Science.gov

Sample records for quaternary fission

  1. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.; Titova, L. V.; Bulychev, A. O.

    2015-07-01

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in ( α, α), ( t, t), and ( α, t) pairs upon the true quaternary spontaneous fission of 252Cf and thermal-neutron-induced fission of 235U and 233U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  2. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Bulychev, A. O.

    2015-07-15

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  3. P-odd, P-even, and T-odd asymmetries in true quaternary fission of nuclei

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.

    2013-04-15

    The coefficients of P-odd, P-even, and T -odd asymmetries for a third and a fourth prescission particle emitted in the true quaternary fission of nuclei that was induced by polarized cold neutrons were studied on the basis of quantum-mechanical fission theory. By using non-evaporation (nonadiabatic) mechanisms of light-particle emission, these coefficients were compared with the analogous coefficients for prescission third particles emitted in the ternary fission of nuclei.

  4. Probabilities for the emission of light particles and their energy and angular distributions for true quaternary nuclear fission

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.

    2013-01-15

    On the basis of quantum-mechanical fission theory, the features of true quaternary nuclear fission are studied by treating this fission process as a sequence of three processes following one another in the course of time. The first two processes are the escape of the first and then the second of the two light particles emitted from the neck of a fissioning nucleus because of a nonadiabatic character of the collective deformation motion of this nucleus. Finally, the third process is the separation of the fissioning nucleus into two rather heavy fission fragments. The differences that arise in the emission probabilities and in the angular and energy distributions upon going over from the first emitted to the second emitted prescission third and fourth particles are analyzed by invoking experimental data on the spontaneous and thermalneutron-induced fission of nuclei, and it is shown that these differences are caused by the changes both in the geometric configuration of the fissioning nucleus and in the shell structure of its neck after the first prescission particle is emitted from it.

  5. The occurrence and fission-track ages of late neogene and quaternary volcanic sediments, Siwalik group, Northern Pakistan

    USGS Publications Warehouse

    Johnson, G.D.; Zeitler, P.; Naeser, C.W.; Johnson, N.M.; Summers, D.M.; Frost, C.D.; Opdyke, N.D.; Tahirkheli, R.A.K.

    1982-01-01

    Volcanic sediments, now mostly bentonites and bentonitic mudstones, occur throughout the Late Neogene and Quaternary Siwalik Group of northern Pakistan. A number of these deposits have been dated by the fission-track method, utilizing zircon phenocrysts from these deposits, and provide the chronometric constraints upon which a paleomagnetic stratigraphy is developed for the Siwalik Group. Notable in the occurrence of these altered tuff horizons is an apparent mode in their stratigraphic development from approximately 3.0 to 1.5 m.y. B.P. which coincides with the period of activity of the Dacht-e-Nawar volcanic complex of east-central Afghanistan. Fission-track ages of certain tuffs for critical areas of northern Pakistan are reported herein. ?? 1982.

  6. Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan

    USGS Publications Warehouse

    Zeitler, P.K.; Johnson, N.M.; Naeser, C.W.; Tahirkheli, R.A.K.

    1982-01-01

    The north-striking Nanga Parbat-Haramosh Massif protrudes into the northwestern Himalaya along the axis of a great syntaxis1,2 (Fig. 1), where the Hindu Kush, Karakorum, and Himalayan ranges converge. As the Indus Suture Zone3 enters this region from the east it bifurcates into two branches, encircling what may be a docked island-arc terrane4. The southern branch (the Main Mantle Thrust) crops out on both flanks of the Nanga Parbat massif, forming a tight structural loop5. This massif and the adjacent terrane contain some of the highest peaks in the Himalaya; Nanga Parbat and the Indus River (located just 20km away) define the world's greatest continental relief (6,930 m). We report here the discovery of unexpectedly young sphene, zircon and apatite fission-track dates from the Nanga Parbat-Haramosh Massif. These dates (as low as 1.3 Myr for zircon and 0.4 Myr for apatite) imply that during the Pleistocene the Nanga Parbat region was uplifted and eroded at nearly 1 cm yr-1. ?? 1982 Nature Publishing Group.

  7. Deciphering Past and Present Tectonics of the Rio Grande Rift in New Mexico Utilizing Apatite Fission Track Thermochronology, Geochronology, Quaternary Faulting, and Cross-Section Restoration

    NASA Astrophysics Data System (ADS)

    Ricketts, J. W.; Karlstrom, K. E.; Kelley, S. A.; Priewisch, A.; Crossey, L. J.; Asmerom, Y.; Polyak, V.; Selmi, M.

    2011-12-01

    The Rio Grande rift provides an excellent laboratory for understanding styles and processes of extensional tectonics, and their driving forces. We apply apatite fission track (AFT) thermochronology, geochronology, fracture analysis, and cross-section restoration to decipher past and present tectonics of the Rio Grande rift. AFT data has been compiled from rift flank uplifts along the Rio Grande rift in an attempt to recognize long wavelength spatial and temporal patterns. AFT ages record time of cooling of rocks below ~110°C and, when cooling is due to exhumation, age elevation traverses can record upward advection of rocks through paleo 110°C isotherms. The relatively passive sides of half-grabens (e.g. Manzanos and Santa Fe Range) preserve Laramide AFT ages ranging from 45-70 Ma, indicating they were cooled during the Laramide Orogeny and have remained cooler than 110°C since then. Rift flanks on the tectonically active sides of half-grabens, (e.g. Sierra Ladrones, Sandias, Taos Range, and Sierra Blanca) have AFT ages that range from 35 Ma to <10 Ma, and record cooling that initiated with the Oligocene ignimbrite flare-up and continues through the Neogene. Our analysis tracks the approximate elevation of paleo 110°C isotherms in 10 Ma intervals from the Laramide to the present and shows that reconstructed paleoisotherms have been differentially uplifted, warped, and faulted since their time of formation, and hence serve as markers of uplift history and its mechanisms. AFT data at Ladron Peak, an active rift flank along the western margin of the Rio Grande rift in central New Mexico, indicates that it was rapidly unroofed between 20-10 Ma. Preliminary apatite helium data gives a similar age vs. elevation trend, but apatites have highly radiogenically damaged lattices and hence have corrected closure temperatures tens of degrees higher than AFT ages. The style of faulting at Ladron Peak is unusual because it is bounded by the anomalously low-angle (~15°) Jeter fault. In order to understand the evolution of faulting in this region, a balanced cross-section was constructed and restored to its pre-rift geometry. Our working hypothesis is that the low angle of the Jeter fault is most adequately explained by a rolling hinge model, where isostatic uplift causes progressive rotation of an initially steep (~60°) normal fault to shallower dips. Thirty km north of Ladron along the west side of the rift, Quaternary extensional faulting is evident in large travertine deposits at the Belen Quarry. Extensional fractures and cm-scale displacement normal faults at 4 locations give average paleostress orientations of 087, 112, 116, 127. A U-series age of 312 ka on faulted upper layers in one quarry indicates post-312 ka slip that we interpret to reflect surface manifestations of microseismicity above the Socorro magma body.

  8. Isothermal plateau fission-track age for a paleomagnetic excursion in the Mamaku Ignimbrite, New Zealand, and implication for late Quaternary stratigraphy

    NASA Astrophysics Data System (ADS)

    Shane, Phil; Black, Tasha; Westgate, John

    1994-08-01

    Mamaku Ignimbrite, the youngest of the large, welded ignimbrite sheet-forming eruptions from the Taupo Volcanic Zone in New Zealand, is dated at 230 +/- 12 ka by the isothermal plateau fission-track (ITPFT) method on glass. This age is older and more precise than that indicated by previous studies, requiring the revision of loess/paleosol coverbed chronologies. The eruption occurred during a paleomagnetic excursion allowing the ignimbrite to be easily distinguished from other eruptive events by paleomagnetic methods. This excursion is one of the few such events recorded in igneous rocks in the Southern Hemisphere, may be widely recorded in New Zealand, and is now temporally well constrained.

  9. Quaternary investigation

    SciTech Connect

    Stieve, A.

    1991-05-15

    The primary purpose of the Quaternary investigation is to provide information on the location and age of Quaternary deposits for use in evaluating the presence or absence of neotectonic deformation or paleoliquefaction features within the Savannah River Site (SRS) region. The investigation will provide a basis for evaluating the potential for capable faults and associated deformation in the SRS vicinity. Particular attention will be paid to the Pen Branch fault.

  10. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the Pleistocene"…

  11. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  12. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  13. Benchmarking nuclear fission theory

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-07-01

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  14. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  15. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  16. Fission meter

    DOEpatents

    Rowland, Mark S.; Snyderman, Neal J.

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  17. Seminar on Fission VI

    NASA Astrophysics Data System (ADS)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al.]. Development of PSD and ToF + PSD techniques for fission experiments / M. Sillanpää ... [et al.]. MYRRHA, a new fast spectrum facility / H. Aït Abderrahim, P. D'hondt, D. De Bruyn. The BR1 reactor: a versatile tool for fission experiments / J. Wagemans -- "Special" fission processes. Shape isomers - a key to fission barriers / S. Oberstedt ... [et al.]. Fission in spallation reactions / J. Cugnon, Th. Aoust, A. Boudard -- Conference photo -- List of participants.

  18. Robustness of Quaternary glacial cycles

    NASA Astrophysics Data System (ADS)

    Ganopolski, Andrei; Brovkin, Victor; Calov, Reinhard

    2015-04-01

    In spite of significant progress in paleoclimate reconstructions and modeling some aspects of Quaternary climate cycles are still poorly understood. Among them is the question of whether glacial cycles are deterministic and solely externally forced or, at least partially, they are stochastic. The answer to this question can only be obtained using a comprehensive Earth system models which incorporates all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, aeolian dust and marine biogeochemistry. Here, we used the Earth system model of intermediate complexity CLIMBER-2. The model was optimally tuned to reproduce climate, ice volume and CO2 variability for the last 0.8 million years. Using the same model version, we performed a large set of simulations covering the entire Quaternary (3 million years). By starting the model at different times (with the time step of 100,000 years) and using identical initial conditions we run the model for 500,000 years using the Earth's orbital variations as the only prescribed radiative forcing. We show that within less than 100,000 years after the beginning of each experiment the modeling results converge to the same solution which depends only on the orbital forcing and boundary conditions, such as topography and terrestrial sediment thickness for the ice sheets or volcanic CO2 outgassing for the carbon cycle. By using only several sets of the Northern Hemisphere orography and sediment thickness which represent different stages of landscape evolution during Quaternary, we are able to reproduce all major regimes of Quaternary long-term climate variability. Our results thus strongly support the notion that Quaternary glacial cycles are deterministic and externally forced.

  19. Fission Xenon on Mars

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.; Marty, B.

    2002-01-01

    Fission Xe components due to Pu-244 decay in the early history of Mars have been identified in nakhlites; as in the case of ALH84001 and Chassigny the fission gas was assimilated into indigenous solar-type Xe. Additional information is contained in the original extended abstract.

  20. Relativistic Coulomb Fission

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  1. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  2. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  3. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  4. Andrei Sher and Quaternary science

    NASA Astrophysics Data System (ADS)

    Kuzmina, Svetlana; Lister, Adrian M.; Edwards, Mary E.

    2011-08-01

    Andrei Sher (1939-2008) was a key individual in Beringian studies who made substantial and original contributions, but also, importantly, built bridges between western and eastern Beringian scientists spanning some five decades of research. He is perhaps best known as a Quaternary palaeontologist, specializing in large mammals, and mammoths in particular, but his field of his scientific research was much broader, encompassing Quaternary geology, stratigraphy, geocryology, and paleoenvironmental reconstructions. He worked mainly in Siberia, in the Kolyma and Indigirka lowlands, and Chukotka, but also completed fieldwork in Alaska and Yukon through joint projects with American and Canadian scientists. Andrei was an active scientist until the last days of his life. He was involved in many different research projects ranging from mammoth evolution, fossil insects and environmental changes and ancient DNA. Without Andrei's connections between researchers, many unique discoveries would likely be unknown.

  5. Quaternary ecology: A paleoecological perspective

    SciTech Connect

    Delcourt, H.R.; Delcourt, P.A.

    1991-01-01

    This book considers issues and problems in ecology which may be illuminated, if not solved, by considering paleoecology. The five central chapters include a discussion of application of Quaternary ecology to future global climate change, including global warming. Other areas presented include: population dispersal, invasions, expansions, and migrations; plant successions; ecotones; factors in community structure; ecosystem patterns and processes. Published case studies are numerous. The role played by continuing climatic change in vegetation change is acknowledged but not stressed.

  6. Isomers in Fission Fragments

    SciTech Connect

    Urban, W.; Faust, H.; Jentschel, M.; Koester, U.; Krempel, J.; Materna, Th.; Mutti, P.; Soldner, T.; Genevey, J.; Pinston, J. A.; Simpson, G.; Sieja, K.; Nowacki, F.; Dorvaux, O.; Gall, B. J. P.; Roux, B.; Dare, J. A.

    2009-01-28

    The structure of neutron-rich nuclei produced as secondary fission fragments was investigated using the EUROGAM and GAMMASPHERE ACS arrays, the LOHENGRIN fission-fragment mass separator and the FIFI fission-fragment identifier. Fission products were populated in spontaneous fission of {sup 248}Cm and {sup 252}Cf and in thermal neutron-induced fission of {sup 233}U, {sup 235}U and {sup 241}Pu at ILL Grenoble. Particularly useful in such studies are isomeric states, well populated in fission due to their yrast character, easy to detect due to their long half lives and easy to interpret because of their relatively simple composition. We discuss their role in studies of neutron-rich nuclei, giving examples of isomers found in our recent experiments. A special type of K-isomers, resulting from 'crossing' of extruder and intruder orbitals plays a role in the mechanism of a sudden onset of deformation in the A = 100 and A = 150 regions. We present evidence for these isomers in both regions. Possible further studies in this field are proposed.

  7. Nuclear fission of Fm isotopes

    SciTech Connect

    Asano, T.; Wada, T.; Ohta, M.; Chiba, S.

    2010-06-01

    Multi-modal fission has been systematically investigated for the series of isotopes of Fm and Cf. The multi-dimensional Langevin-type stochastic differential equation is used for the dynamical calculation. The primary fission mode changes from mass-asymmetric fission to mass-symmetric fission with the increase of neutron numbers for both Fm and Cf cases.

  8. True ternary fission

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.

    2015-04-01

    The study of the ternary fission of nuclei has received new interest recently. It is of general interest for nuclear dynamics, although the process is very rare. In the present work, we discuss the possibilities of true ternary fission (fragment masses A >30 ) in 252Cf for different mass splits. These mass splits are strongly favored in a collinear geometry. Based on the three cluster model (TCM), it is shown that the true ternary fission into fragments with almost equal masses is one of the possible fission modes in 252Cf . For general decays it is shown that the formation of the lightest fragment at the center has the highest probability. Further the formation of tin isotopes and/or other closed shell fragments are favored. For the decay products the presence of closed shell nuclei among the three fragments enhances the decay probabilities.

  9. Microscopic Theory of Fission

    SciTech Connect

    Younes, W.; Gogny, D.

    2008-04-17

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented.

  10. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  11. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses long- and short-wavelength donors and an acceptor and a simpler, two-layer combination of a singlet-fission donor and a long-wavelength acceptor. An example of the trilayer structure is singlet fission in tetracene with copper phthalocyanine inserted at the C60 interface. The bilayer approach includes pentacene photovoltaic cells with an acceptor of infrared-absorbing lead sulfide or lead selenide nanocrystals. Lead selenide nanocrystals appear to be the most promising acceptors, exhibiting efficient triplet exciton dissociation and high power conversion efficiency. Finally, we review architectures that use singlet fission materials to sensitize other absorbers, thereby effectively converting conventional donor materials to singlet fission dyes. In these devices, photoexcitation occurs in a particular molecule and then energy is transferred to a singlet fission dye where the fission occurs. For example, rubrene inserted between a donor and an acceptor decouples the ability to perform singlet fission from other major photovoltaic properties such as light absorption. PMID:23611026

  12. Ancient biomolecules in Quaternary palaeoecology

    NASA Astrophysics Data System (ADS)

    Hofreiter, Michael; Collins, Matthew; Stewart, John R.

    2012-02-01

    The last few years have seen an enormous proliferation of ancient biomolecules research, especially in the field of ancient DNA. Ancient DNA studies have been transformed by the advent of next generation sequencing, with the first Pleistocene sample being analysed in 2005, and several complete and draft genomes that have been compiled from ancient DNA to date. At the same time, although less conspicuous, research on ancient proteins has also seen advances, with the time limit for research on ancient biomolecules now extending to over 1 million years. Here we review which effects these developments have on research in Quaternary science. We identify several lines of research that have the potential to profit substantially from these recent developments in ancient biomolecules research. First, the identification of taxa can be made using ancient biomolecules, and in the case of ancient DNA, specimens can even be assigned to specific populations within a species. Second, increasingly large DNA data sets from Pleistocene animals allow the elucidation of ever more precise pictures of the population dynamic processes whereby organisms respond to climate and environmental change. With the accompanying better understanding of process in the Quaternary, past ecologies can also more realistically be interpreted from proxy data sets. The dominant message from this research so far is that the Quaternary saw a great deal more dynamism in populations than had been forecast by conventional palaeoecology. This suggests that reconstructions of past environmental conditions need to be done with caution. Third, ancient DNA can also now be obtained directly from sediments to elucidate the presence of both plant and animal species in an area even in the absence of identifiable fossils, be it macro- or micro-fossils. Finally, the analysis of proteins enables the identification of bone remains to genus and sometimes species level far beyond the survival time of DNA, at least in temperate regions, illustrating that precise data is now forthcoming from seemingly unlikely sources. Together, these approaches allow the study of environmental dynamics throughout a substantial part, and perhaps even the entire Quaternary (the last 2.6 million years).

  13. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of α-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  14. Quaternary faults of west Texas

    SciTech Connect

    Collins, E.W.; Raney, J.A. . Bureau of Economic Geology)

    1993-04-01

    North- and northwest-striking intermontane basins and associated normal faults in West Texas and adjacent Chihuahua, Mexico, formed in response to Basin and Range tectonism that began about 24 Ma ago. Data on the precise ages of faulted and unfaulted Quaternary deposits are sparse. However, age estimates made on the basis of field stratigraphic relationships and the degree of calcic soil development have helped determine that many of the faults that bound the basin margins ruptured since the middle Pleistocene and that some faults probably ruptured during the Holocene. Average recurrence intervals between surface ruptures since the middle Pleistocene appear to be relatively long, about 10,000 to 100,000 yr. Maximum throw during single rupture events have been between 1 and 3 m. Historic seismicity in West Texas is low compared to seismicity in many parts of the Basin and Range province. The largest historic earthquake, the 1931 Valentine earthquake in Ryan Flat/Lobo Valley, had a magnitude of 6.4 and no reported surface rupture. The most active Quaternary faults occur within the 120-km-long Hueco Bolson, the 70-km-long Red Light Bolson, and the > 200-km-long Salt Basins/Wild Horse Flat/Lobo Valley/Ryan Flat.

  15. The Fission TPC Project

    NASA Astrophysics Data System (ADS)

    Hill, Tony; Klay, Jenn; Heffner, Mike

    2008-10-01

    New high-precision fission experiments have become a priority within the nuclear energy community due to a growing, world wide, interest in nuclear reactors. In particular, the design of the next generation reactors requires a reduction in the errors on a number of cross section measurements. Most of the required nuclear data has been measured over the last 50 years, although improvements in the accuracy of the data appear unlikely with the current technology. A potential breakthrough is the deployment of a detector developed within the particle physics community called the Time Projection Chamber (TPC). A group of 6 universities and 3 national laboratories have undertaken the task of building the first TPC for this purpose. In this talk we will present the fission TPC concept, and why we think we can make an improvement on 50 years of fission study.

  16. Potentials of fissioning plasmas

    NASA Technical Reports Server (NTRS)

    Thom, K.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in a gaseous medium the kinetic energy of fission fragments can be converted directly into nonequilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in near thermal equilibrium varying up to a state of extreme nonequilibrium. During 20 years of research under NASA support major elements of the fissioning plasma reactor were demonstrated in theory and experiment, culminating in a proof-of-principle reactor test conducted at the Los Alamos Scientific Laboratory. It is concluded that the construction of a gaseous fuel reactor power plant is within the reach of present technology.

  17. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the scission neutrons. Several efforts have already been made to replace macroscopic ingredients and phenomenology by microscopic ingredients provided in various nuclear parameter libraries such as electric dipole photon strength functions or HFB level densities. First results relative to theses aspects are presented in this work.

  18. Cathodoluminescence in Quaternary carbonate deposits

    NASA Astrophysics Data System (ADS)

    Braithwaite, Colin J. R.

    2016-05-01

    The cathodoluminescent oscillatory and sectoral growth zones common in crystals formed in ancient limestone successions in a variety of putative environments appear to be rare or absent from Recent and Pleistocene marine carbonate sequences. The factors controlling cathodoluminescence and reasons for this disparity are examined. The cathodoluminescent zones in the cements of ancient rocks have been interpreted as responses to variations in the redox potential of formative pore waters during crystal growth; although similar cathodoluminescent behaviour is recorded from some deposits, including travertines and Quaternary speleothems, formed in what are thought to have been strongly oxidizing environments. The apparent absence of cathodoluminescence in the most Recent and Pleistocene marine deposits, that presumably reflect deposition and diagenesis in environments that are also characteristically oxidized, therefore seems anomalous. The controlling influences on cathodoluminescence are reviewed, together with evidence relating to observations of Pleistocene marine deposits and likely conditions of formation but, where it is present, the mechanism(s) for its development remain elusive.

  19. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  20. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  1. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propusive force.

  2. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propulsive force.

  3. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  4. Book Review: Reconstructing Quaternary Environments

    NASA Astrophysics Data System (ADS)

    Bridgland, David R.; Evans, David J. A.; Roberts, David H.

    2016-02-01

    A third edition of this, the foremost Quaternary textbook, is most welcome, coming seventeen years after the 1997 second edition (which was 13 years after the first). The general impression is one of advancement, not least because of the extensive updating of literature cited and examples used, with the status maintained of an impressive compendium of a specialism with a very wide subject base. Some changes are cosmetic, with chapter and section headers having a more modern style and a profusion of new colour photographs and diagrams. Some of the latter are redrawn from black and white figures in the previous edition, although not all have been improved, as some are smaller and have been simplified. For example, black and white Fig. 3.10 of the Second Edition compares very favourably with the much smaller colour 3.17 in this latest volume (erratic sources). On the plus side, the number change, for a figure that appears in the same place within the chapter, shows that the latest edition is considerably better illustrated than its predecessor, perhaps accounting for a significant proportion of the increased page total (up from 446 to 538).

  5. Quaternary glaciation of Mount Everest

    NASA Astrophysics Data System (ADS)

    Owen, Lewis A.; Robinson, Ruth; Benn, Douglas I.; Finkel, Robert C.; Davis, Nicole K.; Yi, Chaolu; Putkonen, Jaakko; Li, Dewen; Murray, Andrew S.

    2009-07-01

    The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24-27 ka (Jilong moraine), 14-17 ka (Rongbuk moraine), 8-2 ka (Samdupo moraines) and ˜1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8-7.7 ka) and Samdupo II (˜2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.

  6. Fission engine concepts.

    NASA Technical Reports Server (NTRS)

    Thom, K.

    1971-01-01

    Discussion of numerous approaches to exploitation of fission energy for special applications in more beneficial ways than can be achieved by conventional reactor technology. It is *hown that, for space propulsion, the high temperature plasma core reactor is most desirable. But fissioning plasmas may find applications beyond this. Because of the criticality to be achieved in high temperature gaseous uranium fuel, plasma core reactors would operate at very high pressures, up to a thousand atmospheres, and their power would range from 5000 to 50,000 megawatts. However, apart from obvious technological difficulties, basic physics problems have to be solved before the feasibility of plasma core reactors can be demonstrated. These problems and their implications are discussed.

  7. SHAPED FISSIONABLE METAL BODIES

    DOEpatents

    Wigner, E.P.; Williamson, R.R.; Young, G.J.

    1958-10-14

    A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.

  8. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  9. Mitochondrial fission and fusion

    PubMed Central

    Scott, Iain; Youle, Richard J.

    2016-01-01

    Mitochondria are highly dynamic cellular organelles, with the ability to change size, shape and position over the course of a few seconds. Many of these changes are related to the ability of mitochondria to undergo the highly co-ordinated processes of fission (division of a single organelle into two or more independent structures) or fusion (the opposing reaction). These actions occur simultaneously and continuously in many cell types, and the balance between them regulates the overall morphology of mitochondria within any given cell. Fission and fusion are active processes which require many specialized proteins, including mechanical enzymes that physically alter mitochondrial membranes, and adaptor proteins that regulate the interaction of these mechanical proteins with organelles. Although not fully understood, alterations in mitochondrial morphology appear to be involved in several activities that are crucial to the health of cells. In the present chapter we discuss the mechanisms behind mitochondrial fission and fusion, and discuss the implications of changes in organelle morphology during the life of a cell. PMID:20533902

  10. Extended optical model for fission

    DOE PAGESBeta

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  11. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  12. Ice Age refugia and Quaternary extinctions: An issue of Quaternary evolutionary palaeoecology

    NASA Astrophysics Data System (ADS)

    Stewart, John R.; Cooper, Alan

    2008-12-01

    Quaternary palaeoecology, as a discipline, involves the analysis of a large range of fossil organisms from the last ca. 2 million years. This paper considers the role that these Quaternary records can take in better understanding the evolution of those organisms. We also discuss the surprisingly low uptake of evolutionary biology in Quaternary palaeoecological studies. This leads us to encourage an advance on both these fronts with a greater degree of collaboration with phylogeographic and ancient DNA researchers. These discussions accompany a summary of a special issue of Quaternary Science Reviews representing the proceedings of the XVII INQUA held in Cairns Australia in 2007. This special issue includes papers on a wide variety of Quaternary evolutionary palaeoecological and population dynamic subjects including extinct Pacific Island palm trees, Beringian beetles, Scandinavian trees, and the effects on human and animal populations of an extraterrestrial impact event in the Late Glacial of North America.

  13. A Quaternary volcanic ash deposit in western Missouri

    SciTech Connect

    Emerson, J.W. )

    1993-03-01

    Quaternary volcanic ash has been found in more than fifty localities in the midwest. The most widespread deposits originated from the Long Valley caldera, California; the Jemez calderas, New Mexico; or the Yellowstone caldera, Wyoming. Fission track dating has grouped the deposits into six separate ash falls ranging from 700,000--2,000,000 years old. A small volcanic ash deposit in western Missouri may be correlative with those found along the Kansas and Marais de Cygnes rivers in eastern Kansas. The ash deposit is in Northwest Bates County Missouri, exposed along a tributary to Miami Creek, four miles east of the Kansas state line. The ash layer is interbedded with alluvial terrace deposits and ranges from fifteen to thirty inches in thickness. It is inferred to have been deposited in a pond or oxbow lake. The color is white with a pale yellow tinge (Munsell 10YR 8/2). Shard examination shows that about 70% are flat bubble-wall types, about 20% have straight ridges, less than 10% are bubble-junction, and only a trace are vesicular. The closest known volcanic ash occurrence is an ash outcropping in a Kansas river terrace near DeSoto, KS, forty-five miles to the northwest. The DeSoto deposit has been identified as the .62 m.y. Lava Creek B ash from the Yellowstone caldera. A preliminary correlation of the Missouri ash with the DeSoto ash is based on similar shard morphology and color.

  14. The SPIDER fission fragment spectrometer for fission product yield measurements

    NASA Astrophysics Data System (ADS)

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O`Donnell, J. M.; Sierk, A.; White, M.

    2015-07-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E-2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from 252Cf spontaneous fission products are reported from an E-v measurement.

  15. Quaternary Marine Sulfur Cycle Dynamics

    NASA Astrophysics Data System (ADS)

    Markovic, S.; Paytan, A.; Wortmann, U. G.

    2011-12-01

    Published data show a -0.8% change in marine sulfate δ34S ratios in the past 2 Ma. Prior to this period it was stable at ~ 22% for ~ 50Ma since the Eocene. Compared to the residence time of sulfate (>10 Ma) the observed change is large and implies a major disturbance of the marine sulfur cycle. However, the cause of the disturbance, as well as the timing of its onset are poorly constrained. Here we present a new set of δ34S ratios of marine sulfate for the last 3 Ma with a temporal resolution of ~300ka, which shows a linear decline from 22 to ~21% in the past 1.75Ma. This may represent a change in volcanic and hydrothermal activity, pyrite burial or erosion and weathering of exposed evaporites and sulfides, which are the main processes affecting sulfate δ34S. However, during this period there is no geological evidence for exceptional volcanic and hydrothermal activity and consequently, the observed negative shift reflects either a change in isotopic composition and volume of erosional input of sulfate to the ocean, or a decrease in pyrite burial. The isotopic composition of the input flux depends on the relative proportion of sulfide vs. sulfate weathering. Sedimentary sulfides are mostly concentrated in organic rich sediments on continental shelves. Existing sea level records suggest periodic sea level drops during glacial stages related to the formation of ice sheets. This could affect sulfur cycling in two ways: a) exposure to surface weathering and erosion agents of large parts of continental shelves increased global sulfide oxidation and thus the input flux of sulfate to the ocean and/or b) the reduction of shelf areas resulted in decreased pyrite burial. We explore the effects of these changes with a simple box model. The modeling results indicate that the observed isotopic shift requires a 150% increase of pyrite weathering or a 90% reduction of pyrite burial over the past 1.75Ma. When both of these processes change in concert the same effect is produced with the doubling of pyrite weathering and 50% decrease of pyrite burial. As pyrite burial and organic matter burial are intimately linked, a drastic decrease in pyrite burial should leave its mark in the carbon isotopic record which shows no evidence of a major change in carbon cycling. We thus propose that increased sulfide weathering, either from subaerial exposure, or as a result of increased winnowing might be the principal cause of the negative δ34S shift in the Quaternary.

  16. Bacterial metabolism of quaternary ammonium compounds.

    PubMed Central

    Dean-Raymond, D; Alexander, M

    1977-01-01

    Of 10 quaternary ammonium compounds tested for biodegradation by the biological oxygen demand technique, only decyl- and hexadecyltrimethylammonium bromides were decomposed by organisms derived from sewage and soil. A mixture consisting of individual strains of Pseudomonas and Xanthomonas grew in solutions containing decyltrimethylammonium bromide as sole carbon source. The xanthomonad metabolized this quaternary ammonium compound in the presence of other organic molecules. The products of this activity included 9-carboxynomyl- and 7-carboxyheptyltrimethylammonium, suggesting that the terminal carbon of the decyl moiety is oxidized and the resulting carboxylic acid is subject to beta-oxidation. PMID:879767

  17. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocenters

    PubMed Central

    Quasdorf, Kyle W.; Overman, Larry E.

    2015-01-01

    Preface Quaternary carbon stereocenters–carbon atoms to which four distinct carbon substituents are attached–are common features of molecules found in nature. However, prior to recent advances in chemical catalysis, there were few methods available for constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for synthesizing organic molecules containing such carbon atoms. This progress now makes it possible to selectively incorporate quaternary stereocenters in many high-value organic molecules for use in medicine, agriculture, and other areas. PMID:25503231

  18. Catalytic enantioselective synthesis of quaternary carbon stereocentres.

    PubMed

    Quasdorf, Kyle W; Overman, Larry E

    2014-12-11

    Quaternary carbon stereocentres-carbon atoms to which four distinct carbon substituents are attached-are common features of molecules found in nature. However, before recent advances in chemical catalysis, there were few methods of constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for the synthesis of single stereoisomers of such organic molecules. This progress now makes it possible to incorporate quaternary stereocentres selectively in many organic molecules that are useful in medicine, agriculture and potentially other areas such as flavouring, fragrances and materials. PMID:25503231

  19. Fission: The first 50 years

    SciTech Connect

    Vandenbosch, R.

    1989-01-01

    The possibility of fission had been largely unanticipated prior to its discovery in 1938. This process, with its dramatically large energy release and its formation of previously unknown nuclides, immediately captured the imagination of the scientific community. Both theoretical and experimental developments occurred at a rapid pace. I will begin my discussion of fission with the far-reaching paper of Bohr and Wheeler, who in little more than half a year laid out a framework for understanding many features of the fission process. I will then turn to our current understanding of a number of aspects of fission. One of these is the pronounced tendency of many nuclear species to fission asymmetrically. In fact, the discovery of fission was based on the identification of barium isotopes produced in asymmetric fission. The dramatic changes in the preferred mass division and kinetic energy release with the addition of only a few neutrons to the spontaneously fissioning Fermium isotopes will be emphasized. The problem of the dynamics of saddle to scission will be discussed---this is one aspect of fission for which we do not have all the answers. Another dynamical effect to be discussed is the apparent failure of transition state theory at high excitation energies. The role of single particle (shell) effects in enriching the structure if the potential energy surface will be explored. Spontaneously fissioning isomers and intermediate structure resonances will be discussed. The recognition that short-lived fission isomers are superdeformed shape isomers has been followed by the recent observation of superdeformed shape isomers in the rare earth region. 18 refs., 3 figs.

  20. 40 CFR 721.10569 - Tricyclic quaternary amine salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tricyclic quaternary amine salt... Specific Chemical Substances § 721.10569 Tricyclic quaternary amine salt (generic). (a) Chemical substance... tricyclic quaternary amine salt (PMN P-08-471) is subject to reporting under this section for...

  1. 40 CFR 721.10569 - Tricyclic quaternary amine salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tricyclic quaternary amine salt... Specific Chemical Substances § 721.10569 Tricyclic quaternary amine salt (generic). (a) Chemical substance... tricyclic quaternary amine salt (PMN P-08-471) is subject to reporting under this section for...

  2. Fission throughout the periodic table

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs.

  3. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  4. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  5. Fission Particle Emission Multiplicity Simulation

    Energy Science and Technology Software Center (ESTSC)

    2006-09-27

    Simulates discrete neutron and gamma-ray emission from the fission of heavy nuclei that is either spontaneous or neutron induced. This is a function library that encapsulates the fission physics and is intended to be called Monte Carlo transport code.

  6. Modern Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Based on Project Orion, an interplanetary vehicle using pulsed fission propulsion would incorporate modern technologies for momentum transfer, thermal management, and habitation design.

  7. A threshold for dissipative fission

    SciTech Connect

    Thoennessen, M.; Bertsch, G.F.

    1993-09-21

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and {gamma}-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T{sub thresh} to the (temperature-dependent) fission barrier height E{sub Bar}(T). The statistical model reproduces the data for T{sub thresh}/E{sub Bar}(T) < 0.26 {plus_minus} 0.05, but underpredicts the multiplicities at higher T{sub thresh}/E{sub Bar}(T) independent of mass and fissility of the systems.

  8. Nuclear Fission Research at IRMM

    SciTech Connect

    Hambsch, Franz-Josef

    2005-05-24

    The Institute for Reference Materials and Measurements (IRMM) will celebrate its 45th anniversary in 2005. With its 150-MeV Geel Electron Linear Accelerator (GELINA) and 7-MV Van de Graaff accelerator as multi-purpose neutron sources, it served the nuclear physics community for this period.The research in the field of nuclear fission was focused in recent years on both the measurement and calculation of fission cross sections, and the measurement of fission fragment properties.Fission cross sections were determined for 233Pa and 234U; the fission process was studied in the resolved resonance region of 239Pu(n,f) and for 251Cf(nth,f). These measurements derive their interest from accelerator driven systems, the thorium fuel cycle, high temperature reactors, safety issues of current reactors, and basic physics. The measurements are supported by several modeling efforts that aim at improving model codes and nuclear data evaluation.

  9. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  10. Enantioselective Construction of Remote Quaternary Stereocenters

    PubMed Central

    Mei, Tian-Sheng; Patel, Harshkumar H.; Sigman, Matthew S.

    2014-01-01

    Summary Molecules containing all-carbon quaternary stereocenters – carbon atoms bonded to four distinct carbon substituents – are prevalent in Nature. However, the construction of such compounds in an enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In particular, methods for forging quaternary stereocenters that are remote from other functional groups are underdeveloped. Herein we report a catalytic and enantioselective intermolecular Heck-type reaction of trisubstituted-alkenyl alcohols with aryl boronic acids. The reported method allows direct access to quaternary all-carbon-substituted β-, γ-, δ-, ε- or ζ aryl carbonyl compounds, as the unsaturation of the alkene is relayed to the alcohol resulting in the formation of a carbonyl group. The scope of the process also includes incorporation of pre-existing stereocenters along the alkyl chain, which links the alkene and the alcohol, wherein the stereocenter is preserved. The described method is flexible, allowing access to diverse building blocks containing an enantiomerically enriched, quaternary center. PMID:24717439

  11. Enantioselective construction of remote quaternary stereocentres

    NASA Astrophysics Data System (ADS)

    Mei, Tian-Sheng; Patel, Harshkumar H.; Sigman, Matthew S.

    2014-04-01

    Small molecules that contain all-carbon quaternary stereocentres--carbon atoms bonded to four distinct carbon substituents--are found in many secondary metabolites and some pharmaceutical agents. The construction of such compounds in an enantioselective fashion remains a long-standing challenge to synthetic organic chemists. In particular, methods for synthesizing quaternary stereocentres that are remote from other functional groups are underdeveloped. Here we report a catalytic and enantioselective intermolecular Heck-type reaction of trisubstituted-alkenyl alcohols with aryl boronic acids. This method provides direct access to quaternary all-carbon-substituted β-, γ-, δ-, ɛ- or ζ-aryl carbonyl compounds, because the unsaturation of the alkene is relayed to the alcohol, resulting in the formation of a carbonyl group. The scope of the process also includes incorporation of pre-existing stereocentres along the alkyl chain, which links the alkene and the alcohol, in which the stereocentre is preserved. The method described allows access to diverse molecular building blocks containing an enantiomerically enriched quaternary centre.

  12. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, .

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttg ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / ?. Mi?icu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselsk. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of [symbol]Pu / Y. V. Pyatkov. Comparative study of the ternary particle emission in [symbol] and [symbol]Cm(SF) / S. Vermote ... [et al.] -- Structure of fission fragments and neurton rich nuclei / manifestation of average y-ray multiplicity in the fission modes of [symbol]Cf(sf) and the proton-induced fission of [symbol]Pa, [symbol]Np, and [symbol]Am / M. Bereov ... [et al.]. Yields of correlated fragment pairs and average gamma-ray multiplicities and energies in [symbol]Pb([symbol]O, f) / A. Bogachev ... [et al.]. Recent experiments at gammasphere intended to the study of [symbol]Cf spontaneous fission / A. V. Daniel ... [et al.]. Nuclear structure studies of microsecond isomers near A =100 / J. Genevey ... [et al.]. Covariant density functional theory: isospin properties of nuclei far from stability / G. A. Lalazisis. Relativistic mean-field description of light nuclei / J. Leja and . Gmuca. Energy nucleon spectra from reactions at intermediate energies / O. Grudzevich ... [et al.] -- Developments in experimental techniques. Analysis, processing and visualization of multidimensional data using DaqProVis system / M. Morh? ... [et al.].

