HCF and WCFZ, combined with the amounts of surface offset on the late-Pleistocene moraines, and AMS C-14 dates for charcoal found in fault-scarp colluvium, indicate that large ground-rupturing events have occurred on these faults during the Holocene. In contrast to the mountain-front faults, faults in the CWFZ, on a broad warp that separates the WCFZ from range-front faults to the south of Bishop, do not cross Tioga moraines, implying that surface rupture has not occurred in the CWFZ for at least 15,000-25,000 years. The degraded morphology of the fault scarps on adjacent Tahoe and pre-Tahoe moraines, which have been offset between 10.5 and 30 m, attests to the lack of late-Pleistocene and Holocene fault activity in this latter area.

  1. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for 20-odd potential study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Among the more distinct features are the major moraines and outwash channels of the last (Wisconsin) glaciation. Analysis of dissection/drainage patterns from the synoptic imagery is proving useful for detecting anomalies that may be caused by stream diversions and moraines of pre-Wisconsin glaciations, by variable loess deposition, by tectonism, and other factors. Numerous abandoned river valleys have been mapped. Trend-lines of several known pre-Wisconsin moraine systems have been identified in Iowa, Nebraska, and Kansas, and also several similar trend-lines, that may indicate previously unknown moraine systems of middle and possibly early Pleistocene age, have been found in Iowa and Missouri. The area inundated by a major flood in southwestern Iowa also has been delineated from ERTS-1 imagery.

  2. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  3. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  4. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be differentiated, primarily by information on landforms and soils. Maps showing the Quaternary geologic-terrain units that can be differentiated from the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps at 1:1 million scale are given of two of the study areas, the Peoria and Decatur, Illinois, 1 deg x 2 quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from ERTS-1 images alone, without input of additional data. These maps shown that commonly the boundaries of geologic-terrain units can be identified more accurately on ERTS-1 images than on topographic maps of 1:250,000 scale. From analysis of drainage patterns, stream-divide relations, and tone and textural variations on the ERTS-1 images, the trends of numerous moraines of Wisconsinan and possibly some of Illinoian age were mapped. In the Peoria study area the trend of a buried valley of the Mississippi River is revealed.

  5. Evaluation of ERTS-1 imagery for mapping Quaternary deposits and landforms in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator); Hallberg, G. R.

    1973-01-01

    The author has identified the following significant results. The main landform associations and larger landforms are readily identifiable on the better images and commonly the gross associations of surficial Quaternary deposits also can be determined primarily by information on landforms and soils (obtained by analysis of stream dissection and drainage and stream-divide patterns, land use patterns, etc.). Maps showing the Quaternary geologic-terrain units that can be distinguished on the ERTS-1 images are being prepared for study areas in Illinois, Iowa, Missouri, Kansas, Nebraska, and South Dakota. Preliminary maps of 1:1,000,000 scale are included for three of the study areas: the Grand Island and Fremont, Nebraska, and the Davenport, Iowa-Illinois, 1 deg x 2 deg quadrangles. These maps exemplify the first phase of investigations, which consists of identifying and mapping landform and land use characteristics and geologic-surficial materials directly from the ERTS-1 images alone, with no additional information. These maps show that commonly the boundaries of geologic-terrain units can be delineated more accurately on ERTS-1 images than on topographic maps at 1:250,000 scale.

  6. Using the Messinian and Plio-Quaternary deposits as markers of the vertical motions in the tectonically inverted Algerian margin

    NASA Astrophysics Data System (ADS)

    Strzerzynski, P.; Lofi, J.; Sage-Khadir, F.; Gaullier, V.; Cattaneo, A.; Déverchère, J.

    2009-12-01

    , the KADB area formed a deeply incised subaerial area continued in the marine domain by detrital chaotic deposits and evaporitic series. The subaerial domain exhibits a peculiar shape related to the inherited morphology of the passive margin as the river valley flows to the ENE and turns abruptly to the WNW on the mid-slope. In the inner shelf, the sedimentary evolution during Plio-Quaternary time is mostly characterized by the deposition of foresets and the absence of sediment aggradation, suggesting that the sedimentary evolution is dominated by a long term tectonic uplift of the KADB. Plio-Quaternary anticlines are present both onshore and offshore. As these structures do not correspond with crests and valleys of the MCS drainage network, we suggest that folding occurred after the MSC. We estimate maximum uplift values of 400 m for the oldest sedimentary marker suggesting that the inversion of the margin started at least 3.5 Ma ago.

  7. Contrasting alluvial architecture of Late Pleistocene and Holocene deposits along a 120-km transect from the central Po Plain (northern Italy)

    NASA Astrophysics Data System (ADS)

    Campo, Bruno; Amorosi, Alessandro; Bruno, Luigi

    2016-07-01

    High-resolution investigation of a ~ 120-km-long transect along the course of the modern Po River, northern Italy, revealed marked changes in alluvial architecture across the Pleistocene-Holocene boundary. Along the whole transect, a 20- to 30-m thick sheet-like succession of Late Pleistocene fluvial sands is invariably overlain by silt and clay deposits, with isolated fluvial bodies of Holocene age (< 9.4 cal ka BP). The Holocene succession displays consistent downstream changes in facies architecture: well-drained floodplain deposits are transitional at distal locations to increasingly organic, poorly drained floodplain to swamp facies associations. Thick paludal facies extend continuously up to 60 km landward of the Holocene maximum marine ingression, about 90 km from the modern shoreline. Based on 28 radiocarbon dates, the abrupt change in lithofacies and channel stacking pattern occurred at the transition from the last glacial period to the present interglacial, under conditions of rapid sea-level rise. The architectural change from amalgamated, Late Pleistocene sand bodies to overlying, mud-dominated Holocene units represent an example of chronologically well-constrained fluvial response to combined climate and relative sea-level change. The overall aggradational stacking pattern of individual channel-belt sand bodies indicates that high subsidence rates continuously created accommodation in the Po Basin, even during phases of falling sea level and lowstand.

  8. Erosion and deposition on the Pajarito Plateau, New Mexico, and implications for geomorphic responses to late Quaternary climatic changes

    SciTech Connect

    Reneau, S.L.; McDonald, E.V.; Gardner, J.N.; Longmire, P.A.; Kolbe, T.R.; Carney, J.S.; Watt, P.M.

    1996-04-01

    The Pajarito Plateau of northern New Mexico contains a rich and diverse record of late Quaternary landscape changes in a variety of geomorphic settings that include gently-sloping mesa tops, steep canyon walls, and canyon bottoms. A broad range of investigations during the past decade, motivated by environmental and seismic hazard concerns, have resulted in examination of the characteristics, stratigraphy, and age of sediments and soils at numerous locations throughout the Plateau. Geochronologic control is provided by >140 radiocarbon dates supplemented by soil characterization and tephrochronology. In this paper we first summarize some of the results of recent and ongoing work on late Quaternary deposits on the Pajarito Plateau, illustrating both the complexity of the geomorphic record and some common elements that have been observed in multiple locations. We then use these observations, in combination with other work in the Southwest, to make some inferences about the local geomorphic response to regional climatic changes. Because the geomorphic and paleoclimatic records are fragmentary, and because the relations between large scale climate changes and local variations in precipitation, vegetation, and geomorphic processes are not fully understood, many uncertainties exist concerning the response of the local landscape to past climatic fluctuations. In addition, variations in local landscape sensitivity related to prior erosional history and spatial variations in vegetation, and the localized nature of many storms, probably contribute to the complexity of the geomorphic record. Nevertheless, the work discussed in this paper suggests a strong relation between regional climatic changes and local geomorphic history, and provides a framework for considering relations between modem processes, the record of past landscape changes, and future erosion and deposition on the Plateau and in surrounding areas.

  9. Quaternary sea level high-stand deposits of the southeast U.S. Atlantic Coastal Plain: Age, distribution, and implications.

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Cronin, T. M.; Ghaleb, B.; Portell, R.; Hillaire-Marcel, C.; Wehmiller, J. F.; Thompson, W. G.; Oches, E. A.; Willard, D. A.; Katz, M. E.

    2015-12-01

    Emerged Quaternary paleo-shorelines and marine deposits provide a more direct way to reconstruct and analyze sea-level variability than methods using oxygen isotope analyses of deep ocean benthic foraminifera. New Uranium-series dates on fossil corals (primarily Astrangia spp. and Septastrea spp.) combined with previously published dates have allowed us to constrain the age, elevation, and geographical distribution of marine sediments deposited in the United States Atlantic Coastal Plain (ACP) from Virginia to Florida during periods of past high relative sea level (SL). We present new dates from deposits (VA/NC: Tabb/Norfolk, Nassawadox, & Omar Formations; SC: Wando, Socastee, & Canepatch Formations; FL: Anastasia, Ft. Thompson, & Bermont Formations) representing interglacial high-stands during Marine Isotope Stages (MIS) 5, 7, 9, and 11. In addition, we incorporate stratigraphic, marine micropaleontologic, and palynologic records with our SL chronology to reconstruct a more complete history of middle-to-late Pleistocene interglacial climates of the ACP. Ultimately, these results will test modeled sea-level fingerprint studies based on various melting scenarios of the Greenland and/or Antarctic ice sheets.

  10. New morpho-stratigraphic constraints for the evolution of the alluvial fan system along the northern slopes of the Taburno-Camposauro Mountains (Calore River basin, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Leone, Natalia; Amato, Vincenzo; Aucelli, Pietro P. C.; Cesarano, Massimo; Filocamo, Francesca; Petrosino, Paola; Rosskopf, Carmen M.; Valente, Ettore; Giralt, Santiago; Casciello, Emilio

    2016-04-01

    The Lower Calore River Valley is a morphostructural depression located in the inner sector of the Campanian Apennine, between the Taburno-Camposauro and the Matese carbonate massifs. The river is the main left tributary of the Volturno River, it has a meandering channel partially structural-controlled. Numerous morphotectonic clues and historical seismicity data suggest that this part of the Apennine chain was particularly active during the late-Quaternary. In detail, the valley is E-W oriented and presents an asymmetry of the opposed valley slopes. The left side, corresponding to the northern flank of the Camposauro massif, is characterized by a steep slope (70°-35°), partially controlled by a ~E-W oriented fault system, and by a wide less-inclined piedmont aggradation zone. The latter started growing since middle Pleistocene, with the deposition of alluvial fans and slope deposits over the well cemented early Pleistocene breccias of Laiano Synthem. The alluvial fan deposition has been active until present giving rise to three main generations of alluvial fans. The right side of the valley, instead, is characterized by seven orders of fluvial terraces, both of erosional and depositional origin. The quaternary morpho-stratigraphic evolution of alluvial fans and fluvial terraces has been strongly conditioned by the interaction of tectonic phases and climatic variations. A detailed geomorphological study (1:5.000 in scale) was carried out with the aim to map the main depositional and erosional fluvial landforms and to identify the main tectonic lineaments of the area. A detailed field survey allowed to better define the stratigraphic and paleoenvironmental context in which the alluvial deposits developed and also to find chrono-stratigraphic markers. Tephra-stratigraphic analyses were performed on pyroclastic deposits interbedded into the alluvial fan and fluvial successions. At the moment the age of the first generation of alluvial fans is still under

  11. Seismic responses of pipelines laid through alluvial valleys

    SciTech Connect

    Liang, J.W.; Jia, S.; Hou, Z.

    1995-12-31

    In this paper, dynamic characteristics of pipelines laid through alluvial valleys are analyzed. The scattering solution of SH-waves by a shallow circular alluvial valley is used to evaluate ground motion, and pipeline-soil interaction is considered. The results show that the alluvial valley has spectacular effects on dynamic behaviors of the pipelines, and for a narrow valley, damage will appear at two interfaces between the alluvial deposit and the riverbed, and for a wider valley, the damage will appear not only at two interfaces but also in the alluvial deposit, this depends on the valley width and the wavelength of incidence seismic waves.

  12. Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

    NASA Astrophysics Data System (ADS)

    Rufer, Daniel; Preusser, Frank; Schreurs, Guido; Gnos, Edwin; Berger, Alfons

    2014-05-01

    The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe-Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

  13. Quaternary glacial and post-glacial depositional history associated with the Green Bay lobe, east-central Wisconsin

    SciTech Connect

    Thieme, L.D.; Smith, G.L. . Dept. of Geology)

    1993-03-01

    Multiple layers of peat and wood fragments indicate that Quaternary glaciation of the east-central region of Wisconsin was punctuated by at least two interglacial periods. Till, outwash, and glaciolacustrine deposits suggest that deposition took place in alternating glacial and non-glacial environments due to oscillations in the position of the Green Bay Lobe terminus. The data for this study consists of 36 auger borings, 70 geologic logs and 100 well-construction reports from water wells. Nine vibracores were taken at the northern margin of Lake Winnebago in order to document in detail the post-glacial history of Glacial Lake Oshkosh/Lake Winnebago. Local bedrock consists of limestones and dolomites of the Middle Ordovician Sinnipee Group. Bedrock elevations range from 211--237 m; bedding dips regionally to the southeast at 1--2 degrees. Bedrock is overlain by a 3--13 m-thick layer of alternating red clay and gray silty-clay (basal Kewaunee Formation ) perhaps deposited in a proglacial lake. These sediments are overlain by apeat/wood layer indicating marsh deposition. This peat/wood layer is overlain by more proglacial lake sediment, 3--10 m of gray brown clay to silty-clay. A second peat/wood layer overlies the gray/brown sediment and may correlate with the Two Creeks buried forest bed. The uppermost unit consists of 2--3 m red silty-clay till (Middle Inlet Member of the Kewaunee Formation). Along the northern margin of present-day Lake Winnebago, red silty-clay is overlain by silty-sand deposited by Glacial Lake Oshkosh. Future work includes obtaining radiocarbon dates from buried peat/wood layers to verify these tentative correlations between east-central Wisconsin and the Lake Michigan Basin.

  14. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan.

    PubMed

    Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane

    2014-10-01

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center. PMID:25004850

  15. Processes of late Quaternary turbidity current flow and deposition on the Var deep sea fan, northwest Mediterranean sea

    SciTech Connect

    Piper, D. ); Savoye, B. )

    1993-09-01

    Late Quaternary sedimentation patterns on the Var deep-sea fan are known from high-resolution seismic boomer profiles (vertical resolution < 1 m), piston cores, SAR side-scan sonargraphs, and submersible dives. Foram biostratigraphy and radiocarbon dating provide chronologic control that is seismically correlated across the fan. Regional erosional events correspond to the isotopic state 2 and 6 glacial maxima. A widespread surface sand layer was deposited from the 1979 turbidity current, which broke two submarine cables. Numerical modeling constrains its character. A small slide on the upper prodelta developed into an accelerating turbidity current, which eroded sand from the Var canyon. The current was 30 m thick in the upper valley, expanding downflow to >120 m, where it spilled over the eastern Var sedimentary ridge at a velocity of 2.5 ms[sup [minus]1]. Other Holocene turbidity currents (with a 103-yr recurrence interval) were muddier and thicker, but also deposited sand on middle fan-valley levees and are inferred to have had a similar slide-related origin. Late Pleistocene turbidity currents deposited on the high Var sedimentary ridge. The presence of sediment waves and the cross-flow slope inferred from levee asymmetry indicate that some flow were hundreds of meters thick, with velocities of 0.35 ms[sup [minus]1]. Estimated times for deposition of thick levee mud beds are many days or weeks. Late Pleistocene flows therefore are interpreted to result from hyperpycnal flow of glacial outwash in the Var River. Variation in late Pleistocene-Holocene turbidite sedimentation thus is controlled more by changes in sediment supply than by sea level.

  16. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    NASA Astrophysics Data System (ADS)

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In

  17. A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho

    USGS Publications Warehouse

    Desborough, G.A.; Foord, E.E.

    1992-01-01

    A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

  18. A comparative study of Quaternary dating techniques applied to sedimentary deposits in southwest Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Sherwood, J.; Barbetti, M.; Ditchburn, R.; Kimber, R. W. L.; McCabe, W.; Murray-Wallace, C. V.; Prescott, J. R.; Whitehead, N.

    At five sites in western Victoria a total of five Quaternary dating techniques have been applied to shell beds varying in age from Holocene to beyond the last interglacial. To examine the age concordancy of the methods, 89 analyses were conducted—16 by radiocarbon, 26 by uranium series disequilibrium, 26 by amino acid racemisation, 5 by thermoluminescence and 16 by electron spin resonance, the latter previously reported by Goede (1989). Uncertainties associated with diagenetic environments of samples precluded reliable numerical age assignments for beds older than Holocene. Instead, relative dating of shell beds was based on a reference site (Goose Lagoon) which was assigned to the last interglacial based on its morphostratigraphic setting and concordant results of three of the dating methods (amino acid racemisation, uranium series disequilibrium and electron spin resonance). Overall there was considerable agreement between methods although not all were applied to each site. Uranium series dating proved most problematical. Migration of radionuclides between groundwater and shells introduced large errors at one site and led to appreciable uncertainties at others.

  19. Ages of Quaternary Rio Grande terrace-fill deposits, Albuquerque area, New Mexico

    USGS Publications Warehouse

    Cole, J.C.; Mahan, S.A.; Stone, B.D.; Shroba, R.R.

    2007-01-01

    Results from luminescence dating on 13 samples from the Albuquerque area show that major-drainage fluvial deposits represent significant periods of aggradation that formed paired, correlatable terraces on the east and west margins of the Rio Grande valley. The youngest terrace fills (Primero Alto) formed during late Pleistocene as a result of streamflow variations with climate cooling during Marine Oxygen-Isotope Stage 3; our ages suggest aggradation of the upper part of the fill occurred at about 47-40 ka. Deposits of the second (Segundo Alto) terraces reached maximum height during climate cooling in the early part of Marine Oxygen-Isotope Stage 5 as late as 90-98 ka (based on dated basalt flows). Our luminescence ages show considerable scatter and tend to be younger (range from 63 ka to 162 ka). The third (Tercero Alto) and fourth (Cuarto Alto) terraces are dated on the basis of included volcanic tephra. Tercero Alto terrace-fill deposits contain the Lava Creek B tephra (639 ka), and Cuarto Alto terrace-fill deposits contain tephra of the younger Bandelier Tuff eruption (1.22 Ma), the Cerro Toledo Rhyolite (1.47 Ma), and the older Bandelier Tuff eruption (1.61 Ma). These periods of aggradation culminated in fluvial terraces that are preserved at maximum heights of 360 ft (Cuarto Alto), 300 ft (Tercero Alto), 140 ft (Segundo Alto), and 60 ft (Primero Alto) above the modern flood-plain. Despite lithologic differences related to local source-area contributions, these terracefill deposits can be correlated across the Rio Grande and up- and down-valley for tens of miles based on maximum height of the terrace above the modern floodplain.

  20. Ages of Quaternary Rio Grande terrace-fill deposits, Albuquerque area, New Mexico

    USGS Publications Warehouse

    James Channing Cole; Mahan, Shannon; Stone, Byron D.; Shroba, Ralph R.

    2007-01-01

    Results from luminescence dating on 13 samples from the Albuquerque area show that major-drainage fluvial deposits represent significant periods of aggradation that formed paired, correlatable terraces on the east and west margins of the Rio Grande valley . The youngest terrace fills (Primero Alto) formed during late Pleistocene as a result of streamflow variations with climate cooling during Marine Oxygen-Isotope Stage 3; our ages suggest aggradation of the upper part of the fill occurred at about 47–40 ka . Deposits of the second (Segundo Alto) terraces reached maximum height during climate cooling in the early part of Marine Oxygen-Isotope Stage 5 as late as 90–98 ka (based on dated basalt flows) . Our luminescence ages show considerable scatter and tend to be younger (range from 63 ka to 162 ka) . The third (Tercero Alto) and fourth (Cuarto Alto) terraces are dated on the basis of included volcanic tephra. Tercero Alto terrace-fill deposits contain the Lava Creek B tephra (639 ka), and Cuarto Alto terrace-fill deposits contain tephra of the younger Bandelier Tuff eruption (1 .22 Ma), the Cerro Toledo Rhyolite (1 .47 Ma), and the older Bandelier Tuff eruption (1 .61 Ma). These periods of aggradation culminated in fluvial terraces that are preserved at maximum heights of 360 ft (Cuarto Alto), 300 ft. (Tercero Alto), 140 ft (Segundo Alto), and 60 ft. (Primero Alto) above the modern floodplain. Despite lithologic differences related to local source-area contributions, these terracefill deposits can be correlated across the Rio Grande and up- and down-valley for tens of miles based on maximum height of the terrace above the modern floodplain.

  1. Amino-acid racemizarion in Quaternary shell deposits at Willapa Bay, Washington

    USGS Publications Warehouse

    Kvenvolden, K.A.; Blunt, D.J.; Clifton, H.E.

    1979-01-01

    Extents of racemization ( d l ratios) of amino acids in fossil Saxidomus giganteus (Deshayes) and Ostrea lurida Carpenter were measured on shell deposits exposed at 21 sites on the east side of Willapa Bay, Washington. Amino acids from Saxidomus show less variability in d Spl ratios and, therefore, are of greater use in correlation and age estimation than are amino acids from Ostrea. Shells of two different ages, about 120,000 ?? 40,000 yr old and about 190,000 ?? 40,000 yr old, are present. These ages correspond to Stages 5 and 7 of the marine isotope record defined by Shackleton and Opdyke in 1973 and hence the shell deposits likely formed during two different high stands of sea level. The stratigraphic record at Willapa Bay is consistent with this interpretation. ?? 1979.

  2. Late Quaternary geoarchaeology and geochronology of stratified aeolian deposits, Tar River, North Carolina

    NASA Astrophysics Data System (ADS)

    Moore, Christopher R.

    Recent geoarchaeological work on relict aeolian deposits in the North Carolina Coastal Plain has shown the potential for understanding prehistoric hunter-gatherer adaptations to changing environmental conditions likely related to Holocene climate change. Archaeological surveys and testing along the Tar River has revealed numerous sites with stratified Early Archaic through Woodland occupations. Geophysical, archeostratigraphic and sedimentological analysis along with chronometric dating (OSL and 14C) of source-bordering aeolian sediments along the Tar River in North Carolina indicate dune drapes (˜1 meter thick) accreted throughout much of the Holocene. Aeolian burial events along the Tar River appear to reflect Holocene millennial-scale climatic cyclicity (e.g., Bond Events) and its related effects on the fluvial system. These events likely influenced both hunter-gatherer adaptation and site preservation along the Tar River. Combined radiocarbon and OSL ages from lower paleo-braidplain sites, indicate incision of the lower paleo-braidplain and initiation of dune deposition just before or during the Younger Dryas stadial. The presence of stratified archaeological remains in these sediments preserves a record of both prehistoric human adaptations to local conditions and changes in depositional processes marking large-scale climatic change in the southeastern United States.

  3. Hyperactive neotectonic near the South Rifian front. Lifted Late Quaternary lagunal deposits (Atlantic Morocco)

    NASA Astrophysics Data System (ADS)

    Benmohammadi, Aïcha; Griboulard, Roger; Zourarah, Bendahhou; Carruesco, Christian; Mehdi, Khalid; Mridekh, Aziz; Moussaoui, Abderahmane El; Alaoui, Asmae Mhamdi; Carbonel, Pierre; Londeix, Laurent

    2007-10-01

    The recent discovery of emerged and lifted lagunal deposits near the Moulay Bouselham lagoon (North Moroccan Atlantic coast), up to 32 m above sea level, requires a new model to explain the evolution of this ecosystem. All the studies on these deposits seem to indicate that we are dealing with very recent lagoonal levels. The main problem is to explain the altitude of these deposits. Likely explanations are a historical tsunami, tempest, and/or a very strong neotectonics in this area. We choose the later hypothesis because it matches the occurrence of an argilokinetic tectonic in front of the North Atlantic Moroccan margin. In this tectonic context, results of 14C analysis data, i.e. 2400 ± 250 BP for one outcrop and 2170 ± 215 BP for a value in a core taken in the lagoon, we obtain a rate of uplift of about 14 mm/yr. Therefore, this region corresponds to an important tectonic junction between the stable Meseta to the south, the Rifian domain to the north and the accretionary prism, in relation with the subduction of the Atlantic crust under the African and European plates to the west. Moreover, in front of the studied site, many mud volcanoes have been observed in the Gulf of Cadiz, near the Moroccan margin.

  4. Quaternary downcutting rates from cave-deposited river sediment and Holocene erosion rates from river sand in the Central Pyrenees

    NASA Astrophysics Data System (ADS)

    Vernant, Philippe; Genti, Manon; Chéry, Jean; Cazes, Gaël; Braucher, Régis

    2016-04-01

    We use 26Al and 10Be to infer the time of cave-deposited river sediment emplacement in the Central Pyrenees and the Cevennes. Using these ages, we derive mid-term downcutting rates (1-4.106 a). We also use the cosmogenic radionuclides 10Be concentration in quartz extracted from river sand to estimate short-term (102-105 a) erosion rates. Along the N-S profile across the central Pyrenees, we do not see any significant change in erosion rates during the Quaternary. On the other hand, the erosion rates are highly correlated with the local elevation. They vary roughly from 50 m/Myr in the foreland up to 800 m/Myr in the axial part of the mountain range. The mechanisms responsible for the Pyrenees moderate, but frequent, seismicity have yet to be determined. Based on numerical modeling and our erosion rates, we propose that this seismicity could be explained by the isostatic rebound associated to the erosion of the range. To evaluate the likeliness of this hypothesis, we aim at comparing the Pyrenees and the Cevennes to check if the rates are significantly different between these mountain ranges with very different seismic behavior.

  5. The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): drift morphology and Plio-Quaternary stratigraphic evolution

    NASA Astrophysics Data System (ADS)

    Miramontes Garcia, Elda; Cattaneo, Antonio; Jouet, Gwenael; Thereau, Estelle; Thomas, Yannick; Rovere, Marzia; Cauquil, Eric; Trincardi, Fabio

    2016-04-01

    The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7-0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish

  6. Lithology, mineralogy, and paleontology of Quaternary lake deposits in Long Valley Caldera, California

    USGS Publications Warehouse

    Fournier, R.B.

    1989-01-01

    Drill cores and cuttings from two drill holes, about 3 km apart, in Long Valley caldera, Mono County, California, were studied using x-ray diffraction and optical methods. A thick sequence of tuffs and lake sediments was encountered in LVCH-1 (1,000 ft deep) and Republic well 66-29 (6,920 ft deep), drilled in the southeast part of the Long Valley caldera. Ostracods, diatoms, and isotopic data indicate that the sediments and tuffs were deposited in a shallow caldera lake which changed in salinity over time. Conditions ranged from very saline in the older lake to fresh in the youngest. The sequence of secondary minerals from top to bottom is: clinoptilolite, mordenite, analcime, K-feldspar (and albite). In some geothermal systems, this sequence of secondary minerals is a function of temperature; however, the paleontological and isotopic data indicate that the change in secondary minerals with increasing depth is due to the older strata being deposited in a more saline environment. No mineralogical evidence of hydrothermal alteration is present, although the high lithium content of some clays and feldspars and the isotopic composition of some sulfate (gypsum) seems to require a hydrothermal source. (Lantz-PTT)

  7. Uranium-series dating of carbonate (tufa) deposits associated with quaternary fluctuations of Pyramid Lake, Nevada

    USGS Publications Warehouse

    Szabo, B. J.; Bush, C.A.; Benson, L.V.

    1996-01-01

    Uranium-series dating of dense tufa deposited in a small cave, at former lake margins, and in large tufa mounds clarifies the timing of lake-level variation during the past 400,000 yr in the Pyramid Lake basin. A moderate-sized lake occasionally overflowed the Emerson Pass sill at elevation of ???1207 m between ca. 400,000 and 170,000 and from ca. 60,000 to 20,000 yr B.P., as shown by 230Th/234U ages of the cave samples, 230Th-excess ages of tubular tufas, and average isochron-plot ages of shoreline-deposited tufas. (By comparison, modern Pyramid Lake is ???50 m below this sill). There is a lack of tufa record during the intervening period from ca. 170,000 to 60,000 yr B.P. After ca. 20,000 yr, Pyramid Lake underwent abrupt changes in level and, based on previous 14C ages, reached its highest elevation (ca 1335 m) at ca. 14,000 yr B.P. The youngest uranium-series ages are comparable with previously reported 14C ages. ?? 1996 University of Washington.

  8. Uranium and thorium series disequilibrium in quaternary carbonate deposits from the Serra da Bodoquena and Pantanal do Miranda, Mato Grosso do Sul State, central Brazil.

    PubMed

    Ribeiro, F B; Roque, A; Boggiani, P C; Flexor, J M

    2001-01-01

    Activities of gamma-ray emitting members of the uranium (238U) and thorium (232Th) series were measured in a quaternary limestone deposit that outcrops in the southeastern Pantanal Matogrossense Basin and in quaternary tufas deposited at the drainage of the Serra da Bodoquena. It is a first step in a study of the mobilization of uranium and thorium series and its relation to surface hydrology, in a region where carbonate deposits are being continuously dissolved and reprecipitated. The obtained results show that all these deposits are characterized by very low concentrations of uranium and thorium. The 238U/226Ra and 228Th/228Ra activity ratios are significantly different than 1.0, indicating that both series are in radioactive disequilibrium. Although the Serra da Bodoquena deposits seem to be very recent, their very fine granulation and high porosity suggest that they behave as open systems for geochemical exchanges of uranium and thorium series members. The Pantanal do Miranda limestone has a radiocarbon age of 3900 yr BP. Since the thorium series is in disequilibrium it is also concluded that this deposit behaves as an open system for geochemical exchanges. PMID:11144246

  9. Stratigraphy and U-series geochronology of Late Quaternary megatsunami deposits in Hawaii

    NASA Astrophysics Data System (ADS)

    McMurtry, G. M.; Fryer, G. J.; Tappin, D. R.; Fietzke, J.

    2008-12-01

    Our previous work on Kohala, Hawaii, established that the elevated marine basalt boulder conglomerates found there represent at least one, and probably two megatsunami events in the late Pleistocene. Together with the evidence for giant submarine landslides off western Hawaii island from contemporaneous flank failures of Mauna Loa volcano and identical sequences of submarine terraces off the NW coasts of the islands of Hawaii and Lanai, our hydrodynamic modeling indicates that all islands in the Hawaiian chain must have been affected by these giant waves. We present new dating of these deposits on Hawaii, Lanai and Maui islands together with stratigraphic interpretations of their impacts and origins. We used uranium-series dating of in situ coral clasts to constrain the age of the marine conglomerates, using multiple ion counting- inductively coupled plasma-mass spectrometry techniques, and used 87Sr/86Sr ratios of carbonates to help delineate their origins where marine fossils were absent. Southern Lanai records at least four megatsunami events: at 110 ka, 135 ka, 200 ka, and 240 ka, that likely correspond to the Alika phase 2, Alika phase 1, and two stages of the older South Kona giant submarine landslides. These event dates also correspond to O- isotopic stages 5d, 5e, 7a and 7b, and are in agreement with a changing-climate trigger mechanism for volcanic flank collapse proposed in previous work by ourselves and others. On southern Lanai, there is evidence for two megatsunami deposits in stratigraphic succession in the vicinity of Manele Bay, as well as higher-elevation deposits there containing reworked coral-bearing debris from two older megatsunami events. Coral clasts have been dated from all four events within the high-elevation gullies within Kaluakapo Crater on southern Lanai in this study and Moore and Moore (1988), indicating enormous runups to more than 626 m and wave heights of more than 240 m there that are in agreement with the latest hydrodynamic

  10. Late Quaternary Depositional History and Anthropogenic Impacts of Western Long Island Sound, New York

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Cormier, M.; Marchese, P.; Zheng, Y.; Stewart, G.; Acosta, V.; Bowman, A.; Cortes, A.; Leon, L.; Rosa, M.; Semple, D.; Thaker, N.; Vargas, W.; Williams, L.

    2006-12-01

    In June 2006, we surveyed the seafloor of western Long Island Sound with the R/V HUGH SHARP and collected multibeam bathymetry, chirp subbottom profiling, side-scan sonar imagery, and sediment samples (25 gravity cores, 11 multicores, and 10 grabs). In addition, 36 CTD hydrocast stations measured O, pH, alkalinity, trace metals, nutrients, Polonium-210, Lead-210, Thorium-234, organic carbon, and pigments. Continuous weather measurements, and water column properties using both CTD casts and a towed Scanfish were also carried out. Biological sampling included benthic grabs and plankton nets. The National Science Foundation under the "Opportunities to Enhance Diversity in the Geosciences" Program funded this one-week survey. Nine students from underrepresented groups in the geosciences and five P.I.'s participated in the field program. The major scientific objectives were to study the deglaciation of the Laurentide Ice Sheet and Holocene transgression of sea level to document age, sedimentation processes, and climate, and the impact of anthropogenic activities in the sediments, biota, and waters of the estuary. A deep (35 m) and narrow (< 1km) channel incised into bedrock characterizes the East River section of western Long Island Sound. In contrast, thick sedimentary deposits characterize the eastern part of the study area, 20 to 45 km east of New York City. Subbottom penetration reached in some instances 40 m, but is limited to less than 5 m where sediments are gas-charged. Four seismic sequences are imaged in the chirp records that we interpret to span the Last Glacial Maximum to Present: strong irregular erosional surfaces beneath parallel seismic reflectors are interpreted as glacial erosional surface and/or moraines, and as Glacial lake Connecticut sediments ~25 m thick, respectively. A thin veneer (<1 m) of acoustically transparent sediment is interpreted as recent deposits. It overlays a roughly 15 m thick unit interpreted as Holocene transgressive marine

  11. Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska

    USGS Publications Warehouse

    de Fontaine, C.S.; Kaufman, D.S.; Scott, Anderson R.; Werner, A.; Waythomas, C.F.; Brown, T.A.

    2007-01-01

    Tephra-fall deposits from Cook Inlet volcanoes were detected in sediment cores from Tustumena and Paradox Lakes, Kenai Peninsula, Alaska, using magnetic susceptibility and petrography. The ages of tephra layers were estimated using 21 14C ages on macrofossils. Tephras layers are typically fine, gray ash, 1-5??mm thick, and composed of varying proportions of glass shards, pumice, and glass-coated phenocrysts. Of the two lakes, Paradox Lake contained a higher frequency of tephra (0.8 tephra/100 yr; 109 over the 13,200-yr record). The unusually large number of tephra in this lake relative to others previously studied in the area is attributed to the lake's physiography, sedimentology, and limnology. The frequency of ash fall was not constant through the Holocene. In Paradox Lake, tephra layers are absent between ca. 800-2200, 3800-4800, and 9000-10,300??cal yr BP, despite continuously layered lacustrine sediment. In contrast, between 5000 and 9000??cal yr BP, an average of 1.7 tephra layers are present per 100 yr. The peak period of tephra fall (7000-9000??cal yr BP; 2.6 tephra/100 yr) in Paradox Lake is consistent with the increase in volcanism between 7000 and 9000 yr ago recorded in the Greenland ice cores. ?? 2007 Elsevier Inc. All rights reserved.

  12. Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala

    USGS Publications Warehouse

    Rose, William I., Jr.; Newhall, Christopher G.; Bornhorst, Theodore J.; Self, Stephen

    1987-01-01

    Atitlán caldera has been the site of several silicic eruptions within the last 150,000 years, following a period of basalt/andesite volcanism. The silicic volcanism began with 5–10 km3 of rhyodacites, erupted as plinian fall and pyroclastic flows, about 126,000 yr. B.P. At 85,000 yr. B.P. 270–280 km3 of compositionally distinct rhyolite was erupted in the Los Chocoyos event which produced widely dispersed, plinian fall deposits and widespread, mobile pyroclastic flows. In the latter parts of this eruption rhyodacite and minor dacite were erupted which compositionally resembled the earliest silicic magmas of the Atitlán center. As a result of this major eruption, the modern Atitlán (III) caldera formed. Following this event, rhyodacites were again erupted in smaller (5–13 km3) volumes, partly through the lake, and mafic volcanism resumed, forming three composite volcanoes within the caldera. The bimodal mafic/silicic Atitlán volcanism is similar to that which has occurred elsewhere in the Guatemalan Highlands, but is significantly more voluminous. Mafic lavas are thought to originate in the mantle, but rise, intrude and underplate the lower crust and partly escape to the surface. Eventually, silicic melts form in the crust, possibly partly derived from underplated basaltic material, rise, crystallize and erupt. The renewed mafic volcanism could reflect either regional magmato-tectonic adjustment after the large silicic eruption or the onset of a new cycle.

  13. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Jijun; Guo, Benhong; Ma, Zhenhua; Li, Xiaomiao; Ye, Xiyan; Yu, Hao; Liu, Jia; Yang, Cheng; Zhang, Shengda; Song, Chunhui; Hui, Zhengchuang; Peng, Tingjiang

    2016-05-01

    The loess-paleosol sequences of the Chinese Loess Plateau (CLP) are major paleoclimatic archives which document the evolution of the East Asian Monsoon (EAM) and changes in the Northern Hemisphere ice sheets during the Quaternary glacial-interglacial cycles. However, the mechanisms regulating the trend of EAM variations on a tectonic scale are unclear. The loess deposits of the western CLP, which have a close relationship with tectonics and climate, are much better-suited to exploring these mechanisms than those of the central CLP. However, studies of long-term EAM evolution from the western CLP have been hindered by the lack of long, accurately-dated sequences with high sediment accumulation rates. Here, we address this problem via high resolution magnetostratigraphic, magnetic susceptibility and grain-size analyses of a 416.2 m-long drill core located at Xijin Village, near Lanzhou. Paleomagnetic dating indicates that the basal age of the Xijin loess is ∼2.2 Ma. The χ and grain-size records reveal that the East Asian Summer Monsoon (EASM) and East Asian Winter Monsoon (EAWM) strengthened synchronously at ∼1.24 Ma. Subsequently, during interglacial periods, the EASM began to penetrate, and then dominate, in the Lanzhou region. This was followed by two stepwise uptrends, commencing at ∼0.87 and ∼0.62 Ma, which resulted in an increasingly moist interglacial climate in the region. We suggest that the uplift of the Tibetan Plateau was largely responsible for these three stepwise enhancements of the EASM. Overall, however, the long-term trend of strengthening in EAWM in the area may have been primarily caused by long-term global cooling from the Late Pliocene onwards.

  14. Chronostratigraphic and paleoclimatic data for Quaternary loessial and fluvial deposits in the Mississippi River Valley of Arkansas and Tennessee

    SciTech Connect

    Markewich, H.W. ); Millard, H.T. Jr. ); Pavich, M.J. ); Rodbell, D.T. ); Rich, F.J. ); Rutledge, E.M. ); Ward, L. . Soil Conservation Service); Van Valkenberg, S. ); Wysocki, D. . Soil Conservation Service)

    1992-01-01

    Ongoing investigations into Quaternary paleoclimates of the Mississippi River Valley in eastern Arkansas and western Tennessee include age estimations using [sup 14]C, [sup 10]Be, thermoluminescent (TL), and optically stimulated luminescent (OSL) analyses; compositional studies using petrographic and diffractometer analyses; pedological analyses with complete characterization studies; and magnetic susceptibility measurements with laboratory analyses to investigate the source of the magnetism. Preliminary data on composition of the < 63-micron fraction, thickness, and age of the loesses and associated paleosols are available from selected stratigraphic sections that are being described and sampled in detail. These data suggest the following: (1) overall thickness of loess, as well as thickness of each loess sheet, decreases by one-half to two-thirds within the 96-km distance from the south end of Crowleys Ridge near Helena, AR northward to Forest City, AR and Memphis, TN; (2) near Helena, loess thicknesses are 25 to 30 m, 7 m, 6 m, and 6 m for the Peoria, Roxana, Loveland, and Crowleys Ridge respectively; (3) the depth of weathering in the Peoria ranges from 4.5 to 8.5 m near Helena, depending on slope position; (4) at the south end of Crowleys Ridge, near Helena, the Roxana has two associated paleosols and an intervening layer of weathered parent material; (5) isotopic data suggest that (a) loess deposition took place between 4,500 ka and 10 ka and that (b) each younger disconformity represents less time than the one before; (6) the predominantly illite and illite/smectite mineralogy of the paleosols, even that of the Sangamon soil, suggests minimal weathering of labile loessial minerals prior to pedogenic development; (7) pollen data indicate that by 10 ka this part of the valley had vegetation indicative of a cool temperate climate, with minimal cypress and no boreal components.

  15. Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California

    USGS Publications Warehouse

    Wells, S.G.; McFadden, L.D.; Dohrenwend, J.C.

    1987-01-01

    Radiocarbon dating of late Quaternary deposits and shorelines of Lake Mojave and cation-ratio numerical age dating of stone pavements (Dorn, 1984) on the adjacent Soda Mountains piedmont provide age constraints for alluvial and eolian deposits. These deposits are associated with climatically controlled stands of Lake Mojave during the past 15,000 yr. Six alluvial fan units and three eolian stratigraphic units were assigned ages based on field relations with dated shorelines and piedmont surfaces, as well as on soil-geomorphic data. All but one of these stratigraphic units were deposited in response to time-transgressive climatic changes beginning approximately 10,000 yr ago. Increased eolian flux rates occurred in response to the lowering of Lake Mojave and a consequent increase in fine-sediment availability. Increased rates of deposition of eolian fines and associated salts influenced pedogenesis, stone-pavement development, and runoff-infiltration relations by (1) enhancing mechanical weathering of fan surfaces and hillslopes and (2) forming clay- and silt-rich surface horizons which decrease infiltration. Changes in alluvial-fan source areas from hillslopes to piedmonts during the Holocene reflect runoff reduction on hillslopes caused by colluvial mantle development and runoff enhancement on piedmonts caused by the development of less-permeable soils. Inferred increased in early to middle Holocene monsoonal activity resulted in high-magnitude paleo-sheetflood events on older fan pavements; this runoff triggered piedmont dissection which, in turn, caused increased sediment availability along channel walls. Thus, runoff-infiltration changes during the late Quaternary have occurred in response to eolian deposition of fines, pedogenesis, increased sheetflood activity in the Holocene, and vegetational changes which are related to many complicated linkages among climatic change, lake fluctuations, and eolian, hillslope, and alluvial-fan processes. ?? 1987.

  16. Isopachs of Quaternary deposits, Fremont 1- by 2- degree Quadrangle and part of Omaha Quadrangle, Nebraska, digitized from a published 1:250,000-scale geologic map

    USGS Publications Warehouse

    Zelt, R.B.; Patton, E.J.

    1995-01-01

    A geologic map showing the isopachs of Quaternary deposits in the Fremont and part of the Omaha, Nebraska, 1- by 2-degree quadrangles was published at a scale of 1:250,000 in 1975 (Burchett and others, 1975). This report describes the conversion of Quaternary thickness data into a digital geographic data set. A film separation of the published isopachs was scan-digitized and processed to produce digital geographic data. Geographic feature attributes and data-set documentation also are included in the digital data set. The digital data set are formatted for distribution with accordance with the Spatial Data Transfer Standard approved by the U.S. National Institute of Standards and Technology.

  17. Stratigraphic and lithologic characteristics of Pleistocene fluvial deposits in the Danube and Sava riparian area near Belgrade (Serbia)

    NASA Astrophysics Data System (ADS)

    Nenadić, D.; Gaudenyi, T.; Bogićević, K.; Tošović, R.

    2016-07-01

    The Quaternary sediments in the Danube and Sava riparian area near Belgrade have a considerable thickness. Several categories of deposits (fluvial-lacustrine, fluvial and aeolian) of Pliocene and Quaternary age have been identified. Their thickness, granulometric composition and paleontological features change depending on the distance from the recent Danube and Sava riverbeds. The Pleistocene fluvial deposits are underlain by sediments of the Late Miocene (Sarmatian and Pannonian) or the Plio-Pleistocene age, and are overlain by fluvial-palustrine deposits of the Pleistocene age and recent alluvial deposits. Pleistocene fluvial deposits that form a major part of the Quaternary sediments, have a great significance, since they are proved to be excellent collectors of ground water. Although these deposits are at lower altitudes in the area of Srem, they could be correlated with the high Danube and Morava terraces in Serbia and Drava in Croatia on the basis of their lithologic and paleontological features.