  13. Fission data by surrogate reactions

    NASA Astrophysics Data System (ADS)

    Hirose, Kentaro

    2014-09-01

    A project of the fission data measurement for actinides (fragment mass distribution, cross sections and neutron multiplicities) using multi-nucleon transfer reactions is running at Japan Atomic Energy Agency (JAEA). Actinide targets such as 238U and 232Th were irradiated with 18O beam and fission induced by a nucleon transfer was observed. The experiment was performed at the tandem accelerator facility of Japan Atomic Energy Agency. A target of 232Th (~ 150 μ g/cm2) and 238U (~ 80 μ g/cm2) deposited on a 100- μg/cm2 thick nickel foil was bombarded with 157.7 MeV 18O beam. The scattered projectile-like nuclei were detected by a segmented ΔE-E silicon telescope located at the forward angle with respect to the beam. The thicknesses of ΔE and E detector are 75 μm and 300 μm, respectively. From the scattered particle, the compound nucleus was identified. Fission fragments by multi-nucleon transfer fission were detected in coincidence using four multi-wire proportional counters (MWPCs) located at 45 and 135 degree with a distance of 224 mm from the target. Around the reaction chamber, 12 liquid scintillators were placed to detect the fission neutrons. Mass split of each fission event was determined using the mass and momentum conservation. We obtained the mass distributions for 239,240U, 239-242Np and 241-243Pu using the 238U target and for 232-234Th, 233-236Pa and 237U using the 232Th target. As well as the fission fragment mass distribution, fission cross sections by the surrogate ratio method and the fission neutron multiplicities will also be shown in the conference.

  14. Fission at intermediate nucleon energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2014-07-01

    In the present work Monte Carlo calculations of fission of actinides and pre- actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with different evaporation-fission codes, in particular GEMINI++ and ABLA07. Fission model parameters are adjusted on experimental (p, f) cross sections and used to predict (n, f) cross sections, in order to provide a theoretical support to the campaign of neutron cross section measurements at the n_TOF facility at CERN.

  15. Budding and fission of vesicles.

    PubMed

    Döbereiner, H G; Käs, J; Noppl, D; Sprenger, I; Sackmann, E

    1993-10-01

    We report on budding and fission of protein-free vesicles swollen from a natural lipid mixture of bovine brain sphingomyelins. Budding was induced by increasing the area-to-volume ratio through heating. Morphological changes were monitored by phase contrast microscopy and correlated with the thermal behavior of the bilayer by differential scanning calorimetry. Freeze fracture electron microscopy revealed that budding and fission are not restricted to giant vesicles but also occur on length scales relevant for cellular processes. We also observed osmotically induced budding and fission in mixtures of dimyristoyl phosphatidylcholine with cholesterol. We find that these shape transitions are driven by liquid/gel domain formation and/or coupling of the spontaneous curvature of the membrane to the local lipid composition. Our results provide evidence that coat proteins are not necessary for budding and fission of vesicles. The physics of the lipid bilayer is rich enough to explain the observed behavior. PMID:8274633

  16. Quantum Relaxation in Singlet Fission

    NASA Astrophysics Data System (ADS)

    Teichen, Paul; Eaves, Joel

    2013-03-01

    Singlet fission is a multielectron process in organic chromophores, where an initially excited singlet state decays into two independent triplets. First observed in organic semiconductors almost 40 years ago, the phenomenon may be a promising route for increasing yields in next-generation photovoltaics. Early theories that ignored quantum coherence between excited states were capable of explaining the fission process on nanosecond timescales, but recent observations of fission on sub picosecond timescales call several tenants of those theories into question. We present a theory of optical dephasing and decoherence in singlet fission, drawing on ideas from quantum information theory to establish conditions for decoherence and disentanglement between the relevant quantum states on the picosecond timescale.

  17. Fission of rotating fermium isotopes

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.

    2014-05-01

    In this paper we discuss the process of fission of even fermium isotopes, on the basis of their rotational states. The nuclear intrinsic vorticity and its coupling to the global rotation of the nucleus are used to simulate the interaction between the rotational motion and the pairing field, and lead to pairing quenching in the case of higher angular momentum states. The rotation leads to a decreasing of the fission barrier heights. The ingredients of the model—ground state fission barriers, pairing correlation energies and the cranking moments of inertia—are obtained within the self-consistent Hartree-Fock-Bogoliubov framework using the Skyrme \\text{Sk}{{\\text{M}}^{*}} energy density functional. Fission barriers and half-lives are estimated for spins I up to I = 16ℏ.

  18. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust-to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed.

  19. Superheavy nuclei and fission barriers

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  20. Fission Modes of Mercury Isotopes

    SciTech Connect

    Warda, M.; Staszczak, A.; Nazarewicz, Witold

    2012-01-01

    Background: Recent experiments on -delayed fission in the mercury-lead region and the discovery of asymmetric fission in 180Hg [A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)] have stimulated theoretical interest in the mechanism of fission in heavy nuclei.

    Purpose: We study fission modes and fusion valleys in 180Hg and 198Hg to reveal the role of shell effects in the prescission region and explain the experimentally observed fragment mass asymmetry and its variation with A.

    Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals.

    Results: The potential energy surfaces in multidimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180Hg and 198Hg. The asymmetric fission valleys well separated from fusion valleys associated with nearly spherical fragments are found in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.

    Conclusions: The energy density functionals SkM and D1S give a very consistent description of the fission process in 180Hg and 198Hg. We predict a transition from asymmetric fission in 180Hg toward a more symmetric distribution of fission fragments in 198Hg. For 180Hg, both models yield 100Ru/80Kr as the most probable split. For 198Hg, the most likely split is 108Ru/90Kr in HFB-D1S and 110Ru/88Kr in HFB-SkM .

  1. The Microscopic Theory of Fission

    SciTech Connect

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  2. Fission modes of mercury isotopes

    NASA Astrophysics Data System (ADS)

    Warda, M.; Staszczak, A.; Nazarewicz, W.

    2012-08-01

    Background: Recent experiments on β-delayed fission in the mercury-lead region and the discovery of asymmetric fission in 180Hg [A. N. Andreyev , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.252502 105, 252502 (2010)] have stimulated theoretical interest in the mechanism of fission in heavy nuclei.Purpose: We study fission modes and fusion valleys in 180Hg and 198Hg to reveal the role of shell effects in the prescission region and explain the experimentally observed fragment mass asymmetry and its variation with A.Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals.Results: The potential energy surfaces in multidimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180Hg and 198Hg. The asymmetric fission valleys—well separated from fusion valleys associated with nearly spherical fragments—are found in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.Conclusions: The energy density functionals SkM* and D1S give a very consistent description of the fission process in 180Hg and 198Hg. We predict a transition from asymmetric fission in 180Hg toward a more symmetric distribution of fission fragments in 198Hg. For 180Hg, both models yield 100Ru/80Kr as the most probable split. For 198Hg, the most likely split is 108Ru/90Kr in HFB-D1S and 110Ru/88Kr in HFB-SkM*.

  3. On Fission Products Transport Modeling

    SciTech Connect

    Honaiser, Eduardo

    2006-07-01

    Fission product transport in the piping system of primary circuits is an important area of the severe accident field. The fission product transport comprises all phenomena occurring from the nuclear core to the containment release site. Once released in the flow channels, fission products can condense on the piping walls, nucleate aerosols, which can agglomerate and/or deposit on the piping walls. This phenomenon occurs in a convective environment in a steam-hydrogen fluid composition. Several models were developed to calculate the transport of fission products in the primary circuits of nuclear reactors. Nevertheless, conclusive research regarding their accuracy is rare in the literature. Due to this gap in the literature some issues remain un-addressed or poorly addressed. This paper reports on the results of extensive use of FPTRAN, the fission product transport model of RELAP/SCDAPSI. These calculated results were compared with expected or experimental results. These comparisons show the major deficiencies in the modeling of the fission product transport model. A survey of other models also shows that these models poorly address these deficiencies. The issues needing improvement are related to the chemistry, aerosol nucleation phenomenon, and nucleation sensitivity to parameters such as the surface tension. A rational approach that can balance accuracy and computational time needs to be developed to deal with these issues. This paper proposes a set of measures capable of improving the modeling of fission product transport. These measures involve the execution of experiments; obtaining chemical properties of some species and improvements of the currently used models in the fission products transport codes. (author)

  4. The binary fission origin of the moon

    NASA Technical Reports Server (NTRS)

    Binder, Alan B.

    1986-01-01

    The major arguments for and against the binary fission model of lunar origin are reviewed. Unresolved problems include: (1) how the protoearth acquired sufficient angular velocity to fission, and (2) how the earth-moon system lost its excess angular momentum after fission. Despite these uncertainties, the compositional similarities between the earth's mantle and the bulk moon suggest that the fission model is worth considering. The proposed sequence of events in the formation of the moon by binary fission is given.

  5. [Quaternary prevention: containment as an ethical necessity].

    PubMed

    Martínez González, C; Riaño Galán, I; Sánchez Jacob, M; González de Dios, J

    2014-12-01

    The growing capacity of medicine to generate more iatrogenic events than ever, and the risk of unsustainability of health systems have led to new prevention concept: quaternary prevention aimed at restraining medicalization. Quaternary prevention is essential in the phenomenon called disease mongering, which could be translated as commercialization of disease. Encouraging this sort of prevention and halting the consequences of disease mongering requires the development of all the institutional potential for prevention, as well as all the personal willingness for restraint; it involves separating us from the unnecessary auspices of industry, being critical of our work, not being maleficent, respecting the principle of justice as managers of the limited public resources and making ourselves feel responsible for the social cost resulting from medical decisions. From this point of view, this work analyses neonatal screening, developments in the area of neonatology and primary health care. PMID:24907862

  6. RNA quaternary structure and global symmetry

    PubMed Central

    Jones, Christopher P.; Ferré-D'Amaré, Adrian R.

    2015-01-01

    Many proteins associate into symmetric multisubunit complexes. Structural analyses suggested that, in contrast, virtually all RNAs with complex three-dimensional structures function as asymmetric monomers. Recent crystal structures revealed that several biological RNAs exhibit global symmetry at the level of their tertiary and quaternary structures. Here, we survey known examples of global RNA symmetry, including the true quaternary symmetry of the bacteriophage ϕ29 prohead RNA (pRNA), and the internal pseudosymmetry of the single-chain flavin mononucleotide (FMN), glycine, and cyclic diadenosine monophosphate (c-di-AMP) riboswitches. For these RNAs, global symmetry stabilizes the RNA fold, coordinates ligand-RNA interactions, and facilitates association with symmetric binding partners. PMID:25778613

  7. Aleksis Dreimanis: a legacy in Quaternary science

    NASA Astrophysics Data System (ADS)

    Hicock, Stephen R.; Menzies, John

    2000-12-01

    Aleksis Dreimanis was born and raised in Latvia. His interest in Quaternary and glacial geology began early and developed into a career that has spanned 7 decades. At age 20 he published his first paper in glacial geology and soon after began teaching at the University of Latvia. Teaching and research were interrupted by World War II but resumed at the Baltic University (Pinneberg, Germany), then at the University of Western Ontario where he has been ever since. Throughout his career, Dreimanis has successfully balanced the twin disciplines of Quaternary history and glacial geology. He was among the first to study quantitatively the relationship between till lithology and till formation and to study how glacial transport and dynamics affect till texture and deformation. With co-workers he developed the well-known stratigraphic scheme of the last glaciation in the Great Lakes region of North America. Aleksis became world-renowned through his committee work, especially as President of the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits. His diplomacy, enthusiasm, and passion for his subject have inspired students and colleagues around the globe and resulted in remarkable international dialogue, cooperation, and consensus. Professor Aleksis Dreimanis is an honest scientist, a gentleman, and a true scholar who has left a rich legacy for future Quaternarists.

  8. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  9. 40Ar/39Ar dating of Quaternary feldspar: examples from the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Pringle, M.S.; McWilliams, M.; Houghton, B.F.; Lanphere, M.A.; Wilson, C.J.N.

    1992-01-01

    Using a continuous laser and resistance furnace, we have measured ages on Quaternary plagioclase with an absolute precision of about ??30 ka and on Quaternary sanidine with a relative precision of better than 1%. Such precision was achieved by using low-temperature heating steps to remove much of the nonradiogenic argon contamination. Plagioclase is one of the most common mineral phases in volcanic rocks; thus, these procedures will be widely applicable to many problems for which precise radiometric age control has not been available. We studied plagioclase and plagioclase-sanidine concentrates from the oldest and the three largest silicic ash-flow deposits of the Taupo Volcanic Zone, New Zealand, one of the world's largest and most active volcanic systems. The results are in close agreement with new magnetostratigraphic data, suggesting that existing fission-track age determinations significantly underestimate the age of older units, and shift the inception of Taupo Vaolcanic Zone volcanism back to at least 1600 ka. -from Authors

  10. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  11. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  12. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  13. Ternary fission of superheavy elements

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, M.; Vijayaraghavan, K. R.; Manimaran, K.

    2016-01-01

    Ternary fission of superheavy nuclei is studied within the three-cluster model potential energy surfaces (PESs). Due to shell effects, the stability of superheavy nuclei has been predicted to be associated with Z =114 , 120, and 126 for protons and N =184 for neutrons. Taking some representative nuclei we have extended the ternary fission studies to superheavy nuclei. We adopted two minimization procedures to minimize the potential and considered different arrangements of the fragments. The PES from one-dimensional minimization reveals a strong cluster region favoring various ternary breakups for an arrangement in which the lightest fragment is kept at the center. The PES obtained from two-dimensional minimization reveals strong preference of ternary fragmentation in the true ternary fission region. Though the dominant decay mode of superheavy nuclei is α decay, the α -accompanied ternary breakup is found to be a nonfavorable one. Further, the prominent ternary combinations are found to be associated with the neutron magic number.

  14. Singlet exciton fission in solution.

    PubMed

    Walker, Brian J; Musser, Andrew J; Beljonne, David; Friend, Richard H

    2013-12-01

    Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley-Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight. PMID:24256865

  15. Singlet exciton fission in solution

    NASA Astrophysics Data System (ADS)

    Walker, Brian J.; Musser, Andrew J.; Beljonne, David; Friend, Richard H.

    2013-12-01

    Singlet exciton fission, the spin-conserving process that produces two triplet excited states from one photoexcited singlet state, is a means to circumvent the Shockley-Queisser limit in single-junction solar cells. Although the process through which singlet fission occurs is not well characterized, some local order is thought to be necessary for intermolecular coupling. Here, we report a triplet yield of 200% and triplet formation rates approaching the diffusion limit in solutions of bis(triisopropylsilylethynyl (TIPS)) pentacene. We observe a transient bound excimer intermediate, formed by the collision of one photoexcited and one ground-state TIPS-pentacene molecule. The intermediate breaks up when the two triplets separate to each TIPS-pentacene molecule. This efficient system is a model for future singlet-fission materials and for disordered device components that produce cascades of excited states from sunlight.

  16. Late Quaternary history of southern Chesapeake Bay

    SciTech Connect

    Colman, S.M.; Hobbs, C.H. III; Halka, J.P.

    1985-01-01

    More than 700 km of high-resolution, seismic-reflection profiles and sidescan-sonar images provide new information about the late Quaternary history of southern Chesapeake Bay. Sidescan-sonar images show that, excluding the nearshore zone, most of the bay bottom has a monotonously smooth surface, except that sand waves, ripples, and other bedforms occur in local areas affected by tidal currents. Seismic-reflection data show that the Quaternary stratigraphy of the southern part of the Bay is related primarily to the last cycle of sea-level change. The Quaternary section overlies an erosion surface cut deeply into gently seaward-dipping marine beds of Neogene age. Fluvial paleochannels, related to the last major low sea-level stand, are characterized by as much as 55 m of incision and by thin, irregular, terrace and channel-bottom deposits. Marine and estuarine deposits related to the Holocene transgression partially or fully bury the fluvial valleys and overlie the interfluves. A prominent feature of the Bay-mouth area is a wedge of sediment that has prograded into the Bay from the inner shelf. The common assumption--that the Chesapeake Bay is the drowned valley of the Pleistocene Susquehanna River--is only partially valid for the southern part of the Bay. The Bay mouth area, in general, is relatively young. The axial channel of the Bay is a modern tidal channel that is actively eroding Tertiary deposits and migrating toward the south and west; it is unrelated to older fluvial channels. Also, the positions of the modern axial channel and the last two fluvial paleochannels indicate long-term southward migration of the Bay mouth.

  17. Spontaneous fission of rutherfordium isotopes

    SciTech Connect

    Somerville, L.P.; Nurmia, M.J.; Nitschke, J.M.; Ghiorso, A.; Hulet, E.K.; Lougheed, R.W.

    1985-05-01

    We have found several new spontaneous fission (SF) activities and suggested assignments for some of them to rutherfordium (element 104) isotopes. Their half-lives and production cross sections have been measured by collecting recoils on a moving nickel or steel tape and transporting them past stationary mica track detectors at known velocities. The following tentative assignments are based on several cross bombardments and comparisons between experimental and calculated production cross sections: /sup 256/Rf(9 +- 2 ms), /sup 257/Rf(3.8 +- 0.8 s, 14 +- 9% SF), /sup 258/Rf(13 +- 3 ms), /sup 259/Rf(3.4 +- 1.7 s, 9 +- 3% SF), /sup 260/Rf(21 +- 1 ms), and /sup 262/Rf(47 +- 5 ms). Presently we are unable to assign several other new spontaneous fission activities with half-lives of approx.15 ms, approx.22 ms, approx.100 ms (Z<104), approx.1.6 s, approx.5 s, approx.5 s, approx.30 s, and approx.47 s. Contrary to other observations, we have not found any indication for an 80-ms spontaneous fission activity, earlier credited to the spontaneous fission decay of /sup 260/Rf, in reactions in which we expected to produce this isotope. Our measurements support a shift in the spontaneous fission half-life systematics at element 104, first proposed by Flerov and Oganessian et al. and later predicted by Randrup et al. and Baran et al. and attributed to the disappearance of the second hump of the double-humped fission barrier and a weakening of the 152-neutron subshell.

  18. Quaternary vertebrates from Greenland: A review

    NASA Astrophysics Data System (ADS)

    Bennike, Ole

    Remains of fishes, birds and mammals are rarely reported from Quaternary deposits in Greenland. The oldest remains come from Late Pliocene and Early Pleistocene deposits and comprise Atlantic cod, hare, rabbit and ringed seal. Interglacial and interstadial deposits have yielded remains of cod, little auk, collared lemming, ringed seal, reindeer and bowhead whale. Early and Mid-Holocene finds include capelin, polar cod, red fish, sculpin, three-spined stickleback, Lapland longspur, Arctic hare, collared lemming, wolf, walrus, ringed seal, reindeer and bowhead whale. It is considered unlikely that vertebrates could survive in Greenland during the peak of the last glaciation, but many species had probably already immigrated in the Early Holocene.

  19. Ballistic piston fissioning plasma experiment.

    NASA Technical Reports Server (NTRS)

    Miller, B. E.; Schneider, R. T.; Thom, K.; Lalos, G. T.

    1971-01-01

    The production of fissioning uranium plasma samples such that the fission fragment stopping distance is less than the dimensions of the plasma is approached by using a ballistic piston device for the compression of uranium hexafluoride. The experimental apparatus is described. At room temperature the gun can be loaded up to 100 torr UF6 partial pressure, but at compression a thousand fold increase of pressure can be obtained at a particle density on the order of 10 to the 19th power per cu cm. Limited spectral studies of UF6 were performed while obtaining the pressure-volume data. The results obtained and their implications are discussed.

  20. Velocity fluctuations of fission fragments

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Carmona, Belén Martínez; Martínez, Jose L. Muñoz

    2016-02-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  1. Search for Singlet Fission Chromophores

    SciTech Connect

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  2. Neutronics for critical fission reactors and subcritical fission in hybrids

    SciTech Connect

    Salvatores, Massimo

    2012-06-19

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  3. Neutronics for critical fission reactors and subcritical fission in hybrids

    NASA Astrophysics Data System (ADS)

    Salvatores, Massimo

    2012-06-01

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  4. Spontaneous fission properties of the heavy elements: Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1988-11-11

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of SVYFm, SVYNo, SVZMd, SWMd, SW(104), and SWSNo. All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussian's, the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclide, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in TSSn. 21 refs., 7 figs., 1 tab.

  5. Fission properties of the heaviest elements

    SciTech Connect

    Moller, P. |||; Nix, R.

    1995-03-01

    The authors discuss fission properties of the heaviest elements. In particular they focus on stability with respect to spontaneous fission and on the prospects of extending the region of known nuclei beyond the peninsula of currently known nuclides.

  6. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  7. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  8. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  9. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  10. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  11. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  12. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compound. 721.655 Section 721.655 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical... as an ethoxylated alkyl quaternary ammonium compound (PMN P-96-573) is subject to reporting...

  13. 40 CFR 721.10582 - Quaternary ammonium compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compound (generic... Specific Chemical Substances 721.10582 Quaternary ammonium compound (generic). (a) Chemical substance and... ammonium compound (PMN P-10-571) is subject to reporting under this section for the significant new...

  14. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances § 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  15. 40 CFR 721.10511 - Quaternary ammonium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salts (generic... Specific Chemical Substances § 721.10511 Quaternary ammonium salts (generic). (a) Chemical substance and... ammonium salts (PMNs P-07-320, P-07-321, P-07-322, P-07-323, and P-07-324) are subject to reporting...

  16. 40 CFR 721.4467 - Quaternary ammonium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium hydroxide. 721.4467 Section 721.4467 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4467 Quaternary...

  17. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethoxylated alkyl quaternary ammonium...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a)...

  18. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium alkyltherpropyl... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides....

  19. Superfluid fission dynamics with microscopic approaches

    NASA Astrophysics Data System (ADS)

    Simenel, C.; Scamps, G.; Lacroix, D.; Umar, A. S.

    2016-01-01

    Recent progresses in the description of the latter stage of nuclear fission are reported. Dynamical effects during the descent of the potential towards scission and in the formation of the fission fragments are studied with the time-dependent Hartree-Fock approach with dynamical pairing correlations at the BCS level. In particular, this approach is used to compute the final kinetic energy of the fission fragments. Comparison with experimental data on the fission of 258Fm are made.

  20. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  1. Perchlorate removal by quaternary amine modified reed.

    PubMed

    Baidas, Salem; Gao, Baoyu; Meng, Xiaoguang

    2011-05-15

    We report a kinetic and equilibrium study of perchlorate adsorption onto giant reed modified by quaternary amine (QA) functional groups in batch reactors. The effect of pH, contact time, and initial perchlorate concentration on removal was investigated. The adsorption capacity for perchlorate was 169 mg/g on the modified reed (MR) particles ranging in size from 100 to 250 μm. The isotherm results were best described by the combined Langmuir-Freundlich equation. Optimum removal occurred in the pH range 3.5-7.0 and was reduced at pH>8.5. The maximum adsorption rate occurred within the first minute of contact and equilibrium was achieved within 7 min. A three-stage adsorption occurred. In stage 1, adsorption was rapid and was controlled by boundary layer diffusion. In stage 2, adsorption was gradual and was controlled by both boundary layer and intraparticle diffusion. In stage 3, adsorption reached a plateau. The kinetic results fit well with a pseudo second-order equation. The adsorption mechanism was explored using Zeta potential analysis and Raman spectroscopy. Zeta potential measurements showed that reed modification enhanced perchlorate removal by increasing the surface potential. Electrostatic attraction between perchlorate anion and positively charged quaternary amine groups on the MR was the primary mechanism responsible for perchlorate removal. PMID:21377271

  2. Photocurable, Antimicrobial Quaternary Ammonium-modified Nanosilica.

    PubMed

    Makvandi, P; Ghaemy, M; Ghadiri, A A; Mohseni, M

    2015-10-01

    In this study, novel, quaternary ammonium methacrylate-modified silica nanoparticles (QMSNs) were synthesized for the first time and proposed as possible antimicrobial particles for free-radical, photocurable monomers. Such monomers have the potential to polymerize with other methacrylate monomers and create antimicrobial polymers. The silica nanoparticles were modified by quaternary ammonium methacrylate functionality and incorporated at 0 to 10 wt% into a 1:1 (by mass) bisphenol A glycerolate dimethacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) resin. Thermal stability of the pristine and modified silica nanoparticles was examined by thermogravimetric analyses. Atomic force microscopy was used to investigate the size distribution and topography of the nanoparticles. For evaluation of the mechanical properties of the samples, flexural strength was measured using a 3-point bending test method. The flexural strength of the composites containing QMSNs increased with increasing modified silica content. The antimicrobial activity of samples was investigated against some standard microorganisms (Streptococcus mutans, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans), and then cytotoxicity and viability were quantified. Incorporation of 2.5% to 10% (by mass) QMSNs into BisGMA/TEGDMA demonstrated antimicrobial activity, but ≥5 wt% significantly reduced cell viability. PMID:26276372

  3. Late Quaternary climate change shapes island biodiversity.

    PubMed

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics. PMID:27027291

  4. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  5. Multimodal fission and neutron evaporation

    SciTech Connect

    Brosa, U.

    1988-10-01

    The average multiplicities nu-bar(A) of prompt neutrons emitted in the spontaneous fission of /sup 252/Cf and /sup 258/Fm are derived. Two new features are predicted: A simple sawtooth for /sup 258/Fm and a triple one for /sup 252/Cf. Experiments to check these predictions should be feasible now.

  6. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  7. A fission fragment detector for correlated fission output studies

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Tovesson, F.; Couture, A.; Duke, D. L.; Kleinrath, V.; Meharchand, R.; Meierbachtol, K.; O'Donnell, J. M.; Perdue, B.; Richman, D.; Shields, D.

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  8. Bright fission: singlet fission into a pair of emitting states.

    PubMed

    Casanova, David

    2015-06-01

    This paper reintroduces and explores the generation of two bright states from a single photon via a singlet fission mechanism in organic materials. This particular photophysical process is labeled here as bright fission (BF). The central part of the study is devoted to set the theoretical foundations of BF by discussing possible electronic mechanisms, the role of different excited states with various physical nature, the presence of competing deactivation channels, and the possible requirements for the BF viability. In a second part, some of the properties related to BF are computationally explored in anthracene. The analysis of computed high-lying excited states identifies several optical transitions as good candidates to trigger BF in anthracene. The approximation of excitonic couplings of these high energy levels to other electronic states within the same energy range suggests possible paths to populate electronic configurations potentially able to split in two independent spin singlets, i.e. singlet-singlet states. The study also explores the electronic structure of the energetically lowest singlet-singlet states in anthracene dimers and discusses the presence of charge transfer configurations and their relation to the singlet-singlet manifold. The computational results suggest fast relaxation to the lowest singlet-singlet state, from which the excitonic fission may occur. All in all, the present work aims at motivating to pursue further efforts in the study of the BF process in organic materials. PMID:26575561

  9. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-29

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the {sup 252}Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the {sup 252}Cf(SF) reaction with data available from literature.

  10. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability of a SAFE-powered electric propulsion system to outer planet science missions will also be discussed.

  11. On Quaternary glaciations, observations and theories

    NASA Astrophysics Data System (ADS)

    Paillard, D.

    2015-07-01

    In a recent paper, Paillard (2015) presents a rapid overview of both major theoretical and empirical studies of Pleistocene glaciations. In particular, it is explained how, over the last 150 years, astronomical theories were confronted to observational constraints and why the "100-kyr problem" is still the major unsolved issue of Quaternary ice ages. This paper also discusses the main alternative theory, which involves changes in atmospheric carbon dioxide concentration. It is then argued that a synthesis of both theories would better account for empirical evidences, as well as for our current knowledge of climate physics. Indeed, if there is no doubt that ice ages are "paced" by the astronomy as evidenced in Hays et al. (1976), the cause of terminations, and therefore the dynamics of the 100-kyr cycles, appears to be closely linked to Southern Ocean climate and atmospheric pCO2.

  12. Quaternary geology of Avery Island, Louisiana

    SciTech Connect

    Autin, W.J.; McCulloh, R.P.; Davison, A.T.

    1986-09-01

    Avery Island, one of the Five Islands salt domes of south-central Louisiana, is a piercement-type dome that has been uplifted from several kilometers' depth. It is nearly circular in plan with a maximum elevation approximately 50 m above the surrounding coastal marsh. Dissection has produced a terrain of gullies and steep slopes. The features identified indicate a complex geologic history for Avery Island. Deposition of late Pleistocene sediments in a low-relief alluvial plain and subsequent soil development predate domal uplift. The stratigraphy of loess and colluvial silts indicates the island was emergent during loess depositions. The degree of dissection, distribution of colluvium, and shearing of Quaternary sediments reflects continual uplift after loess deposition.

  13. Antifungal activity of gemini quaternary ammonium salts.

    PubMed

    Obłąk, Ewa; Piecuch, Agata; Krasowska, Anna; Luczyński, Jacek

    2013-12-14

    A series of gemini quaternary ammonium chlorides and bromides with various alkyl chain and spacer lengths was synthesized. The most active compounds against fungi were chlorides with 10 carbon atoms within the hydrophobic chain. Among these compounds were few with no hemolytic activity at minimal inhibitory concentrations. None of the tested compounds were cytotoxic and mutagenic. Cationic gemini surfactants poorly reduced the adhesion of microorganisms to the polystyrene plate, but inhibited the filamentation of Candida albicans. One of the tested compounds eradicated C. albicans and Rodotorula mucilaginosa biofilm, what could be important in overcoming catheter-associated infections. It was also shown that gemini surfactants enhanced the sensitivity of C. albicans to azoles and polyenes, thus they might be potentially used in combined therapy against fungi. PMID:23827647

  14. Suggested terminology for Quaternary dating methods

    USGS Publications Warehouse

    Colman, Steven M.; Pierce, K.L.; Birkeland, P.W.

    1987-01-01

    Classification of Quaternary dating methods should be based on the level of quantitative information and the degree of confidence contained in the age estimates produced by the dating methods. We recommend the use of the terms numerical-age, calibrated-age, relative-age, and correlated-age to describe these levels. We also classify dating methods by type into sideral, isotopic, radiogenic, chemical and biological, geomorphic, and correlation methods. The use of "absolute" is inappropriate for most dating methods, and should be replaced by "numerical." The use of "date" should be minimized in favor of "age" or "age estimate." We recommend use of the abbreviations ka and Ma for most ages; calender dates can be used where appropriate and yr B.P. can be used for radiocarbon ages. ?? 1987.

  15. Analysis and prediction of protein quaternary structure.

    PubMed

    Poupon, Anne; Janin, Joel

    2010-01-01

    The quaternary structure (QS) of a protein is determined by measuring its molecular weight in solution. The data have to be extracted from the literature, and they may be missing even for proteins that have a crystal structure reported in the Protein Data Bank (PDB). The PDB and other databases derived from it report QS information that either was obtained from the depositors or is based on an analysis of the contacts between polypeptide chains in the crystal, and this frequently differs from the QS determined in solution.The QS of a protein can be predicted from its sequence using either homology or threading methods. However, a majority of the proteins with less than 30% sequence identity have different QSs. A model of the QS can also be derived by docking the subunits when their 3D structure is independently known, but the model is likely to be incorrect if large conformation changes take place when the oligomer assembles. PMID:20221929

  16. The Plio Quaternary Ambon arc, Eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Honthaas, Christian; Maury, René C.; Priadi, Bambang; Bellon, Hervé; Cotten, Joseph

    1999-01-01

    Plio-Quaternary lavas and granites have been collected from Ambon, Seram, Kelang, Haruku, Saparua, Ambelau and Banda Api islands, Eastern Indonesia. They include low-K calc-alkaline basalts, andesites, dacites and rhyolites and high-K calc-alkaline andesites, dacites, rhyolites and granites. All these rocks present the usual chemical characteristics of island-arc magmas. The high-K suite of Ambon is mostly represented by cordierite-bearing dacites (known as ambonites) and granites. Low-K and high-K magmas were emplaced in neighbouring islands or even in the same island (Ambon), often concomitantly, during two magmatic pulses at 5-3.2 Ma and 2.3-1 Ma, respectively. We propose that the low-K suite results from the evolution of basaltic magmas derived from mantle melting above the Western Irian Jaya plate which subducts along the Seram trough. Intermediate and acidic rocks of the high-K suite (e.g. ambonites) are thought to derive from low-K mafic magmas through massive assimilation of the Seram-Ambon continental crust, as originally proposed by Van Bemmelen in 1949. The timing of magmatic events and the geochemical features of the studied lavas are clearly different from those of the southern part of the Banda arc, in which the low-K suite is lacking. In agreement with earlier seismic evidence for two different slabs subducting beneath the Seram-Ambon continental block and beneath the southern Banda arc (from Wetar to Manuk), respectively, we propose to recognise a new Plio-Quaternary island arc, i.e. the Ambon arc, extending west-east from Ambelau to the Banda Archipelago active low-K volcanoes through Kelang, southwestern Seram, Ambon, Haruku and Saparua.

  17. Late Quaternary temperature change velocity in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Correa-Metrio, A.; Lozano, S.; Sosa-Nájera, S.; Bush, M. B.

    2013-05-01

    Quaternary climate has been highly variable, and yet few quantitative continental reconstructions are available for tropical areas. Quantitative records of temperature change during the Quaternary are especially relevant for putting modern climate change into a historic context. Within this perspective, two aspects are of singular relevance: i) Identifying and quantifying past climatic variability, and ii) Providing a means to estimate the seed at which climate change happened in the past. Here we show temperature reconstructions and temperature change velocity calculations for two locations in northern tropical America. Temperature reconstruction was based on two sedimentary records form Lake Chalco (30,000 years), central Mexican highlands, and Lake Petén-Itzá, Guatemalan lowlands (86,000 years). Temperature reconstruction was based on the analysis of fossil pollen on the light of pollen-temperature transfer functions. These functions were calibrated through an extensive survey of modern pollen samples covering an elevational gradient from 0 to 4,218 m asl. Derived temperature profiles show a parallel long-term trend and a similar cooling of approximately 5 oC during the Last Glacial Maximum in the lowlands and highlands of Mexico and Guatemala. Using a digital elevation model, we ere able to reconstruct the velocity at which isotherms displaced to produce the observed temperature anomalies. Spatial velocities of temperature change in the studied areas were at least four times slower than values reported for the last 50 years, but also at least twice as fast as those obtained from recent models. This study demonstrates that modern temperature change has no precedent within the last 86,000 years, but also that tropical climate has been more variable than it has been assumed to date.

  18. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts

    PubMed Central

    Xue, Yan; Xiao, Huining; Zhang, Yi

    2015-01-01

    Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the art of antimicrobial polymers with quaternary ammonium/phosphonium salts. In particular, it discusses the structure and synthesis method, mechanisms of antimicrobial action, and the comparison of antimicrobial performance between these two kinds of polymers. PMID:25667977

  19. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  20. Fission fusion hybrids- recent progress

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  1. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  2. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought. Rather, during the Quaternary period, they occur nearly three times as often as full polarity reversals. I will address analytical issues, including the size and consistency of system blanks, that have led to the recognition of minor (1%) discrepencies between the 40Ar/39Ar age for a particular reversal or excursion and the best astrochronologic estimates from ODP sediment cores. For example, re-analysis of lava flows from Haleakala volcano, Maui that record in detail the Matuyama-Brunhes polarity reversal have been undertaken with blanks an order of magntitude smaller and more stable than was common a decade ago. Using the modern astrochronologic calibration of 28.201 Ma for the age of the Fish Canyon sanidine standard, results thus far yield an 40Ar/39Ar age of 772 × 11 ka for the reversal that is identical to the most precise and accurate astrochronologic age of 773 × 2 ka for this reversal from ODP cores. Similarly, new dating of sanidine in the Cerro Santa Rosa I rhyolite dome, New Mexico reveals an age of 932 × 5 ka for the excursion it records, in perfect agreement with astrochronologically dated ODP core records. Work underway aims at refining the 40Ar/39Ar ages that underpin the entire GITS by further eliminating the bias between the radioisotopic and astrochronologically determined ages for several reversals and excursions.

  3. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    NASA Technical Reports Server (NTRS)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  4. Statistical model analysis of local structure of quaternary sphalerite crystals

    NASA Astrophysics Data System (ADS)

    Robouch, B. V.; Marcelli, A.; Guidi, M. Cestelli; Kisiel, A.; Sheregii, E. M.; Polit, J.; Cebulski, J.; Piccinini, M.; Mycielski, A.; Ivanov-Omskii, V. I.; Sciesiñska, E.; Sciesiñski, J.; Burattini, E.

    2007-02-01

    At the 2004 Ural International Winter School, we introduced the statistical strained tetrahedron model and discussed ternary tetrahedron structured crystals. The model allows one to interpret x-ray absorption fine structure (EXAFS) data and extract quantitative information on ion site occupation preferences and on the size and shape of each elemental constituent of the configuration tetrahedra. Here we extend the model to cover quaternary sphalerite crystal structures. We discuss the two topologically different quaternary sphalerite systems: the pseudo-balanced A1-xBxYyZ1-y (2:2 cation:anion ratio), and the unbalanced AxBx'C1-x-x'Z or AXyYy'Z1-y-y' (3:1 or 1:3 cation:anion ratios) truly quaternary alloy systems. These structural differences cause preference values to vary with the relative contents in pseudo-quaternaries but to remain constant in truly quaternary compounds. We give equations to determine preference coefficient values from EXAFS or phonon spectra and to extract nearest-neighbor inter-ion distances by EXAFS spectroscopy. The procedure is illustrated and tested on CdMnSeTe, GaInAsSb, and ZnCdHgTe quaternary alloys.

  5. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  6. Fission-product retention in HTGR fuels

    SciTech Connect

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  7. Monte carlo sampling of fission multiplicity.

    SciTech Connect

    Hendricks, J. S.

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  8. Experimental investigation into Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Kuhn, Nikolaus; Yair, Aaron; Bryan, Rorke; Schwanghart, Wolfgang

    2010-05-01

    Badland morphology is commonly linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. In this study, the precipitation characteristics that are critical for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel are investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Currently, the geomorphic development in the Dinosaur badlands is characterized by weathering/supply limited conditions, leading to slope retreat independent of lithology. In the Negev, transport limited conditions cause frequent runoff discontinuity, creating a pattern of areas dominated by erosion or deposition. The results of the weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring and summer rainfall and erosion determine the rate of slope retreat in the Dinosaur Badlands. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a sediment sink. The experiments illustrate that the badland slopes experienced an auto-stabilization during the Quaternary in the Zin Valley. In the Dinosaur Badlands Holocene climatic variations have not caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. In their current state, both badland slope systems appear to be fairly stable against climate change in the range of those occurring during the Holocene. However, the stability is achieved in different ways. In the Dinosaur Badlands, weathering rates are low compared to erosion capacity, maintaining continuous evacuation of sediment from slopes to the flood planes of the Red Deer River system. Only a very pronounced contrast between winter weathering and drier summers would generate a colluvium and thus change slope hydrology. In the Zin Valley the development of a thick colluvium at the foot of the slopes has increased infiltration capacity, reducing runoff and sediment yield into the floodplain. Here, only an increase in rainfall magnitude would improve runoff continuity and induce the erosion of the colluvium. This would in turn reduce infiltration capacity and thus initiate a positive feedback on runoff and sediment yield into the Zin River. Overall, Holocene climate change appears to be insufficient to change the geomorphic development in both badlands. However, this stability is achieved not despite of climate, but because of the specific history of geomorphic development. In addition, the combination of erosion and weathering experiments with numerical modeling demonstrates the versatility of Experimental Geomorphology in landscape evolution studies.