  18. Gravel deposit produced by a flash paleoflood in a succession of Quaternary terraces in the Plain of Vic (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castelltort, Xavier; Colombo, Ferran; Carles Balasch, Josep; Barriendos, Mariano; Mazón, Jordi; Pino, David; Lluís Ruiz-Bellet, Josep; Tuset, Jordi

    2016-04-01

    In contrast with the abundance of studies of fluvial terraces, caused by river dynamics, there are very few descriptions of alluvial deposits produced by flash floods and mass movements. This study describes a late Pleistocene sedimentary deposit produced by a flash paleoflood and attempts to explain its genesis and its source areas. The Plain of Vic, drained by the river Ter and its tributaries, is one of the eastern erosive basins bordering the sedimentary Ebre basin (NE Iberian Peninsula). This plain has a length of 35 km and an average width of 8 km with a N-S direction and lies mainly on the Marls of Vic Fm. These materials are the less resistant lithologic members of the monocline Paleogene stratigraphic succession that dips to the west. The basal resistant bed that forms the eastern cuesta is the Sandstones of Folgueroles Fm. On the top, the resistant lithologic beds that form the scarp face are the sandstones of La Noguera in the Vidrà Fm. On the scarp face, various coalescent alluvial bays have been developed, which have accumulated up to eight levels of alluvial terraces. In one of them, formed by the river Mèder and the Muntanyola stream, a gravel deposit up to 5 m thick formed in a single episode outcrops, in a position T4,. A dating of the river Ter T5 has obtained an age of 117.9 ± 9.5 Ky. The accumulation of gravel erodes another level of metric thickness of the same lithological characteristics and texture. The deposit does not have any internal structure or organization of pebbles. At its base, there are several metric blocks coming directly from the slopes. The accumulation of gravel is block-supported with a sandy matrix. The pebbles size is centimetric to decimetric (90%). Its texture is subrounded. Lithologically, the deposit consists mostly of sandstone and limestone from the top of the series. On the ground, the accumulation of gravel is elongated, with a maximum length and width of 550 m by 160 m and a slope surface of 2.54%. With an area

  19. Late Quaternary sediment deposition of core MA01 in the Mendeleev Ridge, the western Arctic Ocean: Preliminary results

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyu; Kim, Sunghan; Khim, Boo-Keun; Xiao, Wenshen; Wang, Rujian

    2014-05-01

    Late Quaternary deep marine sediments in the Arctic Ocean are characterized by brown layers intercalated with yellowish to olive gray layers (Poore et al., 1999; Polyak et al., 2004). Previous studies reported that the brown and gray layers were deposited during interglacial (or interstadial) and glacial (or stadial) periods, respectively. A 5.5-m long gravity core MA01 was obtained from the Mendeleev Ridge in the western Arctic Ocean by R/V Xue Long during scientific cruise CHINARE-V. Age (~450 ka) of core MA01 was tentatively estimated by correlation of brown layers with an adjacent core HLY0503-8JPC (Adler et al., 2009). A total of 22 brown layers characterized by low L* and b*, high Mn concentration, and abundant foraminifera were identified. Corresponding gray layers are characterized by high L* and b*, low Mn concentration, and few foraminiferal tests. Foraminifera abundance peaks are not well correlated to CaCO3 peaks which occurred with the coarse-grained (>0.063 mm) fractions (i.e., IRD) both in brown and gray layers. IRDs are transported presumably by sea ice for the deposition of brown layers and by iceberg for the deposition of gray layers (Polyak et al., 2004). A strong correlation coefficient (r2=0.89) between TOC content and C/N ratio indicates that the major source of organic matter is terrestrial. The good correlations of CaCO3 content to TOC (r2=0.56) and C/N ratio (r2=0.69) imply that IRDs contain detrital CaCO3 which mainly originated from the Canadian Arctic Archipelago. In addition, high kaolinite/chlorite (K/C) ratios mostly correspond to CaCO3 peaks, which suggests that the fine-grained particles in the Mendeleev Ridge are transported from the north coast Alaska and Canada where Mesozoic and Cenozoic strata are widely distributed. Thus, the Beaufort Gyre, the predominant surface current in the western Arctic Ocean, played an important role in the sediment delivery to the Mendeleev Ridge. It is worthy of note that the TOC and CaCO3 peaks are

  20. Unraveling fan-climate relationships: Milankovitch cyclicity in a Miocene alluvial fan (Teruel Basin, Spain)

    NASA Astrophysics Data System (ADS)

    Ventra, D.; Abels, H. A.; Hilgen, F. J.; de Boer, P. L.

    2009-04-01

    The role of climate change in alluvial fan sedimentation is often evident in geomorphological studies dealing with Quaternary successions, but remains hard to assess in the pre-Quaternary stratigraphic record, for which an additional obstacle is represented by detailed chronologies difficult to established within coarse clastic systems. The Teruel Basin (eastern Spain) is an extensional trough whose main tectonic activity spanned from late Oligocene to Pliocene times. Permanent internal drainage and a Mediterranean semi-arid climate made the basin and its sedimentary signatures highly sensitive to climate fluctuations, especially in terms of hydrological balance. Recent studies have proved orbital control on the development of facies sequences from low-energy, basinal settings in Teruel. In particular, high-resolution chronological and paleoclimatic information has been derived by orbital tuning of mudflat to ephemeral lake deposits in the Prado area (Villastar), linking basic facies rhythms to alternating, relatively humid/arid phases paced mainly by climatic precession. Clastic lobes from a coeval alluvial fan distally interfinger with this reference section. Stratigraphic relationships show how fan sedimentation patterns were also influenced by climate cyclicity. Highest volumes of debris transfer towards the distal mudflat repeatedly coincide with relatively humid periods. Furthermore, distal to medial fan outcrops feature prominent rhythms of distinct, alternating coarse and fine clastic packages. Such a highly organized architecture, unusual in alluvial fan successions, points to the influence of a rhythmic forcing mechanism which might have been climate variability, as evidenced by the adjacent reference section. Rather than on processes of sediment transport basinwards, climate change would have acted on sediment production and availability at the source, within the fan catchment.

  1. Quaternary downcutting rate of the new river, Virginia, measured from differential decay of cosmogenic {sup 26}Al and {sup 10}Be in cave-deposited alluvium

    SciTech Connect

    Granger, D.E.; Kirchner, J.W.; Finkel, R.C.

    1997-02-01

    The concentrations of the cosmogenic radionuclides {sup 26}Al and {sup 10}Be in quartz can be used to date sediment burial. Here we use {sup 26} Al and {sup 10}Be in cave-deposited river sediment to infer the time of sediment emplacement. Sediment burial dates from a vertical sequence of caves along the New River constrain its Quaternary downcutting rate to 27.3{+-}4.5 m/m.y. and may provide evidence of regional tectonic tilt. 32 refs., 3 figs., 1 tab.

  2. Geophysical Characterization of the Quaternary-Cretaceous Contact Using Surface Resistivity Methods in Franklin and Webster Counties, South-Central Nebraska

    USGS Publications Warehouse

    Teeple, Andrew P.; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.

    2009-01-01

    To help manage and understand the Platte River system in Nebraska, the Platte River Cooperative Hydrology Study (COHYST), a group of state and local governmental agencies, developed a regional ground-water model. The southern boundary of this model lies along the Republican River, where an area with insufficient geologic data immediately north of the Republican River led to problems in the conceptualization of the simulated flow system and to potential problems with calibration of the simulation. Geologic descriptions from a group of test holes drilled in south-central Nebraska during 2001 and 2002 indicated a possible hydrologic disconnection between the Quaternary-age alluvial deposits in the uplands and those in the Republican River lowland. This disconnection was observed near a topographic high in the Cretaceous-age Niobrara Formation, which is the local bedrock. In 2003, the U.S. Geological Survey, in cooperation with the COHYST, collected surface geophysical data near these test holes to better define this discontinuity. Two-dimensional imaging methods for direct-current resistivity and capacitively coupled resistivity were used to define the subsurface distribution of resistivity along several county roads near Riverton and Inavale, Nebraska. The relation between the subsurface distribution of resistivity and geology was defined by comparing existing geologic descriptions of test holes to surface-geophysical resistivity data along two profiles and using the information gained from these comparisons to interpret the remaining four profiles. In all of the resistivity profile sections, there was generally a three-layer subsurface interpretation, with a resistor located between two conductors. Further comparison of geologic data with the geophysical data and with surficial features was used to identify a topographic high in the Niobrara Formation near the Franklin Canal which was coincident with a resistivity high. Electrical properties of the Niobrara

  3. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    USGS Publications Warehouse

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  4. Evidence of Quaternary rock avalanches in the central Apennines: new data and interpretation of the huge clastic deposit of the L'Aquila basin (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Esposito, Carlo; Scarascia Mugnozza, Gabriele; Tallini, Marco; Della Seta, Marta

    2014-05-01

    Active extensional tectonics and widespread seismicity affect the axial zone of the central Apennines (Italy) and led to the formation of several plio-quaternary intermontane basins, whose morpho-evolution was controlled by the coupling of tectonic and climatic inputs. Common features of the Apennines intermontane basins as well as their general morpho-evolution are known. Nonetheless, the complex interaction among regional uplift, local fault displacements and morpho-climatic factors caused differences in the denudational processes of the single intermontane basins. Such a dynamic response left precious records in the landscape, which in some cases testify for the occurrence of huge, catastrophic rock slope failures. Several Quaternary rock avalanches have been identified in central Apennines, which are often associated with Deep Seated Gravitational Slope Deformation (DSGSD) and thus strictly related to the geological-structural setting as well as to the Quaternary morpho-structural evolution of the mountain chain. The L'Aquila basin is one of the intermontane tectonic depression aligned along the Middle Aterno River Valley and was the scene of strong historical earthquakes, among which the last destructive event occurred on April 6, 2009 (Mw 6.3). We present here the evidence that the huge clastic deposit on which the city of L'Aquila was built up is the body of a rock avalanche detached from the southern slope of the Gran Sasso Range. The clastic deposit elongates for 13 km to the SW, from the Assergi Plain to L'Aquila and is characterized by typical morphological features such as hummocky topography, compressional ridges and run-up on the opposite slope. Sedimentological characters of the deposit and grain size analyses on the matrix let us confirm the genetic interpretation, while borehole data and significant cross sections allowed us reconstructing the 3D shape and volume of the clastic body. Finally, morphometric analyses of the Gran Sasso Range southern

  5. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    SciTech Connect

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  6. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer

  7. Integrative geomorphological mapping approach for reconstructing meso-scale alluvial fan palaeoenvironments at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Majid Padashi, Seyed; Baumhauer, Roland

    2013-04-01

    Alluvial fans and aprons are common depositional features in general Iranian geomorphology. The countries major cities as well as settlements and surrounding area have often been developed and been built up on this Quaternary sediment covers. Hence they periodically face the effects of varying fluvial and slope-fluvial activity occurring as part of this geosystem. The Geological Survey of Iran therefore supports considerable efforts in Quaternary studies yielding to a selection of detailed mapped Quaternary landscapes. The studied geomorphologic structures which are settled up around an endorheic basin in Semnan Province represent a typical type of landform configuration in the area. A 12-km-transect was laid across this basin and range formation. It is oriented in north-south direction from the southern saltpan, called "Kavir-e-Haj Aligholi"/"Chah-e-Jam" ("Damghan Kavir"), across a vast sandy braided river plain, which is entering from the north east direction of the city of Shahroud. At its northern rim it covers alluvial sediment bodies, which are mainly constituted by broad alluvial aprons, fed by watersheds in Alborz Mountains and having their genetic origins in Mio-/Pliocene times. During this study a fully analytical mapping system was used for developing a geodatabase capable of integrating geomorphological analyses. Therefore the system must provide proper differentiation of form, material and process elements as well as geometric separation. Hence the German GMK25 system was set up and slightly modified to fit to the specific project demands. Due to its structure it offers most sophisticated standards and scale independent hierarchies, which fit very well to the software-determinated possibilities of advanced geodatabase applications. One of the main aspects of mapping Quaternary sediments and structures is to acquire a proper description and systematic correlation and categorization of the belonging mapping-objects. Therefore the team from GSI and

  8. Mohawk Lake or Mohawk meadow Sedimentary facies and stratigraphy of Quaternary deposits in Mohawk Valley, upper Middle Fork of the Feather River, California

    SciTech Connect

    Yount, J.C. ); Harwood, D.S. ); Bradbury, J.P. )

    1993-04-01

    Mohawk Valley (MV) contain thick, well-exposed sections of Quaternary basin-fill sediments, with abundant interbedded tephra and a diverse assemblage of sedimentary facies. The eastern arm of MV, extending from Clio to Portola, contains as much as 100 m of trough cross-bedded cobble to pebble gravel and planar and trough cross-bedded coarse and medium sand, interpreted as braided stream deposits. Sections exposed in the western arm of MV consist in their lower parts of massive organic-rich silt and clay interbedded with blocky to fissile peat beds up to 1 m thick. Diatom assemblages are dominated by benthic species indicating fresh marsh environments with very shallow water depths of one meter or less. Proglacial lacustrine deposits of limited lateral extent are present within the outwash complexes as evidenced by varved fine sand and silt couplets, poorly sorted quartz-rich silt beds containing dropstones, and contorted beds of diamict grading laterally into slump blocks surrounded by wood-bearing silt and silty sand. The Rockland Ash (400 ka) is a prominent marker in the middle or lower part of many sections throughout MV, indicating that at least half of the basin-fill sequence is Late Quaternary in age. A log buried in diamict slumped into a proglacial lake lying approximately 3 km downstream from the Tioga Stage ice termini in Jamison and Gray Eagle Creeks yields an age of 18,715 [+-]235 C[sup 14] years BP. Previous interpretations of MV deposits originating in a large, deep lake with water depths in excess of 150 m are untenable given the sedimentary facies and diatom floras that dominate the valley. Unexhumed valleys such as Sierra Valley to the east and Long Valley to the northwest which contain large meadows traversed by braided streams are probably good analogs for the conditions that existed during the accumulation of the Mohawk Valley deposits.

  9. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    NASA Astrophysics Data System (ADS)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  10. Pliocene-Quaternary contourite depositional system along the south-western Adriatic margin: changes in sedimentary stacking pattern and associated bottom currents

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Maselli, Vittorio; Trincardi, Fabio

    2016-02-01

    The Pliocene-Quaternary history of the south-western Adriatic margin, represented by a complex contourite depositional system, records the palaeoceanography of the basin and the interactions between oceanographic processes and the uneven slope morphology that resulted from tectonic deformation. Three main stages can be recognized: (1) during the Pliocene, a giant sediment drift formed on the southern flank of the slope-transverse Gondola anticline that focused and accelerated the flow of slope-parallel bottom currents; (2) since the early to middle Pleistocene transition, a reorganization of bottom-current pathways led to a sharp change in the sedimentary architecture of the margin that became dominated by the growth of contourite deposits; (3) as of 350 ka, landward-migrating contourites on the outer shelf (less than 120 m water depth) reflect the presence of bottom currents also in shallow waters. This analysis of the sedimentary stacking pattern of the contourite depositional system that developed along the south-western Adriatic margin since the Pliocene enables disentangling the processes that controlled changes in bottom-current activity, demonstrating that bottom-current deposits constitute the bulk of depositional sequences at the Milankovitch timescale.

  11. Rock varnish microlamination dating of late Quaternary geomorphic features in the drylands of western USA

    NASA Astrophysics Data System (ADS)

    Liu, Tanzhuo; Broecker, Wallace S.

    2008-01-01

    Varnish microlamination (VML) dating is a correlative age determination technique that can be used to date and correlate various geomorphic features in deserts. In this study, we establish a generalized late Quaternary (i.e., 0-300 ka) varnish layering sequence for the drylands of western USA and tentatively correlate it with the SPECMAP oxygen isotope record. We then use this climatically correlated varnish layering sequence as a correlative dating tool to determine surface exposure ages for late Quaternary geomorphic features in the study region. VML dating of alluvial fan deposits in Death Valley of eastern California indicates that, during the mid to late Pleistocene, 5-15 ky long aggradation events occurred during either wet or dry climatic periods and that major climate shifts between glacial and interglacial conditions may be the pacemaker for alteration of major episodes of fan aggradation. During the Holocene interglacial time, however, 0.5-1 ky long brief episodes of fan deposition may be linked to short periods of relatively wet climate. VML dating of alluvial desert pavements in Death Valley and the Mojave Desert reveals that pavements can be developed rapidly (< 10 ky) during the Holocene (and probably late Pleistocene) in the arid lowlands (< 800 m msl) of these regions; but once formed, they may survive for 74-85 ky or even longer without being significantly disturbed by geomorphic processes operative at the pavement surface. Data from this study also support the currently accepted, "being born at the surface" model of desert pavement formation. VML dating of colluvial boulder deposits on the west slope of Yucca Mountain, southern Nevada, yields a minimum age of 46 ka for the emplacement of these deposits on the slope, suggesting that they were probably formed during the early phase of the last glaciation or before. These results, combined with those from our previous studies, demonstrate that VML dating has great potential to yield numerical age

  12. New identification and interpreted correlation, deposition, and significance of widespread Quaternary volcanic ash in the Sacramento-San Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gatti, E.; Wan, E.; Ponti, D. J.; Tinsley, J. C.; Starratt, S. W.; Hillhouse, J.; Pagenkopp, M.; Olson, H. A.; Burtt, D.; Rosa, C. M.; Holzer, T. L.

    2013-12-01

    We recently identified and correlated volcanic ash deposits buried in the Sacramento-San Joaquin Delta, California, with widespread ash in the Pacific Northwest. The Sacramento-San Joaquin Delta (herein, the Delta) contains stratigraphic records of climate change, sea level variability, and tectonic processes. It drains the interior of central and northern California, covers ~1400 km2, and is underlain by Quaternary deposits that are difficult to correlate and date. Tephrochronology provides maximal depositional ages and regional sequence stratigraphic correlations. Using Electron Microprobe analysis, we identified the Loleta (0.390 Ma), the Rockland (~0.575 Ma), and an unnamed volcanic ash (>0.78-<1.45 Ma) in ten samples from eight boreholes in the Delta drilled by the California Department of Water Resources. These tephra correlate chemostratigraphically with widespread volcanic ash found in California, Nevada, and the Pacific Northwest. Major and minor element compositions of glass shards from each tephra sample also indicate that these deposits derive from Cascade Range volcanic sources. The Rockland ash erupted from the southern Cascades near Lassen Peak, California. The Loleta ash is the distal equivalent of the Bend pumice tuff that probably originated from the Three Sisters volcanoes, Oregon. The unnamed, but chemically distinctive, ash bed also resembles Cascade -type tephra. The ash layers are identified in 27 boreholes in the northern to central Delta that we correlate using facies. Grain-size distributions and sedimentary structures are inconsistent within the tephra units and indicate variations in concentrations, deposition rates, and depositional environments. Much of the Delta tephra was transported and deposited in fluvial settings. The tephra deposits occur as three facies: 1) volcanic ash, in thick deposits containing silt- to sand-size glass shards; 2) pumice, in thick deposits of bedded and variably current-structured coarse-sand to pebble

  13. Formation and Evolution Process of Typical Alluvial fan in North China Plain

    NASA Astrophysics Data System (ADS)

    Hongmei, Z.; Hua, Z.

    2012-12-01

    Through Quaternary scientific drilling, well-logging, sampling and testing at Hutuo River Alluvial Fan in North China Plain, combined with existing lithology and lithofacies data of borehole, and comprehensive analysises with approaches of sedimentology, palaeontology, climatostratigraphy, we have identified the formation and evolution process of Hutuo River Alluvial Fan, our results indicate that: 1) There are three phases of large-scale alluvial fan during Quaternary period in the Hutuo River alluvial fan, which were buried in the depth of 40 ~ 70m, 70 ~ 130m, 130 ~ 160m respectively, with corresponding geological age are middle Pleistocene, early and mid-term of early Pleistocene, early-term of early Pleistocene. The leading edge of Hutuo River Alluvial Fan reached to counties of Ning jin, Hengshui, Wuqiang and, Raoyang. 2) The sedimentary facies of Hutuo River Alluvial Fan include alluvial facies and lake - swamp facies. Alluvial facies have been widely distributed from the piedmont area to Xinji county, including two sub-facies of river bed and alluvial flat facies. Lake-swamp facies mainly appeared at Shen county and it's east, and also scattered in the piedmont and the central of the fan. 3) On the basis of the lithology, lithofacies characteristics and stratigraphic cycles, and combined with biostratigraphic characteristics and luminescence age, we can definite the division of Quaternary geological boundary of Hutuo River Alluvial Fan as follows: Q4 / Q3 - -8.85m; Q3 / Q2 -32.68 m; Q2 / Q1 -73.84m; Q1 / N2 - 157.04m.

  14. Dating of the late Quaternary volcanic events using Uranium-series technique on travertine deposit: A case study in Ihlara, Central Anatolia Volcanic Province

    NASA Astrophysics Data System (ADS)

    Karabacak, Volkan; Tonguç Uysal, İ.; Ünal-İmer, Ezgi

    2016-04-01

    Dating of late Quaternary volcanism is crucial to understanding of the recent mechanism of crustal deformation and future volcanic explosivity risk of the region. However, radiometric dating of volcanic products has been a major challenge because of high methodological error rate. In most cases, there are difficulties on discrimination of the volcanic lava flow relations in the field. Furthermore, there would be unrecorded and unpreserved volcanoclastic layers by depositional and erosional processes. We present a new method that allows precise dating of late Quaternary volcanic events (in the time range of 0-500,000 years before present) using the Uranium-series technique on travertine mass, which is thought to be controlled by the young volcanism. Since the high pressure CO2 in the spring waters are mobilized during crustal strain cycles and the carbonates are precipitated in the fissures act as conduit for hot springs, thus, travertine deposits provide important information about crustal deformation. In this study we studied Ihlara fissure ridge travertines in the Central Anatolia Volcanic Province. This region is surrounded by many eruption centers (i.e. Hasandaǧı, Acıgöl and Göllüdaǧı) known as the late Quaternary and their widespread volcanoclastic products. Recent studies have suggested at least 11 events at around Acıgöl Caldera for the last 180 ka and 2 events at Hasandaǧı Stratovolcano for the last 30 ka. Active travertine masses around Ihlara deposited from hotwaters, which rise up through deep-penetrated fissures in volcanoclastic products of surrounding volcanoes. Analyses of the joint systems indicate that these vein structures are controlled by the crustal deformation due to young volcanism in the vicinity. Thus, the geological history of Ihlara travertine mass is regarded as a record of surrounding young volcanism. We dated 9 samples from 5 ridge-type travertine masses around Ihlara region. The age distribution indicates that the crustal

  15. Hydrogeologic framework and ground-water Flow in quaternary deposits at the U.S. Army Atterbury Joint Maneuver Training Center near Edinburgh, Indiana, 2002-2003

    USGS Publications Warehouse

    Robinson, Bret A.; Risch, Martin R.

    2006-01-01

    A hydrogeologic framework was developed for unconsolidated Quaternary deposits at the U.S. Army Atterbury Joint Maneuver Training Center. The framework describes the potential for the occurrence of ground water on the basis of physiography and the distribution of geologic materials within the study area. Four geologic units-the Jessup, Trafalgar, Atherton, and Martinsville Formations-were identified, and their distribution was mapped as four hydrogeologic regions. The Jessup and Trafalgar Formations are fine-grained, poorly sorted tills. At least two facies of the Atherton Formation, the lacustrine and outwash facies, are in the study area. The Martinsville Formation includes materials deposited or reworked since the glacial period. With the exception of the Atherton Formation outwash facies, the Quaternary deposits are primarily fine-grained, silt- and clay-rich sediments that function as confining layers or aquitards. The Atherton Formation out-wash facies includes sand and gravel deposits that constitute the primary aquifers in the study area. The four hydrogeologic regions mapped in this investigation are designated as the Bedrock, Jessup Till, Trafalgar Till, and Atherton Outwash Regions. Each region represents an area with a distinctive physiographic expression and vertical sequence of Quaternary deposits. The Bedrock Region in the western and southwestern part of the study area commonly is underlain by 0 to 15 feet of Martinsville Formation resting directly on bedrock. Potential ground-water yields are limited. The Jessup Till Region in the southeastern part of the study area includes the uplands on either side of the stream valleys. Sediments commonly range from 30 to 90 feet in thickness. This region includes clay-rich till of the Jessup Formation and sand and gravel deposits of the Atherton Formation outwash facies; the Atherton Formation outwash facies tends to be thin, and ground-water yields will be moderate. The Trafalgar Till Region in the north and

  16. VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    SciTech Connect

    C. Harrington; R. Kelly; K.T. Ebert

    2005-08-26

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic

  17. Variation in erosion/deposition rates over the last 50 years on alluvial fan surfaces of L. Pleistocene- Mid Holocene age, estimations using 137Cs soil profile data, Amargosa Valley, Nevada.

    NASA Astrophysics Data System (ADS)

    Harrington, C.; Kelley, R.; Ebert, T.; Delong, S.; Cline, M.; Pelletier, J.; Whitney, J.

    2005-12-01

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from1.0 +/-.01 cm to 2.0+/-.01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic system

  18. Laboratory alluvial fans in one dimension.

    PubMed

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported. PMID:25215729

  19. Geomorphological map and preliminary analysis of Quaternary sediments in the Planica-Tamar valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Novak, Andrej; Šmuc, Andrej

    2016-04-01

    moderately sorted clast or sandy matrix-supported angular gravels occur. In cross-sections of alluvial fans distinct palaeosoil horizons are present indicating longer inactivity of that part of the fan. The geomorphological map forms a base for further research and thorough analysis of Quaternary deposits in order to reconstruct the Holocene dynamic of triggering and sedimentation of different types of slope deposits and relate them to base rock geology, tectonic and local/regional climate events. Key words: geomorphological mapping, Holocene slope deposits, alluvial fans, debris fans, Alpine geomorphology.

  20. Provenance of the Heavy Mineral-enriched Alluvial Deposits at the West Coast of Red Sea. Implications to the Evolution of Arabian-Nubian Crust

    NASA Astrophysics Data System (ADS)

    Mahar, M. A.; Ibrahim, T.; Goodell, P.

    2014-12-01

    Here we present the LA-ICP-MS U-Pb ages and Hf isotopic record of detrital zircons from the active alluvial fans at the west coast of the Red Sea. The Ras Manazal alluvial fan (primarily composed of zircon, magnetite with some rutile, ilmenite and monazite) yielded a relatively restricted age population ranges from 765 to 666 Ma. These ages and present-day drainage pattern is consistent that the sediments are primarily derived from erosion of nearby subduction related granitoids in the immediate west (i.e., not more than 50 km from the Red Sea coast) of the fan. In contrast, approximately 160 km south, at the Egypt-Sudan border, the Wadi Diit fan is relatively more enriched in ilmenite and REE-bearing phases (e.g., thorite, monazite, xenotime, garnet etc.) and yielded five zircon age populations of 1) 824-733 Ma, 2) 730-705 Ma, 3) 646-608 Ma, 4) 516-500 Ma, and 5) 134-114 Ma. The age populations 1-3 if coupled with the present-day drainage pattern can be related to the earlier subduction related and later post collision granitoids in the southern part of the South Eastern Desert and Gebeit terrane of northern Sudan. Sparse Early Cretaceous zircons (134-114 Ma) are derived from the Mesozoic volcanic suits in the source region. However, the age group 516-500 Ma is enigmatic. Wadi Diit zircons are primarily derived from granitoids in the broad S-N directed Hamisana Shear Zone and its subordinate SW to NE directed Onib-Sol-Hamed Suture Zone. These shear zones provided pathways for the present-day drainage system for sediment transportation to the Wadi Diit and adjacent coastal region. We infer that the ca. 500 Ma late-stage magmatic zircons represent a hitherto unknown magmatic event, possibly related to the shear heating associated with the crustal scale shear zones. This implies that the shear zones in the South Eastern Desert and northern Sudan remained thermally active as late as ~500 Ma. The time resolved hafnium composition (ɛHf (t)) of both fans varies from +3

  1. Provenance of the heavy mineral-enriched alluvial deposits at the west coast of the Red Sea. Implications for evolution of Arabian-Nubian crust

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Ibrahim, Tarek M. M.; Goodell, Philip C.

    2014-12-01

    Here we present the LA-ICP-MS U-Pb ages and Hf isotopic record of detrital zircons from the active alluvial fans at the west coast of the Red Sea. The Ras Manazal alluvial fan (primarily composed of zircon, magnetite with some rutile, ilmenite and monazite) yielded a relatively restricted age population ranges from 765 to 666 Ma. These ages and present-day drainage pattern is consistent that the sediments are primarily derived from erosion of nearby subduction related granitoids in the immediate west (i.e., not more than 50 km from the Red Sea coast) of the fan. In contrast, approximately 160 km south, at the Egypt-Sudan border, the Wadi Diit fan is relatively more enriched in ilmenite and REE-bearing phases (e.g., thorite, monazite, xenotime, garnet, etc.) and yielded five zircon age populations of (1) 824-733 Ma, (2) 730-705 Ma, (3) 646-608 Ma, (4) 516-500 Ma, and (5) 134-114 Ma. The age populations 1-3 if coupled with the present-day drainage pattern can be related to the earlier subduction related and later post collision granitoids in the southern part of the South Eastern Desert and Gebeit terrane of northern Sudan. Sparse Early Cretaceous zircons (134-114 Ma) are derived from the Mesozoic volcanic suits in the source region. However, the age group 516-500 Ma is enigmatic. Wadi Diit zircons are primarily derived from granitoids in the broad S-N directed Hamisana Shear Zone and its subordinate SW to NE directed Onib-Sol-Hamed Suture Zone. These shear zones provided pathways for the present-day drainage system for sediment transportation to the Wadi Diit and adjacent coastal region. We infer that the ca. 500 Ma late-stage magmatic zircons represent a hitherto unknown magmatic event, possibly related to the shear heating associated with the crustal scale shear zones. This implies that the shear zones in the South Eastern Desert and northern Sudan remained thermally active as late as ∼500 Ma. The time resolved hafnium composition (εHf (t)) of both fans varies

  2. Alluvial fan response to climatic change: Insights from numerical modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2009-12-01

    Alluvial fans in the western U.S. exhibit a regionally correlative sequence of Plio-Quaternary deposits. Cosmogenic and U-series dating has greatly improved the age control on these deposits and their associated terraces and generally strengthened the case for aggradation during humid-to-arid transitions. Still, the linkages between climate change, upland basin response, and alluvial fan response are not well constrained. Fans may fill and cut as a result of autogenetic processes/internal adjustments, changes in regional temperature (which controls snowmelt-induced flooding), changes in the frequency-size distribution of rainfall events, and/or changes in upslope vegetation. Here I describe the results of a numerical modeling study designed to better constrain the relationships between different end-member forcing mechanisms and the geologic record of alluvial fan deposits and terraces. The model solves the evolution of the fan topography using Exner's equation (conservation of mass) coupled with a nonlinear, threshold-controlled transport relation for sand and gravel. Bank retreat is modeled using an advection equation with a rate proportional to bank shear stress. I begin by considering the building of a fan under conditions of constant water and sediment supply. This simple system exhibits all of the complexity of fans developed under experimental conditions, and it provides insights into the mechanisms that control avulsions and it provides a baseline estimate for the within-fan relief that can result from autogenetic processes. Relationships between the magnitude and period of variations in the sediment-to-water ratio and the geomorphic response of fans are then discussed. I also consider the response of a coupled drainage basin-fan system to changes in climate, including the hydrologic and vegetation response of upland hillslopes. Fans can aggrade or incise in response to the same climatic event depending on the relief of the upstream drainage basin, which

  3. Episodic speleothem deposition in Ireland during the late Quaternary; implications for Greenland ice core chronology and British-Irish Ice Sheet dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Frank; Fankhauser, Adelheid

    2016-04-01

    In shallow caves, episodes of speleothem deposition during the late Quaternary, constrained by U-series dates, provide unequivocal evidence for periods of climate amelioration (presence of liquid water, elevated soil pCO2). U-series data for speleothems from several cave systems in Ireland (Crag, Ballynamintra and Marble Arch) provide clear evidence for episodic speleothem deposition, ranging in age from Marine Isotope Stage (MIS) 7 to the Last Glacial Termination. Speleothem deposition and non-depositional phases within these caves are particularly sensitive to regional-scale climatic conditions, reflecting Ireland's mid-latitudinal, Atlantic margin location. Currently, the earliest dated speleothems from the region are sparsely preserved and thin MIS 7 and MIS 5 flowstones from Ballynamintra and Crag caves respectively. Relatively short-lived depositional phases also occurred at Crag cave during MIS4 and MIS3 and are coeval with the Greenland Interstadials (GI), supporting the recently modified GICC05 Greenland ice core chronology (Buizert et al., 2015), and new providing evidence for synchronous or nearly-synchronous climate amelioration in the N. hemisphere mid- and high-latitudes during the GI events. On the other hand, there is strong evidence that conditions at Crag cave site during stadials and the Heinrich stadials were not conducive to speleothem deposition. Episodes of non-deposition occur synchronously in several speleothems from Crag cave, providing independent constraints on the timing of Heinrich stadials HS-6 to HS-2. The new data also provide independent new insights into the behaviour of the British Irish Ice Sheet (BIIS) during MIS2. In this regard, the presence of a short depositional pulse at 23.35 ± 0.1 ka at Crag cave coincides precisely with the weak and short-lived GI2.2 event within MIS 2, suggesting a dynamic BIIS margin. Simple conductive thermal models for the propagation of surface air temperatures through the limestone karst

  4. Giant landslide deposits in northwest Argentina

    SciTech Connect

    Fauque, L.; Strecker, M.R.; Bloom, A.L.

    1985-01-01

    Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 m higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.

  5. Pollen preservation and Quaternary environmental history in the southeastern United States

    SciTech Connect

    Delcourt, P.A.; Delcourt, H.R.

    1980-01-01

    Reconstructions of Quaternary environmental history based upon modern pollen/vegetation/climate calibrations are more tenable if the factors responsible for variation in pollen assemblages are evaluated. Examination of the state of preservation of Quaternary palynomorphs provides quantitative data concerning the degree of information loss due to alteration of pollen assemblages by syndepositional and post-depositional deterioration. The percentage, concentration, and influx values for total indeterminable pollen are useful criteria in providing an objective and quantitative basis for evaluating the comparability of pollen spectra within and between sites. Supporting data concerning sediment particle-size distribution, organic matter content, and concentration, influx, and taxonomic composition of both determinable pollen and plant macrofossils aid in reconstructing past depositional environments. The potential is high for deterioration of pollen in sediments from the southeastern United States, although considerable variation is found in both kind and degree of deterioration between lacustrine and alluvial sites of different ages and in different latitudes. Modern analogs are a basis for late Quaternary environmental reconstructions when pollen deterioration has not significantly biased the information content of fossil pollen assemblages.

  6. Neogene to Quaternary ash deposits in the Coastal Cordillera in northern Chile: Distal ashes from supereruptions in the Central Andes

    NASA Astrophysics Data System (ADS)

    Breitkreuz, Christoph; de Silva, Shanaka L.; Wilke, Hans G.; Pfänder, Jörg A.; Renno, Axel D.

    2014-01-01

    Silicic volcanic ash deposits investigated at 14 localities between 22° and 25°S in the Chilean Coastal Cordillera are found to be the distal ash fall from supereruptions in the Central Andean cordillera several hundreds of kilometers to the east. Depositional textures, modal composition and granulometry of the ashes and tuffs (the latter lithified by halite and gypsum under ultra-arid conditions) allow for a distinction between primary fallout/aeolian deposits (mean 4-5 Φ, sorting 1.5-2 Φ) and secondary deposits that formed by down wash from hill slopes during local rain fall. Primary volcanic components comprise two types of glass shards (with small stretched vesicles and coarse-walled with rounded to elliptic vesicles), and biotite.

  7. Neogene-Quaternary depositional history of the eastern US continental rise seaward of the Washington-Norfolk Canyon systems

    SciTech Connect

    Locker, S.D.; Laine, E.P.

    1985-01-01

    High quality, digitally recorded and processed, water gun and air gun seismic reflection data collected seaward of the present position of the Washington-Norfolk canyon systems reveals new information on the development of the continental rise. This includes insight into the depositional history of the Washington-Norfolk fan system and the relative importance of gravity flow depositional processes versus abyssal bottom current reworking during rise development. Three major post-Horizon A/sup u/ accretionary sequences describe major changes in depositional processes and history within the region. Accretionary sequence I (early to middle Miocene) is characterized by the initial development of a depositional bulge seaward of the Washington-Norfolk canyon systems which is modified by bottom currents on the lower-most rise to form a proto-Hatteras Outer Ridge. The predominance of chaotic and hummocky seismic facies suggests widespread reworking by abyssal bottom currents. Accretionary sequence II (middle Miocene to late Pliocene) in this area is characterized by sediment waves (lower rise) and smooth, southward dipping, parallel reflectors associated with a thick central rise drift(.) deposit off the Hudson system to the North. Washington-Norfolk fan development appears less important during this time. Bottom currents are active, but more depositional in nature than during accretionary sequence I. Accretionary sequence III (late Pliocene to Present) is marked by gravity flow processes and distinct development of the Washington-Norfolk fan on the central rise.

  8. Do I have an alluvial valley floor

    SciTech Connect

    Beach, G.G.

    1980-12-01

    The Surface Mining Control and Reclamation Act of 1977 establishes specific restrictions for coal mining on or adjacent to alluvial valley floors. Alluvial valley floors are lands in the Western United States where water availability for flood irrigation or subirrigation provides enhanced agricultural productivity on stream-laid deposits located in valley bottoms. Alluvial valley floors may consist of developed land or undeveloped rangeland. Developed land, if of sufficient size to be important to a farming operation, cannot be mined whereas undeveloped rangeland can be mined provided certain performance standards are met. Developed land is important to farming when the percentage loss of production by removal of the alluvial valley floor from a farm(s) total production exceeds the equation P = 3 + 0.0014X, where P is the maximum percentage loss of productivity considered to be a negligible impact to a Wyoming farming operation and X is the number of animal units of total farm production above 100. A threshold level of 10 percent is placed on P, above which such a loss is considered to be a significant loss to any size farming operation.

  9. Morphology, mineralogy and magnetic susceptibility of epikarst-Terra Rossa developed in late Quaternary aeolianite deposits of southeastern Saurashtra, India

    NASA Astrophysics Data System (ADS)

    Khadkikar, Aniruddha S.; Basavaiah, Nathani

    2004-03-01

    The nature and development of epikarst and soil development in aeolianites under a monsoonal climatic regime has not yet been described. Late Quaternary aeolianites of the southeastern coast of Saurashtra in western India show a wide array of epikarst and red-soil formation, and serve to typify the character of aeolianite weathering under a monsoonal climate. Three varieties of epikarst are identified that represent down-profile increase in groundwater flow. Five types of Terra Rossae represent a transition from the karstified limestone to soil development. Terra Rossae differ in the content of residual aeolianite and show both simple and complex profiles. The latter at places shows ped development. The results show that an ontogenetic (growth) sequence exists from incipient epikarst to complex palaeosols. This ontogenetic sequence represents an incremental increase in the groundwater budget of the region in response to changing intensification of the Indian monsoon rainfall. Magnetic properties of the Terra Rossae formed under a monsoonal climate are described for the first time. The magnetic susceptibility together with its frequency-dependent and anhysteretic remanent magnetization (ARM) represents both the concentration of single domain and ultrafine superparamagnetic (SP) magnetite. The formation of single domain and superparamagnetic magnetite and hematite are linked genetically to weathering of the aeolianite that leads to the formation of Terra Rossa.

  10. Soil genesis on the island of Bermuda in the Quaternary: the importance of African dust transport and deposition

    USGS Publications Warehouse

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-01-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (N/YbN, GdN/YbN that can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past –500 ka.

  11. Late Quaternary landscape evolution in the Great Karoo, South Africa: Processes and drivers.

    NASA Astrophysics Data System (ADS)

    Oldknow, Chris; Hooke, Janet; Lang, Andreas

    2016-04-01

    The Great Karoo spans the north-central part of South Africa at a major climatic boundary. The characteristics, sequences, spatial patterns and drivers of river response to Late Quaternary climate changes in this region remain unclear due to the fragmentary alluvial/colluvial stratigraphic record and the lack of dated palaeoclimatic archives. Dendritic gully networks incised into deep deposits (up to 6 m) of colluvium and alluvium in the upper Sundays River catchment expose a legacy of "cut and fill" features. In 1st order tributaries, these are predominantly discontinuous palaeochannels and flood-outs with localised palaeosols, whereas in 2nd & 3rd order tributaries there are: 1) incised palaeo-geomorphic surfaces, 2) semi-continuous inset terrace sequences, 3) buried palaeo-gully topography. Using a combination of field mapping, logging of sediment outcrops, soil micromorphological and grain size analysis, mineral magnetic measurements and radiometric dating (OSL & 14C), we derive a stratigraphic evolution model which demonstrates a) the number of phases of incision, aggradation and pedogenesis, b) the spatial and temporal extent of each phase and c) the drivers of alluviation and associated feedbacks. Our reconstruction of regional valley alluviation indicates four distinct terrace units of contrasting depositional age. The base of the succession reflects slow aggradation under periglacial conditions associated with the Last Glacial Maximum. Subsequent channel entrenchment, causing terrace abandonment (T1) occurred in the deglacial period when vegetation and rainfall were in anti-phase. Re-instatement of connectivity with deep upland colluvial stores resulted in the injection of a pulse of sediment to valley floors, triggering compartmentalised backfilling (aggradation of T2) which propagated upstream as far as the second order drainage lines. This backfilling restructured the local hydrology, which, in concert with enhanced summer-rainfall, contributed to a

  12. Sedimentology and paleogeographic evolution of the intermontane Kathmandu basin, Nepal, during the Pliocene and Quaternary. Implications for formation of deposits of economic interest

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Kharel, B. D.; Singh, V. K.; Piya, B.; Busch, K.; Geyh, M.

    2001-10-01

    The Kathmandu Valley is an intermontane basin in the center of a large syncline of the Lesser Himalayas. The sedimentary basin fill comprises three units of Plio-Pleistocene to Holocene age. The study aimed at modeling the paleogeographic evolution of the basin, with emphasis on sedimentary series of fossil fuels and non-metallic deposits. The lithological setting of the basin and the tectonic framework were instrumental to basin subsidence. Alluvial through lacustrine sedimentation during incipient stages is a direct response to uplift in the hinge zone of the synclinorium. Axial parallel sediment dispersal gave way to fluviodeltaic sedimentation mainly from the limbs of the synclinorium. Ongoing compression and renewed uplift in the core zone of the synclinorium drove the uplift of a NW-SE running divide and a subdivision of the mono-lake into two basins. This ridge blocked the flow of transverse rivers and the northern subbasin became gradually choked. Ongoing uplift of the entire basin during the recent geological history caused a reorganization of the drainage pattern and triggered linear erosion in the southern mountain range. Step-by-step the remaining lacustrine basins disappeared. Fan aggradation coincide with cold dry or warm seasons, fluvial dissection and discharge increased during warmer and more humid periods. High lake levels exist during phases of increased humidity. The results of this basin analysis may be used predictively in the exploration for coal, natural gas, diatomaceous earths and quarrying for sand or clay. The gas potential is at its maximum in the lacustrine facies, sand and clay for construction purposes may be quarried economically from various fluvial and deltaic deposits. Diatomaceous earths predominantly accumulated in marginal parts of the lake and some landslide-dammed ponds. Lignitic brown coal can be mined together with combustible shales from poorly drained swamps.

  13. Late Quaternary extraglacial cold-climate deposits in low and mid-altitude Tasmania and their climatic implications

    NASA Astrophysics Data System (ADS)

    McIntosh, P. D.; Eberhard, R.; Slee, A.; Moss, P.; Price, D. M.; Donaldson, P.; Doyle, R.; Martins, J.

    2012-12-01

    Many Tasmanian deposits previously described as 'periglacial' have been described in more detail, re-interpreted and dated. We suggest that 'periglacial' has little meaning when applied locally and the term 'relict cold-climate deposits' is more appropriate. In this paper we examine the origin and age of relict cold-climate slope deposits, fan alluvium and aeolian sediments in Tasmania, and infer the conditions under which they accumulated. Fan alluvium dating from the penultimate Glacial (OIS 6) and capped by a prominent palaeosol deduced to date to the Last Interglacial (OIS 5e) is present at Woodstock, south of Hobart. Many fan deposits formed before 40 ka or in a period c. 30-23 ka; only a few deposits date to the Last Glacial Maximum in Tasmania, which is defined as spanning the period 23.5-17.5 ka. Slope deposits indicate widespread instability down to present-day sea level throughout the Last Glacial, probably as a result of freeze-thaw in a sparsely vegetated landscape. Layered fine gravel and coarse sand colluvial deposits resembling grèzes litées, produced both by dry deposition and by the action of water, are locally common where jointed siltstone bedrock outcrops. These deposits occur from altitudes of 500 m to near sea level and also in caves and must have formed under sparse vegetation cover, probably by freeze-thaw in extremely dry conditions. They have been radiocarbon dated from 35 to 17.5 cal. ka. Relict dunes and sandsheets are widespread at the margin of the Bassian Plain that once provided a land bridge between Tasmania and the mainland. They are also found in western Tasmania and in areas of inland southern Tasmania that now support wet eucalypt forest and rainforest and receive mean annual rainfall > 1500 mm. In the south they have been dated > 87.5-19 ka and attest to a long period of semi-arid climate in an area extending well to the west and south of the present semiarid zone. We deduce that during most of the Last Glacial anticyclones

  14. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary faults, eastern Yucca Mountain

    SciTech Connect

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W.; Widmann, B.; Wesling, J.R.

    1994-12-31

    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain.

  15. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary fault, Eastern Yucca Mountain

    SciTech Connect

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W.; Widmann, B.; Wesling, J.R.

    1994-12-31

    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain.

  16. Soil genesis on the island of Bermuda in the Quaternary: The importance of African dust transport and deposition

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Prospero, Joseph M.; Skipp, Gary; Herwitz, Stanley R.

    2012-09-01

    The origin of terra rossa, red or reddish-brown, clay-rich soils overlying high-purity carbonate substrates, has intrigued geologists and pedologists for decades. Terra rossa soils can form from accumulation of insoluble residues during dissolution of the host limestones, addition of volcanic ash, or addition of externally derived, long-range-transported (LRT) aeolian particles. We studied soils and paleosols on high-purity, carbonate aeolianites of Quaternary age on Bermuda, where terra rossa origins have been debated for more than a century. Potential soil parent materials on this island include sand-sized fragments of local volcanic bedrock, the LRT, fine-grained (<20μm) component of distal loess from the lower Mississippi River Valley, and LRT dust from Africa. These parent materials can be characterized geochemically using trace elements that are immobile in the soil-forming environment. Results indicate that local volcanic bedrock on Bermuda has Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbNthat can be distinguished from African dust and lower Mississippi River valley loess. Bermuda soils have Sc-Th-La, Cr-Ta-Nd, and Eu/Eu*, LaN/YbN, GdN/YbN that indicate derivation from a combination of LRT dust from Africa and local volcanic bedrock. Our results indicate that soils on islands in a very broad latitudinal belt of the western Atlantic margin have been influenced by African LRT dust inputs over much of the past ˜500 ka.