  9. Theoretical Description of the Fission Process

    SciTech Connect

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  10. FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS

    DOEpatents

    Moore, R.H.

    1960-05-10

    The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.

  11. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission

    PubMed Central

    Sundborger, Anna C.; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E.; Schmid, Sandra L.; Frolov, Vadim A.

    2015-01-01

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate1,2, characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection1-3. Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analyzed how the GTPase cycle of dynamin, the prototypical membrane fission catalyst4-6, is directly coupled to membrane remodeling. We used intra-molecular chemical cross-linking to stabilize dynamin in its GDP•AlF4--bound transition-state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fueled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction7-8, the force bimodality might constitute a general paradigm for leakage-free membrane remodeling. PMID:26123023

  12. METHOD FOR SEPARATING PLUTONIUM AND FISSION PRODUCTS EMPLOYING AN OXIDE AS A CARRIER FOR FISSION PRODUCTS

    DOEpatents

    Davies, T.H.

    1961-07-18

    Carrier precipitation processes for separating plutonium values from uranium fission products are described. Silicon dioxide or titanium dioxide in a finely divided state is added to an acidic aqueous solution containing hexavalent plutonium ions together with ions of uranium fission products. The supernatant solution containing plutonium ions is then separated from the oxide and the fission products associated therewith.

  13. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  14. Quaternary ammonium biocides: efficacy in application.

    PubMed

    Gerba, Charles P

    2015-01-01

    Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance. PMID:25362069

  15. Late Quaternary history of the Atacama Desert

    USGS Publications Warehouse

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  16. A Quaternary fault database for central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  17. A Quaternary Fault Database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, S.; Ehlers, T. A.; Bendick, R.; Stübner, K.; Strube, T.

    2015-09-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for Central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for Central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic and structural characteristics, short descriptions, narrative comments and references to peer-reviewed publications. The interactive map displays 1196 fault segments and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 122 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. This work has implications for seismic hazard studies in Central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  18. Quaternary Ammonium Biocides: Efficacy in Application

    PubMed Central

    2014-01-01

    Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance. PMID:25362069

  19. Spectroscopy of selected fission fragments

    SciTech Connect

    Hoellinger, F.; Schulz, N.; Gall, B. J. P.; Bentaleb, M.; Courtin, S.; Lubkiewicz, E.; Durell, J. L.; Jones, M. A.; Leddy, M.; Phillips, W. R.; Smith, A. G.; Urban, W.; Varley, B. J.; Deloncle, I.; Porquet, M.-G.; Wilson, A.; Ahmad, I.; Morss, L. R.; Kutsarova, T.; Minkova, A.; Duprat, J.; Sergolle, H.; Gautherin, C.; Lucas, R.

    1999-10-22

    The spectroscopy of nuclei produced as fragments in the fission process has been undertaken using the EUROGAM II {gamma}-ray multidetector array. The first experiment involved a spontaneously fissioning {sup 248}Cm source and produced neutron-rich nuclei. The data analysis concentrated on the odd-A Ce isotopes and the present contribution details the structure of {sup 151}Ce which results from the strong coupling of the odd neutron to the core. The results of a preliminary analysis of the yrast structure of {sup 138}Te will also be given. In a second experiment performed at the VIVITRON accelerator in Strasbourg, nuclei on the neutron-rich side of the valley of stability were produced via the {sup 28}Si + {sup 176}Yb reaction at 145 MeV bombarding energy. The level schemes of {sup 99}Mo, {sup 101}Tc and {sup 103}Ru have been extended to high spins ({approximately} 20h). Two new high lying structures in {sup 101}Tc are explained with the help of cranked shell model calculations.

  20. Adsorption and excess fission xenon

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1982-01-01

    The adsorption of Xe and Kr on lunar soil 10084 was measured by a method that employs only very low fractions of monolayer coverage. Results are presented as parameters for calculation of the Henry constant for adsorption as a function of temperature. The adsorption potentials are about 3 kcal/mole for Kr and 5 kcal/mole for Xe; heating the sample in vacuum increased the Xe potential to nearly 7 kcal/mole. Henry constants at the characteristic lunar temperature are about 0.3 cu cm STP/g-atm. These data were applied to consider whether adsorption is important in producing the excess fission Xe effect characteristic of highland breccias. Sorption equilibrium with a transient lunar atmosphere vented fission Xe produces concentrations seven orders of magnitude lower than observed concentrations. Higher concentrations result because of the resistance of the regolith to upward diffusion of Xe. A diffusion coefficient of 0.26 sq cm/sec is estimated for this process.

  1. PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS

    DOEpatents

    Spedding, F.H.; Butler, T.A.; Johns, I.B.

    1959-03-10

    The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

  2. SOURCE OF PRODUCTS OF NUCLEAR FISSION

    DOEpatents

    Harteck, P.; Dondes, S.

    1960-03-15

    A source of fission product recoil energy suitable for use in radiation chemistry is reported. The source consists of thermal neutron irradiated glass wool having a diameter of 1 to 5 microns and containing an isotope fissionable by thermal neutrons, such as U/sup 235/.

  3. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  4. Options for Affordable Fission Surface Power Systems

    SciTech Connect

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-07-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  5. Correlation measurements of fission-fragment properties

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Belgya, T.; Billnert, R.; Borcea, R.; Cano-Ott, D.; Göök, A.; Hambsch, F.-J.; Karlsson, J.; Kis, Z.; Martinez, T.; Oberstedt, A.; Szentmiklosi, L.; Takác, K.

    2010-10-01

    For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments' heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E) spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  6. AMPK Promotes Autophagy by Facilitating Mitochondrial Fission.

    PubMed

    Zhang, Chen-Song; Lin, Sheng-Cai

    2016-03-01

    AMPK senses decreased cellular energy levels, triggering mitochondrial autophagy or mitophagy through activating ULK1 and inhibiting mTORC1. In a recent report, Toyama etal. (2016) show that activated AMPK phosphorylation of MFF is critical for mitochondrial fission. Unphosphorylatable MFF mutants block mitophagy, connecting AMPK to mitochondrial fission and to mitophagy. PMID:26959181

  7. Prompt fission neutron spectra of actinides

    DOE PAGESBeta

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  8. Options for Affordable Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; VanDyke, Melissa; Martin Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on free surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized; however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems.

  9. Spontaneous fission properties and lifetime systematics

    SciTech Connect

    Hoffman, D.C.

    1989-03-01

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs.

  10. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2015-11-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide Pu240 as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.

  11. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  12. Theoretical Description of the Fission Process

    SciTech Connect

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic waste and be proliferation-resistant, is a goal for the advanced nuclear fuel cycles program. While in the past the design, construction, and operation of reactors were supported through empirical trials, this new phase in nuclear energy production is expected to heavily rely on advanced modeling and simulation capabilities.

  13. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  14. Event-by-Event Fission with FREYA

    SciTech Connect

    Randrup, J; Vogt, R

    2010-11-09

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. The presentation first discusses the present status of FREYA, which has now been extended up to energies where pre-equilibrium emission becomes significant and one or more neutrons may be emitted prior to fission. Concentrating on {sup 239}Pu(n,f), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also briefly suggest novel fission observables that could be measured with modern detectors.

  15. Los Alamos National Laboratory Fission Basis

    SciTech Connect

    Keksis, A.L.; Chadwick, M.B.; Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Meade, R.A.; Burns, C.J.; Wallstrom, T.C.

    2011-07-01

    This report is an overview of two main publications that provide a comprehensive review of the Los Alamos National Laboratory (LANL) Fission Basis. The first is the experimental paper, {sup F}ission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U, [Selby, H. D., et al., Nucl. Data Sheets, Vol. 111 2010, pp. 2891-2922] and the second is the theoretical paper, Fission Product Yields from Fission Spectrum n+ {sup 239}Pu for ENDF/B-VII.1, [Chadwick, M. B., et al., Nucl. Data Sheets, Vol. 111, 2010, pp. 2923-2964]. One important note is that none of this work would have been possible without the great documentation of the experimental details and results by G.W. Knobeloch, G. Butler, C.I. Browne, B. Erdal, B. Bayhurst, R. Prestwood, V. Armijo, J. Hasty and many others. (authors)

  16. Systematics of Fission-Product Yields

    SciTech Connect

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  17. Superfluid dynamics of 258Fm fission

    NASA Astrophysics Data System (ADS)

    Scamps, Guillaume; Simenel, Cédric; Lacroix, Denis

    2015-07-01

    The theoretical description of nuclear fission remains one of the major challenges of quantum many-body dynamics. The motion through the fission barrier is followed by a fast, nonadiabatic descent of the potential between the fragments. The latter stage is crucial as it generates most of the excitation energy in the fragments. The superfluid dynamics in the latter stage of fission is obtained from the time-dependent Hartree-Fock theory including BCS dynamical pairing correlations. The fission modes of the 258Fm nucleus are studied. The resulting fission fragment characteristics show good agreement with experimental data. Quantum shell effects are shown to play a crucial role in the dynamics and formation of the fragments. The importance of quantum fluctuations beyond the independent particle and quasiparticle picture is emphasized and qualitatively studied.

  18. Fission of doubly ionized calcium clusters

    NASA Astrophysics Data System (ADS)

    Blaisten-Barojas, Estela; Chien, Chang-Hong; Pederson, Mark R.; Mirick, Jeff W.

    2004-09-01

    Cluster ions, CaN+ and CaN2+, containing up to N = 8 atoms are studied within density functional theory. Ground and first excited states, and ionization energies are reported for all sizes. At zero temperature Ca32+ and Ca42+ are linear, whereas Ca52+ through Ca72+ undergo structural transitions from 3D-configurations into linear ions below 600 K. As a consequence, fission that occurs above 600 K starts from linear configurations. Ca82+ has an hexagonal bipyramidal structure. The preferred fission channels are CaN2+?Ca++CaN-1+ with fission barriers smaller than the evaporation energy up to Ca72+. However, Ca82+ presents a large fission barrier and would rather evaporate one atom than undergo fission.

  19. Landward-advancing Quaternary eolianites of Bermuda

    NASA Astrophysics Data System (ADS)

    Rowe, Mark P.; Bristow, Charlie S.

    2015-12-01

    The landscape of Bermuda is dominated by Quaternary carbonate cemented dunes, or "eolianites", which form the islands' topography. Sections through the dunes are revealed in extensive natural and man-made rock faces, which expose the dune stratigraphy as well as the preserved morphology. An analysis of 3751 foreset measurements confirms the conclusion reached by earlier researchers that Bermuda's dunes advanced sub-perpendicularly to the coast in a landward direction away from source beaches. Dune orientation, being multi-directional, is not consistent with northeast net sand transportation predicted by a drift potential analysis of modern wind data. The putative predisposition of Bermuda's carbonate dunes to rapid cementation is supposed to have curtailed their landward advance such that younger dunes developed as static ridges at the seaward margin of their lithified predecessors. Geological mapping has revealed, however, that in many cases young dunes did advance inland onto interior terrain, overstepping older dune ridges. Molds of large trees, preserved within the dunes, and a sharp contact of steep slip-face dune foresets on palaeosols evoke the encroachment of landward-advancing precipitation ridges into a forested landscape. The internal structure of the dunes, featuring thick sets of slip-face foresets truncated by sub-horizontal planar bounding surfaces, uphold the ascendancy of sand transportation processes over those of sand retention and vertical accretion. Although meteoric cementation was responsible for the ultimate preservation of eolianite ridges which dominate Bermuda's landscape, it took effect too slowly to influence the behaviour of the carbonate dunes at the time of their emplacement.

  20. The isotope hydrology of Quaternary climate change.

    PubMed

    Darling, W G

    2011-04-01

    Understanding the links between climate change and human migration and culture is an important theme in Quaternary archaeology. While oxygen and hydrogen stable isotopes in high-latitude ice cores provide the ultimate detailed record of palaeoclimate extending back to the Middle Pleistocene, groundwater can act as a climate archive for areas at lower latitudes, permitting a degree of calibration for proxy records such as lake sediments, bones, and organic matter. Not only can oxygen and hydrogen stable isotopes be measured on waters, but the temperature of recharge can be calculated from the amount of the atmospheric noble gases neon, argon, krypton, and xenon in solution, while residence time can be estimated from the decay of the radioisotopes carbon-14, chlorine-36, and krypton-81 over timescales comparable to the ice core record. The Pleistocene-Holocene transition is well characterised in aquifers worldwide, and it is apparent that isotope-temperature relationships of the present day are not necessarily transferable to past climatic regimes, with important implications for the interpretation of proxy isotope data. Groundwaters dating back to one million years, i.e., to beyond the Middle Pleistocene, are only found in major aquifer basins and information is relatively sparse and of low resolution. Speleothem fluid inclusions offer a way of considerably increasing this resolution, but both speleothem formation and large-scale groundwater recharge requires humid conditions, which may be relatively infrequent for areas currently experiencing arid climates. Both types of record therefore require caution in their interpretation when considering a particular archaeological context. PMID:21051074

  1. Quaternary glaciation of the Himalaya and Tibet

    NASA Astrophysics Data System (ADS)

    Owen, L. A.

    2008-12-01

    Glacial geological evidence from throughout the Himalaya-Tibet shows the existence of expanded ice caps and extensive valley glacier systems during the late Quaternary. Whether the timing of the extent of maximum glaciation was synchronous throughout the entire region or whether the response was more varied is a topic of much contention. This is mainly because the lack of organic material needed for radiocarbon dating that has hindered past progress in glacial reconstruction. However, the application of optically stimulated luminescence and terrestrial cosmogenic nuclide (TCN) methods has recently expanded the number of chronologies throughout the region helping to test glacier synchoneity. Yet, limits to the precision and accuracy available with these methods and, more importantly, geological uncertainty imposed by processes of moraine formation and alteration both conspire to limit the time resolution on which correlations can be made to Milankovitch timescales (several ka). All the published TCN ages for moraine boulders and glacially eroded surfaces in the Himalayan-Tibetan orogen have been recalculated to assess synchroneity of glaciations, and well-dated sites have been re-evaluated. Locally detailed studies indicate that there are considerable variations in the extent of glaciation from one region to the next during a glaciation. Glaciers throughout monsoon-influenced Tibet, the Himalaya and the Transhimalaya are likely synchronous both with climate change resulting from oscillations in the South Asian monsoon and with Northern Hemisphere cooling cycles. In contrast, glaciers in Pamir in the far western regions of the Himalayan-Tibet orogen advanced asynchronously relative to the other regions that are monsoon-influenced regions and appear to be mainly in phase with the Northern Hemisphere cooling cycles. Broad patterns of local and regional variability based on equilibrium-line altitudes have yet to be fully assessed, but have the potential to help define changes in climatic gradients over time.

  2. Singlet fission in pentacene dimers.

    PubMed

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B; Chernick, Erin T; Casillas, Rubén; Basel, Bettina S; Thoss, Michael; Tykwinski, Rik R; Guldi, Dirk M

    2015-04-28

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley-Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  3. Recent Advances in Singlet Fission

    NASA Astrophysics Data System (ADS)

    Smith, Millicent B.; Michl, Josef

    2013-04-01

    A survey is provided of recent progress in the understanding of singlet fission, a spin-allowed process in which a singlet excited molecule shares its energy with a ground-state neighbor to produce two triplet excited molecules. It has been observed to occur in single-crystal, polycrystalline, and amorphous solids, on timescales from 80 fs to 25 ps, producing triplet yields as high as 200%. Photovoltaic devices using the effect have shown external quantum efficiencies in excess of 100%. Almost all the efficient materials are alternant hydrocarbons of the acene series or their simple derivatives, and it is argued that a wider structural variety would be desirable. The current state of the development of molecular structure design rules, based on first-principles theoretical considerations, is described along with initial examples of implementation.

  4. Singlet fission in pentacene dimers

    PubMed Central

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  5. Fission Barriers of Heaviest Nuclei

    NASA Astrophysics Data System (ADS)

    Sobiczewski, A.; Kowal, M.; Shvedov, L.

    2008-11-01

    Recent macroscopic-microscopic studies on the static fission-barrier height B f st of heaviest nuclei, done in our Warsaw group, are shortly reviewed. The studies have been motivated by the importance of this quantity in calculations of cross sections for synthesis of these nuclei. Large deformation spaces, including as high multipolarities of deformation as λ = 8, are used in the analysis of B f st. Effects of various kinds of deformations, included into these spaces, on the potential energy of a nucleus are illustrated. In particular, the importance of non-axial shapes for this energy is demonstrated. They may reduce B f st by up to more than 2 MeV.

  6. Ternary and quaternary antimonide devices for thermophotovoltaic applications

    SciTech Connect

    Hitchcock, C.W.; Gutmann, R.J.; Ehsani, H.; Bhat, I.B.; Wang, C.A.; Freeman, M.J.; Charache, G.W.

    1998-06-01

    Thermophotovoltaic (TPV) devices have been fabricated using epitaxial ternary and quaternary layers grown on GaSb substrates. GaInSb ternary devices were grown by metalorganic vapor phase epitaxy (MOVPE) with buffer layers to accommodate the lattice mismatch, and GaInAsSb lattice-matched quaternaries were grown by MOVPE and by liquid phase epitaxy (LPE). Improved devices are obtained when optical absorption occurs in the p-layer due to the longer minority carrier diffusion length. Thick emitter p/n devices are limited by surface recombination, with highest quantum efficiency and lowest dark current being achieved with epitaxially grown surface passivation layers on lattice-matched MOVPE quaternaries. Thin emitter/thick base n/p devices are very promising, but require improved shallow high-quality n-type ohmic contacts.

  7. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  8. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  9. All-optical conversion scheme: Binary to quaternary and quaternary to binary number

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2009-04-01

    To achieve the inherent parallelism in optics a suitable number system and efficient encoding/decoding scheme for handling the data are very much essential. Binary number is accepted as the best representing number system in almost all types of existing electronic computers. But, binary number (0 and 1) is insufficient in respect to the demand of the coming generation. Multi-valued logic (with radix >2) can be viewed as an alternative approach to solve many problems in transmission, storage and processing of large amount of information in digital signal processing. Here, in this paper all-optical scheme for the conversion of binary to quaternary number and vice versa have been proposed and described. Simulation has also been done. In this all-optical scheme the numbers are represented by different discrete polarized state of light.

  10. Characterization of Quaternary and suspected Quaternary faults, Amargosa area, Nevada and California

    SciTech Connect

    Anderson, R.E.; Crone, A.J.; Machette, M.N.; Bradley, L.A.; Diehl, S.F.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies by S. Pezzopane (written commun., 1995) that resulted in the identification of 51 relevant and potentially relevant (see appendix A for definitions) individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. These structures were divided into local and regional categories by Pezzopane (1995); this report deals with selected regional structures. In this introduction, the authors outline the scope and strategy of the studies and the tectonic environment of the studied structures.

  11. Prompt fission neutron spectra of n+235U above the (n,nf) fission threshold

    NASA Astrophysics Data System (ADS)

    Shu, Neng-Chuan; Jia, Min; Chen, Yong-Jing; Liu, Ting-Jin

    2015-05-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. Supported by National Natural Science Foundation of China (11205246, 91126010, U1230127, 91226102), IAEA CRP (15905), and Defense Industrial Technology Development Program (B0120110034)

  12. Milestones and Lacunae in Quaternary Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bradley, R. S.

    2008-12-01

    It has been just over 40 years since Nick Shackleton submitted his PhD thesis on, 'The Measurement of Palaeotemperatures in the Quaternary Era'. Only a few years earlier, Libby was awarded the Nobel Prize for his work on radiocarbon dating. Looking back, we recognize that these were seminal events which provided essential insight and tools for generations of future researchers, opening the window to our interpretation of the earth's recent history. Research in paleoclimatology and paleoceanography has made enormous advances since these early steps were taken, and our understanding of how climates have changed, and why, has exploded. Hardly a week goes by without a new and interesting record or model simulation being published. Yet gaps remain, and new questions continue to emerge. New analytical techniques provide higher and higher resolution data sets, yet chronology remains a challenge in many records. This is especially important in deciphering times of abrupt change in earth history, when the synchronism of geographically dispersed events (or lack thereof) is of critical importance. The role of abrupt climate change in driving societal change is also controversial. Certainly there is evidence from many regions for abrupt, unprecedented and persistent climate anomalies for which we commonly have no explanation, and such episodes appear to have had significant effects of societies in the past. Deciphering the causes of such episodes, and how they affected societies has important implications for our understanding of the past and the future. Understanding the role of forcing and feedbacks is also essential. For example, many questions remain about the role of solar forcing. If small changes in solar irradiance have driven climate changes (as many have argued) large feedbacks must be involved. Modelling may help in resolving such questions. Many new proxies have been developed, though often our understanding of how these relate to climate is rudimentary at best. In fact, this is true even for some of our most cherished proxies. Improvements in the calibration of these proxies, through both mechanistic (process-based) studies and modeling will pay dividends and help avoid misinterpretations and the pursuit of archives that may not yield useful results. Paleoclimatologists and paleoceanographers have made spectacular discoveries over the past 40 years. Although anthropogenic effects will increasingly dominate the climate system in coming decades, establishing a firm understanding of pre-anthropogenic climate variability is still an essential challenge: whatever anthropogenic climate changes occur in the future, they will be superimposed on, and interact with, underlying natural variability. Therefore, to anticipate future changes, we must continue our efforts to understand how and why climates varied in the past.

  13. Quaternary Structure Analyses of an Essential Oligomeric Enzyme.

    PubMed

    da Costa, Tatiana P Soares; Christensen, Janni B; Desbois, Sebastien; Gordon, Shane E; Gupta, Ruchi; Hogan, Campbell J; Nelson, Tao G; Downton, Matthew T; Gardhi, Chamodi K; Abbott, Belinda M; Wagner, John; Panjikar, Santosh; Perugini, Matthew A

    2015-01-01

    Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure. PMID:26412653

  14. Ice Age Earth: Late Quaternary geology and climate

    SciTech Connect

    Dawson, A.G.

    1992-01-01

    This book is a concise and readable account of the most important geologic records of the late Quaternary. It provides a synopsis of the major environmental changes that took place from approximately 13,000 to 7,000 years ago, highlighting the complexity and rapidity of past climate changes and the environmental responses they produced. The text is well illustrated, though some figures are rough and need more explanation. Also needed is a critical appraisal of the geochronology which places the paleoenvironmental records into the temporal domain. However, as a whole the book reaches its objective of summarizing the most important scientific findings about the nature of the late Quaternary climate changes.

  15. Singlet fission in reduced dimensions of crystals

    NASA Astrophysics Data System (ADS)

    Teichen, Paul; Eaves, Joel

    2014-03-01

    In some molecular systems the decay of an initially excited singlet into two independent triplets, a process called singlet fission, is highly efficient. Organic crystals are among the most promising candidates for increasing yields in next-generation photovoltaics. Although excitons are known to exist in reduced dimensions of crystals the role of dimensionality in the entanglement of two triplets born out of singlet fission remains unclear. We develop a quantum lattice model for singlet fission to examine the role of quantum entanglement and exciton delocalization.

  16. Fission induced by nucleons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2015-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p, f) cross sections and used to predict (n, f) cross sections for the same isotopes.

  17. Fission Experiments at nELBE

    NASA Astrophysics Data System (ADS)

    Kögler, T.; Beyer, R.; Hannaske, R.; Junghans, A. R.; Massarczyk, R.; Wagner, A.

    A 235U and a 242Pu parallel-plate fission ionization chamber will be used to investigate fast neutron-induced fission cross sections at the Center for High-Power Radiation Sources at Helmholtz-Zentrum Dresden-Rossendorf. To optimize the chamber parameters extensive GEANT4 simulations with GEF code generated fission observable inputs have been used. Pile-up effects had to be included due to the high α-activity of the plutonium targets. For the determination of targets surface density and homogeneity an α-spectroscopy setup was developed and simulations related to that will also be presented.

  18. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  19. 40 CFR 721.10479 - Quaternary ammonium compounds, tris(hydrogenated tallow alkyl)methyl, chlorides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, tris... SUBSTANCES Significant New Uses for Specific Chemical Substances 721.10479 Quaternary ammonium compounds... subject to reporting. (1) The chemical substance identified as quaternary ammonium compounds,...

  20. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  1. 40 CFR 721.10479 - Quaternary ammonium compounds, tris(hydrogenated tallow alkyl)methyl, chlorides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, tris... SUBSTANCES Significant New Uses for Specific Chemical Substances 721.10479 Quaternary ammonium compounds... subject to reporting. (1) The chemical substance identified as quaternary ammonium compounds,...

  2. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  3. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  4. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  5. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  6. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  7. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium salt of... New Uses for Specific Chemical Substances § 721.9075 Quaternary ammonium salt of fluorinated alkylaryl... identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688)...

  8. Recovery and use of fission product noble metals

    SciTech Connect

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  9. Future challenges for nuclear data research in fission (u)

    SciTech Connect

    Chadwick, Mark B

    2010-01-01

    I describe some high priority research areas in nuclear fission, where applications in nuclear reactor technologies and in modeling criticality in general are demanding higher accuracies in our databases. We focus on fission cross sections, fission neutron spectra, and fission product data.

  10. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  11. Prompt Fission Gamma-ray Spectra and Multiplicities for Various Fissioning Systems

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Regnier, David; Serot, Olivier

    The prompt fission gamma spectra (PFGS) and multiplicities (PFGM) are investigated from a Monte Carlo simulation of the fission fragment deexcitation. The fission fragment characteristics are sampled from mass, charge, kinetic energy, spin and parity distributions from experimental data or theoretical models. Initial excitation energy is shared between the two complementary fragments using a mass dependent temperature ratio law and a level density parameter law based on Ignatyuk's prescription. Details can be found elsewhere in the literature. The deexcitation process can be performed with different calculation schemes. The first one is based on a Weisskopf model for neutron evaporation and nuclear transition sampling (from level density and strength function models) for gamma evaporation. In this case, the competition between neutrons and gammas is taken into account by using a spin dependent excitation energy limit under which gamma emission takes place. The second one is based on an Hauser-Feshbach model for neutron/gamma evaporation based on neutron transmission coefficients (from optical model calculations) and the same model as above for gammas. The n/γ competition is then automatically taken into account at the very beginning of the primary fission fragments evaporation process. Fission observables, especially related to prompt fission gammas are presented and discussed for spontaneous fission (252Cf, 240Pu), thermal fission (235U+nth) and fast fission (238U+n1.8MeV). Comparisons with experimental data are shown when available.

  12. Mechanics of Dynamin-Mediated Membrane Fission

    PubMed Central

    Morlot, Sandrine; Roux, Aurélien

    2013-01-01

    In eukaryotic cells, membrane compartments are split into two by membrane fission. This ensures discontinuity of membrane containers and thus proper compartmentalization. The first proteic machinery implicated in catalyzing membrane fission was dynamin. Dynamin forms helical collars at the neck of endocytic buds. This structural feature suggested that the helix of dynamin could constrict in order to promote fission of the enclosed membrane. However, verifying this hypothesis revealed itself to be a challenge, which inspired many in vitro and in vivo studies. The primary goal of this review is to discuss recent structural and physical data from biophysical studies that have refined our understanding of the dynamin mechanism. In addition to the constriction hypothesis, other models have been proposed to explain how dynamin induces membrane fission. We present experimental data supporting these various models and assess which model is the most probable. PMID:23541160

  13. Electron spectra from decay of fission products

    SciTech Connect

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  14. Porous fission fragment tracks in fluorapatite

    SciTech Connect

    Li Weixing; Ewing, Rodney C.; Wang Lumin; Sun Kai; Lang, Maik; Trautmann, Christina

    2010-10-01

    Fission tracks caused by the spontaneous fission of {sup 238}U in minerals, as revealed by chemical etching, are extensively used to determine the age and thermal history of Earth's crust. Details of the structure and annealing of tracks at the atomic scale have remained elusive, as the original track is destroyed during chemical etching. By combining transmission electron microscopy with in situ heating, we demonstrate that fission tracks in fluorapatite are actually porous tubes, instead of having an amorphous core, as generally assumed. Direct observation shows thermally induced track fragmentation in fluoapatite, in clear contrast to the amorphous tracks in zircon, which gradually ''fade'' without fragmentation. Rayleigh instability and the thermal emission of vacancies control the annealing of porous fission tracks in fluorapatite.

  15. Singlet Fission: From Coherences to Kinetics.

    PubMed

    Piland, Geoffrey B; Burdett, Jonathan J; Dillon, Robert J; Bardeen, Christopher J

    2014-07-01

    Singlet fission, in which an initially excited singlet state spontaneously splits into a pair of triplet excitons, is a process that can potentially boost the efficiency of solar energy conversion. The separate electronic bands in organic semiconductors make them especially useful for dividing a high-energy singlet exciton into a pair of lower-energy triplet excitons. Recent experiments illustrate the role of spin coherence in fission, while kinetic models are used to describe how triplet and singlet states interact on longer time scales. Despite insights gained from recent experiments, the detailed structure and dynamics of the electronic states involved in the initial step of singlet fission remain active areas of investigation. On longer time scales, finding ways to efficiently harvest the triplet excitons will be an important challenge for making devices based on this phenomenon. A full understanding of singlet fission requires consideration of a sequence of photophysical events (decoherence, relaxation, and diffusion) occurring on different time scales. PMID:26279552

  16. Charge transfer-mediated singlet fission.

    PubMed

    Monahan, N; Zhu, X-Y

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers. PMID:25648486

  17. Charge Transfer-Mediated Singlet Fission

    NASA Astrophysics Data System (ADS)

    Monahan, N.; Zhu, X.-Y.

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers.

  18. Aqueous cutting fluid for machining fissionable materials

    DOEpatents

    Duerksen, Walter K.; Googin, John M.; Napier, Jr., Bradley

    1984-01-01

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  19. Hollow fission fragment tracks in fluorapatite

    NASA Astrophysics Data System (ADS)

    Li, Weixing

    Spontaneous fission of uranium in minerals creates a damaged "track" along the trajectory of the fission fragments. Fission tracks in fluorapatite, enlarged by chemical etching, are widely used in geologic age-dating and the reconstruction of the thermal history of Earth's crust. However, despite this wide spread application, there have been no systematic studies of the internal structure of unetched fission tracks or the atomic-scale process of track annealing. In this research, fission tracks in fluorapatite are demonstrated to be nano-channels instead of amorphous cores as had been assumed. The formation of hollow tracks is ascribed to the highly ionizing energy deposition of fission fragments inducing radiolytic decomposition of fluorapatite accompanied by the loss of volatile elements. The mechanism for thermal annealing of hollow tracks in fluorapatite is shown to be entirely different from that of amorphous tracks in zircon. The discontinuity of fission tracks, in addition to the shrinkage, prevents chemicals from entering into the hollow tracks for further etching, and then significantly reduces the etched length. The shrinkage of hollow fission tracks results from thermo-emission of vacancies or gaseous species from the cavities to surrounding solids instead of atomic-scale recovery of the amorphous core. The high diffusivity of atoms on the surface of hollow tracks causes the discontinuity of tracks either by Rayleigh instability, by Brownian motion, or by preferential motion of track segments. The preferential motion of atoms along c-axis causes more rapid annealing of fission tracks perpendicular to the c-axis. Under the electron beam, the hollow tracks segment into droplets and the track segments randomly move at room temperature or preferentially move along c-axis at high temperatures. The radiolytic annealing results from beam-enhanced diffusion, which is similar to thermally enhanced diffusion. The similarity in the morphology of fission tracks and electron beam-induced bubbles and their preferential elongation along c-axis at high temperatures further confirm that the tracks are actually hollow channels. The radius profile of fission track along its trajectory has been calculated. These data will be critical to developing an atomic-scale model of track fading as it applied to geologic age-dating.

  20. Modeling Fission Product Sorption in Graphite Structures

    SciTech Connect

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).

  1. MCNP6 Fission Multiplicity with FMULT Card

    SciTech Connect

    Wilcox, Trevor; Fensin, Michael Lorne; Hendricks, John S.; James, Michael R.; McKinney, Gregg W.

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  2. Transport properties of fission product vapors

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

  3. Our 50-year odyssey with fission: Summary

    SciTech Connect

    Nix, J.R.

    1989-01-01

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs.

  4. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives...

  5. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Quaternary ammonium chloride combination. 172.165 Section 172.165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives...

  6. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    NASA Astrophysics Data System (ADS)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  7. Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter.

    PubMed

    Vila, Carlos; Amr, Fares Ibrahim; Blay, Gonzalo; Muñoz, M Carmen; Pedro, José R

    2016-05-20

    An efficient one-pot asymmetric synthesis of pyrazoles bearing a chiral quaternary stereocenter has been developed. Quinine-derived thiourea catalyzed the enantioselective addition of pyrazolones to isatin-derived ketimines, providing the corresponding acetylated pyrazoles after in situ treatment with Ac2 O/Et3 N. The corresponding pyrazoles were afforded in high yields and excellent enantioselectivities. PMID:27038062

  8. Impact of quaternary structure dynamics on allosteric drug discovery.

    PubMed

    Jaffe, Eileen K

    2013-01-01

    The morpheein model of allosteric regulation draws attention to proteins that can exist as an equilibrium of functionally distinct assemblies where: one subunit conformation assembles into one multimer; a different subunit conformation assembles into a different multimer; and the various multimers are in a dynamic equilibrium whose position can be modulated by ligands that bind to a multimer-specific ligand binding site. The case study of porphobilinogen synthase (PBGS) illustrates how such an equilibrium holds lessons for disease mechanisms, drug discovery, understanding drug side effects, and identifying proteins wherein drug discovery efforts might focus on quaternary structure dynamics. The morpheein model of allostery has been proposed as applicable for a wide assortment of disease-associated proteins (Selwood, T., Jaffe, E., (2012) Arch. Bioch. Biophys, 519:131-143). Herein we discuss quaternary structure dynamics aspects to drug discovery for the disease-associated putative morpheeins phenylalanine hydroxylase, HIV integrase, pyruvate kinase, and tumor necrosis factor α. Also highlighted is the quaternary structure equilibrium of transthyretin and successful drug discovery efforts focused on controlling its quaternary structure dynamics. PMID:23409765

  9. Lignin biogeochemistry: from modern processes to Quaternary archives

    NASA Astrophysics Data System (ADS)

    Jex, Catherine N.; Pate, Gary H.; Blyth, Alison J.; Spencer, Robert G. M.; Hernes, Peter J.; Khan, Stuart J.; Baker, Andy

    2014-03-01

    Lignin has been analysed as a proxy for vegetation change in the Quaternary science literature since the early 1990s in archives such as peat, lakes, and intertidal and marine sediment cores. Historically, it has been regarded as comparatively resistant to various types of degradation in comparison to other plant components. However, studies of modern biogeochemical processes affecting organic carbon have demonstrated significant degradation and alteration of lignin as it is transported through the terrestrial biosphere, including phase changes from particulate to dissolved organic matter, mineral binding and decay due to biotic and abiotic processes. The literature of such topics is vast, however it is not particularly useful to Quaternary research without a comprehensive review to link our understanding of modern processes involving lignin to Quaternary environments. This review will outline the current state of the art in lignin phenol research that is relevant to the Quaternary scientist, and highlight the potential future applications for this important biomarker for vegetation change and terrestrial organic carbon cycling.

  10. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  11. Application of Analytic Geometry to Ternary and Quaternary Diagrams.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1986-01-01

    Advantages of representing ternary and quaternary composition diagrams by means of rectangular coordinates were pointed out in a previous paper (EJ 288 693). A further advantage of that approach is that analytic geometry, based on rectangular coordinates, is directly applicable as demonstrated by the examples presented. (JN)

  12. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature

  13. Quaternary Ammonium Disinfectant Issues Encountered in an Environmental Services Department.

    PubMed

    Boyce, John M; Sullivan, Linda; Booker, Arica; Baker, James

    2016-03-01

    We identified several factors affecting the use of quaternary ammonium-based (Quat) disinfectant in our facility. Microfiber wipers, cotton towels, and 1 of 2 types of disposable wipes soaked in a Quat disinfectant revealed significant binding of the disinfectant. Concentrations of Quat delivered by automated disinfectant dispensers varied widely. Infect. Control Hosp. Epidemiol. 2016;37(3):340-342. PMID:26821275

  14. Microscopic description of complex nuclear decay: Multimodal fission

    SciTech Connect

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-15

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  15. Microscopic description of complex nuclear decay: Multimodal fission

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  16. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  17. Novel roles for actin in mitochondrial fission

    PubMed Central

    Hatch, Anna L.; Gurel, Pinar S.; Higgs, Henry N.

    2014-01-01

    ABSTRACT Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ERmitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals. PMID:25217628

  18. Spontaneous fission of the heaviest elements

    SciTech Connect

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  19. Complete event simulations of nuclear fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona

    2015-10-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. In these average fission models energy is not explicitly conserved and everything is uncorrelated because all particles are emitted independently. However, in a true fission event, the energies, momenta and multiplicities of the emitted particles are correlated. Such correlations are interesting for many modern applications. Event-by-event generation of complete fission events makes it possible to retain the kinematic information for all particles emitted: the fission products as well as prompt neutrons and photons. It is therefore possible to extract any desired correlation observables. Complete event simulations can be included in general Monte Carlo transport codes. We describe the general functionality of currently available fission event generators and compare results for several important observables. This work was performed under the auspices of the US DOE by LLNL, Contract DE-AC52-07NA27344. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  20. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  1. Characterization of Quaternary and suspected Quaternary faults, regional studies, Nevada and California

    SciTech Connect

    Anderson, R.E.; Bucknam, R.C.; Crone, A.J.; Haller, K.M.; Machette, M.N.; Personius, S.F.; Barnhard, T.P.; Cecil, M.J.; Dart, R.L.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies that resulted in the identification of 51 relevant and potentially relevant individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. Geologic data used to characterize the regional faults and fault zones as relevant or potentially relevant seismic sources includes age and displacement information, maximum fault lengths, and minimum distances between the fault and the Yucca Mountain site. For many of the regional faults, no paleoseismic field studies have previously been conducted, and age and displacement data are sparse to nonexistent. In November 1994, the Branch of Earthquake and Landslide Hazards entered into two Memoranda of Agreement with the Yucca Mountain Project Branch to conduct field reconnaissance, analysis, and interpretation of six relevant and six potentially relevant regional faults. This report describes the results of study of those faults exclusive of those in the Pahrump-Stewart Valley-Ash Meadows-Amargosa Valley areas. We also include results of a cursory study of faults on the west flank of the Specter Range and in the northern part of the Last Chance Range. A four-phase strategy was implemented for the field study.