  17. Chronology and tectono-sedimentary evolution of the Upper Pliocene to Quaternary deposits of the lower Guadalquivir foreland basin, SW Spain

    NASA Astrophysics Data System (ADS)

    Salvany, Josep Maria; Larrasoaña, Juan Cruz; Mediavilla, Carlos; Rebollo, Ana

    2011-11-01

    This paper presents new litho, chrono and magnetostratigraphic data from cores of 23 exploratory boreholes drilled in the Abalario and marshlands areas of the lower Guadalquivir basin (the western sector of the Guadalquivir foreland basin, SW of Spain). The lithologic logs of these boreholes identify four main sedimentary formations, namely: Almonte Sand and Gravel, Lebrija Clay and Gravel, Marismas Clay and Abalario Sand, respectively interpreted as proximal-alluvial, distal-alluvial, alluvial-estuarine and aeolian. From radiocarbon and magnetostratigraphic data, these formations were dated as Upper Pliocene to Holocene. In the marshlands area, three main sedimentary sequences are present: an Upper Pliocene to Lower Pleistocene sequence of the Almonte and Lebrija (lower unit) formations, a Pleistocene sequence of the Lebrija (upper unit) and the lower Marismas formations, and a latest Pleistocene to present-day sequence of the upper Marismas Formation. The three sequences began as a rapid alluvial progradation on a previously eroded surface, and a subsequent alluvial retrogradation. In the third sequence, estuarine and marsh sediments accumulated on top of the alluvial sediments. The aeolian sands of the Abalario topographic high developed coeval to alluvial and estuarine sedimentation after the first alluvial progradation, and continuously until the present. Correlation with the surrounding areas show that the sequences are the result of the forebulge uplift of the northern margin of the basin (Sierra Morena) and the adjacent Neogene oldest sediments of their northern fringe, both form the main source area of the study formations. This uplift occurred simultaneous to the flexural subsidence (SSE tilting) of the southern part of the basin, where sedimentary aggradation dominated.

  18. A late quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Been, J.; Bradbury, J.P.; Dean, W.E.

    2003-01-01

    Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  19. A debris flow deposit in alluvial, coal-bearing facies, Bighorn Basin, Wyoming, USA: Evidence for catastrophic termination of a mire

    USGS Publications Warehouse

    Roberts, S.B.; Stanton, R.W.; Flores, R.M.

    1994-01-01

    Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.

  20. Geochronology, geochemistry, and tectonic characterization of Quaternary large-volume travertine deposits in the southwestern United States and their implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Priewisch, Alexandra

    Travertines are freshwater carbonates that precipitate from carbonic groundwater due to the degassing of CO2. Travertine deposits are often situated along faults that serve as conduits for CO2-charged groundwater and their geochemistry often records mixing of deeply-derived fluids and volatiles with shallow meteoric water. Travertines are surface expressions of dynamic mantle processes related to the tectonic setting. This dissertation includes four chapters that focus on different aspects of travertine formation and their scientific value. They are excellent, although underestimated, diagnostic tools for climatology, hydrology, tectonics, geochemistry, geomicrobiology, and they can inform carbon sequestration models. Quaternary large-volume travertine deposits in New Mexico and Arizona occur in an extensional tectonic stress regime on the southeastern Colorado Plateau and along the Rio Grande rift. They accumulated above fault systems during episodes of high hydraulic head in confined aquifers, increased regional volcanic activity, and high input of mantle-derived volatiles such as CO 2 and He. Stable isotope and trace element geochemistry of travertines is controlled by groundwater geochemistry as well as the degassing of CO 2. The geochemical composition allows for distinguishing different travertine facies and evaluating past groundwater flow. The travertine deposits in New Mexico are interpreted to be extinct CO2 fields due to the large volumes that accumulated and in analogy to the travertine deposits in Arizona that are associated with an active CO2-gas field. Travertines are natural analogues for CO2 leakage along fault systems that bypassed regional cap rocks and they provide important insight into the migration of CO2 from a reservoir to the surface. The volume of travertine can be used to infer the integrated CO2 leakage along a fault system over geologic time. This leakage is estimated as: (1) CO2 that becomes fixed in CaCO3/travertine (tons of carbon

  1. The Quaternary Deformational History of the East Potrillo Fault, Dona Ana County, New Mexico

    NASA Astrophysics Data System (ADS)

    Cervera, S. N.; Hurtado, J. M.; Clague, J. W.; Andronicos, C. L.

    2006-12-01

    The East Potrillo Mountains are located immediately north of the U.S.-Mexico border in southwestern Dona Ana County, New Mexico. Along the east flank of the East Potrillo Mountains are north-striking piedmont scarps that indicate continuous, late Quaternary movement on the high-angle normal faults of the East Potrillo Fault system. This East Potrillo fault may pose a major seismic hazard to the 2.2 million people that live in the El Paso, Texas border region. We investigate the Quaternary deformational history in this area using GPS, field and remote sensing observations, traditional survey techniques, and new advances in desert varnish geochronology. We focus on estimating the average slip rate on the East Potrillo fault and the earthquake recurrence interval. The amount of Quaternary deformation is constrained by measuring displacements of geomorphic surfaces, including alluvial fans and fluvial deposits. A total of thirteen profiles perpendicular to the scarp have been surveyed to reproduce the fault scarp geometry. From these profiles, we estimate fault scarp age by using three types of slope degradation modeling: calibrated scarp-height-slope-angle relationships, a diffusion model, and a general morphologic dating method for transport-limited hillslopes. A total of 18 varnished rock samples were also collected from displaced alluvial fan surfaces and from cut terraces associated with slip events on the East Potrillo fault. These samples were analyzed using x-ray fluorescence (XRF) to obtain concentrations of Mn and Fe present in the varnish. The accumulation of Fe and Mn reflects the amount of time that varnish has accumulated on a clast, and, thus, provides a constraint on the age of the surface from which the clast was obtained. The morphologic dating results will be compared with the desert varnish results to better understand landform evolution, fault mechanics, and determine the slip history in the study area. These measurements are vital for constraining

  2. Tectonic control on the Late Quaternary hydrography of the Upper Tiber Basin (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Benvenuti, Marco; Bonini, Marco; Moroni, Adriana

    2016-09-01

    We examine the intramontane Upper Tiber Basin in the Northern Apennines (central Italy), where sub-orthogonal fault systems forced river deviation and the abandonment of alluvial fans since the late Middle Pleistocene. Archaeological material, spanning the Middle Palaeolithic-Iron Age, was collected mostly from the surface of the Late Quaternary alluvial landforms and related deposits (MUP and HOL units). This information contributed to the partial dating of seven major stages of drainage development. Normal faults parallel and transverse to the basin trend were active at different times and conditioned the valley pattern of the Middle (MUP1-2)-Late (MUP3) Pleistocene Tiber, Singerna, Sovara and Tignana rivers, which still flow today into the basin. The MUP1 and the MUP3 fans were beheaded by the displacement of their feeder valleys along the basin-transverse Carmine and Montedoglio faults. In some cases, the former feeder rivers underwent stream piracy but their courses mostly deviated in response of the topographic gradient created by faulting, as well as through the incision of new valleys that exploited the lithological contrast along the fault lines. The MUP3 Tignana fan was abandoned mostly due to the activity of the basin-parallel, dip-slip Sansepolcro fault. Subsidence driven by the basin-parallel Anghiari and Sansepolcro fault systems also provided the accommodation space for the MUP3 and HOl1-2 Afra fans between Late Pleistocene and early-mid Holocene. This study exemplifies the interplay between longitudinal and transverse fault systems, and the Late Quaternary hydrographic evolution of an extensional basin settled in the axial zone of an active fold-and-thrust belt. Although the faulting has interacted with the forcing exerted by the Late Quaternary climate fluctuations on the basin drainage systems, the tectonic rates are sufficiently high to represent the prime controller on base-level change and drainage routing patterns.

  3. Climatic and Tectonic Controls on Alluvial Fan Evolution: The Lost River Range, Idaho

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Pierce, J. L.; Sharp, W. D.; Pierce, K. L.

    2006-12-01

    colluvial fault wedge date at 68+/-2 ka, suggesting that either faulting occurred soon after Qfo2 stabilized or that soil carbonate coats were recycled into the colluvial wedge from the faulted surface. Further studies in the Lost River Range will assess the timing of fan deposition, surface stabilization and fault activity since the late Pleistocene using coupled application of Optically Stimulated Thermoluminescence (OSL) dating of loess and fine-sands, and 230Th/U-dating of pedogenic carbonate formed within well- exposed fan stratigraphy. Defining intervals of erosion, deposition and stability within the context of regional records of Quaternary climate change will yield new insights into the interplay between faulting, climate change and alluvial fan deposition and incision in semi-arid environments. [1] Pierce, K.L., Scott, W.E., 1982. Idaho Mines &Geol. Bull. 26. [2] Patterson, S.J., 2006. M.S. Thesis, Montana State University

  4. Alluvial Fan Records of Climatically Driven Changes in Hillslope Eerosion Rates: Successes, Limitations, and Future Directions

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.; Miller, D. M.; Reheis, M. C.

    2012-12-01

    The erosional response of semi-arid landscapes to changes in the frequency and intensity of precipitation is poorly understood. Some have argued that hillslope erosion rates are greater when precipitation is dominated by short-duration, high-intensity events that generate intense overland flow on poorly vegetated hillslopes, whereas others have suggested that hillslope erosion and sediment transport rates are greater when precipitation is dominated by long-duration, low-intensity events due to higher rates of sediment production on hillslopes and sustained stream discharge. Both of these models suggest that hillslope erosion rates will vary as a function of the relative balance of low-intensity, long-duration (e.g., winter frontal storms) to high-intensity, short-duration (e.g., monsoons and convective storms) precipitation. Variations in hillslope erosion rates should affect sediment supply to alluvial fan heads, and so the timing and magnitude of fan head depositional events may provide a record of temporal changes in the style of precipitation. Preliminary depositional ages, interpreted from new cosmogenic 10Be measurements, are combined with existing soils, sedimentologic, and existing 10Be data from an alluvial fan head in the semi-arid Providence Mountains, eastern Mojave Desert, CA, to test this hypothesis. The Providence Mountains expose Proterozoic gneisses and Mesozoic granites and show no evidence of Quaternary faulting, indicating that Pleistocene fan complexes exposed at the mountain front are primarily climatically driven. Erosion rates determined from 10Be concentrations in active wash sediments vary from 33.27 ± 1.20 to 62.40 ± 1.40 m/My and show no apparent relation to grain size. Additionally, soil stratigraphic observations from a 5.5 m thick alluvial package exposed in the fan head include a ~70 cm thick stage IV calcic horizon that is cross cut by a ~3 m deep paleochannel, which contains at least four separate soils. The paleochannel is

  5. Sedimentology and depositional history of Neogene gravel deposits in lower Tornillo Creek area of Big Bend National Park, Texas

    SciTech Connect

    Thurwachter, J.E.

    1984-04-01

    Neogene gravel deposits in the lower Tornillo Creek area of Big Bend National Park, Texas, record the filling of a small structural basin formed during Basin and Range tectonism. Four lithofacies are recognized in the Late Miocene La Noria member (informal name): (1) a medial braided-stream lithofacies consisting of upward-fining packages of cross-bedded gravel, sandstone, and siltstone; (2) a distal braided-stream lithofacies consisting of poorly-defined upward-fining packages of fine gravel, sandstone, and mudstone; (3) a calcrete-rich gravel and sandstone lithofacies representing strike-valley and alluvial-fan deposition, and (4) and ephemeral lake-plain lithofacies consisting of massive and burrowed mudstones with sheet-like sandstone interbeds. Upward-fining packages in the braided-stream lithofacies represent the lateral migration and avulsion of the stream tract across the basin; together with the strike-valley and alluvial-fan deposits, these record the initial stages of basin filling. Provenance studies show that much of this sediment was derived from northern Mexico. Overlying ephemeral-lake deposits record the structural tilting and closing of the downstream (north) end of the basin. Gravels and minor sandstones of the Pleistocene Estufa member (informal name) represent basinward progradation of alluvial fans. Deposition of the Estufa member resulted from: (1) Quaternary tectonic activity in the Chisos Mountains area; (2) lowering of local base level by post-Miocene development of the Rio Grande drainage through the area; and (3) Pleistocene pluvial-period climatic changes. Subsequent Quaternary faulting has caused minor deformation of the deposits.

  6. Lidar-Based Mapping of Late Quaternary Faulting Along the Grizzly Valley Fault, Walker Lane Seismic Belt, California

    NASA Astrophysics Data System (ADS)

    Hitchcock, C. S.; Hoirup, D. F.; Barry, G.; Pearce, J.; Glick, F.

    2012-12-01

    The Grizzly Valley fault (GVF) is located within the northern Walker Lane, a zone of right-lateral shear between the Sierra Nevada and the Basin and Range in Plumas County. The GVF extends southeasterly from near Mt. Ingalls along the eastern side of Lake Davis. It may partially connect with the Hot Creek fault within Sierra Valley and extend south to Loyalton with an overall approximate length of 50 km. Comparison of high-resolution topography developed from LiDAR data with published bedrock geologic mapping documents the presence of geomorphic features that provide information on fault activity of the GVF. Field mapping verified tectonically deformed and offset late Quaternary surfaces identified on bare-earth LiDAR imagery across the GVF within glacial deposits on the eastern margin of Lake Davis, and alluvial deposits in Sierra Valley. Along the GVF, conspicuous geomorphic and hydrologic features include scarps in alluvial surfaces, elongated depressions aligned with adjacent linear escarpments, truncated bedrock spurs, closed depressions, linear swales, right-lateral deflections of creeks and river courses, and shutter ridges, as well as springs and linear seeps consistent with right-lateral strike-slip faulting. The discontinuous nature of observed fault traces combined with the apparent down-to-the-west offset of alluvial surfaces at the southern and northern ends of the eastern margin of Lake Davis are consistent with a broad bend or step over in the fault. Scarp profiles of apparently faulted surfaces extracted from LiDAR data document vertical offsets of up to 14 m. Our study suggest that the GVF is an oblique, right-lateral fault that has been active in the late Quaternary. This study complements on-going investigations by DWR to assess the impact of seismic hazards on State Water Project infrastructure.

  7. Large floods, alluvial overprint, and bedrock erosion

    NASA Astrophysics Data System (ADS)

    Turowski, J. M.; Badoux, A.; Leuzinger, J.; Hegglin, R.

    2012-04-01

    Depending on their behaviour during extreme floods, streams can be divided into two distinct classes. 'Flood-cleaning' streams erode during high flows and deposit during small and medium flows. 'Flood-depositing' streams deposit during high flows and erode during small and medium flows. Rivers with a wide range of drainage areas and other characteristics can be classified as either 'flood-cleaning' or 'flood-depositing'. In bedrock channels, this behaviour can lead to a feedback effect, the 'overprint effect', between sediment transport processes and bedrock erosion, which can modulate long-term bedrock erosion rates. The 'overprint effect' arises when alluvium covers the bedrock and typical alluvial channel forms (e.g., meandering or braiding patterns, armour layers or bedforms) develop, which influence sediment transport rates. This effect may accelerate or decelerate sediment export from a reach, causing increased or decreased long-term bedrock erosion rates.

  8. Alluvial channel hydraulics

    NASA Astrophysics Data System (ADS)

    Ackers, Peter

    1988-07-01

    The development and utilisation of water resources for irrigation, hydropower and public supply can be severely affected by sediment. Where there is a mature and well vegetated landscape, sediment problems may be relatively minor; but where slopes are steep and vegetation sparse, the yield of sediment from the catchment gives high concentrations in the rivers. In utilising these resources, for whatever purpose, an understanding of the hydraulics of alluvial channels is vital. The regime of any conveyance channel in alluvium depends on the interrelationships of sediment transport, channel resistance and bank stability. The regime concept was originally based on empirical relations obtained from observations from canal systems in the Indian subcontinent, and for many years was surrounded by a certain degree of mystique and much scepticism from academics. In more recent years the unabashed empiricism of the original method has been replaced by process-based methods, which have also served as broad confirmation of the classic regime formulae, including their extension to natural channels and meandering channels. The empirical approach to the hydraulics of alluvial channels has thus been updated by physically based formulae for sediment transport and resistance, though there remains some uncertainty about the third function to complete the definition of slope and geometry. Latest thoughts in this respect are that the channel seeks a natural optimum state. Physical modelling using scaled down representations of rivers and estuaries has been used for almost a century, but it requires the correct simulation of the relevant processes. The coming of a better understanding of the physics of sediment transport and the complexity of alluvial channel roughness leads to the conclusion that only in very restricted circumstances can scale models simulate closely the full-size condition. However, the quantification of these processes has been instrumental in the development of

  9. Paleoseismology at high latitudes: Seismic disturbance of upper Quaternary deposits along the Castle Mountain fault near Houston, Alaska

    USGS Publications Warehouse

    Haeussler, P.J.; Best, T.C.; Waythomas, C.F.

    2002-01-01

    Most paleoseismic studies are at low to moderate latitudes. Here we present results from a high-latitude (61??30??? N) trenching study of the Castle Mountain fault in south-central Alaska. This fault is the only one known in the greater Anchorage, Alaska, area with historical seismicity and a Holocene fault scarp. It strikes eastnortheast and cuts glacial and postglacial sediments in an area of boreal spruce-birch forest, shrub tundra, and sphagnum bog. The fault has a prominent vegetation lineament on the upthrown, north side of the fault. Nine trenches were logged across the fault in glacial and postglacial deposits, seven along the main trace, and two along a splay. In addition to thrust and strike-slip faulting, important controls on observed relationships in the trenches are the season in which faulting occurred, the physical properties of the sediments, liquefaction, a shallow water table, soil-forming processes, the strength of the modern root mat, and freeze-thaw processes. Some of these processes and physical properties are unique to northern-latitude areas and result in seismic disturbance effects not observed at lower latitudes. The two trenches across the Castle Mountain fault splay exposed a thrust fault and few liquefaction features. Radiocarbon ages of soil organic matter and charcoal within and overlying the fault indicate movement on the fault at ca. 2735 cal. (calendar) yr B.P. and no subsequent movement. In the remaining seven trenches, surface faulting was accompanied by extensive liquefaction and a zone of disruption 3 m or more wide. The presence of numerous liquefaction features at depths of <0.5-1.0 m indicates faulting when the ground was not frozen-i.e., from about April to October. Sandy-matrix till, sand, silt, gravel, and pebbly peat were injected up to the base of the modern soil, but did not penetrate the interlocking spruce-birch root mat. The strength of the root mat prohibited development of a nonvegetated scarp face and colluvial

  10. Spatial hydrochemical and isotopic variations within the alluvial aquifer of the Allier River (Massif Central, France)

    NASA Astrophysics Data System (ADS)

    Mohammed, N.; Celle-Jeanton, H.; Huneau, F.; Le Coustumer, P.; Lavastre, V.; Bertrand, G.

    2012-04-01

    Hydrodynamic, hydrochemical (major ions, traces, pharmaceuticals and pesticides), isotopic (oxygen, hydrogen and carbon stable isotopes) and biological investigations were conducted every two weeks, since December 2010, to assess groundwater quality in the unconfined shallow alluvial aquifer of the Allier River (main tributary of the Loire River). The aquifer is mainly composed of unconsolidated alluvial deposits produced by the erosion of local crystalline rocks, the aquifer overlies impervious Oligocene marls; the surrounding hills are constituted with Quaternary deposits (early and old alluvial deposits on both sides of river), Oligocene limestones, marls and sandstones and Miocene volcano-sedimentary formations (Peperites). The study area is located in the east of the city of Clermont-Ferrand (France) where groundwater resources are used mainly for water supplies and then play an important socio-economic role as it is the major source of drinking water for about 100 000 inhabitants. This study aims at determining the factors and processes controlling shallow groundwater quality and groundwater origin by using the hydrochemical and hydrodynamical data collected on 87 water samples (71 boreholes, 13 piezometers and 4 surface waters) during a first field campaign carried out from the 9th to the 14th of December 2010. The Cournon Meteoric Water Line was determined according to 30 weekly rainfall samples. The results of this study show that spatial variations of physico-chemical parameters do exist in the study area, and the groundwater chemical composition is characterized by different water types with the predominance of the Ca-HCO3 type. Ionic concentration increases in boreholes far from the Allier River due to the increase of residence time or by a mixing with groundwater coming from the hills. The ð2H and ð18O signature of groundwater and surface water indicate that most of the boreholes close to the river are recharged by the Allier River, while boreholes

  11. Controls on alluvial fan long-profiles

    USGS Publications Warehouse

    Stock, J.D.; Schmidt, K.M.; Miller, D.M.

    2008-01-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans where water transport of gravel predominates, channel slopes tend to decrease downfan from ???0.10-0.04 to ???0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects grain-size fining downfan such that higher threshold slopes are required just to entrain coarser particles in the waters of the upper fan, whereas lower slopes are required to entrain finer grains downfan (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses for alluvial fan long-profiles using detailed hydraulic and particle-size data in sediment transport models. On four alluvial fans in the western U.S., we find that channel hydraulic radiiare largely 0.5-0.9 m at fan heads, decreasing to 0.1-0.2 m at distal margins. We find that median gravel diameter does not change systematically along the upper 60%-80% of active fan channels as slope declines, so downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, channel-bed sand cover increases systematically downfan from areal fractions of <20% above fan heads to distal fan values in excess of 70%. As a result, entrainment thresholds for bed material might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off-channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off channel every -0.20-1.4 km downfan. This leads us to hypothesize that some alluvial fan long-proffies are statements about the rate of overbank deposition of

  12. Fluoride abundance and controls in fresh groundwater in Quaternary deposits and bedrock fractures in an area with fluorine-rich granitoid rocks.

    PubMed

    Berger, Tobias; Mathurin, Frédéric A; Drake, Henrik; Åström, Mats E

    2016-11-01

    This study focuses on fluoride (F(-)) concentrations in groundwater in an area in northern Europe (Laxemar, southeast Sweden) where high F(-) concentrations have previously been found in surface waters such as streams and quarries. Fluoride concentrations were determined over time in groundwater in the Quaternary deposits ("regolith groundwater"), and with different sampling techniques from just beneath the ground surface to nearly -700m in the bedrock (fracture) groundwater. A number of potential controls of dissolved F(-) were studied, including geological variables, mineralogy, mineral chemistry and hydrology. In the regolith groundwater the F(-) concentrations (0.3-4.2mg/L) were relatively stable over time at each sampling site but varied widely among the sampling sites. In these groundwaters, the F(-) concentrations were uncorrelated with sample (filter) depth and the water table in meters above sea level (masl), with the thicknesses of the groundwater column and the regolith, and with the distribution of soil types at the sampling sites. Fluoride concentrations were, however, correlated with the anticipated spatial distribution of erosional material (till) derived from a F-rich circular granite intrusion. Abundant release of F(-) from such material is thus suggested, primarily via dissolution of fluorite and weathering of biotite. In the fresh fracture groundwater, the F(-) concentrations (1.2-7.4mg/L) were generally higher than in the regolith groundwater, and were uncorrelated with depth and with location relative to the granite intrusion. Two mechanisms explaining the overall high F(-) levels in the fracture groundwater were addressed. First, weathering/dissolution of fluorite, bastnäsite and apophyllite, which are secondary minerals formed in the fractures during past hydrothermal events, and biotite which is a primary mineral exposed on fracture walls. Second, long water-residence times, favoring water-rock interaction and build-up of high dissolved F

  13. Influences of quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California

    USGS Publications Warehouse

    McFadden, L.D.; Wells, S.G.; Dohrenwend, J.C.

    1986-01-01

    Soils formed in loess are evidence of both relict and buried landscapes developed on Pliocene-to-latest Pleistocene basalt flows of the Cima volcanic field in the eastern Mojave Desert, California. The characteristics of these soils change systematically and as functions of the age and surface morphology of the lava flow. Four distinct phases of soil development are recognized: phase 1 - weakly developed soils on flows less than 0.18 M.y. old; phase 2 - strongly developed soils with thick argillic horizons on 0.18 - 0.7 M.y. old flows; phase 3 - strongly developed soils with truncated argillic horizons massively impregnated by carbonate on 0.7 to 1.1 M.y. old flows; and phase 4 - degraded soils with petrocalcic rubble on Pliocene flows. A critical aspect of the development of stage 1 soils is the evolution of a vesicular A horizon which profoundly affects the infiltration characteristics of the loess parent materials. Laboratory studies show that secondary gypsum and possibly other salt accumulation probably occurred during the period of phase 1 soil development. Slight reddening of the interiors of peds from vesicular-A horizons of phase 1 soils and presence of weakly developed B horizons indicates a slight degree of in situ chemical alteration. However, clay and Fe oxide contents of these soils show that these constituents, as well as carbonates and soluble salts, are incorporated as eolian dust. In contrast to phase 1 soils, chemical and mineralogical analysis of argillic horizons of phase 2 soils indicate proportionally greater degrees of in-situ chemical alteration. These data, the abundant clay films, and the strong reddening in the thick argillic horizons suggest that phase 2 and phase 3 soils formed during long periods of time and periodically were subjected to leaching regimes more intense than those that now exist. Flow-age data and soil-stratigraphic evidence also indicate that several major loess-deposition events occurred during the past ??? 1.0 M

  14. Potentiometric Surface of the Alluvial Aquifer and Hydrologic Conditions in the Juana Diaz area, Puerto Rico, June 29 - July 1, 2005

    USGS Publications Warehouse

    Rodriguez, Jose M.; Santigo-Rivera, Luis; Gómez-Gómez, Fernando

    2006-01-01

    A synoptic survey of the hydrologic conditions in the Juana Diaz area, Puerto Rico, was conducted between June 29 and July 1, 2005, to define the spatial distribution of the potentiometric surface of the alluvial aquifer. The study area encompasses 21 square miles of the more extensive South Coastal Plain Alluvial Aquifer system and is bounded along the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, the east by the Rio Descalabrado and to the west by the Rio Inabon. Ground water in the Juana Diaz area is in the Quaternary-age alluvial deposits and the middle-Tertiary age Ponce Limestone and Juana Diaz Formation (Giusti, 1968). The hydraulic properties of the Ponce Limestone in the Juana Diaz area are unknown, and the Juana Diaz Formation is a unit of poor permeability due to its high clay content. Consequently, the Ponce Limestone and the Juana Diaz Formation are generally considered to be the base of the alluvial aquifer in the Juana Diaz area with ground-water flow occurring primarily within the alluvial deposits. The potentiometric-surface map of the alluvial aquifer was delineated using ground-water level measurements taken at existing wells. The water-level measurements were taken at wells that were either not pumping during the survey or were shut down for a brief period. In the latter case, a recovery period of 30 minutes was allowed for the drawdown in the wellbore to achieve a near static level position representative of the aquifer at the measurement point. Land-surface altitude from U.S. Geological Survey (USGS) 1:20,000 scale topographic maps (Playa de Ponce, Ponce, Rio Descalabrado, and Santa Isabel) were used to refer ground-water levels to mean sea level datum (National Geodetic Vertical Datum of 1929). In addition to the ground-water level measurements, the potentiometricsurface contours were delineated using hydrologic features, such as drainage ditches and saturated intermittent streams that were

  15. Late Quaternary geomorphology and soils in Crater Flat, Yucca mountain area, southern Nevada

    SciTech Connect

    Peterson, F.F.; Bell, J.W.; Ramelli, A.R.; Dorn, R.I.; Ku, T.L.

    1995-04-01

    Crater Flat is an alluvium-filled structural basin on the west side of Yucca Mountain, Nevada, which is under consideration for a high-level nuclear waste repository. North-trending, late Quaternary faults offset alluvium in Crater Flat both along the canyons of the western flanks of Yucca Mountain and out on the piedmont slope. We believe the initial lack of young offsets at Yucca Mountain was in part due to unrecognized late Quaternary stratigraphy. We hypothesize that alluviation in the Yucca Mountain region was more active during the late Quaternary than previously thought. Several techniques were tried to test this hypothesis. Results are compared with previous soils and surface-exposure dating studies, and correlated to stratigraphy of other late Quaternary units in the southern Nevada, Death Valley, and Mojave Desert areas, and provide new stratigraphic data relevant to understanding climatic-alluvial processes in the Basin and Range Province during the late Quaternary. 76 refs., 7 figs., 6 tabs.

  16. Quaternary history of the northeastern Bighorn Basin based on a climatically-controlled process-response model

    SciTech Connect

    Birdseye, R.U.

    1985-01-01

    The highest surfaces and oldest Pleistocene sediments in the northeastern Bighorn Basin are associated with the 600 kya North Kane Ash. Subsequent climatically-induced periods of aggradation and incision produced the remaining geomorphic elements. Processes associated with a typical interglacial-glacial cycle include: (1) interglacial stability with Bighorn River alluviation, pedimentation, and eolian deposition; (2) late-interglacial to early-glacial incision; (3) alluvial fan extension and increased landslide development during glacial intervals; and (4) an early-interglacial return to more stable conditions. Frequent stream captures during interglacial times were caused by the out-of-phase relationships between the Bighorn River and its tributaries. Quaternary climates of a given type have not been of equal magnitude or duration in the northeastern Bighorn Basin. The most intense glacial climates from which sediments are preserved are believed to have occurred ca. 600 kya, 440 kya an d140 kya. An abnormally dry climate existed between 400 kya and 275 kya, while extremely wet interglacial conditions prevailed about 100 kya. The last complete climatic cycle was the Bull Lake. The subsequent Holocene interglacial has been unusually dry. Thus not all Pleistocene climates have been capable of generating terraces of extensive alluvial fans.

  17. Hydraulic processes on alluvial fans

    SciTech Connect

    French, R.H.

    1987-01-01

    Alluvial fans are among the most prominent landscape features in the American Southwest and throughout the semi-arid and arid regions of the world. The importance of developing a qualitative and quantitative understanding of the hydraulic processes which formed, and which continue to modify, these features derives from their rapid and significant development over the past four decades. As unplanned urban sprawl moved from valley floors onto alluvial fans, the serious damage incurred from infrequent flow events has dramatically increased. This book presents a discussion of our current and rapidly expanding knowledge of hydraulic processes on alluvial fans. It addresses the subject from a multidisciplinary viewpoint, acquainting the reader with geological principles pertinent to the analysis of hydraulic processes on alluvial fans.

  18. Quaternary geology and geologic hazards of the West Desert Hazardous Industry Area, Tooele County, Utah

    USGS Publications Warehouse

    Solomon, Barry J.; Black, Bill D.

    1990-01-01

    The study of Quaternary geology provides information to evaluate geologic conditions and identify geologic constraints on construction in the West Desert Hazardous Industry Area (WDHIA). The WDHIA includes portions of the Great Salt Lake Desert to the west, underlain by several thousand feet of sediments capped by saline mudflats, and Ripple Valley to the east, separated from the Desert by the Grayback Hills and underlain by several hundred feet of sediments in the Cedar Mountains piedmont zone. Quaternary surficial units include marginal, shore-zone, and deep-water lacustrine sediments deposited in Pleistocene Lake Bonneville; eolian deposits; and alluvial sediments. The level of Lake Bonneville underwent major oscillations resulting in the creation of four basin-wide shorelines, three of which are recognized in the WDHIA. Geologic hazards in the WDHIA include the possible contamination of ground water in basin-fill aquifers, debris flows and flash floods in the piedmont zone, and earthquakes and related hazards. Numerous factors contribute to unsafe foundation conditions. Silty and sandy sediments may be subject to liquefaction or hydrocompaction, clayey sediments and mud flats of the Great Salt Lake Desert may be subject to shrinking or swelling, and gypsiferous dunes and salt flats are subject to subsidence due to dissolution.

  19. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  20. Experimental Study of Alluvial Fan Formation

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Devauchelle, O.; Barrier, L.; Métivier, F.

    2015-12-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. Most natural fans are built by braided streams. However, to avoid the complexity of braided rivers, we develop a small-scale experiment in which an alluvial fan is formed by a single channel. We use a mixture of water and glycerol to produce a laminar river. The fluid is mixed with corindon sand (~ 300 μm) in a tilted channel and left free to form a fan around its outlet. The sediment and water discharges are constant during an experimental run. We record the fan progradation and the channel morphology with top-view pictures. We also generate an elevation map with an optical method based on the deformation of a moiré pattern. We observe that, to leading order, the fan remains self-affine as it grows, with a constant slope. We compare two recent studies about the formation of one-dimensionnal fan [Guerit et al. 2014] and threshold rivers [Seizilles et al. 2013] to our experimental findings. In particular, we propose a theory witch relates the fan morphology to the control parameters ( fluid and sediment discharges, grain size). Our observation accord with the predictions, suggesting that the fan is built near the threshold of sediment motion. Finally, we intend to expand our interpretation to alluvial fans build by single-thread channels ( Okavango, Bostwana; Taquari and Paraguay, Brasil; Pastaza, Peru).

  1. The Problem of Alluvial Fan Slopes

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Schmidt, K.

    2005-12-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans, where water transport predominates, channel slopes tend to decrease downfan from ~0.08 to ~0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects downfan grainsize fining so that higher slopes are required just to entrain coarser particles in the waters of the upper fan, while entrainment of finer grains downfan requires lower slopes (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses using detailed field measurements of hydraulic and sediment variables in sediment transport models. On some fans in the western U.S. we find that alluvial fan channel bankfull depths are largely 0.5-1.5 m at fan heads, decreasing to 0.1-0.2 m at distal margins. Contrary to many previous studies, we find that median gravel diameter does not change systematically along the upper 60- 80% of active fan channels. So downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, surface sand cover increases systematically downfan from values of <20% above fan heads to distal fan values in excess of 70%. As a result, the threshold for sediment motion might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off- channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off-channel every ~0.25-1.25 km downfan. This leads us to hypothesize that alluvial fan long- profiles are largely statements about the rate of deposition downfan. If so, there may be climatic and

  2. Large Alluvial Fans on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Howard, Alan D.

    2004-01-01

    Several dozen distinct alluvial fans, 10 to greater than 40 km long downslope are observed exclusively in highlands craters. Within a search region between 0 deg. and 30 deg. S, alluvial fan-containing craters were only found between 18 and 29 S, and they all occur at around plus or minus 1 km of the MOLA-defined Martian datum. Within the study area they are not randomly distributed but instead form three distinct clusters. Fans typically descend greater than 1 km from where they disgorge from their alcoves. Longitudinal profiles show that their surfaces are very slightly concave with a mean slope of 2 degrees. Many fans exhibit very long, narrow low-relief ridges radially oriented down-slope, often branching at their distal ends, suggestive of distributaries. Morphometric data for 31 fans was derived from MOLA data and compared with terrestrial fans with high-relief source areas, terrestrial low gradient alluvial ramps in inactive tectonic settings, and older Martian alluvial ramps along crater floors. The Martian alluvial fans generally fall on the same trends as the terrestrial alluvial fans, whereas the gentler Martian crater floor ramps are similar in gradient to the low relief terrestrial alluvial surfaces. For a given fan gradient, Martian alluvial fans generally have greater source basin relief than terrestrial fans in active tectonic settings. This suggests that the terrestrial source basins either yield coarser debris or have higher sediment concentrations than their Martian counterpoints. Martian fans and Basin and Range fans have steeper gradients than the older Martian alluvial ramps and terrestrial low relief alluvial surfaces, which is consistent with a supply of coarse sediment. Martian fans are relatively large and of low gradient, similar to terrestrial fluvial fans rather than debris flow fans. However, gravity scaling uncertainties make the flow regime forming Martian fans uncertain. Martian fans, at least those in Holden crater, apparently

  3. Holocene alluvial fills in the South Loup Valley, Nebraska

    NASA Astrophysics Data System (ADS)

    May, David W.

    1989-07-01

    Four Holocene alluvial fills are present in Nebraska's South Loup River valley. Fill IV, the oldest and thickest, was deposited between 10,200 and 4800 14C yr B.P.; Fill III has an age of about 3000 14C yr B.P.; Fill II is younger than 2100 and older than 900 14C yr B.P.; and Fill I is younger than 900 14C yr B.P. Regional contemporaneity of valley alluviation in the eastcentral Great Plains suggests that climate has controlled long-term sediment storage in the South Loup River valley.

  4. Late Quaternary river drainage and fish evolution, Southland, New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, D.; Burridge, C.; Anderson, L.; Waters, J. M.

    2007-02-01

    Late Quaternary to Holocene landscape evolution in southern New Zealand was dominated by glacial outwash processes. Evolution of the drainage network on a regional scale was punctuated by numerous river capture events associated with outwash transport and deposition. River capture events can be inferred from geological and topographic observations throughout the region. Independent evidence for river capture and drainage reorientation can be obtained from genetic studies of a freshwater-limited fish ( Galaxias 'southern', informal name). Regionally extensive interlinking of principal rivers (Mataura, Oreti, Aparima) via coalescence of alluvial plains onshore, and offshore at sea level lowstands, has resulted in a widespread genetic homogenisation of fish populations (< 0.9% mtDNA divergence). Genetically similar populations of G. 'southern' are present in an adjacent catchment (Von) that was captured episodically by the neighbouring major river system (Clutha). The low degree of genetic divergence between Oreti and Von catchments (< 0.15% mtDNA divergence) demonstrates that genetic interaction between fish populations was severed recently, probably during the early Holocene. This is in accord with radiocarbon dating (11-13 ka) of the youngest gravel level within the intervening divide. In contrast, morphologically similar fish in another adjacent major river (Waiau) have a minimum mtDNA divergence of 2.4% from the fish in the Mataura, Oreti, and Aparima Rivers. This genetic separation occurred at ca. 145-240 ka, based on the late Quaternary outwash terrace dating, in agreement with "molecular clock" estimates. Geological and genetic data in combination provide powerful tools for the elucidation of local and regional geomorphic evolution where river capture is an important process. The potential is strong for genetic data alone to provide information on the relative and absolute timing of river capture events, but must be interpreted in the context of severance of

  5. Thermal imaging of sedimentary features on alluvial fans

    NASA Astrophysics Data System (ADS)

    Hardgrove, Craig; Moersch, Jeffrey; Whisner, Stephen

    2010-03-01

    Aerial thermal imaging is used to study grain-size distributions and induration on a wide variety of alluvial fans in the desert southwest of the United States. High-resolution aerial thermal images reveal evidence of sedimentary processes that rework and build alluvial fans, as preserved in the grain-size distributions and surface induration those processes leave behind. A catalog of constituent sedimentary features that can be identified using aerial thermal and visible imaging is provided. These features include clast-rich and clast-poor debris flows, incised channel deposits, headward-eroding gullies, sheetflood, lag surfaces, active/inactive lobes, distal sand-skirts and basin-related salt pans. Ground-based field observations of surface grain-size distributions, as well as morphologic, cross-cutting and topographic relationships were used to confirm the identifications of these feature types in remotely acquired thermal and visible images. Thermal images can also reveal trends in grain sizes between neighboring alluvial fans on a regional scale. Although inferences can be made using thermal images alone, the results from this study demonstrate that a more thorough geological interpretation of sedimentary features on an alluvial fan can be made using a combination of thermal and visible images. The results of this study have potential applications for Mars, where orbital thermal imaging might be used as a tool for evaluating constituent sedimentary processes on proposed alluvial fans.

  6. Quaternary Tectonic and Climatic Processes shaping the Central Andean hyperarid forearc (southern Peru)

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Benavente, Carlos; Zerathe, Swann; Saillard, Marianne; Hall, Sarah R.; Farber, Daniel L.

    2015-04-01

    Understanding the forearc structure and processes related to Quaternary evolution and uplift of the Western Andean Cordillera remains an outstanding scientific issue. Models of Andean Plateau evolution based on Tertiary volcanic stratigraphy since 5Ma suggest that the deformation was focused along the eastern margin of the plateau and that minimal uplift occurred along the Pacific margin. On the contrary, new tectonic data and Quaternary surface 10Be dating highlight the presence of recently active deformation, incision and alluvial processes within the upper Andean forearc together with a regional uplift of the coastal zone. Additionally, the high obliquity observed in the northern Arica Bend region makes it an ideal target to discuss whether partitioning of the oblique convergence is accommodated by the neotectonic features that dissect the Quaternary forearc. Our goals are both to decipher the Quaternary tectonic and climatic processes shaping the hyperarid forearc along strike and across strike. Finally, we aim to quantify the respective influence of these factors in the overall uplift of the Western Andes. Indeed, sequences of pediment surfaces, landslide products, paleolake deposits and marine terraces found along the oblique Peruvian margin are a unique set of datable markers that can be used to quantify the rates of Quaternary processes. In this study, we focus on the southern Peru hyperarid Atacama area where regional surfaces and tectonic markers (scarps, folds, temporary streams and paleolake levels offsets…) are well preserved for the Quaternary timescale. Numerous landsliding events align on the major fault segments and reflect Plio-Pleistocene climatic and tectonic activity together with filled and strath terraces. As the present day sea-level is one of the highest levels recorded for Quaternary time span, any emerged marine terrace is preserved by tectonic coastal uplift. In particular, the geomorphic and chronologic correlation between marine and

  7. The timing of alluvial activity in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Grant, John A.; Wilson, Sharon A.; Mangold, Nicolas; Calef, Fred; Grotzinger, John P.

    2014-02-01

    The Curiosity rover's discovery of rocks preserving evidence of past habitable conditions in Gale crater highlights the importance of constraining the timing of responsible depositional settings to understand the astrobiological implications for Mars. Crater statistics and mapping reveal the bulk of the alluvial deposits in Gale, including those interrogated by Curiosity, were likely emplaced during the Hesperian, thereby implying that habitable conditions persisted after the Noachian. Crater counting data sets and upper Peace Vallis fan morphology also suggest a possible younger period of fluvial activation that deposited ~10-20 m of sediments on the upper fan after emplacement of the main body of the fan. If validated, water associated with later alluvial activity may have contributed to secondary diagenetic features in Yellowknife Bay.

  8. Geology and mineral deposits of Churchill County, Nevada

    USGS Publications Warehouse

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  9. Dynamics of Bedload Transport in a Bedrock-Alluvial River

    NASA Astrophysics Data System (ADS)

    Hodge, R. A.; Sharma, B. P.; Ferguson, R.; Hardy, R. J.; Warburton, J.

    2014-12-01

    The processes controlling the entrainment, transport and deposition of coarse sediment in bedrock-alluvial systems are key for understanding sediment fluxes in these systems. Theories have been developed for these processes, and assumptions are made about them in models of bedrock incision. However, there are relatively few field datasets from these rivers with which to test these ideas. We report results from a gravel tracer experiment in the bedrock-alluvial Trout Beck, UK. The 410 m long study section consists of alluvial, mixed bedrock-alluvial and bedrock reaches. There are no tributary inputs so discharge is constant throughout. Two sets of 270 magnet-tagged pebbles covering the grain size distribution of the in-situ sediment were seeded in August 2013. Tracers were placed in an alluvial reach and in a bedrock reach, enabling quantification of grain dynamics over different substrates but under the same flow conditions. Tracers were resurveyed six times over nine months. Concurrent measurements of stage, discharge and bedload impacts at various locations in the channel aid interpretation of the tracer measurements. Tracers installed in the bedrock reach were far more mobile than those in the alluvial reach, with mean travel distances of 70.6 and 2.4 m respectively in the first two months. The transport of tracers was largely size independent over the purely bedrock reach. This finding may be explained by bulk hydraulic measurements that indicate that effective shear stress is highest in this section of the channel. Once these tracers reached the downstream mixed bedrock-alluvial reach, transport distances became relatively shorter, though still greater than in the purely alluvial reach (mean distances of 27.6 and 15.4 m from month 2 to month 7), and became size selective. The second set of tracers seeded in the alluvial reach displayed size-selective transport throughout the experimental period. This study demonstrates how reach substrate exerts a strong

  10. FUTURE STUDIES AT PENA BLANCA: RADIONUCLIDE MIGRATION IN THE VADOSE ZONE OF AN ALLUVIAL FAN

    SciTech Connect

    P. Goodell; J. Walton; P.J. Rodriguez

    2005-07-11

    The pathway to the accessible environment at Yucca Mountain contains volcanic rocks and alluvial fill. Transport properties in alluvial fill, specifically retardation and dispersivity, may be significant in determining the overall performance of the repository. Prior relevant studies, with the exception of the Nye County Tracer Test, are almost entirely in bedrock material. The proposed study will provide field data on radionuclide migration in alluvial material. High grade uranium ore was mined at the Nopal I deposit. This mined ore (60,000 tons) was moved in 1994 to its present site as open piles on an alluvial fan in the Boquilla Colorada Microbasin. Precipitation is approximately 20 cm/year, and has caused migration of radionuclides into the subsurface. We propose partial removal of an ore pile, excavation into the alluvial fan, sampling, and determination of radionuclide mobilities from the uranium decay chain. The proposed research would be taking advantage of a unique opportunity with a known time frame for migration.