  2. A new design of fission detector for prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy spectroscopy. Correlated FF kinetic energies, their masses and the angle of the fission axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical algorithms were provided along with formulae derived for fission axis angles determination. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event by event analysis of individual fission reactions from non point fissile source. Position sensitive neutron induced fission detector for neutron imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  3. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  4. Event-by-event fission simulation code, generates complete fission events

    Energy Science and Technology Software Center (ESTSC)

    2013-04-01

    FREYA is a computer code that generates complete fission events. The output includes the energy and momentum of these final state particles: fission products, prompt neutrons and prompt photons. The version of FREYA that is to be released is a module for MCNP6.

  5. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels

    SciTech Connect

    S. Frank

    2009-09-01

    An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion exchange during the salt/zeolite contacting process • Compare the adsorption models to experimentally obtained, ER salt results • Evaluate results obtained from the oxygen precipitation and salt/zeolite ion exchange studies to determine the best processes for selective fission-product removal from electrorefiner salt.

  6. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  7. Singlet fission in linear chains of molecules

    NASA Astrophysics Data System (ADS)

    Ambrosio, Francesco; Troisi, Alessandro

    2014-11-01

    We develop a model configuration interaction Hamiltonian to study the electronic structure of a chain of molecules undergoing singlet fission. We first consider models for dimer and trimer and then we use a matrix partitioning technique to build models of arbitrary size able to describe the relevant electronic structure for singlet fission in linear aggregates. We find that the multi-excitonic state (ME) is stabilized at short inter-monomer distance and the extent of this stabilization depends upon the size of orbital coupling between neighboring monomers. We also find that the coupling between ME states located on different molecules is extremely small leading to bandwidths in the order of ˜10 meV. This observation suggests that multi-exciton states are extremely localized by electron-phonon coupling and that singlet fission involves the transition between a relatively delocalized Frenkel exciton and a strongly localized multi-exciton state. We adopt the methodology commonly used to study non-radiative transitions to describe the singlet fission dynamics in these aggregates and we discuss the limit of validity of the approach. The results indicate that the phenomenology of singlet fission in molecular crystals is different in many important ways from what is observed in isolated dimers.

  8. Singlet fission in linear chains of molecules.

    PubMed

    Ambrosio, Francesco; Troisi, Alessandro

    2014-11-28

    We develop a model configuration interaction Hamiltonian to study the electronic structure of a chain of molecules undergoing singlet fission. We first consider models for dimer and trimer and then we use a matrix partitioning technique to build models of arbitrary size able to describe the relevant electronic structure for singlet fission in linear aggregates. We find that the multi-excitonic state (ME) is stabilized at short inter-monomer distance and the extent of this stabilization depends upon the size of orbital coupling between neighboring monomers. We also find that the coupling between ME states located on different molecules is extremely small leading to bandwidths in the order of ∼10 meV. This observation suggests that multi-exciton states are extremely localized by electron-phonon coupling and that singlet fission involves the transition between a relatively delocalized Frenkel exciton and a strongly localized multi-exciton state. We adopt the methodology commonly used to study non-radiative transitions to describe the singlet fission dynamics in these aggregates and we discuss the limit of validity of the approach. The results indicate that the phenomenology of singlet fission in molecular crystals is different in many important ways from what is observed in isolated dimers. PMID:25429953

  9. Singlet fission in linear chains of molecules

    SciTech Connect

    Ambrosio, Francesco E-mail: A.Troisi@warwick.ac.uk; Troisi, Alessandro E-mail: A.Troisi@warwick.ac.uk

    2014-11-28

    We develop a model configuration interaction Hamiltonian to study the electronic structure of a chain of molecules undergoing singlet fission. We first consider models for dimer and trimer and then we use a matrix partitioning technique to build models of arbitrary size able to describe the relevant electronic structure for singlet fission in linear aggregates. We find that the multi-excitonic state (ME) is stabilized at short inter-monomer distance and the extent of this stabilization depends upon the size of orbital coupling between neighboring monomers. We also find that the coupling between ME states located on different molecules is extremely small leading to bandwidths in the order of ∼10 meV. This observation suggests that multi-exciton states are extremely localized by electron-phonon coupling and that singlet fission involves the transition between a relatively delocalized Frenkel exciton and a strongly localized multi-exciton state. We adopt the methodology commonly used to study non-radiative transitions to describe the singlet fission dynamics in these aggregates and we discuss the limit of validity of the approach. The results indicate that the phenomenology of singlet fission in molecular crystals is different in many important ways from what is observed in isolated dimers.

  10. Spatiotemporal variation in exhumation of the Crystallines in the NW-Himalaya, India: Constraints from fission track dating analysis

    NASA Astrophysics Data System (ADS)

    Patel, R. C.; Adlakha, Vikas; Lal, Nand; Singh, Paramjeet; Kumar, Y.

    2011-05-01

    During Himalayan orogeny, coeval thrusting along the Main Central/Munsiari Thrust (MCT/MT) and extension along the South Tibetan-Detachment System (STDS) are widely responsible for rapid exhumation of the Higher Himalayan Crystalline (HHC) zone. Apatite and zircon fission-track data along the Kaliganga and Darma valleys in the Kumaon Himalaya serve to document the shallow bedrock exhumation history of the HHC. Taking into account sample location within the HHC with respect to the MCT/MT, the apatite fission track (AFT) data-sets along the Darma (1.0 ± 0.1 to 2.8 ± 0.3 Ma) and Kaliganga (1.4 ± 0.2 to 2.4 ± 0.3 Ma) which are sharing same structural setting and rock types and being separated by 40 km, show very similar patterns of exhumation histories since Plio-Quaternary in the Kumaon Himalaya. Data sets along Darma and Kaliganga are very similar to data set of adjacent traverse (50 km away) along the Goriganga valley studied by Patel and Carter (2009). Whole data sets within the HHC in Kumaon Himalaya provide clear evidence for Plio-Quaternary tectonic activity along the Vaikrita Thrust (VT). Precipitation in this region exerts a strong influence on erosional surface processes. Fluvial erosional unloading along the Himalaya is focused on the high mountainous region of the HHC, where the orographic barrier forces out the maximum percentage of annual rainfall. FT cooling ages reveal coincidence between rapid erosion and exhumation that is focused in a ~ 25-30 km wide sector of the HHC, rather than covering the entire orogen. Similarity of AFT age pattern and exhumation rates along all three major traverses (Goriganga, Darma and Kaliganga) indicates that the region has been experiencing constant rate of crustal uplift and erosion since long time. Comparison of fission track ages from the Kumaon Himalaya with other segments of the NW-Himalaya shows spatiotemporal variation in exhumation. It is described due to the development of local structures such as dome/window in Jammu and Kashmir and Himachal Himalayas and Quaternary active thrusting along the VT and MCT/MT in the Garhwal-Kumaon Himalaya.

  11. Bimodal Fission in the Skyrme-Hartree-Fock Approach

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Spontaneous fission properties of 256Fm, 258Fm, and 260Fm isotopes are studied within the Skyrme-Hartree-Fock+BCS framework. In the particle-hole channel we take the Skyrme SkM* effective force, while in the particle-particle channel we employ the seniority pairing interaction. Three static fission paths for all investigated heavy fermium isotopes are found. The analysis of these fission modes allows to describe observed asymmetric fission of 256Fm, as well as bimodal fission of 258Fm and symmetric fission in 260Fm.

  12. Options For Development of Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.

  13. Mapping a buried Quaternary valley and pre-Quaternary faults through seismic methods in Copenhagen, Denmark.

    NASA Astrophysics Data System (ADS)

    Martinez, Kerim; Alfredo Mendoza, Jose; Henrik, Olsen

    2010-05-01

    Limited knowledge of the subsurface geology motivates the use of geophysical techniques before large engineering projects are conducted. These applications are normally restricted to satisfy the project aims, like mapping the near surface sediments, unconsolidated rocks and/or geological structures that may affect the construction locally. However, the applications can also contribute to the general knowledge of the regional geology around the location of interest. This report highlights the mapping of a buried Quaternary valley and identification of regional faults by a reflection and refraction seismic survey performed in Copenhagen. A 13.9 Km seismic survey was carried out at Copenhagen city along six crooked lines in order to determine the velocity fields in the near subsurface segment of a planned metro line and reflection patterns in deeper levels. The aim of the survey was to collect information needed for designing the underground metro. In particular it was sought to map the interface between Quaternary sedimentary layers of clay, till and sand, and the underlying layers of Palaeogene limestone found between 7 and 40 m below the ground surface. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 5 m spacing following a roll along technique to complete the survey spreads. The urban environment demanded extensive survey planning including traffic control, notifications to residents and a fluent coordination with municipal authorities in order to minimize disturbances and ensure data acquisition. The reflection data was processed under a conventional scheme and the refraction data was interpreted using a non-linear traveltime tomography algorithm. The reflection results indicate the presence of faults oriented NW-SE to NNW-SSE affecting the limestone sequences. The faults may be associated to the Sorgenfrei-Tornquist Zone at the transition between the Danish Basin and the Baltic Shield. The refraction interpretation allowed the mapping of the velocity distribution in the upper sediments and their interface with the underlying limestone sequences. In this work two sections along the northern part of the survey are presented and discussed. The cases show the ability of the seismic results to image the presence of a buried valley that has been previously reported but was geophysically mapped for the first time under these investigations. The results delineate the sediments-limestone interface as the depth to the limestone increases. These results are validated through borehole data from locations along the surveyed lines. Other minor lateral variations are also observed and compared to a geological model. The location of the buried valley corresponds to a fault zone observed in the reflection seismic investigation. Accordingly, the location of the valley may in part have been controlled by the faults. The overall results of the seismic investigations are currently being used as part of the design basis for the construction of the metro line and may be useful for future engineering projects in the area. In general, the investigation results demonstrated that in addition to meet specific project objectives near surface geophysics has the potential to provide insights to the general understanding of geological processes. The authors wish to acknowledge Metroselskabet I/S for permission in presenting the results, and the Cityringen Joint Venture partners COWI, Arup and Systra.

  14. Community ecology in a changing environment: Perspectives from the Quaternary

    PubMed Central

    Jackson, Stephen T.; Blois, Jessica L.

    2015-01-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit. PMID:25901314

  15. Organic non-quaternary clathrate salts for petroleum separation

    SciTech Connect

    Boate, D.R.; Zaworotko, M.J.

    1993-06-15

    A method is described for separating hydrocarbon feed streams containing mixtures of aromatic hydrocarbons and non-aromatic hydrocarbons into aromatics lean raffinate streams and aromatics rich extract streams by contacting the hydrocarbon feed streams with an organic non-quaternary clathrate salt having less than 16 carbon atoms in the cation, whereby the clathrate salt selectively interacts with the aromatic component of the hydrocarbon feed mixture producing a raffinate phase of reduced aromatic content a hydrocarbon - salt clathrate and an extract phase of increased aromatic content containing the clathrate salt and combined aromatic hydrocarbon, separating the raffinate phase from the extract phase and releasing the aromatic hydrocarbon from the clathrate salt of the extract phase to recover an aromatics rich stream and the organic non-quaternary salt which is recycled for contact with fresh hydrocarbon feed.

  16. Helix Bundle Quaternary Structure from [alpha]/[beta]-Peptide Foldamers

    SciTech Connect

    Horne, W. Seth; Price, Joshua L.; Keck, James L.; Gellman, Samuel H.

    2008-11-18

    The function of a protein generally depends on adoption of a specific folding pattern, which in turn is determined by the side chain sequence along the polypeptide backbone. Here we show that the sequence-encoded structural information in peptides derived from yeast transcriptional activator GCN4 can be used to prepare hybrid {alpha}/{beta}-peptide foldamers that adopt helix bundle quaternary structures. Crystal structures of two hybrid {alpha}/{beta}-peptides are reported along with detailed structural comparison to {alpha}-peptides of analogous side chain sequence. There is considerable homology between {alpha}- and {alpha}/{beta}-peptides at the level of helical secondary structure, with modest but significant differences in the association geometry of helices in the quaternary structure.

  17. Quaternary ammonium polyethylenimine nanoparticles for treating bacterial contaminated water.

    PubMed

    Farah, Shady; Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Beyth, Nurit; Domb, Abraham J

    2015-04-01

    This study highlights the potential application of antimicrobial quaternary ammonium nanomaterials for water disinfection. Quaternary ammonium polyethylenimine (QA-PEI) nanoparticles (NPs) were synthesized by polyethylenimine crosslinking and alkylation with octyl iodide followed by methyl iodide quaternization. Particles modified with octyldodecyl alkyl chains were also prepared and evaluated. The antimicrobial activity of QA-PEI NPs was studied after anchoring in non-leaching polymeric coatings and also in aqueous suspension. Particles at different loadings (w/w) were embedded in polyethylene vinyl acetate and polyethylene methacrylic acid coatings and tested for antimicrobial activity against four representative strains of bacteria in static and dynamic modes. Coatings embedded with fluorescent labelled particles tracked by Axioscope fluorescence microscope during the antimicrobial test indicates no particles leaching out. Coatings loaded with 5% w/w QA-PEI exhibited strong antibacterial activity. Aqueous suspension was tested and found effective for bacterial decontamination at 0.1 ppm and maintains its activity for several weeks. PMID:25800358

  18. A microscopic model of singlet fission.

    PubMed

    Teichen, Paul E; Eaves, Joel D

    2012-09-20

    Singlet fission, where an electronically excited singlet on one chromophore converts into a doubly excited state on two, has gone from a curiosity in organic photophysics to a potential pathway for increasing solar energy conversion efficiencies. Focusing on the role of solvent-induced energy level fluctuations that would be present in a dye-sensitized solar cell, we present a microscopic model for singlet fission. Starting from an electronic model Hamiltonian, we construct diabatic states in a manifold of single and double excitations with total singlet multiplicity and then develop a multilevel non-Markovian theory of dynamics for electronic populations in the presence of energy level fluctuations. Depending on the energy scales, energy gap fluctuations can either facilitate or hinder interconversion steps that lead to singlet fission. We critically assess the Markovian approximation that leads to golden rule rates and study the role of intramolecular solvation dynamics and electron transfer. PMID:22587487

  19. Lunar surface fission power supplies: Radiation issues

    SciTech Connect

    Houts, M.G.; Lee, S.K.

    1994-07-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield.

  20. Quantitative Intramolecular Singlet Fission in Bipentacenes.

    PubMed

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Trinh, M Tuan; Choi, Bonnie; Xia, Jianlong; Taffet, Elliot J; Low, Jonathan Z; Miller, John R; Roy, Xavier; Zhu, X-Y; Steigerwald, Michael L; Sfeir, Matthew Y; Campos, Luis M

    2015-07-22

    Singlet fission (SF) has the potential to significantly enhance the photocurrent in single-junction solar cells and thus raise the power conversion efficiency from the Shockley-Queisser limit of 33% to 44%. Until now, quantitative SF yield at room temperature has been observed only in crystalline solids or aggregates of oligoacenes. Here, we employ transient absorption spectroscopy, ultrafast photoluminescence spectroscopy, and triplet photosensitization to demonstrate intramolecular singlet fission (iSF) with triplet yields approaching 200% per absorbed photon in a series of bipentacenes. Crucially, in dilute solution of these systems, SF does not depend on intermolecular interactions. Instead, SF is an intrinsic property of the molecules, with both the fission rate and resulting triplet lifetime determined by the degree of electronic coupling between covalently linked pentacene molecules. We found that the triplet pair lifetime can be as short as 0.5 ns but can be extended up to 270 ns. PMID:26102432

  1. METHOD OF MAKING JACKETED FISSIONABLE SLUG

    DOEpatents

    Young, G.J.; Ohlinger, L.A.

    1959-02-10

    BS>A method is described for fabricating a jacketed fissionable body or slug to provide an effective leak-proof seal between the jacket and the end closure. A housing for the fissionable slug is first formed and then tinned on the interior. The fissionable slug is coated on its exterior surface with the same material used to tin the interior of the housing. The coated slug is then inserted into the housing. A disc shaped end closure for the housing, coated with the tinning material, is inserted into the open end of the housing while the tinning material is still liquid. The end of the housing is then swaged into good contact with the periphery of the closure.

  2. Solution-processable singlet fission photovoltaic devices.

    PubMed

    Yang, Le; Tabachnyk, Maxim; Bayliss, Sam L; Böhm, Marcus L; Broch, Katharina; Greenham, Neil C; Friend, Richard H; Ehrler, Bruno

    2015-01-14

    We demonstrate the successful incorporation of a solution-processable singlet fission material, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), into photovoltaic devices. TIPS-pentacene rapidly converts high-energy singlet excitons into pairs of triplet excitons via singlet fission, potentially doubling the photocurrent from high-energy photons. Low-energy photons are captured by small-bandgap electron-accepting lead chalcogenide nanocrystals. This is the first solution-processable singlet fission system that performs with substantial efficiency with maximum power conversion efficiencies exceeding 4.8%, and external quantum efficiencies of up to 60% in the TIPS-pentacene absorption range. With PbSe nanocrystal of suitable bandgap, its internal quantum efficiency reaches 170 ± 30%. PMID:25517654

  3. Fission enhanced diffusion of uranium in zirconia

    NASA Astrophysics Data System (ADS)

    Bérerd, N.; Chevarier, A.; Moncoffre, N.; Sainsot, Ph.; Faust, H.; Catalette, H.

    2005-11-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin 235UO2 layer in direct contact with an oxidised zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 1011 ions cm-2 s-1 and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10-15 cm2 s-1 at 480 °C and compared to uranium thermal diffusion data in ZrO2 in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  4. Fission Barriers of Compound Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-05-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for Fm264, Ds272, 127812, 129214, and 131224. For nuclei around 127812 produced in “cold-fusion” reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around 129214 synthesized in “hot-fusion” experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.

  5. Fission barriers of compound superheavy nuclei.

    PubMed

    Pei, J C; Nazarewicz, W; Sheikh, J A; Kerman, A K

    2009-05-15

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for 264Fm, 272Ds, ;{278}112, ;{292}114, and ;{312}124. For nuclei around ;{278}112 produced in "cold-fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ;{292}114 synthesized in "hot-fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied. PMID:19518948

  6. Prompt fission neutron emission: Problems and challenges

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Bryś, T.; Gamboni, T.; Geerts, W.; Göök, A.; Matei, C.; Oberstedt, S.; Vidali, M.

    2013-12-01

    This paper presents some of the challenges ahead of us even after 75 years of the discovery of the fission process and large progress made since then. The focus is on application orientation, which requires improved measurements on fission cross-sections and neutron and γ-ray multiplicities. Experimental possibilities have vastly improved the past decade leading to developments of highly sophisticated detector systems and the use of digital data acquisition and signal processing. The development of innovative fast nuclear reactor technology needs improved respective nuclear data. Advancements in theoretical modelling also require better experimental data. Theory has made progress in calculating fission fragment distributions (i.e. GEF code) as well as prompt neutron and γ-ray emission to catch up with the improved experiments.

  7. Solar vs. Fission Surface Power for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per crewed expedition mission. Unlike the demonstration mission, a lengthy power outage due to the global dust storms that are known to occur on Mars would pose a safety hazard to a crewed mission. A similar fission versus solar power trade study performed by NASA in 2007 concluded that fission power was more reliable-with a much lower mass penalty-than solar power for this application. However, recent advances in solar cell and energy storage technologies and changes in operational assumptions prompted NASA to revisit the analysis. For the purpose of this exercise a particular landing site at Jezero Crater, located at 18o north latitude, was assumed. A fission power system consisting of four each 10 kW Kilopower fission reactors was compared to a distributed network of Orion-derived Ultraflex solar arrays and Lithium ion batteries mounted on every lander. The team found that a solar power system mass of about 9,800 kg would provide the 22 kilowatts (kW) keep-alive power needed to survive a dust storm lasting up to 120-days at average optical depth of 5, and 35 kW peak power for normal operations under clear skies. Although this is less than half the mass estimated during the 2007 work (which assumed latitudes up to 30o) it is still more than the 7,000 kg mass of the fission system which provides full power regardless of dust storm conditions.

  8. Composite aromatic boxes for enzymatic transformations of quaternary ammonium substrates.

    PubMed

    Nagy, Gergely N; Marton, Lívia; Contet, Alicia; Ozohanics, Olivér; Ardelean, Laura-Mihaela; Révész, Agnes; Vékey, Károly; Irimie, Florin Dan; Vial, Henri; Cerdan, Rachel; Vértessy, Beáta G

    2014-12-01

    Cation-π interactions to cognate ligands in enzymes have key roles in ligand binding and enzymatic catalysis. We have deciphered the key functional role of both charged and aromatic residues within the choline binding subsite of CTP:phosphocholine cytidylyltransferase and choline kinase from Plasmodium falciparum. Comparison of quaternary ammonium binding site structures revealed a general composite aromatic box pattern of enzyme recognition sites, well distinguished from the aromatic box recognition site of receptors. PMID:25283789

  9. Organocatalytic Asymmetric Synthesis of Dihydrobenzoxazinones Bearing Trifluoromethylated Quaternary Stereocenters.

    PubMed

    Lou, Hengqiao; Wang, Yongtao; Jin, Enze; Lin, Xufeng

    2016-03-01

    Chiral phosphoric acid-catalyzed enantioselective aza-Friedel-Crafts reaction of trifluoromethyl benzoxazinones with pyrroles is reported. Under mild conditions, a range of enantioenriched dihydrobenzoxazinones bearing trifluoromethylated quaternary stereocenters could be obtained in good to excellent yield and ee. A remarkable fluorine effect is observed, and preliminary mechanistic studies combined with theory calculations suggest that triple-hydrogen-bonding interactions hold the transition structure rigidly and allow the bulky substituents of the catalyst to influence the enantioselectivity. PMID:26882280

  10. Quaternary fluvial archives: achievements of the Fluvial Archives Group

    NASA Astrophysics Data System (ADS)

    Bridgland, David; Cordier, Stephane; Herget, Juergen; Mather, Ann; Vandenberghe, Jef; Maddy, Darrel

    2013-04-01

    In their geomorphological and sedimentary records, rivers provide valuable archives of environments and environmental change, at local to global scales. In particular, fluvial sediments represent databanks of palaeoenvironment and palaeoclimatic (for example) of fossils (micro- and macro-), sedimentary and post-depositional features and buried soils. Well-dated sequences are of the most value, with dating provided by a wide range of methods, from radiometric (numerical) techniques to included fossils (biostratigraphy) and/or archaeological material. Thus Quaternary fluvial archives can also provide important data for studies of Quaternary biotic evolution and early human occupation. In addition, the physical disposition of fluvial sequences, be it as fragmented terrace remnants or as stacked basin-fills, provides valuable information about geomorphological and crustal evolution. Since rivers are long-term persistent features in the landscape, their sedimentary archives can represent important frameworks for regional Quaternary stratigraphy. Fluvial archives are distributed globally, being represented on all continents and across all climatic zones, with the exception of the frozen polar regions and the driest deserts. In 1999 the Fluvial Archives Group (FLAG) was established, as a working group of the Quaternary Research Association (UK), aimed at bringing together those interested in such archives. This has evolved into an informal organization that has held regular biennial combined conference and field-trip meetings, has co-sponsored other meetings and conference sessions, and has presided over two International Geoscience Programme (IGCP) projects: IGCP 449 (2000-2004) 'Global Correlation of Late Cenozoic Fluvial Deposits' and IGCP 518 (2005-2007) 'Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic'. Through these various activities a sequence of FLAG publications has appeared, including special issues in a variety of journals, amassing a substantial volume of information on fluvial archives worldwide. This presentation will highlight some of these data and will describe important patterns observed and interpretations arising therefrom.

  11. U.S. Quaternary Fault and Fold Database Released

    NASA Astrophysics Data System (ADS)

    Haller, Kathleen M.; Machette, Michael N.; Dart, Richard L.; Rhea, B. Susan

    2004-06-01

    A comprehensive online compilation of Quaternary-age faults and folds throughout the United States was recently released by the U.S. Geological Survey, with cooperation from state geological surveys, academia, and the private sector. The Web site at http://Qfaults.cr.usgs.gov/ contains searchable databases and related geo-spatial data that characterize earthquake-related structures that could be potential seismic sources for large-magnitude (M > 6) earthquakes.

  12. Analysis of Human Dopamine D3 Receptor Quaternary Structure*

    PubMed Central

    Marsango, Sara; Caltabiano, Gianluigi; Pou, Chantevy; Varela Liste, María José; Milligan, Graeme

    2015-01-01

    The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric β1-adrenoreceptor, μ-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a β1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a ”rhombic” tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures. PMID:25931118

  13. Analysis of Human Dopamine D3 Receptor Quaternary Structure.

    PubMed

    Marsango, Sara; Caltabiano, Gianluigi; Pou, Chantevy; Varela Liste, María José; Milligan, Graeme

    2015-06-12

    The dopamine D3 receptor is a class A, rhodopsin-like G protein-coupled receptor that can form dimers and/or higher order oligomers. However, the molecular basis for production of these complexes is not well defined. Using combinations of molecular modeling, site-directed mutagenesis, and homogenous time-resolved FRET, the interfaces that allow dopamine D3 receptor monomers to interact were defined and used to describe likely quaternary arrangements of the receptor. These were then compared with published crystal structures of dimeric β1-adrenoreceptor, μ-opioid, and CXCR4 receptors. The data indicate important contributions of residues from within each of transmembrane domains I, II, IV, V, VI, and VII as well as the intracellular helix VIII in the formation of D3-D3 receptor interfaces within homo-oligomers and are consistent with the D3 receptor adopting a β1-adrenoreceptor-like quaternary arrangement. Specifically, results suggest that D3 protomers can interact with each other via at least two distinct interfaces: the first one comprising residues from transmembrane domains I and II along with those from helix VIII and a second one involving transmembrane domains IV and V. Moreover, rather than existing only as distinct dimeric species, the results are consistent with the D3 receptor also assuming a quaternary structure in which two transmembrane domain I-II-helix VIII dimers interact to form a "rhombic" tetramer via an interface involving residues from transmembrane domains VI and VII. In addition, the results also provide insights into the potential contribution of molecules of cholesterol to the overall organization and potential stability of the D3 receptor and possibly other GPCR quaternary structures. PMID:25931118

  14. Low-mass fission detector for the fission neutron spectrum measurement

    SciTech Connect

    Wu, C Y; Henderson, R; Gostic, J; Haight, R C; Lee, H Y

    2010-10-20

    For the fission neutron spectrum measurement, the neutron energy is determined in a time-of-flight experiment by the time difference between the fission event and detection of the neutron. Therefore, the neutron energy resolution is directly determined by the time resolution of both neutron and fission detectors. For the fission detection, the detector needs not only a good timing response but also the tolerance of radiation damage and high {alpha}-decay rate. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to particles, which is important for experiments with - emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. In the following sections, the description will be given for the design and performance of a new low-mass PPAC for the fission-neutron spectrum measurements at LANL.

  15. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    NASA Astrophysics Data System (ADS)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  16. Simulation of Quaternary glacial cycles with fully interactive carbon cycle

    NASA Astrophysics Data System (ADS)

    Ganopolski, Andrey; Brovkin, Victor

    2014-05-01

    Although it is generally accepted that, as postulated by the Milankovitch theory, Earth's orbital variations play an important role in Quaternary climate dynamics, the mechanism of glacial cycles still not fully understood. Among major scientific challenges remains the understanding of the nature of 100 kyr cycles that dominated climate variability over the late part of Quaternary and a strong link between ice volume and atmospheric CO2 concentration. Here using the Earth system model of intermediate complexity CLIMBER-2 which includes all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, aeolian dust and marine biogeochemistry - we performed simulations of the Quaternary climate cycles using variations in the Earth's orbital parameters as the only prescribed climate forcing. Thanks to high computational efficiency of the CLIMBER-2 model we performed a large suite of model simulations aimed on better understanding the role of individual processes. We found that the main drivers of atmospheric CO2 evolve with time: changes in sea surface temperature and volume of bottom water of southern origin exert CO2 control during glacial inception and deglaciation, while changes in carbonate chemistry and marine biology are dominant during the first and second parts of the glacial cycles, respectively. Changes in terrestrial carbon pool play significant role during deglaciation. We also discus how paleoclimate records, such as atmospheric and deep oceanic d13C, can help to constrain model parameters and test hypotheses on the mechanism of glacial-interglacial CO2 variations.

  17. Microstructure development in Al-Cu-Ag-Mg quaternary alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Froyen, L.

    2012-01-01

    The solidification behaviour of multi-component and multi-phase systems has been largely investigated in binary and ternary alloys. In the present study, a quaternary model system is proposed based on the well known Al-Cu-Ag and Al-Cu-Mg ternary eutectic alloys. The quaternary eutectic composition and temperature were determined by EDS (Energy Dispersive Spectrometry) and DSC (Differential Scanning Calorimetry) analysis, respectively. The microstructure was then characterised by SEM (Scanning Electron Microscope). In the DSC experiments, two types of quaternary eutectics were determined according to their phase composition. For each type of eutectic, various microstructures were observed, which result in different eutectic compositions. Only one of the determined eutectic compositions was further studied by the controlled growth technique in a vertical Bridgeman type furnace. In the initial part of the directionally solidified sample, competing growth between two-phase dendrites and three-phase eutectics was obtained, which was later transformed to competing growth between three-phase and four-phase eutectics. Moreover, silver enrichment was measured at the solidification front, which is possibly caused by Ag sedimentation due to gravity and Ag rejection from dendritic and three-phase eutectic growth, and its accumulation at the solidification front.

  18. Quaternary diversification in European alpine plants: pattern and process.

    PubMed

    Kadereit, Joachim W; Griebeler, Eva Maria; Comes, Hans Peter

    2004-02-29

    Molecular clock approaches applied previously to European alpine plants suggest that Primula sect. Auricula, Gentiana sect. Ciminalis and Soldanella diversified at the beginning of the Quaternary or well within this period, whereas Globularia had already started diversifying in the (Late-)Tertiary. In the first part of this paper we present evidence that, in contrast to Globularia and Soldanella, the branching patterns of the molecular internal transcribed spacer phylogenies of both Primula and Gentiana are incompatible with a constant-rates birth-death model. In both of these last two taxa, speciation probably decreased through Quaternary times, perhaps because of some niche-filling process and/or a decrease in specific range size. In the second part, we apply nonlinear regression analyses to the lineage-through-time plots of P. sect. Auricula to test a range of capacity-dependent models of diversification, and the effect of Quaternary climatic oscillations on diversification and extinction. At least for one major clade of sect. Auricula there is firm evidence that both diversification and extinction are a function of temperature. Intriguingly, temperature appears to be correlated positively with extinction, but negatively with diversification. This suggests that diversification did not take place, as previously assumed, in geographical isolation in high-altitude interglacial refugia, but rather at low altitudes in geographically isolated glacial refugia. PMID:15101582

  19. Quaternary diversification in European alpine plants: pattern and process.

    PubMed Central

    Kadereit, Joachim W; Griebeler, Eva Maria; Comes, Hans Peter

    2004-01-01

    Molecular clock approaches applied previously to European alpine plants suggest that Primula sect. Auricula, Gentiana sect. Ciminalis and Soldanella diversified at the beginning of the Quaternary or well within this period, whereas Globularia had already started diversifying in the (Late-)Tertiary. In the first part of this paper we present evidence that, in contrast to Globularia and Soldanella, the branching patterns of the molecular internal transcribed spacer phylogenies of both Primula and Gentiana are incompatible with a constant-rates birth-death model. In both of these last two taxa, speciation probably decreased through Quaternary times, perhaps because of some niche-filling process and/or a decrease in specific range size. In the second part, we apply nonlinear regression analyses to the lineage-through-time plots of P. sect. Auricula to test a range of capacity-dependent models of diversification, and the effect of Quaternary climatic oscillations on diversification and extinction. At least for one major clade of sect. Auricula there is firm evidence that both diversification and extinction are a function of temperature. Intriguingly, temperature appears to be correlated positively with extinction, but negatively with diversification. This suggests that diversification did not take place, as previously assumed, in geographical isolation in high-altitude interglacial refugia, but rather at low altitudes in geographically isolated glacial refugia. PMID:15101582

  20. Genetic ages for Quaternary topographic evolution: A new dating tool

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Burridge, Chris; Norris, Richard; Waters, Jon

    2008-01-01

    All eukaryote populations accumulate mutations in their mitochondrialDNA (mtDNA) over time, so reproductively isolated populationsbecome characterized by distinct mtDNA lineages. In addition,the degree of genetic differentiation among distinct populationscan be used to estimate time elapsed since their isolation.We have identified an informative system for calibrating themtDNA "clock" by genetically comparing freshwater galaxiid fishpopulations isolated in different river drainages. Calibrationusing a range of Quaternary geological events in southern NewZealand shows that the mtDNA divergence rate in galaxiid fishesis between 1% and 2%/100 k.y. up to 250 k.y., with the ratedecreasing with increasing age. The estimated divergence rateslows to around 4%/m.y. for the middle Quaternary, althoughcalibration is poor. A calibration curve has been fitted toall data: divergence (%) = -2.2e-9t + 2.5t + 2.2,where t is isolation age (in m.y.). This molecular clock haspotential as a dating tool for glacially related and activetectonic events that have caused river drainage changes in thelate Quaternary in the Southern Hemisphere, where galaxiidsare widespread. An application of this dating tool to an examplein northern South Island uses three different species of freshwater-limitedfish, and all three data sets imply formation of a drainagedivide at 320 ± 110 ka, at about the time of a majorglacial advance though the divide (oxygen isotope stage 8).

  1. Quaternary diversification in a sexual Holarctic zooplankter, Daphnia galeata.

    PubMed

    Ishida, Seiji; Taylor, Derek J

    2007-02-01

    The effects of Quaternary glacial range partitioning on the diversification of Holarctic biota remain unclear. Glacial refugial lineages may form vicariant species, hybrid products, or merge after secondary contact. Here, we assess the effects of Quaternary glaciation on a Holarctic sexual zooplankter, Daphnia galeata, with apparently marked dispersal capacity and a widespread hybrid lineage in the New World. We collected samples of this species from 148 Holarctic lakes, analysed the nuclear and mitochondrial gene sequences, and tested predictions for hypotheses that account for the origin and spread of the New World D. galeata. We detected five nuclear phylogroups and four mitochondrial phylogroups, most of which were restricted to either the New World or the Old World. The oldest mitochondrial phylogroup was restricted to Japan. One major mitochondrial clade was distributed throughout the Holarctic, but only four haplotypes were shared among continents, and analysis of molecular variance indicated significant structure at the continental level. Haplotype sharing among continents could largely be attributed to anthropogenic introductions. Mismatch distributions, haplotype networks, phylogenetic trees, longitudinal haplotype diversity erosion and coalescence analyses are consistent with colonization from an Old World and a New World refugium. Our nuclear and mitochondrial DNA sequence evidence supports the hypothesis that the New World D. galeata underwent introgression with Daphnia dentifera, with dispersal being enhanced by glaciation. We conclude that Quaternary glaciation had a pronounced effect on the diversification of a Holarctic sexual zooplankter. PMID:17257114

  2. Italian hybrid and fission reactors scenario analysis

    NASA Astrophysics Data System (ADS)

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-01

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  3. Uncertainty Quantification on Prompt Fission Neutrons Spectra

    SciTech Connect

    Talou, P. Madland, D.G.; Kawano, T.

    2008-12-15

    Uncertainties in the evaluated prompt fission neutrons spectra present in ENDF/B-VII.0 are assessed in the framework of the Los Alamos model. The methodology used to quantify the uncertainties on an evaluated spectrum is introduced. We also briefly review the Los Alamos model and single out the parameters that have the largest influence on the calculated results. Using a Kalman filter, experimental data and uncertainties are introduced to constrain model parameters, and construct an evaluated covariance matrix for the prompt neutrons spectrum. Preliminary results are shown in the case of neutron-induced fission of {sup 235}U from thermal up to 15 MeV incident energies.

  4. Fission-gas release from uranium nitride at high fission rate density

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    A sweep gas facility has been used to measure the release rates of radioactive fission gases from small UN specimens irradiated to 8-percent burnup at high fission-rate densities. The measured release rates have been correlated with an equation whose terms correspond to direct recoil release, fission-enhanced diffusion, and atomic diffusion (a function of temperature). Release rates were found to increase linearly with burnups between 1.5 and 8 percent. Pore migration was observed after operation at 1550 K to over 6 percent burnup.

  5. Energy Dependence of Plutonium Fission-Product Yields

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2011-12-01

    A method is developed for interpolating between and/or extrapolating from two pre-neutron-emission first-chance mass-asymmetric fission-product yield curves. Measured 240Pu spontaneous fission and thermal-neutron-induced fission of 239Pu fission-product yields (FPY) are extrapolated to give predictions for the energy dependence of the n + 239Pu FPY for incident neutron energies from 0 to 16 MeV. After the inclusion of corrections associated with mass-symmetric fission, prompt-neutron emission, and multi-chance fission, model calculated FPY are compared to data and the ENDF/B-VII.1 evaluation. The ability of the model to reproduce the energy dependence of the ENDF/B-VII.1 evaluation suggests that plutonium fission mass distributions are not locked in near the fission barrier region, but are instead determined by the temperature and nuclear potential-energy surface at larger deformation.

  6. Fundamental Fission Research with the NIFFTE Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Kleinrath, Verena; Niffte Collaboration

    2013-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed a novel instrument for fission research - a Time Projection Chamber (TPC), which enables detailed tracking of charged particles emitted in neutron-induced fission. While the primary goal of the project is to measure fission cross sections with unprecedented precision, the TPC can also facilitate more fundamental fission studies. The detector's high efficiency (4-pi acceptance) and precise tracking capabilities (including energy deposition) provide a large amount of valuable information. Recent data collected during engineering runs using a U238/U235 target will be used to generate fission fragment angular distributions and yields as a function of incident neutron energy. These experimental results can lend insight into the evolution of nuclear shapes with respect to energy on the path to scission and therefore immediately drive fission theory development. Preliminary angular distributions and yields using the NIFFTE TPC will be presented. Neutron Induced Fission Fragment Tracking Experiment.

  7. Fission Product Sorptivity in Graphite

    SciTech Connect

    Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar; Viswanath, Dabir; Walton, Kyle; Haffner, Robert

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one graduate student meant that data acquisition with the packed bed systems ended up competing for the graduate student’s available time with the electrodynamic balance redesign and assembly portions of the project. This competition for available time was eventually mitigated to some extent by the later recruitment of an undergraduate student to help with data collection using the packed bed system. It was only the recruitment of the second student that allowed the single particle balance design and construction efforts to proceed as far as they did during the project period. It should be added that some significant time was also spent by the graduate student cataloging previous work involving graphite. This eventually resulted in a review paper being submitted and accepted (“Adsorption of Iodine on Graphite in High Temperature Gas-Cooled Reactor Systems: A Review,” Kyle L. Walton, Tushar K. Ghosh, Dabir S. Viswanath, Sudarshan K. Loyalka, Robert V. Tompson). Our specific revised objectives in this project were as follows: Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using an EDB and a temperature controlled EDB; Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using a packed column bed apparatus; Explore the effect that charge has on the adsorption isotherms of iodine by varying the charges on and the voltages used to suspend the microscopic particles in the EDB; and To interpret these results in terms of the existing models (Langmuir, BET, Freundlich, and others) which we will modify as necessary to include charge related effects.