  11. Investigation of Quaternary slip rates along the Banning strand of the southern San Andreas Fault near San Gorgonio Pass

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2013-12-01

    Present-day Pacific-North American relative plate motion in southern California is shared primarily between the San Jacinto and San Andreas faults. At the north end of the Coachella Valley, the San Andreas fault splits into the Banning and Mission Creek strands, which are sub-parallel to each other within the Indio Hills. Northwest of the Indio Hills, the Mission Creek fault diverges from the Banning and continues northwest toward the southeastern San Bernardino Mountains, but loses surface expression beneath Quaternary alluvial deposits in Morongo Wash. The Banning fault, upon exiting the Indio Hills, is deflected toward the west and transitions into a structurally complex fault zone at San Gorgonio Pass, where it is delineated by thrust scarps in Holocene alluvium. The slip rates of the Banning and Mission Creek fault strands northwest of the Indio Hills and southeast of San Gorgonio Pass are presently unconstrained, but understanding how slip is partitioned between these two strands is critical to southern California earthquake forecasting efforts. Here we present preliminary slip rate data for the Banning fault ~2 km southeast of San Gorgonio Pass at Devers Hill. Using the B4 LiDAR as a base, we have mapped the extents of three truncated and offset alluvial fan deposits, which we have differentiated based on both field and remote (LiDAR- and air photo-based) observations of texture: in particular, the distribution of different clast sizes, pavement and soil development, and color and appearance. To confirm across-fault correlation of the displaced deposits, we have measured 26 cosmogenic Be-10 ages from boulders and cobble samples taken from each of the three fan surfaces on both sides of the fault. One debris flow deposit (Q2a) has been dated to ~80 ka, and appears to be offset 1.6-2.2 km, though confirming this reconstruction will depend on future excavations and uranium-series dating of soil carbonate. A second debris flow deposit (Q2b), for which ages are

  12. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    SciTech Connect

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  13. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"…

  14. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  15. The use of O, H and Sr isotopes and carbamazepine to identify the origin of water bodies supplying a shallow alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Sassine, Lara; Le Gal La Salle, Corinne; Lancelot, Joël; Verdoux, Patrick

    2014-05-01

    Alluvial aquifers are of great socio-economic importance in France since they supply 82% of drinking water production, though they reveal to be very vulnerable to pesticides and emerging organic contaminants. The aim of this work is to identify the origin of water bodies which contribute to the recharge of an alluvial aquifer for a better understanding of its hydrochemistry and transfer of contaminants therein. The study is based on an isotopic and geochemical tracers approach, including major elements, trace elements (Br, Sr),and isotopes (δ18O, δ2H, 87Sr/86Sr), as well as organic molecules. Indeed, organic molecules such as pharmaceutical compounds, more precisely carbamazepine and caffeine, have shown their use as indicators of surface water in groundwater. The study area is a partially-confined shallow alluvial aquifer, the so-called Vistrenque aquifer, located at 15 km from the Mediterranean Sea, in the Quaternary alluviums deposited by an ancient arm of the Rhône River, in Southern France. This aquifer constitutes a shallow alluvial layer in a NE-SW graben structure. It is situated between a karst aquifer in lower Cretaceous limestones, on the NW border, and the Costières Plateau, on the SE border, having a similar geology as the Vistrenque. The alluvial plain is crossed by a surface water network with the Vistre as the main stream, and a canal used for irrigation essentially, the BRL canal, which is fed by the Rhône River. δ18O and δ2H allowed to differentiate the BRL canal water, depleted in heavy isotopes (δ2H = -71.5o vs V-SMOW), and the more enriched local rainwater (δ2H = -35.5o vs V-SMOW). In the Vistre surface water a binary mixing were evidenced with the BRL canal water and the rainwater, as end members. Then, in the Vistrenque groundwater both the BRL and the Vistre contributions could be identified, as they still show contrasting signature with local recharge. This allows to highlight the surface water contribution to a heavily exploited

  16. Quaternary stratigraphy, geochronology and evolution of the Magela Creek catchment in the monsoon tropics of northern Australia

    NASA Astrophysics Data System (ADS)

    Nanson, Gerald C.; East, T. Jon; Roberts, Richard G.

    1993-03-01

    Magela Creek, a major tributary of the East Alligator River in northern Australia, has left a detailed sedimentary record of a fluvial landscape dominated by climatic and eustatic changes associated with Quaternary glacial-interglacial cycles. Uranium-series dates from young pisoliths in floodplain deposits indicate that ferruginisation is probably ongoing under present conditions while ferricretes in degraded terraces that flank the lower valley reveal a fluvial history extending back to early Pleistocene or Tertiary time. Inset within this older alluvium is a valley fill which, from thermoluminescence dates, was initiated about 300 kyr ago. With each glacial climate change and associated fall in sea level, distinct palaeochannels have been eroded into these floodplains, infilling later with alluvium when climate and base-level conditions were conducive to fluvial deposition. Radiocarbon dates show that the most recent palaeochannel beneath the modern Magela Creek last started to fill by downstream progradation and vertical accretion of bedload sand about 8 kyr. The palaeochannel filled at an accelerating rate, probably as a result of declining stream competence associated with drier conditions in the late Holocene augmented by the backwater effects of sea-level rise. Continued aggradation blocked the mouths of tributary valleys along Magela Creek, forming alluvial-dammed tributary lakes and deferred-junction tributary streams. From about 300 kyr, cyclic episodes of channel incision and sediment evacuation in this tropical-monsoon river valley have become less effective, possibly because increasing aridity in the late Quaternary has reduced the erosional effectiveness of Australia's northern rivers. Reduced flow regime and rising sea level in the late Holocene has resulted in the latest phase of alluvial accretion.

  17. Infilling of the Younger Kathmandu-Banepa intermontane lake basin during the Late Quaternary (Lesser Himalaya, Nepal): a sedimentological study

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Khadka, D. R.; Khanal, R.; Dohrmann, R.; Melcher, F.; Busch, K.

    2003-01-01

    The Kathmandu and Banepa Basins, Central Nepal, are located in a large syncline of the Lesser Himalayas. The Older Kathmandu Lake evolved during the Pliocene and early Pleistocene; the Younger Kathmandu Lake, which is the focus of this study, is infilled with late Quaternary sediments. Three formations, arranged in stratigraphical order, the Kalimati, Gokarna and Thoka Formations formed during the infilling stage of this lacustrine basin. Structural and textural sedimentological analyses, a chemical survey across the basin and mineralogical investigations of fine-grained sediments form the basis of this palaeogeographical study. The basin under investigation was covered by a perennial freshwater lake before 30 000 yr BP. The lake was infilled with alluvial and fluvial sediments delivered mainly from the mountains north of the basin. A fairly low gradient was favourable for the formation of diatomaceous earths, carbonaceous mudstones and siltstones, which were laid down in the centre of the lake and in small ponds. Towards the basin edge, lacustrine sediments gave way to deltaic deposits spread across the delta plain. Crevasse splays and anastomosing rivers mainly delivered suspended load for the widespread siltstones and mudstones. The proximal parts of the alluvial-fluvial sedimentary wedge contain debris flows that interfinger with fine-grained floodplain deposits. Three highstands of the water-level (>30 000 yr BP, 28 000-19 000 yr BP, 11 000-4000 yr BP (?)) have been recognised in the sedimentary record of the younger Kathmandu Lake in the Late Quaternary. Second-order water-level fluctuations are assumed to be triggered by local processes (damming by tectonically induced landslides). First-order water-level fluctuations are the result of climatic changes.

  18. Quaternary geology of the DFDP-2 drill holes, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Upton, P.; Cox, S.; Howarth, J. D.; Sutherland, R.; Langridge, R.; Barth, N. C.; Atkins, C.

    2015-12-01

    A 240 m-thick Quaternary sediment sequence in Whataroa Valley was much thicker than predicted before drilling. DFDP-2A and DFDP-2B were mostly drilled through the sequence by dual-rotary method using air or water circulation, returning cuttings bagged at 1 or 2 m sample intervals. Some sorting/bias and contamination occurred. Core was retrieved in DFDP-2A from 125-160 m, with highly variable recovery (0-100%) and mixed preservation/quality. The sequence is interpreted to comprise: fluvial-glacial gravels (0-58 m); grading downward into sandy lake delta sediments (59-77 m); overlying a monotonous sequence of lake mud and silts, with rare pebble-cobble diamictite (77-206 m); with a basal unit (206-240 m) containing coarse cobbles and boulders that may represent a distinct till/diamictite. Evidence has yet to be found for any marine influence in lowermost sediments, despite deposition at least 120 m below present day sea level, and potentially 200 m bsl if uplift has occurred on the Alpine Fault. When corrected for uplift the lacustrine sequence broadly correlates to those in present Lakes Rotokina and Wahapo, suggesting a substantial (~100 km2) pro-glacial lake once covered the area. Radiocarbon dating of plant fragments indicate 70 m of upper lacustrine and deltaic sediments (129-59 m) were deposited rapidly between 16350-15800 Cal BP. Overlying alluvial gravels are much younger (<1 ka), but potentially also involved pulses of rapid aggradation. The sequence provides a record of sedimentation on the Alpine Fault hanging wall following late-glacial ice retreat up Whataroa Valley, with uplift and erosion followed by Holocene alluvial gravel deposition. Future work will address: (1) the nature and history of sedimentation, including the lithology and origin of sediments; (2) what, if any, geological record of tectonics (movement) or Alpine Fault earthquakes (shaking) the sediments contain.

  19. Late Pleistocene eolian-alluvial interference in the Balearic Islands (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Pomar, Francisco; Del Valle, Laura; Fornós, Joan J.; Gómez-Pujol, Lluís; Anechitei-Deacu, Valentina; Timar-Gabor, Alida

    2016-04-01

    This study deals with alluvial fan and aeolian sediments interference. Although initially they are two different environments, with different processes and resulting forms, very often their interaction produces deposits that share characteristics and features from both environments, as well as, maintain inherited elements from one to each other. In this sense, the aeolian-alluvial interference is the geomorphological expression of the coincidence, disruption and/or overlapping of aeolian and alluvial environments. Climate appears to be one of the most important controls on the role and magnitude of each environment in terms of sediment supply, precipitation, runoff or aeolian transport. In this study, eight major sedimentary facies have been described involving the succession of coastal, aeolian, colluvial and alluvial environments. Carbonate sandstones, breccias, conglomerates and fine-grained deposits are the main component of these sequences. OSL dating of aeolian levels indicate that their deposition took place during the Late Pleistocene, establishing a paleoclimatic evolution of Balearic coastal areas during the last 125 ka. The sedimentological and chronological analysis of these deposits allows reconstructing the coastal environmental changes during the Late Pleistocene at the Balearic archipelago. Keywords: Alluvial sedimentation, eolian sedimentation, alluvial-eolian interference, sea level, Late Pleistocene, Balearic Islands.

  20. Morphodynamic equilibrium of alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Tambroni, Nicoletta; Bolla Pittaluga, Michele; Canestrelli, Alberto; Lanzoni, Stefano; Seminara, Giovanni

    2014-05-01

    The evolution of the longitudinal bed profile of an estuary, with given plan-form configuration, subject to given tidal forcing at the mouth and prescribed values of water and sediment supply from the river is investigated numerically. Our main goal is to ascertain whether, starting from some initial condition, the bed evolution tends to reach a unique equilibrium configuration asymptotically in time. Also, we investigate the morphological response of an alluvial estuary to changes in the tidal range and hydrologic forcing (flow and sediment supply). Finally, the solution helps characterizing the transition between the fluvially dominated region and the tidally dominated region of the estuary. All these issues play an important role also in interpreting how the facies changes along the estuary, thus helping to make correct paleo-environmental and sequence-stratigraphic interpretations of sedimentary successions (Dalrymple and Choi, 2007). Results show that the model is able to describe a wide class of settings ranging from tidally dominated estuaries to fluvially dominated estuaries. In the latter case, the solution is found to compare satisfactory with the analytical asymptotic solution recently derived by Seminara et al. (2012), under the hypothesis of fairly 'small' tidal oscillations. Simulations indicate that the system always moves toward an equilibrium configuration in which the net sediment flux in a tidal cycle is constant throughout the estuary and equal to the constant sediment flux discharged from the river. For constant width, the bed equilibrium profile of the estuarine channel is characterized by two distinct regions: a steeper reach seaward, dominated by the tide, and a less steep upstream reach, dominated by the river and characterized by the undisturbed bed slope. Although the latter reach, at equilibrium, is not directly affected by the tidal wave, however starting from an initial uniform stream with the constant 'fluvial' slope, the final

  1. Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain)

    USGS Publications Warehouse

    Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, Victor H.; Pérez-López, R.; Giner-Robles, J.L.; Israde-Alcántara, I.; Calvo, J.P.; Williams, Ross W.

    2009-01-01

    The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.

  2. Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pascua, M. A.; Bischoff, J.; Garduño-Monroy, V. H.; Pérez-López, R.; Giner-Robles, J. L.; Israde-Alcántara, I.; Calvo, J. P.; Williams, R. W.

    2009-12-01

    The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate.

  3. Integration of channel and floodplain suites. I. Developmental sequence and lateral relations of alluvial paleosols.

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1987-01-01

    The lower Eocene Willwood Formation of the Bighorn Basin, northwest Wyoming, consists of about 770 m of alluvial rocks that exhibit extensive mechanical and geochemical modifications resulting from Eocene pedogenesis. Five arbitrary stages are proposed to distinguish these soils of different maturities in the Willwood Formation. An inverse relationship exists between soil maturity and short-term sediment accumulation rate. Illustrates several important principles of soil-sediment interrelationships in aggrading alluvial systems that have broad application to other deposits.-from Authors

  4. Loess sedimentation in Tibet: provenance, processes, and link with Quaternary glaciations

    USGS Publications Warehouse

    Sun, Jielun; Li, S.-H.; Muhs, D.R.; Li, B.

    2007-01-01

    Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13-11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a "glacial" origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial-interglacial cycle of the Quaternary. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Alluvial Fans and Megafans Along the Southern Side of the Alps

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Mozzi, P.

    2011-12-01

    Isonzo, Tagliamento, Piave and Brenta systems and they display a similar internal architecture, characterized by coarse gravel deposits at bottom and a general fining-upward trend. Radiocarbon datings demonstrate that fluvial entrenchment and coarse-gravel transport mainly occurred during Lateglacial and early Holocene and almost stopped around 8.0-7.0 ka cal. BP. In the Venetian-Friulian Plain, directly connected with Adriatic Sea, some abandoned incisions were drowned by marine transgression since 7.0 ka cal. BP, allowing the formation of 15-km long tidal inlets and to the deposition of lagoonal and estuarine sediments inside the incisions. Late Holocene fluvial activity has been characterized by the formation of fluvial ridges along the last 30 km of Alpine rivers, which largely contributed to silt-up completely the Lateglacial incisions. In the central and western Po Plain, due to its more internal position from the coast, the incisions are still present along the Alpine tributaries of Po River, up to their junction with this course. A very different late Quaternary evolution characterize the southern sector of Po Plain, where the alluvial systems are fed by the Apennines and LGM glacial activity was very limited.

  6. Resolving electrolayers from VES: A contribution from modeling the electrical response of a tightly constrained alluvial stratigraphy

    NASA Astrophysics Data System (ADS)

    Mele, M.; Ceresa, N.; Bersezio, R.; Giudici, M.; Inzoli, S.; Cavalli, E.

    2015-08-01

    The reliability of the hydrostratigraphic interpretation of electrostratigraphy derived from ground based, Direct Current resistivity methods is analyzed through the forward modeling of synthetically derived electrostratigraphic layering in a tightly constrained alluvial framework. To this purpose, a high-resolution stratigraphic model of the horizontally-stratified, alluvial aquifers hosted by the Quaternary regressive cycle of the Po plain in Lombardy was elaborated for a small area (1 ha) by correlation of borehole lithostratigraphic data down to 160 m below the ground surface. The stratigraphic model was used to compute 1-D synthetic electrostratigraphy based on the petrophysical relationship linking the bulk electrical resistivity of porous sediments to the coarse-to-fine litho-textural ratio and to the average pore-water electrical conductivity. A synthetic apparent resistivity curve was computed for the 1-D synthetic electrostratigraphy and for a traditional Vertical Electrical Sounding with Schlumberger array and a maximum dipole separation of 300 m. A good agreement was observed with the experimental apparent resistivity curve obtained with a Vertical Electrical Sounding collected in the study area. The comparison of the 1-D synthetic electrostratigraphy with the results obtained by inversion of the experimental data with the linear-digital filter method, under the assumption of electrically homogeneous layers and no lateral resistivity transition, was used to estimate the hydrostratigraphic resolving power of ground-based resistivity data at various depths. Stratigraphic units of different hierarchic orders can be resolved by Direct Current methods at different depths and at different sites. In this specific case study, Vertical Electrical Sounding resolution was comparable to the hierarchy of the genetic depositional systems, corresponding to the rank of the hydrostratigraphic systems.

  7. Lateral groundwater inflows into alluvial aquifers of main alpine valleys

    NASA Astrophysics Data System (ADS)

    Burger, Ulrich

    2015-04-01

    In alpine regions the topography is mainly characterised by deep incised valleys, mountain slopes and ridges. Usually the main valleys contain aquifers in alluvial soft rock. Lateral these aquifers are confined by mountainous hard rock slopes covered by heterogeneous sediments with different thickness. The slopes can be incised by lateral valleys. Numerical models for the main alluvial aquifers ask for lateral hydrogeological boundaries. Usually no flow boundaries or Constant head Boundaries are used, even if the lateral inflows to the main aquifers are rarely known. In this example a data set for a detailed investigated and monitored area is studied to give an answer on the location and the quantification of these lateral subsurface inflows. The study area is a typical main alpine valley with a thick alluvial aquifer (appr. 120m thick), lateral confined by granite, covered at the base of the steep slopes by quaternary sediments (Burger at al. 2012). The study consists of several steps 1.) Analytical calculation of the inflows on the base of investigated and monitored 2d profiles along fault zones (Perello et al 2013) which pinch out in the main valley 2.) Analytical models along typical W-dipping slopes with monitored slope springs 3.) Evaluating temperature and electrical conductivity profiles measured in approx. 30 groundwater wells in the alluvial aquifers and along the slopes to locate main lateral subsurface inflows 4.) Output of a regional model used for the hydrogeological back analyses of the excavation of a tunnel (Baietto et al. 2014) 5.) Output of a local numerical model calibrated with a monitoring dataset and results of a pumping test of big scale (450l/s for 10days) Results of these analyses are shown to locate and quantify the lateral groundwater inflows in the main alluvial aquifer. References Baietto A., Burger U., Perello P. (2014): Hydrogeological modelling applications in tunnel excavations: examples from tunnel excavations in granitic rocks

  8. Sedimentology of Holocene debris flow-dominated alluvial fans, northwest Wyoming: Contributions to alluvial fan facies models

    SciTech Connect

    Cechovic, M.T.; Schmitt, J.G. . Dept. of Earth Sciences)

    1993-04-01

    Facies models for debris flow-dominated alluvial fans are based exclusively upon studies of relatively few fans in the arid American southwest. Detailed geomorphic, stratigraphic, and sedimentologic analyses of several highly-active, debris flow-dominated alluvial fans in northern Yellowstone National Park, WY (temperature, semi-arid) serve to diversify and increase the usefulness of alluvial fan facies models. These fans display an intricate distributary pattern of incised active (0--6 m deep; 700--900 m long) and abandoned channels (1--4 m deep; 400 m long) with levees/levee complexes (<3 m high; <20 m wide; <750 m long) and lobes constructed by pseudoplastic to plastic debris flows. The complex pattern of debris flow deposits is due to repeated channel back filling and overtopping by debris flows behind in-channel obstructions which subsequently lead to channel abandonment. Debris-flow deposition is dominant due to: (1) small, steep (up to 35 degrees) source area catchments, (2) extensive mud rock outcrops in the source area, and (3) episodic summer rainfall events. Proximal to distal fan surfaces exhibit sheetflood deposits several cm thick and up to 70 m in lateral extent. Vertical lithofacies profiles reveal: (1) massive, matrix- and clast-supported gravel units (1--2 m thick) deposited by clast-poor and clast-rich debris flows respectively, with reworked; scoured tops overlain by thin (<0.25 m) trough cross-bedded gravel and ripple cross-laminated sand intervals, and (2) volumetrically less significant 1--2 m thick intervals comprising fining-upward sequences of interbedded cm-scale trough cross-bedded pebbly gravel, massive sand, horizontally stratified sand, and mud rock deposited by hyperconcentrated flow and stream flow during decelerating sheetflood events. Organic rich layers record periods of non-deposition. Channelized stream flow is restricted to minor reworking of in-channel debris flow and hyperconcentrated flow deposits.

  9. Quaternary geologic map of the Wolf Point 1° × 2° quadrangle, Montana and North Dakota

    USGS Publications Warehouse

    Fullerton, David S.; Colton, Roger B.; Bush, Charles A.

    2016-01-01

    The Wolf Point quadrangle encompasses approximately 16,084 km2 (6,210 mi2). The northern boundary is the Montana/Saskatchewan (U.S.-Canada) boundary. The quadrangle is in the Northern Plains physiographic province and it includes the Peerless Plateau and Flaxville Plain. The primary river is the Missouri River.The map units are surficial deposits and materials, not landforms. Deposits that comprise some constructional landforms (for example, ground-moraine deposits, end-moraine deposits, and stagnation-moraine deposits, all composed of till) are distinguished for purposes of reconstruction of glacial history. Surficial deposits and materials are assigned to 23 map units on the basis of genesis, age, lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized in pedology or agronomy.  Rather, it is a generalized map of soils recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed.  Glaciotectonic (ice-thrust) structures and deposits are mapped separately, represented by a symbol. The surficial deposits are glacial, ice-contact, glaciofluvial, alluvial, lacustrine, eolian, colluvial, and mass-movement deposits.Till of late Wisconsin age is represented by three map units. Till of Illinoian age also is mapped.  Till deposited during pre-Illinoian glaciations is not mapped, but is widespread in the subsurface.  Linear ice-molded landforms (primarily drumlins), shown by symbol, indicate directions of ice flow during late Wisconsin and Illinoian glaciations. The Quaternary geologic map of the Wolf Point quadrangle, northeastern Montana and North Dakota, was prepared to provide a database for compilation of a Quaternary geologic map of the Regina 4° × 6° quadrangle, United States and Canada, at scale 1:1,000,000, for the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series

  10. A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania

    USGS Publications Warehouse

    Ridge, J.C.; Evenson, E.B.; Sevon, W.D.

    1992-01-01

    In the Delaware Valley of New Jersey and eastern Pennsylvania the late Quaternary history of colluviation, fluvial adjustment, and soil formation is based on the ages of pre-Wisconsinan soils and glacial deposits which are indicated by feld relationships and inferred from mid-latitude climate changes indicated by marine oxygen-isotope records. The area is divided into four terranes characterized by sandstone, gneiss, slate and carbonate rocks. Since the last pre-Wisconsinan glaciation (> 130 ka, inferred to be late Illinoian), each terrane responded differently to chemical and mechanical weathering. During the Sangamon interglacial stage (??? 130-75 ka) in situ weathering is inferred to have occurred at rates greater than transportation of material which resulted in the formation of deep, highly weathered soil and saprolite, and dissolution of carbonate rocks. Cold climatic conditions during the Wisconsinan, on the other hand, induced erosion of the landscape at rates faster than soil development. Upland erosion during the Wisconsinan removed pre-Wisconsinan soil and glacial sediment and bedrock to produce muddy to blocky colluvium, gre??zes lite??es, and alluvial fans on footslopes. Fluvial gravel and overlying colluvium in the Delaware Valley, both buried by late Wisconsinan outwash, are inferred to represent episodes of early and middle Wisconsinan (??? 75-25 ka) upland erosion and river aggradiation followed by river degradation and colluvium deposition. Early-middle Wisconsinan colluvium is more voluminous than later colluvium despite colder, possibly permafrost conditions during the late Wisconsinan ??? 25-10 ka). Extensive colluviation during the early and middle Wisconsinan resulted from a longer (50 kyr), generally cold interval of erosion with a greater availability of easily eroded pre-Wisconsinan surficial materials on uplands than during the late Wisconsinan. After recession of late Wisconsinan ice from its terminal position, soil formation and

  11. Ancient and modern sites of natural CO2 leakage: Geochemistry and geochronology of Quaternary and modern travertine deposits on the Colorado Plateau, USA, and implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Priewisch, A.; Crossey, L. J.; Karlstrom, K. E.; McPherson, B. J.; Mozley, P.

    2013-12-01

    Travertine-precipitating springs and travertine deposits of the Colorado Plateau serve as natural analogues for evaluating potential leakage associated with geologic sequestration of carbon dioxide (CO2). Extensive Quaternary and modern travertine deposits occur along the Jemez lineament and Rio Grande rift in New Mexico and Arizona, and in the Paradox Basin in Utah, along the Little Grand Wash Fault and the Salt Wash Graben. These groundwater discharge deposits are interpreted to be sites of persistent and significant CO2 degassing along faults and above magmatic systems. Analysis of the geochemical and isotopic composition of U-series dated travertine deposits and modern travertine-precipitating waters allows evaluation of the flow paths of CO2-charged waters. Initial results from New Mexico and Arizona travertine deposits show characteristic rare earth element (REE) signatures for individual travertine deposits and yet generally overlap in concentrations of other trace elements such as Al, As, B, Ba, K, and Si. We report stable oxygen and carbon isotopes of the travertines in New Mexico, Arizona, and Utah. Different travertine deposits have different carbon-oxygen isotope variation patterns suggesting that these stable isotopes are tracers that have the ability to identify distinctive groundwater sources within and between spring groups based on the travertine record. Stable isotope analyses of travertine deposits in New Mexico and Arizona overlap substantially between deposits and cluster around -10‰ to -6‰ for δ18O and around 3.5‰ to 6.5‰ for δ13C. Travertine deposits in Utah show a distinctly different range of stable isotope values: δ18O values cluster around -14‰ to -10.5‰ and δ13C around 4.5‰ to 6.5‰. U-series dating of travertine deposits shows episodic travertine formation in New Mexico and Arizona over the last 700,000 years, and travertine accumulation over the last 400,000 years in Utah. We use U-series dating and volumetric

  12. Resistivity imaging of Pleistocene alluvial aquifers in a contractional tectonic setting: A case history from the Po plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Mele, M.; Bersezio, R.; Giudici, M.; Inzoli, S.; Cavalli, E.; Zaja, A.

    2013-06-01

    In this work we present the hydrogeophysical imaging of a key sector of the Quaternary Po foreland basin (northern Italy), focussing on the reconstruction of clastic aquifers and aquitards in a complex tectono-sedimentary subsurface architecture. The study area includes the relic reliefs of Casalpusterlengo and Zorlesco, two smooth morphological features involving uplifted and gently folded Pleistocene marine to alluvial sediments, plausibly linked to the buried Northern Apennines thrust and fold belt. The geophysical data include 35 Direct Current Vertical Electrical Soundings collected over a 37 km2 wide area, acquired with Schlumberger array and maximum half-spacing of 500 m. 1-D resistivity-depth profiles were computed for each VES. An integrated hydrostratigraphic approach was applied, to constrain the interpretation of the geophysical data along several cross-sections, including the comparison of resistivity soundings to stratigraphic logs, borehole electric logs and the pore-water properties. The resistivity interfaces, traceable with the same laterally continuous vertical polarity, were used to develop an electrostratigraphic model in order to portray the stacking of electrostratigraphic units down to 200 m below ground surface. Their vertical associations show a general upward increase of electrical resistivity. This assemblage mimics the regional coarsening upwards depositional trend, from the conductive units of the Plio-Pleistocene marine-to-transitional depositional systems to the resistive units of the Middle-Late Pleistocene fluvial and alluvial plain depositional systems. Middle Pleistocene depositional systems host an alternation of North-dipping, high-to-intermediate permeability aquifer systems (70-180 Ωm, thickness of 5-70 m) separated by low permeability aquitards (20-50 Ωm, thickness up to 40 m). These units pinch out against the Casalpusterlengo and Zorlesco relic reliefs, where they cover the uplifted and folded regional aquitard (20-50

  13. Early Cretaceous stratigraphy, paleontology, and sedimentary tectonics in Paris overthrust foredeep (western Wyoming and southeastern Idaho) compared with Quaternary features of indo-gangetic plain

    SciTech Connect

    Dorr, J.A. Jr.

    1983-08-01

    Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formation - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.

  14. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    NASA Astrophysics Data System (ADS)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  15. Alluvial Fan Delineation from SAR and LIDAR-Derived Digital Elevation Models in the Philippines

    NASA Astrophysics Data System (ADS)

    Aquino, D. T.; Ortiz, I.; Timbas, N.; Gacusan, R.; Montalbo, K.; Eco, R. C.; Lagmay, A.

    2013-12-01

    Occurrence of floods and debris flows leading to the formation of alluvial fans at the base of mountains naturally improve fertility of alluvial plains. However, these formations also have detrimental effects to communities within these zones like the case of Barangay (village) Andap, New Bataan, Compostela Valley where the whole village was wiped out by debris flow when it was hit by Supertyphoon Bopha in 2012. Hence, demarcating the boundaries of alluvial fans is crucial in disaster preparedness and mitigation. This study describes a method to delineate alluvial fans through contour maps from SAR and LiDAR-derived digital elevation models. Based on this data, we used hydrographic apex point polygons to plot the outflow points of upstream watersheds. The watershed and alluvial fan polygons were used to simulate debris flows in the study sites. The fans generated from the flood simulation were consistent with the polygons delineated from the digital elevation model. Satellite imagery and evidences of alluvial deposits found on site revealed 392 alluvial fans in the country. Widest among these is the sprawling 760 sq km fan identified in Cagayan Valley threatening about 434,329 persons at risk of debris flow. Other fans include those identified in Calapan, Mindoro (531 sq km), Kaliwanagan, Pangasinan (436 sq km), Pampanga Alluvial Fan (325 sq km), Mina, Iloilo (315 sq km), Lamsugod, S. Cotabato (286 sq km), in Tignaman, Oton and Alimodian in Iloilo (272 sq km), and the bajada, a series of alluvial fan coalescing to form a larger fan, identified in Ilocos Norte (218 sq km).

  16. Radiocarbon dates and late-Quaternary stratigraphy from Mamontova Gora, unglaciated central Yakutia, Siberia, U.S.S.R.

    USGS Publications Warehouse

    Pewe, T.L.; Journaux, A.; Stuckenrath, R.

    1977-01-01

    A fine exposure of perennially frozen ice-rich silt and associated flora and vertebrate fauna of late-Quaternary age exists at Mamontova Gora along the Aldan River in central Yakutia, Siberia, U.S.S.R. The silt deposit caps a 50-m-high terrace and consists of three units. An upper layer 1-2 m thick overlies a 10-15-m-thick brownish to black silt layer. The lower silt layer is greenish to gray and about 15 m thick. All the silt is well sorted with 60% of the particles falling between 0.005 and 0.5 mm in diameter and is generally chemically and mineralogically homogeneous. The middle unit contains may extinct vertebrate mammal remains and ice wedges. The lower unit contains little vegetation and no ice wedges. The silt is widespread and exists as a loamy blanket on terraces at various elevations on both sides of the lower Aldan River. The origin of the silt blanket of late-Quaternary age in central Yakutia has long been controversial. Various hypotheses have been suggested, including lacustrine and alluvial, as well as frost-action origins. It is sometimes referred to as loess-like loam. Pe??we?? believes the silt at Mamontova Gora is loess, some of which has been retransported very short distances by water. The silt probably was blown from wide, braided, unvegetated flood plains of rivers draining nearby glaciers. The silt deposits are late Quaternary in age and probably associated with the Maximum glaciation (Samarov) and Sartan and Syryan glaciations of Wisconsinan age. On the basis of biostratigraphy, 10 radiocarbon dates, and their relation to the nearby glacial record, it is felt that the upper unit at Mamontova Gora is Holocene and the middle unit is Wisconsinan. The youngest date available from the middle unit at this particular location is 26,000 years. Dates greater than 56,000 years were obtained in the lower part of the middle unit. The lower unit is definitely beyond the range of radiocarbon dating and probably is older than the last interglacial. The

  17. Quaternary geology and geomorphology of the Sacramento-San Joaquin Delta, California: evolution and processes

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Maier, K. L.; Holzer, T. L.; Knudsen, K. L.; Olson, H.; Pagenknopp, M.; Ponti, D. J.; Rosa, C.; Tinsley, J. C.; Wan, E.

    2013-12-01

    The Sacramento-San Joaquin Delta (~1,400 km2) is a combination of tidal marsh, islands and agricultural lands at the confluence of the Sacramento and the San Joaquin Rivers, in northern California. Most of the Delta islands are now 3 to 8 m below sea-level and must be protected by levees from inundation. Because of the Delta's crucial role in conveying fresh water to the State, levee failures can cause substantial economic loss by disrupting this supply. Understanding the evolution of the Delta is fundamental to assess the vulnerability of the Delta islands to seismically-induced levee failure. The modern Delta is a young geological feature that began forming during the middle Holocene. Preceding versions of the Delta hosted a variety of depositional environments as sea level fluctuated, responding to climatically-controlled changes. The rising sea reached the Delta about 8,000 years ago, and modern deltaic evolution continued into Holocene time until present. More accurate stratigraphic studies incorporating depositional ages are required to i) better understand the late Quaternary evolution of the Delta, ii) trace the base of Holocene deposits, iii) identify potentially active faults, and iv) evaluate liquefaction hazard for the Delta . This study uses the large amount of data available on the Delta (collected by the California Department of Water Resources and others during the past 30 years) and merges them into a unified dataset. We have produced a database that includes historic and surficial maps, aerial photographs, boreholes, and CPT data, for the purpose of clarifying the nature of the Quaternary deposits and the evolution of the Late Quaternary Delta. Additionally, we have identified recently discovered Pleistocene tephra as the Rockland ash, ~0.575 Ma, and the Loleta ash, ~0.40-0.37 Ma, which have improved stratigraphic correlations and assessment of subsidence rates. Delta sediments include sequences of glacial and interglacial deposits. Borehole logs

  18. Report from working group on alluvial pedogenesis

    USGS Publications Warehouse

    Autin, W.J.; Aslan, A.; Bettis, E.A.; Walthall, P.M.

    1998-01-01

    These uses illustrate the complexity of alluvial pedogenesis as it relates to the analysis and interpretation of paleosols. Difficulties with interpretations of alluvial paleosols are probably greatest when applied to the preserved sedimentary record, where direct evidence of paleolandscape variability is scanty or lacking.

  19. Directional scales of heterogeneity in alluvial fan aquifers

    SciTech Connect

    Neton, M.J.; Dorsch, J.; Young, S.C.; Olson, C.D. . Dept. of Geological Sciences Tennessee Valley Authority Engineering Lab., Norris, TN )

    1992-01-01

    Abrupt lateral and vertical permeability changes of up to 12 orders of magnitude are common in alluvial fan aquifers due to depositional heterogeneity. This abrupt heterogeneity is problematic, particularly in construction of a continuous hydraulic conductivity field from point measurements. Site characterization is improved through use of a scale-and-directionally-related model of fan heterogeneities. A directional classification of alluvial fan aquifer heterogeneities is proposed. The three directional scales of heterogeneity in alluvial fan aquifers are: (1) within-fan, (2) between-fan (strike-parallel), and (3) cross-fan (strike-perpendicular). Within-fan heterogeneity ranges from very small-scale intergrain relationships which control the nature of pores, to larger scale permeability trends between fan apex and toe, and includes abrupt lateral and vertical facies relationships. Between-fan heterogeneities are of a larger-scale and include differences between adjacent (non)coalescent fans along a basin-margin fault due primarily to changes in lithology between adjacent upland source basins. These differences produce different (a) grain and pore fluid compositions, (b) lithologic facies and proportions, and (c) down-fan fining trends, between adjacent fans. Cross-fan heterogeneities extend from source to basin. Fan deposits are in abrupt contact upgradient with low permeability, basin-margin source rock. Downgradient, fan deposits are in gradational to abrupt contact with time-equivalent, generally lower permeability deposits of lake, desert, longitudinal braided and meandering river, volcanic, and shallow marine environments. Throughout basin history these environments may abruptly cover the fan with low permeability horizons.

  20. Floodplain morphology, sedimentology, and development processes of a partially alluvial channel

    NASA Astrophysics Data System (ADS)

    Thayer, James B.; Ashmore, Peter

    2016-09-01

    The floodplain morphology, sediment deposits, and development mechanisms of a partially alluvial, low-moderate energy channel flowing over a mixed gravel/cobble-till bed are investigated and compared to existing ideas of floodplain development. The findings partially support the idea of a floodplain developed through lateral accretion capped with vertically accreted sediments as predicted by the energy-based classification scheme of Nanson and Croke (1992), though oblique accretion and partial channel avulsion are also important. Channel migration consists of limited cross-valley migration and downstream meander translation. Because of low channel sinuosity, well-formed neck cutoffs are rare, and instead the channel cuts headward along the insides of confined or underdeveloped meander bends forming a localized anabranching pattern. The floodplain architecture can be divided into gravel bar and bed deposits (GB), lateral accretion deposits (LA), overbank deposits (FF), and abandoned channel deposits (FF(CH)), which are described with four alluvial facies. Owing to the limited supply of coarse and fine sediment, none of the architectural elements are particularly thick, with total floodplain thickness being < 3 m. Floodplain development for partially alluvial channels is compared within a new floodplain discrimination framework. Comparisons with common facies models of single-thread, coarse-grained channels show important differences that suggest that the floodplain deposits and formative processes described herein represent a subset of single-thread systems that may be common in partially alluvial channels, particularly in slightly sinuous, coarse-grained channels of low-moderate energy with partly confined floodplains.

  1. The paradox of large alluvial rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.

    2010-12-01

    Large alluvial rivers exhibit large floodplains, very gentle slopes, a good selection of bed materials (generally sand), low specific stream power, and could represent the ultimate examples of “dynamic equilibrium” in fluvial systems. However, equilibrium can be discussed at different temporal scales. Base level changes by tectonic or climatic effects, modifications in sediment and water supply or different kinds of human impacts are the traditional causes that could trigger “disequilibrium” and changes in the longitudinal profile. Simultaneously, adjustments of longitudinal profiles were thought to be evolving from downstream to upstream by several processes, being the most common receding erosion. Some authors,have demonstrated that when changes in base level happen, a variety of adjustments can be reached in the lower course in function of the available sediment and water discharge, slopes articulations between the fluvial reach and the continental shelve, among others, and that the adjustments can be transferred upstream significantly in small rivers but not far upstream along large fluvial systems. When analyzing the Quaternary fluvial belts of large rivers in the millennium scale, paleohydrological changes and modifications in floodplain constructional processes or erosion, are associated normally to late Quaternary climatic changes. The study of several of the largest rivers demonstrates that climatic changes and fluvial responses are not always working totally in phase and those direct cause-consequences relations are not a rule. This paper describes floodplain evolution and the lagged geomorphic responses of some large river system to recent climatic changes. Information from some of the largest rivers of the world such as the Amazon, Parana, several tributaries of the Amazon (Negro, Xingú, Tapajos) as well as some large Siberian Rivers was used. Since the last deglaciation, these large fluvial systems have not had enough time to reach equilibrium

  2. Bedload transport in alluvial channels

    USGS Publications Warehouse

    Bravo-Espinosa, M.; Osterkamp, W.R.; Lopes, V.L.

    2003-01-01

    Hydraulic, sediment, land-use, and rock-erosivity data of 22 alluvial streams were used to evaluate conditions of bedload transport and the performance of selected bedload-transport equations. Transport categories of transport-limited (TL), partially transport-limited (PTL), and supply-limited (SL) were identified by a semiquantitative approach that considers hydraulic constraints on sediment movement and the processes that control sediment availability at the basin scale. Equations by Parker et al. in 1982, Schoklitsch in 1962, and Meyer-Peter and Muller in 1948 adequately predicted sediment transport in channels with TL condition, whereas the equations of Bagnold in 1980, and Schoklitsch, in 1962, performed well for PTL and SL conditions. Overall, the equation of Schoklitsch predicted well the measured bedload data for eight of 22 streams, and the Bagnold equation predicted the measured data in seven streams.

  3. Sedimentary and microfaunal evolution in the Quaternary deposits in El Akarit river mouth (Gulf of Gabes, Tunisia): Paleo-environments and extreme events

    NASA Astrophysics Data System (ADS)

    Ben Rouina, Soumaya; Bassetti, Maria Angela; Touir, Jamel; Trabelsi, Khaled; Berne, Serge

    2016-09-01

    The quantitative study of ostracod and benthic foraminifera assemblages coupled with sedimentary facies, of the AK1 core (6 m-long) retrieved from the El Akarit prodelta (Gulf of Gabes, SE Tunisia) at an elevation of 0 m, enabled us to better understand the dynamics of depositional environments and to identify different stages of the Akarit river mouth evolution. Two major steps were identified: the first (>40,000 yr BP) possibly coincides with the Marine Isotope Stage 5e, onlapping continental Pleistocene deposits. It allowed the settlement of an open lagoon rich in marine microfauna that has become progressively more confined. The second one, late Holocene in age (last 3000 yr BP) is the succession of three extreme events episodes, characterized by very high-energy hydrodynamics and possibly linked to the occurrence of major storms and/or floods.

  4. The “Alluvial Mesovoid Shallow Substratum”, a New Subterranean Habitat

    PubMed Central

    Ortuño, Vicente M.; Gilgado, José D.; Jiménez-Valverde, Alberto; Sendra, Alberto; Pérez-Suárez, Gonzalo; Herrero-Borgoñón, Juan J.

    2013-01-01

    In this paper we describe a new type of subterranean habitat associated with dry watercourses in the Eastern Iberian Peninsula, the “Alluvial Mesovoid Shallow Substratum” (alluvial MSS). Historical observations and data from field sampling specially designed to study MSS fauna in the streambeds of temporary watercourses support the description of this new habitat. To conduct the sampling, 16 subterranean sampling devices were placed in a region of Eastern Spain. The traps were operated for 12 months and temperature and relative humidity data were recorded to characterise the habitat. A large number of species was captured, many of which belonged to the arthropod group, with marked hygrophilous, geophilic, lucifugous and mesothermal habits. In addition, there was also a substantial number of species showing markedly ripicolous traits. The results confirm that the network of spaces which forms in alluvial deposits of temporary watercourses merits the category of habitat, and here we propose the name of “alluvial MSS”. The “alluvial MSS” may be covered or not by a layer of soil, is extremely damp, provides a buffer against above ground temperatures and is aphotic. In addition, compared to other types of MSS, it is a very unstable habitat. It is possible that the “alluvial MSS” may be found in other areas of the world with strongly seasonal climatic regimes, and could play an important role as a biogeographic corridor and as a refuge from climatic changes. PMID:24124544

  5. Response to “Comment on 'The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site', by David Lang et al.”

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Foster, Gavin L.; Bolton, Clara T.; Friedrich, Oliver; Gutjahr, Marcus

    2014-11-01

    In volume 93 of Quaternary Science Reviews we published a new record of terrigenous inputs to Integrated Ocean Drilling Program (IODP) Site U1313 that tracks the history of aeolian dust deposition in the North Atlantic Ocean and aridity on North America during the late Pliocene-earliest Pleistocene intensification of northern hemisphere glaciation (iNHG, 3.3 to 2.4 Ma). Naafs et al. (2014) are generally supportive but question one of our conclusions, specifically our argument that "glacial grinding and transport of fine grained sediments to mid latitude outwash plains is not the fundamental mechanism controlling the magnitude of the flux of higher plant leaf waxes from North America to Site U1313 during iNHG." They suggest that our argument is predominantly based on our observation that the relationship between sediment lightness (L*)-based terrigenous inputs and dust-derived biomarkers, which is observed to be linear elsewhere (Martínez-Garcia et al., 2011), is non-linear at Site U1313.

  6. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    NASA Astrophysics Data System (ADS)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-01-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  7. Clay Mineralogy of AN Alluvial Aquifer in a Mountainous, Semiarid Terrain, AN Example from Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Elliott, W. C.; Lim, D.; Zaunbrecher, L. K.; Pickering, R. A.; Williams, K. H.; Navarre-Sitchler, A.; Long, P. E.; Noel, V.; Bargar, J.; Qafoku, N. P.

    2015-12-01

    Alluvial sediments deposited along the Colorado River corridor in the semi-arid regions of central to western Colorado can be important hosts for legacy contamination including U, V, As and Se. These alluvial sediments host aquifers which are thought to provide important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface. Relatively little is known about the clay mineralogy of these alluvial aquifers and the parent alluvial sediments in spite of the fact that they commonly include lenses of silt-clay materials. These lenses are typically more reduced than coarser grained materials, but zones of reduced and more oxidized materials are present in these alluvial aquifer sediments. The clay mineralogy of the non-reduced parent alluvial sediments of the alluvial aquifer located in Rifle, CO (USA) is composed of chlorite, smectite, illite, kaolinite and quartz. The clay mineralogy of non-reduced fine-grained materials at Rifle are composed of the same suite of minerals found in the sediments plus a vermiculite-smectite intergrade that occurs near the bottom of the aquifer near the top of the Wasatch Formation. The clay mineral assemblages of the system reflect the mineralogically immature character of the source sediments. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate and suggestive of minimal transport of the alluvial sediments from their source areas. Chlorite, smectite, smectite-vermiculite intergrade, and illite are the likely phases involved in the sorption of organic carbon and related microbial redox transformations of metals in these sediments. Both the occurrence and abundance of chlorite, smectite-vermiculite, illite and smectite can therefore exert an important control on the contaminant fluxes and are important determinants of biogeofacies in mountainous, semiarid terrains.

  8. Hydrological connectivity of alluvial Andean valleys: a groundwater/surface-water interaction case study in Ecuador

    NASA Astrophysics Data System (ADS)

    Guzmán, Pablo; Anibas, Christian; Batelaan, Okke; Huysmans, Marijke; Wyseure, Guido

    2016-06-01

    The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW-SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW-SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW-SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW-SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.

  9. The provenance of Borneo's enigmatic alluvial diamonds

    NASA Astrophysics Data System (ADS)

    White, Lloyd; Graham, Ian; Tanner, Dominique; Hall, Robert; Armstrong, Richard; Yaxley, Greg; Barron, Larry; Spencer, Lee; van Leeuwen, Theo

    2016-04-01

    Gem-quality diamonds occur in several alluvial deposits across central and southern Borneo. Borneo has been a known source of diamonds for centuries, but the location of their primary igneous source remains enigmatic. Numerous geological models have been proposed to explain the distribution of Borneo's diamonds. To assess these models, we used a variety of techniques to examine heavy minerals from Kalimantan's Cempaka paleoalluvial diamond deposit. This involved collecting U-Pb isotopic data, fission track and trace element geochemistry of zircon as well as major element geochemical data of spinels and morphological descriptions of zircon and diamond. Our results indicate that the Cempaka diamonds were likely derived from at least two sources, one which was relatively local and/or involved little reworking, and the other more distal recording several periods of reworking. The distal diamond source is interpreted to be diamond-bearing pipes that intruded the basement of a block that: (1) rifted from northwest Australia (East Java or SW Borneo) and the diamonds were recycled into its sedimentary cover, or: (2) were emplaced elsewhere (e.g. NW Australia) and transported to a block (e.g. East Java or SW Borneo). Both of these scenarios require the diamonds to be transported with the block when it rifted from NW Australia in the Late Jurassic. The 'local' diamonds could be associated with ophiolitic rocks that are exposed in the nearby Meratus Mountains, or could be diamondiferous diatremes associated with eroded Miocene high-K alkaline intrusions north of the Barito Basin. If this were the case, these intrusions would indicate that the lithosphere beneath SW Borneo is thick (~150 km or greater).