  8. The Quaternary adakite distribution of Kyushu Island, Ryukyu Arc, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Yoshikawa, M.; Takemura, K.

    2011-12-01

    The Quaternary volcanoes are widely distributed in Kyusu Island, Japan. Philippine Sea plate is subducting beneath Kyushu. Clear distribution of deep seismic foci is observed below the Quaternary volcanoes in southern area, but not in northern area. Notsu et al. (1990, JVGR) examined the contribution of subduction to the magma source, and emphasized that no slab derived material is observed in northern area from Sr isotopic compositions. Volcanic activity similar to the within-plate type volcanism has been also emphasized for the magma genesis of this area (e.g. Kita et al, 2001, JVGR). However, we found adakitic rocks, which show high Sr/Y ratios and low Y concentrations (e.g. Defant and Drummond, 1990, Nature) from some Quaternary volcanoes in north Kyushu on the basis of published data (Otha et al, 1990, GANKO; Itoh, 1990, GANKO). Therefore, the magma genesis is still controversial. We studied lateral variations of Sr, Nd and Pb isotopic and trace element compositions for Quaternary volcanics from Kyushu to investigate the magma genesis. From the results, a clear variation of Sr/Y ratio, decreasing from north to south, is observed along the volcanic front. Some of the Sr/Y ratio of the most northern part of Kyusu shows the value >100. The all analyzed Pb isotope compositions show a single liner trend in 208Pb/204Pb v.s. 206Pb/204Pb diagram. The liner trend of Pb isotope ratios can be explained by the binary mixing of the Shikoku Basin basalt and tereginious sediment which might be a constituent of the subducting slab. The similar binary mixing relationships are found in Sr and Nd isotopic systematics. The isotopic characteristics of the Quaternary magma in Kyushu can be explained by the magma generation process of island arc, in spite of the lack of deep seismic foci in northern area. It is considered that high and low Sr/Y ratios suggest the contributions of partial melt in the north and aqueous fluid derived from subducting slab in the south, respectively. If these suggestions are correct, the difference of magma genesis in north and south might be related with the ages of subducting Philippine Sea plate which are < 25Ma at northern and >50 Ma at southern area.

  9. Fission Matrix Capability for MCNP Monte Carlo

    SciTech Connect

    Carney, Sean E.; Brown, Forrest B.; Kiedrowski, Brian C.; Martin, William R.

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a spatially low-order kernel, the fundamental eigenvector of which should converge faster than that of continuous kernel. We can then redistribute the fission bank to match the fundamental fission matrix eigenvector, effectively eliminating all higher modes. For all computations here biasing is not used, with the intention of comparing the unaltered, conventional Monte Carlo process with the fission matrix results. The source convergence of standard Monte Carlo criticality calculations are, to some extent, always subject to the characteristics of the problem. This method seeks to partially eliminate this problem-dependence by directly calculating the spatial coupling. The primary cost of this, which has prevented widespread use since its inception [2,3,4], is the extra storage required. To account for the coupling of all N spatial regions to every other region requires storing N{sup 2} values. For realistic problems, where a fine resolution is required for the suppression of discretization error, the storage becomes inordinate. Two factors lead to a renewed interest here: the larger memory available on modern computers and the development of a better storage scheme based on physical intuition. When the distance between source and fission events is short compared with the size of the entire system, saving memory by accounting for only local coupling introduces little extra error. We can gain other information from directly tallying the fission kernel: higher eigenmodes and eigenvalues. Conventional Monte Carlo cannot calculate this data - here we have a way to get new information for multiplying systems. In Ref. [5], higher mode eigenfunctions are analyzed for a three-region 1-dimensional problem and 2-dimensional homogenous problem. We analyze higher modes for more realistic problems. There is also the question of practical use of this information; here we examine a way of using eigenmode information to address the negative confidence interval bias due to inter-cycle correlation. We apply this method mainly to four problems: 2D pressurized water reactor (PWR) [6], 3D Kord Smith Challenge [7], OECD - Nuclear Energy Agency (NEA) source convergence benchmark fuel storage vault [8], and Advanced Test Reactor (ATR) [9]. We see excellent source convergence acceleration for the most difficult problems: the 3D Kord Smith Challenge and fuel storage vault. Additionally, we examine higher eigenmode results for all these problems. Using part of the eigenvalue spectrum for a one-group 1D problem, we find confidence interval correction factors that are improvements over existing corrections [10].

  10. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  11. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  12. Prompt Fission Neutrons as Probes to Nuclear Configurations at Scission

    SciTech Connect

    Talou, P.; Kawano, T.; Bonneau, L.

    2008-04-17

    Prompt fission neutrons and gamma-rays emitted by excited primary fission fragments are indirect probes to the nuclear configurations present near the scission point. By studying detailed characteristics of these quantities, it is shown that one can discriminate between various assumptions regarding the sharing of the free energy at scission among the two fragments. The case of low-energy neutron-induced fission on {sup 235}U is studied and interpreted in terms of fission modes.

  13. Fission barriers in a macroscopic-microscopic model

    SciTech Connect

    Dobrowolski, A.; Pomorski, K.; Bartel, J.

    2007-02-15

    In the framework of the macroscopic-microscopic model, this study investigates fission barriers in the region of actinide nuclei. A very effective four-dimensional shape parametrization for fissioning nuclei is proposed. Taking, in particular, the left-right mass asymmetric and nonaxial shapes into account is demonstrated to have a substantial effect on fission barrier heights. The influence of proton versus neutron deformation differences on the potential energy landscape of fissioning nuclei is also discussed.

  14. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2008-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  15. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type (i.e., well constrained, moderately constrained, or inferred), and mapped scale. Each fault is assigned a three-integer CODE, based upon age, slip rate, and how well the fault is located. This CODE dictates the line-type for the GIS files. To host the database, we are developing an interactive web-map application with ArcGIS for Server and the ArcGIS API for JavaScript from Environmental Systems Research Institute, Inc. (Esri). The web-map application will present the database through a visible scale range with each fault displayed at the resolution of the original map. Application functionality includes: search by name or location, identification of fault by manual selection, and choice of base map. Base map options include topographic, satellite imagery, and digital elevation maps available from ArcGIS on-line. We anticipate that the database will be publically accessible from a portal embedded on the DGGS website by the end of 2011.

  16. Enabling the Use of Space Fission Propulsion Systems

    SciTech Connect

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-06-04

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center.

  17. Fission barriers and probabilities of spontaneous fission for elements with Z ≥ 100

    NASA Astrophysics Data System (ADS)

    Baran, A.; Kowal, M.; Reinhard, P.-G.; Robledo, L. M.; Staszczak, A.; Warda, M.

    2015-12-01

    This paper briefly reviews recent progress in theoretical studies on fission barriers and fission half-lives of even-even superheavy nuclei. We compare and discuss results obtained in the semi-classical macroscopic-microscopic approach, the self-consistent mean-field models with the Skyrme and Gogny energy density functionals and in the relativistic mean-field theory. A short part of the paper is devoted to the calculation of the mass parameters and nuclear fission dynamics. We also discuss the predictive power of Skyrme energy density functionals applied to key properties of the fission path of 266Hs. Standard techniques of error estimates in the framework of a χ2 analysis are applied.

  18. Uncertainties and Covariances of the Fission Cross Sections and the Fission Neutron Multiplicities for Actinides

    SciTech Connect

    Gai, E.V.; Ignatyuk, A.V.

    2008-12-15

    Experimental data on the fission cross sections and the fission-neutron multiplicities of actinides are analyzed on the basis of the unrecognized error-estimation method. Such an approach allows us to estimate reasonable systematic uncertainties of available data, which are underestimated by authors of most measurements as a rule. The corresponding uncertainties and covariances of evaluated data are obtained for the most important actinides in the 15-energy group representation. Differences between the present evaluations and the recent BOLNA results are discussed for the main actinides. It is shown that the fission cross section uncertainties are overestimated essentially in the BOLNA analysis for minor actinides. Uncertainties of the cross sections and the neutron multiplicities averaged over the Cf-252 fission-neutron spectrum are considered.

  19. Fission yeast meets a legend in Kobe: report of the Eighth International Fission Yeast Meeting.

    PubMed

    Asakawa, Haruhiko; Yamamoto, Takaharu G; Hiraoka, Yasushi

    2015-12-01

    The Eighth International Fission Yeast Meeting, which was held at Ikuta Shrine Hall in Kobe, Japan, from 21 to 26 June 2015, was attended by 327 fission yeast researchers from 25 countries (190 overseas and 137 domestic participants). At this meeting, 124 talks were held and 145 posters were presented. In addition, newly developed database tools were introduced to the community during a workshop. Researchers shared cutting-edge knowledge across broad fields of study, ranging from molecules to evolution, derived from the superior model organism commonly used within the fission yeast community. Intensive discussions and constructive suggestions generated in this meeting will surely advance the understanding of complex biological systems in fission yeast, extending to general eukaryotes. PMID:26477989

  20. Fission chamber measurements of /sup 235/U fission for encapsulated /sup 252/Cf sources

    SciTech Connect

    Hamblen, R.A.; West, L.

    1987-01-01

    Measurements with a dual fission chamber have been made of the /sup 235/U fission rate in the neutron field of /sup 252/Cf calibration sources to investigate the effect of scattering from source encapsulation. The fission chamber, provided by the US National Bureau of Standards (NBS), is capable of high-precision absolute measurements. Neutron sources investigated include a Savannah River Lab. (SRL) 100-series source (311Z) and a 3000-series source (3009Z). These sources are doubly encapsulated with thick end plugs, which could lead to additional scattering to perturb the neutron field from that of an isotropic point source. Measurements were in the 90-deg plane from the source cylindrical axes; the fission chamber was covered with cadmium. All experimental work was in the irradiation cell at the SEFOR site of the Univ. of Arkansas.

  1. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  2. Fission Barriers of Compound Superheavy Nuclei

    SciTech Connect

    Pei, Junchen; Nazarewicz, Witold; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. We study the temperature-dependent fission barriers by means of the self-consistent nuclear density functional theory. The equivalence of isothermal and isentropic descriptions is demonstrated. The effect of the particle gas is found to be negligible in the range of temperatures studied. Calculations have been carried out for ^{264}Fm, ^{272}Ds, ^{278}112, ^{292}114, and ^{312}124. For nuclei around ^{278}112 produced in "cold fusion" reactions, we predict a more rapid decrease of fission barriers with temperature as compared to the nuclei around ^{292}114 synthesized in "hot fusion" experiments. This is explained in terms of the difference between the ground-state and fission-barrier temperatures. Our calculations are consistent with the long survival probabilities of the superheavy elements produced in Dubna with the ^{48}Ca beam.

  3. Volatility of fission products during reactor accidents

    NASA Astrophysics Data System (ADS)

    Paquette, J.; Torgerson, D. F.; Wren, J. C.; Wren, D. J.

    1985-02-01

    This paper summarizes some current generic work on the behaviour of iodine, cesium, and tellurium under conditions expected to occur during postulated reactor accidents. We discuss Knudsen cell experiments to elucidate the high-temperature properties of fission-product mixtures, steam-flashing experiments to measure iodine transfer to the gas phase, and the formation and volatility of organic iodides in aqueous solutions.

  4. Cutting fluid for machining fissionable materials

    SciTech Connect

    Duerksen, W.K.; Googin, J.M.; Napier, B. Jr.

    1982-01-28

    The present invention is directed to a cutting fluid for machining fissionable material. The cutting fluid is formed of glycol, water and a boron compound in an adequate concentration for effective neutron attenuation so as to inhibit criticality incidents during machining.

  5. Critical Temperature from the Fission Data

    SciTech Connect

    Cherepanov, E. A.; Karnaukhov, V. A.

    2007-05-22

    Experimental and calculated data on the fission probability are compared for highly excited 188Os. The calculations have been made within the statistical model using the more reliable parameterizations for the temperature dependence or surface tension. It is concluded that the critical temperature for the nuclear liquid-gas phase transition is higher than 16 MeV.

  6. Fission Detection Using the Associated Particle Technique

    SciTech Connect

    R.P. Keegan, J.P. Hurley, J.R. Tinsley, R. Trainham, S.C. Wilde

    2008-09-18

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 107 neutrons/second radiated into a 4π solid angle. Two 4 in.×4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium.

  7. Energy Correlation of Prompt Fission Neutrons

    NASA Astrophysics Data System (ADS)

    Elter, Zs.; Pázsit, I.

    2016-03-01

    In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  8. Singlet exciton fission in a hexacene derivative.

    PubMed

    Lee, Jiye; Bruzek, Matthew J; Thompson, Nicholas J; Sfeir, Matthew Y; Anthony, John E; Baldo, Marc A

    2013-03-13

    Hexacene, an acene with six benzene rings, is notable for its exceptionally small triplet energy, around one third of the singlet energy. Herein, singlet fission, i.e., conversion of a singlet exciton into two triplets, is demonstrated in a thin film of hexacene derivative, employing both transient absorption spectroscopy and magnetic field effects on photocurrent. PMID:23293054

  9. Fission Energy and Other Sources of Energy

    ERIC Educational Resources Information Center

    Alfven, Hannes

    1974-01-01

    Discusses different forms of energy sources and basic reasons for the opposition to the use of atomic energy. Suggests that research efforts should also be aimed toward the fission technology to make it acceptable besides major research studies conducted in the development of alternative energy sources. (CC)

  10. Fission cycling in a supernova r process

    NASA Astrophysics Data System (ADS)

    Beun, J.; McLaughlin, G. C.; Surman, R.; Hix, W. R.

    2008-03-01

    Recent halo star abundance observations exhibit an important feature of consequence to the r process: the presence of a main r process between the second and third peaks that is consistent among halo stars. We explore fission cycling and steady β flow as the driving mechanisms behind this feature. The presence of fission cycling during the r process can account for nucleosynthesis yields between the second and third peaks, whereas the presence of steady β flow can account for consistent r-process patterns, robust under small variations in astrophysical conditions. We employ the neutrino-driven wind of the core-collapse supernova to examine fission cycling and steady β flow in the r process. As the traditional neutrino-driven wind model does not produce the required very neutron-rich conditions for these mechanisms, we examine changes to the neutrino physics necessary for fission cycling to occur in the neutrino-driven wind environment, and we explore under what conditions steady β flow is obtained.

  11. A CHEMICAL METHOD OF TREATING FISSIONABLE MATERIAL

    DOEpatents

    Olson, C.M.

    1959-09-01

    One step of a process for separating plutonium from uranium and fission products is presented. A nitric acid solution containing these constituents is treated with formic acid to reduce simultaneously the plutonium to a valence state of not greater than +4 and destroy and eliminate the excess nitric acid.

  12. Delayed neutrons in fission of polonium isotopes

    SciTech Connect

    Ramazanov, R.; Urikbaev, Z.S.; Maksyutenko, B.P.; Ignat'ev, S.V.

    1988-06-01

    A strong difference is found in the relative yields of delayed neutrons in the production of compound nuclei of polonium isotopes in reactions in which bismuth and lead are bombarded by various charged particles. The effect can be partially explained by the different lengths of the ..beta..-decay chains of the light and heavy fission products.

  13. Tandem mirror fusion-fission hybrid studies

    NASA Astrophysics Data System (ADS)

    Lee, J. D.

    1980-04-01

    The concept of combining nuclear fusion and nuclear fission techniques is discussed. Initial tandem mirror hybrid studies predict the ability to produce large amounts of fissile fuel (2 to 7 tons U233 per year from a 4000 MW plant) at a cost that adds less than 25% to the cost of power from a light water reactor.

  14. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  15. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  16. Spontaneous fission of /sup 259/Fm

    SciTech Connect

    Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.; Wild, J.F.; Hoffman, D.C.; Weber, J.; Wilhelmy, J.B.

    1980-03-01

    A 1.5-s spontaneous fission activity has been produced by irradiating /sup 257/Fm with 16-MeV tritons. On the basis of formation cross sections, fission half-life systematics, and the identification of other possible products, this 1.5-s activity has been attributed to /sup 259/Fm formed by the reaction /sup 257/Fm(t,p)/sup 259/Fm. /sup 259/Fm is the heaviest known isotope of Fm and has more neutrons than any other nuclide thus far identified. This measurement of the spontaneous fission of /sup 259/Fm is the first to show a narrow, predominantly symmetric, mass division from spontaneous fission. It is accompanied by a very high kinetic energy, the most probable total kinetic energy being 242 +- 6 MeV. These features show a marked acceleration in the trend toward more symmetric mass division and higher total kinetic energies than have been observed previously for the Fm isotopes as the mass increased.

  17. After Apollo: Fission Origin of the Moon

    ERIC Educational Resources Information Center

    O'Keefe, John A.

    1973-01-01

    Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)

  18. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  19. Angular momentum of fission fragments in low energy fission of actinides

    NASA Astrophysics Data System (ADS)

    Naik, H.; Dange, S. P.; Singh, R. J.

    2005-01-01

    Independent isomeric yield ratios (IYR) of 128Sb, 130Sb, 132Sb, 131Te, 133Te, 132I, 134I, 136I, 135Xe, and 138Cs have been determined in fast neutron induced fission of 232Th, 238U, 240Pu, and 244Cm as well as in thermal neutron induced fission of 232U and 238Pu using radiochemical and offline γ-ray spectrometric techniques. From the IYR, fragment angular momenta (Jrms) have been deduced using a spin-dependent statistical model analysis. These data along with the literature data for 230Th∗, 234U∗, 236U∗, 240Pu∗, 242Pu∗, 244Cm(SF), 246Cm∗, 250Cf∗, and 252Cf(SF) for fifteen even-Z fissioning systems show the following important features: (i) The Jrms of the odd-Z fission products are higher than those of the even-Z fission products, indicating the odd-even effect. For both the odd-Z and even-Z fission products, the Jrms increase with Z2F/AF. (ii) The Jrms of fragments with spherical 50-p and 82-n shells are lower compared to those of fragments outside the spherical shell, indicating the effect of shell closure proximity. (iii) The Jrms of the fission products increase with mass number in spite of fluctuations in shell closure proximity and odd-even effects but do not show any correlation with the neutron emission curve. (iv) In all fifteen even-Z fissioning systems from Th to Cf, the yield-weighted Jrms values show an anticorrelation with the elemental yields. (v) The odd-even fluctuation on Jrms does not change drastically from Th to Cf, unlike the proton odd-even effect (δp) which decreases significantly with the increase of Coulomb parameter (Z2F/A1/3F).

  20. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  1. Rapid separation of fresh fission products (draft)

    SciTech Connect

    Dry, D. E.; Bauer, E.; Petersen, L. A.

    2003-01-01

    The fission of highly eruiched uranium by thermal neutrons creates dozens of isotopic products. The Isotope and Nuclear Chemistry Group participates in programs that involve analysis of 'fiesh' fission products by beta counting following radiochemical separations. This is a laborious and time-consuming process that can take several days to generate results. Gamma spectroscopy can provide a more immediate path to isolopic activities, however short-lived, high-yield isotopes can swamp a gamma spectrum, making difficult the identification and quantification of isotopes on the wings and valley of the fission yield curve. The gamma spectrum of a sample of newly produced fission products is dominated by the many emissions of a very few high-yield isotopes. Specilkally, {sup 132}Te (3.2 d), its daughter, {sup 132}I(2 .28 h), {sup 140}Ba (12.75 d), and its daughter {sup 140}La (1.68 d) emit at least 18 gamma rays above 100 keV that are greater than 5% abundance. Additionally, the 1596 keV emission fiom I4'La imposes a Compton background that hinders the detection of isotopes that are neither subject to matrix dependent fractionation nor gaseous or volatile recursors. Some of these isotopes of interest are {sup 111}Ag, {sup 115}Cd, and the rare earths, {sup 153}Sm, {sup 154}Eu, {sup 156}Eu, and {sup 160}Tb. C-INC has performed an HEU irradiation and also 'cold' carrier analyses by ICP-AES to determine methods for rapid and reliable separations that may be used to detect and quantify low-yield fission products by gamma spectroscopy. Results and progress will be presented.

  2. Prompt fission neutron spectra in fast-neutron-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Desai, V. V.; Nayak, B. K.; Saxena, A.; Suryanarayana, S. V.; Capote, R.

    2015-07-01

    Prompt fission neutron spectrum (PFNS) measurements for the neutron-induced fission of 238U are carried out at incident neutron energies of 2.0, 2.5, and 3.0 MeV, respectively. The time-of-flight technique is employed to determine the energy of fission neutrons. The prompt fission neutron energy spectra so obtained are analyzed using Watt parametrization to derive the neutron multiplicity and average prompt fission neutron energy. The present experimental PFNS data are compared with the evaluated spectra taken from the ENDF/B-VII.1 library and the predictive calculations carried out using the empire-3.2 (Malta) code with built-in Los Alamos (LA) and Kornilov PFNS models. The sensitivity of the empire-3.2 LA model-calculated PFNS to the nuclear level density parameter of the average fission fragment and to the total kinetic energy is investigated. empire-3.2 LA model PFNS calculations that use Madland 2006-recommended values [D. G. Madland, Nucl. Phys. A 772, 113 (2006), 10.1016/j.nuclphysa.2006.03.013] of the total kinetic energy and the level density parameter a =A /(10 ±0.5 ) compare very well to measured data at all incident neutron incident energies.

  3. Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons

    SciTech Connect

    Nix, J.R.; Madland, D.G.; Sierk, A.J.

    1985-01-01

    With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown.

  4. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    NASA Astrophysics Data System (ADS)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  5. Application of the dinuclear system model to fission process

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Shneidman, T. M.; Ventura, A.

    2016-01-01

    A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron-induced fission of 239Pu.

  6. Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry

    SciTech Connect

    Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

    2009-11-01

    Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

  7. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  8. A Novel Route to Recognizing Quaternary Ammonium Cations Using Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Shackman, Holly M.; Ding, Wei; Bolgar, Mark S.

    2015-01-01

    Characterizing and elucidating structures is a commonplace and necessary activity in the pharmaceutical industry with mass spectrometry and NMR being the primary tools for analysis. Although many functional groups are readily identifiable, quaternary ammonium cations have proven to be difficult to unequivocally identify using these techniques. Due to the lack of an N-H bond, quaternary ammonium groups can only be detected in the 1H NMR spectra by weak signals generated from long-range 14N-H coupling, which by themselves are inconclusive evidence of a quaternary ammonium functional group. Due to their low intensity, these signals are frequently not detected. Additionally, ions cannot be differentiated in a mass spectrum as an M+ or [M + H]+ ion without prior knowledge of the compound's structure. In order to utilize mass spectrometry as a tool for determining this functionality, ion cluster formation of quaternary ammonium cations and non-quaternary amines was studied using electrospray ionization. Several mobile phase modifiers were compared; however, the addition of small amounts of trifluoroacetic acid proved superior in producing characteristic and intense [M +2TFA]- clusters for compounds containing quaternary ammonium cations when using negative electrospray. By fragmenting this characteristic ion using CID, nearly all compounds studied could be unambiguously identified as containing a quaternary ammonium cation or a non-quaternary amine attributable to the presence (non-quaternary amine) or absence (quaternary ammonium cation) of the resulting [2TFA + H]- ion in the product spectra. This method of analysis provides a rapid, novel, and reliable technique for indicating the presence of quaternary ammonium cations in order to aid in structural elucidation.

  9. Quaternary geology and waste disposal in South Norfolk, England

    NASA Astrophysics Data System (ADS)

    Gray, J. M.

    South Norfolk is dominated by the till plain of the Anglian Glaciation in eastern England, and therefore there are very few disused gravel pits and quarries suitable for the landfilling of municipal waste. Consequently, in May 1991, Norfolk County Council applied for planning permission to develop an above ground or 'landraise' waste disposal site at a disused U.S. World War II Airfield at Hardwick in South Norfolk. The proposal involved excavating a pit 2-4 m deep into the Lowestoft Till and overfilling it to create a hill of waste up to 10 m above the existing till plain. In general, leachate containment was to be achieved by utilising the relatively low permeability till on the floor of the site, but with reworking of the till around the site perimeter because of sand lenses in the upper part of the till. This paper examines three aspects of the proposal and the wider issues relating to Quaternary geology and waste disposal planning in South Norfolk: (i) the suitability of the till as a natural leachate containment system; (ii) the appropriateness of the landraise landform; and (iii) alternative sites. A Public Inquiry into the proposals was held in January/February 1993 and notification of refusal of planning permission was published in August 1993. Among the grounds for refusal were an inadequate knowledge of the site's geology and hydrogeology and the availability of alternative sites. The paper concludes by stressing that a knowledge of Quaternary geology is crucial to both the planning and design of landfill sites in areas of glacial/Quaternary sediments.

  10. An aminostratigraphy for the British Quaternary based on Bithynia opercula

    NASA Astrophysics Data System (ADS)

    Penkman, Kirsty E. H.; Preece, Richard C.; Bridgland, David R.; Keen, David H.; Meijer, Tom; Parfitt, Simon A.; White, Tom S.; Collins, Matthew J.

    2013-02-01

    Aminostratigraphies of Quaternary non-marine deposits in Europe have been previously based on the racemization of a single amino acid in aragonitic shells from land and freshwater molluscs. The value of analysing multiple amino acids from the opercula of the freshwater gastropod Bithynia, which are composed of calcite, has been demonstrated. The protocol used for the isolation of intra-crystalline proteins from shells has been applied to these calcitic opercula, which have been shown to more closely approximate a closed system for indigenous protein residues. Original amino acids are even preserved in bithyniid opercula from the Eocene, showing persistence of indigenous organics for over 30 million years. Geochronological data from opercula are superior to those from shells in two respects: first, in showing less natural variability, and second, in the far better preservation of the intra-crystalline proteins, possibly resulting from the greater stability of calcite. These features allow greater temporal resolution and an extension of the dating range beyond the early Middle Pleistocene. Here we provide full details of the analyses for 480 samples from 100 horizons (75 sites), ranging from Late Pliocene to modern. These show that the dating technique is applicable to the entire Quaternary. Data are provided from all the stratotypes from British stages to have yielded opercula, which are shown to be clearly separable using this revised method. Further checks on the data are provided by reference to other type-sites for different stages (including some not formally defined). Additional tests are provided by sites with independent geochronology, or which can be associated with a terrace stratigraphy or biostratigraphy. This new aminostratigraphy for the non-marine Quaternary deposits of southern Britain provides a framework for understanding the regional geological and archaeological record. Comparison with reference to sites yielding independent geochronology, in combination with other lines of evidence, allows tentative correlation with the marine oxygen isotope record.

  11. An aminostratigraphy for the British Quaternary based on Bithynia opercula

    PubMed Central

    Penkman, Kirsty E.H.; Preece, Richard C.; Bridgland, David R.; Keen, David H.; Meijer, Tom; Parfitt, Simon A.; White, Tom S.; Collins, Matthew J.

    2013-01-01

    Aminostratigraphies of Quaternary non-marine deposits in Europe have been previously based on the racemization of a single amino acid in aragonitic shells from land and freshwater molluscs. The value of analysing multiple amino acids from the opercula of the freshwater gastropod Bithynia, which are composed of calcite, has been demonstrated. The protocol used for the isolation of intra-crystalline proteins from shells has been applied to these calcitic opercula, which have been shown to more closely approximate a closed system for indigenous protein residues. Original amino acids are even preserved in bithyniid opercula from the Eocene, showing persistence of indigenous organics for over 30 million years. Geochronological data from opercula are superior to those from shells in two respects: first, in showing less natural variability, and second, in the far better preservation of the intra-crystalline proteins, possibly resulting from the greater stability of calcite. These features allow greater temporal resolution and an extension of the dating range beyond the early Middle Pleistocene. Here we provide full details of the analyses for 480 samples from 100 horizons (75 sites), ranging from Late Pliocene to modern. These show that the dating technique is applicable to the entire Quaternary. Data are provided from all the stratotypes from British stages to have yielded opercula, which are shown to be clearly separable using this revised method. Further checks on the data are provided by reference to other type-sites for different stages (including some not formally defined). Additional tests are provided by sites with independent geochronology, or which can be associated with a terrace stratigraphy or biostratigraphy. This new aminostratigraphy for the non-marine Quaternary deposits of southern Britain provides a framework for understanding the regional geological and archaeological record. Comparison with reference to sites yielding independent geochronology, in combination with other lines of evidence, allows tentative correlation with the marine oxygen isotope record. PMID:23396683

  12. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  13. A transferable model for singlet-fission kinetics.

    PubMed

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications. PMID:24848234

  14. A transferable model for singlet-fission kinetics

    NASA Astrophysics Data System (ADS)

    Yost, Shane R.; Lee, Jiye; Wilson, Mark W. B.; Wu, Tony; McMahon, David P.; Parkhurst, Rebecca R.; Thompson, Nicholas J.; Congreve, Daniel N.; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y.; Bawendi, Moungi G.; Swager, Timothy M.; Friend, Richard H.; Baldo, Marc A.; van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.

  15. Multimodal Fission in Heavy-Ion Induced Reactions

    SciTech Connect

    Pokrovskiy, I. V.; Bogachev, A. A.; Iitkis, M. G.; Iitkis, J. M.; Kondratiev, N. A.; Kozulin, E. M.; Dorvaux, O.; Rowley, N.; Schmitt, Ch.; Stuttge, L.

    2006-08-14

    Mass, energy and folding angle distributions of the fission fragments as well as multiplicities of neutron and gamma-quanta emissions accompanying the fission process were measured for fission of 226Th, 227Pa and 234Pu compound nuclei produced in reactions with 18O and 26Mg projectiles over a wide energy range. Data were analyzed with respect to the presence of fission modes. Asymmetric fission was observed even at very high initial excitation for all the measured systems. The so-called fission mode S1 (caused by the proton shell Z{approx}50 and neutron shell N{approx}82 in heavy fragment) was found to be dominant in asymmetric fission of 234Pu. Reactions with not full linear momentum transfer were observed in the folding spectra for all the measured systems.

  16. Fifty years of nuclear fission: Nuclear data and measurements series

    SciTech Connect

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  17. Thermal properties of quaternary ammonium and pyridinium compounds

    SciTech Connect

    Aksenova, V.P.; Khar'kov, S.N.; Logovotovskaya, V.D.; Belotserkovets, N.I.; Chegolya, A.S.

    1982-12-10

    In the present work an attempt was made at a comprehensive investigation of the influence of the chemical structure of a whole series of cation-active surfactants on the stability to temperature influences, and the general directions of the irreversible transformations at high temperature were established. As a result of a study of processes of thermal decomposition of quaternary ammonium and syridinium salts, quantitative correlations were established according to the influence of the chemical structure of the salts on the limits of thermal stability. On the basis of a detailed analysis of volatile pyrolysis products, concrete schemes of the conversions in the objects studied were proposed.

  18. Charophytes as lacustrine biomarkers during the quaternary in North Africa

    NASA Astrophysics Data System (ADS)

    Soulié-Märsche, I.

    The use of charophytes as biomarkers is discussed with emphasis on the differences in study methods for cosmopolitan and ecotype species. A first extensive inventory of Quaternary deposits of charophytes in Africa north of the equator comprising 18 sites from Senegal to the Sudan is drawn up with data on spatial and temporal distribution. The existence of relatively deep cold lakes in the Holocene is shown by the frequent presence of specimens of cold flora no longer present in Africa today. All the original data show the complementary nature of the study of fossil Charophyta for the multidisciplinary reconstitution of palaeoenvironments.

  19. Cyclic explosive activity of the Iceland plume in the quaternary

    NASA Astrophysics Data System (ADS)

    Eroshenko, D. V.; Kharin, G. S.

    2014-02-01

    Data on the volcanic ash layers in 70 DSDP and ODP Sites and 100 cores obtained during cruises of the R/V Akademik Kurchatov and Mikhail Lomonosov were used for compiling tephrostratigraphic scale and schematic distribution maps of the pyroclastic material in the Quaternary sediments of the North Atlantic and Norwegian-Greenland Basin. It is revealed that the distribution of pyroclastic material through this region is characterized by cyclic and spatially irregular patterns. Based on their petrochemical and geochemical properties, these ashes are compared with the volcanics of Iceland and the Jan Mayen islands. The relations between the extreme climatic and cyclic explosive events are discussed.

  20. A correlated electron view of singlet fission.

    PubMed

    Zimmerman, Paul M; Musgrave, Charles B; Head-Gordon, Martin

    2013-06-18

    Singlet fission occurs when a single exciton splits into multiple electron-hole pairs, and could dramatically increase the efficiency of organic solar cells by converting high energy photons into multiple charge carriers. Scientists might exploit singlet fission to its full potential by first understanding the underlying mechanism of this quantum mechanical process. The pursuit of this fundamental mechanism has recently benefited from the development and application of new correlated wave function methods. These methods-called restricted active space spin flip-can capture the most important electron interactions in molecular materials, such as acene crystals, at low computational cost. It is unrealistic to use previous wave function methods due to the excessive computational cost involved in simulating realistic molecular structures at a meaningful level of electron correlation. In this Account, we describe how we use these techniques to compute single exciton and multiple exciton excited states in tetracene and pentacene crystals in order to understand how a single exciton generated from photon absorption undergoes fission to generate two triplets. Our studies indicate that an adiabatic charge transfer intermediate is unlikely to contribute significantly to the fission process because it lies too high in energy. Instead, we propose a new mechanism that involves the direct coupling of an optically allowed single exciton to an optically dark multiexciton. This coupling is facilitated by intermolecular motion of two acene monomers that drives nonadiabatic population transfer between the two states. This transfer occurs in the limit of near degeneracies between adiabatic states where the Born-Oppenheimer approximation of fixed nuclei is no longer valid. Existing theories for singlet fission have not considered this type of coupling between states and, therefore, cannot describe this mechanism. The direct mechanism through intermolecular motion describes many experimentally observed characteristics of these materials, such as the ultrafast time scale of photobleaching and triplet generation during singlet fission in pentacene. We believe this newly discovered mechanism provides fundamental insight to guide the creation of new solar materials that exhibit high efficiencies through multiple charge generation. PMID:23427823

  1. The Fission-fragment Spectrometer VERDI

    NASA Astrophysics Data System (ADS)

    Frégeau, M. O.; Oberstedt, S.

    VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer presently under construction at the Joint Research Centre IRMM. It will allow measuring the kinetic energy and the velocity of both fission fragments simultaneously. The velocity information provide information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in complement of the velocity, will provide us with the post-neutron mass. From the difference between pre- and post-neutron masses the number of neutrons emitted by each fragment may be deter- mined. Knowledge of this quantity as a function of the total kinetic energy will contribute to the understanding of how the available excitation energy is shared between both fission fragments at scission. The contemplated pre-neutron mass resolving power, A/ΔA, of at least 126 requires a time-of-flight (TOF) resolution better than 200 ps (FWHM) and an energy resolution, ΔE/E of 0.3% for a post-neutron mass. The VERDI spectrometer provides the best compromise between geometrical efficiency and time of flight. It consists of an electron detector located very close to the fissionable target and a double array of silicon detectors located 50 cm away on both sides of the target. Each silicon detector has an area of 450 mm2 and is made from neutron transmutation-doped (NTD) silicon to reduce rise-time variation, to minimize pulse height defect and to reduce the plasma delay time. The intrinsic timing resolution of the electron detector was determined, using a 241Am alpha source (Eα = 5.49 MeV), against a previously characterized single-crystal diamond to σ = 140 ps. The timing resolution of the NTD silicon detectors was determined using the spontaneous fission of 252Cf in conjunction with Monte-Carlo simulations to σNTD = 150 ps. With the present timing resolution, σTOF < 210 ps, VERDI is already close to the set goals. The excellent timing properties of VERDI will also permit studying prompt and delayed gamma-ray characteristics.

  2. Constraining the age and magnitude of uplift in the northern National Petroleum Reserve in Alaska (NPRA)-apatite fission-track analysis of samples from three wells

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; O'Sullivan, Paul

    2011-01-01

    A broad, post-mid-Cretaceous uplift is defined in the northern National Petroleum Reserve in Alaska (NPRA) by regional truncation of Cretaceous strata, thermal maturity patterns, and amounts of exhumation estimated from sonic logs. Apatite fission-track (AFT) analysis of samples from three wells (South Meade No. 1, Topagoruk No. 1, and Ikpikpuk No. 1) across the eastern flank of the uplift indicates Tertiary cooling followed by Quaternary heating. Results from all three wells indicate that cooling, presumably caused by uplift and erosion, started about 75-65 Ma (latest Cretaceous-earliest Tertiary) and continued through the Tertiary Period. Data from South Meade indicate more rapid cooling after about 35-15 Ma (latest Eocene-middle Miocene) followed by a significant increase in subsurface temperature during the Quaternary, probably the result of increased heat flow. Data from Topagoruk and Ikpikpuk include subtle evidence of accelerated cooling starting in the latest Eocene-middle Miocene and possible evidence of increased temperature during the Quaternary. Subsurface temperature perturbations related to the insulating effect of permafrost may have been responsible for the Quaternary temperature increase at Topagoruk and Ikpikpuk and may have been a contributing factor at South Meade. Multiple lines of geologic evidence suggest that the magnitude of exhumation resulting from uplift and erosion is 5,000-6,500 ft at South Meade, 4,000-5,500 ft at Topagoruk, and 2,500-4,000 ft at Ikpikpuk. The results from these wells help to define the broad geometry of the uplift, which increases in magnitude from less than 1,000 ft at the Colville River delta to perhaps more than 7,000 ft along the northwestern coast of NPRA, between Point Barrow and Peard Bay. Neither the origin nor the offshore extent of the uplift, west and north of the NPRA coast, have been determined.

  3. Fission studies of secondary beams from relativistic uranium projectiles: The proton even-odd effect in fission fragment charge yields

    SciTech Connect

    Junghans, A. R.; Benlliure, J.; Schmidt, K.-H.; Voss, B.; Boeckstiegel, C.; Clerc, H.-G.; Grewe, A.; Heinz, A.; Jong, M. de; Mueller, J.; Steinhaeuser, S.; Pfuetzner, M.

    1999-09-02

    Nuclear-charge yields of fragments produced by fission of neutron-deficient isotopes of uranium, protactinium, actinium, and radium have been measured. These radioactive isotopes were produced as secondary beams, and electromagnetic fission was induced in a lead target with an average excitation energy around 11 MeV. The local even-odd effect in symmetric and in asymmetric fission of thorium isotopes is found to be independent of Z{sup 2}/A. The charge yields of the fission fragments of the odd-Z fissioning protactinium and actinium show a pronounced even-odd effect. In asymmetric fission the unpaired proton predominantly sticks to the heavy fragment. A statistical model based on the single-particle level density at the Fermi energy is able to reproduce the overall trend of the local even-odd effects both in even-Z and odd-Z fissioning systems.