  10. Are North Slope surface alluvial fans pre-Holocene relicts?

    USGS Publications Warehouse

    Reimnitz, Erk; Wolf, Stephen C.

    1998-01-01

    The surface morphology of the northern slope of the Brooks Range (North Slope) from the Canning River, Alaska, eastward is dominated by a series of large alluvial fans and braided streams floored by coarse alluvium. On the basis of our studies, we conclude that the fans are not prograding now nor have they been prograding at any time during the Holocene. During the latest transgression and the following sea-level highstand, the North Slope depositional environment and climate probably differed greatly from the present ones.

  11. Quaternary dust sources on the Chinese Loess Plateau: a view from single zircon grains, heavy minerals and quartz luminescence

    NASA Astrophysics Data System (ADS)

    Stevens, T.; Carter, A.; Vermeesch, P.; Bird, A.; Rittner, M.; Lu, H.; Andò, S.; Garzanti, E.; Nie, J.; Adamiec, G.; Zeng, L.; Zhang, H.; Xu, Z.

    2013-12-01

    The origin of loess deposits on the Chinese Loess Plateau (CLP), one of the most valuable Cenozoic climate archives on land, is the subject of considerable debate. A large number of sources have been proposed for the vast quantity of dust that forms the up to 400 m thick loess sequences that cover the c. 640,000 km2 the CLP, including deserts, alluvial fans and mountain regions. There is also debate over whether sources shift across the CLP, within loess units, between units and across the Quaternary/Pliocene boundary. Furthermore, the role of river systems in sediment supply to the CLP has not previously been substantively addressed. Geochemical analysis of bulk sediment from loess is limited by mixing of different source influences and so here we apply a variety of techniques to Quaternary sequences on the CLP. We use single-grain based techniques on zircons and heavy mineral analyses in an attempt to discriminate between potential multiple sources and to test the influence of proximal deserts and major rivers on CLP dust. In addition, we utilise information from detailed optically stimulated luminescence dating of quartz from loess to identify rapid shifts in source region on the CLP. Provenance signatures from samples from the eastern Mu Us and the Tengger deserts can be explained by local sources and recycling of the underlying Cretaceous rock. However, the western Mu Us desert as well as Quaternary loess shows different zircon U-Pb age spectra and heavy mineral distributions, indicative of strong influence from northeastern Tibet. Further, samples from the Yellow River are close to identical to these western Mu Us samples and crucially, also to Quaternary samples from the Loess Plateau. This suggests that the Tibetan-derived sediments are unlikely to have been transported from Tibet by wind, but rather may have been delivered by the Yellow River. This provides the first evidence of a possible genetic link between the Yellow River and the CLP. However, there

  12. Quaternary vertebrates from Greenland: A review

    NASA Astrophysics Data System (ADS)

    Bennike, Ole

    Remains of fishes, birds and mammals are rarely reported from Quaternary deposits in Greenland. The oldest remains come from Late Pliocene and Early Pleistocene deposits and comprise Atlantic cod, hare, rabbit and ringed seal. Interglacial and interstadial deposits have yielded remains of cod, little auk, collared lemming, ringed seal, reindeer and bowhead whale. Early and Mid-Holocene finds include capelin, polar cod, red fish, sculpin, three-spined stickleback, Lapland longspur, Arctic hare, collared lemming, wolf, walrus, ringed seal, reindeer and bowhead whale. It is considered unlikely that vertebrates could survive in Greenland during the peak of the last glaciation, but many species had probably already immigrated in the Early Holocene.

  13. Fossil spring deposits in the southern Great Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada, during quaternary time

    SciTech Connect

    Quade, J.; Mifflin, M.D.; Pratt, W.L.; McCoy, W.; Burckle, L.

    1995-02-01

    The proposed high-level nuclear waste repository at Yucca Mountain will be located nearly 200-400 m above the modern water table. Water tables will rise in response to a future return to glacial climates, but the magnitude of the change - and the consequences for radionuclide travel times and overall repository integrity - are key uncertainties. Increased recharge during past pluvial periods in the Spring Mountains and Sheep Range caused water tables to rise and ground water to discharge over broad expanses of the Las Vegas Valley system, and in nearby Pahrump, Sandy, and Coyote Springs Valleys. The change in water-table levels since the last full glacial period varies between and within valleys, from as little as 10 m in several areas to 95 m in the Coyote Springs Valley. At Yucca Mountain, the water table has probably changed by {le}115 m in response to climate change. The spring deposits and the mollusk faunas found with them, often misinterpreted as lacustrine in origin, share many essential features with active spring systems in northeast Nevada. Deposits associated with discharge mainly consist of pale brown silt and sand that is entrapped by dense stands of phreatophytes covering valley bottoms when water tables are high. 81 refs., 13 figs., 6 tabs.

  14. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Dolan, James F.

    2007-06-01

    Range-front alluvial fan deposition in arid environments is episodic and results in multiple fan surfaces and ages. These distinct landforms are often defined by descriptions of their surface morphology, desert varnish accumulation, clast rubification, desert pavement formation, soil development, and stratigraphy. Although quantifying surface roughness differences between alluvial fan units has proven to be difficult in the past, high-resolution airborne laser swath mapping (ALSM) digital topographic data are now providing researchers with an opportunity to study topography in unprecedented detail. Here we use ALSM data to calculate surface roughness on two alluvial fans in northern Death Valley, California. We define surface roughness as the standard deviation of slope in a 5-m by 5-m moving window. Comparison of surface roughness values between mapped fan surfaces shows that each unit is statistically unique at the 99% confidence level. Furthermore, there is an obvious smoothing trend from the presently active channel to a deposit with cosmogenic 10Be and 36Cl surface exposure ages of ˜70 ka. Beyond 70 ka, alluvial landforms become progressively rougher with age. These data suggest that alluvial fans in arid regions smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces.

  15. Alluvial fans and fan deltas: a guide to exploration for oil and gas

    SciTech Connect

    Fraser, G.S.; Suttner, L.

    1986-01-01

    This volume is a result of a series of lectures presented to an oil company in 1985 and is intended for an audience of explorationists. Material is presented in the order in which an exploration program might proceed in a frontier area. The volume is divided into six chapters that cover definitions and tectonic setting, alluvial-fan morphology, processes and facies on alluvial fans, geomorphic controls, effects of extrinsic controls (chiefly tectonism and climate) on alluvial-fan sequences, and diagenesis. Previously published black-and-white line drawings from studies of modern and ancient fans and fan deltas provide almost all the illustrative material; only one photograph is included, an aerial view of fans in part of Death Valley. The authors emphasize the complexity and variability of fan deposits and their resultant architecture. Although the volume contains a useful review of previous literature, it contains little new material, and it is remarkably lacking subsurface examples and data for a volume intended for the exploration community. In addition, fan deltas receive only brief attention; the overwhelming part of the book is devoted to alluvial fans. The volume will be of interest to those involved in studies of modern and ancient alluvial-fan deposits. 165 references.

  16. Late Pleistocene-Holocene alluvial stratigraphy of southern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Antinao, José Luis; McDonald, Eric; Rhodes, Edward J.; Brown, Nathan; Barrera, Wendy; Gosse, John C.; Zimmermann, Susan

    2016-08-01

    A late Pleistocene to Holocene alluvial stratigraphy has been established for the basins of La Paz and San José del Cabo, in the southern tip of the Baja California peninsula, Mexico. Six discrete alluvial units (Qt1 through Qt6) were differentiated across the region using a combination of geomorphologic mapping, sedimentological analysis, and soil development. These criteria were supported using radiocarbon, optically stimulated luminescence and cosmogenic depth-profile geochronology. Major aggradation started shortly after ∼70 ka (Qt2), and buildup of the main depositional units ended at ∼10 ka (Qt4). After deposition of Qt4, increasing regional incision of older units and the progressive development of a channelized alluvial landscape coincide with deposition of Qt5 and Qt6 units in a second, incisional phase. All units consist of multiple 1-3 m thick alluvial packages deposited as upper-flow stage beds that represent individual storms. Main aggradational units (Qt2-Qt4) occurred across broad (>2 km) channels in the form of sheetflood deposition while incisional stage deposits are confined to channels of ∼0.5-2 km width. Continuous deposition inside the thicker (>10 m) pre-Qt5 units is demonstrated by closely spaced dates in vertical profiles. In a few places, disconformities between these major units are nevertheless evident and indicated by partly eroded buried soils. The described units feature sedimentological traits similar to historical deposits formed by large tropical cyclone events, but also include characteristics of upper-regime flow sedimentation not shown by historical sediments, like long (>10 m) wavelength antidunes and transverse ribs. We interpret the whole sequence as indicating discrete periods during the late Pleistocene and Holocene when climatic conditions allowed larger and more frequent tropical cyclone events than those observed historically. These discrete periods are associated with times when insolation at the tropics was

  17. The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia).

    PubMed

    Benito-Calvo, Alfonso; Barfod, Dan N; McHenry, Lindsay J; de la Torre, Ignacio

    2014-11-01

    This paper presents the Quaternary sequence of the Mieso area of Central-East Ethiopia, located in the piedmont between the SE Ethiopian Escarpment and the Main Ethiopian Rift-Afar Rift transition sector.In this region, a piedmont alluvial plain is terraced at þ25 m above the two main fluvial courses, the Mieso and Yabdo Rivers. The piedmont sedimentary sequence is divided into three stratigraphic units separated by unconformities. Mieso Units I and II contain late Acheulean assemblages and a weakly consolidated alluvial sequence, consisting mainly of fine sediments with buried soils and, to a lesser degree, conglomerates. Palaeo-wetland areas were common in the alluvial plain, represented by patches of tufas, stromatolites and clays. At present, the piedmont alluvial surface is preserved mainly on a dark brown soil formed at the top of Unit II. Unit III corresponds to a fluvial deposit overlying Unit II, and is defined by sands, silty clays and gravels, including several Later Stone Age (LSA) occurrences. Three fine-grained tephra levels are interbedded in Unit I (tuffs TBI and TA) and II (tuff CB), and are usually spatially-constrained and reworked. Argon/argon (40Ar/39Ar) dating from tuff TA, an ash deposit preserved in a palustrine environment, yielded an age of 0.212 ± 0.016 Ma (millions of years ago). This date places thetop of Unit I in the late Middle Pleistocene, with Acheulean sites below and above tuff TA. Regional correlations tentatively place the base of Unit I around the Early-Middle Pleistocene boundary, Unit II inthe late Middle Pleistocene and within the Late Pleistocene, and the LSA occurrences of Unit III in the LatePleistoceneeHolocene. PMID:25440135

  18. Shapefile of the Elevation of the Bedrock Surface Beneath the Rocky Flats Alluvial Fan, Boulder and Jefferson Counties, Colorado

    USGS Publications Warehouse

    Knepper, Daniel H.

    2003-01-01

    The Rocky Flats alluvial fan is a large early Pleistocene gravel deposit at the mouth of Coal Creek Canyon along the eastern flank of the Colorado Front Range in Jefferson and Boulder Counties, Colorado. Elevations of the bedrock surface beneath the alluvial fan gravels have been compiled at selected points from a variety of sources and recorded in a digital dataset suitable for importing into commonly used GIS and image processing software packages.

  19. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    USGS Publications Warehouse

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could

  20. Dispersion in alluvial convergent estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2016-04-01

    The Van der Burgh's equation for longitudinal effective dispersion is a purely empirical method with practical implications. Its application to the effective tidal average dispersion under equilibrium conditions appears to have excellent performance in a wide range of alluvial estuaries. In this research, we try to find out the physical meaning of Van der Burgh's coefficient. Researchers like MacCready, Fischer, Kuijper, Hansen and Rattray have tried to split up dispersion into its constituents which did not do much to explain overall behaviour. In addition, traditional literature on dispersion is mostly related to flumes with constant cross-section. This research is about understanding the Van der Burgh's coefficient facing the fact that natural estuaries have exponentially varying cross-section. The objective is to derive a simple 1-D model considering both longitudinal and lateral mixing processes based on field observations (theoretical derivation). To that effect, we connect dispersion with salinity using the salt balance equation. Then we calculate the salinity along the longitudinal direction and compare it to the observed salinity. Calibrated dispersion coefficients in a range of estuaries are then compared with new expressions for the Van der Burgh's coefficient K and it is analysed if K varies from estuary to estuary. The set of reliable data used will be from estuaries: Kurau, Perak, Bernam, Selangor, Muar, Endau, Maputo, Thames, Corantijn, Sinnamary, Mae Klong, Lalang, Limpopo, Tha Chin, Chao Phraya, Edisto and Elbe.

  1. Geomorphic Processes and Remote Sensing Signatures of Alluvial Fans in the Kun Lun Mountains, China

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Chadwick, Oliver A.

    1996-01-01

    The timing of alluvial deposition in arid and semiarid areas is tied to land-surface instability caused by regional climate changes. The distribution pattern of dated deposits provides maps of regional land-surface response to past climate change. Sensitivity to differences in surface roughness and composition makes remote sensing techniques useful for regional mapping of alluvial deposits. Radar images from the Spaceborne Radar Laboratory and visible wavelength images from the French SPOT satellite were used to determine remote sensing signatures of alluvial fan units for an area in the Kun Lun Mountains of northwestern China. These data were combined with field observations to compare surface processes and their effects on remote sensing signatures in northwestern China and the southwestern United States. Geomorphic processes affecting alluvial fans in the two areas include aeolian deposition, desert varnish, and fluvial dissection. However, salt weathering is a much more important process in the Kun Lun than in the southwestern United States. This slows the formation of desert varnish and prevents desert pavement from forming. Thus the Kun Lun signatures are characteristic of the dominance of salt weathering, while signatures from the southwestern United States are characteristic of the dominance of desert varnish and pavement processes. Remote sensing signatures are consistent enough in these two regions to be used for mapping fan units over large areas.

  2. Morphometric Characterization and Classification of Alluvial Fans in Eastern Oman

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Mattern, Frank; van Gasselt, Stephan

    2015-04-01

    Morphologic characteristics of alluvial fans are a product of fluvial erosion, transportation and deposition. Consequently, fans have been described and defined on the basis of their shape, their composition, conditions and processes under which they from, their so-called "controlling factors", and their geomorphic and tectonic settings. The aim of our study is to reconstruct the morphologic evolution and to relate it to past and present climate conditions. In order to achieve this, we first characterize alluvial fans based on their climatic settings and conditions and classify them accordingly using satellite image data and digital elevation models. For mapping of different alluvial fan bodies multispectral images of the Landsat Enhanced Thematic Mapper (ETM+) with a scale of 15-30 m/px were utilized. For the detection of morphometric parameters as input data for subsequent hydrological studies digital terrain model data of the Shuttle Radar Topography Mission (SRTM) and the ASTER GDEM with a scale of 90 m/px and 30m, respectively, were used. Using these datasets morphological characteristics, such as sizes of drainage basins, transport areas and areas of deposition derived from spatial semi-automatic analysis, have been computed. The area of Muscat at the Oman Mountains has been selected as a study area because of its size, accessibility and climate conditions and it is considered well-suited for studying the development of alluvial fans and their controlling factors. The Oman Mountains are well-known for the world's largest intact and best exposed obducted ophiolite complex, the Semail Ophiolite. They are today subjected to a mild desert climate (Bwh), influenced by the Indian Ocean but they have experienced extensive pluvial periods in the geologic past. Formation of alluvial fans was, therefore, likely triggered by the interplay of increased sediment production caused by high rainfalls with enhanced erosion of hillslopes and transport rates during pluvial

  3. Quaternary Faults and Basin-fill Sediments of the Las Vegas Basin, Southern Nevada

    NASA Astrophysics Data System (ADS)

    Taylor, W. J.; Fossett, E.; Luke, B.; Snelson, C.; Rasmussen, T.; McCallen, D.; Rodgers, A.; Louie, J.

    2003-12-01

    The N-S elongated extensional Las Vegas basin, southern Nevada, contains 100's of meters of Cenozoic basin-fill sediments that are cut by several Quaternary (Q) faults. These faults define or influence the basin geometry. The basin is generally an asymmetrical half graben defined by the W-dipping, Q Frenchman Mountain fault (FMF) along its E side and a series of smaller offset E-dipping faults to the W. The N terminus of the basin is controlled by the Las Vegas Valley shear zone, along which the majority of the offset occurred prior to the Q. Here, we asses the influence of the Q faults on the distribution of the sedimentary units. Well, exposure, seismic reflection and seismic refraction data show that sedimentary units of different grain sizes or seismic velocity dominate different parts of the basin. Sections dominated by coarse clastic deposits occupy a narrow area along the E side of the basin. Coarse clastic sediments are mixed with finer grained sediments in a broader area along the W side of the basin. Based on provenance and alluvial fan distribution, the coarse deposits along the E side of the basin appear to be trapped in close proximity to the W-dipping FMF. The coarse-grained deposits along the opposite, W side of the basin, are sourced from the nearby Spring Mountains. Because of the structural asymmetry of the basin, these sediments traveled farther from their source area than those on the E side. Some of these E-dipping faults influence the depth to Paleozoic bedrock and some faults form small sub-basins filled with finer grained sediments. Along a WNW trend near the center of the basin and near the present-day Las Vegas Wash, a change in the grain size distribution occurs up stratgraphic section: continuous clay layers are less common and coarse-grained deposits are more common. This difference may reflect a change from internal drainage early in the basin history to external drainage through the Las Vegas Wash in the latter history of the basin

  4. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto

    2016-05-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays and sheet sands triggered by above-normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all 12 tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. The data suggest that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid-to-late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a yearly to decadal timescale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  5. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, U.

    2015-10-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays triggered by above normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all the twelve tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. I found that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid- to late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a year to decade time scale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  6. Paleobiogeoclimatic scenarios of the Late Quaternary inferred from fluvial deposits of the Quadrilátero Ferrífero (Southeastern Brazil)

    NASA Astrophysics Data System (ADS)

    Barros, Luiz Fernando de Paula; Coe, Heloísa Helena Gomes; Seixas, Amanda Pacheco; Magalhães, Antônio Pereira, Jr.; Macario, Kita Chaves Damasio

    2016-04-01

    The Quadrilátero Ferrífero is an important mineral province in Southeastern Brazil and has one of the largest iron ore reserves in the world. Previous work in this region has indicated that the formation of fluvial successions with duricrusts coincided with drier/cooler climatic phases alternating with moister/warmer periods during which the formation of fluvial successions without duricrusts occurred. For the construction of this proposal, ages of fluvial sediments obtained through Optically Stimulated Luminescence (OSL) were associated with data from the literature on paleobioclimatic scenarios. Therefore, using these observations as a starting point, this paper aims to investigate evidence of bioclimatic oscillations obtained directly from the fluvial successions and discuss its influence on the geomorphogenis of local river valleys. For this purpose, phytolith, carbon isotope and granulometric analyses were carried out, as well as dating of sediments using OSL and of soil organic matter through radiocarbon. The results show that in the oldest depositional succession (DS1 - about 34ka) the predominant phytoliths are those of bulliform polyedric, elongate, acicular and globular granulate types and δ13C values are typical of C3 plants. On the other hand, despite having a similar phytolith assemblage (abundance of bulliform polyedric, elongate, bulliform cuneiform, acicular, globular psilate and bilobate flat/concave types), the fluvial successions associated with significant conglomeratic duricrusts (DS2 and DS3) present a dominance of δ13C values characteristic of C4 plants. The Bi index indicates water stress in all the successions, and the Ic index suggests decreasing temperatures with depth in DS3. Thus, the three fluvial successions indicate a savanna-like environment, but depositional successions DS2 (∼27ka) and DS3 show drier/cooler climatic conditions when compared to DS1 and to the present-day regime. Both scenarios evolved under conditions of the

  7. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  8. Geometry and evolution of a syntectonic alluvial fan, Southern Pyrenees

    SciTech Connect

    Arminio, J.F. ); Nichols, G.J. )

    1993-02-01

    Syntectonic alluvial fans formed on the northern margin of the Ebro Foreland Basin along the South Pyrenean thrust front during late orogenic thrust movements in the late Oligocene/early Miocene. The present-day geometry, structural relations and sedimentology of one of these fans, the Aguero fan in the province of Huesca, Spain, were studied. Field observations of the architecture of depositional facies and the geometries of syn-tectonic folds and unconformities indicate that the Aguero fan formed as the result of several phases of sedimentation which were primarily controlled by periods of tectonic activity and quiescence. The syntectonic unconformities and growth folds in the fan deposits provide a detailed record of the evolution of a fan adjacent to an active thrust front. Using a computer program to simulate sedimentation and deformation of an alluvial fan it is possible to constrain rates of both sedimentary and tectonic processes by modeling the evolution of the fan body. A facies model for the fan phases indicates that the facies change from proximal (coarse-grained, amalgamated) to distal (finger grained, stacked fining up cycles) in less than 1 km across a fan of radius estimated to be about 2 km.

  9. Architecture of a Coarse-Grained Upper Middle Cambrian Alluvial Delta Dominated by Braidplain and Gilbert-Style Delta Components

    NASA Astrophysics Data System (ADS)

    Pound, K. S.

    2014-12-01

    The ~500-m thick upper Middle Cambrian Lockett Conglomerate was deposited as part of an alluvial delta that includes Gilbert-type mega-crossbeds as well as braidplain conglomerates, and was constructed across an accretionary prism. Internal Lockett Conglomerate architecture indicates at least three phases of progradation are recorded by Gilbert-type, delta-front deposits that are separated by delta-top distributaries and/or braidplain deposits, all of which form discontinuous sheets and lenses, and record aggradation. Evaluation of sedimentary features (particle size and organization, bedding features) allows identification of eight facies within the Lockett Conglomerate; sedimentary features were used to infer transportational and depositional mechanisms. Conglomerate facies HL-1 - HL-8 were assigned to one or more of the following depositional associations: Beachface/shoreface, Deltafront, Alluvial fan, Braidplain (fluvial, unchannelized), Delta-top distributaries, and Mouth-bars. A series of Depositional Packages was identified, and mapped; integration with measured sections allowed development of a facies model for an alluvial delta in which the subaerial component is dominated by the braidplain association, and the subaqueous component by the (Gilbert-type) deltafront association as well as the delta-top distributary and mouthbar associations. Locally, the beachface association marks the transition between the subaqueous and subaerial components of the alluvial delta. Alluvial fan deposits are absent, but the rounded pebbles, cobbles and boulders with a new and distinctive provenance signature indicate derivation from a newly exposed igneous and metamorphic basement, and abrasion during transport through the fluvial (braidplain) system prior to deposition as part of the alluvial delta.

  10. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Beer, Christopher J.; Bolton, Clara T.; Friedrich, Oliver; Newsam, Cherry; Spencer, Megan R.; Gutjahr, Marcus; Foster, Gavin L.; Cooper, Matthew J.; Milton, J. Andrew

    2014-06-01

    We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (δ13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (˜3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high

  11. Finite Amplitude Bars in Mixed Bedrock-Alluvial River Channel Bends

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Seminara, G.; Bolla Pittaluga, M.

    2012-12-01

    A common and well-understood feature of alluvial rivers is the tendency for channel curvature to induce bed deformations, producing a point bar on the inner bank and scour on the outer bank. However, for mixed bedrock-alluvial rivers, where the amount of sediment supplied from upstream is less than the local sediment transport capacity, our understanding of this phenomenon is less clear. Our goal here is to develop a theory capable of answering the question: How does channel curvature influence sediment deposition and bedrock exposure in mixed bedrock-alluvial rivers? We have developed a nonlinear asymptotic theory of fully developed flow and bed topography in a wide channel of constant curvature to describe finite-amplitude perturbations of bottom topography, subject to an inerodible bedrock layer. The flow field is evaluated at leading order of approximation as a slowly varying sequence of locally uniform flows, slightly perturbed by a weak curvature-induced secondary flow. Using the constraint of constant fluid discharge, we calculate an analytical solution for the cross-sectional profile of flow depth and bed topography, and we determine the average slope in the bend necessary to transport the sediment supplied from a straight, alluvial, upstream reach. Both fully-alluvial bends and bends with partial bedrock exposure are shown to require a larger average slope than a straight upstream reach; the relative slope increase is much larger for partially alluviated bends. Curvature has a strong effect on the characteristics of the point bars in mixed bedrock-alluvial channels, with higher curvature bends exhibiting bars of larger amplitude and more bedrock exposure through the cross section. Differences in the relative roughness of sediment and bedrock have a smaller, secondary effect on point bar characteristics. This theory can potentially be extended to the not fully developed case, and should ultimately lead to an improved understanding of the formation of

  12. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P.; Gawthorpe, R.L.

    1996-12-31

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka{sup -1} at fault segment centers to 0.8 m ka{sup -1} at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  13. Late Quaternary high resolution sequence stratigraphy of an active rift, the Sperchios Basin, Greece: An analogue for subtle stratigraphic plays

    SciTech Connect

    Eliet, P.P. ); Gawthorpe, R.L. )

    1996-01-01

    The Sperchios Basin is an active asymmetric graben, bounded to the south by a major border fault system with major fault segments typically 20-30 km long. The basin is dominated by a major axial fluvio-deltaic system which enters the partially enclosed Maliakos Gulf to the east. Lateral sourced depositional systems within the basin comprise hanging-wall and footwall-derived alluvial fans and a narrow coastal plain along the footwall scarp bordering the Maliakos Gulf. High resolution seismic data from the Maliakos Gulf reveals three late Quaternary progradational parasequences sourced from axial and lateral depositional systems, with a regional late-Pleistocene transgressive surface dated at circa. 10 ka BP within the Maliakos Gulf. Differential subsidence of the late Pleistocene transgressive surface indicates marked variation in subsidence from 2.4 m ka[sup -1] at fault segment centers to 0.8 m ka[sup -1] at segment boundaries. The geometry and internal variability of each parasequence is controlled by the interplay of the local accommodation development and fluctuations in sediment supply and climatic conditions. The Sperchios Rift provides a modem analogue for subtle stratigraphic plays within ancient extensional basins. The study of controls on sediment source and transport patterns within active rifts has refined our appreciation of the controls on potential reservoir distribution and geometries.

  14. Late Quaternary slip rate of the Owl Lake fault and maximum age of the latest event on the easternmost Garlock fault, S. California

    SciTech Connect

    McGill, S.F. . Dept. of Geological Sciences)

    1993-04-01

    The Owl Lake fault is an active, left-lateral oblique-slip fault in the southwestern Basin and Range province. It intersects the left-lateral Garlock fault in the Quail Mountains and extends about 19 km northeastern toward southern Death Valley. The eastern wall of a channel incised into Late Tertiary or Quaternary fanglomerate north of the fault and into Late Quaternary alluvial fan deposits south of the fault has been offset at least 43 meters left-laterally. This slip estimate is a minimum because of possible erosion of the channel wall upstream from (north of) the fault. If the upstream channel prior to offset was of comparable width to the modern channel, the offset is no more than about 80 m. Organic matter entombed beneath rock varnish on two boulders on the alluvial fan surface into which the channel incised has conventional radiocarbon ages of 29,470 [+-] 270 and 30,820 [+-] 280 years B.P. Abandonment of the fan surface was probably caused by incision of the offset channel, so the channel wall probably has a similar age. This suggests a preliminary left-lateral slip rate of about 1--3 mm/yr for the Owl Lake fault. Fault scarp heights suggest relative uplift of the northwestern side of the fault by at least 1--2 meters and possibly more since deposition of the Late Quaternary fan. At a site in the Avawatz Mountains, within 2 km of the eastern end of the Garlock fault (Leach Lake strand), a terrace riser has been offset 2.7 [+-] 0.6 m left-laterally and 0.2 m south-side-up. This offset probably occurred during the most recent large earthquake on this part of the fault. Organic matter beneath varnish on two cobbles on the upper terrace has conventional radiocarbon ages of 1,583 [+-] 90 and 1,656 [+-] 88 years B.P. This suggests the most recent slip event occurred after a date of A.D. 150--590. This is significantly older than the maximum age (AD 1490) of the most recent slip event on the central Garlock fault in Searles Valley.

  15. Experimental alluvial fans: Advances in understanding of fan dynamics and processes

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy E.

    2015-09-01

    Alluvial fans are depositional systems that develop because of a disparity between the upstream and downstream sediment transport capacity of a system, usually at the base of mountain fronts as rivers emerge from the constrained mountain area onto the plain. They are dynamic landforms that are prone to abrupt changes on a geomorphological (decades to centuries) time scale, while also being long-term deposition features that preserve sedimentary strata and are sensitive indictors of environmental change. The complexity of interactions between catchment characteristics, climate, tectonics, internal system feedbacks, and environmental processes on field alluvial fans means that it is difficult to isolate individual variables in a field setting; therefore, the controlled conditions afforded by experimental models has provided a novel technique to overcome some of these complexities. The use of experimental models of alluvial fans has a long history and these have been implemented over a range of different research areas utilising various experimental designs. Using this technique, important advances have been made in determining the primary factors influencing fan slope, understanding of avulsion dynamics, identifying autogenic processes driving change on fan systems independent of any change in external conditions, and the mechanics of flow and flood risk on alluvial fans, to name a few. However, experiments cannot be carried out in isolation. Thus, combining the findings from experimental alluvial fans with field research and numerical modelling is important and, likewise, using these techniques to inform experimental design. If this can be achieved, there is potential for future experimental developments to explore key alluvial fan issues such as stratigraphic preservation potential and simulating extra terrestrial fan systems.

  16. Differentiating climatic- and tectonic-controlled lake margin in rift system: example of the Plio-Quaternary Nachukui Formation, Turkana depression, Kenya

    NASA Astrophysics Data System (ADS)

    Alexis, Nutz; Mathieu, Schuster; Abdoulaye, Balde; Jean-Loup, Rubino

    2016-04-01

    The Turkana Depression is part of the eastern branch of the East African Rift System. This area consists of several Oligo-Pliocene north-south oriented half-grabens that connect the Ethiopian and Kenyan rift valleys. Exposed on the west side of the Lake Turkana, the Nachukui Formation represents a Plio-Quaternary syn-rift succession mainly outcropping near the border fault of the North Lake basin. This Formation consists of a > 700 m thick fluvial-deltaic-lacustrine sediments deposited in this area between 4.2 and 0.5 Ma. In this contribution, we present preliminary results from the investigation of the complete succession based on field geology. Facies description and sequence analyses are provided focusing on lake margin evolution through time and deciphering their controlling factors. Two main types of facies association can be distinguished in the Nachukui Fm and reveal two main types of lake margins that alternatively developed in the Turkana basin. Type-1 is characterized by thick conglomeratic proximal alluvial fan fining laterally from the border fault to the central portion of the lake to gravelly distal alluvial fan. Conglomerate and gravel beds display recurrent wave reworking (ripples, clasts sorting, open-work), as well as intercalated shells placer and stromatolites beds. Laterally, facies rapidly grade to offshore siliciclastic muds. These facies are interpreted as aggrading and prograding coarse fan deltas that entered directly in the lake. Their subaqueous parts were then affected by waves and allowed the development of shell placers and stromatolite reefs. This facies association is generally included in thick packages representing long-term prograding trends of several hundred thousand years duration (> 500 ka). Type-2 is characterized by poorly developed alluvial fan near the border fault, rapidly grading laterally to a fluvial plain and then to well-developed wave-dominated coast (beaches, washover fans, coastal wedges), finally connected to

  17. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  18. Chronology and provenance of alluvial fills in the dry valley environment of the lower Molopo River, southern Kalahari

    NASA Astrophysics Data System (ADS)

    Ramisch, Arne; Bens, Oliver; Eden, Marie; Hürkamp, Kerstin; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The dry valleys of the Molopo-Kuruman and the Nossob-Auob system form the largest drainage basin of the southern Kalahari, with a total drainage area of over 100.000 km². The South-Kalahari drainage system is connected to the perennial Orange River by the lower Molopo valley which is therefore the only potential fluvial outlet for sediments originating from the southern Kalahari. Despite its key geomorphological position, little is known about Late Quaternary landscape dynamic in the lower Molopo section. To estimate the timing of fluvial sedimentation phases near the Molopo-Orange confluence, we sampled alluvial fills within the narrow trench of the Molopo canyon. The chronology was established using a total of 15 Optical Stimulated Luminescence (OSL) samples from key profiles within the canyon. The results suggest that landscape development was dominated by two phases of valley infill during a) the Mid Holocene and b) the Late Holocene. To gain insight into sediment dynamics during these intervals, we carried out a provenance analysis on the fine fraction (< 2 mm) of fluvial sediments. Sediment source areas were estimated by analyzing the elemental and mineralogical composition of 93 tributaries and 32 dune deposits throughout the reaches of the lower Molopo via X-ray fluorescence (XRF) and X-ray diffraction analysis (XRD). The appliance of a fuzzy cluster algorithm on the elemental and mineralogical composition of reference samples revealed three major sediment source areas: i) The Molopo canyon, ii) fluvial source areas north of the canyon and iii) eolian sands covering the recent lower Molopo valley in its upper reaches. A similarity analysis between fluvial sediments of the Molopo canyon to the previously identified source areas suggests that alluvial fills mainly originate from the canyon itself, suggesting short-distance sediment mobilization as the driving mechanism behind aggradation. Thereby, both Holocene intervals differ in the mean distance of

  19. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Anum, Solomon; Phillips, Emily C.

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by both diamond-producing and diamond-importing countries. Over 70 countries were included as members at the end of 2007. To prevent trade in 'conflict' diamonds while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was to assess the alluvial diamond resource endowment and current production capacity of the alluvial diamond-mining sector in Ghana. A modified volume and grade methodology was used to estimate the remaining diamond reserves within the Birim and Bonsa diamond fields. The production capacity of the sector was estimated using a formulaic expression of the number of workers reported in the sector, their productivity, and the average grade of deposits mined. This study estimates that there are approximately 91,600,000 carats of alluvial diamonds remaining in both the Birim and Bonsa diamond fields: 89,000,000 carats in the Birim and 2,600,000 carats in the Bonsa. Production capacity is calculated to be 765,000 carats per year, based on the formula used and available data on the number of workers and worker productivity. Annual production is highly dependent on the international diamond market and prices, the numbers of seasonal workers actively mining in the sector, and

  20. Combined velocity and depth mapping on developing laboratory alluvial fans

    NASA Astrophysics Data System (ADS)

    Hamilton, P.; Strom, K. B.; Hoyal, D. C.

    2011-12-01

    Large-scale particle image velocimetry (LSPIV) is a nonintrusive method for measuring free-surface velocities using tracer patterns in a sequence of images. This method has been applied in both natural rivers and large-scale hydraulic models (Muste et al., 2008). Here the method is used to map channel and sheet flow velocity during the development of laboratory-scale alluvial fans. Measuring the time and space varying hydraulics on laboratory fans by traditional methods is not practical since flows are quite shallow (~1 cm). Additionally, the highly dynamic environment makes positioning of traditional probe-type instruments difficult and their physical presence could alter autogenic fan evolution. These difficulties can be overcome by using particle image velocimetry techniques. Furthermore, images collected in the LSPIV method can be used to extract flow depth using a calibrated dye-intensity method (Gran and Paola, 2001). This allows for simultaneous measurement of flow velocity and depth everywhere over the fan at any point in time. To validate the method, a set of controlled small-scale experiments were run for depths ranging from 0.2-1.5 cm and velocities from 10-100 cm/sec. Comparison of the LSPIV and dye-intensity method measurements to the known values indicated that the methodology was able to accurately capture simultaneous flow velocity and depth in this range of conditions, i.e., those encountered during the development of laboratory-scale alluvial fans and streams. The method is then used to map the hydraulics associated with various fan processes during development as demonstrated in figure 1. The ability to measure hydraulic properties during fan development is important since physical models provide an arena for observing the time evolution and morphodynamic feedback in depositional systems such as alluvial fans.

  1. Silicate weathering in the Ganges alluvial plain

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as δ30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher δ30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  2. Late quaternary sequence stratigraphy, South Florida margin

    SciTech Connect

    Locker, S.D.; Hine, A.C.

    1995-12-01

    Late Quaternary sea-level change and the Florida Current have combined to produce a progradational shelf-slope margin along the western portion of the south Florida Platform facing the Straits of Florida. Analysis of high resolution seismic reflection profiles suggest at least eight 5th order late Quaternary sequences downlap onto the Pourtales Terrace at 250 m water depth. Along most of the south Florida margin, this Late Quaternary section is very thin, and only where significant accumulations occur can the stratigraphic patterns produced by sea-level change be clearly observed. Recognition of systems tracts and their boundaries from high-resolution seismic data is important for prediction of sedimentary facies and stratigraphic development of margins. Many south Florida seismic boundaries can be fit to the Exxon sequence stratigraphy model. Others appear to reflect the added effect of bottom-current erosion that complicates the signal produced by sea-level change. Overall, the sea-level signal appears to dominate the stratigraphic record, especially from the 2-dimensional perspective of dip-oriented seismic profiles. However, the 3-dimensional geometry of deposits are strongly influenced by along slope accumulation patterns controlled by the Florida Current. This study provides new insight on the importance of both geostrophic boundary currents and sea-level change in controlling stratigraphic development of a carbonate platform margin. Similar anomalously thick slope deposits in ancient sequences may indicate similar controls on accumulation and could lend to predictions of related paleo-platform configurations.

  3. Quaternary geology of the Amazonian Lowland

    NASA Astrophysics Data System (ADS)

    Irion, Georg; Müller, Jens; Nunes de Mello, Jose; Junk, Wolfgang J.

    1995-09-01

    The Quaternary history of the Amazon lowlands is characterized by deposition of sediments of Andean provenance and by the influences of changing sea levels. Areas well above the present water tables were not reached by Pleistocene high-water stages. These areas have been intensively weathered since the Tertiary, forming hard lateritic weathering horizons. These weathering horizons are best explained by the relatively constant, humid tropical climate throughout the Quaternary. In the western Amazonian Lowland, flood plains corresponding to the different Pleistocene sea-level heights were formed. During low sea level, erosion in the drainage areas increased and the water levels of the central Amazon River system were lowered. Valleys drowned and lakes formed in the lower reaches of rivers and creeks during high sea-level stages. These lakes (ria lakes) remained in the valleys with rivers having a low sediment load. Seismic profiling (3.5 kHz) in some of these lakes clearly showed deposits of the three last periods of Quaternary high sea-level stages.

  4. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  5. Preliminary results of chronostratigraphic field work, OSL-dating and morphogenetic reconstruction of an alluvial apron at Alborz southern foothill, Damghan basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Fuchs, Markus; Majid Padashi, Seyed; Baumhauer, Roland

    2014-05-01

    Here we present preliminary results of a chronostratigraphic study of an alluvial fan in the Damghan Basin, northern Iran. The basin sediments date back to the Mio- and Pliocene and therefore represent the starting point of alluvial fan aggradation. Today, the still active alluvial fans prograde from the Albors Mountain ranges and sit on the older sediment bodies. In this study, our focus is on the late Pleistocene to Holocene alluvial fan sedimentation history. The upper stratigraphy of the alluvial fans and intercalated lake deposits is characterized by six individual layers of gravels and fines, representing six different stratigraphic units. These units are described and classified by detailed geomorphological and stratigraphic mapping. To establish an alluvial fan chronology, six profiles were sampled for OSL dating. As expected, due to the high-energy transport system of alluvial fan aggradation in semi-desert environments, OSL dating of these sediments is challenging due to the problem of insufficient bleaching. Consequently, most of the samples are interpreted as maximum ages. However, the measurements show a consistent internal age structure and the overall OSL-based chronology is in agreement with the age model derived from our geomorphological analysis. As a first interpretation, based on surveyed geomorphological features and chronological analysis, we could identify seven morphodynamic phases, leading to a genetic model of alluvial fan aggradation. The oldest Pleistocene age estimate is derived from a former lake terrace. The following ages represent ongoing lake sediment deposition and the development of a proximal and mid-fan gravel cover. After the youngest lake deposits were accumulated within the Holocene, the lake starts to retreat and small alluvial fans are filling up the former lake bottom. This last sedimentation phase can be divided in at least two sub-phases, probably coupled to a lateral shifting of the active depositional lobe and to the

  6. Alluvial diamond resource potential and production capacity assessment of Guinea

    USGS Publications Warehouse

    Chirico, Peter G.; Malpeli, Katherine C.; Van Bockstael, Mark; Diaby, Mamadou; Cissé, Kabinet; Diallo, Thierno Amadou; Sano, Mahmoud

    2012-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that export shipments of rough diamonds were free of conflict concerns. Outcomes of the meeting were formally supported later in December of 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. The goal of this study was to estimate the alluvial diamond resource endowment and the current production capacity of the alluvial diamond mining sector of Guinea. A modified volume and grade methodology was used to estimate the remaining diamond reserves within Guinea's diamondiferous regions, while the diamond-production capacity of these zones was estimated by inputting the number of artisanal miners, the number of days artisans work per year, and the average grade of the deposits into a formulaic expression. Guinea's resource potential was estimated to be approximately 40 million carats, while the production capacity was estimated to lie within a range of 480,000 to 720,000 carats per year. While preliminary results have been produced by integrating historical documents, five fieldwork campaigns, and remote sensing and GIS analysis, significant data gaps remain. The artisanal mining sector is dynamic and is affected by a variety of internal and external factors. Estimates of the number of artisans and deposit variables, such as grade, vary from site to site and from zone to zone. This report has been developed on the basis of the most detailed information available at this time. However, continued fieldwork and evaluation of artisanally mined deposits would increase the accuracy of the results.

  7. Late Quaternary deformation and slip rates in the northern San Andreas fault zone at Olema Valley, Marin County, California

    NASA Astrophysics Data System (ADS)

    Grove, Karen; Niemi, Tina M.

    2005-06-01

    middle part of the Olema Creek Formation (Qoc), the oldest Quaternary deposit in this part of the valley, suggest a late Pleistocene slip rate of 17-35 mm/year, which replaces the unit to a position adjacent to its sediment source area. A younger alluvial fan deposit (Qqf; basal age ˜30 ka) is exposed in a quarry along the medial ridge of the fault valley. This fan deposit has been truncated on its western side by dextral SAF movement, and west-side-down vertical movement that has created the Vedanta marsh. Paleocurrent measurements, clast compositions, sediment facies distributions, and soil characteristics show that the Bear Valley Creek drainage, now located northwest of the site, supplied sediment to the fan, which is now being eroded. Restoration of the drainage to its previous location provides an estimated slip rate of 25 mm/year. Furthermore, the Bear Valley Creek drainage probably created a water gap located north of the Qqf deposit during the last glacial maximum ˜18 ka. The amount of offset between the drainage and the water gap yields an average slip rate of 21-30 mm/year. Finally, displacement of a 1000-year-old debris lobe approximately 20 m from its hillside hollow along the medial ridge indicates a minimum late Holocene slip rate of 21-25 mm/year. Similarity of the late Pleistocene rates to the Holocene slip rate, and to previous rates obtained in paleoseismic trenches in the area, indicates that the rates may not have changed over the past 30 ka, and perhaps the past 200-400 ka. Stratigraphic and structural observations also indicate that valley-bounding faults were active in the late Pleistocene and suggest the need for further study to evaluate their continued seismic potential.

  8. Clarifying stages of alluvial fan evolution along the Sfakian piedmont, southern Crete: New evidence from analysis of post-incisive soils and OSL dating

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Wilkinson, Keith; Skourtsos, Emmanuel; Triantaphyllou, Maria; Ferrier, Graham

    2008-02-01

    Analysis of fan sediments and post-incisive soils was combined with luminescence dating to re-assess Nemec and Postma's [Nemec, W., Postma, G., 1993. Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. In: Marzo, M., Puigdefábregas, C. (Eds.), Alluvial Sedimentation. Special Publication of the International Association of Sedimentologists, vol. 17, pp. 235-276] model of fan evolution on the Sfakian piedmont, southern Crete. Field mapping supports the assertion that sedimentation occurred in three developmental stages. Stage 1 sediments comprise angular debris flows forming small cone-like deposits; stage 2 fluvial gravels form large, relatively steep streamflow-dominated telescopic fans; and stage 3 sediments consist of coarse sieve-type alluvium, localised mudflows and hyperconcentrated flow deposits. Irrespective of gradient, fan surfaces are capped by post-incisive soils that form a chronosequence comprising remnant chromic luvisols. The most developed profiles, highest redness rating, and greatest concentrations of Fe d and magnetic minerals are associated with soils formed on stage 1 surfaces. The stage 2 and 3 soils record progressively lower redness rating, Fe d, and magnetic values, indicating that the stage 1 soils and fan surfaces formed first, followed by stage 2 and 3 soils and fan surfaces. Nanofossil data strongly suggest that stage 1 sedimentation commenced no earlier than the Early Pleistocene. Optically stimulated luminescence (OSL) results suggest that sedimentation responsible for stage 2 surfaces occurred between Marine Isotope Stage (MIS) 6 and MIS 2, while archaeological data indicate that stage 3 sedimentation is of Holocene age. The re-investigation of fan sediments and morphology corroborates the sedimentary and morphological elements of Nemec and Postma's model. The soil data support the model's assumptions that sedimentation was broadly synchronous across the piedmont and the locus of

  9. A Quaternary paleolake in a sinkhole at Cassis (SE France) : a geomorphology and geophysical study

    NASA Astrophysics Data System (ADS)

    Romey, C.; Rochette, P.; Vella, C.; Arfib, B.; Champollion, C.; Dussouillez, P.; Hermitte, D.; Parisot, J.-C.

    2012-04-01

    The Lower Provence and the Massif des Calanques, near Marseille, are a key area in understanding the mechanisms of evolution of the Mediterranean climate and the study of human impact on the local environment during the Quaternary. However, a continuous continental record of paleoenvironment in coastal Provence was not previously available. Looking for such a record, we discovered in a coastal alluvial plain a small paleolake filling a sinkhole that occurred in a marl sequence topping pure limestones at an altitude of 80 m, and a distance to the sea of 2 km. The sinkhole is close to the outlet of a small catchment area of about 8 km2. Limestone is massive but much fractured and therefore suitable for the development of karst. The drilling sedimentary sequence of 50 meters is mainly resulting from the weathering of Cretaceous marls. It consists of 5 meters of oxidized brown clay deposit which covers 45 meters of laminated lacustrine gray clay with sandy past. Cretaceous marls are at the base of the sequence. The presence of marls pebbles in the last meters of the sequence reflects the collapse of the sinkhole. The lacustrine clay was probably deposed during stages isotope 2 to 4 (48 ± 3 ka C14 date at 23 meters depth), whereas brown clay deposit was interpreted as Holocene paleosol. Combination of surface observation, drilling and geophysical studies (gravimetry and Electrical Resistivity Tomography) allows to constraint the geometry of the paleo-polje that formed during glacial period. Lake diameter was likely of the order of 200 m. It evolved from a deep lake to a swamp (probably Holocene, dating in progress) and it was drained in roman times for agriculture. Locally, this discovery has implications for the understanding of karst processes and water resources. The relationship between the sinkhole, rooted at circa 100 m below surface according to gravimetric modeling and the underground karstic river of Bestouan is strongly suggested by underwater exploration and

  10. Arsenate adsorption by unsaturated alluvial sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenate adsorption as a function of solution arsenic concentration and solution pH was investigated on five alluvial sediments from the Antelope Valley, Western Mojave Desert, California. Arsenate adsorption increased with increasing solution pH, exhibited a maximum around pH 4 to 5, and then decr...

  11. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    NASA Astrophysics Data System (ADS)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  12. Quaternary shorelines of the broader area of Cape Maleas - Neapolis - Elafonissos Isl. (SE Peloponnese)

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Gaki-Papanastassiou, Kalliopi; Papanastassiou, Dimitris; Tsodoulos, Ioannis; Tsivgoulis, Nikolaos; Tsanakas, Konstantinos; Valkanou, Kanella

    2015-04-01

    The aim of this study is to provide information about the landscape evolution of the broader area of Cape Maleas - Neapolis - Elafonissos Isl. during the Quaternary. In order to investigate the geomorphic evolution of the study area the uplifted coastal landforms, such as shore platforms, notches and remnants of marine terraces, were studied in detail through extensive field-work using topographic diagrams at a scale of 1:5,000, obtained from the Hellenic Military Geographical Service. Additionally, a spatial database was constructed derived from analogue topographic maps at various scales (1:50,000 and 1:5,000), geological maps (1:50,000 maps of IGME), aerial photographs and Google earth images using GIS techniques. The study area is located in SE Peloponnese in a particularly tectonically active area. Geodynamic processes in the region, which is part of the Hellenic island arc, are related to the active subduction of the African lithosphere beneath the Eurasian plate. The Paleozoic basement of the study area consists of geological formations of the geotectonic units of Arna, Tripolis, and Pindus. The Alpine basement is overlain by extensive outcrops of Pliocene and Pleistocene deposits. Upper Pliocene to Lower Pleistocene formations are composed of marine - lacustrine deposits which are mainly pelites, sandstones, conglomerates, calcarenites and carbonate rocks with red algae whereas Pleistocene formations consist of fluvioterrential deposits (clay, sands, loams and angular rock fragments). The Holocene deposits consist of talus cones, scree, and unconsolidated alluvial deposit, eluvial mantle materials and coastal sand dunes along the N, NE and S shoreline of Elafonissos Isl. as well as at Cape Punta. The general trend of the faults in the study area is mainly NW-SE with some secondary ones having NE-SW direction. Along the coast between Cape Koulendi and Cape Maleas, uplifted geomorphological features were mapped, including marine terraces, shore platforms and

  13. Surface exposure dating of moraines and alluvial fans in the Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Terrizzano, Carla; Zech, Roland; García Morabito, Ezequiel; Haghipour, Negar; Christl, Marcus; Likermann, Jeremías; Tobal, Jonathan; Yamin, Marcela

    2016-04-01

    The role of tectonics versus climate in controlling the evolution of alluvial fans in discussed controversially. The southern Central Andes and their forelands provide a perfect setting to study climate versus tectonic control of alluvial fans. On the one hand, the region is tectonically active and alluvial fan surfaces are offset by faults. The higher summits, on the other hand, are glaciated today, and glacial deposits document past periods of lower temperatures and increased precipitation. We applied 10Be surface exposure dating on 5 fan terraces 4 moraines of the Ansilta range (31.6°S - 69.8°W) using boulders and amalgamated pebbles to explore their chronological relationship. From youngest to oldest, the alluvial fan terraces yield minimum ages of 15 ± 1 ka (T1), 97 ± 9 ka (T2), 141 ± 9 ka (T3), 286 ± 14 ka (T4) and 570 ± 57 ka (T5). Minimum ages derived from moraines are 14 ± 1 ka (M1), 22 ± 2 ka (M2), 157 ± 14 ka (M3) and 351 ± 33 ka (M4), all calculations assuming no erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. The moraines document glacial advances during cold periods at the marine isotope stages (MIS) 2, 6 and 10. The terraces T1, T3 seem to be geomorphologic counterparts during MIS 2 and 6. We suggest that T2, T4 and T5 document aggradation during the cold periods MIS 5d, 8 and 14 in response to glacial advances, although the respective moraines are not preserved. Our results highlight: i) the arid climate in the Southern Central Andes favors the preservation of glacial and alluvial deposits allowing landscape and climate reconstructions back to ~570 ka), ii) alluvial deposits correlate with moraines or fall into cold glacial times, so that climate, and in particular the existence of glaciers, seems to be the main forcing of alluvial fan formation at our study site. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary

  14. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median

  15. Self-similar growth of an alluvial fan fed with bimodal sediment

    NASA Astrophysics Data System (ADS)

    Delorme, Pauline; Voller, Vaughan; Paola, Chris; Devauchelle, Olivier; Lajeunesse, Eric; Barrier, Laurie; Métivier, François

    2016-04-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. We carried out a series of experiments to investigate the growth of alluvial fans fed with mixed sediments. The density difference between silica and coal sediments mimics a bimodal grain-size distribution in nature. The sediment and water discharges are constant during an experiment. During the run, we track the evolution of the surface pattern by digital imaging. At the end of each run, we acquire the fan topography using a scanning laser. Finally, we cut a radial cross section to visualize the sedimentary deposit. We observe there is a distinct slope break at the transition that dominates the overall curvature of the fan surface. Based on mass conservation and observations, we propose that this alluvial fan grows in a self-similar way, thus causing the transition between silica and coal deposits to be a straight line. The shape of the experimental transition accords with this prediction.

  16. Geomorphological evolution of the Tilcara alluvial fan (Jujuy Province, NW Argentina): Tectonic implications and palaeoenvironmental considerations

    NASA Astrophysics Data System (ADS)

    Sancho, Carlos; Peña, José Luis; Rivelli, Felipe; Rhodes, Ed; Muñoz, Arsenio

    2008-07-01

    The development and evolution of the Tilcara alluvial fan, in the Quebrada de Humahuaca (Andean Eastern Cordillera, NW Argentina), has been analysed by using geomorphological mapping techniques, sedimentological characterisation of the deposits and OSL chronological methods. It is a complex segmented alluvial fan made up of five evolutionary stages (units Qf1, Qf2, Qf3, Qf4 and Qf5) developed under arid climatic environments as well as compressive tectonic conditions. Segmentation processes, including aggradation/entrenchment cycles and changes in the location of the depositional lobe, are mainly controlled by climatic and/or tectonic changes as well as channel piracy processes in the drainage system. Alluvial fan deposits include debris flows, sheet flows and braided channel facies associated with high water discharge events in an arid environment. The best mean OSL age estimated for stage Qf2 is 84.5 ± 7 ka BP. In addition, a thrust fault affecting these deposits has been recognized and, as a consequence, the compressive tectonics must date from the Upper Pleistocene in this area of the Andean Eastern Cordillera.

  17. Rapid delineation of alluvial fans using IfSAR-derived DEM for selected provinces in the Philippines

    NASA Astrophysics Data System (ADS)

    Ortiz, Iris Jill; Aquino, Dakila; Norini, Gianluca; Narod Eco, Rodrigo; Mahar Lagmay, Alfredo

    2015-04-01

    Alluvial fans are fan-shaped geomorphic features formed when sediments from a watershed are transported and deposited downstream via tributaries flowing out from the sudden break of a slope. Hazards usually associated with alluvial fans are flooding and debris flows. In this study, we used an Interferometric Synthetic Aperture Radar-derived digital elevation model of Pangasinan and Nueva Ecija Provinces in the Philippines to identify and delineate alluvial fans. Primary parameters considered include the geomorphic characteristics of the catchment area, stream network and slopes ranging from 0.11 to 8 degrees. Using this method, 12 alluvial fans were identified in Pangasinan and 16 in Nueva Ecija with areas ranging from 0.35 to 80 sq. km. The largest fan identified is the Mangatarem-Aguilar fan in Pangaisnan with a total area of 80.87 sq km while the Gabaldon fan in Nueva Ecija with total area of 48.11 sq km. We observed from the results that some alluvial fans have multiple feeder streams, and others have overlapping lateral extents with adjacent fans. These overlapping fans are called bajadas. In addition, the general location of fans and their apices in the two provinces appear to coincide with segments of the Philippines Fault System. There are about people 1.4 million living within these alluvial fans. Mapping and characterizing and identifying their associated hazards is crucial in the disaster preparedness efforts of the exposed population.

  18. Profiling of late Trias-early Quaternary surface in the Eskisehir basin using microtremors

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Özel, Oğuz

    2015-04-01

    Earthquakes in our country and in the world cause damage and collapse of engineering structures due to several reasons. Settlement areas are under the effect of strong and long-duration seismic vibrations due to resonance and focusing effects. In this study, we propose the first approximation for thickness of Quaternary sediment and late Trias topography for the Eskisehir basin in microtremor methods. The 3-D basin structures and site resonance frequencies in the Eskişehir Basin were investigated by geophysical measurements based on the 318 single station and 9 array sites microtremor methods situated on soft soil sediments and rock units within the study area. The microtremor data collection, processing, and interpretation of the H/V curves were carried out following the recommendations and guidelines of the SESAME consortium (Site EffectS assesment using AMbient Excitation) The signals recorded were analysed for horizontal to the vertical (H/V) spectral ratio using GEOPSY software. The H/V ratios were calculated for the frequency range 0.2 to 20 Hz, using 60 s as a time window length and removing time windows contaminated by transients. Almost of the HVSR curves on the alluvium deposits have a low-frequency peak at 0.6-0.8 Hz and a second peak at 4-10 Hz. We used the Spatial Autocorrelation (SPAC) method in Eskisehir Basin using broadband seismometers distributed in triangular arrays. We derive a power-law relationship that correlates the fundamental site resonance frequencies with the sedimentary cover thickness obtained from the seismic reflection data, borehole data and shear wave velocity data in the study area. We use this relationship to estimate bedrock depth and thickness of alluvial deposits in the Eskisehir basin. Our estimation of maximum basin depths is 650 m for the Muttalip. The thickness of quaternary sediment is 25 m for Eskisehir alluvium. The estimated thickness is used to plot digital elevation model and cross profiles correlating with

  19. Neogene-Quaternary evolution of the Tefenni basin on the Fethiye-Burdur fault zone, SW Anatolia-Turkey

    NASA Astrophysics Data System (ADS)

    Aksoy, Rahmi; Aksarı, Süleyman

    2016-06-01

    The Fethiye-Burdur fault zone (FBFZ) is a complex belt of major break in the southwestern Anatolia. A number of basins occur within the FBFZ. The Tefenni basin is one of the NE-SW trending basins located in the central part of the FBFZ. The basin is 10-20 km wide and 60 km long. It contains two infills of fluvial, lacustrine and alluvial fan deposits from late Miocene to Recent. The older and folded infill rests on the pre-middle Miocene basement rocks with an angular unconformity and consists of fluvial and lacustrine sediments. The younger and undeformed Plio-Quaternary basin fill unconformably overlies the older basin fill and is composed predominantly of conglomerate, mudstone, silt, clay and recent basin floor sediments. The Tefenni basin is controlled by a series of NE-SW trending left lateral oblique-slip normal faults along its margins. The Tefenni and Mürseller faults bound the northwestern margin of the basin and the Kemer fault bounds the southeastern margin of the basin. The basin is also cut by NE-SW striking major and NW-SE, N-S and E-W striking small scale normal faults. Structural analyses in the basin show that NE-SW-trending contraction stress regime ended by Pliocene and was followed by NE-SW-trending extension from Pliocene onward.

  20. Synthesis of Late Cretaceous-Quaternary tectonic, sedimentary and magmatic processes and basin formation related to episodic subduction-collision in the easternmost Mediterranean region

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Kinnaird, Timothy; McCay, Gillian; Palamakumbura, Romesh; Taslı, Kemal

    2015-04-01

    Mesozoic oceanic crust of the easternmost Mediterranean has experienced northwards subduction during Late Cretaceous-Cenozoic, either continuously or discontinuously based on kinematic evidence. Much of the existing information on sedimentation within the easternmost Mediterranean oceanic basin comes from the non-emplaced continental margins of the Levant and North Africa. In addition, sedimentary basins related to plate convergence are recorded along the northern margin of the Southern Neotethyan ocean, mainly in the Kyrenia Range of northern Cyprus and its extension into the Misis Mountains of southern Turkey, coupled with the adjacent submerged areas. In a setting of only incipient continental collision such as the easternmost Mediterranean the sedimentary basins would be expected to remain entirely submarine. In contrast, the Kyrenia Range has been strongly uplifted and subaerially exposed during Late Pliocene-Quaternary time. This allows the recognition of a number of discrete phases of sedimentary basin formation: 1. Late Cretaceous (Campanian-Maastrichtian): silicic volcanism to create a subaqueous volcaniclastic apron; 2. Maastrichtian-Paleocene: pelagic carbonate deposition interspersed with proximal gravity flows and within-plate type alkaline volcanics; 3. Early Eocene: large-scale sedimentary melange (olistostrome) emplacement; 4. Late Eocene-Late Miocene: terrigenous gravity-flow deposition in a deep-water fault dissected 'fore arc' setting. Initial, Late Eocene non-marine coarse clastic alluvial fan deposition was succeeded by Oligocene-Miocene deep-marine siliciclastic gravity flow deposits, fining and shallowing upwards during the Late Miocene; 5. Messinian: localised precipitation of evaporites in small fault-controlled basins; 6. Pliocene: shallow-marine siliciclastic-carbonate deposition in a shelf-depth, overall regressive setting; 7. Latest Pliocene to mid-Pleistocene: gravitational accumulation of coarse talus along a strongly uplifting

  1. Aleksis Dreimanis: a legacy in Quaternary science

    NASA Astrophysics Data System (ADS)

    Hicock, Stephen R.; Menzies, John

    2000-12-01

    Aleksis Dreimanis was born and raised in Latvia. His interest in Quaternary and glacial geology began early and developed into a career that has spanned 7 decades. At age 20 he published his first paper in glacial geology and soon after began teaching at the University of Latvia. Teaching and research were interrupted by World War II but resumed at the Baltic University (Pinneberg, Germany), then at the University of Western Ontario where he has been ever since. Throughout his career, Dreimanis has successfully balanced the twin disciplines of Quaternary history and glacial geology. He was among the first to study quantitatively the relationship between till lithology and till formation and to study how glacial transport and dynamics affect till texture and deformation. With co-workers he developed the well-known stratigraphic scheme of the last glaciation in the Great Lakes region of North America. Aleksis became world-renowned through his committee work, especially as President of the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits. His diplomacy, enthusiasm, and passion for his subject have inspired students and colleagues around the globe and resulted in remarkable international dialogue, cooperation, and consensus. Professor Aleksis Dreimanis is an honest scientist, a gentleman, and a true scholar who has left a rich legacy for future Quaternarists.

  2. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    NASA Astrophysics Data System (ADS)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in

  3. Generation of waterfalls at intermittently alluviated fault scarps releases tectonic forcing on a climatic beat.

    NASA Astrophysics Data System (ADS)

    Malatesta, Luca C.; Lamb, Michael P.

    2016-04-01

    Normal or reverse faults bonding mountain catchments typically mark the transition from the erosional to the depositional domain where bedrock channels flow into alluvial fans. We show here that interactions between the two fluvial domains can result in knickpoints that convolve tectonic and climatic signals. Changes in the ratio of sediment and water fluxes (Qs/Qw) modify the equilibrium geometry of the system and in particular of the reactive alluvial reaches so that a larger Qs/Qw forces steepening of the fan, backfilling of the bedrock reach and a heightened base level. Under these conditions, slip on the fault - covered and shielded by alluvium - can accumulate over several seismic cycles before being released at once by incision of the alluvial fan back to a shallow geometry. We demonstrate in this study that climate-driven aggradation and incision of alluvial fans in the Death Valley area can account for otherwise unexplained waterfalls at the base of catchments manyfold the height of coseismic throw. As a consequence, in this common configuration, tectonic slip can accumulate and be released at once on a tempo set by climatic fluctuations. Such that the faster denudation rate that might follow from increased precipitations is accompanied by an important retreating knickpoint. We propose that this mechanism can increase catchment reactivity and broaden the range of external forcings potentially recorded in the stratigraphy.

  4. Interaction of fine sediment with alluvial streambeds

    USGS Publications Warehouse

    Jobson, H.E.; Carey, W.P.

    1989-01-01

    An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. -from Authors

  5. Alluvial architecture of the Holocene Lower Mississippi Valley (U.S.A.) and a comparison with the Rhine Meuse delta (The Netherlands)

    NASA Astrophysics Data System (ADS)

    Gouw, Marc J. P.; Autin, Whitney J.

    2008-02-01

    The proportion and arrangement of channel-belt deposits in alluvial successions (alluvial architecture) is not known in detail for most modern settings. Therefore, the alluvial architecture of the Holocene Lower Mississippi Valley (LMV) between Greenville, Mississippi and Baton Rouge, Louisiana was studied to improve estimation of parameters relevant to alluvial-architecture modeling. Alluvial-architecture parameters (sand-body width/thickness ratio SBW/SBT, channel-belt deposit proportion CDP, overbank-deposit proportion ODP, and connectedness ratio CR) are estimated from three cross-valley sections based on lithologic borings. SBW/SBT and CDP decrease in a downstream direction. For example, CDP is ~ 0.6 upstream and ~ 0.3 downstream. ODP shows an opposite trend and is at a maximum (0.7) in the downstream part of the study area. CR is low throughout the study area because most channel belts in our cross sections are unconnected. The alluvial architecture in the LMV also seems to change over time, because Late Holocene channel belts tend to be wider than the Early Holocene channel belts. The observed trends in the alluvial-architecture parameters are related to the ratio between channel-belt width and floodplain width, variations in aggradation rate, location of the cross sections relative to avulsion sites, and differential subsidence. The alluvial architecture of the LMV is compared to that of the Holocene Rhine-Meuse delta to identify common controls on alluvial architecture. Despite differences in geographic setting, the alluvial architecture of the LMV is similar to that of the Rhine-Meuse delta. We conclude that alluvial architecture of both fluvial systems is strongly controlled by channel-belt geometry, floodplain geometry, and aggradation rate. These in turn are influenced by extrinsic factors (i.e. base level, discharge, sediment supply, tectonics, and pre-existing topography) as well as intrinsic factors (i.e. lateral channel migration rate, subsoil

  6. Quaternary megafans, large rivers and other avulsive systems: a potential "who is who" in the geological record

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.

    2012-12-01

    A fascinating discussion has been recently calling the attention of sedimentologists and geomorphologists regarding to the dominant fluvial styles preserved in the geological record. While some authors postulate that distributary (or distributive) patterns are the most important systems likely to dominate the alluvial rock record (Weissmann et al.2010, among others) others suggest that a variety of fluvial styles are remarkably preserved in the geological record, rejecting the importance of the distributary systems (such as megafans and other like fans coastal systems) (Fielding et al, 2012 among others). However, the Quaternary record of the largest depositional tracks on Earth has been not assessed in a comparative and detailed way. Here I present results from some of the most important Quaternary areas of sedimentation of the world such as the alluvial belts of the largest rivers, the largest megafans and other impressive fluvial dominated wetlands in active tectonic basins. My study is based on field work I carried out in many of the analyzed areas, a literature review and remote sensing products. Specific examples are discussed from several rivers of the Amazon basin, the Parana River, the Mississippi River, among others. Large depositional tracks in forelands, platforms and intracratonic basins such as the Chaco, the Orinoco Llanos, the Bananal and Pantanal basin, the Ucamara depression, and the Indo-Gangetic plain, which contain a variety of complex avulsive systems and megafans, are discussed. A main conclusion is that megafans and similar distributary systems, avulsive systems with a variety of channel patterns and linear fluvial belts of major rivers, have the potential for preservation in the geological record. The scarcity of purely braided systems in large rivers is noticeable and they are mainly constrained to small-medium size channels, short length piedmont courses or related to relatively small alluvial fans. Meandering and anabranching systems are

  7. Alluvial Fan Morphology, distribution and formation on Titan

    NASA Astrophysics Data System (ADS)

    Birch, S. P. D.; Hayes, A. G.; Howard, A. D.; Moore, J. M.; Radebaugh, J.

    2016-05-01

    Titan is a hydrologically active world, with dozens of alluvial fans that are evidence of sediment transport from high to low elevations. However, the distribution and requirements for the formation of fans on Titan are not well understood. We performed the first global survey of alluvial fans on Titan using Cassini Synthetic Aperture Radar (SAR) data, which cover 61% of Titan's surface. We identified 82 fans with areas ranging from 28 km2 to 27,000 km2. A significant fraction (∼60%) of the fans are restricted to latitudes of ±50-80°, suggesting that fluvial sediment transport may have been concentrated in the near-polar terrains in the geologically recent past. The density of fans is also found to be correlated with the latitudes predicted to have the highest precipitation rates by Titan Global Circulation Models. In equatorial regions, observable fans are not generally found in proximity to dune fields. Such observations suggest that sediment transport in these areas is dominated by aeolian transport mechanisms, though with some degree of recent equatorial fluvial activity. The fan area-drainage area relationship on Titan is more similar to that on Earth than on Mars, suggesting that the fans on Titan are smaller than what may be expected, and that the transport of bedload sediment is limited. We hypothesize that this has led to the development of a coarse gravel-lag deposit over much of Titan's surface. Such a model explains both the morphology of the fans and their latitudinal concentration, yielding insight into the sediment transport regimes that operate across Titan today.

  8. Exploring the use of weathering indexes in an alluvial fan chronology

    NASA Astrophysics Data System (ADS)

    Hardenbicker, Ulrike; Watanabe, Makiko; Kotowich, Roberta

    2015-04-01

    Alluvial fan sediments can act as an archive of local environmental history. Two borehole cores (FN 350 cm and AG 850cm) from Holocene alluvial fans located in the Qu'Appelle Valley in southern Saskatchewan were analyzed in order to identify how changes in land use of upland catchment plateaus modified the pattern and rate of sediment delivery to the fan. Due to the lack of material for radiometric dating a chronology of depositional events within the alluvial fans was established by using lithostratigraphy data of soils and sediments. In order to establish a more detailed relative chronology we evaluated if weathering indexes (the Parker Index, the CaO/ZrO2 molar ratio, the Product Index) originally developed for studies of in situ weathering of bedrock, are suitable to assess sediment weathering within alluvial fan sediments. To quantify the degree of weathering within the sediment samples the three indexes of weathering were calculated using the proportions of elements measure by Energy Dispersive X-ray Spectroscopy and there is an inverse relationship between weathering index and sample age. For further statistical analyses the fan sediments were classified into three groups: a sheet flow facies of well sorted silt loam and sandy loam textures, bed load facies characterized by high sand and gravel content and layers with high organic matter in combination with higher clay content indicative of in situ weathering and soil development. First results show that the Product Index may be the most suitable weathering index to indicate weathering or input of less weathered sediment within the sheet flow and bed load facies. In general, the weathering indexes do not take into account complexities of the weathering processes nor the overall environmental conditions in an alluvial fan. But chemical weathering indexes accompanied by geophysical and geo-chemical information have value, especially when the amount of sample material is limited.

  9. Long-term interactions between man and the fluvial environment - case of the Diyala alluvial fan, Iraq

    NASA Astrophysics Data System (ADS)

    Heyvaert, Vanessa M. A.; Walstra, Jan; Mortier, Clément

    2014-05-01

    , during these periods (Parthian, Sasanian and again in modern times), significant human modification of the landscape took place. Periods of societal decline are associated with reduced human impact and the development of a single-threaded incising river system. Adams, R.M. (1965). Land behind Baghdad: A history of settlement on the Diyala plains. University of Chicago Press, Chicago, Illinois. Heyvaert, V.M.A. & Baeteman, C. (2008). A Middle to Late Holocene avulsion history of the Euphrates river: a case study from Tell ed-D-er, Iraq, Lower Mesopotamia. Quaternary Science Reviews, 27, 2401-2410. Heyvaert, V. M. A., Walstra, J., Verkinderen, P., Weerts, H. J. T. & Ooghe, B. (2012). The role of human interference on the channel shifting of the river Karkheh in the Lower Khuzestan plain (Mesopotamia, SW Iran). Quaternary International, 251, 52-63. Heyvaert, V.M.A., Walstra, J., Weerts, H.J.T. (2013). Human impact on avulsion and fan development in a semi-arid region: examples from SW Iran. Abstractbook of the 10th International Fluvial Sedimentology Conference, July 2013,Leeds, United Kingdom. Morozova, G.S. (2005). A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology, 20, 401-423. Walstra, J., Heyvaert, V. M. A. & Verkinderen, P. (2010). Assessing human impact on alluvial fan development: a multidisciplinary case-study from Lower Khuzestan (SW Iran). Geodinamica Acta, 23, 267-285. Wilkinson, T.J. (2003). Archaeological Landscapes of the Near East. The University of Arizona Press, Tucson, Arizona.

  10. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely

  11. Possible Late Quaternary faulting in the Benton Hills, southeastern Missouri

    SciTech Connect

    Palmer, J.R.; Hoffman, D. . Dept. of Natural Resources)

    1993-03-01

    Geologic mapping in the 1930's by Dan Stewart and Lyle McManamy identified numerous faults in the Thebes Gap area of the Benton Hills, including two post-late Quaternary faults (max. of 10 m displacement) along the southeastern escarpment. Recent geologic mapping (Richard Harrison, pers. comm.) suggests dextral strike-slip displacement on most of these faults; some deformation post-dates the Pliocene-Pleistocene Mounds gravel. Small historical earthquake epicenters have been recorded in the Benton Hills area. Review of these data and analysis of the geologic and structural relationships to small- and large-scale drainage and alluvial features suggest tectonic control of the southeastern escarpment of the Benton Hills. The authors propose the coincidence of geologic structures and landforms resembles tectonically active alluvial basin margins, with the Benton Hills southeastern margin representing a fault block uplift escarpment. Future seismic reflection, drilling and trenching studies are planned to determine if the escarpment is fault controlled and of recent origin.

  12. Turkana Grits - a Cretaceous braided alluvial system in northern Kenya

    SciTech Connect

    Handford, C.R.

    1987-05-01

    Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record a major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.

  13. CHANNEL EVOLUTION IN MODIFIED ALLUVIAL STREAMS.

    USGS Publications Warehouse

    Simon, Andrew; Hupp, Cliff R.

    1987-01-01

    This study (a) assesses the channel changes and network trends of bed level response after modifications between 1959 and 1972 of alluvial channels in western Tennessee and (b) develops a conceptual model of bank slope development to qualitatively assess bank stability and potential channel widening. A six-step, semiquantitative model of channel evolution in disturbed channels was developed by quantifying bed level trends and recognizing qualitative stages of bank slope development. Development of the bank profile is defined in terms of three dynamic and observable surfaces: (a) vertical face (70 to 90 degrees), (b) upper bank (25 to 50 degrees), and (c) slough line (20 to 25 degrees).

  14. Ground Penetrating Radar Imaging of the Emigrant Peak Fault Zone and Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Christie, M. W.; Tsoflias, G. P.

    2006-12-01

    Near-surface geophysical studies at the University of Kansas are investigating active faulting in the Eastern California Shear Zone. The Emigrant Peak Fault, in Fish Lake Valley, Nevada, is a normal fault that aids in the transfer of right-lateral deformation associated with the Furnace Creek/Fish Lake/Death Valley fault system of the Walker Lane Belt/Eastern California Shear Zone. During the spring and summer of 2006 we collected ground penetrating radar (GPR) across the deformed alluvial fan associated with the Emigrant Peak Fault. The GPR study is conducted in conjunction with high resolution shallow seismic and geologic investigations underway to more fully characterize the fault zone. The GPR data crosses the surface expression of the Emigrant Peak Fault and it is comprised of a 50 MHz 3-D grid and 25 MHz 2-D lines. The 3-D grid covers an area of 115m X 500m at 1m trace spacing, 5m in-line spacing and intersecting cross-lines at 50, 100, 150, 250, and 450m across the in-lines. 2-D GPR lines were acquired at coincident locations with the shallow seismic data and along a 1500m regional line over the fault and alluvial fan deposits. Depth of imaging ranged between 17m for the 50 MHz data and 25m for the 25 MHz data. GPR imaging aids in the characterization of the fault zone structurally as well as characterizing alluvial fan stratigraphy. Data shows stratigraphic reflectors on a 1m scale. Reflector geometries are quite complex, showing continuous coherent events, as well as areas that are less coherent which appear to signal a change to more boulder/cobble-rich deposition, a common characteristic in debris-flow dominated alluvial fans. The reflectors are also heavily influenced by the structural components that are imaged. The GPR shows a number of west-dipping faults that seem to migrate towards the basin. The faults are not imaged merely as interrupted reflectors, but the fault surfaces are actually imaged. Stratigraphic reflectors truncate at the faults in

  15. Late Quaternary faulting in Clayton Valley, Nevada: Implications for distributed deformation in the eastern California shear zone-Walker Lane

    NASA Astrophysics Data System (ADS)

    Foy, T. A.; Lifton, Z. M.; Frankel, K. L.; Johnson, C.

    2010-12-01

    The Walker Lane is a key component of the Pacific-North America plate boundary. This transtensional region of right lateral strike-slip and normal faulting accommodates ~25% of the total relative motion between the Pacific and North American plates. Recent studies indicate a discrepancy between short- and long-term rates of right-lateral shear in the Walker Lane with geodetic measurements of ~9.3 mm/yr being more than double the late Pleistocene geologic rate of <3.5 mm/yr. The Walker Lane, therefore, provides an excellent natural laboratory in which to address one of the major unresolved questions in active tectonics: are rates of strain accumulation and release along active plate boundaries constant through space and time or are significant temporal and spatial variations common? The Clayton Valley fault system of the Silver Peak-Lone Mountain extensional complex (SPLM) is a prime candidate to account for part of the “missing” strain in the Walker Lane due to its dominantly down-to-the-NW orientation, which ultimately accommodates right lateral shear in the region. The distribution of late Quaternary faults and alluvial fan deposits in Clayton Valley was determined through detailed geologic mapping (1:10,000 scale), which resulted in eight individual units that are consistent with the well-established western U.S. alluvial stratigraphy. Differential GPS was used to survey the prominent normal fault scarps displacing the fan deposits and cosmogenic nuclide (TCN) geochronology depth profile samples were collected from four units (Q2b, Q2c, Q2d, and Q3a). Displacement measured from the scarp profiles combined with TCN ages of the deformed fans will allow us to determine extension rates over multiple late Pleistocene time scales. Analysis of the Clayton Valley extension rates coupled with those from nearby structures, such as the Lone Mountain and Lida faults, will help determine if slip along these extensional faults can account for the observed discrepancy

  16. Alluvial and bedrock aquifers of the Denver Basin; eastern Colorado's dual ground-water resource

    USGS Publications Warehouse

    Robson, Stanley G.

    1989-01-01

    Large volumes of ground water are contained in alluvial and bedrock aquifers in the semiarid Denver basin of eastern Colorado. The bedrock aquifer, for example, contains 1.2 times as much water as Lake Erie of the Great Lakes, yet it supplies only about 9 percent of the ground water used in the basin. Although this seems to indicate underutilization of this valuable water supply, this is not necessarily the case, for many factors other than the volume of water in the aquifer affect the use of the aquifer. Such factors as climatic conditions, precipitation runoff, geology and water-yielding character of the aquifers, water-level conditions, volume of recharge and discharge, legal and economic constraints, and water-quality conditions can ultimately affect the decision to use ground water. Knowledge of the function and interaction of the various parts of this hydrologic system is important to the proper management and use of the ground-water resources of the region. The semiarid climatic conditions on the Colorado plains produce flash floods of short duration and large peak-flow rates. However, snowmelt runoff from the Rocky Mountains produces the largest volumes of water and is typically of longer duration with smaller peak-flow rates. The alluvial aquifer is recharged easily from both types of runoff and readily stores and transmits the water because it consists of relatively thin deposits of gravel, sand, and clay located in the valleys of principal streams. The bedrock aquifer is recharged less easily because of its greater thickness (as much as 3,000 feet) and prevalent layers of shale which retard the downward movement of water in the formations. Although the bedrock aquifer contains more than 50 times as much water in storage as the alluvial aquifer, it does not store and transmit water as readily as the alluvial aquifer. For example, about 91 percent of the water pumped from wells is obtained from the alluvial aquifer, yet water-level declines generally have

  17. Southern Dobrogea coastal potable water sources and Upper Quaternary Black Sea level changes

    NASA Astrophysics Data System (ADS)

    Caraivan, Glicherie; Stefanescu, Diana

    2013-04-01

    Southern Dobrogea is a typical geologic platform unit, placed in the south-eastern part of Romania, with a Pre-Cambrian crystalline basement and a Paleozoic - Quaternary sedimentary cover. It is bordered to the north by the Capidava - Ovidiu fault and by the Black Sea to the east. A regional WNW - ESE and NNE - SSW fault system divides the Southern Dobrogea structure in several tectonic blocks. Four drinking water sources have been identified: surface water, phreatic water, medium depth Sarmatian aquifer, and deep Upper Jurassic - Lower Cretaceous aquifer. Surface water sources are represented by several springs emerged from the base of the loess cliff, and a few small rivers, barred by coastal beaches. The phreatic aquifer develops at the base of the loess deposits, on the impervious red clay, overlapping the Sarmatian limestones. The medium depth aquifer is located in the altered and karstified Sarmatian limestones, and discharges into the Black Sea. The Sarmatian aquifer is unconfined where covered by silty loess deposits, and locally confined, where capped by clayey loess deposits. The aquifer is supplied from the Pre-Balkan Plateau. The Deep Upper Jurassic - Lower Cretaceous aquifer, located in the limestone and dolomite deposits, is generally confined and affected by the regional WNW - ESE and NNE - SSW fault system. In the south-eastern Dobrogea, the deep aquifer complex is separated from the Sarmatian aquifer by a Senonian aquitard (chalk and marls). The natural boundary of the Upper Jurassic - Lower Cretaceous aquifer is the Capidava - Ovidiu Fault. The piezometric heads show that the Upper Jurassic - Lower Cretaceous aquifer is supplied from the Bulgarian territory, where the Upper Jurassic deposits crop out. The aquifer discharges into the Black Sea to the east and into Lake Siutghiol to the northeast. The cyclic Upper Quaternary climate changes induced drastic remodeling of the Black Sea level and the corresponding shorelines. During the Last Glacial

  18. Morphology and stratigraphy of the late Quaternary lower Brazos valley: Implications for paleo-climate, discharge and sediment delivery

    NASA Astrophysics Data System (ADS)

    Sylvia, Dennis A.; Galloway, William E.

    2006-08-01

    A shallow coring and geophysical logging program has recorded the sedimentary fill of the Brazos River valley in the Texas Gulf Coastal Plain. Thermoluminescence dates together with new and recalibrated published radiocarbon dates show the valley fill to include extensive, sandy, buried falling stage and lowstand Oxygen Isotope Stage (OIS) 3 and 2 deposits. These alluvial deposits are punctuated by numerous paleosoil horizons that record alternating periods of cutting, bypass and accumulation. Maximum valley incision and two periods of terrace formation preceded marine lowstand conditions, suggesting significant discordance between preserved fluvial and classical marine system tracts. The latest Pleistocene incision and fill history appears related to cycles of increased discharge and incision, followed by system equilibration and terrace formation. Analysis of the Brazos River incised valley and its contained paleochannels indicates that latest Pleistocene mean annual discharge was as much as four times greater than that of today. This magnitude of discharge in the Brazos would require a two-fold increase in precipitation across the drainage basin. Such an increase is comparable to the present day measured positive El Niño winter precipitation anomaly across the region. Paleochannel geometries and the stratigraphic and sedimentologic data from this investigation support the hypothesis that periods of high-amplitude, El Niño-like climatic perturbations characterized the late Quaternary climate of the south-central and southwestern U.S. This period of high discharge coincides, at least in part, with late OIS 3 progradation of the Brazos delta to the shelf margin, OIS 3 and 2 valley incision across the Texas shelf, and concomitant sand bypass to intraslope basins beyond the shelf edge.

  19. Extension of Hellenic forearc shear zones in SW Turkey: the Pliocene-Quaternary deformation of the Eşen Çay Basin

    NASA Astrophysics Data System (ADS)

    ten Veen, Johan H.

    2004-03-01

    The Pliocene-Quaternary Eşen Çay Basin in southwestern Turkey has a key position in the southern Aegean to gain insight into both lateral and temporal changes in stresses exerted by plate convergence at the Hellenic-Cyprus arc junction. A tectonosedimentary study of the basin development in combination with a structural analysis helped to reveal internal basin deformation and adjacent basement kinematics in order to delineate 3D strain through time. In the Pliocene the basin originated as a fluviolacustrine basin situated in a depression related to a ramp-fold geometry in the Lycian nappe stack. During the late Pliocene, E-W extension caused the development of N-S normal faults, displacement along which caused the differentiation of the relief and deposition of local alluvial fan systems. The Pleistocene is also marked by widespread alluvial-fluvial sedimentation that is triggered by activity at 020° faults. This fault system resulted from WNW-ESE extension and caused disruption of the former basin floor by uplift and tilting of intrabasinal areas, which initiated development of new source areas for the fan sedimentation. The Holocene-Recent period is characterized by a complex combination of faults of which 070° sinistral strike-slip faults are the most important. Fault-slip analysis reveals that deformation occurred in transtension, explained by the addition of a sinistral shear component. This implies that stresses evolved from simple tensional to transtensional over the Pliocene-Quaternary period. The initial extension phase is explained by the kinematic effects of outward growth of the Hellenic forearc, comparable with observations from the island of Rhodes and the eastern Anaximander Mountains. The time-transgressive addition of a sinistral shear component was likely produced by the northeastward propagating transcurrent motions of forearc slivers sheared from the expanding forearc as has been previously inferred for Crete and Rhodes. The latter process

  20. Coastal alluvial fans (fan deltas) of the Gulf of Aqaba (Gulf of Eilat), Red Sea

    NASA Astrophysics Data System (ADS)

    Hayward, A. B.

    1985-04-01

    Coastal sediments of the Gulf of Aqaba are dominated by alluvial fans that prograde directly into the sea. The fans can be subdivided into four types: (1) largely inactive alluvial fans that merge into a braided fluvial system and pass seaward into sabkha flats, lagoons, mangroves and fringing reefs; (2) large alluvial fans that pass directly into the sea with one major entrenched channel and a fringing reef with a large incised canyon; both of these were formed during the Pleistocene, present fluvial activity is confined to the entrenched channels; (3) medium-sized (1-2 km long, 3-4 km wide) moderate to highly active alluvial fans with fringing reefs and backreef lagoons; and (4) small short-headed wadis that empty directly into the sea. The scale, overall sediment body geometry and facies associations of type (3) coastal alluvial fans (fan deltas) provide a close and useful modern analogue for many ancient fan-delta sedimentary sequences. On subaerial parts of the fan, disorganised cobbles and boulders, at the apex, deposited by debris flows pass downslope into longitudinal bars deposited during the high flood stage of periodic flash-flood events. The bars extend over the entire fan surface becoming progressively smaller and finer grained down fan. In general, the fans are characterised by a low proportion of floodplain deposits and extensive modification by aeolian processes, producing widespread gravel pavements and small dune fields over inactive areas of the lower fan. In the marine environment the fans are modified by a combination of wave action and longshore drift. Sand beaches are characterised by low-angle seaward-dipping lamination. On shingle beaches all gravel clasts have a strong preferred seaward dipping orientation. In areas where the fringing reefs are situated offshore from the fan, mixed quartz-bioclastic sand-filled lagoons develop. The nearshore lagoon areas are characterised by large sand bars orientated parallel to the shore. These pass

  1. Geomorphology, internal structure and evolution of alluvial fans at Motozintla, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Sánchez-Núñez, J. M.; Macías, J. L.; Saucedo, Ricardo; Zamorano, J. J.; Novelo, David; Mendoza, M. E.; Torres-Hernández, J. R.

    2015-02-01

    Alluvial fans and terraces develop in diverse regions responding to different tectonic and climatic conditions. The Motozintla basin is located in the State of Chiapas, southern Mexico and has an E-W orientation following the trace of the left-lateral Polochic Fault. The evolution of the Motozintla basin and the alluvial plain is related to several factors, such as fault movement, intense erosion by hydrometeorological events, and anthropogenic activity. This study presents the geomorphology of the alluvial plain that between the villages of Motozintla and Mazapa de Juárez exposes 31 alluvial fans, 5 hanging terraces and 13 ramps. Fourteen of these alluvial fans have been truncated by the Polochic fault, exposing maximum uplifts of ~ 12 m. The internal structure of truncated fans consists of single massive beds (monolithologic fans) or stacked beds (polygenetic fans). The fans' stratigraphy is made of debris flow deposits separated by paleosols and minor hyperconcentrated flows, fluviatile beds, and pyroclastic fall deposits. The reconstruction of the stratigraphy assisted by radiocarbon geochronology suggests that these fans have been active since late Pleistocene (25 ka) to the present. This record suggests that at least 10 events have been recorded at the fan interior during the past ~ 1840 years. One of these events at 355 ± 65 14C yrs. BP (cal yrs. AD 1438 to 1652) can be correlated across the fans and is likely associated with an extreme hydrometeorologic event. The presence of a 165 ± 60 14C yrs. BP (cal yrs. AD 1652-1949) debris flow deposit within the fans suggests that movement along the Polochic fault formed the fans' scarp afterwards. In fact, a historic earthquake along the fault occurred east of Motozintla on July 22, 1816 with a Mw of 7.5-7.75. Recent catastrophic floods have affected Motozintla in 1998 and 2005 induced by extreme hydrometeorological events and anthropogenic factors. Therefore, scenarios for Motozintla involved several types of

  2. Patterns and Processes of Width Adjustment to Increased Streamflows in Semi-Alluvial Rivers

    NASA Astrophysics Data System (ADS)

    Kelly, S. A.; Belmont, P.

    2015-12-01

    While it is understood that river channel width is determined by fluxes of water and sediment, predictive models of channel width, and especially changes in width under non-stationary conditions, have proven elusive. Classic hydraulic geometry relations commonly used in numerical models and channel design typically scale width as a power law function of discharge, without consideration of bank properties. This study investigates the role of bank material in determining spatial and temporal variability in channel width and widening rates for semi-alluvial rivers that have experienced increases in flow. The 45,000 km2 Minnesota River Basin contains many semi-alluvial rivers that have been rapidly incising into fine-grained glacial deposits over the last 13,400 years in response to a catastrophic base level drop. Large, recent increases in streamflows have caused significant channel widening and migration, exacerbated erosion of channel (alluvial) banks and (consolidated till) bluffs, and dramatically increased sediment supply. Here we leverage multiple decades of aerial photos, repeat lidar surveys, Structure from Motion photogrammetry and sediment gaging to examine past, and predict future, changes in channel width. We use empirical observations and a simple model to examine whether semi-alluvial channels tend toward a single, or multiple, equilibrium channel width(s). Preliminary results suggest that under stationary hydrologic conditions (1930s - 1970s) channel width was relatively consistent among reaches underlain by alluvium versus consolidated till. Since the late 1970s the study area has undergone profound hydrologic changes, with geomorphically-active flows nearly doubling in magnitude. Alluvial reaches widened relatively quickly in response to the increase in flows, whereas reaches underlain by till have not seen the same amount of widening. Aerial lidar-based geomorphic change detection between 2005 - 2012 records channel width changes in response to an

  3. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  4. Downstream hydraulic geometry of alluvial rivers

    NASA Astrophysics Data System (ADS)

    Julien, P. Y.

    2015-03-01

    This article presents a three-level approach to the analysis of downstream hydraulic geometry. First, empirical concepts based on field observations of "poised" conditions in irrigation canals are examined. Second, theoretical developments have been made possible by combining basic relationships for the description of flow and sediment transport in alluvial rivers. Third, a relatively new concept of equivalent channel widths is presented. The assumption of equilibrium may describe a perpetual state of change and adjustments. The new concepts define the trade-offs between some hydraulic geometry parameters such as width and slope. The adjustment of river widths and slope typically follows a decreasing exponential function and recent developments indicate how the adjustment time scale can be quantified. Some examples are also presented to illustrate the new concepts presented and the realm of complex river systems.

  5. Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.