  4. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary α-Amino Acids

    PubMed Central

    Cativiela, Carlos; Ordóñez, Mario

    2010-01-01

    The most recent papers describing the stereoselective synthesis of cyclic quaternary α-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton. PMID:20300486

  5. All-optical quaternary logic gates - An extension of binary logic gates

    NASA Astrophysics Data System (ADS)

    Garai, Sisir Kumar

    2015-04-01

    All optical multivalued logic processors are of paramount importance in optical computing and signal processing. In this communication, the author proposes a new method of developing all-optical quaternary logic gates which are the extension of binary logic gates. To develop the quaternary logic gate the authors first coverts the quaternary frequency encoded data into equivalent binary intensity encoded data; then binary logic operations are done among the equivalent binary data, and finally the intensity encoded data outputs are converted into frequency encoded quaternary logic output. Simulation result supports the feasibility of the proposed scheme. Novelty of the scheme is that the same optical circuit is dedicated to implement any two-input quaternary logic operation only by changing two basic switches functioning as binary logic gates. Finally, the authors have cascaded these logic gates using "1×2" all-optical switches to develop quaternary logic unit by means of which any kind of quaternary logic operation as proposed in this scheme can be performed. Dense wavelength division demultiplexers (DMUX) are used here for wavelength routing purpose, and switching and frequency conversion characters of semiconductor optical amplifiers are exploited to develop very fast and secure quaternary logic unit.

  6. True ternary fission of superheavy nuclei

    SciTech Connect

    Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter

    2010-04-15

    True ternary fission with formation of a heavy third fragment is quite possible for superheavy nuclei because of the strong shell effects leading to a three-body clusterization with the two doubly magic tinlike cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tinlike clusters with appropriate kinematics in low-energy collisions of medium-mass nuclei with actinide targets. The three-body quasi-fission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by the detection of two coincident leadlike fragments in low-energy U + U collisions.

  7. System Concepts for Affordable Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, David; Qualls, Louis

    2008-01-01

    This paper presents an overview of an affordable Fission Surface Power (FSP) system that could be used for NASA applications on the Moon and Mars. The proposed FSP system uses a low temperature, uranium dioxide-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The concept was determined by a 12 month NASA/DOE study that examined design options and development strategies based on affordability and risk. The system is considered a low development risk based on the use of terrestrial-derived reactor technology, high efficiency power conversion, and conventional materials. The low-risk approach was selected over other options that could offer higher performance and/or lower mass.

  8. Anisotropic Neutron Evaporation from Spinning Fission Fragments

    NASA Astrophysics Data System (ADS)

    Stuttgé, L.; Dorvaux, O.; Gönnenwein, F.; Mutterer, M.; Kopatch, Yu.; Chernysheva, E.; Hanappe, F.; Hambsch, F.-J.

    2011-10-01

    Neutron evaporation anisotropy in the centre of mass of the rotating fission fragments in the spontaneous fission of 252Cf has been investigated within the CORA experiments. If it is well accepted that the bulk of emitted neutrons originate from an isotropic evaporation in the centre of mass of the moving fragments, discrepancies in experimental as well as in theoretical energy and angular distributions appear throughout many attempts performed by various authors. Scission neutrons most probably contribute but don't allow to explain totally the observed anisotropy. Due to its weak contribution to the total anisotropy, the centre of mass anisotropy is very difficult to be highlighted. A novel experimental approach has been developed to extract this effect and will be presented as well as some first results.

  9. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Harlow, Scott

    2009-01-01

    With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s.

  10. Nuclear Fission Investigation with Twin Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.

    2011-11-01

    The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.

  11. Fission Fragment characterization with FALSTAFF at NFS

    NASA Astrophysics Data System (ADS)

    Doré, D.; Farget, F.; Lecolley, F.-R.; Ledoux, X.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.

    2013-03-01

    The Neutrons for Science (NFS) facility will be one of the first installations of the SPIRAL2 facility. NFS will be composed of a time-of-flight baseline and irradiation stations and will allow studying neutron-induced reactions for energies going from some hundreds of keV up to 40 MeV. Continuous and quasi-monoenergetic energy neutron beams will be available. Taking advantage of this new installation, the development of an experimental setup for a full characterization of actinide fission fragments in this energy domain has been undertaken. To achieve this goal a new detection system called FALSTAFF (Four Arm cLover for the STudy of Actinide Fission Fragments) in under development. In this paper, the characteristics of the NFS facility will be exposed and the motivations for the FALSTAFF experiment will be presented. The experimental setup will be described and the expected resolutions based on realistic GEANT4 simulations will be discussed.

  12. Nuclear Fission Investigation with Twin Ionization Chamber

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.

    2011-11-29

    The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.

  13. Fusion-fission energy systems evaluation

    SciTech Connect

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  14. Microscopic Calculations of 240Pu Fission

    SciTech Connect

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  15. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2016-04-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing tectonic landforms.

  16. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2015-06-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing tectonic landforms.

  17. Fission-product-decay characteristics. Master's thesis

    SciTech Connect

    Millage, K.K.

    1989-03-01

    This theses determined fission-product decay characteristics , including the total activity, the gamma-ray emission rate (GER) and gamma-ray energy spectra. The activity and GER decay were compared to Way and Wigner's t(exp(-1.2)) approximation, and the effects the spectra, activity, and GER have on the Source Normalization Constant (K) were examined. Most of the fission-product data were obtained from DKPOWR, and were compared with data obtained from ORIGIN2. Since the gamma rays are of primary concern in fallout studies, the GER is used instead of activity. The ratio of GER to activity changes significantly with time. Results of this study calculate a GER of 590 x 10/sup 16/ gamma rays/second per kT of fission yield from U-235 fuel and a K of 7059 R/Hr/(kT/sq.km.). The calculation of K includes the contribution from scattered photons. The GER result is 11% higher than reference values, while the K is within 2% of the current value in Glasstone and Dolan's The Effects of Nuclear Weapons. The Ks for Pu-239 and U-238 were within 5% of the U-235 results. The wax-wigners t(exp(-1.2)) approximation differs from time dependent GER and K up to 85% for times less than 6 months. The approximation is not valid for the GER or K at times greater than 6 months. The approximation is within about 45%, for the activity from fission-product decay to at least 5 years. A more accurate measure of exposure requires a numerical integration of the time dependent GER and Source Normalization Constant.

  18. Singlet fission: Towards efficient solar cells

    NASA Astrophysics Data System (ADS)

    Havlas, Zdeněk; Wen, Jin; Michl, Josef

    2015-12-01

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  19. REMOVAL OF FISSION PRODUCTS FROM WATER

    DOEpatents

    Rosinski, J.

    1961-12-19

    A process is given for precipitating fission products from a body of water having a pH of above 6.5. Calcium permanganate and ferrous sulfate are added in a molar ratio of l: 3, whereby a mixed precipitate of manganese dioxide, ferric hydroxide and calcium sulfate is formed; the precipitate carries the fisston products and settles to the bottom of the body of water. (AEC)

  20. Late Quaternary geomorphology and soils in Crater Flat, Yucca mountain area, southern Nevada

    SciTech Connect

    Peterson, F.F.; Bell, J.W.; Ramelli, A.R.; Dorn, R.I.; Ku, T.L.

    1995-04-01

    Crater Flat is an alluvium-filled structural basin on the west side of Yucca Mountain, Nevada, which is under consideration for a high-level nuclear waste repository. North-trending, late Quaternary faults offset alluvium in Crater Flat both along the canyons of the western flanks of Yucca Mountain and out on the piedmont slope. We believe the initial lack of young offsets at Yucca Mountain was in part due to unrecognized late Quaternary stratigraphy. We hypothesize that alluviation in the Yucca Mountain region was more active during the late Quaternary than previously thought. Several techniques were tried to test this hypothesis. Results are compared with previous soils and surface-exposure dating studies, and correlated to stratigraphy of other late Quaternary units in the southern Nevada, Death Valley, and Mojave Desert areas, and provide new stratigraphic data relevant to understanding climatic-alluvial processes in the Basin and Range Province during the late Quaternary. 76 refs., 7 figs., 6 tabs.

  1. Late Quaternary terrestrial vertebrate coprolites from New Zealand

    NASA Astrophysics Data System (ADS)

    Wood, Jamie R.; Wilmshurst, Janet M.

    2014-08-01

    Over the past decade, concerted efforts to find and study Late Quaternary terrestrial vertebrate coprolites in New Zealand have revealed new insights into the diets and ecologies of New Zealand's prehistoric birds. Here, we provide a broader review of the coprolites found in natural (non-archaeological) Late Quaternary deposits from New Zealand. We summarise the morphological diversity of the coprolites, and discuss the taphonomy of the sites in which they are found. Since the 1870s more than 2000 coprolites have been discovered from 30 localities, all restricted to the South Island. The distribution of coprolite localities appears to reflect the presence of geological and climatic factors that enhance the potential for coprolite preservation; coprolites require dry conditions for preservation, and have been found on the ground surface within drafting cave entrances and at shallow (<300 mm) depths beneath rock overhangs with a northerly aspect. We classify the coprolites into eleven morphotypes, each of which may represent a range of different bird and/or reptile species. A review of genetically identified specimens shows that coprolites of different bird species overlap in size and morphology, reinforcing the need for identifications to be based on ancient DNA analysis.

  2. Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima.

    PubMed

    Raes, Niels; Cannon, Charles H; Hijmans, Robert J; Piessens, Thomas; Saw, Leng Guan; van Welzen, Peter C; Slik, J W Ferry

    2014-11-25

    The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present. PMID:25385612

  3. Quaternary seismo-tectonic activity of the Polochic Fault, Guatemala

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Brocard, Gilles; Teyssier, Christian; Suski, Barbara; Cosenza, Beatriz; MoráN-Ical, Sergio; GonzáLez-VéLiz, Claussen Walther; Aguilar-Hengstenberg, Miguel Angel; Holliger, Klaus

    2012-07-01

    The Polochic-Motagua fault system is part of the sinistral transform boundary between the North American and Caribbean plates in Guatemala and the associated seismic activity poses a threat to ˜70% of the country's population. The aim of this study is to constrain the Late Quaternary activity of the Polochic fault by determining the active structure geometry and quantifying recent displacement rates as well as paleo-seismic events. Slip rates have been estimated from offsets of Quaternary volcanic markers and alluvial fan using in situ cosmogenic 36Cl exposure dating. Holocene left-lateral slip rate and Mid-Pleistocene vertical slip rate have been estimated to 4.8 ± 2.3 mm/y and 0.3 ± 0.06 mm/y, respectively, on the central part of the Polochic fault. The horizontal slip rate is within the range of longer-term geological slip rates and short-term GPS-based estimates. In addition, the non-negligible vertical motion participates in the uplift of the block north of the fault and seems to be a manifestation of the regional, far-field stress regime. We excavated the first trench for paleo-seismological study on the Polochic fault in which we distinguish four large paleo-seismic events since 17 ky during which the Polochic fault ruptured the ground surface.

  4. Dating the Quaternary: progress in luminescence dating of sediments

    NASA Astrophysics Data System (ADS)

    Lian, Olav B.; Roberts, Richard G.

    2006-10-01

    Luminescence dating comprises a collection of numerical-age techniques that are among the most significant chronological tools currently used in Quaternary research. This paper briefly reviews the key historical developments in luminescence dating, from its roots in thermoluminescence dating of heated minerals to the development of optical dating methods for sunlight-exposed sediments. We describe the principles and practicalities of the various techniques commonly used in luminescence dating, including multiple-aliquot, single-aliquot and single-grain procedures, and we discuss some of the latest approaches to recognising and minimising potential errors in age estimation (e.g., by means of component analysis and dose distribution methods in optical dating). The overview also introduces the other papers in this special issue of Quaternary Science Reviews, which address a selection of important issues in basic research, technique development and application of luminescence dating to critical questions in the geological and archaeological sciences, illustrated with examples from around the world and the last million years of Earth history.

  5. European quaternary refugia: a factor in large carnivore extinction?

    NASA Astrophysics Data System (ADS)

    O'Regan, Hannah J.; Turner, Alan; Wilkinson, David M.

    2002-12-01

    The extinction of large carnivores in Europe during the Quaternary is reviewed and the potential role of glacial refugia in these extinctions is investigated using the VORTEX model for population viability analysis. A model was built for a medium sized big cat similar to the extinct Panthera gombaszoegensis utilising life history data from the modern jaguar Panthera onca. This approach highlighted the potential importance of glacial refugia in the extinction process. Even model refugia the size of the Italian peninsula did not guarantee persistence of a population over a 1000 yr time span, illustrating the role of chance in survival in such a refugium. An area the size of the largest Mediterranean island was unable to support a big cat population for a period of 1000 yr. The models also demonstrated the importance of inbreeding as a mechanism for extinction in refugia. It is suggested that repeated genetic bottlenecks during successive glaciations would tend to remove lethal recessive alleles from the population, increasing the probability of survival in refugia in subsequent glaciations. The history of extinction of large carnivores in the European Quaternary is interpreted in the light of these results.

  6. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  7. Liquefaction potential of Quaternary alluvium in Bolu settlement area, Turkey

    NASA Astrophysics Data System (ADS)

    Ulamis, Koray; Kilic, Recep

    2008-09-01

    Groundwater bearing alluvial units in the seismically active settlement areas may bring out probable damage on the urban and built environment due to liquefaction. Bolu settlement area and surroundings are located in the North Anatolian Fault Zone. Geotechnical boreholes were drilled in order to determine the distribution of the geological units, to obtain representative soil samples and to measure groundwater level. Quaternary aged alluvium is the main geological unit in the South of study area. Stiffness and consistency of the soils were determined by Standart penetration test. P and S wave velocities of soil have been measured along the seismic profiles. The index and physical properties of the samples have also been tested in the laboratory. Liquefaction potential and safety factor of the sandy levels in Quaternary aged alluvium were investigated by different methods based on SPT and V s. Liquefaction seems to be a significant risk in case of an earthquake with a max = 0.48 g and M w = 7.5 at different levels of the boreholes. This situation may bring out environmental problems in the future.

  8. Ecostratigraphic datums and sequence stratigraphy: Application to the marine Quaternary

    SciTech Connect

    Martin, R.E. ); Neff, E. ); Johnson, G.W. ); Krantz, D. )

    1991-03-01

    The marine Quaternary is characterized by few evolutionary appearances and extinctions of planktonic foraminifera. Because climatic fluctuations are a fundamental characteristic of Pleistocene, however, better stratigraphic resolution of the marine Quaternary can be gained by the establishment of biozones based on climatically controlled foraminiferal assemblages. Utilizing relative abundances of the warm-water Globorotalia menardii complex and temperature-water G. inflata, supplemented by left- and right-coiling varieties of G. truncatulinoides, the authors have subdivided the prezone-W Pleistocene of the tropical Atlantic (Core V16-205), Caribbean Sea (DSDP Core 502B), and northeast Gulf of Mexico (ODP Core 625B, Eureka Core E67-135) into 17 subzones, each with an average duration of {approximately}100,000 yrs. The subzones appear to reflect water mass shifts and disjunct species distributions resulting from expansion and contraction of northern hemisphere ice sheets. Hence, subzonal boundaries should also reflect change in eustatic sea level and sequence boundaries. Indeed, graphic correlation of the subzones, along with biostratigraphic markers and paleomagnetic and oxygen isotope datums, reveals changes in sediment accumulation rate (especially on the continental slope) and missing section, as well as intervals of deformation (core breaks) that affect the occurrence of subzonal boundaries and biostratigraphic markers.

  9. Geomorphology and Quaternary geology of the Dakhla Oasis Region, Egypt

    NASA Astrophysics Data System (ADS)

    Brookes, Ian A.

    Dakhla Oasis (25.5°N, 29°E) occupies a structurally localized depression at 90-140 m above sea level, ˜1200 km 2 in area, below a 300 m escarpment bordering the Libyan Plateau, Western Desert of Egypt. Semi-arid intervals of the Quaternary period generated eight sedimentary formations, separated by erosion during hyper-arid intervals. Sediments comprise three generations of colluvial/fluvial fanglomerates, two generations of tabular spring-laid clastic and chemical sediments, two generations of mound springs and basinal sediments. of fluvio-lacustrine, evaporitic, pluvio-aeolian and aeolian origins. Discussion of these sediments is organized according to geomorphic region, from north to south, plateau, scarp and piedmont, lowland and cuesta plain. Chronological evidence is restricted to many radiocarbon dates of Holocene cultural material associated with playa sediments (9-4.5 ka), a {Th}/{U} isochron age of ˜62.0 ±7.6 ka for basinal evaporites, and two {Th}/{U} ages of ˜176 and ˜170 ka for a boulder of derived travertine. The regional Quaternary sequence is reconstructed from stratigraphic and geomorphic relationships of the sediments and erosion surfaces. It is broadly similar to sequences earlier reconstructed in the topographically similar Kharga Oasis region 150 km to the east, and Kurkur Oasis, 400 km to the south-southeast. Speculations on chronology and driving mechanism are offered in conclusion.

  10. Distribution and metabolism of quaternary amines in salt marshes

    NASA Technical Reports Server (NTRS)

    King, Gary M.

    1985-01-01

    Quaternary amines such as glycine betaine (GBT) are common osmotically active solutes in much of the marine biota. GBT is accumulated by various bacteria, algae, higher plants, invertebrates, and vertebrates in response to salinity or water stresses; in some species, GBT occurs at tens to hundreds of millimolar concentrations and can account for a significant fraction of total nitrogen. Initial studies suggest that GBT is readily converted to two potential methane precursors, trimethylamine (TMA) and acetate, in anoxic sediments. TMA is apparently the most important methane precursor in surface sediments containing sulfate reducing bacteria. In salt marshes, the bulk of the methane formed may be due to the metabolism of TMA rather than other substrates. Current research is focussed on testing this hypothesis and on determining the role of quaternary amino osmoregulatory solutes in methane fluxes from marine environments. Preliminary studies have dealt with several problems: (1) determination of GBT concentrations in the dominant flora and fauna of salt marshes; (2) synthesis of radiolabelled GBT for metabolic studies; and (3) determination of fates of BGT in marine sediments using radiotracers. Both GC and HPLC techniques have been used to assay GBT concentrations in plant and animal tissues. S. alterniflora is probably the only significant source of GBT (and indirectly of methane) since the biomass and distribution of most other species is limited. Current estimates suggest that S. alterniflora GBT could account for most of the methane efflux from salt marshes.

  11. Global warming: Perspectives from the Late Quaternary paleomammal record

    SciTech Connect

    Graham, R.W. )

    1993-03-01

    Global warming at the end of the Pleistocene caused significant environmental changes that directly and indirectly effected biotic communities. The biotic response to this global warming event can provide insights into the processes that might be anticipated for future climatic changes. The megafauna extinction may have been the most dramatic alteration of mammalian communities at the end of the Pleistocene. Late Quaternary warming also altered regional diversity patterns for some small mammal guilds without extinction. Reductions in body size for both small and large mammal species were also consequences of these environmental fluctuations. Geographic shifts in the distributions of individual mammal species resulted in changes in species composition of mammalian communities. The individualistic response of biota to environmental fluctuations define some boundary conditions for modeling communities. Understanding these boundary conditions is mandatory in planning for the preservation of biodiversity in the future. Finally, it is essential to determine how global warming will alter seasonal patterns because it is apparent from the paleobiological record that not all Quaternary warming events have been the same.

  12. Quaternary glaciations in the Southern Ocean and Antarctic peninsula area

    NASA Astrophysics Data System (ADS)

    Clapperton, Chalmers M.

    There are three main difficulties in constructing detailed time series for Late Quaternary glacier fluctuations in the Southern Ocean-sub-Antarctic region: sea level control on ice extent, differential tectonics and lack of material for radiometric dating. South of 60°S, the glacial Equilibrium Line Altitude is low enough for glaciers to expand without a decrease in temperature, if sea level falls. Thus most tidewater glaciers in this region are not reliable indicators of small scale fluctuations in climate. Tectonic uplift during the Quaternary may explain why the Falkland Islands did not develop most of their glacial and nivoglacial features until the last glaciation. The South Shetland Islands have a unique assemblage of raised marine features in the sub-Antarctic, possibly because the crustal block overlies a zone of magmatism and may respond sensitively to isostatic changes imposed by fluctuating ice masses. Despite the lack of vegetation, some radiometric dates have been obtained from peat, seaweed and fossil remains of marine shells and bones associated with glacial and raised beach deposits. Together with relative weathering criteria and drift distribution, these suggestthat glaciers in the Southern Ocean and sub-Antarctic region have fluctuated synchronously with glaciers elsewhere in the southern hemisphere during the last 100 ka. The last glaciation maximum culminated after 26 ka BP and glacier advances are inferred for the late-glacial intervals (15-14 ka and 12-10 ka BP) and the Neoglacial interval (last 5 ka).

  13. MAFF - The Munich accelerator for fission fragments

    NASA Astrophysics Data System (ADS)

    Beck, L.; Habs, D.; Reiter, P.; Thirolf, P.; Sieber, T.; Bongers, H.; Emhofer, S.; Maier, H. J.

    2002-12-01

    At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for fission fragments) is under design. In the high neutron flux of 10(14) n/cm(2) s up to 10(14) neutron-rich fission fragments per second are produced in the 1 g U-235 target. Ions with an energy of 30 keV are extracted from the ion source. In the mass seperator two isotopes can be selected. One of the beams is used for low energy experiments, the other one is injected into an ECRIS (or EBIS) for charge breeding to a q/A≥ 0.16. A gas filled RFQ cooler is used for emittance improvement. The subsequent LINAC delivers beams with an energy ranging from 3.7 MeV/u to 5.9 MeV/u. New IH structures are being developed at the Munich tandem laboratory. A small storage ring is planned in a further stage to recycle the fission fragments. A thin target foil can be placed into this ring, e.g., for synthesis of super-heavy elements. The through-going beam tube has been installed in the heavy water tank of the reactor. Tests of the target ion source in a special oven to test long term stability and safety tests were in progress.

  14. Capture and fission with DANCE and NEUANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  15. Capture and fission with DANCE and NEUANCE

    SciTech Connect

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  16. Capture and fission with DANCE and NEUANCE

    DOE PAGESBeta

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; et al

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomericmore » states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.« less

  17. Fission Barriers of Compound Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Nazarewicz, Witold

    2010-02-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work [1,2], we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for ^264Fm, ^272Ds, ^278Cp, ^292114, and ^312124. For nuclei around ^278Cp produced in ``cold fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ^292114 synthesized in ``hot fusion'' experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. [4pt] [1] J.C. Pei, W. Nazarewicz, J.A. Sheikh and A.K. Kerman, Phys. Rev. Lett. 102, 192501 (2009).[0pt] [2] J.A. Sheikh, W. Nazarewicz, and J.C. Pei, Phys. Rev. C 80, 011302(R) (2009). )

  18. Calculated fission properties of the heaviest elements

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-09-01

    A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab.

  19. A New Role for Myosin II in Vesicle Fission

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis. PMID:24959909

  20. Spontaneous fission half-lives and their systematics

    SciTech Connect

    Holden, N.E.

    1998-03-01

    Spontaneous fission is a phenomenon exhibited by heavy nuclei, which can be a major mode of decay of nuclei of elements heavier than thorium and can be a determining factor in their stability. For purposes of this paper, spontaneous fission will be considered a process in which a nucleus breaks up into two approximately equal parts. The emission of light nuclei or heavy ions such as {sup 12}C, {sup 16}O, or {sup 32}S will not be considered. This radioactive decay mode is often much smaller than the spontaneous fission decay mode, although this is not true in all cases. Barwick noted that this might indicate that the assumed half-life for spontaneous fission of some older experiments might be partially due to heavy fragment radioactivity. Other than taking note of this potential correction to spontaneous fission half-lives, this decay mode of heavy fragment radioactivity will be ignored. Excited states of some heavy nuclei may decay via spontaneous fission. These so-called fission isomers will not be discussed here. Electron capture (EC) or beta-delayed fission is a process in which prompt fission of a sufficiently excited daughter state occurs following population by EC or beta decay. The fission activity will appear to decay with the half-life of the parent and was earlier confused in some cases with SF. This process has been discussed in detail in a review and will not be considered in this paper.

  1. Delayed-fission properties of neutron-deficient americium nuclei

    SciTech Connect

    Hall, H.L. . Dept. of Chemistry)

    1989-10-23

    Characteristics of the delayed-fission decay mode in light americium nuclei have been investigated. Measurements on the unknown isotopes {sup 230}Am and {sup 236}Am were attempted, and upper limits on the delayed-fission branches of these nuclei were determined. Evidence of the existence of {sup 236}Am was observed in radiochemical separations. Total kinetic energy and mass-yield distributions of the electron-capture delayed-fission mode were measured for {sup 232}Am (t{sub 1/2} = 1.31 {plus minus} 0.04 min) and for {sup 234}Am (t{sub 1/2} = 2.32 {plus minus} 0.08 min), and delayed-fission probabilities of 6.9 {times} 10{sup {minus}4} and 6.6 {times} 10{sup {minus}5}, respectively, were determined. The total kinetic energy and the asymmetric mass-yield distributions are typical of fission of mid-range actinides. No discernible influence of the anomalous triple-peaked mass division characteristic of the thorium-radium region was detected. Measurements of the time correlation between the electron-capture x-rays and the subsequent fission conform that the observed fissions arise from the electron-capture delayed-fission mechanism. Delayed fission has provided a unique opportunity to extend the range of low-energy fission studies to previously inaccessible regions. 71 refs., 44 figs., 13 tabs.

  2. Fission Cross Sections and Fission-Fragment Mass Yields via the Surrogate Reaction Method

    SciTech Connect

    Jurado, B.; Kessedjian, G.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Osmanov, B.; Ahmad, I.

    2008-04-17

    The surrogate reaction method is a powerful tool to infer neutron-induced data of short-lived nuclei. After a short overview of the experimental techniques employed in the present surrogate experiments, we will concentrate on a recent measurement to determine neutron-induced fission cross sections for the actinides {sup 242,243}Cm and {sup 241}Am. The latest direct neutron-induced measurement for the {sup 243}Cm fission cross section is questioned by our results, since there are differences of more than 60% in the 0.7 to 7 MeV neutron energy range. Our experimental set-up has also enabled us to measure for the first time the fission fragment ''pseudo-mass'' distributions of {sup 243,244,245}Cm and {sup 242}Am compound nuclei in the excitation energy range from a few MeV to about 25 MeV.

  3. Prompt Fission Neutron Spectra of Actinides

    SciTech Connect

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data testing: Spectrum averaged cross sections (SACS) calculated for the evaluated 235U(nth,f) PFN field agree within uncertainties with evaluated SACS experimental data. Despite the observed reduction of the PFNS E by about 30 keV for neutron-induced fission of 233U, 235U, and 239Pu, the criticality benchmark outcomes suggested that new evaluations can achieve the same (or better) integral performance with respect to existing evaluations, but the strong compensating effects observed need to be addressed. Summarizing, this project has significantly improved PFNS evaluations and evaluation methodology, provided new PFNS data for applications, and also highlighted the areas for future research

  4. Early results utilizing high-energy fission product (gamma) rays to detect fissionable material in cargo

    SciTech Connect

    Slaughter, D R; Accatino, M R; Bernstein, A; Church, J A; Descalle, M A; Gosnell, T B; Hall, J M; Loshak, A; Manatt, D R; Mauger, G J; McDowell, M; Moore, T M; Norman, E B; Pohl, B A; Pruet, J A; Petersen, D C; Walling, R S; Weirup, D L; Prussin, S G

    2004-09-30

    A concept for detecting the presence of special nuclear material ({sup 235}U or {sup 239}Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their {beta}-delayed neutron emission or {beta}-delayed high-energy {gamma}-radiation between beam pulses provide the detection signature. Fission product {beta}-delayed {gamma}-rays above 3 MeV are nearly ten times more abundant than {beta}-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. An important goal in the US is the detection of nuclear weapons or special nuclear material (SNM) concealed in intermodal cargo containers. This must be done with high detection probability, low false alarm rates, and without impeding commerce, i.e. about one minute for an inspection. The concept for inspection has been described before and its components are now being evaluated. While normal radiations emitted from plutonium may allow its detection, the majority of {sup 235}U {gamma} ray emission is at 186 keV, is readily attenuated by cargo, and thus not a reliable detection signature for passive detection. Delayed neutron detection following a neutron or photon beam pulse has been used successfully to detect lightly or unshielded SNM targets. While delayed neutrons can be easily distinguished from beam neutrons they have relatively low yield in fission, approximately 0.008 per fission in {sup 239}Pu and 0.017 per fission in {sup 235}U, and are rapidly attenuated in hydrogenous materials making that technique unreliable when challenged by thick hydrogenous cargo overburden. They propose detection of {beta}-delayed high-energy {gamma} radiation as a more robust signature characteristic of SNM.

  5. Mass resolved angular distribution of fission fragments for near-barrier fusion-fission reactions

    SciTech Connect

    Vorkapic, D.

    1997-05-01

    It is shown that K-equilibration fission can explain the decrease of mass resolved fission fragment anisotropy at larger mass asymmetries. Two competing mechanisms contribute to the anisotropy. The effective moment of inertia and K{sub 0}{sup 2} decreases with the increase of mass asymmetry and contribute to the increase of anisotropy. On the other hand, for larger asymmetries, the barriers are higher and lifetimes are longer. Such systems are more K equilibrated and will have smaller anisotropy. {copyright} {ital 1997} {ital The American Physical Society}

  6. Angular momentum of fission fragments in low energy fission of actinides

    SciTech Connect

    Naik, H.; Dange, S.P.; Singh, R.J.

    2005-01-01

    Independent isomeric yield ratios (IYR) of {sup 128}Sb, {sup 130}Sb, {sup 132}Sb, {sup 131}Te, {sup 133}Te, {sup 132}I, {sup 134}I, {sup 136}I, {sup 135}Xe, and {sup 138}Cs have been determined in fast neutron induced fission of {sup 232}Th, {sup 238}U, {sup 240}Pu, and {sup 244}Cm as well as in thermal neutron induced fission of {sup 232}U and {sup 238}Pu using radiochemical and offline {gamma}-ray spectrometric techniques. From the IYR, fragment angular momenta (J{sub rms}) have been deduced using a spin-dependent statistical model analysis. These data along with the literature data for {sup 230}Th*, {sup 234}U*, {sup 236}U*, {sup 240}Pu*, {sup 242}Pu*, {sup 244}Cm(SF), {sup 246}Cm*, {sup 250}Cf*, and {sup 252}Cf(SF) for fifteen even-Z fissioning systems show the following important features: (i) The J{sub rms} of the odd-Z fission products are higher than those of the even-Z fission products, indicating the odd-even effect. For both the odd-Z and even-Z fission products, the J{sub rms} increase with Z{sub F}{sup 2}/A{sub F}. (ii) The J{sub rms} of fragments with spherical 50-p and 82-n shells are lower compared to those of fragments outside the spherical shell, indicating the effect of shell closure proximity. (iii) The J{sub rms} of the fission products increase with mass number in spite of fluctuations in shell closure proximity and odd-even effects but do not show any correlation with the neutron emission curve. (iv) In all fifteen even-Z fissioning systems from Th to Cf, the yield-weighted J{sub rms} values show an anticorrelation with the elemental yields. (v) The odd-even fluctuation on J{sub rms} does not change drastically from Th to Cf, unlike the proton odd-even effect ({delta}{sub p}) which decreases significantly with the increase of Coulomb parameter (Z{sub F}{sup 2}/A{sub F}{sup 1/3})

  7. Prompt fission gamma-ray studies at DANCE

    SciTech Connect

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M.. M; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O’Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  8. Microscopic theory of singlet exciton fission. I. General formulation.

    PubMed

    Berkelbach, Timothy C; Hybertsen, Mark S; Reichman, David R

    2013-03-21

    Singlet fission, a spin-allowed energy transfer process generating two triplet excitons from one singlet exciton, has the potential to dramatically increase the efficiency of organic solar cells. However, the dynamical mechanism of this phenomenon is not fully understood and a complete, microscopic theory of singlet fission is lacking. In this work, we assemble the components of a comprehensive microscopic theory of singlet fission that connects excited state quantum chemistry calculations with finite-temperature quantum relaxation theory. We elaborate on the distinction between localized diabatic and delocalized exciton bases for the interpretation of singlet fission experiments in both the time and frequency domains. We discuss various approximations to the exact density matrix dynamics and propose Redfield theory as an ideal compromise between speed and accuracy for the detailed investigation of singlet fission in dimers, clusters, and crystals. Investigations of small model systems based on parameters typical of singlet fission demonstrate the numerical accuracy and practical utility of this approach. PMID:23534622

  9. Fission xenon from extinct Pu-244 in 14,301.

    NASA Technical Reports Server (NTRS)

    Drozd, R.; Hohenberg, C. M.; Ragan, D.

    1972-01-01

    Xenon extracted in step-wise heating of lunar breccia 14,301 contains a fission-like component in excess of that attributable to uranium decay during the age of the solar system. There seems to be no adequate source for this component other than Pu-244. Verification that this component is in fact due to the spontaneous fission of extinct Pu-244 comes from the derived spectrum which is similar to that observed from artificially produced Pu-244. It thus appears that Pu-244 was extant at the time lunar crustal material cooled sufficiently to arrest the thermal diffusion of xenon. Subsequent history has apparently maintained the isotopic integrity of plutonium fission xenon. Of major importance are details of the storage itself. Either the fission component is the result of in situ fission of Pu-244 and subsequent storage in 14,301 material, or the fission xenon was stored in an intermediate reservoir before incorporation into 14,301.

  10. Prompt Fission Gamma-ray Studies at DANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O'Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    Measurements of correlated data on prompt-fission ?-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of ?-ray multiplicity and energy. New results on two- dimensional prompt-fission ?-ray multiplicity versus energy distributions from spontaneous fission on 252Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and 239Pu. Correlated PFG data from 252Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and ?-rays at DANCE are presented.

  11. Microscopic theory of singlet exciton fission. I. General formulation

    NASA Astrophysics Data System (ADS)

    Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.

    2013-03-01

    Singlet fission, a spin-allowed energy transfer process generating two triplet excitons from one singlet exciton, has the potential to dramatically increase the efficiency of organic solar cells. However, the dynamical mechanism of this phenomenon is not fully understood and a complete, microscopic theory of singlet fission is lacking. In this work, we assemble the components of a comprehensive microscopic theory of singlet fission that connects excited state quantum chemistry calculations with finite-temperature quantum relaxation theory. We elaborate on the distinction between localized diabatic and delocalized exciton bases for the interpretation of singlet fission experiments in both the time and frequency domains. We discuss various approximations to the exact density matrix dynamics and propose Redfield theory as an ideal compromise between speed and accuracy for the detailed investigation of singlet fission in dimers, clusters, and crystals. Investigations of small model systems based on parameters typical of singlet fission demonstrate the numerical accuracy and practical utility of this approach.

  12. Quaternary Reorganization of North American Mid-continent Drainage Systems

    NASA Astrophysics Data System (ADS)

    Carson, E. C.; Rawling, J. E., III; Attig, J. W.; Bates, B. R.

    2013-12-01

    Identification of ancestral drainage systems in the North American mid-continent has been a topic of research and debate among geologists since the middle of the 19th Century. Over time our understanding of the significance of Quaternary glaciations in reshaping drainage patterns has grown. The ancestral Teays River, which drained large areas of the central Appalachians and flowed westward across Indiana and western Illinois, was dammed multiple times by Quaternary glaciers before finally being rerouted to the course of the modern central Ohio River. Similarly, the northward-flowing ancestral Pittsburgh River was dammed by pre-Illinoian glaciers; subsequent stream piracy converted this river system into the modern Allegheny, Monongahela and uppermost Ohio Rivers. Deposits and geomorphic features along the westward-flowing lower Wisconsin River indicate that the modern upper Mississippi River and Wisconsin River may have experienced a similar history of ice blockage, stream piracy, and radical rerouting. Coring into the Bridgeport strath terrace along the lower Wisconsin River reveals that the bedrock surface dips to the east, indicating the valley was cut by an eastward-flowing river. We believe the most likely scenario following this interpretation is that an ancestral river flowing along the modern upper Mississippi River valley made a sharp bend at Prairie du Chien, WI, and flowed eastward along the valley occupied by the modern lower Wisconsin River. This river, referred to here as the Wyalusing River, likely flowed northeastward into the Great Lakes (St. Lawrence) drainage until that path was blocked by ice advancing from the northwest. Subsequent stream piracy immediately south of the modern confluence of the Mississippi and Wisconsin Rivers rerouted these streams, converting them to the headwaters of the greater Mississippi drainage. The combined rerouting of these river systems into entirely different drainage basins necessitates significant fundamental changes to the total discharge of the St. Lawrence and Mississippi Rivers. While it is unclear if the Teays River ever flowed into the St. Lawrence drainage or developed as a westward-flowing tributary to the buried Mahomet valley in Illinois, both the ancestral Pittsburgh and Wyalusing Rivers originated as headwaters of the St. Lawrence basin before being rerouted as part of the Mississippi basin. The areas formerly drained by the Pittsburgh and Wyalusing Rivers comprise ~8% of the modern Mississippi River basin, and modern discharge from those areas represent ~14% of the mean annual discharge of the Mississippi River. The transfer of this drainage area and discharge to the Mississippi basin is mirrored by an equivalent loss from the St. Lawrence system during the Quaternary as a direct result of glacially-driven drainage system reorganization.

  13. Quaternary history and contemporary patterns in a currently expanding species

    PubMed Central

    Kerdelhu, Carole; Zane, Lorenzo; Simonato, Mauro; Salvato, Paola; Rousselet, Jrme; Roques, Alain; Battisti, Andrea

    2009-01-01

    Background Quaternary climatic oscillations had dramatic effects on species evolution. In northern latitudes, populations had to survive the coldest periods in refugial areas and recurrently colonized northern regions during interglacials. Such a history usually results in a loss of genetic diversity. Populations that did not experience glaciations, in contrast, probably maintained most of their ancestral genetic diversity. These characteristics dramatically affected the present-day distribution of genetic diversity and may influence the ability of species to cope with the current global changes. We conducted a range-wide study of mitochondrial genetic diversity in the pine processionary moth (Thaumetopoea pityocampa/T. wilkinsoni complex, Notodontidae), a forest pest occurring around the Mediterranean Basin and in southern Europe. This species is responding to the current climate change by rapid natural range expansion and can also be accidentally transported by humans. Our aim was to assess if Quaternary climatic oscillations had a different effect across the species' range and to determine if genetic footprints of contemporary processes can be identified in areas of recent introduction. Results We identified three main clades that were spatially structured. In most of Europe, the genetic diversity pattern was typical for species that experienced marked glaciation cycles. Except in refugia, European populations were characterized by the occurrence of one main haplotype and by a strong reduction in genetic diversity, which is expected in regions that were rapidly re-colonized when climatic conditions improved. In contrast, all other sub-clades around the Mediterranean Basin occurred in limited parts of the range and were strongly structured in space, as is expected in regions in which the impact of glaciations was limited. In such places, genetic diversity was retained in most populations, and almost all haplotypes were endemic. This pattern was extreme on remote Mediterranean islands (Crete, Cyprus, Corsica) where highly differentiated, endemic haplotypes were found. Recent introductions were typified by the existence of closely-related haplotypes in geographically distant populations, which is difficult to detect in most of Europe because of a lack of overall genetic structure. Conclusion In regions that were not prone to marked glaciations, recent moth introductions/expansions could be detected due to the existence of a strong spatial genetic structure. In contrast, in regions that experienced the most intense Quaternary climatic oscillations, the natural populations are not genetically structured, and contemporary patterns of population expansion remain undetected. PMID:19732434

  14. Search for {beta}-delayed fission of {sup 228}Ac

    SciTech Connect

    Xu Yanbing; Ding Huajie; Yuan Shuanggui; Yang Weifan; Niu Yanning; Li Yingjun; Xiao Yonghou; Zhang Shengdong; Lu Xiting

    2006-10-15

    Radium was radiochemically separated from natural thorium. Thin {sup 228}Ra{yields}{beta}{sup -228}Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe {gamma}-ray detector. The {beta}-delayed fission events of {sup 228}Ac were observed and its {beta}-delayed fission probability was found to be (5{+-}2)x10{sup -12}.

  15. Revision of the JENDL FP Fission Yield Data

    NASA Astrophysics Data System (ADS)

    Katakura, Jun-ichi; Minato, Futoshi; Ohgama, Kazuya

    2016-03-01

    Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011) revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  16. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  17. Fission of 232Th in a spallation neutron field

    NASA Astrophysics Data System (ADS)

    Yurevich, V. I.; Nikolaev, V. A.; Yakovlev, R. M.

    2016-03-01

    The spatial distributions of thorium fission reaction rate in a spallation neutron field of thick lead target bombarded by protons or deuterons with energy between 1.0 and 3.7 GeV were measured. Approximately a linear dependence of the thorium fission rate on the beam energy is observed. The mean fission cross section of 232Th <σ f > ≈ 123 mb and it does not depend on energy and type of the beam particles.

  18. Neutron flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  19. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  20. Generalized Energy-Dependent Q Values for Fission

    SciTech Connect

    Vogt, R

    2010-03-31

    We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.

  1. Dynamical fission following peripheral heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Strazzeri, A.; Italiano, A.

    2016-02-01

    A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectile-like fragments in a peripheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35AMeV. Information on the reaction mechanism is obtained such as the opposite polarization effects and the estimate of the “formation-to-fast fission lifetimes” of the fissioning fragment.

  2. New fission-fragment detector for experiments at DANCE

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  3. The nature of singlet exciton fission in carotenoid aggregates.

    PubMed

    Musser, Andrew J; Maiuri, Margherita; Brida, Daniele; Cerullo, Giulio; Friend, Richard H; Clark, Jenny

    2015-04-22

    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission. PMID:25825939

  4. The Nature of Singlet Exciton Fission in Carotenoid Aggregates

    PubMed Central

    2015-01-01

    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure–property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1Bu photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission. PMID:25825939

  5. Viscosity and fission time scale of 156Dy

    NASA Astrophysics Data System (ADS)

    van't Hof, G.; Hesselink, W. H. A.; Plompen, A. J. M.; van Schagen, J. P. S.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; van der Ploeg, H.; Diószegi, I.; Kugler, A.

    1996-10-01

    In the fusion-fission reaction 40Ar+116Cd-->156Dy-->fission, performed at beam energies Eb=216 MeV and 238 MeV, γ rays were measured in coincidence with fission fragments. The γ-ray spectra are interpreted using a modified version of the statistical-model code CASCADE. From a comparison of the experimental and calculated spectra it is deduced that the nuclear viscosity is in the range 0.01<γ<4. The extracted fission time scale is of the order of 10-19 s.

  6. Viscosity, fission time scale and deformation of 156Dy

    NASA Astrophysics Data System (ADS)

    van't Hof, G.; Bacelar, J. C. S.; Diószegi, I.; Harakeh, M. N.; Hesselink, W. H. A.; Kalantar-Nayestanaki, N.; Kugler, A.; van der Ploeg, H.; Plompen, A. J. M.; van Schagen, J. P. S.

    1998-08-01

    In the fusion-fission reaction 40Ar + 116Cd → 156Dy ∗ → fission , at Eb = 216 MeV and 238 MeV, γ-rays were measured in coincidence with fission fragments. The interpretation of the γ-ray spectra is done with the help of a modified version of the statistical-model code CASCADE. The spectra can be reproduced with nuclear viscosities in the range 0.01 < γ < 4. The extracted fission time scale is of the order of 10 -19 s. The CASCADE analysis seems to favor a prolate deformation with β ≈ 0.45.

  7. Fission Activities of the Nuclear Reactions Group in Uppsala

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.

    This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.

  8. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  9. Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives.

    PubMed

    Li, Rongchun; Guo, Zhanyong; Jiang, Pingan

    2010-09-01

    Three novel quaternary chitosan derivatives were successfully synthesized by reaction of chloracetyl chitosan (CACS) with pyridine (PACS), 4-(5-chloro-2-hydroxybenzylideneamino)-pyridine (CHPACS), and 4-(5-bromo-2-hydroxybenzylideneamino)-pyridine (BHPACS). The chemical structure of the prepared chitosan derivatives was confirmed by Fourier transform infrared (FT-IR) and (13)C nuclear magnetic resonance ((13)C NMR) and their antifungal activity against Cladosporium cucumerinum, Monilinia fructicola, Colletotrichum lagenarium, and Fusarium oxysporum was assessed. Comparing with the antifungal activity of chitosan, CACS, and PACS, CHPACS and BHPACS exhibited obviously better inhibitory effects, which should be related to the synergistic reaction of chitosan itself with the grafted 2-[4-(5-chloro-2-hydroxybenzylideneamino)-pyridyl]acetyl and 2-[4-(5-bromo-2-hydroxybenzylideneamino)-pyridyl]acetyl. PMID:20615498

  10. Exposure to common quaternary ammonium disinfectants decreases fertility in mice

    PubMed Central

    Melin, Vanessa E.; Potineni, Haritha; Hunt, Patricia; Griswold, Jodi; Siems, Bill; Werre, Stephen R.; Hrubec, Terry C.

    2014-01-01

    Quaternary ammonium compounds (QACs) are antimicrobial disinfectants commonly used in commercial and household settings. Extensive use of QACs results in ubiquitous human exposure, yet reproductive toxicity has not been evaluated. Decreased reproductive performance in laboratory mice coincided with the introduction of a disinfectant containing both alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC). QACs were detected in caging material over a period of several months following cessation of disinfectant use. Breeding pairs exposed for six months to a QAC disinfectant exhibited decreases in fertility and fecundity: increased time to first litter, longer pregnancy intervals, fewer pups per litter and fewer pregnancies. Significant morbidity in near term dams was also observed. In summary, exposure to a common QAC disinfectant mixture significantly impaired reproductive health in mice. This study illustrates the importance of assessing mixture toxicity of commonly used products whose components have only been evaluated individually. PMID:25483128

  11. Quaternary beetle research: the state of the art

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2006-08-01

    Quaternary beetle research has progressed in a variety of ways during the last decade. New kinds of data are being extracted from the fossil specimens themselves, such as ancient DNA and stable isotopes. The ancient DNA studies hold the promise of proving new insights on the stability of beetle genotypes. The study of stable isotopes of H and O from fossil beetle chitin holds the promise of providing an independent proxy for the reconstruction of temperature and precipitation. The discipline is also expanding into previously unstudied regions, such as Australia, New Zealand, and northern Asia. Along with the new study regions, new schools of thought are also forming in the discipline, challenging old research paradigms. This is a necessary step forward for the discipline, as it grows and develops in the 21st Century.

  12. Quaternary prevention, an answer of family doctors to overmedicalization

    PubMed Central

    Jamoulle, Marc

    2015-01-01

    In response to the questioning of Health Policy and Management (HPAM) by colleagues on the role of rank and file family physicians in the same journal, the author, a family physician in Belgium, is trying to highlight the complexity and depth of the work of his colleagues and their contribution to the understanding of the organization and economy of healthcare. It addresses, in particular, the management of health elements throughout the ongoing relationship of the family doctor with his/her patients. It shows how the three dimensions of prevention, clearly included in the daily work, are complemented with the fourth dimension, quaternary prevention or prevention of medicine itself, whose understanding could help to control the economic and human costs of healthcare. PMID:25674569

  13. The Use of Quaternary Ammonium to Combat Dental Caries

    PubMed Central

    Ge, Yang; Wang, Suping; Zhou, Xuedong; Wang, Haohao; Xu, Hockin H. K.; Cheng, Lei

    2015-01-01

    Resin composites and adhesives are increasingly popular in dental restorations, but secondary caries is one of the main reasons for restoration failure. Quaternary ammonium monomers (QAMs) have an anti-microbial effect and are widely used in many fields. Since the concept of the immobilized antibacterial effect was put forward, dental restorations containing QAMs have been studied to reduce secondary caries. Previous studies have been struggling to develop novel anti-caries materials which might have triple benefits: good mechanical properties, antibacterial effects and remineralization potentials. Different kinds of QAMs have been proven to be effective in inhibiting the growth and metabolism of biofilms. Combination of QAMs and other nanoparticles in resin composites and adhesives could enhance their anti-caries capability. Therefore, QAMs are promising to show significant impact on the future of restorative and preventive dentistry. PMID:26635932

  14. Dimeric Quaternary Structure of Human Laforin*♦

    PubMed Central

    Sankhala, Rajeshwer S.; Koksal, Adem C.; Ho, Lan; Nitschke, Felix; Minassian, Berge A.; Cingolani, Gino

    2015-01-01

    The phosphatase laforin removes phosphate groups from glycogen during biosynthetic activity. Loss-of-function mutations in the gene encoding laforin is the predominant cause of Lafora disease, a fatal form of progressive myoclonic epilepsy. Here, we used hybrid structural methods to determine the molecular architecture of human laforin. We found that laforin adopts a dimeric quaternary structure, topologically similar to the prototypical dual specificity phosphatase VH1. The interface between the laforin carbohydrate-binding module and the dual specificity phosphatase domain generates an intimate substrate-binding crevice that allows for recognition and dephosphorylation of phosphomonoesters of glucose. We identify novel molecular determinants in the laforin active site that help decipher the mechanism of glucan phosphatase activity. PMID:25538239

  15. Genotoxicity and biodegradation of quaternary ammonium salts in aquatic environments.

    PubMed

    Grabińska-Sota, Elżbieta

    2011-11-15

    Biodegradation tests were conducted for three groups of quaternary ammonium salts (QAS) that differed in hydrophobic chain length or in hydrophilic properties. The degradation rate was influenced by the hydrocarbon chain length, the presence of aromatic or cyclic rings, and the occurrence of sulphur and oxygen atoms in the alkyl substituent. All tested QAS variants were biodegradable in an aquatic environment. The half life of the different QAS under these conditions ranged from 0.5 to 1.6 days and depended on the properties of the compound. Biodegradation intermediate products were identified by nuclear magnetic resonance spectrometry ((1)H NMR and (13)C NMR). Both the initial preparations and their biodegradation products were not genotoxic. PMID:21880416

  16. Asynchronous extinction of late Quaternary sloths on continents and islands.

    PubMed

    Steadman, David W; Martin, Paul S; MacPhee, Ross D E; Jull, A J T; McDonald, H Gregory; Woods, Charles A; Iturralde-Vinent, Manuel; Hodgins, Gregory W L

    2005-08-16

    Whatever the cause, it is extraordinary that dozens of genera of large mammals became extinct during the late Quaternary throughout the Western Hemisphere, including 90% of the genera of the xenarthran suborder Phyllophaga (sloths). Radiocarbon dates directly on dung, bones, or other tissue of extinct sloths place their "last appearance" datum at approximately 11,000 radiocarbon years before present (yr BP) or slightly less in North America, approximately 10,500 yr BP in South America, and approximately 4,400 yr BP on West Indian islands. This asynchronous situation is not compatible with glacial-interglacial climate change forcing these extinctions, especially given the great elevational, latitudinal, and longitudinal variation of the sloth-bearing continental sites. Instead, the chronology of last appearance of extinct sloths, whether on continents or islands, more closely tracks the first arrival of people. PMID:16085711

  17. Quaternary soil salinity events and Australian vegetation history

    NASA Astrophysics Data System (ADS)

    Crowley, G. M.

    A late Quaternary history of Australian soil salinization is produced by comparing Chenopodiaceae and Casuarina pollen curves. Although salinity development varied between sites, its occurrence was generally associated with arid phases and when high rainfall or high sea level caused regionally high groundwater tables. Soil salinization contributed to the shift from Casuarina- to Eucalyptus-dominance of interglacial sclerophyll vegetation. The deposition of saline sediments deflated from the Murray Basin seems more likely than Aboriginal burning to have caused the decline of Casuarina at Lake George. Soil salinization probably resulted in other vegetation changes and must be taken into account in environmental reconstructions. The renewed increase in soil salinity caused by European land-use practices and an associated decline in Casuarina are evident in the pollen records of many sites.

  18. Airway effects of inhaled quaternary ammonium compounds in mice.

    PubMed

    Larsen, Sren T; Verder, Henrik; Nielsen, Gunnar D

    2012-06-01

    Quaternary ammonium compounds (QAC) constitute a family of widely used chemical substances. The QAC benzalkonium chloride (BAC) has caused bronchoconstriction in human beings by poorly understood mechanisms and lung damage at high concentration as shown in a single rat study. This study evaluates acute airway effects in mice after inhalation of aerosols of the QACs, BAC, hexadecyl trimethyl ammonium bromide (HTA), cetyl pyridinium chloride (CPC) and dimethyl dioctadecyl ammonium bromide (DDA). The QACs gave rise to concentration-dependent decreases in the tidal volume (VT) and a concomitant increase in respiratory rate indicating pulmonary irritation. The potencies of the QAC to induce these effects were in the order: BAC > HTA = CPC > DDA. Furthermore, inhalation of BAC and CPC aerosols gave rise to pulmonary inflammation as apparent from bronchoalveolar lavage. Stimulation of nasal trigeminal nerve endings by QAC, which may serve as a warning signal, was absent. PMID:22188809

  19. Terrestrial paleoenvironmental effects of a late quaternary-age supernova

    NASA Astrophysics Data System (ADS)

    Brakenridge, G. R.

    1981-04-01

    Over 120 radio-emitting galactic supernova remnants (SNRs) have been catalogued. It is possible to evaluate the possible terrestrial importance of specific inferred radiation events. Because radio SNRs expand with age, and become indistinguishable from the interstellar medium at mean diameters of approximately 65 pc (ages of roughly 45,000 years), only late Quaternary time can be examined. However, it is for this period that detailed and well-dated terrestrial paleoenvironmental records are available. Such records can provide tests of any predicted supernova effects. There is at present considerable evidence supporting the hypothesis that the Vela supernova caused short-term but possibly severe terrestrial environmental changes. The information presented suggests that the effects to be predicted for the Vela supernova did occur, and began shortly after 11,000 C-14 yr B.P.

  20. Antiproton Powered Gas Core Fission Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2005-02-01

    Extensive research in recent years has demonstrated that "at rest" annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas — inserted into the chamber just prior to the release of the antiproton — to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.

  1. ORNL fission product release tests VI-6

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Collins, J.L.; Lee, C.S.

    1991-01-01

    The ORNL fission product release tests investigate release and transport of the major fission products from high-burnup fuel under LWR accident conditions. The two most recent tests (VI-4 and VI-5) were conducted in hydrogen. In three previous tests in this series (VI-1, VI-2, and VI-3), which had been conducted in steam, the oxidized Zircaloy cladding remained largely intact and acted as a barrier to steam reaction with the UO{sub 2}. Test VI-6 was designed to insure significant oxidation of the UO{sub 2} fuel, which has been shown to enhance release of certain fission products, especially molybdenum and ruthenium. The BR3 fuel specimen used in test VI-6 will be heated in hydrogen to 2300 K; the Zircaloy cladding is expected to melt and runoff at {approximately}2150 K. Upon reaching the 2300 K test temperature, the test atmosphere will be changed to steam, and that temperature will be maintained for 60 min, with the three collection trains being operated for 2-, 18-, and 40-min periods. The releases of {sup 85}Kr and {sup 137}Cs will be monitored continuously throughout the test. Posttest analyses of the material collected on the three trains will provide results on the release and transport of Mo, Ru, Sb, Te, Ba, Ce, and Eu as a function of time at 2300 K. Continuous monitoring of the hydrogen produced during the steam atmosphere period at high temperature will provide a measure of the oxidation rate of the cladding and fuel. Following delays in approval of the safety documentation and in decontamination of the hot cell and test apparatus, test VI-6 will be conducted in late May.

  2. Antiproton Powered Gas Core Fission Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    Extensive research in recent years has demonstrated that “at rest” annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.

  3. Antiproton Powered Gas Core Fission Rocket

    SciTech Connect

    Kammash, Terry

    2005-02-06

    Extensive research in recent years has demonstrated that 'at rest' annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.

  4. Late Quaternary environments in the White Nile region, Sudan

    NASA Astrophysics Data System (ADS)

    Williams, Martin A. J.; Adamson, Donald; Cock, Bryan; McEvedy, Rosanna

    2000-11-01

    Both the channel of the lower White Nile and the soils adjacent to the river have a number of special characteristics, which are a direct reflection of its unique late Quaternary history. These attributes include a straight channel pattern (despite a flood gradient of 1 in 100 000 and a very fine suspension load) and localised concentrations of buried evaporites, carbonates, and highly saline subsoils at intervals alongside the river. Late Quaternary aeolian, fluviatile and lacustrine deposits in and near the lower White Nile valley reveal a strong contrast between the often dry, cold and windy late Pleistocene climates characteristic of the Last Glacial Maximum (18 000±3000 BP) and the wetter and warmer climates prevalent in those regions towards 11 500-11 000 BP, 9500 BP and 8500-7000 BP. Buried shell-beds and recessional strandlines indicate a sudden and rapid regression of the vastly expanded terminal Pleistocene White Nile in possible Younger Dryas times (11 000-10 000 BP) coinciding with probable temporary closure of Lake Victoria in the Ugandan upper reaches of the White Nile. The stable carbon and oxygen isotopic composition of freshwater gastropod shells in the lower White Nile region is consistent with a stronger summer monsoon towards 11 500-11 000 BP and again towards 8500-7000 BP. At intervals between ca. 18 000 and 12 000 BP, the lower White Nile was a strongly seasonal river, which shifted course frequently and carried large quantities of medium and coarse sand. The present Sudd swamps in the southern Sudan cannot have been in existence during those times, but came into existence (or became reestablished) during the Holocene.

  5. Quaternary history of the temperate forests of China

    NASA Astrophysics Data System (ADS)

    Liu, Kam-biu

    Pollen data from 80 sites in North China and Northeast China are reviewed to document the Quaternary history of the deciduous forest and the temperate mixed conifer-hardwood forest of China. During the Late Tertiary the forest in North China consisted of an admixture of temperate deciduous hardwoods, subtropical broadleaved evergreen elements, and ancient conifers of tropical and subtropical affinities. Pollen evidence from long boreholes through Quaternary deposits indicates four or five glacial/interglacial climatic cycles. The first glacial episode, known as the Nangou Cold Period, led to the development of a spruce-fir forest of no modern analogue in North China. Deciduous forest was re-established in North China during the intervening interglacials. The subtropical evergreen elements and Tertiary relicts were successively eliminated during the subsequent glacials. In the last glacial, spruce-fir forests which are now confined to mountain slopes above 1500 m descended to the lowlands of North and Northeast China, implying a temperature depression of at least 8-10°C. Cold steppe occurred at least locally near Beijing in the last glacial maximum, but the data base is insufficient to delimit the spatial and temporal extent of this and other paleovegetation types on a regional scale, or to reconstruct the locations of glacial refugia and the dynamics of plant migration. The Holocene pollen stratigraphies suggest a tripartite division, with a period of maximum warmth, the Hypsithermal, in the mid-Holocene. In both North and Northeast China, the forest became more diverse during the mid-Holocene when thermophilous hardwoods expanded at the expense of pine and, in more southerly locations, birch. Unequivocal evidence for intensified summer monsoon during the early Holocene, as predicted by the Kutzbach model based on orbital parameter changes, remains to be found from the pollen records of the temperate forest regions of China.

  6. Late Quaternary slip on the Santa Cruz Island fault, California

    USGS Publications Warehouse

    Pinter, N.; Lueddecke, S.B.; Keller, E.A.; Simmons, K.R.

    1998-01-01

    The style, timing, and pattern of slip on the Santa Cruz Island fault were investigated by trenching the fault and by analysis of offset late Quaternary landforms. A trench excavated across the fault at Christi Beach, on the western coast of the island, exposed deformation of latest Pleistocene to Holocene sediments and pre-Quaternary rocks, recording repeated large-magnitude rupture events. The most recent earthquake at this site occurred ca. 5 ka. Coastal terraces preserved on western Santa Cruz Island have been dated using the uranium-series technique and by extrapolation using terrace elevations and the eustatic record. Offset of terraces and other landforms indicates that the Santa Cruz Island fault is predominantly left lateral, having a horizontal slip rate of not more than 1.1 mm/yr and probably about 0.8 mm/yr. The fault also has a smaller reverse component, slipping at a rate of between 0.1 and 0.2 mm/yr. Combined with measurements of slip per event, this information suggests a long-term average recurrence interval of at least 2.7 k.y. and probably 4-5 k.y., and average earthquake magnitudes of Mw 7.2-7.5. Sense of slip, recurrence interval, and earthquake magnitudes calculated here for the Santa Cruz Island fault are very similar to recent results for other faults along the southern margin of the western Transverse Range, including the Malibu Coast fault, the Santa Monica fault, the Hollywood fault, and the Raymond fault, supporting the contention that these faults constitute a continuous and linked fault system, which is characterized by large but relatively infrequent earthquakes.

  7. Detection of natural fission products in groundwater

    SciTech Connect

    Fabryka-Martin, J.T.; Davis, S.N.; Bentley, H.W.; Elmore, D.

    1985-11-01

    The proposed disposal of high-level radioactive waste in geologic formations has spurred research on nuclear techniques for age-dating old groundwater and on field studies of radionuclide behavior in geochemical analogs to waste repositories. Lithospheric production and solute transport of natural fission product /sup 129/I is of interest for both applications. Using tandem accelerator mass spectrometry, natural levels of this isotope were recently measured in groundwater in two field studies: Stripa granite in Sweden and uranium ore deposits in Northern Territory, Australia. Results and preliminary interpretation are presented here.

  8. Mechanics and morphogenesis of fission yeast cells.

    PubMed

    Davì, Valeria; Minc, Nicolas

    2015-12-01

    The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell. PMID:26291501

  9. Recent fission cross section standards measurements

    SciTech Connect

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  10. Finite Element Solver for Fission Dynamics

    SciTech Connect

    2015-01-30

    FELIX is a physics computer code used to model fission fragment mass distributions in a fully quantum-mechanical, misroscopic framework that only relies on our current knowledge of nuclear forces. It is an implementation of the time-dependent generator coordinate method (TDGCM), which simulates the dynamics of a collective quantum wave-packet assuming the motion is adiabatic. In typical applications of the TDGCM, the nuclear collective wavepacket is obtained as a superposition of wavefunctions obtained by solving the Hartree-Fock-Bogoliubov equations of nuclear density functional theory (DFT). The program calculates at each time step the coefficients of that superposition.

  11. Finite Element Solver for Fission Dynamics

    Energy Science and Technology Software Center (ESTSC)

    2015-01-30

    FELIX is a physics computer code used to model fission fragment mass distributions in a fully quantum-mechanical, misroscopic framework that only relies on our current knowledge of nuclear forces. It is an implementation of the time-dependent generator coordinate method (TDGCM), which simulates the dynamics of a collective quantum wave-packet assuming the motion is adiabatic. In typical applications of the TDGCM, the nuclear collective wavepacket is obtained as a superposition of wavefunctions obtained by solving themore » Hartree-Fock-Bogoliubov equations of nuclear density functional theory (DFT). The program calculates at each time step the coefficients of that superposition.« less

  12. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  13. Fission Fragment Properties from a Microscopic Approach

    SciTech Connect

    Dubray, N.; Goutte, H.; Delaroche, J.-P.

    2008-04-17

    We calculate potential energy surfaces in the elongation-asymmetry plane, up to very large deformations, with the Hartree-Fock-Bogoliubov method and the Gogny nucleon-nucleon effective interaction DIS, for the {sup 226}Th and {sup 256,258,260}Fm fissioning systems. We then define a criterion based on the nuclear density, in order to discriminate between pre- and post-scission configurations. Using this criterion, many scission configurations are identified, and are used for the calculation of several fragment properties, like fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, charge polarization, total fragment kinetic energies and neutron multiplicities.

  14. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    PubMed

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information. PMID:26836448

  15. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    NASA Astrophysics Data System (ADS)

    Selby, H. D.; Mac Innes, M. R.; Barr, D. W.; Keksis, A. L.; Meade, R. A.; Burns, C. J.; Chadwick, M. B.; Wallstrom, T. C.

    2010-12-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99Mo, 95Zr, 137Cs, 140Ba, 141,143Ce, and 147Nd. Modest incident-energy dependence exists for the 147Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ˜5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for 99Mo where the present results are about 4%-relative higher for neutrons incident on 239Pu and 235U. Additionally, our results illustrate the importance of representing the incident energy dependence of fission product yields over the fast neutron energy range for high-accuracy work, for example the 147Nd from neutron reactions on plutonium. An upgrade to the ENDF library, for ENDF/B-VII.1, based on these and other data, is described in a companion paper to this work.

  16. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGESBeta

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  17. Fission neutron spectra measurements at LANSCE - status and plans

    SciTech Connect

    Haight, Robert C; Noda, Shusaku; Nelson, Ronald O; O' Donnell, John M; Devlin, Matt; Chatillon, Audrey; Granier, Thierry; Taieb, Julien; Laurent, Benoit; Belier, Gilbert; Becker, John A; Wu, Ching - Yen

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  18. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  19. Microscopy of Fission Yeast Sexual Lifecycle.

    PubMed

    Vjestica, Aleksandar; Merlini, Laura; Dudin, Omaya; Bendezu, Felipe O; Martin, Sophie G

    2016-01-01

    The fission yeast Schizosaccharomyces pombe has been an invaluable model system in studying the regulation of the mitotic cell cycle progression, the mechanics of cell division and cell polarity. Furthermore, classical experiments on its sexual reproduction have yielded results pivotal to current understanding of DNA recombination and meiosis. More recent analysis of fission yeast mating has raised interesting questions on extrinsic stimuli response mechanisms, polarized cell growth and cell-cell fusion. To study these topics in detail we have developed a simple protocol for microscopy of the entire sexual lifecycle. The method described here is easily adjusted to study specific mating stages. Briefly, after being grown to exponential phase in a nitrogen-rich medium, cell cultures are shifted to a nitrogen-deprived medium for periods of time suited to the stage of the sexual lifecycle that will be explored. Cells are then mounted on custom, easily built agarose pad chambers for imaging. This approach allows cells to be monitored from the onset of mating to the final formation of spores. PMID:27022830

  20. A Fission-Powered Interstellar Precursor Mission

    SciTech Connect

    Lenard, R.X.; Lipinski, R.J.; West, J.L.; Wright, S.A.

    1998-10-28

    An 'interstellar precursor mission' lays the groundwork for eventual interstellar exploration by studying the interstellar medium and by stretching technologies that have potential application for eventual interstellar exploration. The numerous scientific goals for such a mission include generating a 3-D stellar map of our galaxy, studying Kuiper-belt and Oort cloud objects, and observing distant objects using the sun's gravitational lens as the primary of an enormous telescope. System equations are developed for a space tug which propels a 2500-kg scientific payload to 550 astronomical units in about 20 years. The tug to transport this payload uses electric propulsion with an Isp of 15,000 seconds and a fission reactor with a closed Brayton cycle to genemte the electricity. The optimal configuration may be to thrust for only about 6 years and then coast for the remaining 14 pars. This spacecraft does not require any physics breakthroughs or major advances in technology. The fission power syslem can be engineered and built by drawing upon known technologies developed for relatgd systems over the past 40 years. The tug system would eventually reach 1000 a.u in 33 years, and would have adequate power to relay large amounts of data throughout its journey.

  1. Fission fragment rockets: A potential breakthrough

    SciTech Connect

    Chapline, G.F.; Dickson, P.W.; Schnitzler, B.G.

    1988-01-01

    A new reactor concept which has the potential of enabling extremely energetic and ambitious space propulsion missions is described. Fission fragments are directly utilized as the propellant by guiding them out of a very low density core using magnetic fields. The very high fission fragment exhaust velocities yield specific impulses of approximately a million seconds while maintaining respectable thrust levels. Specific impulses of this magnitude allow acceleration of significant payload masses to several percent of the velocity of light and enable a variety of interesting missions, e.g., payloads to the nearest star, Alpha Centauri, in about a hundred years for very rapid solar system transport. The parameters reported in this paper are based on a very preliminary analysis. Considerable trade-off studies will be required to find the optimum system. We hope the optimum system proves to be as attractive as our preliminary analysis indicates, although we must admit that our limited effort is insufficient to guarantee any specific level of performance.

  2. A fission-powered interstellar precursor mission

    SciTech Connect

    Lipinski, Ronald J.; Lenard, Roger X.; Wright, Steven A. West, John L.

    1999-01-01

    An {open_quotes}interstellar precursor mission{close_quotes} lays the groundwork for eventual interstellar exploration by studying the interstellar medium and by stretching technologies that have potential application for eventual interstellar exploration. The numerous scientific goals for such a mission include generating a 3-D stellar map of our galaxy, studying Kuiper-belt and Oort cloud objects, and observing distant objects using the sun{close_quote}s gravitational lens as the primary of an enormous telescope. System equations are developed for a space tug which propels a 2500-kg scientific payload to 550 astronomical units in about 20 years. The tug to transport this payload uses electric propulsion with an lsp of 15,000 seconds and a fission reactor with a closed Brayton cycle to generate the electricity. The optimal configuration may be to thrust for only about 6 years and then coast for the remaining 14 years. This spacecraft does not require any physics breakthroughs or major advances in technology. The fission power system can be engineered and built by drawing upon known technologies developed for related systems over the past 40 years. The tug system would eventually reach 1000 a.u in 33 years, and would have adequate power to relay large amounts of data throughout its journey. {copyright} {ital 1999 American Institute of Physics.}

  3. Ceramic Hosts for Fission Products Immobilization

    SciTech Connect

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent metal ions, Mg and Ca, in the ceramic host phases. The immobilization of rear earth (lanthanide series) fission products in these ceramic host phases will also be studied this year. Cerium oxide is chosen to represent the rear earth fission product for substitution studies in spinel, perovskite and zirconolite ceramic hosts. Cerium has +3 and +4 oxidation states and it can replace some of the trivalent or tetravalent host ions to produce the substitution ceramics such as MgAl2-xCexO4, CaTi1-xCexO3, CaZr1-xCexTi2O7 and CaZrTi2-xCexO7. X-ray diffraction analysis will be used to compare the crystalline structures of the pure ceramic hosts and the substitution phases. SEM-EDX analysis will be used to study the Ce distribution in the ceramic host phases. The range of cerium doping is planned to reach the full substitution of the trivalent or tetravalent ions, Al, Ti and Zr, in the ceramic host phases.

  4. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  5. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOEpatents

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  6. Low scatter lightweight fission spectrometer constructed for biological research

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.

    1968-01-01

    Low scatter, lightweight fission spectrometer provides a simple, reliable method for determining absolute neutron fluxes in a fixed neutron. It minimizes neutron scatter and energy degradation effects, and has a counting volume large enough to intercept the most energetic fission fragments, yet small enough to be discriminating.

  7. Terrestrial fission xenon: choice of primordial isotopic composition

    SciTech Connect

    Levskii, L.

    1983-06-30

    A new composition of primordial terrestrial xenon is derived, on the assumption that it lies on an extension of the mixing line between solar Xe and anomalous (CCF) Xe in carbonaceous chondrites. With this composition, the apparent fission components in atmospheric and well gas Xe become larger, and resemble Pu-244 fission xenon. 7 references.

  8. Singlet fission in pentacene through multiple exciton quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Musgrave, Charles

    2010-03-01

    Multi-exciton generation (MEG) has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission is the molecular analogue of MEG and has been observed in various systems, including tetracene and pentacene, however, no fundamental mechanism for singlet fission has yet been described, although it may govern MEG processes in a variety of materials. Because photoexcited states have single-exciton character, singlet fission to produce a pair of triplet excitons must involve an intermediate state that: (1) exhibits multi-exciton (ME) character, (2) is accessible from S1 and satisfies the fission energy requirement, and (3) efficiently dissociates into multiple electron-hole pairs. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through a dark state (D) of ME character that lies just below S1, satisfies the fission energy requirement (ED>2ET0), and splits into two triplets (2xT0). In tetracene, D lies just above S1, consistent with the observation that singlet fission is thermally activated in tetracene. Rational design of photovoltaic systems that exploit singlet fission will require ab initio analysis of ME states such as D.

  9. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  10. Fission-track ages from the Precambrian of Shropshire.

    USGS Publications Warehouse

    Naeser, C.W.; Toghill, P.; Ross, R.J., Jr.

    1982-01-01

    Four samples of Longmyndian and Uriconian strata from S of Shrewsbury, England have been processed for apatite and/or zircon fission-track ages. The resultant ages illustrate how depth of burial may affect fission-track ages. The analytical procedures followed were as described in Naeser (1979).-from Authors

  11. On the fission of the heaviest fermium isotopes

    SciTech Connect

    C-acute-accentwiok, S.; Rozmej, P.; Sobiczewski, A.

    1987-12-10

    Potential energy of /sup 258/Fm is calculated in multidimensional deformation spaceias a function of both (reflection-) symmetric and asymmetric shapes. The inclusion of the asymmetric shapes is found important as it ''opens a pass'' between the two fission valleys: one corresponding to compact and the other to elongated shapes of the nucleus. Thus, it makes both valleys accessible to the fissioning nucleus.

  12. Electroplating method for producing ultralow-mass fissionable deposits

    DOEpatents

    Ruddy, Francis H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit.

  13. Development Progress in Phase 1 Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; VanDyke, Melissa; Godfroy, Tom; Martin, Jim; Dickens, Ricky; Pedersen, Kevin; Poston, David; Reid, Bob; Lipinski, Ron; Wright, Steve; Lenard, Roger

    2000-01-01

    Phase 1 fission propulsion systems are those fission propulsion systems that are highly testable and require no development of nuclear fuels or materials. The systems can be developed without new or significantly modified facilities, have adequate performance for numerous missions of interest, and demonstrate technologies and programmatics that are traceable to Phase 2 and Phase 3 systems. Phase 1 fission propulsion systems focus on safety, cost and schedule. Phase 1 flight units can be tested at full thrust using resistance heaters to simulate heat from fission. The development and use of Phase 1 systems will help enable Phase 2 or Phase 3 fission propulsion systems capable of giving rapid, affordable access to any point in the solar system. A Phase 1 fission propulsion system under development at the Marshall Space Flight Center (MSFC) in collaboration with individuals from Department of Energy Laboratories and industry is the Safe Affordable Fission Engine (SAFE). The propellant energy source of a 30 kW SAFE unit (SAFE-30) is being fabricated, and will begin testing at MSFC in FY00. The conceptual design of a 300 kW SAFE unit (SAFE-300)is nearing completion. Experiments have been performed on both SAFE-30 and SAFE-300 components. Module tests have confirmed the performance potential of the SAFE series of propulsion systems. This paper will report on the development status of the Phase 1 SAFE fission propulsion system.

  14. SEPARATION OF FISSION PRODUCTS FROM PLUTONIUM BY PRECIPITATION

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.; Davidson, N.R.

    1959-09-01

    Fission product separation from hexavalent plutonium by bismuth phosphate precipitation of the fission products is described. The precipitation, according to this invention, is improved by coprecipitating ceric and zirconium phosphates (0.05 to 2.5 grams/liter) with the bismuth phosphate.

  15. Evaluation of chitosan quaternary ammonium salt-modified resin denture base material.

    PubMed

    Song, Rong; Zhong, Zhaohua; Lin, Lexun

    2016-04-01

    Chitosan quaternary ammonium salt displays good antioxidant and antibacterial characteristics and it shows appreciable solubility in water. When added to the traditional denture material to form a resin base, it could promote good oral health by improving the oral environment. In this study, chitosan quaternary ammonium salt was added to the denture material following two different methods. After three months of immersion in artificial saliva, the specimens were tested for tensile strength and were scanned by electron microscope. The murine fibroblast cytotoxicity and antibacterial properties were also tested. The result showed no significant differences in the tensile strength and in the proliferation of murine L929 fibroblast cells. The two structures of chitosan quaternary ammonium salt-modified denture material had different degrees of corrosion resistance and antimicrobial properties. These results indicate that chitosan quaternary ammonium salt-modified resin denture base material has the potential to become a new generation oral denture composite material. PMID:26718869

  16. OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)

    SciTech Connect

    HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.; MYERS JR.,SAMUEL M.; CRAWFORD,MARY H.; BANAS,MICHAEL ANTHONY; HEARNE,SEAN JOSEPH

    2000-01-18

    We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

  17. Induction of contact drematitis in guinea pigs by quaternary ammonium compounds: the mechanisms of antigen formation

    SciTech Connect

    Schallreuter, K.R.; Schulz, K.H.; Wood, J.M.

    1986-12-01

    Eight quaternary ammonium compounds were tested for their ability to induce contact dermatitis in guinea pigs by using a modified Freund's complete adjuvant test together with the guinea pig maximization test. Only two quaternary ammonium salts of eight tested could be designated as strong allergens. These two active substances were shown to be capable of stable association with membrane lipids in forming immunogenic complexes. This surface complexation phenomenon was confirmed by using a spin-labeled quaternary ammonium salt which competed for binding sites to the surface of epidermal cells in vivo. Electron spin resonance was used to demonstrate that stable ion-pairs are formed between binding sites and the two allergenic preservatives. Furthermore, information was obtained on the kinetics of immunogenic complex formation as well as on the position and orientation of the quaternary ammonium ion at the cell surface.

  18. Antibacterial properties of poly(quaternary ammonium) modified gold and titanium dioxide nanoparticles.

    PubMed

    Wan, Weijie; Yeow, John T W

    2012-06-01

    We report excellent antibacterial effect induced by amine-functionalized gold and titanium dioxide nanoparticles without external excitations. The idea originates from the excellent antibacterial property of quaternary ammonium salts. The effects of poly(quaternary ammonium) and polyacrylate sodium functional groups as nanoparticle surfactants are compared to show that poly(quaternary ammonium) functional groups are the main cause of the induced antibacterial effect. 99.999% of E. coli can be destructed in 10 minutes by simply mixing bacteria with nanoparticle dispersions. The effect of nanoparticle concentrations on the antibacterial property is evaluated. Time required to significantly suppress bacteria growth is studied. The result indicates that the excellent antibacterial property can be introduced to any nanomaterials by using poly(quaternary ammonium) functional groups as surfactants. The engineered nanoparticles can find enormous applications such as self-cleaning surfaces, waste water treatment, Lab-on-a-Chip devices and many more. PMID:22905506

  19. Induction of contact dermatitis in guinea pigs by quaternary ammonium compounds: the mechanism of antigen formation.

    PubMed Central

    Schallreuter, K U; Schulz, K H; Wood, J M

    1986-01-01

    Eight quaternary ammonium compounds were tested for their ability to induce contact dermatitis in guinea pigs by using a modified Freund's complete adjuvant test together with the guinea pig maximization test. Only two quaternary ammonium salts of the eight tested could be designated as strong allergens. These two active substances were shown to be capable of stable association with membrane lipids in forming immunogenic complexes. This surface complexation phenomenon was confirmed by using a spin-labeled quaternary ammonium salt which competed for binding sites at the surface of epidermal cells in vivo. Electron spin resonance was used to demonstrate that stable "ion-pairs" are formed between binding sites and the two allergenic preservatives. Furthermore, information was obtained on the kinetics of immunogenic complex formation as well as on the position and orientation of the quaternary ammonium ion at the cell surface. PMID:3830108

  20. Metalorganic Vapor-Phase Epitaxial Growth and Characterization of Quaternary AlGaInN

    SciTech Connect

    BANAS, MICHAEL ANTHONY; CRAWFORD, MARY H.; FIGIEL, JEFFREY J.; HAN, JUNG; LEE, STEPHEN R.; MYERS JR., SAMUEL M.; PETERSON, GARY D.