    2006-12-01

    displaced by 8-10 km from entrenched bedrock drainages north of the SAFm (North Fork Whitewater River and Hell-For-Sure Canyon). This restoration, along with restoration of 3-4 km of dextral-slip along SAFmi, leads to an integrated drainage network that extended from San Gorgonio Peak southward across the SAFm and SAFmi, through the San Timoteo drainage basin and ultimately to the Santa Ana River drainage. Following final slip on the SAFmi, which occurred between approximately 1.2 and 0.5 Ma, the 8-10 km dextral-slip reconstruction on the SAFm can be used to restore the ancestral Mission Creek drainage system, which has always flowed southeast. A large alluvial-fan complex that overlies the SAFmi strand developed where the ancestral Mission Creek River debouched into the Coachella Valley. Analysis of cosmogenic radionuclides (21Ne from quartz) from surface boulders indicates that oldest deposits in the fan complex are about 400ka old, compatible with pedogenic development on the oldest surface. Approximately 2-4 km dextral slip on the youngest strands of the SAF (Banning and Garnet Hill) represents the latest bypass of the SGP structural knot. Cumulative displacement on all strands of the SAF in the greater SGP region appears to have been no more than ~18 km since inception of the left step in the SAFmi. Regional evidence suggests that this event initiated at ~1.2Ma, leading to a Quaternary slip rate on the SAF at SGP of no more than 10-15 mm/yr.

  6. Geomorphology and regional stratigraphic model of Cenozoic deposits from "Continental to Marine" of Western Peninsular Malaysia and Strait of Malacca.

    NASA Astrophysics Data System (ADS)

    Menier, David; Mansor, Yazid; Sautter, Benjamin; Pubellier, Manuel; Estournes, Guilhem; Meng Choong, Chee; Ghosh Deva, Prasad; Proust, Jean-Noel; Goubert, Evelyne

    2014-05-01

    Coastal basins have been greatly influenced worldwide by their geological heritage (lithology, structural control) and eustatic sea-level fluctuations. Along the western side of Peninsular Malaysia, both the structures of the tertiary-quaternary basement and the geomorphology are poorly known. The coast is characterized landward by an absence of tertiary deposits on the alluvial and coastal plains and seaward by numerous deeply incised valleys although the incision potential is low. Offshore, in the Strait of Malacca, the thickness of sediments increases drastically, particularly at the apex of some N-S elongated basins (> 2 Km), and in the central part of the Strait of Malacca. Onshore, the geomorphology of the Western Peninsular Malaysia is controlled mostly by climatic effects on an old (Indosinian) orogen affected by transtensional brittle tectonics during the Tertiary. We investigate the effects of Tertiary extension and associated vertical motions on the Cenozoic geomorphology and stratigraphy. The study is based on a combined morphobathymetric approach of based on GEBCO data, supported by low and recent high resolution offshore seismic data, and DTM data from ASTER and SRTM. The main results are the followings: (1) the structural control appears to be responsible of the positioning and preservation of the Tertiary deposits; while the Quaternary (marine) deposits thinner, drowned the western Malaysia Peninsular coast, independently of the geomorphological and structural context; (2) The offshore Tertiary deposits seem disconnected from the modern drainage network, suggesting probable uplift during the late Tertiary period, which reactivated NW-SE trending faults and fractures; (3) The orientation, the shape and the depth of the ancient and modern incised valleys (Perak, Kerian , Kinta rivers) are controlled by the structural context and lithological contrast; (4) Finally, from a landward to a seaward directions, the Cenozoic deposits seems to have transited

  7. Estimation of hydraulic conductivity in an alluvial system using temperatures

    USGS Publications Warehouse

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  8. Historical Ground-Water Development in the Salinas Alluvial Fan Area, Salinas, Puerto Rico, 1900-2005

    USGS Publications Warehouse

    Rodriguez, Jose M.; Gómez-Gómez, Fernando

    2008-01-01

    The Salinas alluvial fan area has historically been one of the most intensively used agricultural areas in the South Coastal Plain of Puerto Rico. Changes in agricultural practices and land use in the Salinas alluvial fan have also caused changes in the geographic distribution of ground-water withdrawals from the alluvial aquifer. As a result, the ground-water balance and ground-water flow pattern have changed throughout the years and may explain the presence of saline ground water along parts of the coast at present. By providing a reconstruction of historical ground-water development in the Salinas alluvial fan area, from the initial years of aquifer development at about 1900 to the most recent conditions existing in 2005, water resources managers and planners can use the results of the analysis for a more complete understanding of aquifer conditions especially pertaining to water quality. This study effort was conducted by the U.S. Geological Survey in cooperation with the Puerto Rico Department of Natural and Environmental Resources as a contribution in the management of the Jobos Bay National Estuarine Research Reserve. The study area encompasses about 20 mi2 (square miles) of the extensive South Coastal Plain alluvial aquifer system (fig. 1). The study area is bounded to the north by foothills of the Cordillera Central mountain chain, to the south by the Caribbean Sea, and to the east and west by the Rio Nigua de Salinas and the Quebrada Aguas Verdes, respectively. Fan-delta and alluvial deposits contain the principal aquifers in the study area.

  9. Large Well-exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A.D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early- Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters = 70 km in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 deg S and 30 deg S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  10. Large Well-Exposed Alluvial Fans in Deep Late-Noachian Craters

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.

    2004-01-01

    Large, fresh-appearing alluvial fans (typically greater than 10 km long) have been identified during a systematic search of 100 m/pixel low-sun daylight THEMIS IR imaging in deep late-Noachian or early-Hesperian craters. Our study of these fans was augmented with MOLA-derived topography and high-resolution MOC and THEMIS VIS images where available. The influence of alluvial fan deposition on the topography of crater floors has been recognized in previous topographic studies. Recent Mars Odyssey-era studies have also identified and described in detail a fluvial delta or fan of approximately the same age as the alluvial fans of this study. Our results, at the time of this writing, indicate that these fans are only found in less than 5% of all craters greater than or equal to 70 kilometers in diameter within a large study region. In every case the fan-containing craters were restricted to a latitude belt between 20 degrees S and 30 degrees S. All of which had significant topographic relief and appeared morphologically younger than typical mid-Noachian craters in the size range. However, large fans were not found in the most pristine (and presumably youngest) craters in this size range. Most Martian fans have morphologies consistent with terrestrial debris-flow-dominated fans.

  11. Abo Formation alluvial facies and Associated Basin Fill, Sacramento Mountains, New Mexico

    SciTech Connect

    Speer, S.W.

    1986-03-01

    Outcrops of the Abo Formation (Wolfcampian to early Leonardian age) in the Sacramento Mountains of south-central New Mexico record the evolution of a dry alluvial fan system as it was deposited off the pedernal uplift into the Orogrande basin. The location and orientation of present-day outcrops allow us to observe an inferred east-to-west transverse facies tract consisting of: (1) proximal alluvial fans (lower Abo), which are contiguous in places with underlying Laborcita Formation fan-deltaic sediments; (2) medial anastomosed streams (middle Abo); and (3) distal low-gradient mud-dominated flood basins characterized by either distributary streams (upper Abo) or clastic tidal flats (Lee Ranch Tongue of the Abo) with associated marine carbonates (Pendejo Tongue of the Hueco Formation). Tectonism in the Pedernal highlands, which climaxed during the Late Pennsylvanian, apparently continued well into the Wolfcampian in this region, as evidenced by a major basal Abo unconformity and distinct stacked megasequences of lower Abo alluvial fan lithofacies. However, by the middle Abo, tectonic activity had quiesced and the uplift began eroding and retreating to the north and east. By the late Abo, a pediment surface had formed that was subsequently onlapped by upper Abo and eventually Yeso Formation sediments.

  12. Differentiating tectonic from climatic factors in the evolution of alluvial fans

    SciTech Connect

    Wilson, D.S.; West, R.B. . Dept. of Geology)

    1993-04-01

    Alluvial fans are integral parts of landscapes of arid and semi-arid regions and are most commonly found along the flanks of tectonically active mountain ranges. Alluvial fans are sensitive indicators of tectonic and climatic activity through time. Three dimensional fan modelling has the potential to discriminate between these two forces and provide quantitative estimates of deformation of fan surfaces due to tilting, faulting, or folding. The model has tremendous potential for seismic hazard evaluation at both the reconnaissance and detailed level of investigation. The ability to recognize deformation of alluvial fans alleviates the need for postulation of complex interactions between climate and internal variables in the depositional system leading to present fan morphology. The greatest problems associated with fan modelling come from failure to identify individual segments. Inclusion of more than one segment can lead to poor model performance or, more likely, inaccurate results. The long term tectonic influence on a fan's evolution can be assessed from the differences in deformation of different segments. Reliable correlations of segments from different fans along the same mountain front can provide a means to asses regional deformation. Once tectonic effects are taken into account, then climatic effects can be evaluated. Previous fan models have failed to recognize areal limitations, failed to account for deformation, or assumed deformation geometry.

  13. Zircon geochronology of loess and alluvial sediment: implications for provenance of modern soils of Middle Tennessee

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ayers, J. C.; Katsiaficas, N. J.

    2014-12-01

    Soils in Middle Tennessee are commonly observed on limestone bedrock. However, comparison of zircon U-Pb age spectra of soil and bedrock (Ayers and Katsiaficas, unpublished data) suggests that there is a small but significant exotic (externally derived) zircon component. Potential sources of exotic zircon include loess and alluvial sediments. In western Tennessee the Roxana Silt was deposited 38-53 ka and the Peoria Loess 18-25 ka. Detrital zircon U-Pb geochronology is a direct and effective way to test the possibility of loess as a contributor to the source material of the soil. According to Aleinikoff et al. (2008), loess from Colorado and Nebraska have young detrital zircon age peaks at ~34Ma. If this is also true for the loess in Tennessee, it may explain the ~33 Ma age peak found in one of the three studied soil samples. To identify the source of the exotic zircon found in middle TN soils, zircon age spectra will be measured for Roxana Silt, Peoria Loess, and alluvial sediments from the Harpeth and Cumberland Rivers. The loess samples were collected near Memphis, TN, while the alluvial sediments were collected near the soil sample sites.

  14. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  15. Ion-probe U-Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium

    NASA Astrophysics Data System (ADS)

    Neymark, L. A.; Paces, J. B.

    2013-01-01

    Knowing depositional ages of alluvial fans is essential for many tectonic, paleoclimatic, and geomorphic studies in arid environments. The use of U-Pb dating on secondary silica to establish the age of Neogene-Quaternary clastic sediments was tested on samples of authigenic and detrital opal and chalcedony from depths of ˜25 to 53 m in boreholes at Midway Valley, Nevada. Dating of authigenic opal present as rinds on rock clasts and in calcite/silica cements establishes minimum ages of alluvium deposition; dating of detrital opal or chalcedony derived from the source volcanic rocks gives the maximum age of sediment deposition. Materials analyzed included 12 samples of authigenic opal, one sample of fracture-coating opal from bedrock, one sample of detrital opal, and two samples of detrital chalcedony. Uranium-lead isotope data were obtained by both thermal ionization mass spectrometry and ion-microprobe. Uranium concentrations ranged from tens to hundreds of μg/g. Relatively large U/Pb allowed calculation of 206Pb/238U ages that ranged from 1.64±0.36 (2σ) to 6.16±0.50 Ma for authigenic opal and from 8.34±0.28 to 11.2±1.3 Ma for detrital opal/chalcedony. Three samples with the most radiogenic Pb isotope compositions also allowed calculation of 207Pb/235U ages, which were concordant with 206Pb/238U ages from the same samples. These results indicate that basin development at Midway Valley was initiated between about 8 and 6 Ma, and that the basin was filled at long-term average deposition rates of less than 1 cm/ka. Because alluvium in Midway Valley was derived from adjacent highlands at Yucca Mountain, the low rates of deposition determined in this study may imply a slow rate of erosion of Yucca Mountain. Volcanic strata underlying the basin are offset by a number of buried faults to a greater degree than the relatively smooth-sloping bedrock/alluvium contact. These geologic relations indicate that movement on most faults ceased prior to erosional planation and

  16. Particle dynamics: The continuum of bedrock to alluvial river segments

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2015-07-01

    Particle dynamics refers to production, erosion, transport, and storage of particulate material including mineral sediment and organic matter. Particle dynamics differ significantly between the end members of bedrock and alluvial river segments and between alluvial river segments with different grain-size distributions. Bedrock segments are supply limited and resistant to change, with relatively slow, linear adjustments and predominantly erosion and transport. Particle dynamics in alluvial segments, in contrast, are transport limited and dominated by storage of mineral sediment and production of organic matter. Alluvial segments are resilient to change, with relatively rapid, multidirectional adjustments and stronger internal influences because of feedbacks between particles and biota. Bedrock segments are the governors of erosion within a river network, whereas alluvial segments are the biogeochemical reactors. Fundamental research questions for both types of river segments center on particle dynamics, which limit network-scale incision in response to base level fall (bedrock segments) and habitat, biogeochemical reactions, and biomass production (alluvial segments). These characterizations illuminate how the spatial arrangement of bedrock and alluvial segments within a river network influence network-scale resistance and resilience to external changes in relative base level, climate, and human activities.

  17. Alluvial Bars of the Obed Wild and Scenic River, Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Fitch, K.C.; Ladd, D.E.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) and the National Park Service (NPS) initiated a reconnaissance study of alluvial bars along the Obed Wild and Scenic River (Obed WSR), in Cumberland and Morgan Counties, Tennessee. The study was partly driven by concern that trapping of sand by upstream impoundments might threaten rare, threatened, or endangered plant habitat by reducing the supply of sediment to the alluvial bars. The objectives of the study were to: (1) develop a preliminary understanding of the distribution, morphology, composition, stability, and vegetation structure of alluvial bars along the Obed WSR, and (2) determine whether evidence of human alteration of sediment dynamics in the Obed WSR warrants further, more detailed examination. This report presents the results of the reconnaissance study of alluvial bars along the Obed River, Clear Creek, and Daddys Creek in the Obed WSR. The report is based on: (1) field-reconnaissance visits by boat to 56 alluvial bars along selected reaches of the Obed River and Clear Creek; (2) analysis of aerial photographs, topographic and geologic maps, and other geographic data to assess the distribution of alluvial bars in the Obed WSR; (3) surveys of topography, surface particle size, vegetation structure, and ground cover on three selected alluvial bars; and (4) analysis of hydrologic records.

  18. Characterization of dust emission from alluvial sediments using aircraft observations and modeling

    NASA Astrophysics Data System (ADS)

    Schepanski, K.; Flamant, C.; Chaboureau, J.; Kocha, C.; Banks, J.; Brindley, H. E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P.

    2013-12-01

    Recent studies using satellite observations show that numerous dust sources are located in the foothills of arid and semi-arid mountain regions such as over North Africa. Alluvial sediments deposited on the valley bottoms and flood plains are very prone to wind erosion and frequently serve as dust source. High surface wind speeds related to the break-down of the nocturnal low-level jet (LLJ) during the morning hours are identified as a frequent driving mechanism for dust uplift. We investigate dust emission from alluvial dust sources located within the upland region in northern Mauritania and discuss the impact of valleys with regard to their role as dust source. Measures for local atmospheric dust burden were retrieved from airborne observations, MSG SEVIR dust AOD fields and MesoNH model simulations, and analyzed in order to provide complementary information on dust source activation and local dust transport at different horizontal scales. Vertical distribution of atmospheric mineral dust was obtained from the LNG backscatter lidar system flying aboard the French Falcon-20 aircraft. Lidar extinction coefficients were compared to topography, aerial photographs, and dust AOD fields to confirm the relevance of alluvial sediments at the valley bottoms as dust source. The observed dust emission event was further evaluated using the regional model MesoNH. A sensitivity study on the impact of the horizontal grid spacing highlights the importance of the spatial resolution on simulated dust loadings. The results further illustrate the importance of an explicit representation of alluvial dust sources in such models to better capture the spatial-temporal distribution of airborne dust concentrations.

  19. Efficient extraction of fine heavy minerals from alluvial and ground ores

    SciTech Connect

    Tikhonov, O.N.

    1995-12-31

    A new extraction method which includes a combination of gravity and alternating electromagnetic fields with interfriction of mineral particles was proposed and tested in lab conditions at Mineral Processing Department of St. Petersburg Mining Institute. At the beginning of the work the main goal was to find an efficient alternative to traditional extraction methods (like shaking table, etc.) used for concentration of fine alluvial gold particles. After the method and a series of gradually improved lab separators were positively tested for gold, the efficiency of the method was also proved for extraction of platinum and other heavy minerals from alluvial and ground ores in experimental work at the St. Petersburg Mining institute. The fine heavy minerals were separated to concentrates with high technological indices. In parallel a semi-industrial gravi-electromagnetic separator was made and several technological flowsheets were designed for testing the method in industrial conditions. A series of industrial tests accompanied with complete sampling and standard technological measurements were performed at several alluvial deposits, with good technological indices. Thus the method and the flowsheets displayed high additional recovery of fine alluvial gold particles during elaborated industrial experiments in Siberia (Aldan province). At higher concentrate grade this method, even in one-stage operation, increased gold recovery more than by 25% compared with shaking table (for particles < 0.10 mm gold recovery was 82% vs. 55% by shaking table, for particles < 0.25 mm the recovery was 97.5% vs. 61.8%). Experiments were performed by joint team of St. Petersburg Mining institute and the Irkutsk Institute of Rare Metals.

  20. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    PubMed

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns. PMID:25249478

  1. Regional water quality patterns in an alluvial aquifer: Direct and indirect influences of rivers

    NASA Astrophysics Data System (ADS)

    Baillieux, A.; Campisi, D.; Jammet, N.; Bucher, S.; Hunkeler, D.

    2014-11-01

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50 km2) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ18OH2O and δ2HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52 mg/L, and the nitrate concentration of infiltrating river at approximately 6 mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns.

  2. Design of flood protection for transportation alignments on alluvial fans

    SciTech Connect

    French, R.H.

    1991-01-01

    The method of floodplain delineation on alluvial fans developed for the national flood insurance program is modified to provide estimates of peak flood flows at transportation alignments crossing an alluvial fan. The modified methodology divides the total alignment length into drainage design segments and estimates the peak flows that drainage structures would be required to convey as a function of the length of the drainage design segment, the return period of the event, and the location of the alignment on the alluvial fan. An example of the application of the methodology is provided. 16 refs., 5 figs.

  3. Distribution and Orientation of Alluvial Fans in Martian Craters

    NASA Technical Reports Server (NTRS)

    Kraal, E. R.; Moore, J. M.; Howard, A. D.; Asphaug, E. I.

    2005-01-01

    We present the results of the complete survey of Martian alluvial fans from 0-30 S, initiated by Moore and Howard. Nineteen impact craters contain alluvial fans. They are regionally grouped into three distinct areas. We present our initial results regarding their distribution and orientation in order to understand what controls their formation. Since alluvial fans are formed by water transport of sediment, these features record wetter episodes of Martian climate. In addition, their enigmatic distribution (in regional groups and in some craters, but not similar adjacent ones) needs to be understood, to see how regional geology, topographic characteristics, and/or climate influence their formation and distribution.

  4. Characterization of alluvial sources in the Owens Valley of eastern California using Fourier shape analysis

    SciTech Connect

    Wagoner, J.L.; Younker, J.L.

    1982-03-01

    Two-dimensional quartz grain shape was used to characterize sand grains from different source areas in the Owens Valley of eastern California. Combining a mathematical description of the grain outline and multivariate discriminant analysis, we have shown that quartz from clastic source rocks has a distinctive imprint when compared to samples from granitic, volcanic, or mixed fluvial source areas. Alternatively, quartz provided by a granitic source could equally well have been interpreted as if it were derived from any of the other sources considered. This study provides a standard of comparison for further analysis of sediment deposited in arid alluvial environments.

  5. Alluvial diamond resource potential and production capacity assessment of Mali

    USGS Publications Warehouse

    Chirico, Peter G.; Barthelemy, Francis; Kone, Fatiaga

    2010-01-01

    In May of 2000, a meeting was convened in Kimberley, South Africa, and attended by representatives of the diamond industry and leaders of African governments to develop a certification process intended to assure that rough, exported diamonds were free of conflictual concerns. This meeting was supported later in 2000 by the United Nations in a resolution adopted by the General Assembly. By 2002, the Kimberley Process Certification Scheme (KPCS) was ratified and signed by diamond-producing and diamond-importing countries. Over 70 countries were included as members of the KPCS at the end of 2007. To prevent trade in "conflict diamonds" while protecting legitimate trade, the KPCS requires that each country set up an internal system of controls to prevent conflict diamonds from entering any imported or exported shipments of rough diamonds. Every diamond or diamond shipment must be accompanied by a Kimberley Process (KP) certificate and be contained in tamper-proof packaging. The objective of this study was (1) to assess the naturally occurring endowment of diamonds in Mali (potential resources) based on geological evidence, previous studies, and recent field data and (2) to assess the diamond-production capacity and measure the intensity of mining activity. Several possible methods can be used to estimate the potential diamond resource. However, because there is generally a lack of sufficient and consistent data recording all diamond mining in Mali and because time to conduct fieldwork and accessibility to the diamond mining areas are limited, four different methodologies were used: the cylindrical calculation of the primary kimberlitic deposits, the surface area methodology, the volume and grade approach, and the content per kilometer approach. Approximately 700,000 carats are estimated to be in the alluvial deposits of the Kenieba region, with 540,000 carats calculated to lie within the concentration grade deposits. Additionally, 580,000 carats are estimated to have

  6. Quaternary alkaloids of tinospora species.

    PubMed

    Bisset, N G; Nwaiwu, J

    1983-08-01

    The occurrence of quaternary alkaloids in TINOSPORA (and PARABAENA) species (Menispermaceae) has been studied. The main components were generally the protoberberine bases berberine and palmatine, with jatrorrhizine an occasional minor constituent, and the aporphine base magnoflorine. Choline was also often present. Only magnoflorine was detected in the PARABAENA material examined. PMID:17404996

  7. Laramide thrust-generated alluvial-fan sedimentation, Sphinx conglomerate, southwestern Montana

    SciTech Connect

    Decelles, P.G.; Tolson, R.B.; Graham, S.A.; Smith, G.A.; Ingersoll, R.V.; White, J.; Schmidt, C.J.; Rice, R.; Moxon, I.; Lemke, L.; handschy, J.W.; Follo, M.F.; Edwards, D.P.; Cavazza, W.; Caldwell, M.; Bargar, E. )

    1987-02-01

    The uppermost Cretaceous-lower Tertiary Sphinx Conglomerate crops out over an area of approximately 20 km{sup 2} (8 mi{sup 2}) in the Madison Range of southwestern Montana. The Sphinx consists of more than 1,000 m (3,300 ft) of synorogenic boulder and cobble conglomerate derived from a Late Cretaceous Laramide uplift that was located in the area presently occupied by the Madison River valley. Palynological and radiometric age data indicate that the Sphinx was deposited 75-58 Ma, and that thrusting and folding of the deposit had largely ceased by 56 Ma. Compositions of Sphinx clasts and paleocurrent data indicate that the Sphinx was produced by uplift and unroofing of Mesozoic and Paleozoic rocks located on two thrust sheets to the west and southwest. The lower Sphinx was deposited on the distal portions of an eastward prograding alluvial-fan system. Clast assemblages and lithofacies indicate that deposition of the middle Sphinx was controlled by a combination of progradation in response to ongoing thrusting and an influx of resistant clasts derived from middle Paleozoic carbonates in the source area. Deposition of the upper Sphinx was probably controlled by source lithology, as the influx of very coarse, resistant clasts from middle and lower Paleozoic carbonates overwhelmed the fan system's ability to organize its load of sediment by normal fan processes. A preliminary facies model for thrust-generated alluvial-fan deposits predicts intraformational deformation, cannibalization of proximal synorogenic fan facies, and abrupt compositional breaks in response to episodes of thrusting. 14 figs., 1 tab.

  8. Late Quaternary evolution of the La Cantera Fault System (Central Precordillera, Argentina): A morphotectonic and paleoseismic analysis

    NASA Astrophysics Data System (ADS)

    Perucca, Laura; Rothis, Martín; Bezerra, Francisco Hilario; Vargas, Nicolás; Lima, Jean

    2015-10-01

    The La Cantera Fault System (LCFS) is the most active Quaternary structure in the Central Precordillera of San Juan, in central-western Argentina; the system extends for 47 km along the intermountain valley that separates the Sierra de La Cantera and La Invernada, north of the San Juan River. The average fault trend is 20°; it dips at angles varying between 15° and 30° W in the northern section, to approximately 40° W in the central section, and up to 60° W in the southern section. The fault affects Holocene to recent alluvium deposits in the western piedmont of the Sierra de La Cantera and is defined by a series of landforms found in compressive tectonic environments, including simple and compound counterslope fault scarps, staircased alluvial terraces, sag ponds, flexural scarps, aligned springs, broom-shaped drainage patterns, river diversions, beheaded channels, changes in incision depths, sinuosity and a river gradient along channels. Trench investigations indicated that at least three events occurred in the past 1.1-10.1 ky. The topographic profiles of the selected channels and interfluves cutting across the northern and central trace of the fault were analyzed using a Stonex Vector GPS differential system to establish the relationship between the topography and slope of the rivers. This morphometric analysis of scarps indicates that active tectonics have played an essential role in controlling the drainage pattern in the piedmont, leading the rivers to adjust to these slope variations. Based on the analyzed geomorphologic, stratigraphic and structural characteristics, the LCFS is considered to be a relevant seismogenic source in the intraplate portion of southern South America, with a recurrence interval of at least 2000 ± 500 years for moderate magnitude earthquakes during the last 11,000 years.

  9. The linkage between hillslope vegetation changes and late-Quaternary fluvial-system aggradation in the Mojave Desert revisited

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2014-03-01

    Valley-floor-channel and alluvial-fan deposits and terraces in the southwestern US record multiple episodes of late Quaternary fluvial aggradation and incision. Perhaps the most well constrained of these episodes took place from the latest Pleistocene to the present in the Mojave Desert. One hypothesis for this episode, i.e. the paleo-vegetation change hypothesis (PVCH), posits that a reduction in hillslope vegetation cover associated with the transition from Pleistocene woodlands to Holocene desert scrub generated a pulse of sediment that triggered a primary phase of aggradation downstream, followed by channel incision, terrace abandonment, and initiation of a secondary phase of aggradation further downstream. A second hypothesis, i.e. the extreme-storm hypothesis, attributes episodes of aggradation and incision to changes in the frequency and/or intensity of extreme storms. In the past decade a growing number of studies has advocated the extreme-storm hypothesis and challenged the PVCH on the basis of inconsistencies in both timing and process. Here I show that in eight out of nine sites where the timing of fluvial-system aggradation in the Mojave Desert is reasonably well constrained, measured ages of primary aggradation and/or incision are consistent with the predictions of the PVCH if the time-transgressive nature of paleo-vegetation changes with elevation is fully taken into account. I also present an alternative process model for PVCH that is more consistent with available data and produces sediment pulses primarily via an increase in drainage density (i.e. a transformation of hillslopes into low-order channels) rather than solely via an increase in sediment yield from hillslopes. This paper further documents the likely important role of changes in upland vegetation cover and drainage density in driving fluvial-system response during semiarid-to-arid climatic changes.

  10. Contribution of alluvial groundwater to the outflow of mountainous catchments

    NASA Astrophysics Data System (ADS)

    Käser, Daniel; Hunkeler, Daniel

    2016-02-01

    Alluvial aquifers in mountainous regions cover typically a limited area. Their contribution to catchment storage and outflow is rarely isolated; alluvial groundwater discharge under gauging stations is generally assumed negligible; and hydrological models tend to lump alluvial storage with other units. The role of alluvial aquifers remains therefore unclear: can they contribute significantly to outflow when they cover a few percent of catchment area? Should they be considered a dynamic storage unit or merely a transmission zone? We address these issues based on the continuous monitoring of groundwater discharge, river discharge (one year), and aquifer storage (6 months) in the 6 km2 alluvial system of a 194 km2 catchment. River and groundwater outflow were measured jointly through "coupled gauging stations." The contribution of alluvial groundwater to outflow was highest at the outlet of a subcatchment (52 km2), where subsurface discharge amounted to 15% of mean annual outflow, and 85% of outflow during the last week of a drought. In this period, alluvial-aquifer depletion supported 75% of the subcatchment outflow and 35% of catchment outflow—thus 3% of the entire catchment supported a third of the outflow. Storage fluctuations occurred predominantly in the aquifer's upstream part, where heads varied over 6 m. Not only does this section act as a significant water source, but storage recovers also rapidly at the onset of precipitation. Storage dynamics were best conceptualized along the valley axis, rather than across the more conventional riparian-channel transect. Overall the contribution of alluvial aquifers to catchment outflow deserves more attention.

  11. Tufa and travertine of the Lesser Caucasus: a light on the Quaternary palaeoenvironment of the Circumcaspian regions

    NASA Astrophysics Data System (ADS)

    Ollivier, V.; Roiron, P.; Nahapetyan, S.; Joannin, S.; Chataigner, C.

    2012-04-01

    In the course of the International Associated Laboratory HEMHA (Humans and Environment in Mountainous Habitats : the case of Armenia), the French Foreign Affair Ministry Caucasus Mission (CNRS-UMR 5133 Archéorient, Lyon University) and the French-German research program Ancient Kura (CNRS-UMR 7192 PrOCauLAC, Paris, France, Deutsches Archäologisches Institut, Eurasien-Abteilung, Berlin, Germany with ANR-CNRS and DFG funding) numerous sites of the Lesser Caucasus territory are under geomorphological, palaeoenvironmental and archaeological investigations. Through comparisons between the tufa/travertine system and the detrital formation morphosedimentary evolution, one of our research interests is to define the Late Quaternary landscape mutations as well as the origin and rhythmicity of the major morphogenic trends reversals. The impacts of the environmental changes highlighted on the human occupation modes are also debated. A total of 14 travertine and tufa formations were studied (8 Pleistocene and 6 Postglacial formations) on a Northwest-Southeast transect of more than 300 km across the Lesser Caucasus. Each of these carbonated system development are correlated with high global relative sea levels and interstadial climates on a range between the Marine Isotopic Stage 11 and 1 (ca. 335 to 1.5 Ky BP). The absolute chronology is constrained by a series of U/Th and 14C dating. A total of 24 dating was performed (6 radiocarbon and 18 U/Th datings), allowing a high quality overview of the travertinization process over the time at a regional scale. Jointly with the measurement of the late Quaternary interglacial series impact on the tufas development in the Caucasus, the geomorphological position of some travertinous formations and their absolute dating gives some clues about the neotectonic evolution of the studied valleys. In some area, the uplift rate has been determined (ca. 8 mm/year) and discretized from the alluvial incision signal. The analysis of the carbonated

  12. Tributary debris fans and the late Holocene alluvial chronology of the Colorado River, eastern Grand Canyon, Arizona

    USGS Publications Warehouse

    Hereford, R.; Thompson, K.S.; Burke, K.J.; Fairley, H.C.

    1996-01-01

    Bouldery debris fans and sandy alluvial terraces of the Colorado River developed contemporaneously during the late Holocene at the mouths of nine major tributaries in eastern Grand Canyon. The age of the debris fans and alluvial terraces contributes to understanding river hydraulics and to the history of human activity along the river, which has been concentrated on these surfaces for at least two to three millennia. Poorly sorted, coarse-grained debris-flow deposits of several ages are interbedded with, overlie, or are overlapped by three terrace-forming alluviums. The alluvial deposits are of three age groups: the striped alluvium, deposited from before 770 B.C. to about A.D. 300; the alluvium of Pueblo II age deposited from about A.D. 700 to 1200; and the alluvium of the upper mesquite terrace, deposited from about A.D. 1400 to 1880. Two elements define the geomorphology of a typical debris fan: the large, inactive surface of the fan and a smaller, entrenched, active debris-flow channel and fan that is about one-sixth the area of the inactive fan. The inactive fan is segmented into at least three surfaces with distinctive weathering characteristics. These surfaces are conformable with underlying debris-flow deposits that date from before 770 B.C. to around A.D. 660, A.D. 660 to before A.D. 1200, and from A.D. 1200 to slightly before 1890, respectively, based on late-19th-century photographs, radiocarbon and archaeologic dating of the three stratigraphically related alluviums, and radiocarbon dating of fine-grained debris-flow deposits. These debris flows aggraded the fans in at least three stages beginning about 2.8 ka, if not earlier in the late Holocene. Several main-stem floods eroded the margin of the segmented fans, reducing fan symmetry. The entrenched, active debris-flow channels contain deposits <100 yr old, which form debris fans at the mouth of the channel adjacent to the river. Early and middle Holocene debris-flow and alluvial deposits have not been

  13. Effects of alluvial knickpoint migration on floodplain ecology and geomorphology

    NASA Astrophysics Data System (ADS)

    Larsen, Annegret; May, Jan-Hendrick

    2016-04-01

    Alluvial knickpoints are well described as erosional mechanism within discontinuous ephemeral streams in the semi-arid SW USA. However, alluvial knickpoints occur globally in a wide range of settings and of climate zones, including temperate SE Australia, subtropical Africa, and tropical Australia. Much attention has been given in the scientific literature to the trigger mechanisms of alluvial knickpoints, which can be summarized as: i) threshold phenomena, ii) climate variability and iii) land-use change, or to a combination of these factors. Recently, studies have focused on the timescale of alluvial knickpoint retreat, and the processes, mechanisms and feedbacks with ecology, geomorphology and hydrology. In this study, we compile data from a global literature review with a case study on a tropical river system in Australia affected by re-occurring, fast migrating (140 myr-1) alluvial knickpoint. We highlight the importance of potential water table declines due to channel incision following knickpoint migration, which in turn leads to the destabilization of river banks, and a shift in floodplain vegetation and fire incursion. We hypothesize that the observed feedbacks might also help to understand the broader impacts of alluvial knickpoint migration in other regions, and might explain the drastic effects of knickpoint migration on land cover and land-use in semi-arid areas.

  14. Geomorphologic flood-hazard assessment of alluvial fans and piedmonts

    USGS Publications Warehouse

    Field, J.J.; Pearthree, P.A.

    1997-01-01

    Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.

  15. Optically stimulated luminescence dating of Holocene alluvial fans, East Anatolian Fault System, Turkey

    NASA Astrophysics Data System (ADS)

    Dogan, Tamer; Cetin, Hasan; Yegingil, Zehra; Topaksu, Mustafa; Yüksel, Mehmet; Duygun, Fırat; Nur, Necmettin; Yegingil, İlhami

    2015-07-01

    In this study, the optically stimulated luminescence dating technique was used to determine the time of deposition of alluvial sediment samples from the Türkoğlu-Antakya segment of the East Anatolian Fault System (EAFS) in Turkey. The double-single aliquot regenerative dose protocol on fine grain samples was used to estimate equivalent doses (De). Annual dose rate was computed using elemental concentration of uranium (U) and thorium (Th) determined by using thick-source alpha counting and potassium (K) concentrations using X-ray fluorescence and/or atomic absorption spectroscopy. The environmental dose was measured in situ using α-Al2O3:C chips inside plastic tubes for a year. The two different bulk sediment samples collected from the Islahiye trench yielded ages of 4.54 ± 0.28 and 2.91 ± 0.23 ka. We also obtained a 2.60 ± 0.18 ka age for the alluvial deposit in the Kıranyurdu trench and 2.31 ± 0.14 ka age for an excavation area called Malzeme Ocağı. These ages were consistent with the corresponding calibrated Carbon-14 (14C) ages of the region. The differences between the determined ages were insufficient to clearly distinguish the disturbance event from the effects of bioturbation, biological mixing, or other sources of De variation in the region. They provide a record of alluvial aggradation in the region and may determine undocumented historical earthquake events.

  16. Age and origin of the Gezira alluvial fan between the Blue and White Nile rivers

    NASA Astrophysics Data System (ADS)

    Williams, martin

    2014-05-01

    The Gezira is a low-angle alluvial fan bounded by the Blue Nile to the east and the White Nile to the west. It is the main agricultural region of Sudan and produces high quality long-staple cotton for export. Dark cracking clays (vertisols) cover much of the Gezira and range in age from 50 kyr to Holocene. The Gezira is traversed by a series of defunct sandy channels that originate between Sennar and Wad Medani on the present-day Blue Nile. With a radius of 300 km and an area of 40,000 km2 the Gezira is a mega-fan. The younger channels range in age from early Holocene to 100 kyr, while near surface channels filled with rolled quartz and carbonate gravels have ages back to >250 kyr. Boreholes in the Gezira reveal coarse alluvial sands and gravels in now buried channels overlain by alluvial clays, forming a repetitive sequence of fining-upwards alluvial units. that probably extend back to Pliocene times. The fan is up to 180 m thick with a volume of ~1,800 km3. The sandy or gravelly bed-load channels coincide with colder drier climates and sparse vegetation in the Ethiopian headwaters of the Blue Nile and the alluvial clays denote widespread flooding during times of stronger summer monsoon. The early stages of such flood events were often accompanied by mass burial of Nile oyster (Etheria elliptica) beds, such as the 45-50 kyr floods that deposited up to 5 m of clay in the northern Gezira. A unique feature of the eastern Gezira is a former Blue Nile channel at least 80 km long running parallel to the present river and entirely filled with volcanic ash. The channel was only 3-4 m deep and 20-30 m wide. Very fine laminations and cross-beds, together with locally abundant phytoliths and sponge spicules, suggest slow-moving water, with flow dispersed across many distributary channels. The ash geochemistry is similar to that in the lower part of the Kibish Formation in the lower Omo valley of southern Ethiopia and points to a minimum age of 100 kyr and a maximum age of

  17. Diatoms from the Quaternary sediments of the Nile Delta, Egypt, and their palaeoecological significance

    NASA Astrophysics Data System (ADS)

    Zalat, Abdelfattah A.

    1995-02-01

    This study represents the first contribution describing diatom taxa from the Quaternary sediments of the Nile Delta, Egypt. A total of 99 diatom species and varieties belonging to 28 genera were identified. The palaeoecological conditions during the time of deposition (pH salinity, eutrophication and dissolved silica concentration) are discussed. Deposition of the Quaternary Nile Delta sediments occurred in slightly alkaline, fresh water of oligohalobian type, which was of variable trophic status with a high dissolved silica concentration. The variations visible in the ratio of planktic to epiphytic and benthic diatoms generally reflect shallow environments with water-level changes related to climatic fluctuations.

  18. Hydraulic Modeling of Alluvial Fans along the Truckee Canal using the 2-Dimensional Model SRH2D

    NASA Astrophysics Data System (ADS)

    Wright, J.; Kallio, R.; Sankovich, V.

    2013-12-01

    Alluvial fans are gently sloping, fan-shaped landforms created by sediment deposition at the ends of mountain valleys. Their gentle slopes and scenic vistas are attractive to developers. Unfortunately, alluvial fans are highly flood-prone, and the flow paths of flood events are highly variable, thereby placing human developments at risk. Many studies have been performed on alluvial fans in the arid west because of the uncertainty of their flow paths and flood extents. Most of these studies have been focused on flood elevations and mitigation. This study is not focused on the flood elevations. Rather, it is focused on the attenuation effects of alluvial fans on floods entering and potentially failing a Reclamation canal. The Truckee Canal diverts water from the Truckee River to Lahontan Reservoir. The drainage areas along the canal are alluvial fans with complex distributary channel networks . Ideally, in nature, the sediment grain-size distribution along the alluvial fan flow paths would provide enough infiltration and subsurface storage to attenuate floods entering the canal and reduce risk to low levels. Human development, however, can prevent the natural losses from occurring due to concentrated flows within the alluvial fan. While the concentrated flows might mitigate flood risk inside the fan, they do not lower the flood risk of the canal. A 2-dimensional hydraulic model, SRH-2D, was coupled to a 1-dimensional rainfall-runoff model to estimate the flood attenuation effects of the alluvial fan network surrounding an 11 mile stretch of the Truckee Canal near Fernley, Nevada. Floods having annual exceedance probabilities ranging from 1/10 to 1/100 were computed and analyzed. SRH-2D uses a zonal approach for modeling river systems, allowing areas to be divided into separate zones based on physical parameters such as surface roughness and infiltration. One of the major features of SRH-2D is the adoption of an unstructured hybrid mixed element mesh, which is based

  19. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2016-04-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing

  20. Estimation of hydraulic conductivity in an alluvial system using temperatures.

    PubMed

    Su, Grace W; Jasperse, James; Seymour, Donald; Constantz, Jim

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers. PMID:15584302

  1. Availability and quality of water from the alluvial, glacial-drift, and Dakota aquifers and water use in southwest Iowa. Water resources investigation

    SciTech Connect

    Hansen, R.E.; Thompson, C.A.; VanDorpe, P.E.

    1992-01-01

    A ground-water resources investigation was conducted in southwest Iowa to describe the availability, quality, and use of water from the alluvial, glacial-drift, and Dakota aquifers in a nine-county area. Historical water quality was examined for each aquifer, and water samples were collected for major ions, trace metals, radionuclides, and selected pesticides. Four principal alluvial aquifers consisting of sand and gravel deposits in the valleys of the Nishnabotna, Tarkio, Nodaway, and One Hundred and Two Rivers are present. Yields to wells have been reported as large as 2,000 gallons per minute; however, most yields are less than 100 gallons per minute.

  2. Late Miocene termination of tectonic activity on the detachment in the Alaşehir Rift, Western Anatolia: Depositional records of the Göbekli Formation and high-angle cross-cutting faults

    NASA Astrophysics Data System (ADS)

    Sen, Fatih

    2016-04-01

    Western Anatolia is a well-known province of continental extension in the world. Most distinctive structural elements of the region are E-W trending grabens. The Alaşehir Rift/Graben is an asymmetric rift/graben trending E-W between Ahmetli and Turgutlu in its western part and continues eastwardly in a NW-SE direction to Alaşehir (Philadelphia in ancient Greek). The stratigraphy of the region consists of metamorphic rocks of the Menderes Massif (Paleozoic-lower Cenozoic) and the syn-extensional Salihli granitoid (middle Miocene) forming the basement unit and overlying sedimentary cover rocks of Neogene-Quaternary. These rocks are cut and deformed by the Karadut detachment fault and various low-angle normal faults (antithetic and synthetic faults of the Karadut detachment fault), which are also cut by various younger high-angle normal faults. It is possible to observe two continuous sequences of different time intervals in that Miocene deposits of the first rifting phase are covered by Plio-Quaternary sediments of second rifting phase with a "break-up" unconformity. In lower levels of a measured stratigraphic section (583 m) of the Göbekli formation which has lower age of late Miocene and upper age of early Pliocene, the presence of angular to sub-angular clasts of the blocks and conglomerates suggests alluvial-fun origin during an initial stage of deposition. Existence of normal-reverse graded, cross-bedding, pebble imbrications in layers of the pebbly sandstone demonstrates fluvial environment in following levels of the sequence. Existence of lenses and normal graded conglomerates in pebbly sandstones and fine grained sandstones strata evidences a low energy environment. Observed siltstone-claystone intercalations on the middle levels of the sequence indicate an environment with low dipping morphology to be formed as flat plains during this period. In the uppermost levels of the sequence, existence of the pebble imbrications inside pebbly sandstones overlying

  3. Radar facies and architecture of alluvial fans and related sediments in high-energy alpine environments, British Columbia

    NASA Astrophysics Data System (ADS)

    Ekes, Csaba

    2000-08-01

    It is widely recognized that the dominant depositional processes on alluvial fans include rock falls, rock slides, rock avalanches, debris flows, sheetfloods and incised-channel floods. A fundamental question addressed in this thesis is: Can ground penetrating radar (GPR) differentiate between the sediments associated with these processes? Do these individual deposits have characteristic radar reflection signatures? The dissertation is divided into two parts. In part one, a calibration exercise conducted in southern British Columbia, it was demonstrated that GPR was able to obtain good penetration and resolution in rock fall, rock slide, fluvial and alluvial fan sediments, and that a characteristic radar reflection pattern (or radar facies) can be assigned to these deposits. Bedrock reflection pattern is characterised by a discontinuous radar signal and by stacked diffractions. The radar facies for rock slide and rock avalanche sediments, where boulders constitute the predominant clast size, is characterized by discontinuous, high amplitude, macro-scale, hyperbolic reflections that are different from diffractions generated by bedrock. Alluvial fans dominated by debris flow processes produce a chaotic and discontinuous radar pattern; diffractions in these patterns are attributed to boulders. Alluvial fans dominated by sheetflood processes are likely to produce surface-parallel, gently dipping, more or less continuous radar patterns. Large-scale meandering-river radar-patterns are characterized by high amplitude, continuous, dipping clinoforms. Braided-river radar facies, based on data collected on the Kicking Horse braidplain, are characterized by predominantly horizontally continuous reflections with few identifiable features. Based solely on GPR data, it was possible to distinguish between sediments of meandering and braided rivers. Analysis of over 95 km GPR data suggests that alluvial fan radar-reflection patterns are distinctly different from those observed in

  4. Quaternary fluvial archives: achievements of the Fluvial Archives Group

    NASA Astrophysics Data System (ADS)

    Bridgland, David; Cordier, Stephane; Herget, Juergen; Mather, Ann; Vandenberghe, Jef; Maddy, Darrel

    2013-04-01

    In their geomorphological and sedimentary records, rivers provide valuable archives of environments and environmental change, at local to global scales. In particular, fluvial sediments represent databanks of palaeoenvironment and palaeoclimatic (for example) of fossils (micro- and macro-), sedimentary and post-depositional features and buried soils. Well-dated sequences are of the most value, with dating provided by a wide range of methods, from radiometric (numerical) techniques to included fossils (biostratigraphy) and/or archaeological material. Thus Quaternary fluvial archives can also provide important data for studies of Quaternary biotic evolution and early human occupation. In addition, the physical disposition of fluvial sequences, be it as fragmented terrace remnants or as stacked basin-fills, provides valuable information about geomorphological and crustal evolution. Since rivers are long-term persistent features in the landscape, their sedimentary archives can represent important frameworks for regional Quaternary stratigraphy. Fluvial archives are distributed globally, being represented on all continents and across all climatic zones, with the exception of the frozen polar regions and the driest deserts. In 1999 the Fluvial Archives Group (FLAG) was established, as a working group of the Quaternary Research Association (UK), aimed at bringing together those interested in such archives. This has evolved into an informal organization that has held regular biennial combined conference and field-trip meetings, has co-sponsored other meetings and conference sessions, and has presided over two International Geoscience Programme (IGCP) projects: IGCP 449 (2000-2004) 'Global Correlation of Late Cenozoic Fluvial Deposits' and IGCP 518 (2005-2007) 'Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic'. Through these various activities a sequence of FLAG publications has appeared, including special issues in a variety of

  5. Effects of weathering and lithology on the quality of aggregates in the alluvial fans of Northeast Rivand, Sabzevar, Iran

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram; Fatemi Aghda, Seyed Mahmoud; Bahrami, Kazem; Motamedi Rad, Mohammad; Poorhashemi, Sima

    2015-07-01

    Alluvial fans as depositional landforms can be considered as potential sources of aggregates. As the age of alluvial fans increases, their constituent sediments are exposed to longer periods of weathering and increased mineral alteration, resulting in a decrease in aggregate quality. In this study, physical properties and point load tests were used to assess the aggregate quality on three alluvial fan surfaces (relict, old and young) in the northeastern part of Rivand village in west of Sabzevar, Northeast Iran. Differentiating young from old and relict fans was carried out based on geomorphic criteria such as weathering features, fan surface morphology and drainage pattern. The young alluvial fan is characterized by sub-rounded and unvarnished clasts, distributary drainage patterns and a relatively flat surface, whereas old and relict fans are characterized by incised and rough surfaces, tributary drainage pattern and highly weathered and varnished clasts due to their long-term exposure to weathering. Due to a range of rock types occurring across each fan surface, lithological studies were performed to eliminate the effect of lithology on aggregate quality. A total of 18 rock types comprising comparable lithologies were sampled from each of the three alluvial fans. Results show that, in almost all 18 rock types, the point load test values increases from relict to young fans whereas porosity and percentage of water absorption decrease, implying that aggregate quality decreases with time as a function of duration of exposure to weathering. Also, the strength of aggregates in all three fans decreases from the fan apex to the fan toe. Data show that micaceous, intrusive igneous rocks, tuffs with high porosity and fine-grained extrusive igneous rocks with some porosity are more sensitive to physical weathering, and therefore have lower strength, particularly on the relict and old fans. Overall, variations in aggregate strength on these fans can be attributed to the

  6. Quaternary ecology: A paleoecological perspective

    SciTech Connect

    Delcourt, H.R.; Delcourt, P.A.

    1991-01-01

    This book considers issues and problems in ecology which may be illuminated, if not solved, by considering paleoecology. The five central chapters include a discussion of application of Quaternary ecology to future global climate change, including global warming. Other areas presented include: population dispersal, invasions, expansions, and migrations; plant successions; ecotones; factors in community structure; ecosystem patterns and processes. Published case studies are numerous. The role played by continuing climatic change in vegetation change is acknowledged but not stressed.

  7. The role of tropical cyclones on landscape dynamics in southern Baja California, Mexico based on Late Pleistocene-Holocene alluvial stratigraphy

    NASA Astrophysics Data System (ADS)

    McDonald, Eric; Antinao, Jose Luis; Rhodes, Edward J.; Brown, Nathan; Gosse, John

    2015-04-01

    Region-wide alluvial records provide evidence that time-transgressive changes in climate can be a major driver of landscape evolution. Historically, landfall of eastern Pacific tropical cyclones in southwestern North America during the late summer and early fall provide the strongest storms that have demonstrated geomorphic impact on the landscape. The alluvial fan record of the southern portion of Baja California (Mexico) was investigated to determine if linkages exist between region-wide fluvial deposits and tropical cyclones. The regional distribution and Pleistocene to Holocene morphostratigraphy of alluvial fans has been established for the southern portion of Baja California with primary focus on the La Paz and San José del Cabo basins. Six discrete morphopedosedimentary alluvial units (Qt1 through Qt6) were differentiated across the region using a combination of geomorphologic mapping, sedimentological analysis, and soil development further reinforced with geochronology using radiocarbon, optically stimulated luminescence and cosmogenic depth-profiles. A first phase of regional aggradation began before ~ 100 ka (Qt1) and culminated ~10 ka (Qt4). After deposition of Qt4, increasing regional incision of older units and the progressive development of a channelized alluvial landscape coincide with deposition of Qt5 and Qt6 units in a second, incisional phase. All units are conformed of multiple 1-3 m thick alluvial packages deposited in upper-flow regime and representing individual storms. Aggradational units (Qt1-Qt4) covered broad (>2 km) channels in the form of sheetflood deposition while incisional stage deposits are mostly confined to channels of ~0.5-2 km width. Continuous deposition of the thicker sequences is demonstrated by closely spaced luminescence dates in vertical profiles. In a few places disconformities between major units are evident and indicated by partly eroded buried soils. Analysis of historical terraces as part of the younger units

  8. Paleosol architecture of a late Quaternary basin-margin sequence and its implications for high-resolution, non-marine sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Bruno, Luigi; Rossi, Veronica; Severi, Paolo; Hajdas, Irka

    2014-01-01

    Paleosol stratigraphy, a technique commonly applied in basin-margin settings to depict cyclic alluvial architecture on time scales of 10-100 ky, can be consistent with regional accommodation trends at even higher temporal resolution (1-10 ky), having strong implications for the sequence stratigraphy of late Quaternary, non-marine deposits. Three closely-spaced late Pleistocene paleosols (P1-P3), dating back approximately to 42-39, 35-31, and 29-26 cal kyr BP, respectively, form prominent stratigraphic markers across a lithologically homogeneous interfluve succession in the subsurface of Bologna, close to the Apenninic foothills. These paleosols are weakly developed (Inceptisols) and can be tracked continuously for 6 km across the triangle-shaped interchannel zone between two gravel/sand-filled channel systems (Reno and Savena rivers). In particular, the thickest paleosol (P3) is a distinctive stiff horizon that can be traced into laterally extensive, erosional-based fluvial bodies. We infer the correlation between (P3) soil development (and channel downcutting) and the final stage of the stepwise Late Pleistocene sea-level fall that culminated at the marine isotope stage 3/2 transition around 29 cal kyr BP (low accommodation systems tract). A fourth laterally extensive Inceptisol, encompassing the Pleistocene-Holocene boundary (PH), represents the major phase of soil development since the Last Glacial Maximum and is inferred to be related to channel entrenchment at the onset of the Younger Dryas. With the exception of the Iron Age-Roman paleosol, which reflects a predominantly anthropogenic control, the Holocene paleosols are laterally discontinuous and invariably more immature (Entisols) than their Pleistocene counterparts. This trend of decreasing paleosol development (and correlatability) upsection is interpreted to reflect increasing (transgressive-equivalent) accommodation during sea-level rise, thus confirming the possible extension of models used to

  9. Latest Quaternary stratigraphic framework of the Mississippi River delta region

    USGS Publications Warehouse

    Kulp, Mark; Howell, Paul; Adiau, Sandra; Penland, Shea; Kindinger, Jack; Williams, S. Jeffress

    2002-01-01

    Previous researchers separated the uppermost Quaternary stratigraphy of the Mississippi River delta region into two major lithofacies. The stratigraphically lower of these, "substratum," primarily consists of coarse-grained sediment deposited within lowstand-incised stream valleys. Relatively finer-grained "topstratum" overlies substratum; above interfluves, topstratum directly overlies weathered late Pleistocene sediments. However, the onshore to offshore distribution and architecture of these lithofacies was not well constrained. This study integrates published and unpublished lithostratigraphic data with high-resolution seismic profiles from the continental shelf to aid in mapping the regional distribution of major substratum deposits and thickness of topstratum sediments. A transgressive sand sheet commonly marks the base of the topstratum deposits, providing a stratigraphic marker to aid in regional lithostratigraphic correlations. Radiocarbondated deposits and boreholes tied to oxygen isotope chronologies provide chronostratigraphic control. Excellent correlation between these multiple datasets has been found to exist, enabling construction of regional isopachous and structural elevation maps and cross sections detailing elements of the Late Quaternary stratigraphy.

  10. Effects of Alluvial and Debris Flow Fans on Channel Morphology in Idaho, Washington, and Oregon

    NASA Astrophysics Data System (ADS)

    Bigelow, P. E.; Benda, L.; Miller, D.; Andras, K.

    2003-12-01

    Formation of debris flow and alluvial fans at tributary confluences from episodic erosion associated with large storms and fires ("extreme events") are often viewed negatively over short time spans (years). However, when viewed over long periods of time (decades to centuries), fans that form at tributary junctions are often sources of morphological diversity in streams and rivers. To evaluate effects of tributary fans on the morphology of mainstem channels, we surveyed a total of 44 km of streams in the Sawtooth Mountains of Idaho (27 km), Olympic Mountains of Washington (10 km), and Central Coast Range of Oregon (7 km). Rejuvenated alluvial fans resulting from post-fire gully erosion in the Sawtooth Mountains created gradient nick points in 4th to 6th order mainstem channels (30 to 350 km2 drainage area) that increased sediment storage upstream resulting in decreased channel gradients, widened flood plains, side channel construction, and the beginning of terrace formation. Downstream effects included increased channel gradients, often creating rapids. In 3rd and 4th order mainstem channels (< 10 km2 drainage area) in the Olympic Mountains, there was statistically significant association between low-order confluences containing debris flow deposits and gravel abundance, wide channels, and numbers of logs and large pools. Moreover, heterogeneity of mainstem channel morphology increased in proximity to low-order confluences prone to debris flows in the Olympic study sites. In 3rd and 4th order channels in the Oregon Coast Range, density of large wood and boulders in mainstem channels (< 30 km2 drainage area) increased with proximity to all debris flow fans at low-order confluences regardless of fan age, while channel gradients and sediment depth in mainstem channels increased with proximity to recent (< 60 yrs old) debris fans. Consequently, alluvial and debris flow fans can be significant agents of heterogeneity in riverine habitats, similar to other sources of

  11. Chronology of late Quaternary glaciation and landform evolution in the upper Dhauliganga valley, (Trans Himalaya), Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Bisht, Pinkey; Ali, S. Nawaz; Shukla, Anil D.; Negi, Sunil; Sundriyal, Y. P.; Yadava, M. G.; Juyal, Navin

    2015-12-01

    Detailed field mapping of glacial and paraglacial landforms supported by optical and radiocarbon dating is used to reconstruct the history of late Quaternary glaciation and landform evolution in the Trans Himalayan region of the upper Dhauliganga valley. The study identifies four events of glaciations with decreasing magnitude which are termed as Purvi Kamet Stage -Ia (PKS-Ia), PKS-Ib, PKS-II, PKS-III and PKS-IV respectively. The oldest PKS-Ia and Ib are assigned the Marine Isotopic Stgae-3 (MIS-3), the PKS-II to the Last Glacial Maximum (MIS-2), PKS-III dated to 7.9 ± 0.7 ka, and the PKS-IV is dated to 3.4 ± 0.3 ka and 1.9 ± 0.2 ka respectively. The largest valley glaciations viz. the (PKS-Ia) occurred during the strengthened summer monsoon corresponding to the MIS-3, following this, the recessional moraines (PKS-Ib) represent the gradual decline in summer monsoon towards the later part of MIS-3. The valley responded to the global Last Glacial Maximum (LGM), which is represented by the PKS-II moraine implying the influence of strengthened mid-latitude westerlies during the LGM. The post-LGM deglaciation was associated with the onset of summer monsoon and is represented by the deposition of four distinct outwash gravel terraces. The early Holocene PKS-III glaciation occurred around 7.9 ± 0.7 ka and broadly coincides with the early Holocene cooling event (8.2 ka). This was followed by the deposition of stratified scree deposits and the alluvial fan (between 5.5 ka and 3 ka) during the mid to late Holocene aridity. This was followed by marginal re-advancement of the valley glacier (viz. PKS-IV) during the late Holocene cool and moist climate. Although glaciers respond to a combination of temperature and precipitation changes, however during the Holocene it seems that temperature played a major role in driving the glaciation.

  12. Determinants of quaternary association in legume lectins

    PubMed Central

    Brinda, K.V.; Mitra, Nivedita; Surolia, Avadhesha; Vishveshwara, Saraswathi

    2004-01-01

    It is well known that the sequence of amino acids in proteins code for its tertiary structure. It is also known that there exists a relationship between sequence and the quaternary structure of proteins. The question addressed here is whether the nature of quaternary association can be predicted from the sequence, similar to the three-dimensional structure prediction from the sequence. The class of proteins called legume lectins is an interesting model system to investigate this problem, because they have very high sequence and tertiary structure homology, with diverse forms of quaternary association. Hence, we have used legume lectins as a probe in this paper to (1) gain novel insights about the relationship between sequence and quaternary structure; (2) identify the sequence motifs that are characteristic of a given type of quaternary association; and (3) predict the quaternary association from the sequence motif. PMID:15215518

  13. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Madole, Richard F.

    2012-09-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  14. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    USGS Publications Warehouse

    Madole, Richard F.

    2012-01-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~1 m) incision. Published

  15. Heavy metals in Ratnapura alluvial gem sediments, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Vithanage, M. S.; Hettiarachchi, J. K.; Rajapaksha, A. U.; Wijesekara, H.; Hewawasam, T.

    2011-12-01

    The valuable gems in Sri Lanka are found from the sedimentary gem deposits in Ratnapura District, which are found as alluvial deposits some are about >50 m deep. Gem bearing gravel layer is taken out from the mine, washed by panning to recover the gem minerals in the heavy mineral fraction, is a common practice in the gem mining area. Gem bearing sediment layer is associated with different heavy minerals in which different trace metals as Co, Cr, Cu, Al, Zr, Pb and As also can be present. During panning, the sediment is washed away and the heavy metals attached to the sediments are released into the environment. Hence we studied the lability and bioavailability of arsenic and other heavy metals from the gem sediments. Sediment samples were collected from 15 small scale gem mines (3 soil layers- top, gem mineral layer and layer below gem bearing gravel layer), air dried and sieved to obtain <63μm fraction. Bioavailable, exchangeable and residual fractions were 0.01M CaCl2, 1M NaOAc, pH 8.2 and microwave digestion using HF, HNO3 and HClO4. Filtered samples were analyzed for As, Co, Zn, Mn, Cu, Ni, Pb and Fe using atomic absorption spectrophotometer (GBC 933AA). Total digestion results in different layers indicated that heavy metals show an increasing pattern with depth. About 4 gem bearing gravel layers were consist of high concentrations of Ni (>150 mg/kg), Cu (>150 mg/kg), Pb (>400 mg/kg), Zn (>600 mg/kg) and Co ions (>100 mg/kg). Arsenite in the gem sediments were low and recorded as <5mg/kg. Total arsenic analysis is under investigation. Highest concentrations for bioavailable and exchangeable (leach to water) metals were Fe>Co>Zn>Mn>Ni>Cu>Pb. Sediments from few gem pits showed considerably high concentrations of metals analyzed. In some places Fe, Ni, Cu, Zn reported high in bioavailable fractions 70, 25, 20, 10 mg/kg respectively. Mobilization of these metals may increase due to changes in the pH and the presence of other ions in the environment. High

  16. Late-Quaternary morphodynamics of Ejina Basin, Inner Mongolia, China: Quantification of neotectonic subsidence and palaeohydrological implications

    NASA Astrophysics Data System (ADS)

    Hartmann, Kai; Wünnemann, Bernd; Reicherter, Klaus; Rudersdorf, Andreas; Blaauw, Maarten; Diekmann, Bernhard; Bölscher, Judith; Lu, Huayu

    2014-05-01

    From space, the Ejina Basin (Gaxun Nur Basin) - enclosed by the Tibetan Plateau in the south and the Gobi -Tien Shan in the north - appears as the world's second largest inland delta of approx. 28,000 km2. Today, the crescent-shaped series of terminal lakes (Gaxun Nur, Sogo Nur and Juyanze) represent the endorheic erosion base for the Black River (Hei River) drainage system originating in the Qilian Mountains (>5,000 m asl.). The up to 300 m thick Quaternary basin fill of lacustrine and alluvial origin was deposited during the last approx. 250,000 yrs. Gobi gravel plains protecting Late Pleistocene fine sediments against deflation cover most parts of the basin. They are considered to be a unique sequence within the sediment stratigraphy of the entire basin. The slightly convex-shaped surface of the western basin resembles the prograding formation of an alluvial fan with clear evidence of local subsidence to the north and west, as indicated by the concave shaped surface there. However, the recent terminal lake basins at the northern margin of Ejina Basin are structurally related to tectonic pull-apart basins that were active since Late Pleistocene. The rhomb-shaped Gaxun Nur basin is the most distinct pull-apart feature indicating a left-lateral strike-slip movement parallel to the continental Gobi-Tien-Shan Fault in the north. New radiocarbon dates of lacustrine sediments within a fossil cliff at the southern shore support the estimated subsidence rate of >0.8m per kyr (Hartmann et al. 2011) after the Last Glacial Maximum (LGM). The more trapezoid fault system of the Juyanze pull-apart basin exhibits a more manifold set of tectonically induced geomorphological features. Whereas Hartmannn et al. (2011) assumed a W-E-striking fault by comparing dating inversions along yardangs of lacustrince chalks that host seismites. A nearby new railway construction pit revealed a normal fault that affected the lake sediments that are 35±1 kyr BP in age. The most impressive set

  17. Fluvial sedimentation following Quaternary eruptions of Mount St. Helens, Washington

    SciTech Connect

    Janda, R.J.; Meyer, D.F

    1985-01-01

    Depositional records of convulsive volcanic events at Mount St. Helens are in many places obscured by rapid fluvial erosion and deposition close to the volcano. Some major eruptions are recorded primarily by lahars and alluvium deposited tens of kilometers away. About 35 percent of the distinctive hummocky topography of the 1980 North Fork Toutle debris avalanche deposit now resembles an alluvial fan or a braided glacial outwash plain covered with 10 m or more of alluvium. Deposits of small (20 x 10/sup 6/m/sup 3/) but damaging lahars, such as those generated in the afternoon of 18 May 1980 and on 19 March 1982, have been largely eroded away. Rivers draining rapidly eroding areas surrounding Mount St. Helens presently have sediment yields that are among the highest in the world for nonglaciated streams of comparable size. These sediment loads are capable of causing aggradation-induced flooding in populated areas along the lower Toutle and Cowlitz Rivers. Sediment retention structures and dredging have prevented such flooding. Immediately following prehistoric eruptions, however, coarse-grained volcanic alluvium was deposited in the Cowlitz River to levels more than 1 m above the 1980 mud flow inundation level. Post-1980 rapid landscape modifications and high sediment yields are noteworthy because the eruption-impact area has not yet had a major regional storm and potentially catastrophic breachings of avalanche-impounded lakes have been prevented through engineering measures.

  18. Variations in alluvial style of Tertiary units in response to tectonism, Las Monas area, middle Magdalena valley, Colombia

    SciTech Connect

    Jordan, D.W.; Siemers, C.T.

    1989-03-01

    Detailed sedimentologic and petrographic analyses of Tertiary alluvial sandstone outcrops within and east of producing oil fields in the Las Monas area in Colombia, South America, indicate that depositional style changed from fluvial-deltaic to braided streams atop alluvial fans to high-sinuosity meandering streams in response to uplifts in the surrounding areas. Diverse paleocurrent trends in the Tertiary formations in the perimeter area demonstrate that streams flowed northeast and northwest. Streams in the oil field had easterly and southerly components. Source areas contributing sediment were different and reflected uplifts to the west and south of the Las Monas area. Petrographic composition of sandstones that have easterly and southerly paleocurrent trends in the field area contain more feldspar and less polycrystalline strained quartz than sandstones having a northerly trend in the perimeter area. Sandstones in the field area represent an unroofing of a western granitic terrain, possibly in the ancestral Central Cordillera.

  19. Experimental investigation into Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Kuhn, Nikolaus; Yair, Aaron; Bryan, Rorke; Schwanghart, Wolfgang

    2010-05-01

    Badland morphology is commonly linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. In this study, the precipitation characteristics that are critical for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel are investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Currently, the geomorphic development in the Dinosaur badlands is characterized by weathering/supply limited conditions, leading to slope retreat independent of lithology. In the Negev, transport limited conditions cause frequent runoff discontinuity, creating a pattern of areas dominated by erosion or deposition. The results of the weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring and summer rainfall and erosion determine the rate of slope retreat in the Dinosaur Badlands. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a sediment sink. The experiments illustrate that the badland slopes experienced an auto-stabilization during the Quaternary in the Zin Valley. In the Dinosaur Badlands Holocene climatic variations have not caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. In their current state, both badland slope systems appear to be fairly stable against climate change in the range of those occurring during the Holocene. However, the stability is achieved in different ways. In the Dinosaur Badlands, weathering rates are low compared to erosion capacity, maintaining continuous evacuation of sediment from slopes

  20. Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA

    USGS Publications Warehouse

    Elliott, J.G.; Parker, R.S.

    2001-01-01

    Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred. An alluvial sequence near the mouth of a tributary draining a 0??82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a 'millennium-scale' geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and

  1. Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Elliott, John G.; Parker, R. S.

    2001-10-01

    Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred.An alluvial sequence near the mouth of a tributary draining a 0·82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a millennium-scale geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and

  2. Quaternary geologic map of the Winnipeg 4 degrees x 6 degrees quadrangle, United States and Canada

    USGS Publications Warehouse

    Fullerton, D. S., (compiler); Ringrose, S.M.; Clayton, Lee; Schreiner, B.T.; Goebel, J.E.

    2000-01-01

    The Quaternary Geologic Map of the Winnipeg 4? ? 6? Quadrangle, United States and Canada, is a component of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420), an effort to produce 4? ? 6? Quaternary geologic maps, at 1:1 million scale, of the entire conterminous United States and adjacent Canada. The map and the accompanying text and supplemental illustrations provide a regional overview of the areal distributions and characteristics of surficial deposits and materials of Quaternary age (~1.8 Ma to present) in parts of North Dakota, Minnesota, Manitoba, and Saskatchewan. The map is not a map of soils as soils are recognized in agriculture. Rather, it is a map of soils as recognized in engineering geology, or of substrata or parent materials in which agricultural soils are formed. The map units are distinguished chiefly on the basis of (1)genesis (processes of origin) or environments of deposition: for example, sediments deposited primarily by glacial ice (glacial deposits or till), sediments deposited in lakes (lacustrine deposits), or sediments deposited by wind (eolian deposits); (2) age: for example, how long ago the deposits accumulated; (3) texture (grain size)of the deposits or materials; (4) composition (particle lithology) of the deposits or materials; (5) thickness; and (6) other physical, chemical, and engineering properties. Supplemental illustrations show (1) temporal correlation of the map units, (2) the areal relationships of late Wisconsin glacial ice lobes and sublobes, (3) temporal and spatial correlation of late Wisconsin glacial phases, readvance limits, and ice margin stillstands, (4) temporal and stratigraphic correlation of surface and subsurface glacial deposits in the Winnipeg quadrangle and in adjacent 4? ? 6? quadrangles, and (5) responsibility for state and province compilations. The database provides information related to geologic hazards (for example

  3. Denudation rates from mass balance on alluvial fans in the chinese Tian Shan

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Barrier, Laurie; Métivier, François; Jolivet, Marc; Fu, Bihong

    2015-04-01

    Denudation is a key process for mountain ranges evolution as it is an essential parameter to study the mass transfer over the Earth surface, the evolution of reliefs, or the complex relationships between climate, erosion and landscape changes. Several methods have been develop to quantify denudation such as the estimation of paleo-sediment fluxes from mass budget. In fact, markers of erosion within drainage areas are often scarce, temporary and difficult to reach. At the outlet of mountain belts, more continuous and perennial records of deposition can be found in sedimentary basins. Sediment budget is thus a powerful approach, generally used at the scale of sedimentary basins. However, this method can also be applied on smaller sedimentary systems, such as alluvial fans. Yet, it is seldom used on these systems, and consequently, its accuracy is barely questioned. We propose to implement such a method on several alluvial fan systems in the Chinese part of the Tian Shan Range, where estimations of denudation rates have already been proposed. Based on the reconstruction of two generations of alluvial fans, we estimate the volume of sediment exported out of the drainage system of the range for the Middle- Late Pleistocene (300 000 to ~11 000 y) and for the Holocene (~11 000 y to present). From these volumes, we derive denudation rates of ~135 m/My at maximum for these two periods, in good agreement with previous mass balance studies. Despite a strong change in the morphology of the piedmont at the onset of the Holocene, denudation rate seems quite stable within the hinterland mountains. This value is quite low for such a range. Based on a comparison of denudation rates observed in other areas over the world with comparable shortening or precipitation rates, we suggest that the low denudation rate observed in the chinese Tian Shan is related to the limited amount of precipitation.

  4. A multiple-point geostatistical method for characterizing uncertainty of subsurface alluvial units and its effects on flow and transport

    USGS Publications Warehouse

    Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.

    2012-01-01

    This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.

  5. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  6. Late Quaternary sedimentation on the North Aegean continental margin, Greece

    SciTech Connect

    Piper, D.J.W. ); Perissoratis, C. )

    1991-01-01

    The late Quaternary seismic stratigraphy of the North Aegean continental shelf and adjacent basins has been interpreted from boomer and 3.5-kHz seismic profiles. Ages derived from shallow cores and offshore wells, and relative offsets on small synsedimentary faults, provide chronological control. Sea level history inferred from seismic stratigraphy correlates with the global eustatic sea level record based on oxygen isotopic curves. The present depth of the delta plain formed on the outer shelf during the late stage 6 lowstand provides a dated and originally horizontal marker for estimating rates of tectonic subsidence. Gross distribution of sediment facies is similar in both tectonically stable and active areas. The shell break formed by delta progradation, but is marked by faults in most places because of the accommodation provided by graben subsidence rates of 0.3-1.5 mm/yr. Standard sequence stratigraphic analysis can be applied to these sediments deposited during high-amplitude Quaternary sea level oscillations. High rates of subsidence result in the preservation an unusually complete record of sea level change. Major lowstand progradation is dependent on the duration, rather than the magnitude, of sea level lowstand. The long glaciations in isotopic stages 6, 12, 16, and 22 resulted in the most prominent seaward progradation on the margin. Sandy lowstand turbidite deposits formed only when there was rapid fall in sea level; otherwise sand was trapped on delta tops and silty muds were deposited in deep water.

  7. Paleomagnetic stratigraphy and time in sediments: Studies in alluvial Siwalik rocks of Pakistan

    SciTech Connect

    Badgley, C. ); Tauxe, L. )

    1990-07-01

    Sediments may acquire magnetic remanence upon deposition and shortly after deposition. Hence, the paleomagnetic record of sedimentary rocks may provide a chronostratigraphic framework for rates and patterns of depositional and post-depositional processes over time scales intermediate between those of modern observation and those of the dated geologic record. Two applications of high-resolution magneto-stratigraphy in Miocene, alluvial rocks of Pakistan illustrate this point. (1) Transition stratigraphy-the dense sampling of a magnetic reversal-of correlated sections in the Dhok Pathan Formation revealed high variability in sediment accumulation rates (over several thousand to 10,000 yr), time-transgressive strata representing a paleosol and a floodplain marsh, and a pervasive post-depositional record mainly from pedogenesis. (2) Lateral tracing of paleomagnetic reversal boundaries in the Chinji Formation revealed a secular change in sediment accumulation rate and evidence for increased accumulation rate associated with extensive sandstones and the time-transgressive nature of certain sandstone units. Both studies demonstrate the significant lateral component to accumulation of lithological units, indicating that individual strata may embody considerably greater time spans in their lateral extent than in any vertical transect. Hence, stratigraphic completeness should be evaluated in the lateral as well as the vertical dimension.

  8. Charophytes as lacustrine biomarkers during the quaternary in North Africa

    NASA Astrophysics Data System (ADS)

    Soulié-Märsche, I.

    The use of charophytes as biomarkers is discussed with emphasis on the differences in study methods for cosmopolitan and ecotype species. A first extensive inventory of Quaternary deposits of charophytes in Africa north of the equator comprising 18 sites from Senegal to the Sudan is drawn up with data on spatial and temporal distribution. The existence of relatively deep cold lakes in the Holocene is shown by the frequent presence of specimens of cold flora no longer present in Africa today. All the original data show the complementary nature of the study of fossil Charophyta for the multidisciplinary reconstitution of palaeoenvironments.

  9. Quaternary geology of the Channeled Scabland and adjacent areas

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    The quaternary history of the channeled scabland is characterized by discrete episodes of catastrophic flooding and prolonged periods of loess accumulation and soil formation. The loess sequence was correlated with Richmond's Rocky Mountain glacial chronology. At least five major catastrophic flood events occurred in the general vicinity of the channeled scabland. The earliest episode occurred prior to the extensive deposition of the Palouse formation. The last major episode of flooding occurred between about 18,000 and 13,000 years ago. It probably consisted of two outbursts from glacial Lake Missoula.

  10. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth

    NASA Astrophysics Data System (ADS)

    Reitz, Meredith D.; Jerolmack, Douglas J.

    2012-06-01

    River deltas and alluvial fans have channelization and deposition dynamics that are not entirely understood, but which dictate the evolution of landscapes of great social, economic, and ecologic value. Our lack of a process-based understanding of fan dynamics hampers our ability to construct accurate prediction and hazard models, leaving these regions vulnerable. Here we describe the growth of a series of experimental alluvial fans composed of a noncohesive grain mixture bimodal in size and density. We impose conditions that simulate a gravel/sand fan prograding into a static basin with constant water and sediment influx, and the resulting fans display realistic channelization and avulsion dynamics. We find that we can describe the dynamics of our fans in terms of a few processes: (1) an avulsion sequence with a timescale dictated by mass conservation between incoming flux and deposit volume; (2) a tendency for flow to reoccupy former channel paths; and (3) bistable slopes corresponding to separate entrainment and deposition conditions for grains. Several important observations related to these processes are: an avulsion timescale that increases with time and decreases with sediment feed rate; fan lobes that grow in a self-similar, quasi-radial pattern; and channel geometry that is adjusted to the threshold entrainment stress. We propose that the formation of well-defined channels in noncohesive fans is a transient phenomenon resulting from incision following avulsion, and can be directly described with dual transport thresholds. We present a fairly complete, process-based description of the mechanics of avulsion and its resulting timescale on our fans. Because the relevant dynamics depend only on threshold transport conditions and conservation of mass, we show how results may be directly applied to field-scale systems.

  11. Late Quaternary history of the Atacama Desert

    USGS Publications Warehouse

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  12. (Model) Peatlands in late Quaternary interglacials

    NASA Astrophysics Data System (ADS)

    Kleinen, Thomas; Brovkin, Victor

    2016-04-01

    Peatlands have accumulated a substantial amount of carbon, roughly 600 PgC, during the Holocene. Prior to the Holocene, there is relatively little direct evidence of peatlands, though coal deposits bear witness to a long history of peat-forming ecosystems going back to the Carboniferous. We therefore need to rely on models to investigate peatlands in times prior to the Holocene. We have developed a dynamical model of wetland extent and peat accumulation, integrated in the coupled climate carbon cycle model of intermediate complexity CLIMBER2-LPJ, in order to mechanistically model interglacial carbon cycle dynamics. This model consists of the climate model of intermediate complexity CLIMBER2 and the dynamic global vegetation model LPJ, which we have extended with modules to determine peatland extent and carbon accumulation. The model compares reasonably well to Holocene peat data. We have used this model to investigate the dynamics of atmospheric CO2 in the Holocene and two other late Quaternary interglacials, namely the Eemian, which is interesting due to its warmth, and Marine Isotope Stage 11 (MIS11), which is the longest interglacial during the last 500ka. We will also present model results of peatland extent and carbon accumulation for these interglacials. We will discuss model shortcomings and knowledge gaps currently preventing an application of the model to full glacial-interglacial cycles.

  13. Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan.

    PubMed

    Liu, Chen-Wuing; Wang, Sheng-Wei; Jang, Cheng-Shin; Lin, Kao-Hong

    2006-01-01

    An investigation of shallow ground water quality revealed that high arsenic (As) concentrations were found in both aquifers and aquitards in the southern Choushui River alluvial fan of Taiwan. A total of 655 geological core samples from 13 drilling wells were collected and analyzed. High As contents were found primarily in aquitards, to a maximum of 590 mg/kg. The contents were correlated with the locations of the marine sequences. Additionally, strong correlations among the As concentrations of core samples, the clay, and the geological age of the Holocene transgression were identified. Most of the As in ground water originated from the aquitard of the marine sequence. The high As content in marine formations with high clay contents may be attributable to the bioaccumulation of As in the sea organisms, which accrued and were deposited in the formation. A preliminary geogenic model of the origin of the high As concentration in the shallow sedimentary basin of the Choushui River alluvial fan of Taiwan is proposed. PMID:16391278

  14. Drivers for the development of an alluvial fan in a high-altitude glaciated catchment

    NASA Astrophysics Data System (ADS)

    Steiner, Jakob; Miles, Evan; Ragettli, Silvan

    2016-04-01

    Alluvial fans have channelization and deposition dynamics that are not entirely understood but can have considerable impact on the local hydrological regime. Especially in high-altitude and glaciated catchments they are rather rarely investigated. During glaciological field work between 2012 and 2015 in the Langtang catchment in the Nepalese Himalaya, such an alluvial fan of ca. 0.35 km2 (4000 m a.s.l.) at the end of a very small glaciated subcatchment (~9km2) was observed. The subcatchment is the site of one of the presumed largest landslides in earth's history, that likely happened 40 000 years ago with a volume of approximately 10^10 m3 and land surface erosion is well visible. During the recent Gorkha earthquake in April 2015 (M=7.8), additional sediments were mobilized along the steep valley slopes. From 6 sets of concurrent high-resolution satellite images and DEMs between 2006 and 2015 and an additional image from 1974 we derive the evolution in space and volume of this fan and identify main sources of sediment supply. Precipitation data from a nearby Automatic Weather Station provides insight into strong rainfall events. We can compare the growth of the fan in the period without significant earthquakes until April 2014 to the change after the seismic event (image from May 2015) and after the following Monsoon season (image from October 2015) and determine dominant drivers of erosion.

  15. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of α-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  16. Characteristics of bedrock-alluvial anastomosed rivers: the Mekong River in Cambodia

    NASA Astrophysics Data System (ADS)

    Meshkova, Liubov. V.; Carling, Paul. A.

    2010-05-01

    The Mekong River is the 12th largest river in the world in terms of its length and mean annual discharge and yet it is poorly investigated. In the north eastern regions of Cambodia the Mekong River develops a multichannel pattern. It is characterised by a complex of intersecting bedrock channels, well vegetated alluvial and seasonally inundated islands, various types of sand bars, numerous bedrock exposures, rapids, waterfalls and deep bedrock pools which can be classified as a large mixed bedrock-alluvial anastomosed river of a tropical monsoonal climate zone. In order to complete a portrait of the river at the high level of details new data on morphology, geology and sediments were obtained during field surveys of a 120 km river section in Cambodia and combined with information from published literature and interpretation of available remote sensing images. This process has enabled to update and clarify knowledge on morphology of observed islands and floodplain, comprehensive geology and tectonic structures, hydrological regime and land cover. Complex analyses of the collected data have distinguished several geomorphological zones accordingly to frequency of morphological elements, the planview configuration of channels and vertical profile characteristics. The occurrence of each zone is a subject of variable controlling factors such as local topography, channel gradient, structural and tectonic elements and intercalating geological units. Evolution of the channel pattern has been considered at both short- and long term time scales. Historical cartographic and remote sensing materials were applied to determine planform channel changes over the last 50 years revealing the channels stability and cases of occasional, local erosion and deposition. The channel network was extracted from vector layers to examine channels and islands width and length parameters, bifurcation angles at the upstream end of islands and to obtain main channel network indices such as braiding

  17. Impact of the alluvial style on the geoarcheology of stream valleys

    NASA Astrophysics Data System (ADS)

    Guccione, Margaret J.

    2008-10-01

    depositional environments. Many sites along the active meander belt of the Red River were likely lost due to high rates of channel migration. Nevertheless, intense occupation of Paleo-Indian through Caddoan groups assures that many significant sites have been preserved. The wide valley and high rates of sedimentation suggest that many sites are likely buried, particularly along natural levees flanking an older meander belt. Recorded sites are also present along streams that incise the terrace, along the terrace margin, and along small channels that cross the backswamp. The spatial and temporal site distribution along the lower Mississippi valley is distinct in comparison with the Red River because the Mississippi valley is wider, the terraces are younger and less dissected, and the floodplain has more relief and is not broadly inundated by floodwater with relatively low sediment concentrations. Most of the significant Archaic through Mississippian period floodplain sites are located along the surfaces of abandoned Mississippi and distributary meander belts which aggraded above the adjacent backswamp and have rarely been influenced by flood sedimentation since abandonment. Abundant Paleo-Indian through Mississippian period sites are also widely distributed across undissected terraces. Only a few significant Mississippian sites are present along the active meander belt and in the backswamp where flooding was common. In comparison with the Red River, the archaeological record of the floodplain is less likely to be influenced by burial or erosion due to the Mississippi River having lower rates of overbank sedimentation and channel migration, respectively. The variable alluvial styles of the lower Missouri River, lower Red River, and the lower Mississippi River valleys presented varying opportunities and constraints to occupation and sustained settlement, and resulted in widely varying archaeological patterns that are partly dependent upon the alluvial geomorphology.

  18. MAP OF ECOREGIONS OF THE MISSISSIPPI ALLUVIAL PLAIN

    EPA Science Inventory

    The ecoregions of The Mississippi Alluvial Plain (73) have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a ...

  19. HYDRAULIC ANALYSIS OF BASEFLOW AND BANK STORAGE IN ALLUVIAL STREAMS

    EPA Science Inventory

    This paper presents analytical solutions, which describe the effect of time-variable net recharge (net accretion to water table) and bank storage in alluvial aquifers on the sustenance of stream flows during storm and inter-storm events. The solutions relate the stream discharge,...

  20. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  1. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  2. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  3. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  4. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information...

  5. Chronology and stratigraphy of Late Quaternary sediments in the Konya Basin, Turkey: Results from the KOPAL Project

    NASA Astrophysics Data System (ADS)

    Roberts, N.; Black, S.; Boyer, P.; Eastwood, W. J.; Griffiths, H. I.; Lamb, H. F.; Leng, M. J.; Parish, R.; Reed, J. M.; Twigg, D.; Yiǧitbaşioǧlu, H.

    1999-04-01

    The Late Quaternary environmental history of the Konya plain, in south central Turkey, is used to examine sediment facies changes in a shallow non-outlet basin which has experienced major climatically driven changes in lake extent. Two principal types of sedimentary archive are used to reconstruct a palaeoenvironmental record, namely alluvial sequences on the Çarşamba alluvial fan and sediments from residual lakes. The latter have been used to investigate broader climatic and vegetational histories via palaeolimnological techniques including pollen, diatom and stable isotope analysis. These changes are dated here by radiometric techniques including radiocarbon (AMS and conventional), OSL, and U-Th. Chronological agreement is generally good between the different dating techniques, although typically there is greatly reduced precision beyond ca. 25 ka. Lake sediment cores investigated have basal ages beyond the range of 14C dating, but contain hiatuses as a result of subsequent alternation between phases of lacustrine sedimentation and aeolian deflation. In contrast to most deepwater non-outlet lake systems, the Konya basin may have been occupied by a single extensive lake for as little as 10% of Late Quaternary time, mainly around the time of the LGM. This lake highstand was followed by an important arid interval. In the absence of unbroken chronostratigraphic sequences, palaeohydrological investigation of shallow non-outlet lakes may require analysis of basin-wide changes in sedimentation rather than reliance on single core records. Stratigraphic continuity in such sedimentary environments cannot be assumed, and requires independent chronological control through radiometric dating.

  6. Hydrogeology and simulation of ground-water flow in the Ohio River alluvial aquifer near Carrollton, Kentucky

    USGS Publications Warehouse

    Unthank, Michael D.

    1999-01-01

    The alluvial aquifer near Carrollton, Kentucky, lies in a valley eroded by glacial meltwater that was later part filled with outwash sand and gravel deposits. The aquifer is unconfined, and ground water flows from the adjacent bedrock-valley wall toward the Ohio River and ground-water withdrawal wells. Ground-water-level and Ohio River stage data indicate the alluvial aquifer was at or near steady-state condition in November 1995. A two-dimensional, steady-state ground-water-flow model was developed to estimate the hydraulic properties, the rate of recharge, and the contributing areas to discharge boundaries for the Ohio River alluvial aquifer at Carrollton and the surrounding area. Results from previous investigations, available hydrogeologic data, and observations of water levels from area ground-water wells were compiled to conceptualize the ground-water-flow system and construct the numerical model. Ground water enters the modeled area by induced infiltration from the Ohio River and smaller streams, flow from the bedrock-valley wall, and infiltration of precipitation. Ground water exits the modeled area primarily through withdrawal wells and flow to the Ohio River. A sensitivity analysis of the model indicates that it is most sensitive to changes in the stage of the Ohio River and conductance values for the riverbed material. A particle-tracking simulation was used to delineate recharge and discharge boundaries of the flow system and contributing areas for withdrawal wells, and to estimate time of travel through the flow system.

  7. Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet

    NASA Technical Reports Server (NTRS)

    Peltzer, Gilles; Tapponnier, Paul; Armijo, Rolando

    1989-01-01

    Images taken by the earth observation satellite SPOT of the Quaternary morphology at 18 sites on the 2000-kilometer-long Altyn Tagh fault at the north edge of Tibet demonstrate that it is outstandingly active. Long-term, left-lateral strike-slip offsets of stream channels, alluvial terrace edges, and glacial moraines along the fault cluster between 100 and 400 meters. The high elevation of the sites, mostly above 4000 meters in the periglacial zone, suggests that most offsets resulted from slip on the fault since the beginning of the Holocene. These data imply that slip rates are 2 to 3 centimeters per year along much of the fault length and support the hypothesis that the continuing penetration of India into Asia forces Tibet rapidly toward the east.

  8. Magnitude of late quaternary left-lateral displacements along the north edge of tibet.

    PubMed

    Peltzer, G; Tapponnier, P; Armijo, R

    1989-12-01

    Images taken by the earth observation satellite SPOT of the Quaternary morphology at 18 sites on the 2000-kilometer-long Altyn Tagh fault at the north edge of Tibet demonstrate that it is outstandingly active. Long-term, left-lateral strike-slip offsets of stream channels, alluvial terrace edges, and glacial moraines along the fault cluster between 100 and 400 meters. The high elevation of the sites, mostly above 4000 meters in the periglacial zone, suggests that most offsets resulted from slip on the fault since the beginning of the Holocene. These data imply that slip rates are 2 to 3 centimeters per year along much of the fault length and support the hypothesis that the continuing penetration of India into Asia forces Tibet rapidly toward the east. PMID:17832223

  9. Geomorphological aspects of the quaternary evolution of the Ouarzazate Basin, Southern Morocco

    NASA Astrophysics Data System (ADS)

    Stäblein, Gerhard

    The relief forms of the Ouarzazate Basin show a zonation with tectonic patterns. Only the levels and glacis-sediments of the northern marginal zone are disturbed tectonically in Quaternary times with folded structurs and anticlines. The inner part of the basin has predominantly horizontal layers in the underground with a bloc mosaic created by a grid of fractures, which are locally subrecently active with subsidence, especially in the southern part and in the Skoura alluvial plain section. Above the southern edge of the basin against the Anti Atlas there exist fossiliated older remnants of a stage, in which the basin on a higher level reached more southwards. The drainage development and the pronounced erosion of the Dra River through the Anti Atlas created the characteristic mesa shaped glacis hills ("khelas") of the basin. The recent erosion rate is not accelerated by neotectonics.

  10. Charcoal and the Record of Fire-related Sedimentation in Holocene Alluvial Sediments

    NASA Astrophysics Data System (ADS)

    Meyer, G. A.

    2006-12-01

    Over the last few decades, rising temperatures and ensuing severe wildfires in the western USA cordillera have provided the opportunity to examine processes and deposits of postfire sedimentation on alluvial fans and floodplains. Most events are generated by widespread surface runoff from intense convective-storm precipitation on severely burned slopes. Flow processes range from debris flow to sediment-charged water floods. Muddy debris flows best preserve coarse charcoal in fan deposits, whereas gravelly debris flows often comminute charcoal into fine particles. As charcoal remains suspended in high-energy hyperconcentrated and water floods, only their fine-grained deposits typically contain much charcoal. Charcoal is locally concentrated in low-energy fluvial deposits, but displays increasing evidence for reworking with distance from source. Charred vegetation and litter marking burned soil surfaces may be preserved under postfire fan and fluvial sediments. Modern deposits provide models for identification of Holocene fire-related sediments and estimates of paleofire severity. AMS 14C dating of discrete charcoal fragments allows sample selection to minimize errors of sample age > fire age. Fires are incompletely recorded in the event stratigraphy of one fan, but larger populations of 14C ages from numerous fans permit composite probability distributions that represent centennial- to millennial-scale changes in fire-related sedimentation across a study area. Records from Yellowstone and central Idaho indicate the large role of fire in episodic erosion across a range of conifer forests, most strongly during severe, multidecadal droughts in warmer periods (e.g. in Medieval time 900-1300 AD). In central Idaho, identification of charcoal macrofossils indicates broadly similar, aspect-controlled forest compositions over the last 3000 yr. Emerging data from the Sacramento Mountains, New Mexico, show rapid fan aggradation due to fire-related events in the warm middle

  11. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change acros