    1999-09-27

    In this letter we report the growth (by MOVPE) and characterization of quaternary AlGaInN. A combination of PL, high-resolution XRD, and RBS characterizations enables us to explore and delineate the contours of equil-emission energy and lattice parameters as functions of the quaternary compositions. The observation of room temperature PL emission as short as 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GdnN MQW heterostructures have also been grown; both x-ray diffraction and PL measurement suggest the possibility of incorporating this quaternary into optoelectronic devices.

  1. Single-particle spin effect on fission fragment angular momentum

    NASA Astrophysics Data System (ADS)

    Naik, H.; Dange, S. P.; Singh, R. J.; Reddy, A. V. R.

    2007-02-01

    Independent isomeric yield ratios (IYR) of 128Sb, 130Sb, 132Sb, 131Te, 133Te, 132I, 134I, 136I, 135Xe, and 138Cs have been determined in the fast neutron-induced fission of 243Am using the radiochemical and γ-ray spectrometric technique. From the IYR, fragment angular momenta (J rms) have been deduced using the spin-dependent statistical model analysis. From the J rms-values and experimental kinetic energy data deformation parameters (β) have been deduced using the pre-scission bending mode oscillation model and the statistical model. The J rms- and β-values of fission fragments from the present and earlier work in the odd-Z fissioning systems ( 238Np * , 242Am * and 244Am * ) are compared with the literature data in the even-Z fissioning systems ( 230, 233Th * , 233, 234, 236, 239U * , 239, 240, 241, 242Pu * , 244Cm(SF), 245, 246Cm * , 250Cf * and 252Cf(SF)) to examine the role of single-particle (proton) spin effect. It was observed that i) in all the fissioning systems J rms- and β-values of the fragments with spherical 82n shell and even-Z products are lower than the fragments away from the spherical neutron shell and odd-Z products, which indicate the effect of nuclear structure. ii) For both even-Z and odd-Z fission products J rms-values increase with Z F 2/A F due to increase in Coulomb torque. iii) The J rms- and β-values of even-Z fission products are comparable in all the fissioning systems. However, for odd-Z fission products they are slightly higher in the odd-Z fissioning systems compared to their adjacent even-Z fissioning systems. This is possible due to the contribution of the extra single-particle (proton) spin of the odd-Z fissioning systems to their odd-Z fragments. iv) The yield-weighted fragment angular momentum and elemental yields profile shows an anti-correlation in even-Z fissioning systems but not in the odd-Z fissioning systems.

  2. Characterization of the scission point from fission-fragment velocities

    NASA Astrophysics Data System (ADS)

    Caamaño, M.; Farget, F.; Delaune, O.; Schmidt, K.-H.; Schmitt, C.; Audouin, L.; Bacri, C.-O.; Benlliure, J.; Casarejos, E.; Derkx, X.; Fernández-Domínguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Ramos, D.; Rodríguez-Tajes, C.; Roger, T.; Shrivastava, A.

    2015-09-01

    The isotopic yield distributions and kinematic properties of fragments produced in the transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV excitation energy, respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematics of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.

  3. Fission matrix capability for MCNP, Part II - Applications

    SciTech Connect

    Carney, S. E.; Brown, F. B.; Kiedrowski, B. C.; Martin, W. R.

    2013-07-01

    This paper describes the initial experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost during the normal simulation for criticality calculations. It can be used to provide estimates of the fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the power method iterations. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. Numerous examples are presented. A companion paper (Part I - Theory) describes the theoretical basis for the fission matrix method. (authors)

  4. New Results on Nuclear Fission--Data and Interpretation

    SciTech Connect

    Kelic, Aleksandra; Ricciardi, Maria Valentina; Schmidt, Karl-Heinz

    2008-04-17

    An overview on phenomena observed in low-energy fission is presented, including new results from a GSI experiment with relativistic secondary beams. The interpretation of the structural effects in terms of fission channels reveals an astonishing stability of the fission-channel positions in the heavy fragment in nuclear charge in contrast to the previously assumed constancy in mass. The statistical model is applied to deduce the relevant characteristics of the potential-energy surface. It is assumed that the different degrees of freedom are frozen at a specific stage each on the descent from saddle to scission due to the fission dynamics. Evidence for the separability of compound-nucleus and fragment properties in fission is deduced.

  5. First fission mass yield measurements using SPIDER at LANSCE

    NASA Astrophysics Data System (ADS)

    Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Devlin, Matt; Bredeweg, Todd; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Shields, Dan; Blakeley, Rick; Hecht, Adam

    2014-09-01

    Robust measurements of fission product properties, including mass yields, are important for advancing our understanding of the complex fission process and as improved inputs to calculation and simulation efforts in nuclear applications. The SPIDER detector, located at the Los Alamos Neutron Science Center (LANSCE), is a recently developed mass spectrometer aimed at measuring fission product mass yields with high resolution as a function of incident neutron energy and product mass, charge, and kinetic energy. The prototype SPIDER detector has been assembled, tested, installed at the Lujan Center at LANSCE, and taken initial thermal neutron induced measurements. The first results of mass yields for spontaneous fission of 252Cf and thermal neutron-induced fission of 235U measured with SPIDER will be presented. Ongoing upgrades and future plans for SPIDER will also be discussed. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR. LA-UR-14-24830.

  6. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G. G.; Hurst, B. J.; O'Kelly, D.; Schmitt, R. P.; Itkis, M. G.; Kondratiev, N. A.; Kozulin, E. M.; Oganessian, Yu. Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Rusanov, A. Ya.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.

    1998-12-21

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}*, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region.

  7. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G.G.; Hurst, B.J.; OKelly, D.; Schmitt, R.P.; Itkis, M.G.; Kondratiev, N.A.; Kozulin, E.M.; Oganessian, Y.T.; Pashkevich, V.V.; Pokrovsky, I.V.; Salamatin, V.S.; Rusanov, A.Y.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttge, L.

    1998-12-01

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}{sup {asterisk}}, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region. {copyright} {ital 1998 American Institute of Physics.}

  8. Applications of Event-by-Event Fission Modeling with FREYA

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-16

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on {sup 239}Pu(n{sub th},f), {sup 240}Pu(sf) and {sup 252}Cf(sf), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  9. After Apollo - Fission origin of the moon. [from planets

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1973-01-01

    The present work maintains that the Apollo moon data substantiate the fission theory of the origin of the moon. It has been objected to this theory that prior to fission, the total mass and angular momentum of the earth-moon system would have to be greater than the present total of the earth and the moon, which would imply that angular momentum must have been lost since the fission. The present work states that this loss of momentum can be accounted for by the subsequent boiling off of a large amount of the original lunar mass. This would also mean that the moon ought to be greatly impoverished in volatiles, which it, indeed, is according to Apollo data. It is suggested that at one time the solar system was a binary star, namely, the sun and Jupiter. Successive fissions of Jupiter would have created other planets, which themselves could undergo fission, producing satellites.

  10. Modelling the widths of fission observables in GEF

    NASA Astrophysics Data System (ADS)

    Jurado, B.; Schmidt, K.-H.

    2013-03-01

    The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.

  11. Fission energy program of the US Department of Energy, FY 1981

    SciTech Connect

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  12. The pragmatic roots of American Quaternary geology and geomorphology

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.

    1996-07-01

    H.L. Fairchild's words from the 1904 Geological Society of America Bulletin remain appropriate today: "Geologists have been too generous in allowing other people to make their philosophy for them". Geologists have quietly followed a methodological trinity involving (1) inspiration by analogy, (2) impartial and critical assessment of hypotheses, and (3) skepticism of authority (prevailing theoretical constraints or paradigms). These methods are described in classical papers by Quaternary geologists and geomorphologists, mostly written a century ago. In recent years these papers have all been criticized in modern philosophical terms with little appreciation for the late 19th century American philosophical tradition from which they arose. Recent scholarly research, however, has revealed some important aspects of that tradition, giving it a coherence that has largely been underappreciated as 20th century philosophy of science pursued its successive fads of logical positivism, critical rationalism, relativism, and deconstructivism — for all of which "science" is synonymous with "physics". Nearly all this ideology is geologically irrelevant. As philosophy of science in the late 20th century has come to be identical with philosophy of analytical physics, focused on explanations via ideal truths, much of geology has remained true to its classical doctrines of commonsensism, fallibilism, and realism. In contrast to the conceptualism and the reductionism of the analytical sciences, geology has emphasized synthetic thinking: the continuous activity of comparing, connecting, and putting together thoughts and perceptions. The classical methodological studies of geological reasoning all concern the formulation and testing of hypotheses. Analysis does not serve to provide the ultimate answers for intellectual puzzles predefined by limiting assumptions imposed on the real world. Rather, analysis in geology allows the investigator to consider the consequential effects of hypotheses, the latter having been suggested by experience with nature itself rather than by our theories of nature. These distinctions and methods were described in G.K. Gilbert's papers on "The Inculcation of Scientific Method by Example" (1886) and "the Origin of Hypotheses" (1896). Portions were elaborated in T.C. Chamberlin's "Method of Multiple Working Hypotheses" (1890) and his "method of the Earth Sciences" (1904); in W.M. Davis's "Value of Outrageous Geological Hypotheses" (1926); and in D. Johnson's "Role of Analysis in Scientific Investigation" (1933). American Quaternary geology and geomorphology have their philosophical roots in the pragmatic tradition, enunciated most clearly by C.S. Peirce, now recognized as the greatest American philosopher and considered by Sir Karl Popper to be one of the greatest philosophers of all time. Quaternary geology and geomorphology afford numerous examples of Peirce's "method" of science, which might be termed "the critical philosophy of common sense". The most obvious influence of pragmatism in geology, however, has largely been conveyed by the tradition of its scientific community. The elements of this tradition include a reverence for field work, a humility before the "facts" of nature, a continuing effort "to discriminate the phenomena observed from the observer's inference in regard to them", a propensity to pose hypotheses, and a willingness to abandon them when their consequences are contradicted by reality.

  13. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  14. Evaluation of fission product yields from fission spectrum n+239Pu using a meta analysis of benchmark data

    NASA Astrophysics Data System (ADS)

    Chadwick, Mark B.

    2009-10-01

    Los Alamos conducted a dual fission-chamber experiment in the 1970s in the Bigten critical assembly to determine fission product data in a fast (fission neutron spectrum) environment, and this defined the Laboratory's fission basis today. We describe how the data from this experiment are consistent with other benchmark fission product yield measurements for 95,97Zr, 140Ba, 143,144Ce, 137Cs from the NIST-led ILRR fission chamber experiments, and from Maeck's mass-spectrometry data. We perform a new evaluation of the fission product yields that is planned for ENDF/B-VII.1. Because the measurement database for some of the FPs is small—especially for 147Nd and 99Mo—we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data. The %-relative changes compared to ENDF/B-VI are small for some FPs (less than 1% for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (3%) and 147Nd (5%). We suggest an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average energies.

  15. Quaternary ammonium derivatives as spasmolytics for irritable bowel syndrome.

    PubMed

    Evangelista, S

    2004-01-01

    Quaternary ammonium derivatives such as cimetropium, n-butyl scopolammonium, otilonium and pinaverium bromide have been discovered and developed as potent spasmolytics of the gastrointestinal tract. Their pharmacological activity has been proven in both "in vivo" and "in vitro" studies of hypermotility. "In vitro" experiments showed that they possess antimuscarinic activity at nM level but only pinaverium and otilonium are endowed with calcium channel blocker properties. These latter compounds relaxed the gastrointestinal smooth muscle mainly through a specific inhibition of calcium ion influx through L-type voltage operated calcium channels. Molecular pharmacology trials have indicated that pinaverium and otilonium can bind specific subunits of the calcium channel in the external surface of the plasma membrane and in this way they block the machinery of the contraction. Recent evidence showed that otilonium is able to bind tachykinin NK(2) receptors and not only inhibits one of the major contractile agents but can reduce the activation of afferent nerves devoted to the passage of sensory signals from the periphery to the central nervous system. Thanks to their typical physico-chemical characteristics, they are poorly absorbed by the systemic circulation and generally remain in the gastrointestinal tract where they exert the muscle relaxant activity by a local activity. Some differences exists in the absorption among these compounds: both n-butyl scopolammonium and cimetropium are partially taken up in the bloodstream, pinaverium has a low absorption (8-10 %) but is endowed with an excellent hepato-biliary excretion and otilonium, which has the lowest absorption (3 %), is almost totally excreted by faeces. Quaternary ammonium derivatives are widely used for the treatment of irritable bowel syndrome and recent meta-analyses have supported their efficacy in this disease. Due to its therapeutic index, the use of n-butyl scopolammonium is more indicated to treat acute colics than a chronic disease such as irritable bowel syndrome. Taking into consideration the published trials carried out with validated methodology in irritable bowel syndrome, cimetropium and otilonium are the best demonstrated drugs for the improvement in global assessment, pain and abdominal distension. PMID:15579053

  16. Quaternary Deformation of Sumba, Indonesia: Evidence from Carbonate Terraces

    NASA Astrophysics Data System (ADS)

    Dahlquist, M. P.; West, A. J.; Dolan, J. F.

    2014-12-01

    The Banda Arc of Indonesia remains one of the least understood tectonic domains on the modern Earth. The island of Sumba, located approximately 50 km south of Flores and 120 km north of the Java Trench, northwest of where it transitions into the Timor Trough, lies in a region of tectonic transition and potentially offers insights into regional dynamics. The Banda Arc is volcanically active, but Sumba itself is not volcanic. The northern coast of Sumba is covered in Quaternary coral terraces, with the rest of the island's surface geology composed of Mio-pliocene carbonates and uplifted Late Cretaceous-Oligocene forearc basin and volcanic rocks. The purpose of this study is to remotely map the topographic expression of the coral terraces and use the information gained to better understand deformation on Sumba since their deposition. The ages of the coral terraces, of which many platforms are exposed over significant areas of the island, have been constrained at Cape Luandi in north central Sumba, but uplift rates calculated from those ages may not be representative of the island as a whole. The lateral continuity of these dated terraces can help constrain the extent to which uplift of Sumba is spatially variable. Analysis of the terraces using SRTM digital elevation data with ArcGIS software makes it possible to trace the same terrace platforms over large distances, and shows that the north central part of the island has experienced the most uplift since the deposition of the terraces, forming an anticline with the east limb dipping more steeply than the west. The terraces are not well preserved on the southern half of the island. Exposure of older rocks and lack of terrace preservation, as well as a south-skewed drainage divide suggests the southern half of the island experiences greater exhumation, but this could be driven by climate or other factors and does not necessarily indicate more rapid uplift. Study of Quaternary deformation of Sumba can offer greater understanding of the ongoing collision of the Banda Arc with the Australian continent. A more complete picture of the region may provide insights into seismic hazards as well as the behavior of arc-continent collision systems and active margins in general.

  17. Simulation and understanding the nature of Quaternary glacial cycles

    NASA Astrophysics Data System (ADS)

    Ganopolski, A.; Calov, R.

    2012-04-01

    Although it is generally accepted that, as postulated by the Milankovitch theory, Earth's orbital variations play an important role in Quaternary climate dynamics, the mechanism of glacial cycles still remains poorly understood. Among remaining scientific challenges are an understanding of the nature of 100 kyr cycles that dominated global ice volume and climate variability over the late part of Quaternary and the causes of the transition from the "40 kyr world" to the "100 kyr world" around one million years ago. Using the Earth system model of intermediate complexity CLIMBER-2, we demonstrate that both strong 100 kyr periodicity in the ice volume variations and the timing of glacial terminations during past 800 kyr can be successfully simulated as direct, strong nonlinear responses of the climate-cryosphere system to orbital forcing alone. We show that the sharp 100 kyr peak in the power spectrum of ice volume results from the phase locking of the long glacial cycles to the corresponding eccentricity cycles. Variations in obliquity and CO2 concentration are not required to simulate strong 100 kyr cyclicity if the atmospheric CO2 concentration stays below its typical interglacial value. The existence of long glacial cycles is primarily attributed to the North American ice sheet and it requires the presence of a large continental area with exposed rocks. In case when the continents are completely covered by a thick sediment layer, for the realistic range of CO2 concentrations (180-300 ppm), the long glacial cycles can not be simulated. In the experiment with fixed CO2 concentration, ice volume variations contain both strong precessional and obliquity cycles, which apparently is in odd with empirical data that suggest complete dominance of the obliquity cycle. However, in the experiments with interactive carbon cycle, simulated obliquity component becomes much stronger, especially, in the deep ocean temperature. This is explained by the direct and indirect (via the carbon cycle feedback) effects of the obliquity component of the orbital forcing on the deep ocean temperature. When assuming that before development of the long glacial cycles the benthic delta-18-oxygen concentration was dominated by the deep ocean temperature variations, this result can help to understand the nature of the "40-kyr world".

  18. Late Quaternary carbonate deposition at the bottom of the world

    NASA Astrophysics Data System (ADS)

    Frank, Tracy D.; James, Noel P.; Bone, Yvonne; Malcolm, Isabelle; Bobak, Lindsey E.

    2014-05-01

    Carbonate sediments on polar shelves hold great potential for improving understanding of climate and oceanography in regions of the globe that are particularly sensitive to global change. Such deposits have, however, not received much attention from sedimentologists and thus remain poorly understood. This study investigates the distribution, composition, diagenesis, and stratigraphic context of Late Quaternary calcareous sediments recovered in 15 piston cores from the Ross Sea shelf, Antarctica. Results are used to develop a depositional model for carbonate deposition on glaciated, polar shelves. The utility of the deposits as analogs for the ancient record is explored. In the Ross Sea, carbonate-rich lithofacies, consisting of poorly sorted skeletal sand and gravel, are concentrated in the west and along the outer reaches of the continental shelf and upper slope. Analysis of fossil assemblages shows that deposits were produced by numerous low-diversity benthic communities dominated locally by stylasterine hydrocorals, barnacles, or bryozoans. Radiocarbon dating indicates that carbonate sedimentation was episodic, corresponding to times of reduced siliciclastic deposition. Most accumulation occurred during a time of glacial expansion in the lead-up to the Last Glacial Maximum. A more recent interval of carbonate accumulation postdates the early Holocene sea level rise and the establishment of the modern grounding line for the Ross Ice Shelf. When carbonate factories were inactive, fossil debris was subjected to infestation by bioeroders, dissolution, fragmentation, and physical reworking. This study reveals the episodic nature of carbonate deposition in polar settings and a reciprocal relationship with processes that deliver and redistribute siliciclastic debris. Carbonate production is most active during colder periods of the glacial-interglacial cycle, a potential new sedimentological paradigm for polar carbonate systems. Low accumulation rates and long residence times on the seafloor leave sediments vulnerable to significant post-depositional modification, processes that profoundly affect the appearance of deposits as they enter the rock record. Comparison with other examples of polar carbonates highlights the utility of these Late Quaternary deposits as a well-constrained analog that can aid in the recognition and interpretation of similar deposits from the ancient record.

  19. Fission Product Yields from Fission Spectrum n+ 239Pu for ENDF/B-VII.1

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Kawano, T.; Barr, D. W.; Mac Innes, M. R.; Kahler, A. C.; Graves, T.; Selby, H.; Burns, C. J.; Inkret, W. C.; Keksis, A. L.; Lestone, J. P.; Sierk, A. J.; Talou, P.

    2010-12-01

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small — especially for 99Mo — we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on the energy dependence over the fast neutron energy range from 0.2-2 MeV. Based on these trends, we present an evaluation of the FPY data at 0.5 and 2.0 MeV average incident neutron energies. This new set of ENDF/B-VII data will enable users to linearly interpolate between the pooled FPY data at ˜0.5 MeV and our new data at 2 MeV to obtain FPYs at other energies. We intend to release the ENDF/B-VII.1 database in December 2011, and all released data are subject to CSEWG approval. It is possible that the released evaluated data will differ from those presented in this paper; the evaluated date presented here can be referred to as ENDF/B-VII.1 beta 0.

  20. Results of interlaboratory comparison of fission track ages for 1992 fission track workshop

    USGS Publications Warehouse

    Miller, D.S.; Crowley, K.D.; Dokka, R.K.; Galbraith, R.F.; Kowallis, B.J.; Naeser, C.W.

    1993-01-01

    Two apatites and one sphene were made available to the fission track research community for analysis prior to the 1992 Fission Track Workshop held in Philadelphia, U.S.A., 13-17 July. Eighteen laboratories throughout the world received aliquots of apatite and sphene. To date, analyses by 33 different scientists have been representing 15 different laboratories. With respect to the previous two interlaboratory comparisons, there is a noticeable improvement in the accuracy of the age results (Naeser and Cebula, 1978; Naeser et al., 1981; Miller et al., 1985;Miller et al.1990). Ninety-four percent of the analysis used the external detector method (EDM) combined with the zeta technique while the remaining individuals used the population method (POP). Track length measurements (requested for the first time in the interlaboratory comparison studies) were in relatively good agreement. ?? 1993.

  1. Nuclear fission and the transuranium elements

    SciTech Connect

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  2. Intramolecular Singlet Fission in Oligoacene Heterodimers.

    PubMed

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Steigerwald, Michael L; Sfeir, Matthew Y; Campos, Luis M

    2016-03-01

    We investigate singlet fission (SF) in heterodimers comprising a pentacene unit covalently bonded to another acene as we systematically vary the singlet and triplet pair energies. We find that these energies control the SF process, where dimers undergo SF provided that the resulting triplet pair energy is similar or lower in energy than the singlet state. In these systems the singlet energy is determined by the lower-energy chromophore, and the rate of SF is found to be relatively independent of the driving force. However, triplet pair recombination in these heterodimers follows the energy gap law. The ability to tune the energies of these materials provides a key strategy to study and design new SF materials-an important process for third-generation photovoltaics. PMID:26836223

  3. Detecting fission from special nuclear material sources

    DOEpatents

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  4. Lasers from fission. [nuclear pumping feasibility experiments

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  5. Asteroid spin-up fission systems

    NASA Astrophysics Data System (ADS)

    Pravec, P.

    2014-07-01

    Among asteroids smaller than about 15 km in diameter, there is a population of binary and multiple asteroid systems that show characteristics strongly suggesting their formation by spin-up fission. I will review the current observational data we have on the systems and compare them with predictions from theories of formation of asteroid systems. I will show that the best explanation of their observed properties is provided by the theory of fission of cohesionless (rubble-pile) asteroids spun up to the critical spin frequency by the YORP effect. Observed asteroid systems are of two kinds: bound and unbound. Bound asteroid systems typically consist of a larger primary and one or two smaller satellites. Unbound systems consist of two asteroids orbiting the Sun on highly similar orbits, again with one being typically larger (primary) and the other being smaller (secondary). These two groups are not exclusive; there exist systems with one or two bound and an unbound secondary. Our current sample consists of 133 bound asteroid systems (binaries or triples) with primary sizes between 0.12 and 13 km and of 178 asteroid pairs with similar primary sizes. Bound systems have been observed in heliocentric orbits from near the Earth to the outer main belt, while asteroid pairs are recognizable only in the main belt where their orbits are only slowly dispersed so the pairs can be identified for up to 2 Myr after formation. The leading observational techniques for discovery and characterization of asteroid systems are radar imagery (for near-Earth asteroid systems) and lightcurve photometry (for main-belt ones). The observed characteristics of asteroid systems suggesting their formation by rotational fission of parent rubble-pile asteroids after being spun up by the YORP effect are as follows. The angular momentum content of binary asteroids is close to critical. The orientations of satellite orbits are non-random; the orbital poles concentrate near the obliquities of 0 and 180 degrees, i.e., near the YORP asymptotic states. The spin rates of primaries of asteroid pairs (unbound systems) are correlated with the secondary-to-primary size ratio; the primaries of pairs with small secondaries rotate at frequencies close to critical, but pairs with larger secondaries have slower primary rotations as a large part of the rotational angular momentum was carried away by the escaped secondary. Relative velocities of the components of asteroid pairs at the time of formation were low, on an order of the escape velocity from the parent body, indicating a gentle push in their formation. There has not been observed any secondary orbiting its primary below the Roche limit for strengthless bodies, consistent with their rubble-pile structure. The shapes of primaries of systems with bound secondaries are nearly spheroidal and they show an equatorial ridge in the highest-resolution radar shape models. The satellite orbits in close binary or triple systems have low inclinations to the primary's equator and the spin states of asteroid pair primaries are close to principal-axis rotation, as expected for material forming the secondary pulled away by the centrifugal force. While the observational data support the theory of formation of small asteroid systems by YORP-induced rotational fission, details of the formation process and evolutionary paths are lacking. I will also mention a few anomalies we have observed. The most striking anomaly is that there are two systems with super-critical angular momentum content, (4951) Iwamoto and (32039) 2000 JO_{23}, which require explanation.

  6. (Fuel, fission product, and graphite technology)

    SciTech Connect

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  7. Control system for a small fission reactor

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  8. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  9. Fission Surface Power System Initial Concept Definition

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk Reduction the team develops hardware prototypes and conducts laboratory-based testing.

  10. Suppressed-fission ICF hybrid reactor

    SciTech Connect

    Hogan, W.J.; Meier, W.R.

    1986-05-20

    A suppressed-fission ICF hybrid reactor has been designed to maximize the production of /sup 233/U. In this design, Be is used as a neutron multiplier. An annular array of Be columns surrounds the fusion pulse inside the reaction chember. The Be columns consist of short cylinders of Be joined together with steel snap rings. Vertical holes in the Be carry liquid lithium coolant and steel-clad thorium fuel pins. The lithium coolant is supplied at the top of the chamber, traverses through the Be columns and exits at the bottom. The columns are attached to top and bottom plates in such a way as to tolerate radiation-induced swelling and the vibrations resulting from each fusion pulse. A thin (10 cm) liquid Li fall region protects the Be columns from direct exposure to the X-rays and debris emitted by the fuel capsule. A neutronics study of this design indicates that the specific production of /sup 233/U fuel is increased by operating at relatively large thorium volume fractions. A design at a fertile fuel fraction of 30 vol % produces a total breeding ratio of over 2.1. The /sup 6/Li to /sup 7/Li ratio is adjusted to keep the tritium breeding ratio at about 1.0. In such a reactor, about 3400 kg of /sup 233/U can be produced per full power year at a fusion power level of 800 MW. Reactor support ratios greater than 13 can be achieved, leading to beneficial results even if the fusion reactor cost is significantly greater than that of a fission reactor.

  11. Results of interlaboratory comparison of fission-track age standards: Fission-track workshop-1984

    USGS Publications Warehouse

    Miller, D.S.; Duddy, I.R.; Green, P.F.; Hurford, A.J.; Naeser, C.W.

    1985-01-01

    Five samples were made available as standards for the 1984 Fission Track Workshop held in the summer of 1984 (Rensselaer Polytechnic Institute, Troy, New York). Two zircons, two apatites and a sphene were distributed prior to the meeting to 40 different laboratories. To date, 24 different analysts have reported results. The isotopic ages of the standards ranged from 16.8 to 98.7 Myr. Only the statement that the age of each sample was less than 200 Myr was provided with the set of standards distributed. Consequently, each laboratory was required to use their laboratory's accepted treatment (irradiation level, etching conditions, counting conditions, etc.) for these samples. The results show that some workers have serious problems in achieving accurate age determinations. This emphasizes the need to calibrate experimental techniques and counting procedures against age standards before unknown ages are determined. Any fission-track age determination published or submitted for publication can only be considered reliable if it is supported by evidence of consistent determinations on age standards. Only this can provide the scientific community with the background to build up confidence concerning the validity of the fission-track method. ?? 1985.

  12. Latest quaternary volcanism in the St. George Basin, southwestern Utah

    SciTech Connect

    Millings, V.T. III; Green, J.D.; Nusbaum, R.L. . Dept. of Geology)

    1993-03-01

    The St. George Basin was the site of mafic volcanism from about 6 Ma to 1 ka. The nature of latest Quaternary volcanism is of interest because the Basin is recognized as a low temperature (< 90C) geothermal resource area and it is part of the transition zone between the Basin and Range Province and the Colorado Plateau. The authors have studied the geochemistry, mineralogy, and aerial distribution of two of the youngest eruptions centers: (1) Veyo Volcano; and (2) the Diamond Valley scoria cones (DVSC). Veyo Volcano erupted basaltic andesite, beginning with an explosive stage marked by a 0.5 m basal Plinian layer. Later eruptions alternated between quiescent and Strombolian-styles. Phenocrysts include clear plagioclase, sieve-texture plagioclase, olivine and rare augite. The DVSC and associated Santa Clara lava flow are tholeiitic basalt, consisting of olivine phenocrysts, and rare plagioclase phenocrysts. Based on preliminary geochemical data, Diamond Valley rocks exhibit lower incompatible element ratios compared to mafic rocks on the Markagunt Plateau and transition zone rocks. In contrast, Veyo Volcano rocks are similar to transition zone mafic rocks with regard to incompatible element abundances.

  13. Quaternary heteroaromatic salts with prophylactic and antidotal activity towards soman

    SciTech Connect

    Sundberg, R.J.; Dalvie, D.; Cordero, J.; Sabat, M.

    1993-05-13

    A series of quaternary heteroaromatic salts has been prepared and evaluated for prophylactic and antidotal activity towards the lethal toxicity of soman. One series of compounds contains 2-, 3-, or 4-(dimethylaminocarbonyloxy)phenoxymethyl substituents at the 2 position of the following rings: 1,3-dimethylimidazolium, 1-methylpyridinium, 1-methylquinolinium, 1,3-dimethylbenzimidazolium and 1-methylimidazo1,2-Apyridinium. The compounds were evaluated both in vitro, by determining the IC50 for electric eel acetylcholinesterase, and in vivo, using both antidotal and prophylactic assays in mice. Compound 2b was most active in the in vitro assay (IC50 = 0.01 M). However, its toxicity is high and compound la is more effective in vivo with 80-100% protective activity against 2 LD50 of soman at 6.2 to 62.5 mg/kg. A second series of compounds consisted of 6-substituted 2'-, 3'-, and 4'-(dimethylaminocarbonyloxy) phenylimidazo (1,2-a) pyridinium salts (8).

  14. Interhemispheric dynamics of the African rainbelt during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Singarayer, Joy S.; Burrough, Sallie L.

    2015-09-01

    The spatial pattern of precipitation variability in tropical and subtropical Africa over the late Quaternary has long been debated. Prevailing hypotheses variously infer (1) insolation-controlled asymmetry of wet phases between hemispheres, (2) symmetric contraction and expansion of the tropical rainbelt, and (3) independent control on moisture available in Southern Africa via sea surface temperatures in the Indian Ocean. In this study we use climate-model simulations covering the last glacial cycle (120 kyr) with HadCM3 and the multi-model ensembles from PMIP3 (the Palaeoclimate Model Intercomparison Project) to investigate the long-term behaviour of the African rainbelt, and test these simulations against existing empirical palaeohydrological records. Through regional model-data comparisons we find evidence for the validity of several hypotheses, with various proposed processes occurring concurrently but with different regional emphasis (e.g. asymmetric shifts at the seasonal extremes and symmetric expansions/contractions towards West equatorial regions). Crucially, variations in rainfall are associated with multiple forcing mechanisms that vary in their dominance both spatially and temporally over the glacial cycle; an important consideration when interpreting and extrapolating from often relatively short palaeoenvironmental records.

  15. New urethane oligodimethacrylates with quaternary alkylammonium for formulating dental composites.

    PubMed

    Buruiana, Tinca; Melinte, Violeta; Popa, Ionela D; Buruiana, Emil C

    2014-04-01

    The aim of this study was to prepare urethane dimethacrylates containing quaternary alkyl (C16, C12) ammonium and polyethylene glycol short sequences (Mn, 400 g/mol) and to investigate their behaviour in some experimental formulations in order to evaluate their potential applicability in the dental composites field. The structure of urethane dimethacrylates has been confirmed by (1)H ((13)C) NMR and FTIR spectra, as well as by electrospray ionization tandem mass spectroscopy, and gel permeation chromatography measurements. The effects of the cationic macromers on the properties of the filled/non-filled composites were examined through FTIR, photoDSC, and specific measurements as volumetric polymerization shrinkage, water sorption/solubility, contact angle, mechanical parameters, and morphology. The monomer compositions based on cationic dimethacrylate (6.88-27.52 wt%), BisGMA-analogue (48.18-68.82 wt%) and TEGDMA (23.3 wt%) showed a good photoreactivity in terms of double bond conversion (DC, 50.07-68.81 %) and polymerization rate (Rp, 0.099-0.141 s(-1)) measured by photoDSC compared to a control sample (BisGMA-1/TEGDMA: DC, 45.91 %; Rp, 0.162 s(-1)), while the polymerization shrinkage increased in acceptable limits (5.37-7.74 vol%). The mechanical properties (compressive, flexural and diametral tensile strength) of the composite resin incorporating 70 wt% silanized zirconium silicate micro/nanopowder can be modulated by the initial co-monomer concentrations. PMID:24435527

  16. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    All isostructural compounds RNi2B2C (R =Er, Ho, Dy) show some magnetic transitions in magnetization isotherms at certain applied magnetic fields and temperatures above and below Neel and superconducting temperatures (TN, TC) where TN/TC varies from 0.57 to 1.66 for ErNi2B2C and DyNi2B2C. By using theoretical group analysis of D4h (I4/mmm) to the energy level scheme of crystalline electric field of magnetization isotherms anisotropy at various temperatures, we have obtained some possible ground state energy levels such as singlet Γ4 and first excited doublet state Γ5 in addition to another excited singlet Γ1 . Our crystalline electric field energy scheme analysis shows some qualitative agreement between theoretical calculation and experiments at high magnetic fields regime only, which means the interplay between antiferromagnetsm and superconductivity should be included. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds.

  17. Antibacterial Nanocomposite with Calcium Phosphate and Quaternary Ammonium

    PubMed Central

    Cheng, L.; Weir, M.D.; Zhang, K.; Xu, S.M.; Chen, Q.; Zhou, X.; Xu, H.H.K.

    2012-01-01

    Secondary caries is a frequent reason for restoration failure, resulting from acidogenic bacteria and their biofilms. The objectives of this study were to: (1) develop a novel nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and quaternary ammonium dimethacrylate (QADM); and (2) investigate its mechanical and antibacterial durability. A spray-drying technique yielded NACP with particle size of 116 nm. The nanocomposite contained NACP and reinforcement glass fillers, with QADM in the resin. Two commercial composites were tested as controls. Composites were inoculated with Streptococcus mutans. After 180-day water-aging, NACP+QADM nanocomposite had flexural strength and elastic modulus matching those of commercial controls (p > 0.1). NACP+QADM nanocomposite reduced the biofilm colony-forming units (CFU) by 3-fold, compared with commercial composites (p < 0.05). Metabolic activity and lactic acid production of biofilms on NACP+QADM were much less than those on commercial composites (p < 0.05). The antibacterial properties of NACP+QADM were maintained after water-aging for 30, 90, and 180 d (p > 0.05). In conclusion, the novel NACP-QADM nanocomposite greatly decreased biofilm metabolic activity, CFU, and lactic acid, while matching the load-bearing capability of commercial composites without antibacterial properties. The NACP-QADM nanocomposite with strong and durable antibacterial properties, together with its previously reported Ca-PO4 release capability, may render it useful for caries-inhibiting restorations. PMID:22403412

  18. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations. PMID:25252174

  19. Effects of Quaternary Ammonium Chain Length on Antibacterial Bonding Agents

    PubMed Central

    Li, F.; Weir, M.D.; Xu, H.H.K.

    2013-01-01

    The objectives of this study were to synthesize new quaternary ammonium methacrylates (QAMs) with systematically varied alkyl chain lengths (CL) and to investigate, for the first time, the CL effects on antibacterial efficacy, cytotoxicity, and dentin bond strength of bonding agents. QAMs were synthesized with CL of 3 to 18 and incorporated into Scotchbond Multi-Purpose (SBMP) bonding agent. The cured resins were inoculated with Streptococcus mutans. Bacterial early attachment was investigated at 4 hrs. Biofilm colony-forming units (CFU) were measured after 2 days. With CL increasing from 3 to 16, the minimum inhibitory concentration and minimum bactericidal concentration were decreased by 5 orders of magnitude. Incorporating QAMs into SBMP reduced bacterial early attachment, with the least colonization at CL = 16. Biofilm CFU for CL = 16 was 4 log lower than SBMP control (p < .05). All groups had similar dentin bond strengths (p > .1). The new antibacterial materials had fibroblast/odontoblast viability similar to that of commercial controls. In conclusion, increasing the chain length of new QAMs in bonding agents greatly increased the antibacterial efficacy. A reduction in Streptococcus mutans biofilm CFU by 4 log could be achieved, without compromising bond strength and cytotoxicity. New QAM-containing bonding agents are promising for a wide range of restorations to inhibit biofilms. PMID:23958761

  20. Quaternary ammonium sulfanilamide: a membrane-impermeant carbonic anhydrase inhibitor

    SciTech Connect

    Henry, R.P.

    1987-05-01

    A novel carbonic anhydrase (CA) inhibitor, quaternary ammonium sulfanilamide (QAS), was tested for potency as a CA inhibitor and for its ability to be excluded from permeating biological membranes. Inhibitor titration plots of QAS vs. pure bovine CA II and CA from the gills of the blue crab, Callinectes sapidus, yielded K/sub i/ values of approx. 15 ..mu..M; thus QAS is a relatively weak but effective CA inhibitor. Permeability of the QAS was directly tested by two independent methods. The inhibitor was excluded from human erythrocytes incubated in 5 mM QAS for 24 h as determined using an /sup 18/O-labeled mass spectrometer CA assay for intact cells. Also QAS injected into the hemolymph of C. sapidus (1 or 10 mM) did not cross the basal membrane of the gill. The compound was cleared from the hemolymph by 96 h after injection, and at no time during that period could the QAS be detected in homogenates of gill tissue. Total branchial CA activity was only slightly reduced following the QAS injection. These data indicate that QAS is a CA inhibitor to which biological membranes are impermeable and that can be used in vivo and in vitro in the study of membrane-associated CA.